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Abstract 
 
A pre-condition for employer learning is that signals at labor market entry do not fully reveal 
graduates’ productivity. I model various distinct sources of signal imperfection—such as noise 
and multi-dimensional types—and characterize their implications for the private return to skill 
acquisition. Structural estimates using NLSY data suggest an important role for noise, pushing 
the private return below the social return. This induces substantial under-investment and causes 
output losses of up to 22 percent. Value-added-based evidence from Swedish high school 
graduates also points to noise and under-investment. Highlighting the distinction between 
schooling duration and skills acquired, I conclude that individuals likely spend too much time in 
school, but learn too little. 
JEL-Codes: D820, I260, J240, J310. 
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1 Introduction

Any graduate entering the labor market faces the problem that employers have incomplete
knowledge of her productive abilities. In theory, her educational choices may serve as a
signal and help resolve the information asymmetry (Spence, 1973). However, in reality
such signals are always imperfect. Some signals are coarse (college graduation, years of
schooling), others are more varied but noisy (a grade point average), yet others are precise
but narrow (the GRE math score). Clearly, there are many aspects of schooling—effort,
content, quality of instruction—that cannot be perfectly observed by employers. The
employer learning literature supports such casual observations by establishing that it takes
time for the market to learn a worker’s productivity (Farber and Gibbons, 1996; Altonji
and Pierret, 2001). This shows that observed educational choices do not perfectly reveal
graduates’ abilities—as signals, they are imperfect. The goal of this paper is to explore
the sources of signal imperfection and to examine their implications for the efficiency
of educational choices. In doing so, I shed new light on the roles of human capital and
signaling motives in education (Weiss, 1995; Lange and Topel, 2006).

I build a theoretical model featuring human capital accumulation, signaling, and
employer learning. Workers’ productivity is a function of ‘talent’ (traits that predate
schooling) and ‘acquired skills’ (abilities obtained in school), as in Spence (1974). In
contrast to prior literature, workers choose both how long to stay in school (whether to
attend college) and the amount of skills to acquire. This is an important distinction in
relation to information frictions: Employers perfectly observe years of schooling, but the
signal they receive about a workers’ acquired skills (for instance, a grade point average)
may be noisy.1 I further assume that an individual’s type has two dimensions: talent, as
well as ‘taste’ for schooling. Talent and taste are both inversely related to skill acquisition
costs, but unlike talent, taste has no effect on productivity. Employers form beliefs about
graduates’ productivity based on the skill acquisition signal as well as observed years of
schooling. Once workers enter the labor market, further signals about their productivity
are received by all employers each period, giving rise to employer learning.

The model serves three purposes. First, to highlight that signal imperfection can arise
for multiple reasons; they are not mutually exclusive, but each by itself is a sufficient
pre-condition for employer learning. Second, to establish that different sources of signal
imperfection can have opposing effects on the efficiency of schooling choices. And third, to
help characterize inefficiency in schooling choices in data from the US and Sweden.

The basic insights can be understood by considering two polar cases. First, suppose
acquired skills are perfectly observed. Employers still do not fully know workers’ produc-

1For instance, grades may contain a luck component (Landaud, Maurin, Willage, and Willén, 2022), or
degree classifications may be coarse (Feng and Graetz, 2017).
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tivity at labor market entry, because taste heterogeneity implies heterogeneity in talent for
each level of acquired skills. However, skill acquisition will be inefficiently high, provided
the correlation between talent and acquired skills is positive. As in the classical signaling
model, observing acquired skills leads employers to update about both a worker’s acquired
skills and her talent, pushing the private return to skill acquisition above the social return.
Second, suppose the skill acquisition signal is infinitely noisy. Skill acquisition will be
inefficiently low due to the delay with which the market rewards it.

To the best of my knowledge, this distinction between different sources of signal
imperfection is not made explicit in existing literature. A more familiar feature of the
model is that college attendance tends to be too high, since college graduation is perfectly
observed and may thus be used to compensate for noisy skill acquisition signals. Here,
the novelty of my analysis lies in highlighting that this may coincide with inefficiently low
skill acquisition, and thus insufficient human capital accumulation in the aggregate.

A regression of log wages on talent and skill acquisition, separately by years of schooling
and labor market experience, reveals the direction of inefficiency in skill acquisition. The
coefficient on acquired skill measures the private return to skill acquisition. At high levels
of experience, however, the private return is very close to the social return, since employer
learning is essentially complete. The test for the direction of inefficiency is to check whether
the coefficients approach their limit from above or below, indicating over-investment and
under-investment, respectively.

I conduct an empirical exercise inspired by this test using data on Swedish high school
graduates. I use parental background and compulsory school GPA to proxy for talent and
prior skill acquisition. Conditional on those variables, high school GPA should capture
additional skill acquisition (‘value added’) during the last three years prior to labor market
entry. I find that the returns to the standardized high school GPA are initially zero but
quickly grow and converge to around two percent for experienced workers. This suggests
that due to information frictions, Swedish high school graduates early in their career face
a wage return to skill acquisition that is below the social return, which in the theoretical
model implies under-investment.

Beyond this qualitative conclusion based on the Swedish evidence, I offer structural
estimates of my model and use these to explore the counterfactual scenario of full informa-
tion. For this, I return to the NLSY data used by Altonji and Pierret (2001), Lange (2007),
and Arcidiacono, Bayer, and Hizmo (2010). The test for the presence of employer learning
suggested by Altonji and Pierret (2001) is to check that wage returns to years of schooling
decrease with experience while returns to AFQT increase. My model is able to match this
pattern and other moments documented in the afore-mentioned articles, but these on their
own do not reveal the direction of inefficiency.2 My own test described above is infeasible

2The model is also consistent with instrumental variables estimates of the effect of college on wages
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because the NLSY data do not contain direct measures of talent and skill acquisition.
Instead, they contain the Armed Forces Qualification Test (AFQT) score, which I treat as
potentially containing information about both talent and skill acquisition. In line with the
literature, I assume that the AFQT score is not directly observed by employers, but they
instead observe a productivity correlate (the skill acquisition signal) that is not observed
by the econometrician. In order to characterize inefficiency in schooling choices, I need
to estimate all model parameters, requiring additional assumptions about the aggregate
production function, the type distribution, and the average effect of college on productivity.

Across a range of assumptions, several robust patterns emerge. The output elasticity of
acquired skill exceeds that of pre-existing talent in most cases. The AFQT score appears
to mainly reflect talent, not acquired skills. Most importantly, I find that acquired skills
are indeed highly imperfectly observed at labor market entry, especially so among high
school graduates. This conclusion arises from a prominent feature of the data, namely that
the wage return to the AFQT score for inexperienced high school graduates is zero. Even
when the AFQT score does not reflect acquired skills but only talent, it will be positively
correlated with acquired skills since they are an increasing function of talent. A zero wage
return at labor market entry therefore strongly suggests that employers know very little
about high school graduates’ acquired skills (or their talent).

I calculate that under-investment in productive skills leads to output losses of up to 22
percent, relative to a perfect-information counterfactual scenario. Moreover, the fraction of
college graduates is typically inefficiently high, though the extent of this depends critically
on the substitution elasticity between high school and college workers in the aggregate
production function. Under perfect substitutes, the observed college share of 26 percent
would drop to 1 percent in the counterfactual of full information. However, assuming a
more conventional value for the substitution elasticity of 1.5, the counterfactual college
share would range from 21-25 percent.

The paper proceeds as follows. Section 1.1 discusses related literature. For the sake
of expositional clarity, I present the model in stages. Section 2 introduces imperfectly
observed skill acquisition, holding the length of education fixed, into an otherwise standard
employer learning framework, establishes that the direction of inefficiency is ambiguous,
and suggests an empirical test. Section 3 completes the model by allowing for a choice
between a high school and a college track, and clarifies the connection between econometric
employer learning models and the test suggested in Section 2. Section 4 estimates the
parameters of the two-track model using NLSY data, and performs a counterfactual
exercise. Section 5 estimates and interprets the returns to high school GPA for Swedish
workers over the course of their careers. Section 6 offers a concluding discussion.

that decline with experience, as in Aryal, Bhuller, and Lange (2022). Again, this is true regardless of the
direction of inefficiency in skill acquisition.
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1.1 Related literature

This paper speaks to an ongoing debate among researchers and policy makers about the
importance of signaling versus human capital motives in educational choices (Oreopoulos,
2021). It is often asserted that if signaling motives are important, then education is
largely wasteful (Caplan, 2018). On the other hand, fast employer learning may limit
the importance of signaling motives (Lange, 2007; Lange and Topel, 2006). This paper
contributes to the debate by exploring multiple sources of signal imperfection; by showing
that they have distinct effects on the direction of inefficiency in schooling choices; and by
presenting evidence that under-investment is an empirically relevant phenomenon. And
unlike prior literature, I highlight the distinction between amount of time spent in school
and amount of skills acquired. My results suggest that the former tends to be too high
but the latter too low, implying more nuanced policy conclusions than would follow from
traditional signaling arguments (see Section 6).

The paper is closely related to the employer learning literature (Farber and Gibbons,
1996; Altonji and Pierret, 2001; Arcidiacono, Bayer, and Hizmo, 2010; Ablay and Lange,
2022). This literature finds that private returns to easily observed characteristics, such
as years of schooling, typically exceed the social returns early in workers’ careers, which
is interpreted as a signaling premium (Lange, 2007; Aryal, Bhuller, and Lange, 2022). I
show that such evidence is consistent with the presence of under-investment, since the
productive skills that students acquire can remain poorly observed. Kahn and Lange
(2014) present evidence that information frictions depress the return to on-the-job skill
acquisition particularly among older workers. My findings instead concern skill acquisition
prior to labor market entry, when welfare losses are potentially larger, given the longer
investment horizon. Finally, I extend the standard employer learning model by including
measures of school performance.3

I contribute to the theoretical analysis of signaling games with employer learning that
was initiated by Alós-Ferrer and Prat (2012). They consider a precise signal stemming
from a perfectly observed, costly educational action, and point out that a separating
equilibrium leaves no room for employer learning. Alós-Ferrer and Prat (2012) thus restrict
their attention to pooling equilibria involving mixed strategies. In contrast, I focus on
separating equilibria throughout, allowing for employer learning by assuming that signals
are incomplete in various ways.

The possibility that employer learning can cause under-investment is highlighted by
3Throughout the paper I focus on symmetric employer learning whereby information about workers

is revealed to all employers at the same time, as do the papers cited in this paragraph (see Schönberg,
2007; Kahn, 2013, for tests of this assumption). Also in common with those papers, I abstract from
match-specificity and search frictions (Jovanovic, 1979; Fredriksson, Hensvik, and Skans, 2018), differential
on-the-job learning, as well as time-varying skills and the possibility that employer learning remains
incomplete even for very experienced workers (Kahn and Lange, 2014; Caplan, 2018).
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Craig (forthcoming), who derives optimal tax rates that correct for this inefficiency. Craig
(forthcoming) assumes a noisy signal as the only source of initial uncertainty about workers’
productivity. As I show here, employer learning may however also arise due to multi-
dimensional types, which can imply over-investment. Moreover, I suggest an empirical test
for the direction of inefficiency.4 In the context of statistical discrimination, Coate and
Loury (1993) show that under-investment may arise as one of several possible equilibria.
However, they do not incorporate employer learning—doing so would make it more difficult
to sustain a self-fulfilling equilibrium.5

2 Baseline model of signaling and employer learning with an
imperfect signal

The theoretical analysis proceeds in three steps. First, I introduce a noisy signal and
multidimensional types into an employer learning framework in Section 2.1. Second,
I model workers’ optimal skill acquisition within this framework and characterize the
equilibrium of the resulting signaling game in Section 2.2. Third, I introduce duration of
schooling as an additional choice variable in Section 3.

2.1 A labor market with asymmetric information, noisy signals, and learning

I begin by describing production, markets, and information, taking acquired skills as given.
The results in this section thus hold regardless of the way skill acquisition is determined.

Worker i is characterized by pre-existing talent θi and acquired skills si. ‘Pre-existing
talent’ refers to the productive traits that individuals possess before they begin schooling
(which may result from both nature and nurture), while ‘acquired skills’ refers to potentially
productive capabilities picked up at school. Worker i produces log output

yi = assi + aθθi, as ≥ 0, aθ ≥ 0, as + aθ > 0. (1)

Let t denote years since graduation. The market does not observe output directly, but
4Craig (forthcoming) also does not allow for a direct impact of talent on productivity in his main

analysis, but shows in an appendix that relaxing this assumption may lead to over-investment.
5This paper is also related to the literature that employs quasi-experimental approaches to estimate

the wage returns to a degree receipt or degree quality. See for instance Tyler, Murnane, and Willett
(2000), Jepsen, Mueser, and Troske (2016), Clark and Martorell (2014), Freier, Schumann, and Siedler
(2015), Feng and Graetz (2017), and Khoo and Ost (2018). A common identification strategy in that
literature is the regression discontinuity design. For degrees to have an effect on wages, the underlying
running variable—such as GPA—must be at least partially hidden from employers. At the same time, the
running variable may both reflect talent as well as acquired skills. In Graetz (2021), I show that under
these conditions, information frictions may lead to under-investment. However, the analysis in Graetz
(2021) is specific to the context of regression discontinuity designs, and the paper provides no evidence on
under-investment.
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instead observes the output signal

ỹit = yi + εit, (2)

where εit is independently drawn from a normal distribution with zero mean and variance
σ2
ε . I denote the worker’s history of output signals at the start of period t by ỹit =

(ỹi0, ỹi1, ..., ỹi,t−1)′ and the average of the signals by yit = (1/t)∑t−1
t′=0 ỹit′ for t > 0. I define

ỹi0 = ∅ and yi0 = 0. I sometimes use the words ‘time’ or ‘period’ when referring to t.
It should be clear that I mean years since graduation and labor market experience, not
calendar time.

The market also observes the skill acquisition signal

s̃i = si + ui, (3)

where the disturbance term ui is drawn independently from a mean-zero normal distribution
with variance σ2

u. Acquired skills are thus observed with error unless σ2
u = 0. I further

assume that talent θi is normally distributed with mean µθ and variance σ2
θ . Let the mean

and variance of acquired skills be denoted by µs and σ2
s . Finally, let the covariance and

correlation coefficient of acquired skills and talent be denoted by σsθ and ρsθ.
In a competitive market, workers receive a wage equal to their expected productivity,

conditional on publicly available information,

Wit = E [exp{yi}|s̃i, ỹit] . (4)

Suppose that yi is conditionally normally distributed, to be verified later. Then exp{yi} is
conditionally log-normally distributed, and therefore

E [exp{yi}|s̃i, ỹit] = exp
{
E[yi|s̃i, ỹit] +

1
2Var[yi|s̃i, ỹit]

}
, (5)

with

E [yi|s̃i, ỹit] = (1− λt)
(
µy − bys̃0 µs

)
+ (1− λt)bys̃0 s̃i + λtyit, (6)

and

Var (yi|s̃i, ỹit) = (1− λt)σ2
y|s̃,0, (7)

where

bys̃0 = σ2
s

σ2
s + σ2

u

as +
σsθ

σ2
s + σ2

u

aθ, σ2
y|s̃,0 =

σ2
s

σ2
s + σ2

u

a2θσ
2
θ(1− ρ2sθ) +

σ2
u

σ2
s + σ2

u

σ2
y (8)
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and

λt =
λ1t

1 + λ1(t− 1) , λ1 ≡
σ2
y|s̃,0

σ2
y|s̃,0 + σ2

ε

. (9)

The preceding expressions are derived in Appendix A. They have intuitive interpreta-
tions. At labor market entry, the skill acquisition signal contains all information available
to employers. The informativeness of the signal is captured by bys̃0 , which is simply the
best linear prediction of log productivity given the signal. Similarly, σ2

y|s̃,0 is the variance
of productivity conditional on the signal. As a worker gains experience, employers’ beliefs
about her productivity are increasingly influenced by her history of output signals as
opposed to her initial skill acquisition signal, as captured by the ‘learning weight’ λt. In
particular, ∂λt/∂t > 0 and limt→∞ λt = 1. For highly experienced workers, only the output
signals matter. The rate at which employers’ attention shifts from the initial signal to the
subsequent signals is captured by λ1 ∈ (0, 1), which Lange (2007) refers to as the speed of
employer learning. The speed is high when the subsequent signals are more informative
than the initial signal.6 While these insights are well known, I deviate from the literature
by allowing σ2

u > 0. As it turns out, this small modification has important implications
for the relationship between private and social returns to skill acquisition.

Using (4), (5), (6), and (7), I obtain the log wage as

wit = (1− λt)
(
µy − bys̃0 µs +

1
2σ

2
y|s̃,0

)
+ (1− λt)bys̃0 s̃i + λtyit.

Furthermore, using (1), (2) and (3), the log wage can be expressed as a function of a
worker’s acquired skills and her talent,

wit = β0
t + βs

t si + βθ
t θi + eit,


β0
t

βs
t

βθ
t

eit

 ≡


(1− λt)

(
µy − bys̃0 µs + 1

2σ
2
y|s̃,0

)
(1− λt)bys̃0 + λtas

λtaθ

(1− λt)bys̃0 ui + λtεit

 . (10)

The private return to skill acquisition is given by βs
t . It is characterized in relation to

the social return as (and similarly for the returns to talent) by the following result.

Proposition 1. Suppose that σ2
u > 0 or ρsθ < 1, so that λ1 > 0.

6The noise in the initial signal is measured by σ2
y|s̃,0, the variance in log output that remains after

observing the skill acquisition signal. As seen in (8), this unexplained variance is a weighted average of
the unexplained variance conditional on observing acquired skills perfectly and the unconditional variance
of productivity, with the weights depending on the signal-to-noise ratio in the skill signal, σ2

s/σ
2
u.
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(a) The wedge between the private and social returns to skill acquisition is given by

βs
t − as =

1
σ2
s + σ2

u

(1− λt)
(
aθρsθσsσθ − asσ

2
u

)
. (11)

Hence, the private return approaches the social return over time,

lim
t→∞

βs
t = as,

monotonically from above or below depending on parameters,

βs
t ⪌ as ⇔ ∂βs

t

∂t
⪋ 0 ⇔ ρsθ

σsσθ
σ2
u

⪌
as
aθ
.

(b) The private return to talent approaches the social return over time monotonically
from below, ∂βθ/∂t > 0, limt→∞ βθ

t = aθ.

Suppose instead that σ2
u = 0 and ρsθ = 1, so that λ1 = 0.

(c) The private returns to skill acquisition and talent are constant at βs
t = bys̃0 > as and

βθ
t = 0.

Part (a) implies that the private return to skill acquisition exceeds the social return
when the correlation between acquired skills and talent is positive and the skill acquisition
signal is precise. In particular, under a perfectly informative signal, σ2

u = 0, observing
acquired skills affects employers’ beliefs about a worker’s log productivity due to the direct
effect of acquired skill, as well as the effect of talent. This can be seen from (8) which
implies bys̃0 = as + σθ

σs
ρsθaθ. Thus, when ρsθ > 0, workers are incentivized to acquire skill

not only because of its productive effects, but also because it allows them to signal their
talent. In contrast, when σ2

u > 0, the social return to acquired skill as is attenuated. The
private return could thus fall below the social return even if ρsθ = 1.

Part (a) also highlights that, if an econometrician were able to observe wages, acquired
skills, and talent at various levels of labor market experience, she would be able to tell
the direction of inefficiency from the way the coefficient on acquired skills changes with
experience.

Parts (b) and (c) show that an increasing wage return to an initially hard-to-observe
productivity component such as talent—which is typically interpreted as evidence of
employer learning—requires that the skill acquisition signal does not reveal all information,
in contrast to the canonical signaling model. Information may be only partially revealed due
to noise, or simply due to an imperfect correlation of acquired skills and talent. In Section
3.3 I show that these insights also apply to the familiar setting where there is variation in
years of schooling, perfectly observed by employers, and where the econometrician only

9



observes years of schooling and a variable that is imperfectly correlated with acquired
skills and talent.

2.2 Closing the model: Optimal skill acquisition

I now turn to the determination of skill acquisition. Workers are infinitely lived expected
utility maximizers with time-additive log preferences over consumption and discount factor
δ. They have no access to savings and thus consume their wage income each period. They
spend the first τs years of their lives in school and afterwards supply labor inelastically
each year t. To avoid confusion, I write τ ∈ {1, 2, ..., τs} to denote years in school and
t ∈ {0, 1, ...} to denote time in the labor market (years of experience). The length of
schooling τs is fixed, though in Section 3 I allow for a choice between two different tracks,
high school and college, which are of different fixed lengths.

During each year in school, workers acquire skills siτ , so they enter the labor market with
a total amount si =

∑τs
τ=1 siτ .7 The period utility cost of acquiring skills is z(τ) exp{siτ −

κ(θi + γi)}, where γi is a normally distributed taste parameter and z(τ) > 0 describes
how skill acquisition costs vary over time.8 The parameter κ > 0 is unimportant at the
moment but will play a crucial role in the two-track model below.

The worker’s value function can thus be written as

Vi = max
{siτ}τsτ=1

{
−

τs∑
τ=1

δτz(τ) exp{siτ − κ(θi + γi)}+ δτs
∞∑
t=0

δt
(
β0
t + βs

t

τs∑
τ=1

siτ + βθ
t θi

)}
.

There is no need to include an expectation operator because the only source of uncertainty—
the error term in the wage equation (10)—enters additively into the utility function.

The set of first-order conditions is

δτz(τ) exp{siτ − κ(θi + γi)} = δτs
∞∑
t=0

δtβs
t , τ ∈ {1, 2, ..., τs}. (12)

The amount of skills acquired per period generally varies over time, both due to impatience
and because of time-varying costs. One may imagine that the costs of acquiring skills
decrease with time spent in education, at least at conventional durations. For simplicity, I
set z(τ) = ζδ−τ so that the two effects cancel out.9

7Instead of ‘acquired skills’, the term ‘acquired human capital’ may also be appropriate, but in contrast
to the conventional assumption of human capital theory, in this model si may not be perfectly observed
by employers.

8The cost function is similar to that in Hendricks and Schoellman (2014), which also features talent
and tastes as well as the exponential form.

9Given the simplifying assumption, one could drop the explicit sub-division of the schooling period,
and simply state the utility cost as τsζ exp {si/τs − κ(θi + γi)}. This yields the same solution.
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Optimal skill acquisition is thus characterized by

si = s0 + τsκ (θi + γi) , s0 ≡ τs log(Bs/ζ), Bs ≡ δτs
∞∑
t=0

δtβs
t . (13)

Acquired skills depend positively on talent, taste, and the present discounted value of
returns Bs, and negatively on the cost shifter ζ. The effect of the parameter κ is positive
(negative) if the sum of talent and taste is positive (negative). The effect of schooling
duration is similarly ambiguous. The linearity of acquired skills allows for a complete
characterization of equilibrium.

Proposition 2. There exists exactly one pure-strategy Perfect Bayesian Equilibrium
featuring beliefs as in (6) and (7). In this equilibrium, log wages and skill acquisition
choices are given by (10) and (13), respectively.

To see that employers’ expectations are correct, note that the normality assumption
made in Section 2.1 is ensured given linearity of acquired skills (13) in talent and tastes.
Furthermore, (13) shows that the endogenous moments σ2

s and σsθ only enter the intercept
s0 of the skill acquisition function, implying that σ2

s and σsθ depend on parameters only:
σ2
s = (τsκ)2

(
σ2
θ + σ2

γ + 2σθγ
)
and σsθ = τsκ (σ2

θ + σθγ). This means in turn that s0 is
uniquely pinned down by parameters, ensuring equilibrium existence and uniqueness.

The equilibrium is a ‘separating equilibrium’ in the sense that higher talent implies a
larger amount of acquired skills, holding tastes constant (and greater tastes imply more
skill acquisition, holding talent constant). However, if the correlation between talent and
tastes is less than unity, then skill acquisition does not reveal talent perfectly, since a given
skill level is associated with a continuum of talent levels. In this sense, the equilibrium
also features ‘pooling’. If talent and tastes are perfectly correlated, then the equilibrium
may be fully separating in terms of skill acquisition, but a noisy skill signal will induce
‘pooling’ in terms of observed skill acquisition. As implied by Proposition 1, ‘pooling’ of
some sort is needed for the model to produce the employer learning patterns observed in
the data.10

Finally, a useful property of the worker’s optimal skill acquisition choice is that the
10A traditional pooling equilibrium (featuring a degenerate distribution of skill acquisition) does not

exist in this model if σ2
u > 0: With an imprecise skill signal, there is no notion of out-of-equilibrium actions.

Employer learning rewards skill acquisition at least to some extent, so that uniform skill acquisition
cannot be sustained. While Proposition 2 highlights existence and uniqueness of an equilibrium featuring
log-linear beliefs and wage schedules, it is silent on the existence of equilibria in which beliefs are non-linear
in the signals. This issue is left for future research.
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value function is linear,

Vi = ν0 + νθθi + νγγi,


ν0

νθ

νγ

 ≡


B0 + (s0 − τs)Bs

Bθ + τsBs

τsBs

 , (14)

where Bx ≡ δτs
∑∞

t=0 δ
tβx

t .

2.3 The social planner problem

I next solve the social planner problem—equivalent to a decentralized economy under
perfect information—to determine whether the decentralized equilibrium of Proposition 2
is socially efficient. The planner’s value function is

V SP
i = max

{siτ}τsτ=1

{
−

τs∑
τ=1

ζ exp{siτ − κ(θi + γi)}+ δτs
∞∑
t=0

δt
(
as

τs∑
τ=1

siτ + aθθi

)}
.

Defining Ax ≡ δτs

1−δ
ax, the first-order conditions lead to

sSPi = sSP0 + τsκ (θi + γi) , sSP0 ≡ τs log(As/ζ), (15)

and

V SP
i = νSP0 + νSPθ θi + νSPγ γi,


νSP0
νSPθ
νSPγ

 ≡


(
sSP0 − τs

)
As

Aθ + τsAs

τsAs

 . (16)

The comparison of (13) and (15) reveals that the distribution of acquired skills in
the decentralized equilibrium can differ from the socially optimally one only in terms of
location, so that the direction of inefficiency will be the same for all types. This is of course
a consequence of the functional form assumptions. By noting that sSP0 = s0+τs log (As/Bs),
I verify that the condition for the direction of inefficiency is the same as that concerning
the private return to skill acquisition in Proposition 1, so that the same empirical test
applies.11 To summarize:

Proposition 3. The equilibrium described in Proposition 2 features too much (too lit-
tle, the right amount of) skill acquisition compared to the social optimum if and only if
ρsθ(σsσθ)/σ2

u ⪌ as/aθ, where σs and ρsθ are determined by (13). The direction of ineffi-
ciency can be tested for empirically based on the relationship of the private return to skill
acquisition with labor market experience, as described in Proposition 1.

11Note that when ρθγ = 1 and hence ρsθ = 1, and at the same time σ2
u = 0, the model boils down to a

version of Spence (1974). Skill acquisition is inefficiently high, and no EL takes place.
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2.4 Baseline model: Summary and discussion

I briefly summarize the insights gained thus far, and discuss their limitations, to be
addressed in the following sections. Recall from the discussion of Proposition 1 above that
private returns to skill acquisition are always greater than social returns whenever acquired
skills are perfectly observed, σ2

u = 0, and the correlation between talent and acquired skills
is positive, ρsθ > 0. In contrast, private returns are attenuated when acquired skills are
observed with noise, σ2

u > 0, and even more so when in addition ρsθ is low. Employer
learning takes place whenever σ2

u > 0 or |ρsθ| < 1, or both. While the presence of employer
learning on its own does not reveal the nature of inefficiency, the time pattern of the
coefficients on acquired skills in a log wage regression does so. This result inspires the
empirical exercise of Section 5. However, in the EL setting that is standard in existing
literature, acquired skills and talent are typically not observed directly. Instead, a proxy
variable for productivity is available, in addition to years of schooling (here, such a proxy
would presumably be correlated with both talent and acquired skill). Therefore, in the
next section I introduce the duration of schooling as an additional choice variable, allowing
for a precise mapping between my theoretical model and the existing EL literature.

3 Two-track model: Choosing how much skill to acquire, and
when to graduate

3.1 Introducing a choice between high school and college

I distinguish between just two types of education, high school (h) and college (c). I
assume that the choice between high school and college is made at the beginning of life,
akin to tracking in high school.12 High school and college are of fixed lengths τh and
τc, respectively, with τc > τh. Within each track, individuals choose how much skills to
acquire, denoted by shi and sci . Let the educational track be denoted by j ∈ {h, c}.

Employers observe track attendance perfectly, in addition to the skill acquisition
and output signals introduced in Section 2. For tractability, I assume that employers
believe skill acquisition and talent to be jointly normally distributed. I further discuss
this assumption below. Given normality, the wage equation (10) continues to hold, but
parameters and moments must be indexed by track. Let µx|j ≡ E[x|j], σ2

x|j ≡ Var(x|j) etc.

12This simplification is justified given that here I am not interested in the adjustment of educational
choices in response to new information. Alternatively, I could assume that everyone first completes high
school and then chooses between college and direct labor market entry. But this would not add any
insight unless I also assume that individuals are uncertain about their type or the environment, and obtain
relevant information in the course of their studies.
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We have

wit = β0j
t +βsj

t si+β
θj
t θi+e

j
it,


β0j
t

βsj
t

βθj
t

ejit

 ≡


(1− λjt)

(
µy|j − b

ys̃|j
0 µs|j + 1

2σ
2
y|s̃,0,j

)
(1− λjt)b

ys̃|j
0 + λjtas

λjtaθ

(1− λjt)b
ys̃|j
0 ui + λjtεit

 , (17)

wherebys̃|j0

λjt

 ≡

 b
ys̃|j
0

(
σ2
s|j, σsθ|j, σ

2
uj, σ

2
εj; as, aθ

)
λjt
(
t, σ2

s|j, σ
2
θ|j, σsθ|j, σ

2
uj, σ

2
εj; as, aθ

) , (18)

with the respective functional relationships given by (8) and (9). I allow the noise terms
to have different variances across the tracks, which will turn out to be important when
taking the model to the data.

Turning to optimal educational choices, I proceed by backward induction, first solving
for optimal skill acquisition within each track. The value function of pursuing either track
can now be written as

V j
i = max

{sj
iτ
}
τj
τ=1

{
−

τj∑
τ=1

ζj exp{sjiτ − κj(θi + γi)}+ δτj
∞∑
t=0

δt
(
β0j
t + βsj

t

τj∑
τ=1

sjiτ + βθj
t θi

)}
.

I let the parameters ζj and κj differ by track. They determine the tracks’ overall attrac-
tiveness and complementarity with talent (as well as taste), respectively.

Following the same steps as above, we obtain

sji = sj0 + τjκj (θi + γi) , sj0 ≡ τj log(Bj
s/ζj) (19)

and

V j
i = νj0 + νjθθi + νjγγi,


νj0
νjθ
νjγ

 ≡


Bj

0 +
(
sj0 − τj

)
Bj

s

Bj
θ + τjκjB

j
s

τjκjB
j
s

 . (20)

Breaking indifference in favor of attending college, we see that worker i attends college if
and only if

θi ≥ x0 + x1γi,

x0
x1

 ≡ 1
νcθ − νhθ

 νh0 − νc0

−
(
νcγ − νhγ

)
 . (21)

College attracts individuals with greater ability and greater taste for acquiring skills
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(‘positive selection’) whenever νcθ > νhθ and νcγ > νhγ . Expressing these conditions in terms
of deep parameters is only possible in the social planner (or full information) solution, as
shown below. In all numerical exercises, I verify that the conditions hold both for the
social planner and the decentralized solutions.

The selection rule (21) implies that the joint distributions of acquired skills and talent
conditional on track follow a truncated bi-variate normal distribution. This means that
the normality assumption underlying employers’ beliefs, and thus the log wage equation
(17), is incorrect, though it may be a good approximation. Maintaining this assumption
greatly facilitates connection of model and data. However, it does necessitate a specific
definition of equilibrium.

Definition 1. A decentralized equilibrium in the model presented in this section consists
of employers’ beliefs about individual workers given by (6) and (7), and further conditioned
on observed educational track; wages specified by (17); a within-track skill acquisition given
by (19); a selection rule for the college track given by (21); and employers’ beliefs about
the first and second moments of acquired skills and talent that are consistent with workers’
choice of track and within-track skill acquisition.

Thus, I do impose that employers’ beliefs are correct with respect to first and second
moments conditional on observing educational track. The normality assumption however
means that employers do not make optimal use of additional information—skill acquisition
and output signals—when updating their beliefs.13

It is difficult to further characterize the model analytically, or to investigate the
uniqueness of an interior equilibrium where the fraction choosing college lies strictly
between zero and one. However, the model can easily be solved numerically, as explained
in Appendix D. The solution method consists of guessing and verifying the selection rule
(21). It is thus feasible to perform a search over a two-dimensional grid to verify that
there is only one interior equilibrium. I have checked that this is the case for all estimated
parameter configurations that I will present in Section 4.

3.2 The social planner problem in the two-track model

I next solve the social planner problem, equivalent to a perfect information economy. This
is useful not only for an eventual welfare analysis but also to derive parameter restrictions
making it more likely that there is positive selection into college, as is empirically plausible.

I again proceed by backward induction. For each worker i, I first determine optimal
13Note that due to unbounded support of the type distribution, and under the selection rule (21), the

distributions of types and acquired skills conditional on track also feature unbounded support.
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skill acquisition within each track. Let j ∈ {h, c}. The value functions are

V j,SP
i = max

{siτ}
τj
τ=1

{
−

τj∑
τ=1

ζj exp{sjiτ − κj(θi + γi)}+ δτj
∞∑
t=0

δt
(
as

τs∑
τ=1

siτ + aθθi

)}
.

The first-order conditions lead to

sj,SPi = sj,SP0 + τjκj (θi + γi) , sj,SP0 ≡ τj log(Aj
s/ζj), (22)

and

V j,SP
i = νj,SP0 + νj,SPθ θi + νj,SPγ γi,


νj,SP0

νj,SPθ

νj,SPγ

 ≡


(
sj,SP0 − τj

)
Aj

s

Aj
θ + τjκjA

j
s

τjκjA
j
s

 .

The social planner allocates individual i to the college track if and only if

(
νc,SPθ − νh,SPθ

)
θi ≥ νh,SP0 − νc,SP0 −

(
νc,SPγ − νh,SPγ

)
γi. (23)

Whether it is optimal to allocate more-talented individuals, as well as those with a greater
taste for acquiring skills, to college, depends on parameters. In particular,

νc,SPγ > νh,SPγ ⇔ τcκcδ
τc > τhκhδ

τh , νc,SPθ > νh,SPθ ⇔ as
aθ

>
δτh − δτc

τcκcδτc − τhκhδτh
. (24)

Intuitively, talent-and-taste complementarity in skill acquisition costs, as captured by κc,
needs to be sufficiently strong to offset the delayed payoff period, and at the same time
acquired skills need to be sufficiently important in production relative to pre-existing talent.
I will impose these restrictions in all numerical exercises. While they do not guarantee
positive selection also in the decentralized case, they nevertheless help to narrow down the
parameter space.

Comparing the social planner (perfect information) solution to the decentralized
equilibrium, two differences are apparent. First, the fraction of college attendants, as
well as their types, may differ, since the selection rules (21) and (23) generally do not
coincide. Second, within-track skill acquisition will differ, as is apparent from comparing
(19) and (22). For a given individual who chooses the same track under both scenarios,
skill acquisition can differ only due to divergence in the intercept of the skill acquisition
function, and Proposition 1 applies with regard to efficiency properties. But aggregate
skill acquisition for each track can also differ due to selection, via the part of the function
that depends on talent and tastes.

A key question is to what extent existing evidence from the employer learning literature
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can shed light on the way in which college attendance and within-track skill acquisition
deviate from the efficient benchmark. I discuss this next.

3.3 Connection with the econometric employer learning model

The ideal data set for estimating the model would contain information on college graduation,
denoted by Di ∈ {0, 1}, log wages at different experience levels, as well as skill acquisition
si and talent θi. Running the regression

wit = φ0j
t + φsj

t si + φθj
t θi + ηit

separately by track and experience would allow for direct estimation of the log wage
equation (17). At high levels of experience this would allow for identification of the output
elasticities, as in the probability limit and letting experience become arbitrarily large,
φsj
∞ = βsj

∞ = as and φθj
∞ = βθj

∞ = aθ.
However, data on si and θi are typically not available. Instead, we may observe a proxy

of productive ability zi, such as the AFQT score. This allows us to run the regressions

wit = ϕ0
t + ϕD

t Di + ϕz
t zi + ηit, (25)

which are very similar to existing literature, except that the college dummy replaces years
of schooling. The coefficients from these regressions can be expressed as

ϕz
t =

(1− p)σzw|h,t + pσzw|c,t

(1− p)σ2
z|h + pσ2

z|c
, ϕD

t = µw|c,t − µw|h,t −
(
µz|c − µz|h

)
ϕz
t , (26)

where p = E[Di] denotes the fraction of workers who graduated college.14 It will turn
out to be useful to express the coefficient on z from regression (25) as a weighted sum of
bivariate regression coefficients from regressing log wages on z separately by college status,

ϕz
t = ωϕzh

t + (1− ω)ϕzc
t , ω ≡

(1− p)σ2
z|h

(1− p)σ2
z|h + pσ2

z|c
.

To characterize the coefficients ϕzh
t and ϕzc

t , an assumption about the data-generating
process behind zi is needed. I assume

zi = πssi + πθθi + ξi, πs ≥ 0, πθ ≥ 0, πs + πθ > 0. (27)

where ξi is independently mean-zero normally distributed with variance σ2
ξ .

I further assume that zi is only observed by the econometrician, not employers. The
14The results stated in this section are proved in Appendix B.
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signal s̃s is observed by employers but not the econometrician, and actual skill acquisition
si and types (θi, γi) are observed by neither. This gives a setting identical to that of
Altonji and Pierret (2001) and Lange (2007).

Given these assumptions, as well as the log wage equation (17), the coefficients ϕzh
t

and ϕzc
t are characterized by the following result.

Proposition 4. Running a regression of log wages on zi conditional on track j ∈ {h, c}
and labor market experience t yields coefficients, in the probability limit,

ϕzj
t =

σzw|j,t

σ2
z|j,t

= χj
sβ

sj
t + χj

θβ
θj
t =

(
1− λjt

)
χj
sb

ys̃|j
0 + λjt

(
χj
sas + χj

θaθ
)
, (28)

where
χj

s

χj
θ

 ≡ 1
σ2
z|j

πsσ2
s|j + πθσsθ|j

πsσsθ|j + πθσ
2
θ|j

. If the conditional covariances between log produc-

tivity and zi are positive, implying ϕzj
∞ = χj

sas + χj
θaθ > 0, and if λj1 ∈ (0, 1), then the

coefficients are strictly increasing in labor market experience, ∂ϕzj
t /∂t > 0.

Thus, the empirical test for the direction of inefficiency suggested by Proposition (1)
does not apply to regressions of log wages on the productivity correlate zi. Due to omitted
variables bias, ϕzj

t always increases with experience, regardless of whether βsj
t increases

or decreases with experience. Notice also that the conditions for employer learning to
take place are the same as in the simpler model in Section 2, namely that λj1 > 0, which
will be the case if ρ2sθ|j < 1 or σ2

uj > 0 or both. As discussed above, the two conditions
have different implications for efficiency. Again, observing employer learning in itself says
nothing about the direction of inefficiency in skill acquisition.

Nonetheless, the coefficients ϕzh
t can help recover important moments of the model. As

inLange (2007), I can treat the estimated sequences
{
ϕzj
t

}T
t=0

as data points, and estimate
(28) by non-linear least squares. This recovers the initial value χj

sb
ys̃|j
0 , the terminal value

χj
sas + χj

θaθ, and the speed of learning λj1. Together with further (strong) assumptions, all
model parameters can be recovered from the data, as I show in Section 4.

The positive relationship between ϕzj
t and experience also means that the coefficient

on zi in the pooled regression (25) is increasing in experience. If the college premium is
stable, then (26) implies that the coefficient on the college dummy must decrease with
experience, as in Altonji and Pierret (2001).15

15Farber and Gibbons (1996) emphasize that the college premium in levels, in their specification, must
be constant with experience if employers’ unconditional beliefs are consistent. In the model here, the
college premium in logs can be expressed, using (17) as

µw|c,t − µw|h,t = µy|c,t − µy|h,t +
1− λc

t

2 σ2
y|s̃,0,c −

1− λh
t

2 σ2
y|s̃,0,h.

Due to the variance terms, the college premium in logs is generally not constant in experience.
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3.4 Imperfect substitutability of high school and college workers

To conclude the exposition of the two-track model, I discuss how aggregate output is
produced. So far, I have implicitly assumed that aggregate output is simply the sum of all
workers’ individual output,

Y =
∫ ∞

−∞

∫ ∞

−∞
exp{yi}f(θ, γ)dθdγ,

where f(θ, γ) is the joint density function of talent and taste (assumed to be bi-variate
normal).

Alternatively, it may be the case that high school and college tracks teach skills that
are specific to separate sectors of the economy, which are imperfect substitutes in final
production,

Y =
(
α

1
σY

σ−1
σ

h + (1− α) 1
σY

σ−1
σ

c

) σ
σ−1

,

with sectoral production functions

Yh =
∫∞
−∞

∫ x0+x1γ
−∞ exp{assi + aθθi}f(θ, γ)dθdγ,

Yc =
∫∞
−∞

∫∞
x0+x1γ

exp{assi + aθθi}f(θ, γ)dθdγ,

where (x0, x1) denote intercept and slope of the selection rule (21).
Perfectly competitive final good producers buy sectoral outputs at prices Ψh and Ψc,

while sectoral production takes place under the assumptions on market structure outlined
above. The wage now equals the expected revenue product,

W j
it = ΨjE [exp{yi}|j, s̃i, ỹit] .

Sectoral prices are solved for in standard fashion, and log sectoral prices now enter the
value functions. See Appendix C for details.

Imperfect substitutability is a common interpretation of a negative relationship, all else
equal, between the relative supply and wages of college workers (see for instance Ciccone
and Peri, 2005). In the present model, such a negative relationship could in principle
arise even with perfect substitutes, due to compositional changes which affect expected
productivities. Moreover, assuming imperfect substitutability immediately rules out a
pure signaling effect of college. In the quantitative exercise of Section 4, I will therefore
consider both the case σ = 1.5 (Ciccone and Peri, 2005) as well as σ → ∞.
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4 Estimating the model on NLSY data

In this section I use NLSY data to estimate the parameters of the two-track model of
Section 3. Estimating this model is not an easy task given the well-known problems of
empirically distinguishing between human capital and signaling models. Moreover, apart
from the output elasticities of acquired skill and talent, I also need to estimate the mapping
from model variables to the AFQT score, the type correlation ρθγ , and production function
parameters in the case of imperfect substitutes. The data are not sufficiently rich to
identify all parameters without imposing further assumptions. My approach will be to
present a range of estimates, based on varying the assumptions. As it turns out, due to
certain prominent features of the data, robust patterns do emerge.

4.1 Description of NLSY data

I obtain NLSY data from the replication files of Arcidiacono, Bayer, and Hizmo (2010), and
apply sample selection criteria as Lange (2007), except restricting the data to individuals
with 12 (high school) or 16 (college) years of schooling. These data contain 32, 793
observations during years 1979-1998 on 3, 592 individuals born 1957-1965. The key
variables are the log wage and the AFQT score.16

4.2 Assumption on parameters

I fix several parameters at the outset. I set the discount factor δ = 0.95 and the lengths of
high school and college (τh, τc) = (6, 10).17 I normalize the cost parameters for the high
school track such that ζh = 1 and τhκh = 1. I further normalize the type distributions to
have zero mean and unit variance,

(
µθ, µγ, σ

2
θ , σ

2
γ

)
= (0, 0, 1, 1). I vary the type correlation

ρθγ over a set of values, usually 0.2, 0.5, and 0.8.
I estimate the model both under the assumption that σ → ∞ and assuming σ = 1.5 as

in Ciccone and Peri (2005). The pure signaling view implies σ → ∞, so it is informative
to seek estimates consistent with this assumption, as well as for the more conventional
scenario of imperfect substitutability. In the latter case, I also need to fix the share
parameter α. I choose α = 0.5 or α = 0.825 depending on the value assumed for the
average treatment effect of college on log productivity (see the discussion in the next
subsection).18 See panel A of Table 1 for the full list of pre-set parameters.

16For continuity with prior literature, I use the 1979 wave of the NLSY. Ablay and Lange (2022) present
evidence for employer learning in the 1997 wave, as well.

17I thus exclude primary schooling, meaning that θi (and γi) can be interpreted as partially capturing
the impact of earlier schooling (as well as parental inputs), rather than being purely innate.

18In both cases there is a range of values that fit the data, but the results do not vary much. Estimating
this parameter is challenging because it essentially requires measuring the price of a unit of skill (Bowlus
and Robinson, 2012).
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The 12 parameters left to be estimated are listed in panel B of Table 1. I allow the
noise parameters to differ by track. This is motivated by evidence that the speed of
employer learning differs between high school and college graduates (Arcidiacono, Bayer,
and Hizmo, 2010).

4.3 Targeted moments

I propose to estimate the parameters by targeting 13 moments following a minimum-
distance approach. The moments are listed in panel C of Table 1. They can be computed
from the data as described shortly, with the exception of ∆ψ + as∆s0. This is the average
treatment effect of attending college on log (revenue) productivity, which I will also denote
by ATEy. Since estimating an average treatment effect is highly demanding, I instead
fix the value of ATEy. This is practical, given the important role this moment plays in
the model equations. But note also that the value of ATEy speaks directly to the human
capital versus signaling debate. ATEy = 0 is an implication of a pure signaling view of
education, ∆ψ = 0 (perfect substitutes in aggregate production) and as = 0 (no productive
effect of skills acquired in school). But ATEy = 0 may also arise from ∆ψ = 0, ∆s0 = 0
(the average worker obtains the same amount of skills in both high school and college),
and as > 0, consistent with human capital models. In estimating the model parameters
imposing that ATEy = 0, I thus do not rule out a pure signaling view at the outset. A
second set of estimations however imposes ATEy = 0.16, so that a year of college raises
productivity by about four percent on average. This is somewhat lower than the 6.7
percent estimated by Carneiro, Heckman, and Vytlacil (2011).19

The fraction college is directly observed in the data. As log productivity is not observed,
I use wage data for workers with potential experience ranging from 13-17 years. For these
workers, employer learning has sufficiently progressed so that the influence of the initial
schooling signals (the skill signal s̃i and college completion Di) has faded. I regress log
wages on year dummies and worker fixed effects, and obtain first and second moments from
the estimated distribution of fixed effects. This yields the moments ∆µy and σ2

y|h/σ
2
y|c. The

reason I do not use the variance of log wages itself is that I want to eliminate the impact
of transitory shocks, which are not part of my model.20 The AFQT gap and conditional
variances are directly observed. The covariances of AFQT and productivity are estimated
as part of fitting the employer learning curves, which I turn to next.

19Carneiro, Heckman, and Vytlacil (2011) also include wage observations early in workers’ careers,
so that their estimate could include a signaling component. Here I am instead interested in the purely
productive effect of schooling, so I assume a smaller effect.

20I target the ratio of variances rather than the levels. Matching the productivity gap and conditional
variances at the same time is infeasible given the current specification. However, variance levels could be
easily matched by letting ζj vary across individuals, as this would increase dispersion in skill acquisition
without necessarily affecting the conditional means, see (19).

21



First, for continuity with previous literature, I estimate pooled regressions of log wages
on a college dummy and AFQT at different levels of experience, as in (25). The results are
shown in panel (a) of Figure 1, and they are very similar to the results of Lange (2007),
who uses years of schooling instead of the college dummy.

Next, I estimate bi-variate regressions of log wages on AFQT separately for high school
and college graduates, obtaining estimates for ϕzj

t . The results are shown in panel (b)
of Figure 1. High school graduates face a zero return to AFQT initially, and fast-rising
returns subsequently. College graduates see sizeable returns already at labor market
entry, with somewhat slower subsequent growth. These patterns were first documented by
Arcidiacono, Bayer, and Hizmo (2010).

As in Lange (2007), the estimated ϕzj
t can be treated as a sequence of data points.

Using these, non-linear least squares estimation based on (28) identifies the initial values
ϕzj
0 = χj

sβ
sj
t , the terminal values ϕzj

∞ = χj
sas + χj

θaθ, and the speeds of learning λj1. Panel
C of Table 1 displays estimated initial values and learning speeds, confirming a lower
initial return but faster learning for high school graduates compared to college graduates.
I use the estimated terminal values to calculate the covariances of AFQT and productivity
displayed in panel C of Table 1, using (28). Estimated learning speeds and initial returns
are displayed in the final four rows. The fitted curves from the non-linear least squares
estimation are shown in panel (b) of Figure 1.21

4.4 Estimation approach

To estimate the model, I pursue essentially an indirect inference approach in that I search
for parameter values that minimize the distance between theoretical and empirical moments
(Gourieroux, Monfort, and Renault, 1993). To speed up estimation, the minimization is
conditional on an initial guess which guarantees that the fraction choosing college in the
estimated model is equal to that in the data.22

I start by guessing the slope of the selection rule (21) and a value for κc. Given the
type distribution and the observed fraction of college graduates, p, I calculate the implied
intercept in the selection rule. Given the selection rule and the guess for κc, I calculate
the conditional distributions of talent θi and taste γi, as well as the conditional covariance
matrix of θi and acquired skills si using (19).

Next, I find values as and aθ to target the moments ∆µy and σ2
y|h/σ

2
y|c from the data,

21I also fitted non-linear least squares models to the pooled regression estimates, shown in panel (a)
of Figure 1. These estimates can in principle be used as an alternative source for the log productivity
gap, which equals the terminal value ϕD

∞ as seen in (26). However, this terminal value is estimated highly
imprecisely.

22The estimation procedure estimates and numerically solves the model simultaneously, which speeds
up estimation. Minimizing a single objective function would involve solving the model numerically for
each guess of the parameter vector, which can be slow, especially for configurations that imply a very low
or very high fraction choosing college. See Appendix E for more details on the estimation procedure.
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using (1). Here I make use of the assumed value for ATEy. Having estimates for as and
aθ in hand, I estimate the parameters of the AFQT score equation (27). This together
with learning speeds and initial returns lets me recover the noise parameters for skill and
output signals, using (18), (8), and (9). I can now compute Bj

s , and thus ζc using (19),
given that I know ∆s0 from the assumption about ATEy and the estimated as. Finally, I
compute the selection rule implied by the estimated type distributions and parameters.

I repeat the procedure over a grid of guesses for the slope of the selection rule and
κc, searching for fixed points where the implied selection rule equals the one guessed. In
the cases I consider, there is either none or just one such point. Even when guessed and
implied selection rules agree, not all moments are perfectly matched. This is because I
restrict all parameters to be non-negative, so that corner solutions may occur, and because
the estimation of the parameters generating the AFQT score is over-identified. For the
latter component I report the value of the loss function.

4.5 Estimation results

Table 2 shows how well the moments are matched. Here and in subsequent tables, empty
rows indicate that for the given set of assumptions the estimation algorithm did not find a
fixed point. Table 2 shows that the log productivity gap, the learning speeds, and initial
returns are always matched perfectly (conditional on a fixed point having been found). The
variance ratio of log productivity is perfectly matched except in one case. The remaining
moments involving the AFQT score are less well matched. As Table 3 shows, problems
with fitting the moments are mostly due to corner solutions, where the output elasticity of
talent or the effect of acquired skills on the AFQT score are estimated to be zero.23

Table 3 displays the estimated parameters, and reveals several robust patterns. First,
the output elasticity of acquired skill is always positive, and in most cases well above
the output elasticity of talent. This contradicts a pure signaling view of schooling, even
when the average treatment effect of college is assumed to be zero. Second, the AFQT
score is estimated to reflect mostly talent, not acquired skills (Carlsson, Dahl, Öckert, and
Rooth, 2015, document a positive but small effect of schooling duration on cognitive skills
measured at Swedish military enlistment).

Third, the skill signal sent by high school graduates is estimated to be completely
uninformative in all cases. In fact, this is a direct consequence of the estimated zero
initial return ϕzh

0 . Equations (8) and (28) reveal that the only way this can occur is if
σ2
uh → ∞.24 Intuitively, if employers had any information about a worker’s acquired skills,
23Inspecting the values of the loss function from matching the AFQT-related moments, it is apparent

that for each combination of assumptions on ATEy and σ there is a value for the type correlation that fits
the data reasonably well, but this value is not very stable.

24Strictly speaking, ϕzj
0 = 0 also holds in the double-knife-edge cases of ρsθ|j = 0 and at least one of
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then a positive correlation between log wages and the AFQT score would arise regardless
of whether the AFQT elicits talent or acquired skills—because talent and acquired skills
are positively correlated by (19).

Fourth and finally, the output signal is usually, but not always, slightly noisier for
college graduates. This means that the slower speed of learning for college graduates is
due to both a more informative initial signal and noisier subsequent signals, though the
difference related to the initial signal is of course more striking.

4.6 Perfect-information counterfactual

The implications of signal imperfection for the private returns to acquired skills are shown,
for a selection of cases, in Figure 2. Not surprisingly given σ2

uh → ∞, among high school
graduates the private returns always approach the social return from below, suggesting
under-investment (Proposition 1). The same is typically true for college graduates, but the
differences are less pronounced. In one case, private and social returns essentially coincide
at all experience levels, suggesting efficient skill acquisition for college graduates.

Understanding the broader implications of informational frictions requires simulating
the counterfactual scenario of perfect information. With the estimated parameters in
hand, I simulate the perfect-information (or social planner) model presented in Section 3.2.
Table 4 displays the results from this exercise. In particular, for each set of assumptions,
the table displays the difference in selected moments between the estimated model and
the associated perfect-information counterfactual.

First, consider the fraction attending college p, which is 0.26 in the data. Table 4
shows that when high school and college workers are perfect substitutes, almost all college
attendance can be attributed to information frictions. Many workers use the unambiguous
if coarse signal of college graduation, combined with relatively precise signaling about
acquired skills, to compensate for the impossibility of conveying to the market what
they learn in high school. In the perfect-information counterfactual, only one percent
would choose the college track. However, when the aggregate production function features
imperfect subsitutability, the difference to the counterfactual is much less pronounced.
Figure 3 plots the selection rules for selected cases. The perfect-information selection rule
typically has a similar slope as the one consistent with data, while the intercept can differ
substantially.

Second, consider skill acquisition. Given (19), differences between imperfect- and
perfect-information scenarios may arise both due to the intercept sj0—which contains the
present discounted value of returns Bj

s—as well as the term τjκj(µθ|j +µγ|j), which reflects
selection. Table 4 shows the differences in these terms separately for the two tracks, but

as = 0, πs = 0. These cases are however of no theoretical or practical relevance.
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multiplied by as. This allows an interpretation in terms of log wages. For high school,
skill acquisition falls substantially short of the perfect-information benchmark due to the
intercept effect alone, with the gap ranging from 10-22 log points (compare this to the
observed log productivity gap between college and high school of 43 log points). This
is somewhat exacerbated by selection effects. For college, the intercept effect can be
even larger, but is sensitive to assumptions about ATEy. Selection effects are sensitive to
assumptions about the substitution elasticity.

Third, note that the effects of under-investment and inefficient selection can be sum-
marized by their effect on aggregate output. The output loss ranges from 4-25 log points,
or 4-22 percent. Output losses tend to be larger when ATEy = 0, as this assumption leads
to higher estimated output elasticities of acquired skills. Fourth, welfare losses—expressed
in terms of the difference in per-period log consumption—are modest in magnitude (at
most three percent). This is due to the offsetting effect of the disutility of skill acquisition.

A broad conclusion from these results is that due to information frictions, individuals
spend too much time on schooling, but learn too little (in the sense of acquiring skills that
are productive in the labor market). Characterizing the policy mix that would implement
the first-best outcome is beyond the scope of this paper. Simple intuition based on a
traditional signaling view can be misleading: For instance, reducing college attendance by
making college less affordable would likely depress human capital accumulation even more,
since skill acquisition signals appear to be much noisier for high school graduates. Making
signals more precise, say via better testing procedures, will induce greater skill acquisition,
but perfectly precise signals will lead to over-investment.

4.7 The effects of college on log wages

To conclude the discussion of estimation results based on NLSY data, I explore how the
effects of college on log wages vary with experience. Aryal, Bhuller, and Lange (2022)
estimate the experience-varying earnings effects of an additional year of schooling in
Norway, using a compulsory schooling reform for exogenous variation. For the sub-sample
in which employers arguably do not observe the instrument, they document a pattern of
declining private returns as workers gain labor market experience. Here I demonstrate
that such a pattern is qualitatively consistent with my estimates based on NLSY data,
despite the fact that returns to acquired skills increase with experience.

I define the treatment effect of college on log wages for individual i as

TEw,i = log (Ψc/Ψh) + β0c
t − β0h

t + βsc
t s

c
i − βsh

t s
h
i +

(
βθc
t − βθh

t

)
θi. (29)

This expression takes into account that a given individual would generally acquire different
amounts of skill depending on the track she attends.
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For each set of estimation results, I compute the average treatment effect (ATE), the
average effect on the treated (TET), the average effect on the non-treated (TEN), and a
local average treatment effect (LATE). While instrumental variables identify the LATE
for the sub-population of compliers (Imbens and Angrist, 1994), this group may differ
depending on the context. Here, I consider the individuals that are indifferent between
the two tracks (individuals on the selection line), but this is of course just one example.

Figure 4 displays the results for selected sets of assumptions. In all cases there is a
clear ranking, TET > ATE > TEN, typical of Roy-type models where individuals select
on returns. The LATE considered here exceeds the ATE in all cases. All treatment effects
are declining in experience. Due to employer learning, they converge to the social return
to college, the effect of college on log productivity. For instance, the ATE for log wages
converges to ATEy.

In sum, a decomposition of the earnings effects of college into a positive signaling
component and the social return, as in Aryal, Bhuller, and Lange (2022), is consistent
with a model in which students under-invest in productive skills.

5 Evidence on signal imperfection from Swedish high school
graduates

In this section, I use Swedish administrative data to get closer to estimating a wage
equation like (17). The goal is to estimate the private returns to acquired skills as a
function of experience, and to use Proposition 1 to learn about the nature of inefficiency
in study choices. The approach I take here is based on a measure of value added during
high school, namely the high school GPA conditional on the compulsory school GPA.

I use data on Swedish high school (HS) graduation cohorts 1993-2007, who I observe
in the labor market 1993-2017. The data include high school GPA, compulsory school
(CS) GPA, standard demographics, as well as parental education and parental region of
birth. For a large sub-sample, I also observe father’s cognitive and non-cognitive skills as
measured at military enlistment (Lindqvist and Vestman, 2011). The data further include
employment status and annual labor earnings. For the universe of public sector workers
and a large sample of private sector workers, the data also contain wage rates. This is the
outcome variable of interest. I use sampling weights in all regressions, though the results
are robust to dropping the weights.

Since the data do not contain information on performance at university, I restrict the
sample to individuals who enter the labor market directly after graduating high school, and
who never enrolled in college. I require that individuals are employed during each of the
first three years after high school and do not receive study grants from the government.25

25I do not require the panel to be balanced beyond the first three years after graduation. After this

26



I take HSGPA as a measure of recent skill acquisition when conditioning on CSGPA
and parental background. This value-added measure should capture performance gains
in the last three years of secondary education. CSGPA and parental background jointly
control for prior skill acquisition as well as talent. The strategy is inspired by the wage
equation (17). However, I cannot literally estimate that equation. While in the theoretical
model there are skill acquisition choices at various instances in time—during each year
in school—these are perfectly collinear. In reality, HSGPA is of course not perfectly
correlated with CSGPA, which is precisely the feature of the data that I take advantage
of. The model would produce this feature if tastes γi were allowed to vary over time, or if
the study cost parameter ζ was allowed to vary across individuals and over time.

High school graduates in Sweden typically do not report the HSGPA on their CV
(Adermon and Hensvik, 2022), though this information may be requested during the
interview process. To what extent the HSGPA is observed by employers and reflected in
wages is an empirical question that I aim to answer by running the regression

wity = βtHSGPAi +ϖtxiy + uity (30)

separately by potential experience t. The vector of controls xiy includes CSGPA, a female
indicator, as well as sets of fixed effects for year (y), region of birth, parents’ education
and parents’ region of birth.

The results are shown in Figure 5. The private returns to HSGPA are initially very
close to zero but rise to about 2 percent per one standard deviation within four years of
labor market entry. This suggests that employers do not observe productive skills obtained
by high school graduates, but learn about them quickly. The finding is similar to the
returns estimated based on NLSY data shown in Figure 2. In light of Propositions 1 and
3, these results suggest that Swedish high school students, too, acquire inefficiently little
skills.

I perform several robustness checks, which are reported in Figure A1. The results are
robust when restricting the sample to women, men, or immigrants.26 A partial exception
is that for women, the returns stay around zero for three years, and then converge to
only about 1 percent. The results are also robust to controlling for fathers’ cognitive and
non-cognitive skills, and to controlling for high school fixed effects.27

cutoff, individuals are absent from the sample when they are not employed in a given year, but may
re-join later.

26Here, immigrants are individuals born outside Sweden or Swedish-born but with both parents born
outside Sweden.

27The latter robustness check is motivated by the possibility that grading policies vary across schools,
and that schools are typically named on CVs.
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6 Discussion

Motivated by evidence of employer learning, in this paper I incorporate imperfect signals
into the analysis of educational choices. I highlight that signal imperfection may have
various sources, such as multi-dimensional types or noise. Their comparative relevance
has sharp implications for the direction of inefficiency in schooling choices. When signal
imperfection results mainly from noise, students will under-invest in productive skills, as
they face a private return that is below the social return. I present structural estimates
using NLSY data, as well as evidence from Swedish high school graduates based on a more
direct measure of skills acquired, both suggesting that noisy signals and under-investment
are important in reality.

My analysis highlights the distinction between time spent in school and the amount
of skills acquired. Indeed, I find that college attendance tends to be inefficiently high,
as the college degree is used to compensate for other, noisier skill acquisition signals. In
the absence of the distinction between schooling length and skills acquired, one might
conclude that restricting access to college would increase welfare (Caplan, 2018). However,
in my model such a policy would further depress human capital accumulation, which is
inefficiently low to begin with. Instead, the focus should be on improving signal precision,
especially for high school graduates.

Understanding the causes of signal imperfection is an important area for future re-
search. Institutional features, or country-specific conventions, such as whether high school
graduates typically report the GPA on their CV, could potentially make a difference.
Another open question is why college graduates appear to be able to signal with greater
precision. Promising explanations include the salience of college GPA, field of study,
or the institution attended (Arcidiacono, Bayer, and Hizmo, 2010). However, one must
keep in mind that perfectly precise signals are not desirable, either, as they will induce
over-investment.

My analysis informs broader policy discussions related to study effort and skill acqui-
sition. A large literature investigates how student effort responds to study incentives or
information about educational wage premia (Leuven, Oosterbeek, and van der Klaauw,
2010; Fryer, 2011, 2016). Results are mixed, and are often attributed to behavioral aspects
that are absent from my analysis (Gneezy, Meier, and Rey-Biel, 2011; Lavecchia, Liu, and
Oreopoulos, 2016). A related literature highlights that students often spend remarkably
little time studying, which could be interpreted as time-inconsistent behavior (Babcock and
Marks, 2011; Oreopoulos, Patterson, Petronijevic, and Pope, 2022). I emphasize that the
returns to study effort may actually be low, while returns to an additional year of schooling,
or college graduation, can be large and typically do include a signaling component. If
so, putting in the minimum effort required to graduate may be consistent with rational,
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forward-looking behavior. Relatedly, my results provide additional justification for some
institutional features of education systems that are consistent with signaling theory but
not a pure human capital view, such as exams.28
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Figure 1: Results from employer learning models estimated on NLSY data
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Notes: Private returns to acquired skills implied by the estimated parameters and the wage equation (17)
are plotted, along with the estimated social return (the output elasticity of acquired skill), separately for
high school and college graduates. Panel titles indicate assumptions about the average treatment effect of
college on log productivity, the substitution elasticity, and the type correlation.

Figure 2: The private and social returns to acquired human capital
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Figure 3: Selection rules for college attendance
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Figure 4: The effects of attending college on wages
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Figure 5: The returns to standardized high school GPA
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Table 1: List of parameters and moments

Notation Description Value

A. Parameters set pre-estimation
δ Discount factor 0.95
τh Years spent in high school track 6
τc Years spent in college track 10
κh Complementarity of skill production, high school 1/τh
ζh Study cost shifter, high school 1.00
µθ Mean of talent 0.00
µγ Mean of taste 0.00
σ2
θ Variance of talent 1.00
σ2
γ Variance of taste 1.00
ρθγ Correlation of talent and taste {0.2, 0.25, 0.5, 0.8}
σ Substitution elasticity {1.5,∞}
α Share parameter in aggregate production function {0.5, 0.825}

B. Parameters to be estimated
κc Complementarity of skill production, college
ζc Study cost shifter, college
as Output elasticity of acquired skill
aθ Output elasticity of talent
πs Effect of acquired skills on AFQT score
πθ Effect of talent on AFQT score
σ2
ξh, σ

2
ξc Noise in AFQT score

σ2
uh, σ

2
uc Noise in schooling signal

σ2
εh, σ

2
εc Noise in output signal

C. Moments to be targeted
p Fraction college 0.26
∆ψ + as∆s0 Average treatment effect of college on log productivity {0.00, 0.16}
∆µy Log productivity gap 0.43
σ2
y|h/σ

2
y|c Ratio of log productivity variances 0.85

∆µz AFQT gap 1.00
σ2
z|h AFQT variance, high school 0.77
σ2
z|c AFQT variance, college 0.32
σzy|h Covariance of AFQT and productivity, high school 0.12
σzy|c Covariance of AFQT and productivity, college 0.07
λh1 Speed of learning, high school 0.25
λc1 Speed of learning, college 0.10
ϕzh
0 Initial return to AFQT, high school 0.00

ϕzc
0 Initial return to AFQT, college 0.08

Notes: See the text on the calculation of moments. The average treatment effect of college is assumed
rather than estimated from data. ‘gap’ refers to the difference between college and high school.
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Appendices for online publication
A Deriving conditional expectations and variances for the theo-

retical employer learning model

Here I derive the worker’s expected log output, as well as the variance of log output,
conditional on her schooling signal and the history of output observations. Using standard
results for multivariate normal distributions, the conditional expectation is given by

E [yi|s̃i, ỹit] = µy + Σy×(s̃,ỹt)Σ−1
(s̃,ỹt)×(s̃,ỹt)

 s̃i − µs

ỹit − µyιt

 , (A.1)

where Σv×z is the covariance matrix of variables (potentially vectors) v and z, and ιt is a
size-t column vector of ones. The conditional variance is given by

Var (yi|s̃i, ỹit) = σ2
y − Σy×(s̃,ỹt)Σ−1

(s̃,ỹt)×(s̃,ỹt)Σy×(s̃,ỹt). (A.2)

The covariance matrices are

Σy×(s̃,ỹt) =
(
σsy σ2

yι
′
t

)
, (A.3)

and

Σ(s̃,ỹt)×(s̃,ỹt) =
σ2

s + σ2
u σsyι

′
t

σsyιt σ2
εIt + σ2

yιtι
′
t

 , (A.4)

where It is a size-t identity matrix. Given (A.3) and (A.4), one could solve (A.1) and
(A.2) using block-wise matrix inversion and the Sherman–Morrison formula. However, it
is easier to apply a two-step procedure.

The first step is to derive mean and variance of log productivity conditional on the
schooling signal,

E [yi|s̃i] = µy +
σsy

σ2
s + σ2

u

(s̃i − µs) = µy + bys̃0 (s̃i − µs) (A.5)

and

Var [yi|s̃i] = σ2
y − σsyb

ys̃
0 = σ2

y|s̃,0,

where bys̃0 and σ2
y|s̃,0 are given by (8).

The second step is to further update these moments after observing t > 0 log output

42



signals as specified in (2). Defining µy|s̃ ≡ E [yi|s̃i], we have

E [yi|s̃i, ỹit] = µy|s̃ + Σ(y|s̃)×ỹtΣ−1
ỹt×ỹt

(
ỹit − µy|s̃ιt

)

= µy|s̃ + σ2
y|s̃,0ι

′
t

(
σ2
εIt + σ2

y|s̃,0ιtι
′
t

)−1 (
ỹit − µy|s̃ιt

)

= µy|s̃ +
σ2
y|s̃,0

σ2
ε

ι′t

It − σ2
y|s̃,0

σ2
ε + σ2

y|s̃,0t
ιtι

′
t

(ỹit − µy|s̃ιt
)

= µy|s̃ +
σ2
y|s̃,0

σ2
ε

σ2
εt

σ2
ε + σ2

y|s̃,0

(
yit − µy|s̃

)

= µy|s̃ + λt
(
yit − µy|s̃

)
,

where the third line follows from the Sherman-Morrison formula and the last line uses (9).
Substituting (A.5) into the last line, we obtain (6). Similarly, (7) is derived as

Var [yi|s̃i, ỹit] = σ2
y|s̃,0 − Σ(y|s̃)×ỹtΣ−1

ỹt×ỹtΣ′
(y|s̃)×ỹt

= σ2
y|s̃,0 −

σ2
y|s̃,0

σ2
ε

ι′t

It − σ2
y|s̃,0

σ2
ε + σ2

y|s̃,0t
ιtι

′
t

σ2
y|s̃,0ιt

= σ2
y|s̃,0 −

σ2
y|s̃,0

σ2
ε

σ2
εt

σ2
ε + σ2

y|s̃,0
σ2
y|s̃,0

= (1− λt)σ2
y|s̃,0.

B Derivations for the econometric employer learning model

Here I prove the results stated in Section 3.3, in particular equation (26) and Proposition
4.

I start by stating some properties of second moments that will turn out to be helpful.
Let p denote the mean of Di, equal to the probability that Di = 1. First, for any random
variable xi,

Cov(xi, Di) = p(1− p) {E[xi|Di = 1]− E[xi|Di = 0]} ,

which can be expressed more succinctly using previously introduced notation as

σxD = p(1− p)
(
µx|c − µx|h

)
. (B.1)
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Second, the Law of Total Covariance implies that for any two random variables xi and ui,

σxu = (1− p)σxu|h + pσxu|c + p(1− p)
(
µx|c − µx|h

) (
µu|c − µu|h

)
, (B.2)

and notice how this includes the case of the variance as well, since σ2
x ≡ σxx.

Next, by the properties of regression coefficients,

ϕz
t =

σz̃w,t

σ2
z̃

, z̃i = zi −
σzD
σ2
D

Di.

Using (B.1), we obtain z̃i = zi −
(
µz|c − µz|h

)
Di, and therefore

ϕz
t =

σzw,t − p(1− p)
(
µz|c − µz|h

) (
µw|c,t − µw|h,t

)
σ2
z − p(1− p)

(
µz|c − µz|h

)2 .

Applying (B.1) again, as well as (B.2), yields

ϕz
t =

(1− p)σzw|h,t + pσzw|c,t

(1− p)σ2
z|h + pσ2

z|c
.

Similarly,

ϕD
t =

σwD̃,t

σ2
D̃

, D̃i = Di −
σzD
σ2
z

zi = Di −
p(1− p)

(
µz|c − µz|h

)
σ2
z

zi,

and thus

ϕD
t =

σwD,t − p(1− p)
(
µz|c − µz|h

)
σzw,t

σ2
z

p(1− p)− p2(1− p)2
(
µz|c − µz|h

)2 1
σ2
z

.

Again using results (B.1) and (B.2), we obtain

ϕD
t =

σ2
z

(
µw|c,t − µw|h,t

)
−
(
µz|c − µz|h

) {
(1− p)σzw|h,t + pσzw|c,t + p(1− p)

(
µz|c − µz|h

) (
µw|c,t − µw|h,t

)}
σ2
z − p(1− p)

(
µz|c − µz|h

)2
which further simplifies to

ϕD
t = µw|c,t − µw|h,t −

(
µz|c − µz|h

)
ϕz
t .

This completes the derivation of equation (26).
Turning to the proof of Proposition 4, observe that

σzw|j,t = Cov
(
πssi + πθθi, β

sj
t si + βθj

t θi
)
,
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from which equation (28) follows. To prove that ∂ϕzj
t /∂t > 0 if ϕzj

∞ = χj
sas + χj

θaθ > 0,
start by observing that sign

{
∂ϕzj

t /∂t
}
= sign

{
∂ϕzj

t /∂λ
j
t

}
. Using equations (28) and (8),

∂ϕzj
t

∂λjt
= −χj

sb
ys̃|j
0 + χj

sas + χj
θaθ

= −χj
s

 σ2
s|j

σ2
s|j + σ2

uj

as +
σsθ|j

σ2
s|j + σ2

uj

aθ

+ χj
sas + χj

θaθ

=
σ2
s|j

σ2
s|j + σ2

uj

(
χj
sas + χj

θaθ
)
+ aθπθ

σ2
s|jσ

2
θ|j

σ2
z|j

(
1− ρ2sθ|s

)
,

which is positive if ϕzj
∞ > 0. This completes the proof of Proposition 4.

C Imperfect substitutes in the two-track model

Final output is produced in CES fashion using the intermediate goods made by high school

and college workers, Y =
(
α

1
σY

σ−1
σ

h + (1− α) 1
σY

σ−1
σ

c

) σ
σ−1

. Final good producers buy these
intermediate goods at prices Ψh and Ψc, respectively. Profit maximization then implies

Ψc

Ψh
=
(1− α

α

) 1
σ
(
Yc
Yh

)− 1
σ

.

The model is closed by the market clearing conditions

Yh = eass
h
0
∫∞
−∞

∫ x0+x1γ
−∞ eτhκhas(θ+γ)+aθθf(θ, γ)dθdγ,

Yc = eass
c
0
∫∞
−∞

∫∞
x0+x1γ

eτcκcas(θ+γ)+aθθf(θ, γ)dθdγ,

where f(θ, γ) is the joint probability density function of θ and γ, which I assume to be
normal. Defining ψj ≡ log Ψj, ∆x ≡ xc − xh, and

ẽh

ẽc

∆α

 ≡


log

{∫∞
−∞

∫ x0+x1γ
−∞ eτhκhas(θ+γ)+aθθf(θ, γ)dθdγ

}
log

{∫∞
−∞

∫∞
x0+x1γ

eτcκcas(θ+γ)+aθθf(θ, γ)dθdγ
}

log{α/(1− α)}

 , (C.1)

we obtain

∆ψ = − 1
σ
(∆α +∆ẽ+ as∆s0) . (C.2)

The analysis of employer learning is unchanged. Optimal schooling choices, within
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track, are also unchanged. However, the intercepts of the value functions need to be
adjusted, since now

Bj
0 = δτj

∞∑
t=0

δt
(
ψj + β0j

t

)
.

Finally, a complication arises due to the different lengths of the two tracks. I have so
far implicitly assumed that the fraction of college graduates in the labor market stays
constant over time. This can be guaranteed by assuming a ‘perpetual youth’ setting where
individuals are born and die at constant rates (the discount factor δ includes mortality
risk in this case). My analysis then focuses on the steady state of such a setting, and the
counterfactual exercises of Section 4.6 compare different steady states.

D Solution algorithm for the two-track model

The selection rule for college (21) can be rewritten as

θi ≥ x0 + x1γi,

x0
x1

 ≡ 1
νcθ − νhθ

 νh0 − νc0

−
(
νcγ − νhγ

)
 (D.1)

where (x0, x1) are equilibrium quantities to be solved for. In fact, the pair (x0, x1)
constitutes a ‘sufficient statistic’ for employers’ beliefs in the following sense. Given the
linearity of the schooling equations, the variances and covariances of optimal schooling
can be computed given knowledge of (x0, x1). This in turn allows one to compute the
coefficients on schooling (and talent) in the wage equations, which yields the constant
in the schooling equations. This in turn lets one compute the intercepts in the wage
equations, and thus one can completely characterize the value functions. Hence, a simple
procedure for numerically solving the two-step model is as follows.

1. Guess values (x0, x1).

2. Using this guess, the selection rule (D.1), and the assumption about joint normality
of θ and γ, compute

(
µθ|j, µγ|j, σ

2
θ|j, σ

2
γ|j, σθγ|j

)
.

3. Using (19), compute
(
σ2
s|j, σsθ|j

)
.

4. Using (17) and (18), compute
(
βsj
t , β

θj
t

)
and

(
Bj

θ , B
j
s

)
.

5. Using (19), compute sj0 to obtain µs|j and hence β0j
t and Bj

0.

6. Compute the implied (x′0, x′1).
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For the grid search, I calculate and plot the loss function
√
(x′0 − x0)2 + (x′1 − x1)2.

This lets me inspect whether there may be multiple equilibria. I use numerical optimization
to find the precise location of the loss function’s minimum and verify that the value is
near zero within the specified tolerance.

E Estimation algorithm for the two-track model

E.1 Guessing the characteristics of high school and college graduates

I start by guessing the slope of the selection rule (21) and a value for κc. Given the
type distribution and the observed fraction of college graduates, p, I calculate the implied
intercept in the selection rule. Given the selection rule and the guess for κc, I calculate
the conditional distributions of talent θi and taste γi, as well as the conditional covariance
matrix of θi and schooling si using (19). Thus, I have almost completely characterized
high school and college graduates in terms of their types and their schooling choices. The
only missing moment is the term ∆s0 ≡ sc0 − sh0 .

E.2 Estimating the production function

With the characteristics of high school and college graduates in hand, it is possible to
estimate the production function parameters as and aθ, using the system

∆µy = ∆ψ + as∆s0 + as
(
τcκc

(
µθ|c + µγ|c

)
−
(
µθ|h + µγ|h

))
+ aθ∆µθ,

σ2
y|c

σ2
y|h

=
σ2
s|ca

2
s + 2σsθ|casaθ + σ2

θ|ca
2
θ

σ2
s|ha

2
s + 2σsθ|hasaθ + σ2

θ|ha
2
θ

,

(E.1)

where ∆µy ≡ µy|c − µy|h and so on. Recall that the average treatment effect of college,
∆ψ + as∆s0, has been guessed. The production function parameters are estimated by
simply equalizing the model moments given by the right-hand side of (E.1) to their
counterparts in the data.

E.3 Estimating ∆s0

In the case of perfect substitutes, the difference in the schooling intercept ∆s0 can be
backed out from the assumption on ATEy and the value of as estimated in the previous
step. If σ <∞, then ∆s0 is obtained from (C.2), after computing (C.1), and again using
the assumption on ATEy and the estimated as.
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E.4 Estimating the data-generating process for the AFQT score

With estimates of as, aθ, and ∆s0 in hand, it is possible to estimate the data-generating
process for the AFQT score, as specified in (27). In particular, using the system

∆µz = πs∆µs + πθ∆µθ,

σ2
z|h = π2

sσ
2
s|h + π2

θσ
2
θ|h + 2πsπθσsθ|h + σ2

ξh,

σ2
z|c = π2

sσ
2
s|c + π2

θσ
2
θ|c + 2πsπθσsθ|c + σ2

ξc,

σyz|h = σ2
s|hasπs + σsθ|h (asπθ + aθπs) + σ2

θ|haθπθ,

σyz|c = σ2
s|casπs + σsθ|c (asπθ + aθπs) + σ2

θ|caθπθ,

I obtain estimates of πs, πθ, σ2
ξh, and σ2

ξc by minimizing the distance (squared deviations)
between model and data moments. This part of the estimation is over-identified, as there
are five moments for four parameters to be estimated. I thus report the value of the loss
function, which is the square of the Euclidean distance between model moments and data
moments, with each component normalized by the relevant data moment.

E.5 Estimating the noise parameters

By this point I have estimated all the parameters needed to recover
(
b
ys̃|h
0 , b

ys̃|c
0

)
from the

terminal value estimated by non-linear least squares, as described by (28). Using (8), I
obtain estimates of the noise in the schooling signal, (σ2

uh, σ
2
uc). Moreover, (8) yields the

moments
(
σ2
y|s̃,0,h, σ

2
y|s̃,0,c

)
, and together with (9) and the estimated learning rates, this

yields estimates of the noise in the output signal, (σ2
εh, σ

2
εc).

E.6 Estimating the study cost parameter, and verifying the guesses

I now have all the inputs needed for constructing Bh
s and Bc

s. Thus, using (19), I recover
ζc.

Finally, I calculate the implied selection rule. I repeat the entire procedure, searching
over a grid of initial guesses for x1 and κc for fixed points where the implied selection rule
equals the one that I guessed. In the cases I considered, there were either one or no fixed
points.
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F Appendix figures
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