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Abstract 
 
We study the optimal design of spatially-differentiated subsidies for residential solar panels. We 
build a structural model of solar panel demand and electricity production across the US and 
estimate the model by combining 1) remotely sensed data on residential solar panels, 2) power-
plant-level data on hourly production and emissions, and 3) a state-of-the-art air pollution model. 
The current subsidies lead to severe spatial misallocation. The optimal cost-neutral reform 
generates a 6-11% increase in the environmental benefits of residential solar panels. National 
funding for subsidies under the current system exceeds the unconstrained optimum by over ten-
fold. 
JEL-Codes: H210, H230, Q420, Q480. 
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1 Introduction

State and federal governments in the United States heavily incentivize residential solar pan-

els through a complex system of subsidies, creating an environment in which the amount

of subsidies a household receives varies drastically depending on where they live. The en-

vironmental benefits of solar panel installation vary geographically as well. All else equal,

environmental benefits of solar panels are likely to be the largest in sunny areas and areas

where high-polluting power plants would otherwise produce electricity. This spatial variation

in environmental benefits suggests a rationale for spatially differentiated subsidies. However,

little quantitative evidence exists on how subsidies should optimally vary across space.

This paper fills this gap by studying residential solar subsidies using a structural model

of solar panel installation and electricity production. Heterogeneous households across the

country choose the number of solar panels to install, accounting for the installation cost, the

lifetime value of the electricity produced and subsidies received, and the nonpecuniary costs

and benefits of installation. Households can also purchase electricity produced by a system

of power plants. Individual power plants vary in the extent to which their production leads

to environmental damages, their production capacity, and their location, which dictates how

the grid transmits the plant’s electricity across geographic regions.

Residential solar installations reduce environmental damage by decreasing fossil-fuel power

plants’ electricity production. Therefore, panels installed in areas with more sunlight have

greater environmental benefits because they lead to larger decreases in electricity produced

by these plants. The environmental benefits of solar panel installations also vary geographi-

cally because of differences in the distribution of technology employed by power plants across

space. Panels installed in areas where environmentally unfriendly plants would otherwise

produce electricity will be more beneficial than panels installed in areas with cleaner plants.

These environmental benefits are not internalized by the household, thus suggesting a role

for government intervention.1 The primary tool currently employed by US policymakers to

deal with this externality is a system of federal and state subsidies for solar panels. We use

the model to solve for the optimal subsidies and quantify the benefits of switching from the

current system of subsidies to the optimal subsidies.2 Doing so requires understanding how

solar panel installation rates and the damages associated with electricity production would

change in response to alternative subsidy schemes. Therefore, our approach is to estimate a

1Environmental externalities are the only source of inefficiency in our model. Thus, we abstract away
from inefficiencies arising from market power, information frictions, and borrowing constraints.

2We focus on the optimal choice of subsidies for roofotp solar panels and do not allow for other types of
government intervention, such as pricing the externality via a carbon tax. See Eichner and Runkel (2014) for
an argument for why countries may choose to subsidize green energy production even when they have access
to carbon taxes.
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quantitative version of our model to calculate the optimal policies and the associated benefits.

Our primary data source is the DeepSolar Project (Yu et al., 2018), a dataset of the uni-

verse of residential solar panel installations in the contiguous US. Deepsolar uses a machine-

learning framework to identify solar panel installations from satellite imagery. We supplement

these data with data from Google Project Sunroof, another satellite-imagery-based dataset

that provides information on solar irradiance across the US and on the number and size

of rooftops suitable for solar panel installations. Combined, these two datasets provide the

distribution and size of solar panel installations as well as solar irradiance and space suitable

for solar panels across the US. We utilize these novel data sources to estimate the household

component of the model via generalized method of moments, thereby providing the first es-

timated model of solar panel demand across the US. Though sparsely parameterized, our

household installation model matches the spatial distribution of installations well. We also

show that our estimates are consistent with quasi-experimental evidence on the responsive-

ness of installations with respect to solar rebates (Hughes and Podolefsky, 2015; Crago and

Chernyakhovskiy, 2017; Gillingham and Tsvetanov, 2019).

To model power plants, we develop a novel policy function approach that maps electricity

demand and renewable production across the country to plant-level electricity production

and emissions. Our approach allows for endogenous changes in power plants’ production

profiles in response to electricity demand and renewable production over the day and year.

We estimate these policy functions using Open Grid Emissions (OGE) data, which provide

hourly production and emissions data covering nearly every power plant in the United States.

We show that the estimated model matches the data’s temporal and spatial distribution of

electricity generation. We translate these emissions into environmental damages using AP3,

a state-of-the-art integrated air pollution model.

Our estimated model of solar panel demand and electricity production provides a frame-

work to calculate the spatial distribution of installations, environmental benefits of solar

panels, and government cost of subsidies under counterfactual subsidy schemes. We first

use this framework to solve for the optimal cost-neutral subsidy reforms and quantify the

spatial misallocation caused by the current subsidy system. Our main result is that the

current subsidy system leads to a severe misallocation of solar panels across space. Consider

Washington, for example, a state where current subsidies are high even though sunlight is

low and households receive marginal energy from relatively environmentally friendly power

plants. We find that solar panels in Washington are over-subsidized by 80% relative to the

optimal subsidy system, leading to 160% greater installations than optimal.3 Decreasing

3That is, the total value of subsidies an average household would receive is 80% higher under the current
subsidies than the optimal subsidies. Total installations in Washington are 2.6 times higher under the current
subsidies than installations under the optimal subsidies.
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subsidies in Washington would lead to large decreases in fiscal costs with small decreases in

environmental benefits. On the other hand, in West Virginia, where current subsidies are

low and the environmental benefits of solar installations are high, we find that panels are

under-subsidized by nearly 70%, leading to installations that are 80% lower than optimal.

More generally, panels are under-allocated by roughly 40% in the Midwest and South and

over-allocated by 50% in the Northeast.4

We find that the misallocation caused by the current system of subsidies leads to sub-

stantial environmental costs. Switching from the current subsidies to the welfare-maximizing

subsidies leads to a 6% increase in aggregate environmental benefits—environmental dam-

ages decrease by approximately the same amount as a 6% increase in the productivity of

every rooftop solar panel in the US. Switching to subsidies set by a planner aiming to mini-

mize environmental damages rather than maximize welfare would lead to an 11% increase in

aggregate environmental benefits.

Next, we calculate optimal subsidies when the government does not face an externally

set budget constraint. Generally, these unconstrained optimal subsidies are substantially

less generous than current subsidies: current subsidies exceed optimal levels in all but three

states. As a result, total installations under the optimal subsidies are less than one-third of

the current amount, leading to a decrease of nearly 100 million dollars in annual environ-

mental benefits relative to the current level. However, the accompanying 450 million dollar

annual decrease in government costs thoroughly outweighs the decrease in environmental ben-

efits. Put another way; the optimal unconstrained subsidies achieve nearly 30% of current

environmental benefits at less than one-tenth the current cost. Our results suggest rooftop

solar subsidies not only deviate from the optimum in how they vary across space but are also

excessively generous in general.

Finally, we compare the effects of marginal subsidy changes around the current system of

subsidies. We find large differences in the cost-effectiveness of subsidy increases across states.

For example, the environmental damages offset per dollar of government funds associated with

subsidy increases in West Virginia are six times greater than the damages offset per dollar

of subsidy increases in Washington. These results highlight that changes around the current

system of subsidies could lead to decreases in both environmental damages and fiscal costs.

The remainder of the paper consists of various extensions and robustness checks. We an-

alyze the sensitivity of our results to 1) alternative specifications of household preferences, 2)

accounting for line losses in transmitting electricity from plants to homes, 3) the introduction

of improved electricity storage technology, and 4) changes in utility-scale renewable electric-

4In Section 6.3, we calculate the optimal system of subsidies when subsidies are allowed to vary nonpara-
metrically by census tract. We calculate similar levels of misallocation when the optimal subsidies are allowed
to vary by census tract rather than by state.
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ity production. We find that the optimal system of subsidies remains qualitatively the same

across these specifications. Quantitatively, our results suggest that optimal unconstrained

subsidies will be even lower in the future as utility-scale renewable electricity production

continues to expand.

Our paper is most closely related to several papers which use model-based approaches

to quantify the effectiveness of various types of subsidies on inducing solar panel installa-

tions (e.g., Burr (2014), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger,

Pavanini, and Radulescu (2022)).5 These papers use rich, dynamic models to study the

trade-offs associated with various subsidy schemes. While these papers focus on solar panel

installations, we provide a framework that can additionally quantify the environmental ben-

efits of solar panel installations, arguably the main reason these subsidies exist. As such,

we are the first paper in this literature to quantify the trade-offs between the environmental

benefits and fiscal costs of residential solar subsidies. We additionally contribute by quanti-

fying the spatial misallocation due to current subsidy schemes through our analysis of how

these subsidies should optimally vary across space.6 As discussed in the following paragraph,

the reduced-form literature has emphasized the importance of spatial differences in the envi-

ronmental benefits of solar panels. However, no quantitative research has incorporated these

spatial differences in a study of optimal subsidy design.

This paper is also related to a literature estimating the extent to which the marginal ben-

efits of renewable energy investments vary geographically (e.g., Holland and Mansur (2008),

Graff Zivin, Kotchen, and Mansur (2014), Holland et al. (2016), Borenstein and Bushnell

(2022)), and in particular to Siler-Evans, Azevedo, and Morgan (2012), Callaway, Fowlie,

and McCormick (2018), Holland et al. (2020), Sexton et al. (2021), and Lamp and Samano

(2023), who study the marginal benefits of solar panel installations.7 While these papers

establish that the current spatial distribution of solar panel installations does not maximize

5Feger, Pavanini, and Radulescu (2022) study optimal installation subsidies and energy tariffs in a model
with household energy consumption and solar panel demand.

6More broadly, our paper is also related to recent papers using quantitative approaches to measure the
environmental consequences of subsidizing renewable energy or environmentally-friendly goods (e.g., Liski
and Vehviläinen (2020), Shapiro (2021), Holland, Mansur, and Yates (2021), Jacobsen et al. (2022), Holland,
Mansur, and Yates (2022), Arkolakis and Walsh (2022)). This paper is also related to Miller et al. (2019),
who calculate the optimal geographically-differentiated government subsidies for Medicare Advantage. They
also use a policy-function approach to model firm behavior.

7Sexton et al. (2021) and Lamp and Samano (2023) also calculate the benefits of reallocating panels across
space by assuming that the marginal benefits of solar installations remain constant as the spatial distribution
of solar panels changes. These papers do not model demand for solar panels and, therefore, cannot quantify
how installations respond to various subsidy schemes. In the sustainability literature, Tibebu et al. (2021)
calculate the subsidies which maximize environmental benefits less government cost at the national and state
level. Their analysis does not account for household utility and therefore omits a key component of the social
benefit of subsidies. They also do not model the household decision to install solar panels but instead model
solar installation rates as following a normal distribution in the net present value of installation.
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environmental benefits, our goal is to quantify the extent to which government policy causes

this misallocation and solve for the system of subsidies that remedies this misallocation. Our

contribution is, therefore, to build and estimate a structural model of solar panel demand and

electricity production, which we use to quantify the effects of alternative subsidy schemes on

the distribution of solar panel installations and calculate the resulting environmental bene-

fits and fiscal costs. Specifically, we provide the first estimated model of solar panel demand

across space in the US. We also develop a novel, tractable approach to modeling power plant

production and the associated emissions over space and time. This approach involves directly

modeling how individual plants’ electricity production and emissions endogenously respond

to changes in solar and other renewable production.

Finally, this paper is related to several empirical papers which estimate the elasticity

of solar panel installations with respect to subsidies. We discuss these papers in detail in

Section 5.1.2. We use the estimates from these papers to evaluate the performance of our

estimated model.

2 Model

We combine a model of household solar panel demand with an electricity production model.

Households are distributed geographically across the United States, and states vary in their

electricity prices, installation prices, and the set of subsidies for solar panels they offer. Within

states, households vary in their local solar irradiance (sunlight), the amount of space they

have for potential solar panels, and their preferences over solar panel installation. Households

choose the number of solar panels to install, accounting for electricity and installation prices,

solar panel subsidies, and their individual preferences for installing solar panels.

In addition to residential solar panels, central generation power plants produce electricity.

Power plants differ in the extent to which their electricity production leads to environmental

damages and their location, which determines how the electricity they produce is distributed

across the country. Further, power plants face capacity and non-negativity constraints and

vary in the order in which they are dispatched, implying that some power plants will only

operate when demand is sufficiently high while others will operate even when demand is low.

2.1 Households

Households, indexed by i, are endowed with income yi and N̄i spaces they can potentially

use for solar panels. Household i has access to a solar panel technology that can produce a

stream of solar energy of {Ait}Tt=0 over the lifetime of the panel for each panel they choose to

5



install. In practice, we will think of t as indexing hours and set the lifespan of a solar panel to

25 years.8 We can think of this solar technology as reflecting the intermittent sunlight profile

at a given household’s residence, accounting for the depreciation of solar panel efficacy over

time.Let j index the state in which the household lives.

Households choose whether or not to install solar panels, mi ∈ {0, 1}, the number of

panels conditional on installation, Ni ∈
(
0, N̄i

]
, and how much electricity to consume each

period. Specifically, households choose a sequence of electricity usage {eit}Tt=0, where eit gives

household i’s energy consumption in period t. We assume the household pays a constant price

of pj for all electricity purchased.9 Let r denote the real interest rate and let ei =
∑T

t=0
eit

(1+r)t

denote the discounted sum of energy consumed, such that pjei gives the present discounted

cost of electricity consumed.

If a household chooses to install solar panels, they pay the cost of installation of pInsj (Ni),

which is a function of Ni, the number of panels they choose to install.10 The installation cost

function pInsj (·) can vary nonlinearly in Ni and is allowed to vary by state j.11 Households

can use electricity generated by solar panels to power their home or can sell it back to the

grid. Assume, for now, that households can sell back to the grid at the price of electricity

purchased, pj, as is the case for households in states with net metering. We discuss how we

model households without net metering in Appendix B.1.12 Letting Ai =
∑T

t=0
Ait

(1+r)t
denote

the discounted sum of electricity production, we can write the present discounted value of

energy produced by each solar panel for household i as pjAi.

Households receive subsidies for solar installations. We allow for three types of solar panel

subsidies that capture the majority of state and federal subsidies in the US. First, households

can receive a cost-based subsidy sCost
j , which pays a percentage of the solar installation cost,

similar to the federal investment tax credit.13 Second, households can receive a production-

based subsidy of skWh
j for each kWh of electricity produced by their solar panels, similar to

8This is a standard value of the average useful life of solar panels (see e.g., Xu et al. (2018), Chowdhury
et al. (2020), or Sodhi et al. (2022)).

9We assume that electricity prices are constant over time. While electricity prices change over time, there
is evidence that consumers do not correctly forecast the extent to which prices change over time and expect
future prices to be similar to current prices (Hughes and Podolefsky, 2015; Anderson, Kellogg, and Sallee,
2013). Further, we assume these electricity prices are fixed across counterfactuals and, therefore, abstract
from the general equilibrium effects of subsidies on electricity prices. Utility companies act as regulated
monopolies, which limits their ability to change prices in response to demand-side changes.

10We assume a partial equilibrium setting where these installation costs are given exogenously and do not
change in response to changes in subsidies.

11We assume a nonlinear pricing function to allow for the possibility that there is a fixed cost associated
with installing a positive number of panels.

12In 2017, 39 states mandated net metering policies. Idaho did not have a state net-metering policy, but
each of the state’s three investor-owned utilities had a net-metering policy. Five other states in our sample
have distributed generation rules other than net metering.

13In estimation, we will also consider sales tax exemptions and property tax exemptions as cost subsidies.
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solar renewable energy certificates. Finally, we allow for a per-panel subsidy sPanelj , such as

subsidies that pay per kilowatt of solar capacity installed.

We can thus write the household’s budget constraint as

ci + pj (ei −miNiAi)︸ ︷︷ ︸
Net cost of electricity

+mi

(
1− sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net cost of installation

= yi + miNiAis
kWh
j︸ ︷︷ ︸

kWh Subsidy

+ miNis
Panel
j︸ ︷︷ ︸

Per-Panel Subsidy

(1)

where ci is consumption of the numeraire good.14

Households have the following quasilinear utility function

ci + νi

(
{eit}Tt=0

)
+miγi (Ni) ,

where γi (Ni) is a strictly concave function which gives the nonpecuniary benefit of adding

Ni solar panels for household, and νi

(
{eit}Tt=0

)
is a function which gives the lifetime utility

of electricity usage. The function γi (·) captures inconvenience costs and any other individual

preferences for installing solar panels.

Note that the choice of electricity consumption does not depend on the household’s choice

to install panels.15 Thus, we can think of household optimization as a two-step process. First,

the household chooses electricity use, {e⋆it}
T
t=0, then decides whether to install solar panels

and the number of panels conditional on installation. In this second stage, we can rewrite

the household’s optimization problem as a choice of Ni and a discrete choice of mi:

Vi = max
Ni,mi∈{0,1}

mi [µij (Ni) + γi (Ni)] . (2)

where

µij (Ni) = NiAi

(
pj + skWh

j

)︸ ︷︷ ︸
Total electricity value

−
(
1− sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net installation cost

+ Nis
Panel
j︸ ︷︷ ︸

Per-panel subsidy

(3)

denotes household i’s net monetary benefit of installing solar panels.16 Let m⋆
i denote the

household’s optimal installation choice and let N⋆
i denote the optimal number of panels

conditional on installation.

From equations (2) and (3), we can see that different types of subsidies will differ in the

distribution of households they induce to install panels. Households in sunny areas (high Ai)

are more likely to respond to the production subsidy skWh
j , while households in areas with high

14We can think of ci and yi as the present values of consumption and income over time, respectively.
15This results from the assumptions that 1) utility is quasilinear and 2) electricity can be bought and sold

at the same price.
16Note that we have dropped a constant representing the household’s utility from electricity use and costs

but does not affect the decision to install solar panels.
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installation costs are more likely to respond to the cost subsidy sCost
j , for example.17 Further,

changes in subsidies affect installations via both intensive and extensive margin adjustments:

increases in subsidies can increase the number of panels installed for households who are

inframarginal with respect to installation and can also induce marginal households who do

not install initially to install a positive number of panels. As we show in Section 2.3, the

planner chooses the optimal set of subsidies accounting for these intensive and extensive

margin adjustments and for the fact that different households are marginal with respect to

each type of subsidy.

2.2 Electricity Production

2.2.1 Background

Before proceeding to the model, we give a brief overview of electricity production in the US.

The electricity sector in the US is highly regulated and does not operate like a traditional

market. Each of the around 10,000 central generation power plants in the US is overseen

by a balancing authority, an entity tasked with matching electricity supply and demand by

managing production from individual plants and trading with other balancing authorities.

Transmission of electricity between balancing authorities disproportionately occurs within

larger regions called NERC regions, each constituting a relatively closed market of balancing

authorities. Transmission across regions does occur, but this inter-regional transmission

occurs almost exclusively within interconnections, a geographic unit larger than a region.

There are three interconnections in the US: Eastern, Western, and Texas.

We can divide power plants into those that are dispatchable and those that are nondis-

patchable. Nondispatchable power sources are those whose output cannot be easily controlled

in response to fluctuations in electricity demand and generally produce when available, such

as wind and solar. These energy sources are generally intermittent, meaning their productive

capacity fluctuates over time in response to environmental factors, e.g., sunlight and wind.

Nondispatchable power plants generally do not produce significant pollutants or greenhouse

gases.

On the other hand, balancing authorities can control production by dispatchable power

plants to satisfy electricity demand. The production profile of a given dispatchable plant is

determined by its position in the dispatch curve—the order at which balancing authorities

17De Groote and Verboven (2019) find that households heavily discount future benefits associated with
solar installations. This result implies that cost-based subsidies may be more effective at inducing installa-
tions than production-based subsidies because households receive cost-based subsidies sooner. It would be
straightforward to examine our results’ robustness to alternative household discount rate values.
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dispatch power plants to satisfy different electricity demand levels.18 This implies that a

power plant’s production is not simply proportional to demand—some power plants operate

continuously throughout the day while others only operate at peak levels of demand. As

such, the set of marginal power plants, and therefore the marginal benefits to residential

solar installation, vary geographically and within location as a function of demand that must

be satisfied by dispatchable plants.

2.2.2 Model: Electricity Production

Within the model, three sources supply electricity: 1) residential solar, 2) nondispatchable

plants, and 3) dispatchable plants.19 Nondispatchable units are assumed to operate at full

capacity conditional on environmental conditions (e.g., sun and wind) and conditional on total

demand exceeding the amount produced by these nondispatchable generators.20 Therefore, as

long as demand exceeds the amount produced by nondispatchable sources, the production by

these power plants is independent of demand and production by other plants. Alternatively,

the production by dispatchable units depends on excess demand remaining after production

by residential solar and nondispatchable plants.21

Residential Solar and Nondispatchable Plants Let R index NERC regions.22 Total

residential solar production in region R in a given hour of the year t is the sum of energy

produced by residential solar panels, ESolar
Rt =

∫
i∈IR

m⋆
iN

⋆
i Aitdi, where IR is the set of house-

holds who reside in region R. Similarly, total production by nondispatchable plants in region

R in time t is given by ENonD
Rt =

∑
k∈KR

yNonD
kt , where yNonD

kt denotes electricity production

by nondispatchable power plant k in time t, and KR is the set of nondispatchable plants in

18Power plants’ variable cost of production generally determine the dispatch curve. Power plants with the
lowest variable costs (often nuclear and hydroelectric) typically satisfy low demand. Meanwhile, plants with
higher variable costs (such as gas-fired plants) begin operating only when electricity demand is sufficiently
high.

19We assume the distribution of power plants and the characteristics of the grid are exogenous. In reality,
a large change in residential solar production may lead to the entry and exit of generators and changes in
the organization of the electricity grid. In Section 7.4, we analyze the robustness of our results to alternative
assumptions about the distribution of power plants. See Holland, Mansur, and Yates (2022) for a model which
includes endogenous entry and exit of generators and storage capacity. See Arkolakis and Walsh (2022) for
a model with endogenous grid formation.

20In this case, we assume production of nondispatchable plants is curtailed such that supply does not
exceed demand.

21This assumption is similar to an assumption made by Callaway, Fowlie, and McCormick (2018), who
assume that only fossil-fuel power plant production is affected by changes in renewable production.

22We will assume 7 NERC regions in our quantitative analysis. Officially, the North American Electric
Reliability Corporation (NERC) divides the US into 6 regional entities. Following Holland et al. (2016), we
separate California from the WECC region, leaving us with 7 regions. We discuss how we define the regions
in Appendix A.7.
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region R. yNonD
kt is allowed to vary fully by power plant k and time t, reflecting differences

in environmental factors across plants and over time, and we assume it is independent of

demand and production from other power plants.

Dispatchable Plants To capture the centralized manner by which balancing authorities

dispatch power plants to satisfy electricity demand, we model dispatchable plants’ behavior

via policy functions that map excess demand to plant-level production. Let LoadRt denote

the total electricity demand in region R in time t,23 and let ELoadRt = LoadRt−ENonD
Rt −ESolar

Rt

give the electricity demand in region R that is not satisfied by residential solar and nondis-

patchable plants. We write production by dispatchable plants as a reduced-form function of

excess demand across regions, subject to non-negativity and capacity constraints. Letting

yDisp
kt denote production by dispatchable plant k in time t, we specify

yDisp
kt =


0 if fk (ELoadt, εkt) ≤ 0

fk (ELoadt, εkt) if 0 < fk (ELoadt, εkt) < ȳk

ȳk if fk (ELoadt, εkt) ≥ ȳk

, (4)

where ȳk is power plant k’s nameplate capacity, the maximum productive capacity of the

plant, ELoadt is the vector of excess loads in each region at time t, and fk (ELoadt, εkt) is

a plant-specific function of excess load across regions and a cost shifter εkt.
24 We allow the

function fk (·) to differ across plants to reflect heterogeneity in the order in which plants are

dispatched. We also allow fk (·) to depend not only on excess load in the region in which

the power plant is located but potentially to depend on excess load across other regions as

well. This dependence reflects that electricity can be transmitted across regions in response

to excess demand.

Intuitively, yDisp
kt captures how production by an individual power plant k in a given hour

t responds to fluctuations in electricity demand and nondispatchable production across the

grid. For example, as the sun goes down and solar production decreases, excess load will

increase across the country, particularly in regions heavily reliant on solar energy. yDisp
kt tells

us how individual power plants across the country are dispatched to match these increases

in excess load.

23This is equal to the sum of household electricity demand plus industrial and commercial electricity
demand, which we treat as exogenous.

24We assume that the plant’s policy function depends only on the current excess demand levels. Hypothet-
ically, production could also depend on previous electricity demand and production if, for example, the grid
can store significant amounts of electricity over time or if plants face significant ramping constraints. We can
accommodate this extension by allowing the function fk (·) to depend on lagged values of excess demand, or
on lagged production levels of the individual plant.
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2.2.3 Damages

Let dk

(
yDisp
kt

)
be a function that maps dispatchable power plant k’s electricity production in

time t to the total environmental damages associated with the plant’s emissions of greenhouse

gases and air pollutants. Let Dt (ELoadt) =
∑

k dkt

(
yDisp
kt

)
denote total damages from all

power plants in time t and let D (ELoad) =
∑T

t=0
Dt(ELoadt)

(1+r)t
denote the net present value of

all damages over time, where ELoad gives the excess load across all region and time periods.

The external benefit of a marginal solar panel installed by household i equals the damages

offset over the panel’s lifetime. We write this as

∆Di (ELoad) ≡
∣∣∣∣∂D (ELoad)

∂Ni

∣∣∣∣ = T∑
t=0

Ait

(1 + r)t

∣∣∣∣∂Dt (·)
∂ESolar

Rt

∣∣∣∣ ,
the present discounted sum of the product of Ait, the electricity produced by the panel in

any given period, and the absolute value of ∂Dt(·)
∂ESolar

Rt
, the marginal damages associated with

nondispatchable plant production.

2.3 Government’s Problem and Optimal Subsidies

The government chooses subsidies to maximize the sum of total utility minus total envi-

ronmental damages subject to an externally set budget constraint.25 We consider a gov-

ernment who does not face a budget constraint in Section 6.4. To ease up on notation,

let sij = sPanelj N⋆
i + skWh

j AiN
⋆
i + sCost

j pInsj (N⋆
i ) denote the total subsidy paid to household i

conditional on installation. Further, let
∂N⋆

i

∂sθj
give the derivative of solar panels installed by

household i with respect to a given subsidy type θ ∈ {kWh,Panel,Cost}, and let −→mi
θ indicate

the household i is on the margin of installing a positive number of panels with respect to a θ

subsidy, meaning the household does not install given the current subsidies but would install

in response to a small increase in the given subsidy. Finally, let Mj =
∫
i∈Ij midi denote

the total number of households who install solar panels in state j, where Ij is the set of

households in state j.

The government maximizes the sum of utility less environmental damages, which we write

25We are assuming that these are the only policy instruments the government can access. The government is
restricted to not price the externality directly, as in Pigou (1920). Changes in subsidies could also change firm
profits. We assume that the government does not value profits of utility companies or solar panel installation
companies. In reality, utility companies operate as regulated monopolies, where profits are directly limited.
Profits of solar panel installation firms not entering the government’s objective is also consistent with a
model in which the price of installation is always equal to the marginal cost of an installation. We analyze a
planner who minimizes environmental damages in Section 6.2. In Appendix B.6, we consider a planner who
maximizes the sum of utility subject to a net-cost budget constraint, where environmental damages count as
a fiscal cost.
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as ∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

. (5)

The government faces the constraint that the sum of subsidies cannot exceed an externally

set constraint ∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

≤ G, (6)

where G is the maximum amount the government can spend on subsidies.26 We can refor-

mulate the government’s objective function as the Lagrangian

W =

∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−λ


∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

−G

 , (7)

where λ is equal to the marginal cost of public funds. In practice, we will set G to the present

discounted value of the national cost of solar subsidies, given the current system of subsidies.

The optimal system of subsidies must satisfy ∂W
∂sθj

= 0 for each type of subsidy in each

state, which implies

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j − λ−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j − λ

−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

+(1− λ)Mj
∂sij
∂sθj︸ ︷︷ ︸

Mechanical Effect

= 0. (8)

We provide a derivation for equation (30) in Appendix B.3 and provide definitions for each

individual object in the upcoming text. The first term (“Extensive Margin”) captures the

trade-off between environmental benefits and fiscal costs associated with households on the

margin of installation: the households who currently do not install any solar panels but would

install solar panels in response to a slight increase in a given subsidy sθj . The term

∂Mj

∂sθj
=

∫
i∈Ij

−→mi
θdi

26Our framework does not account for distributional effects because utility is quasilinear and Pareto weights
are equal across households, which implies equal marginal social welfare weights across households. This setup
also implies that household utility is measured in dollar equivalents and, therefore, can be compared directly
to environmental damages. See Section 7.5 for a discussion of distributional effects.
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gives the number of households on the margin of installing solar panels with respect to a

given subsidy type sθj . These marginal installations lead to a societal benefit by reducing

environmental damages. The average damages offset across marginal installer households is

denoted as
−−→
∆Dθ,ext

j and is formally given by

−−→
∆Dθ,ext

j =

∫
i∈Ij ∆Di

(
ELoadSB

)
N⋆

i
−→mi

θdi∫
i∈Ij

−→mi
θdi

,

where ELoadSB is the excess load under the optimal system of subsidies. These marginal

installations also receive subsidies and thus are associated with a fiscal cost. We denote the

average cost associated with a marginal installation household as −→s θ,ext
j , formally written as

−→s θ,ext
j =

∫
i∈Ij sij

−→mi
θdi∫

i∈Ij
−→mi

θdi
.

The second term of equation (30) (“Intensive Margin”) captures the environmental-fiscal

trade-offs associated with intensive margin adjustment: increases in the number of panels

purchased for households who already choose to install a positive number of panels. The

term
∂Nst

j

∂sθj

∣∣
Mst

j
gives the total increase in panels associated with an increase in a given subsidy,

holding the set of households who install solar panels constant, which we write as

∂N st
j

∂sθj

∣∣∣∣∣
Mst

j

=

∫
i∈Ij

m⋆
i

∂N⋆
i

∂sθj
di.

The terms
−−→
∆Dθ,int

j and
−→
∂s
∂N

θ,int
j give the average damages offset and the average fiscal cost,

respectively, associated with these marginal panels.27 Taken together, these first two terms

show that the government will optimally increase subsidies which induce a greater number

of installations and more panels per installation from households associated with significant

environmental benefits and for whom fiscal costs are low.

The final term (“Mechanical Effect”) captures the effects of increasing subsidies for the

households who already choose to install solar panels and thus receive a larger subsidy from

the government. The total size of this transfer is the total number of panels installed in state

j, Mj, multiplied by the average increase in subsidy for households who have installations,

27These are formally given by
−−→
∆Dθ,int

j =

∫
i∈Ij

∆Di(ELoadSB)m⋆
i

∂Ni
∂sθ

j

di∫
i∈Ij

mi
∂Ni
∂sθ

j

di
and

−→
∂s
∂N

θ,int
j =

∫
i∈Ij

∂sij
∂Ni

mi
∂Ni
∂sθ

j

di∫
i∈Ij

mi
∂Ni
∂sθ

j

di
.
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∂sij
∂sθj

, holding installations and the number of panels constant.28 Each dollar transferred

to these inframarginal households increases welfare by (1− λ), which reflects the increase

in household utility less the decrease in government funds.29 In summary, equation (30)

measures the effects of subsidy changes on welfare, accounting for environmental benefits,

fiscal cost, and household utility.

However, solving for optimal subsidies requires more structure on the problem. While it

may be possible to calculate the environmental benefits of marginal solar panel installations

given the current distribution of solar panel installations, to solve for the optimal subsidies,

we need to know how marginal benefits change in response to different subsidy schemes.

Given that power plants’ production plans are nonlinear, the marginal damages evaluated

at current installation levels will differ from those at the optimum. Further, the optimal

subsidies characterized by equation (30) depend not only on marginal damages, but also

on the number of inframarginal households and the number of households on the margin of

installation with respect to various types of subsidies. Like the marginal damages, both of

these objects are a function of the system of subsidies.

Therefore, our approach is to estimate a fully specified version of our model, and then

use that model to quantify the system of optimal subsidies. Further, the structural model

allows us to quantify the effects of alternative subsidy schemes on the spatial distribution of

rooftop solar and the resulting environmental benefits and fiscal costs.

3 Quantitative Model

3.1 Household preferences

Let ℓ denote the census tract in which a household lives. We assume that the nonpecuniary

utility of installation of installing Ni panels, γi (Ni), is given by a polynomial term in Ni, a

term that captures differences in the benefits of installation across demographic groups, and

an idiosyncratic term. Specifically, we parameterize the nonpecuniary value of installation as

γi (Ni) = γ0 + γ1NNi + γ2NN
2
i︸ ︷︷ ︸

Polynomial in Ni

+ γdemXℓ︸ ︷︷ ︸
Local Demographics

+ σϵi︸︷︷︸
Idiosyncratic

28Formally this is
∂sij
∂sθj

=

∫
i
m⋆

i

∂sij

∂sθ
j

di∫
i
m⋆

i di
.

29Note that the utility of marginal households does not show up in equation (30) since there is no first-
order welfare effect on households for marginal households (i.e., households who choose to install solar panels
in response to the increase in subsidies). This result comes from the envelope theorem. See also Colas,
Findeisen, and Sachs (2021) for a discussion of the roles played by marginal and inframarginal agents in the
first-order effects of targeted subsidy increases.
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where γ0, γ1N , and γ2N are parameters, γdem is a vector of parameters, Xℓ is a vector of

demographic characteristics associated with the tract in which the household lives, and ϵi

is a logit preference draw with scaling parameter σ.30 In practice, we specify γdemXℓ =

γCollX
Coll
ℓ + γPolX

Pol
ℓ , where XColl

ℓ the fraction of individuals in the census tract with a

college education and XPol
ℓ is the fraction of voters in the county who voted democrat in the

2016 election.31

Recall that the number of panels installed cannot exceed the space the household has

available for panels, denoted by N̄i. The optimal number of panels conditional on installation

is therefore given by

N⋆
i = min

[
N̄i,−

(
∂µij

∂Ni
+ γ1N

2γ2N

)]
. (9)

Loosely speaking, we can see that the ratio γ1N
γ2N

dictates the average size of installations while

the parameter γ2N dictates the degree to which N⋆
i varies with subsidies.32 For example, a

smaller value of γ2N in absolute value would imply that households are more responsive to

subsidies along the intensive margin.

Given that draws of ϵi are from a logit distribution, the probability that a household

installs panels is equal to

πi =

exp

(
µij(N⋆

i )+γ0+γ1NN⋆
i +γ2NN⋆2

i +γdemXℓ

σ

)
1 + exp

(
µij(N⋆

i )+γ0+γ1NN⋆
i +γ2NN⋆2

i +γdemXℓ

σ

) . (10)

The partial elasticity of installation probability with respect to monetary benefits is equal to

∂ log (πi)

∂µij (N⋆
i )

=
1

σ
(1− πi) .

Therefore, the parameter σ dictates the extent to which increases in subsidies will lead to

increases in installations. A smaller value of σ implies that increases in subsidies will lead to

larger increases in the number of installations.

30X could contain household level covariates. However, we only have installation data at the tract level.
We can therefore think of Xℓ as capturing local attitudes towards installation.

31We examine the robustness of our results to alternative specifications of this utility function in Section
7.1. It would be straightforward to allow γi (·) to depend on additional tract-level covariates or to let γ0 vary
by Census region, division, or state. Note that if we allow γ0 to vary by state, then the variance of εi, and
therefore the responsiveness of the household installation decision to monetary incentives, would be identified
solely by variation in solar irradiance within states, not by variation in prices and subsidies across states.

32As we explain below, we parameterize pInsj (Ni) as a fixed cost plus a constant per-panel cost. This

implies that
∂µij

∂Ni
will be constant for a given household for Ni > 0.
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3.2 Dispatchable Power Plant Production

Production by dispatchable power plant k in time t is given by equation (4). We assume the

latent function fk (ELoadt, εkt) is a second-degree polynomial of excess load in each NERC

region within plant k’s interconnection with an additive shifter denoted by εkt. Formally,

letting Rk denote the set of NERC regions within the interconnection that contains plant k,

we specify

fk (ELoadt, εkt) = ψ0
k +

∑
R∈Rk

(
ψ1
RkELoadRt + ψ2

RkELoad
2
Rt

)
+ εkt, (11)

where ψ0
k is a constant term, ψ1

Rk is a parameter which dictates how fk (·) changes in response

to excess load in region R, ψ2
Rk is a parameter which dictates how fk (·) responds to excess

load squared in region R, and εkt is a normally distributed idiosyncratic term with a mean of

0 and a variance of σ2
k. Note that all the ψk parameters and σ2

k are plant-specific. We allow

fk (·) to depend on excess demand in all regions within an interconnection but not on excess

demand in other interconnections. This dependence reflects that electricity can be transmit-

ted across regions within interconnections but is rarely transmitted across interconnections.33

Our assumed functional form implies that ykt is a Tobit function with latent variable fk that

is right censored at ȳk, plant k’s nameplate capacity, and left censored at 0.

This specification allows for relatively complex production patterns as a function of excess

demand. The parameter ψ0
k dictates the values of excess demand over which a plant will

produce electricity, allowing for the possibility that some plants will operate when excess

demand is low while others will operate when excess demand is sufficiently high. For example,

all else equal, plants for which ψ0
k takes a large negative value will only have positive electricity

production when excess demand is very high, as is true of plants that tend to have a late

position in the dispatch curve. Conditional on positive production, the parameters ψ1
Rk and

ψ2
Rk will dictate the intensity at which the balancing authority dispatches a plant. Finally,

this specification allows plants to differ in the extent to which their production is transmitted

across regions. Some plants may predominantly transmit power within their own region, while

others may transmit large amounts of power to other regions within an interconnection.

Further, while the latent function fk (·) is assumed to be constant across time, we show in

Section 5.2 that our model can replicate differences in dispatchable production over the day

and year in response to fluctuations in nondispatchable production and electricity demand.

In particular, our model can generate the ramping pattern of dispatchable generators through

the afternoon as solar generation decreases and electricity demand increases.

33We constrain fk (·) such that the function is weakly increasing in excess load for all regions. That is, we
set fk (·) to its value at the inflection point if the function would otherwise be decreasing in excess load.
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It is worth discussing how the specification of power plant production we develop here

differs from the specifications used in Holland et al. (2016) and Sexton et al. (2021). Those

papers estimate marginal emissions rates for individual power plants in which time-specific

reduced-form coefficients capture all differences in emissions rates across time. These specifi-

cations, therefore, do not model how production levels endogenously respond to fluctuations

in renewable production. As such, the estimated emissions rates for each power plant are

constant conditional on time, and independent of the amount of solar electricity produced.

Since we aim to estimate marginal emissions both under current conditions and under

significant changes to the distribution of residential solar panels, we require a different ap-

proach to modeling power plants. In our model, production varies flexible in excess load and

therefore is endogenous to both electricity demand and production from solar and other re-

newable sources. Thus, marginal emissions are not constant as a function of residential solar

production. An additional benefit of our approach is that we identify the model’s parameters

with excess load, which takes advantage of variation in both demand and production from

nondispatchable units. The other models only leverage variation in demand.

3.3 Damages

The final piece of the model is determining damages from electricity production at power

plant k, as described by the function dk (ykt). We specify this function in two parts, first

mapping electricity generation into emissions and then mapping emissions to damages. Both

parts are plant-specific, capturing that damages from electricity production depend on a

power plant’s technology, location, and stack height. A power plant’s technology dictates the

extent to which electricity production leads to emissions, while a plant’s location and stack

height determine the extent to which emissions of local pollutants affect population centers.

Concretely, let g ∈ G index pollutants, where we assume the set G consists of the pol-

lutants NOx, PM2.5, SO2, and CO2 equivalent (CO2e).34 We specify emissions of each

pollutant as a power-plant-specific linear spline in production with a slope that differs above

and below power plant k’s median production. Letting y50k denote the median amount of

power plant k’s production in the data conditional on positive production, we write power

plant k’s emissions of pollutant g as

Emisgkt (ykt) =

κ1gkykt + egkt if (ykt − y50k ) < 0

κ1gkykt + κ2gk (ykt − y50k ) + egkt if (ykt − y50k ) ≥ 0
. (12)

34CO2 equivalent includes emissions of other greenhouse gasses in addition to carbon dioxide, in particular,
methane and nitrous oxide. These other GHGs are converted into a common global warming potential equal
to that of one ton of carbon dioxide.
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Power plant k’s damages in time t are then given by dkt (ykt) =
∑

g∈G δgkEmisgkt (ykt) ,

where δgk gives the marginal damages associated with emissions of g by power plant k,

accounting for power plant k’s location and stack height.

4 Data and Estimation

4.1 Data Sources

In this section, we give an overview of the main data sources we use in our analysis. Additional

details on data sources and cleaning can be found in Appendix A.

Solar Panel Installations Our primary source for solar panel installations is the Deepsolar

database (Yu et al., 2018), a database of solar panel installation in the contiguous US created

by applying a deep-learning model for detecting solar panels on satellite imagery from the

year 2016.35 From Deepsolar, we use tract-level data on the total number of residential solar

systems and on the total panel area covered by residential solar panels. Combining these

two measurements gives us the average size of solar installations, which we use to infer the

average number of panels per installation in each tract.

We supplement these data on solar installations with data from Google Project Sunroof

(GPS), another dataset created by applying a machine-learning framework to satellite im-

agery. This dataset provides the distribution of rooftop sizes that are suitable for solar panel

installation in each tract, which we use as the empirical analog of N̄i within each tract for

56,940 census tracts in the US.36

Rooftop Solar Production Next, we need data on {Ait}Tt=0, the stream of electricity

potentially produced by each panel installed by household i. For this, we combine data on

yearly solar production potential from GPS with state-level time profiles of solar production

from the National Renewable Energy Laboratory’s System Advisor Model (SAM). Specif-

ically, GPS provides measures of yearly kWh that can be produced by panels in a given

tract, accounting for local weather conditions and shading. We set a household’s yearly solar

potential for newly installed panels as the mean household solar potential in the GPS data

35Deepsolar is the first high-fidelity database of solar panel installations in the United States. Other solar
panel databases rely on either self-reported data or surveys (e.g., Open Solar Project) or do not cover the
entire contiguous US (e.g., Tracking the Sun). The machine-learning algorithm employed by Deepsolar is
highly accurate, achieving a precision of 93% and a recall of 89% in residential areas.

36These tracts include 90% of the 33 million square meters of residential solar panels in the Deepsolar
database. The GPS data specifically provide the number of buildings in each tract with the potential for
various installation size bins. We set N̄i as the midpoint of the installation size bin for all buildings which
fall in a given bin.
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for the household’s tract. We assume solar panel efficacy depreciates by a constant rate of

0.5% each year.37

Next, we need to determine the distribution of solar production over each hour of the

panel’s lifetime. For this, we utilize SAM, which provides engineering estimates of electricity

production with panel specifications and climate as the model inputs (Blair, Dobos, and

Gilman, 2013). For each state, we calculate the fraction of yearly solar production produced

at any given hour over the year. See Appendix A.4 for details. We multiply this fraction of

energy produced each hour by a household’s annual solar potential to calculate our measure

of Ait, hourly electricity production for any hour t over the panel’s lifetime.

Subsidies and Prices For subsidies, we rely on data from Sexton et al. (2021), who

assemble data from the Database of State Incentives for Renewables & Efficiency (DSIRE)

to calculate state and federal subsidies. For the price of electricity, we use the average retail

price of electricity as reported by the EIA.38 We use a value of r = 2% for the real interest

rate.

We estimate installation prices using data from Tracking the Sun, a project collecting

data on solar panel installations by the Lawrence Berkeley National Lab. As Tracking the

Sun only covers 25 states, we assume that all states within a given Census region share the

same installation pricing function. Specifically, we assume that installation prices take the

form pInsR(j) (Ni) = p0,InsR(j) +Nip
1,Ins
R(j) , where p

0,Ins
R(j) is a fixed cost and p1,InsR(j) is a per-panel cost, and

R(j) is the Census region containing state j. We present our estimates of the installation

price functions and provide evidence that this linear pricing function is a good approximation

of prices in the data in Appendix C.1.

Power Plants Our electricity generation data come from Open Grid Emissions (OGE), an

open-source project aimed at creating high-quality electricity emissions data that is publicly

available (Miller et al., 2022). These data combine commonly used electricity data sources,

namely hourly electricity generation and emissions for generating units from the EPA’s Clean

Air Markets Division (CAMD), monthly production and emissions for generating units from

EIA form 923, and hourly balancing authority by fuel type electricity generation from EIA

form 930.

We use their power-systems-level and plant-level data products from 2019.39 The power-

37Jordan and Kurtz (2013) review the literature on photovoltaic degradation rates and find a median
degradation rate of 0.5%.

38These data can be downloaded at https://www.eia.gov/electricity/state/. See Ito (2014) for
evidence that consumers respond to average, rather than marginal, electricity prices.

39We use data from 2019 as it is the first year available from OGE and thus closest to the Deepsolar data
while also reflecting the modern electricity grid. The OGE methodology relies on the EIA form 930, which
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systems-level data gives hourly electricity production for each balancing authority, broken

out by fuel category, enabling us to calculate each region’s total hourly load. The plant-level

data gives hourly electricity production and emissions for just under 10,000 power plants.

This coverage is the main innovation of the OGE data, as previously hourly emissions and

production were only available for sufficiently large fossil-fuel plants included in the EPA’s

CAMD data. The plants excluded from CAMD data account for nearly 30 percent of NOx

emissions, 8 percent of SO2 emissions, and 7 percent of CO2 emissions. We use the 4,625

dispatchable plants with postive, non-constant production in estimation, yielding over 40

million plant-hour observations after the cleaning process described in detail in Appendix

A.7.

Damages To calculate damages associated with emissions, we utilize AP3, a state-of-the-

art integrated assessment model that translates emissions from locations across the US into

physical and economic damages. Specifically, AP3 uses a reduced-complexity air quality

model to map emissions of local pollutants to an ambient concentration of air pollutants in

each county in the US. The model then translates these ambient concentrations into dam-

ages, using estimates of the physical effects of pollution exposure from the literature and

considering population distribution and vital statistics across counties.40 AP3 and its prede-

cessors, APEEP and AP2, have been employed extensively in the environmental economics

literature.41

4.2 Descriptive Patterns

Figure 1a shows how the generosity of subsidies varies across states under the current system

of subsidies. We measure subsidy generosity as the present discounted value of subsidies an

average household in each state would receive if they installed a 15-panel system, roughly

the average size of installations in the data. There is considerable variation across states in

the generosity of these subsidies. New Jersey delivers nearly 29 thousand dollars in subsidies,

compared to seven states providing no additional funding, leading to under 6 thousand dollars

in subsidies from the federal government.42 Figure A4 in Appendix A.6 shows the state-level

is only available starting in mid-2018.
40AP3 calculates damages as increased mortality risk from pollution exposure. For the value of mortality

risk reduction, we use the EPA’s suggested value of $7.4 million translated into 2014 dollars.
41See, e.g., Muller, Mendelsohn, and Nordhaus (2011), Holland et al. (2016), Shapiro and Walker (2020),

Holland et al. (2020), Sexton et al. (2021), Cicala et al. (2021), Holland et al. (2021).
42Other states with high subsidies include Massachusetts, Iowa, New Hampshire, Wisconsin, Washington,

and New York, with over 18 thousand dollars in expected subsidies. Alabama, Arkansas, Georgia, Mississippi,
Oklahoma, Virginia, and West Virginia are the seven states with no state-level subsidies.
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(a) Expected subsidy (b) Expected monetary benefit

Figure 1: Expected subsidies and monetary benefit for a 15-panel system in each state. Colors are scaled by
the percentile of their respective value. See text for details.

Figure 2: Installed solar systems per 1000 individuals.

subsidy generosity separately for each of the three subsidy types. The majority of the value

of subsidies comes from cost-based, rather than production-based or panel-based, subsidies.

In addition to subsidies, the monetary incentives to install panels vary geographically

because of spatial differences in prices and sunlight.43 Figure 1b shows the monetary benefits

associated with solar panel installations. Specifically, for every household within the model,

we calculate the net present value of monetary benefits of installation, µij (N
⋆
i ), evaluated at

N⋆
i = 15. We then take the average monetary benefit over all households within a state. This

total monetary benefit therefore measures the net present value of installing solar panels in a

given state for the average household, taking into account local differences in solar irradiance,

43We show a map of state-level electricity prices in Appendix A.5.
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electricity and installation prices, and the set of local subsidies. The states with the highest

monetary benefits are located in the Northeast, a region with high electricity prices and

subsidies. Additionally, California has a high monetary value of installation, combining high

electricity prices with high levels of solar irradiance. Meanwhile, several states in the Midwest

and Mountain West have negative values, driven by lower subsidies, electricity prices, and

solar radiation.

Figure 2 shows installations per capita at the census tract level. We can see that in-

stallations are generally higher in areas with larger monetary benefits, such as most of the

Northeast and California.44 Meanwhile, households in the Midwest, where there are relatively

low subsidies, less sunlight, and low electricity prices, install few solar panels.

4.3 Estimation

Households We estimate the household installation component of the model via the gen-

eralized method of moments. In essence, we choose the six parameters σ, γ0, γColl, γPol, γ1N

and γ2N such that the distribution of installations and size of installations predicted by the

model are close to those in the data. Specifically, we target the log installations per house-

hold in each census tract and the average number of panels per array in each census tract.

Therefore, we have one moment per tract which describes the number of installations, and

one moment per tract which describes the number of panels per array.

The six parameters of interest are well identified. Variation in the monetary benefit of

installation and demographics across tracts jointly identifies σ, γ0, γColl, and γPol. To see

this concretely, note from equation (10) that we can rewrite a household’s log installation

probability as a function of structural parameters:

log

(
πi

1− πi

)
=
γ0
σ

+
1

σ
µij (N

⋆
i ) +

γColl

σ
XColl

i +
γPol

σ
XPol

i . (13)

Here it is clear that σ is identified by the relationship between the installation rates and the

monetary benefits of installation, holding demographic characteristics constant. Differences

in prices, subsidies, and solar irradiance across tracts drive the variation in monetary benefits.

Conditional on monetary benefits, variation in college percentage and democrat percentage

identify γColl and γPol respectively, and the overall level of installations identifies γ0. Finally,

the average number of panels in each array and how the size of arrays varies across cities

identify γ1N and γ2N .

One natural concern is that households with stronger preferences for solar installations

44We analyze the relationship between state-level installations and monetary benefits in Appendix C.2.
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tend to live in states with more generous subsidies, and therefore, the correlation between

installations and subsidies reflects differences in household characteristics across states rather

than the causal effects of subsidies on installations. We do not think this is a first-order issue

for two reasons. First, as we show in Section 5.1.2, our estimates are consistent with design-

based studies which directly address these selection issues. Second, in Appendix D.1, we

reestimate the model and recalculate the optimal subsidies in models in which we include

different sets of tract-level characteristics in the household utility function. The results

are not sensitive to which characteristics are included, suggesting that, at least, selection on

observables does not play an important role in explaining differences in tract-level installation

rates. We also estimate the reduced-form relationship between tract-level installations and

monetary benefits in Appendix C.2. We find that the estimates are not sensitive to the

inclusion of demographic characteristics and Census region or division fixed effects.

Dispatchable Power Plants We estimate the power-plant-specific policy functions de-

scribed by equations (4) and (11) via maximum likelihood. We provide the likelihood function

and additional details in Appendix B.2. Variation over time in both electricity demand and

production by nondispatchable plants creates variation in excess loads across regions that

identifies the parameters of the plant-specific policy functions.

Damages We estimate damages by combining power-plant level emissions data from EPA’s

Clean Air Markets Division with estimates of marginal damages from AP3. We estimate the

damages given by equation (12) via ordinary least squares using power-plant level emissions

data from OGE.

To translate these emissions into damages, we need an estimate of δgk, the marginal

damages associated with emissions of pollutant g by power plant k. The AP3 model calculates

the marginal damages associated with local pollutants emitted from every county in the

United States for varying stack heights. We, therefore, calculate δgk by matching power

plants to their corresponding county and stack height in the AP3 model. We assume a social

cost of carbon of 51 dollars per ton of CO2, in line with the official value currently used by

the U.S. government.45

45There is disagreement in the literature about the social cost of CO2. Rennert et al. (2022), for example,
argue for a social cost of carbon of 185 dollars per ton of CO2. Calculating the optimal subsidies under
alternative values of the social cost of carbon would be straightforward. We do not account for the environ-
mental damages associated with producing and disposing of solar panels. These costs are small relative to
the environmental benefits of power produced by a solar panel (Heath and Mann, 2012).
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Estimate Standard Error

Dispersion of Idiosyncratic Utility σ 8.55 0.08

Percent College γColl 5.71 0.36

Percent Democrat γPol 10.44 0.50

Constant γ0 -1357.03 411.27

Number of Panels γ1N 177.70 55.65

Number of Panels Squared γ2N -6.00 1.88

Table 1: Parameter estimates for household utility function. Standard errors calculated via bootstrapping.

5 Estimation Results and Model Fit

5.1 Households

5.1.1 Parameter Estimates

Table 1 displays the estimates of parameters governing the household utility function. The

nonpecuniary value of installations is increasing in average local education and in the frac-

tion of the population that voted democrat in the 2016 election. The final two parameter

estimates, which dictate utility as a function of installation size, imply that the optimal

size of an installation is increasing in monetary benefits, but only marginally so: a $1000

increase in the monetary benefit associated with installing an additional panel leads to only

a
∣∣∣ 1
2×(−6.00)

∣∣∣ ≈ 0.08 increase in the optimal number of panels.46

To get a better sense of what the parameter estimates imply for installation probabilities,

recall that the partial elasticity of installation probability with respect to monetary benefits

is approximately equal to 1
σ
.47 Given that we measure monetary values in thousands of

dollars, our estimate of σ = 8.55 implies that a thousand dollar increase in the monetary

value of installation leads to approximately a 1
8.55

≈ 11.7 percent increase in the number of

installations.

5.1.2 Comparison to Existing Estimates

Hughes and Podolefsky (2015) estimate the effects of subsidies on solar panel installations by

examining the introduction of a solar rebate in California. In their preferred estimate, they

find that a $470 increase in total rebate leads to a 10% increase in installations. From our

estimates above, we can see that a $470 increase in subsidies would lead to approximately

46Recall from equation (9) that the optimal number of panels is given by N⋆
i = min

[
N̄i,−

( ∂µij
∂Ni

+γ1N

2γ2N

)]
.

We estimate γ2N = −6.00 and increasing the per-panel subsidy by $1000 increases
∂µij

∂Ni
by 1.

47Differentiating equation (10) yields ∂ log(πi)

∂µij(N⋆
i )

= 1
σ (1− πi). The average value of πi in our dataset is about

0.02.
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a .47 × 1
σ
≈ 5.5 percent increase in the number of installations. Thus, our result is smaller

than the estimate in Hughes and Podolefsky (2015) but of a similar magnitude.

Crago and Chernyakhovskiy (2017) analyze the effects of policy incentives on residential

solar panel installations using county-level panel data from 12 states in the US Northeast.

They find that increasing rebates by $1 per watt increases solar panel installations by 47%.

We replicate this experiment using our structural model and find that increasing rebates by

$1 per watt in the same 12 states increases installations by 49%, consistent with the estimates

in Crago and Chernyakhovskiy (2017).48

Finally, Gillingham and Tsvetanov (2019) estimate the price elasticity of demand for solar

panel installations using data from Connecticut and an approach that accounts for excess

zeroes, unobserved heterogeneity, and the endogeneity of installation prices. Their estimates

imply a price elasticity of demand evaluated at the mean installation price equal to -0.65. We

simulate a marginal increase in installation prices in Connecticut and calculate the implied

price elasticity evaluated at the mean installation price. This yields an estimate of -0.52,

close to the elasticity estimated by Gillingham and Tsvetanov (2019).

We also calculate this elasticity of demand nationally by simulating a marginal increase

in installation prices in all states. We calculate a price elasticity evaluated at the mean

installation price equal to -0.93 nationally. This national elasticity is larger than the elasticity

in Connecticut because Connecticut’s generous cost subsidies attenuate the effect of price

changes on installation rates.

5.1.3 Model Fit (Installations)

Figure 3 assesses model fit with regard to solar installations. Figure 3a shows the relationship

between tract-level log installations per household and the monetary benefits of installation

in the data and simulation. We calculate the lifetime monetary benefits of installation as

the net present value of installing a 15-panel array in each census tract. We can see that in

both the data and simulations, installations are strongly increasing in monetary incentives.49

Subfigures 3b and 3c show the relationship between installations and the percentage of house-

holds with a college education, and the percentage of households who voted democrat in the

2016 election. In both simulations and the data, installations are increasing in educational

attainment and democrat percentage. The fit is quite good in both dimensions.

Subfigure 3d shows the relationship between state-level log installation rates in the data

48Specifically, we increase the per-panel subsidy, sPanelj , in these same 12 states. We convert the per-watt
subsidy into a per-panel subsidy by assuming 250 watts per panel.

49The slight decrease in installation rates for the highest monetary values in the data reflects that Mas-
sachusetts and New Jersey have very generous subsidies and high electricity prices, but installation rates are
lower than in states such as California and Arizona, which have less generous subsidies.
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(a) Monetary Benefit (b) Education

(c) Percent Democrat (d) State-level fit

Figure 3: Panels (a), (b), and (c) show local nonparametric fit of tract-level log installation per household in
the data (red dotted line) and simulations (solid blue line) on (a) the total monetary benefit of installing 15
solar panels, (b) the percent of households with a college degree, and (c) the percent of households who are
democrats. Panel (d) gives state-level fit. The X-axis gives state-level log installation per household in the
data and the Y-axis gives state-level log installations per household in the simulated model. The size of the
circle is proportional to the number of households in the state.

and predicted by the model. Each circle represents a state, and each circle’s size is propor-

tional to the number of households. The X-axis gives the log installations per household in

the data, while the Y-axis gives the simulated installations per household. In general, the fit

is quite good, especially considering we parameterized the model of household panel demand

quite sparsely.

5.1.4 Why Do Installations Vary Across States?

In the model, solar panel installation rates may differ across states for five main reasons:

1) subsidies, 2) electricity prices, 3) installation prices, 4) sunlight, and 5) household demo-

graphics. In Appendix C.4 we sequentially equalize each of these five factors across states

and re-simulate the model. The results from this model-based decomposition show that

differences in subsidies and electricity prices across states are the most important drivers

of differences in installation rates: equalizing subsidies and electricity prices reduces the

standard deviation in state installation rates by 75 percent.
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Figure 4: Model fit at the interconnection level. The Y-axis gives the production of dispatchable plants
predicted by the model, measured in GWh while the X-axis gives the production in the data. Dots represent
an hour of production for each interconnection, smoothed lines show the fit of a generalized additive model.

5.2 Power Plants

We now evaluate the performance of the power plant portion of the model. We include

additional model fit results for power plants in Appendix C.5.

Figure 4 shows predicted electricity production of dispatchable plants against actual elec-

tricity production. Each dot represents an hour of aggregate production by dispatchable

plants for each interconnection in the data (X-axis) and predicted by the model (Y-axis).

The model fits well in all three interconnections, producing R-squared values of 0.99, 0.96,

and 0.96 in the East, West, and Texas, respectively.

We assess fit over hours and seasons in Figure 5. Each panel shows predicted and actual

production of dispatchable plants for the average day for each of the three interconnections

across four seasons. This figure shows that the model matches daily peaks and troughs of

production in response to changes in demand and differences in intraday timing of those

peaks and troughs between seasons. In particular, our model is able to generate the pattern

of increasing dispatchable production through the afternoon, the time where solar power

generation decreases and electricity demand increases. This is especially true for seasons and

interconnections when solar makes up a larger share of electricity production. A region-level

breakdown of these plots is available in Appendix C.5.

Not only does the model match total production, but it also replicates changes in the

fuel mix at varying demand levels, reflecting that plants differ in how balancing authorities

dispatch them as a function of excess demand. Figure 6 shows the percentage of total produc-

tion in each interconnection produced by plants of each fuel type in the model and the data.

The X-axis of each panel varies the interconnection-level excess load—the total amount of

electricity demand that must be satisfied by dispatchable plants. Across all interconnections,

27



Figure 5: Model fit at the interconnection level by hour and season. Hour reflects Eastern Standard Time
(EST). Each panel shows predicted and actual production of dispatchable plants over the course of the
average day, for each of the three intersections and across four seasons. The green solid line gives electricity
production in the data while the red dotted line gives predicted production.
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Figure 6: Fuel mix of production by interconnection. The X-axis gives excess load at the interconnection
level and the Y-axis gives the percent of electricity production that is produced by each of the fuel types.
The dashed lines show the fuel mix in the data while the solid lines show the simulated fuel mix.

our model’s predictions match the observed fuel mix very well. In all interconnections in the

model and data, natural gas as a share of production increases in excess load. Meanwhile,

production levels of clean, low-marginal-cost nuclear and hydroelectric plants generally de-

crease as a percentage of total production. An important difference between the Eastern and

Western Interconnections is that coal increases its share of production in the East, whereas

coal’s production share declines except at the lowest levels of excess load in the West.

These changes in the fuel mix imply that the marginal damages of electricity production

may vary not only spatially but also as a function of electricity demand. To illustrate this,

Figure 7 plots simulated marginal damages of energy production in each region within each

interconnection as a function of excess load.50 Overall, marginal damages are highest in

regions within the Eastern interconnection, reflecting, in part, the interconnection’s reliance

on production from coal-fired power plants. However, there is significant heterogeneity in the

marginal damages across regions within this interconnection. Marginal damages are highest

from power plants the RFC region, which spans much of the Mid-Atlantic and lower Great

Lakes.51 Regions also vary in the extent to which their marginal damages of production

50To calculate this, we simulate increasing excess load by a small amount in the region in question. We
then divide the resulting change in total damages associated with power plants in the region by the change
in total production by these power plants. Note that this is the marginal damage with respect to electricity
production within a given region, not electricity demand from a given region. To the extent that a region
imports electricity from other dirtier or cleaner regions, the marginal damage of electricity demanded may be
higher or lower. For example, the NPCC imports electricity from the relatively dirty RFC, making marginal
damage of electricity demand in NPCC higher than the electricity produced there.

51We include a map of NERC regions in Appendix A.7.
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Figure 7: Estimated marginal damage of electricity production by region. The X-axis of each panel varies the
total excess load in each of the three interconnections, and the Y-axis gives the simulated marginal damages
per MWh of electricity produced in each region. See text for additional details.

change in excess load. In the Western and Texas interconnections, marginal damages are

relatively flat as a function of excess load while marginal damages in several regions in the

Eastern interconnection are strongly increasing in excess load. For example, in the NPCC,

the region covering the Northeast, marginal damages increase by nearly 30% between the

25th to 75th percentile of excess load, going from $33/MWh to $43/MWh.

6 Counterfactuals and Optimal Subsidies

6.1 Welfare-Maximizing Subsidies

We now use the estimated structural model to quantify the welfare-maximizing solar subsidies

characterized by equation (30).52 The results are displayed in Figure 8 and in Table A9 and

Table 2. In all tables, “Baseline” refers to simulated outcomes under the current system of

subsidies.

Figure 8a and the first panel of Table 2 show how total subsidy generosity varies across

states under the optimal system of subsidies.53 We measure subsidy generosity as the present

discounted value of subsidies an average household in each state would receive if they installed

a 15-panel system. Washington and Oregon, two states with relatively little sunlight and en-

vironmentally friendly power plants, have the lowest optimal subsidies, at under 11 thousand

dollars in present value. On the other end of the spectrum, five states in the RFC region

52We outline the algorithm we use to numerically solve for welfare-maximizing subsidies in Appendix B.4.
53In Appendix C.6, we show how the government should optimally allocate subsidies across the three

subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh) subsidies.
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(1) (2) (3) (4) (5)

State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min

I. Average Subsidy ($Thousands)

Midwest 11.3 16.7 17.1 16.7 17.0

Northeast 18.2 18.6 21.8 18.6 21.6

South 10.4 15.0 12.8 15.1 12.7

West 12.0 12.4 5.7 12.4 5.6

II. Installations per 1000HHs

Midwest 4.1 6.9 8.6 6.9 8.9

Northeast 29.8 20.2 28.5 20.2 27.9

South 6.8 11.1 9.6 11.1 9.6

West 13.2 14.0 6.7 13.9 6.6

National 11.4 12.4 11.4 12.4 11.3

III. Annual Damages Offset ($Millions)

CO2e 69.8 75.9 72.6 75.9 72.5

NOx 18.0 19.3 18.3 19.3 18.2

PM2.5 16.7 16.9 18.1 16.9 18.1

SO2 37.0 38.3 48.5 38.8 49.4

Total 141.5 150.5 157.5 150.9 158.2

Table 2: Panel I shows the average present discounted value of subsidies received for a 15-panel installation
for each census region. Panel II gives the simulated number of solar installations per 1000 households in the
model for each Census region. Panel III gives the total damages offset by rooftop solar. See text for details
on each simulation.
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(a) Optimal subsidies. (b) Baseline installations as a percent of optimal.

Figure 8: State-level optimal subsidies and misallocation for welfare-maximizing reforms. Panel (a) gives the
optimal state subsidies. Subsidies are measured as the present discounted value associated with a 15-panel
installation, averaged across all households in the state. Panel B shows state-level installations under the
current system as a percentage of installations under the optimal system. These results are shown in table
form in Appendix C.8.

have optimal subsidies valued at over 19 thousand dollars.54 In West Virginia, one of these

five states, current subsidy levels are some of the least generous in the country at under 6

thousand dollars. More generally, optimal subsidies are highest in the Mid-Atlantic and lower

Great Lakes and are lowest in the Northwest.

Figure 8b and the second panel of Table 2 quantify the misallocation caused by the cur-

rent system of subsidies on the spatial distribution of solar panel installations.55 Current

installations in the Midwest and South are roughly 40% lower than under optimal subsidies,

while installations in the Northeast are nearly 50% higher than the optimal level. Pennsylva-

nia, for example, has only 23% of the optimal number of installations, while Massachusetts,

New Jersey, and Washington have over twice as many installations as optimal. These re-

sults suggest that the current system of subsidies leads to a substantial misallocation of solar

panels across states.

Panel III of Table 2 summarizes the environmental cost of this misallocation. Switching

from the current subsidy scheme to the optimal scheme would increase annual damages offset

by rooftop solar from $141.5 million to $150.5 million, equal to over a 6% increase in the

aggregate environmental benefits of solar panels.56 A decrease in CO2 equivalent emissions

54These five states are Delaware, New Jersey, Indiana, West Virginia, and Pennsylvania.
55We find that almost all of the adjustment comes via the extensive margin, rather than the intensive

margin (number of panels per installation). In Appendix C.7, we show how the average installation size
changes across counterfactuals.

56These environmental benefits are considerably smaller than the environmental benefits of reallocating
panels found in Sexton et al. (2021). There are two main reasons for this difference. First, we consider a
government with much more limited policy instruments. Sexton et al. (2021) consider a planner who can
directly allocate panels across states subject to local capacity constraints. Here we consider a government
which can only influence installations through subsidies. Second, we utilize emissions data from 2019 rather
than data from 2007-2016. Holland et al. (2020) find that power plant emissions decreased dramatically
between 2010 and 2017. This decline was especially large in the Eastern interconnection, where emissions
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(a) Optimal subsidies (b) Baseline installations as a percent of optimal.

Figure 9: State-level optimal subsidies and misallocation for damage-minimizing reforms. Panel (a) gives the
optimal state subsidies. Subsidies are measured as the present discounted value associated with a 15-panel
installation, averaged across all households in the state. The color scale censors subsidy levels below $7K and
above $22K. Panel B shows state-level installations under the current system as a percentage of installations
under the optimal system. These results are shown in table form in Appendix C.8.

drives most of the environmental gains, with relatively minor effects on damages from other

pollutants.

6.2 Damage-Minimizing Reforms

An alternative social objective is to choose the system of subsidies that minimizes environ-

mental damages. In this section, we consider a government who chooses subsidies to minimize

the net present value of environmental damages, D (ELoad) , subject to the government bud-

get constraint. We formalize the government’s problem and present the first-order conditions

in Appendix B.5.

Figure 9 and the third columns of Tables A9 and Table 2 show the results. Like the

welfare-maximizing policies, the damage-minimizing policies are most generous in the Mid-

Atlantic, and are least generous in the Northwest. However, the variation across states in

subsidy generosity is greater than under the welfare-maximizing subsidies: optimal damage-

minimizing subsidies range from under 2 thousand dollars in Washington to over 24.5 thou-

sand dollars in Maryland and Delaware. The reallocation of solar panels induced by the

damage-minimizing subsidies would lead to approximately an 11% increase in aggregate en-

vironmental benefits.

6.3 Tract-level Subsidies

In the results above, we found that optimally set state-level subsidies lead to large envi-

ronmental benefits relative to the current system of subsidies. Could subsidies set at a

are historically higher than in the Western interconnection. This decrease in variation of damages across
locations lowered the environmental benefits of reallocating panels across space.
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more granular geographic level lead to even larger gains? To answer this, we solve for the

welfare-maximizing and damages-minimizing subsidies when subsidy levels are allowed to

vary nonparametrically across census tracts.57

Columns (4) and (5) of Table 2 display the results. In both the welfare-maximizing and

damage-minimizing cases, the average subsidies across regions and the distribution of in-

stallations with optimal tract-level subsidies are similar to those under optimal state-level

subsidies, and the damages offset with optimal tract-specific subsidies are only slightly larger

than those with optimal state-specific subsidies. We conclude that the optimal system of

state-level subsidies can capture nearly all of the gains of more geographically granular sub-

sidies.

6.4 Unconstrained Reforms

Our previous counterfactuals have focused on budget-neutral reforms. Here we analyze the

case where the government does not face an externally set budget constraint and maximizes

utility less environmental damages and government cost.58 In this case, the government’s

problem is to maximize ∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−
∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

. (14)

We present the first-order conditions of the government’s problem in Appendix C.10.

The results are summarized in Table 3. The first two columns show baseline and uncon-

strained optimal subsidies when we use a social cost of carbon of 51 dollars per ton of CO2.

Optimal subsidies are substantially lower than current subsidy levels, ranging from roughly

30% to 50% of current subsidy levels across regions. Table A14 in Appendix C.10 shows

the state-level optimal subsides. Current subsidies exceed the optimal levels in all but three

states: West Virginia, Pennsylvania, and Maryland. These less generous subsidies result in

significantly fewer installations, with Panel II showing that installations under the optimal

subsidies are roughly one-third of current levels nationally.

Panels III and IV show the annual environmental benefits of rooftop solar and the annu-

itized total fiscal cost of subsidies. Switching to unconstrained optimal subsidies decreases

57Ai is constant within census tracts in our quantitative model, and therefore solar production within
census tract is simply proportional the number of panels installed. Thus, there is no unique optimal system
of subsidies when the planner can use both panel-based and production-based subsidies. Therefore, we set
per-panel subsidies to 0 in this exercise.

58For simplicity, we assume the marginal cost of public funds is equal to 1 such that the government weights
fiscal costs and household utility equally. See Jacobs (2018) for a discussion.

34



(1) (2) (3) (4)

SCC=51 SCC=185

Unconstrained Unconstrained

Baseline Optimal Baseline Optimal

I. Average Subsidy ($Thousands)

Midwest 11.3 5.4 11.3 11.5

Northeast 18.2 6.5 18.2 13.6

South 10.4 4.5 10.4 10.9

West 12.0 3.0 12.0 8.2

II. Installations per 1000HHs

Midwest 4.1 1.8 4.1 3.7

Northeast 29.8 5.0 29.8 11.5

South 6.8 3.2 6.8 6.8

West 13.2 4.7 13.2 8.6

National 11.4 3.6 11.4 7.4

III. Annual Damages Offset ($Millions)

Total 141.7 42.3 325.1 207.3

IV. Annuitized Total Fiscal Cost ($Millions)

National 495.1 42.3 495.1 207.1

Table 3: Unconstrained Optimal Subsidies. The first panel shows the average present discounted value of
subsidies received for a 15-panel installation. for each census region. The second panel gives the simulated
number of solar installations per 1000 households. The third panel gives the annual environmental benefits
generated by residential solar panels. The final panel gives the total fiscal cost of subsidies converted into an
annuity value.

environmental benefits by nearly 100 million dollars annually. However, the accompanying

450 million dollar decrease in fiscal costs dwarfs this decrease in environmental benefits.

The optimal subsidy scheme achieves nearly 30% of the environmental benefits at less than

one-tenth the current cost

Column 4 of Table 3 recalculates the unconstrained optimal subsidies with a higher social

cost of carbon, equal to 185 dollars per ton of CO2, based on the mean estimate from Rennert

et al. (2022).59 Increasing the social cost of carbon increases the external benefit of additional

installations. Thus, optimal subsidy levels and their resulting installation rates are closer to

current levels. However, total spending on optimal subsidies is still less than half of current

spending. In this case, the optimal subsidies generate 64% of the environmental benefits of

the current subsidies at 42% of the current fiscal cost.

It is important to caveat that residential solar subsidies may be associated with addi-

tional external benefits not modeled here, such as encouraging further technological growth.

However, our results suggest that these additional benefits would have to be quite large to

justify the current spending levels on these subsidies.

59Rennert et al. (2022) report estimates in 2020 US Dollars. We convert this to 2014 dollars for consistency
with the rest of our analysis.
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Figure 10: Damages offset per additional dollar of government funds associated with marginal increases in
production-based subsidies, skWh

j , around the current system of subsidies.

6.5 Marginal Subsidy Increases

Relative to the current system of subsidies, what marginal subsidy increases are the most

cost-effective way to decrease damages? To answer this, we calculate the damages offset per

additional dollar of government cost associated with marginal subsidy increases around the

current system of subsidies. Specifically, we first simulate the model 1) under the current

system of subsidies and 2) with marginally more generous subsidies of a given type in a given

state. We calculate the damages offset per dollar of this particular subsidy as the difference in

damages between the two simulations divided by the difference in the fiscal cost. We repeat

this process for each subsidy type in each state.

Figure 10 shows the marginal damages offset per dollar for production-based subsidies.60

There are large differences in damages offset across states. For example, a small subsidy

increase in Washington only leads to roughly 8 cents less environmental damages per dollar

of government funds. On the other hand, subsidy increases in West Virginia are highly cost-

effective—for an additional dollar of government spending, environmental damages decrease

by 48 cents. Subsidy increases in Ohio, Maine, and Pennsylvania are also associated with

damages offset per dollar of over 40 cents. These results imply that small, cost-neutral shifts

in subsidies across states could lead to substantial decreases in environmental damages. For

example, a cost-neutral shift from subsidies in Washington to subsidies in West Virginia

would lead to decreases in environmental damages of roughly 48−8 = 40 cents for each dollar

reallocated. Put another way: if the goal of Washington policymakers were to reduce total

environmental damages, they would be significantly better off subsidizing solar installations

in West Virginia, rather than in Washington.

60We present the marginal damages offset for cost-based and panel-based subsidies in each state in Appendix
C.9. Within each state, there are only small differences in the damages offset per dollar across the three
subsidy types.
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7 Extensions, Robustness and Further Issues

7.1 Alternative Specifications of Household Utility

In our baseline specification, we specified γi (·), the function which dictates a household’s

nonpecuniary benefits of solar installation, as a function of the number of panels installed

and the local average education level and political leaning. In Appendix D.1, we assess the

sensitivity of our main results to this specification of the utility function by changing the

specification of γi (·). In each specification, we re-estimate the model given the alternative

specification of utility and then solve for the optimal cost-neutral policy given the new es-

timates of the household utility function. Across all specifications, we find similar optimal

subsidies, similar changes in installation rates, and similar environmental benefits.

7.2 Line Losses

Our baseline model does not account for line loss: the electricity that is lost as electricity is

transmitted over the grid from a power plant to a consumer. Rooftop solar reduces line loss

by reducing the amount of electricity that needs to be transported across the grid.

In Appendix D.2, we re-calculate our main results in a model which accounts for line

loss, where we base our model of line loss on the model and estimates from Borenstein and

Bushnell (2022). In the extension, line losses are determined endogenously as a function of

the amount of electricity in each region that must be transmitted between central generation

plants and households. Therefore, residential solar offsets damages not only by directly

producing power that would otherwise be produced by fossil-fuel plants, but also by reducing

transmission across the grid and the resulting line losses.

The takeaways are qualitatively the same as our main results. As expected, the envi-

ronmental benefits of solar panels increase. As a result, the optimal unconstrained subsidies

are slightly more generous than in the baseline case but still far less generous than current

policies. Optimal unconstrained government spending on subsidies is still less than 10%

of current spending. The welfare-maximizing and damage-minimizing cost-neutral reforms

generate increases in aggregate environmental benefits of 6.5% and 11.1%, respectively.

7.3 Improved Storage of Nondispatchable Technology

A significant issue facing the expansion of renewable electricity generation is that solar and

wind are nondispatchable. Thus, these sources can only produce electricity when environ-

mental conditions are suitable—when the sun is shining, or the wind is blowing. One of the

leading solutions to this problem is an expanded capacity of electricity storage in the form of
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batteries. In Appendix D.3, we consider a stylized way to incorporate storage technology into

our model. We allow nondispatchable electricity to be stored and used proportionately to the

total load. Effectively this means we reallocate solar and wind production from their exoge-

nous time profile of production to match the time profile of demand, which loosely matches

the optimal behavior of storage owners arbitraging electricity across time to maximize prof-

its. Adding storage technology does not qualitatively change the optimal cost-neutral or

unconstrained reforms, the distribution of installations under the optimal subsidies, nor the

environmental benefits of switching to optimal subsidies. However, the storage technology

itself generates considerable environmental benefits. See Butters, Dorsey, and Gowrisankaran

(2021) or Holland, Mansur, and Yates (2022) for a detailed treatment of storage technology.

7.4 Cleaner Electricity Production

Electricity production in the United States has become considerably cleaner over the past

few decades. Our baseline results quantify the value of optimizing solar panel subsidies given

current electricity production technology. Here, we are interested in determining what would

happen to our main results if the grid were considerably cleaner than it is presently.

Increased production of utility-scale renewables and fuel switching (from dirty to clean

coal and from coal to natural gas) are the two primary drivers of the reduction in emissions

from electricity generation. We perform four additional simulations to assess how further

clean-up of electricity production would affect our results. First, we find the optimal subsidies

under expanded production from utility-scale solar and wind based on three scenarios of

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Second,

we recalculate results considering each coal plant to have “cleaned up” production. Our

method of cleaning up coal plants is to adjust marginal damages from coal plants so that the

mean and standard deviation of marginal damages from coal plants match that of natural

gas plants.

We present the results in Appendix D.4. We find that the damages offset by solar pan-

els decrease with cleaner production. This lowers the optimal unconstrained subsidies for

residential solar, suggesting optimal unconstrained subsidies will be even lower in the future

if electricity production continues to become cleaner. We still find substantial benefits of

switching from the current subsidies to optimal cost-neutral subsidies. Across all simula-

tions, we find that switching to the optimal cost-neutral subsidies would lead to increases in

damages offset of 5.2% to 10.8%.
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7.5 Distributional Effects

The proposed switch in the system of subsidies could have distributional impacts through

two channels—directly through a change in subsidies received by households and indirectly

through the induced change in pollutant damages caused by electricity generation. House-

holds who install solar panels, and therefore receive subsidies, tend to be wealthy (Borenstein

and Davis, 2016). Our proposed optimal subsidies will likely be progressive relative to the

current subsidies since switching from current to optimal generally involves decreasing sub-

sidies in high-income states such as Massachusetts and increasing subsidies in low-income

states such as West Virginia. For this same reason, switching to optimal subsidies will likely

improve the distribution of damages caused by electricity generation. Similarly, Dauwal-

ter and Harris (2023) find that shifting solar capacity to locations where the environmental

benefits are greatest would lead to environmental benefits for disadvantaged groups.

We have refrained from accounting for distributional effects when calculating optimal

subsidies, as this paper is primarily concerned with the spatial misallocation of solar due

to differences in the generosity of solar subsidies across states. Seriously tackling the dis-

tributional effects of solar subsidies requires a different set of policy instruments than those

analyzed here, such as means-tested subsidies for solar installations.

8 Conclusion

We have used a structural model of solar panel demand and electricity production to calculate

the optimal system of subsidies for residential solar panels and to quantify the benefits of

switching to such a system. Our main conclusions are that the current system of subsidies

leads to a spatial misallocation of panels, and subsidy levels are far too generous in general.

However, our results do not necessarily imply that the US should lower funding for renewable

energy programs in general, rather that government funds spent on subsidies for residential

solar subsidies would be better spent on other programs. These alternative programs could

include other investments in renewable energy, such as subsidies for utility-scale solar or wind

power, both which provide energy at lower cost than residential solar (Lazard, 2023).

Future work can extend our model to incorporate endogenous entry and exit of electricity

generators, as in Holland, Mansur, and Yates (2022). In that case, residential solar subsidies

could disincentivize entry of new generators, which could be costly from an environmental

perspective if the new generators employ cleaner technology than incumbents. It would also

be interesting to utilize similar frameworks to analyze other consumer subsidies for energy-

related products, such as subsidies for home insulation, small wind systems, and geothermal

heat pumps. We leave these questions for future work.
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Figure A1: Daily solar radiation
(
kWh/m2/day

)
by census tract from Deepsolar.

A Data Appendix: For Online Publication

A.1 Deep Solar

We obtain data on solar panel installation from the Deepsolar database, which is created by

applying a novel semi-supervised deep-learning framework to satellite imagery from Google

Static Maps from the year 2016 (Yu et al., 2018). The Deepsolar model predicts the number

and size of solar panel installations across the contiguous United States. We use these tract-

level data on the number and size of residential solar systems to give us our empirical analogs

of BIt and installation size Ni.

Deepsolar also estimates the daily solar radiation in each census tract, measured in kWh

per square meter per day, which we show in Figure A1. For any missing tracts in the

Deepsolar data, we impute daily solar radiation by taking the simple mean of any bordering

tract with non-missing values.
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A.2 Google Project Sunroof

For data on solar irradiance, Ai, and number of available spaces for panels N̄i, we utilize

tract-level data from Google Project Sunroof (GPS). GPS begins with satellite imagery from

Google Maps. It then applies a deep-learning algorithm to create 3D models of rooftops.

These 3D models allow GPS to estimate the amount of sunlight a given rooftop receives over

the course of the year, taking into account changes in the position of the sun over the course

of the day and year. These 3D models are used to calculate the amount of available space

for solar panels.

We assume that all households within a given tract have access to the same solar irra-

diance, which we measure as total solar energy generation potential for the average panel

in a given tract. For number of potential panels N̄i, the GPS data provide then number of

buildings in each tract with differing amounts of space available for solar panel installations.

This effectively gives us the full distribution of N̄i for households within a given tract.

One potential issue with the GPS data is that it might also capture potential space for

solar panels that is not suitable for residential solar (for example not being part of someone’s

house). To deal with this, we limit potential solar sites in Google Project Sunroof to those

with space available to 42 MW of solar panels, corresponding to the 99.9th percentile of the

largest solar panel in the Tracking the Sun data described in Appendix A.3. The results are

not sensitive to this censoring.

A.3 Tracking the Sun

Tracking the Sun is an aggregation of solar system installation data created by the Lawrence

Berkeley National Lab. The Lawrence Berkeley National Lab collects these data from existing

public databases and directly from state agencies, utilities, and other organizations. The

result is 2.5 million solar installations from the last two decades, with installation price,

system size, and subsidies geographically identified at the zip code level, along with other

information about the installed solar system. The installations cover nearly 80 percent of all

installed solar systems in the U.S. but include only 25 states. Some of these states do not

include price data for any installations. Across all states, about a quarter of observations for

residential solar system installations are missing price data.

We use the Tracking the Sun data to estimate prices for solar systems, using total cost

and number of panels installed to estimate a fixed cost of installation and variable, per-panel

cost. Since many states have no data, we assume pricing functions are common within each

census region. We filter the Tracking the Sun data to include residential installations between

2000 and 2020 that are not missing price or the total number of panels, which leaves us with
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nearly 1.3 million observations. Additionally, we censor installation costs at the 0.5th and

99.5th percentiles and convert them into 2019 dollars.

A.4 System Advisor Model

While we obtain annual electricity generation for solar panels from Google Project Sunroof,

those data do not include any information on how that production varies by hour within a

year. Thus, we use the System Advisor Model (SAM) from the National Renewable Energy

Laboratory to estimate hourly electricity profiles for each state (Blair, Dobos, and Gilman,

2013). SAM is an open-source program that estimates the performance of solar systems

and other renewable power systems. We follow the methodology in (Sexton et al., 2021),

calculating electricity generation for a system with typical parameters where tilt matches

latitude and panels point south. The only difference is that we estimate generation for

systems at the centroid of each state. We use weather data from Sengupta et al. (2018) for

a state’s typical meteorological year.

The model’s output is the hourly production of a solar system over the course of a year in

each state. We create hourly profiles by dividing the hourly generation by each state’s total

annual generation. Figure A2 for hourly production for examples of the results for six states.

A.5 State Electricity Prices

Figure A3 presents the state-level electricity prices we use in our empirical analysis. California

and states in the Northeast have the highest electricity prices at over 15 cents per kWh. Most

of the country has prices between 8 and 10 cents per kWh.

A.6 Subsidies

We calculate skWh
j as the sum of per-kWh rebates and the average price of Solar Renewable

Energy Certificates. In some states (e.g. Massachusetts and New Jersey), households can

only sell Solar Renewable Energy Certificates for a certain number of years after installation.

For these states, we only calculate the value of Solar Renewable Energy Certificates for years

in which households are permitted to sell the credits. We calculate sCost
j as the sum of

federal investment tax credits, state investment tax credits, sales tax exemptions, and the

net present value of property tax exemptions. We translate per-KW rebates to sPanelj by

assuming a constant 0.25 KW per panel. Maryland has a fixed rebate of $1000 per system.

We translate this into a per-panel subsidy by dividing this amount by the average number

of panels in an installation (15). Many states place a cap on the maximum amount of a
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Figure A2: Hourly electricity generation for a standard solar panel for six example states.
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Figure A3: State electricity prices ($/kWh)

type of subsidy a household can receive. We enforce these state-level maxima in estimation.

Figure A4 shows the state level expected subsidies for a 15-panel system for each type of

subsidy: per-panel, cost, and kWh. Most of the current subsidies take the form of cost-based

subsidies, while few states offer kWh and panel-based subsides.

A.7 Power Plants

The following describes how we use the Open Grid Emissions (OGE) data. These data have

several advantages over the commonly used raw electricity data from the EIA and EPA,

which we describe below.

Plant level The hourly, plant-level data from OGE give net electricity generation and

emissions of SO2, NOx, CO2, and CO2 equivalent. OGE derives these data primarily from

the EPA CAMD, which reports hourly gross electricity generation and emissions at the unit

level, where units typically correspond to generators connected to a single emissions stack.

OGE adjusts gross generation to account for electricity losses before entering the grid and

aggregates these units to the facility level, which we refer to as power plants. Additionally,

OGE removes the portion of emissions from fuel burned for heat for combined heat and
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(a) Panel-based subsidies

(b) Cost-based subsidies

(c) kWh-based subsidies

Figure A4: Expected subsidy for a 15-panel system by subsidy type
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power plants. OGE’s static plant attributes table has a latitude and longitude for each

plant, allowing us to match each power plant to a county.

We also collect each plant’s nameplate capacity and stack height. Nameplate capacities

are from EIA Form 860 and represent the maximum amount of electricity that a generating

unit is rated to produce. We sum the nameplate capacities of generators in a plant to

calculate plant-level nameplate capacities. Thirty-seven plants are missing from the EIA

860 data, for which we use nameplate capacities from the EPA’s eGRID files from 2019 and

2020. We obtain stack heights from the EPA CAMD and set a plant’s stack height as the

median stack height of units the within that plant. Thirty plants are missing from these

data, for which we set the stack height equal to the median stack height of all plants of the

same primary fuel category. We use a power plant’s stack height and location to assign the

marginal damage coefficient in the AP3 model. We opt for CO2e over CO2 when calculating

damages as it includes emissions of the more potent greenhouse gasses methane and nitrous

oxide in addition to CO2.61

The EPA CAMD hourly unit-level data only include fossil-fuel plants with greater than

25 MW of generating capacity, leaving a non-negligible portion of generation and emissions

unreported. One of the main goals of OGE is to ensure complete coverage of the electricity

generation sector. In essence, they combine the reported hourly plant-level data from the EPA

CAMD with hourly balancing authority-fuel category level data from the EIA to calculate a

‘residual’ profile, the unreported production from small or non-fossil-fuel power plants.

There are 9,514 plants with hourly production and emissions in the OGE data. About a

third of the plants do not have observations for every hour in 2019. We fill in any generation

and emissions values between the first and the last hour a plant appears in the data with

zeros. After removing 4,388 non-dispatchable plants (wind and solar), 471 plants with zero or

negative reported net electricity generation, and 30 plants with no variation in net electricity

generation, we have 4,625 power plants—giving us 40.1 million plant-hour observations.

Emissions rates OGE’s hourly data does not include PM2.5 emissions, as the EPA CAMD

and the EIA do not report PM2.5 emissions from power plants. As a part of the eGRID

project, the EPA has collected annual PM2.5 emissions from the National Emissions In-

ventory (NEI) and matched those emissions to electricity-generating units to calculate an

average PM2.5 emissions rate. We match these estimated annual rates to our power plants,

taking the production-weighted average over units within a power plant. We use the fuel

category median value for the power plants missing PM2.5 emissions rates. This imputation

61As detailed in the OGE documentation, they calculate CO2e using the global warming potential of each
GHG according to the IPCC’s 5th Assessment Report. They calculate methane and nitrous oxide emissions
using a constant, fuel-specific emissions factor.
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Table A1: Summary statistics on dispatchable power plants by region

Net Generation Emissions (lb/MWh)

Region Number of plants Total (TWH) % Fossil Fuel NOx SO2 CO2e

CAL 639 1,611 58.8 0.67 0.07 670

MRO 1,182 8,006 79.6 0.99 1.10 1,356

NPCC 723 2,250 45.8 0.42 0.06 550

RFC 657 7,714 61.5 0.57 0.68 900

SERC 582 9,167 67.0 0.51 0.36 893

TRE 179 3,273 87.0 0.66 0.71 1,095

WECC 663 4,639 60.7 0.79 0.44 1,056

Total 4,625 36,660 67.9 0.68 0.60 1,003

only applies to 10% of total electricity production. Additionally, we censor PM 2.5 emissions

rates at the 95th percentile for each fuel category.

Regions We follow Holland et al. (2016) in our definitions of regions for the electricity

generation model. OGE assigns plants to the balancing authority in charge of dispatching

the plant. We then assign balancing authorities to regions. There are six NERC regions

in the contiguous US. Four of these (MRO, RFC, NPCC, and SERC) fall within the East-

ern Interconnection, while the other two (WECC and TRE) are in the Western and Texas

Interconnections, respectively.

Most BAs fall entirely within one NERC region, but some BAs have generating units in

multiple NERC regions. For all BAs except MISO and PJM, we assign the BA to the NERC

region with the most overlapping generating units between the BA and NERC region using

the static plant attributes data from OGE. We assign the MISO BA to the MRO NERC

region and the PJM BA to the RFC NERC region. Finally, we give California its own NERC

region, consisting of five BAs: BANC, CISO, IID, LDWP, and TIDC. Figure A5 shows a

map of these regions. We used the eGRID power profiler to assign approximate service areas

for each region.

Table A1 shows summary statistics describing generation and average emissions in each

region, highlighting the heterogeneity in average emissions between regions. This is largely

driven by differences in the fuel mix between regions. Table A2 shows a summary of genera-

tion and emissions by fuel category.

Excess Load We calculate the excess load (total demand minus production from nondis-

patchable generating units) within each region using OGE’s power sector-level data. These

data give hourly net generation by fuel category for each balancing authority. We perform
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Figure A5: Map of region service areas

Table A2: Summary statistics on dispatchable power plants by fuel category

Emissions (lb/MWh)

Fuel Number of plants Net generation (TWH) NOx SO2 CO2e

Biomass 583 547 5.51 1.12 1,608

Coal 262 8,973 1.53 2.14 2,216

Natural Gas 1,696 15,905 0.44 0.06 934

Nuclear 60 8,074 0.00 0.00 5

Petroleum 535 26 19.04 40.59 22,506

Geothermal 60 155 0.00 0.34 136

Hydro 1,325 2,802 0.00 0.00 0

Other 38 45 0.04 0.00 98

Waste 66 133 5.89 1.34 3,747

Total 4,625 36,660 0.68 0.60 1,003

52



Figure A6: Histogram of total excess load within each interconnection. Observations are hours.

minor data cleaning to ensure that misreporting in the underlying data does not impact our

estimates. We consider values above 1.5 times the 99th percentile for that balancing author-

ity and fuel category to be outliers. We replace outliers with the value from the previous hour

as long as the previous hour’s value is not also an outlier. If the previous hour is an outlier,

then we use the value from the same hour in the previous day as long as that is not an outlier.

If the previous hour and the previous day are outlier values, we censor to 1.5 times the 99th

percentile.62 We then calculate the total load within a region as the sum of net generation

across all balancing authorities and fuel categories within a region. Excess load is the total

load in a region minus net generation from solar and wind, the two nondispatchable energy

sources. Figure A6 shows the distribution of total excess load within each interconnection.

B Theory and Quantitative Appendix: For Online Pub-

lication

B.1 States Without Net Metering

In the general model above, we assumed that households could sell back electricity produced

by their solar panels at price pj. This is the case if the state offers net-metering, which is

offered in all but 9 in our sample.63 In the states were net metering is not offered, states can

62This process mimics that used by the EIA when aggregating net generation by balancing authority to
the region level, see the “Net Generation” section on this page.

63Idaho, Tennessee, Texas and Alabama do not have statewide mandatory net-metering policies. Idaho does
not have state net-metering policy but each of the state’s three investor-owned utilities have a net-metering
policy. Five other states in our sample have distributed generation rules other than net-metering.
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sell back electricity to the grid at price psalej ≤ pj. Let Ahome
i

(
Ni, {eit}Tt=0 , {Ait}Tt=0

)
give

the discounted sum of energy that is used at home, written as a function of panels installed,

electricity consumption, and the stream of solar irradiance. Let Agrid
i

(
Ni, {eit}Tt=0 , {Ait}Tt=0

)
be the discounted sum of energy that is sold back to grid, such that Ahome

i (·)+Agrid
i (·) = Ai.

We can write the budget constraint for households in states without net metering as

c+ pj
(
e−miNiA

home
i (·)

)︸ ︷︷ ︸
Cost of electricity

+mi

[(
1− sCost

j

)
pInsj (Ni)

]︸ ︷︷ ︸
Net cost of installation

=

yi +mi

NiAis
kWh
j︸ ︷︷ ︸

kWh Subsidy

+ Nis
Panel
j︸ ︷︷ ︸

Per-Panel Subsidy

+ psalej NiA
grid
i (·)︸ ︷︷ ︸

Electricity sold to grid

 . (15)

In estimating and simulating the model, we assume that the household’s optimal elec-

tricity consumption, {e⋆it}
T
t=0, is independent of the household’s installation decision. Again

letting N⋆
i represent the optimal choice of panels, we can then summarize the decision for

households in states without met metering as

Vi = max
Ni,mi∈{0,1}

+mi [µ̂ij (Ni) + γi (N
⋆
i )] ,

where

µ̂ij (Ni) = NiAi

(
p̂j + skWh

j

)
−
(
1− sCost

j

)
pInsj (Ni) +Nis

Panel
j

and where p̂j = psalej

Agrid
i

(
Ni,{e⋆it}T

t=0
,{Ait}Tt=0

)
Ai

+ pj
Ahome

i

(
Ni,{e⋆it}T

t=0
,{Ait}Tt=0

)
Ai

is the average of the

purchasing and sales price of electricity, weighted by the fractions of electricity the household

uses at home and sells back to the grid at the optimum.

For data on psalej , we use the marginal cost of electricity as measured by Borenstein and

Bushnell (2022). One challenge empirically is that we do not have dissagregated data on

Agrid
i (·) or Ahome

i (·). Therefore, we assume that the amount of electricity that is sold back to

the grid is given by the reduced-form expression Agrid
i =

(
Ni, {e⋆it}

T
t=0 , {Ait}Tt=0

)
= AiCNi,

where C is a constant.

The households optimal number of panels is then given by

N⋆
i = min

[
N̄i,−

(
∂µij

∂Ni
+ γ1N

2
(
γ2N − CAi

(
pj − psalej

)))] .
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where, as before,

µij (Ni) = NiAi

(
pj + skWh

j

)
−
(
1− sCost

j

)
pInsj (Ni) +Nis

Panel
j .

We calibrate C such that a household with the average number of panels sells 30% of their

electricity back to the grid.64

B.2 Maximum Likelihood Estimation of Power Plant Policy Func-

tions

Let yokt denote observed production from power plant k in time t, and let f̂k (ELoadt|ψk) =

fk (ELoadt, εkt)−εkt denote the deterministic portion of the latent variable for power plant k

in time t, written as a function the ψ0
k, ψ

1
Rk and ψ2

Rk parameters, which we collective denote

by ψk. The log-likelihood contribution of a given hour of power plant k’s production is

logLkt

(
ELoadt|ψk, σ

2
k

)
=1 (yokt = 0)× log

(
Φ

(
f̂k (ELoadt|ψk)

σk

))
+

1 (yokt ∈ (0, ȳk))× log

(
1

σk
ϕ

(
yokt − f̂k (ELoadt|ψk)

σk

))
+

1 (yokt ≥ ȳk)× log

(
1− Φ

(
ȳk − f̂k (ELoadt|ψk)

σk

))
,

(16)

where 1 (·) represents an indicator functions which turns on if yokt is equal to a given value

or falls within a certain range, Φ is the standard normal CDF, and ϕ is the standard normal

PDF. We choose the structural parameters for each power plant k by maximizing the sum

of log likelihood contributions over all hours for that power plant. We restrict the parameter

estimates such that output is weakly increasing in excess load for each region over the range

of excess load observed in the data.

B.3 Details: Cost-Neutral Reforms

We can express the government’s constrained maximization problem as the Lagrangian

W =

∫
i

Vidi−D (ELoad)− λ

(∑
j

∫
i∈Ij

sijm
⋆
i di−G

)
, (17)

64https://www.seia.org/initiatives/net-metering
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where D (ELoad) is total environmental damages, sij = sPanelj N⋆
i + s

kWh
j AiN

⋆
i + s

Cost
j pInsj (N⋆

i )

is the total subsidy paid to household i conditional on installation, and G is the maximum

amount the government can spend on subsidies.

The optimal set of subsidies must satisfy the first-order conditions of the government’s

problem. Taking the derivative ofW with respect to a given subsidy type θ ∈ {kWh,Panel,Cost}
in state j yields

∂W

∂sθj
=

∫
i

∂Vi
∂sθj

di+

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadSB

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di−
∫
i

m⋆
i

∂sij
∂sθj

di

)
, (18)

where ELoadSB
t denotes the excess load in time t evaluated at the optimal (welfare-maximizing)

system of subsidies.

By the envelope theorem we have ∂Vi

∂sθj
= m⋆

i
∂sij
∂sθj

, which tells us that the utility gain for

households is simply equal to the value of the increase in subsidy for inframarginal households,

holding the number and size of installations constant.

Plugging this into (18) and setting the derivative equal to 0 yields

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadSB

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di

)
− (λ− 1)

∫
i

m⋆
i

∂sij
∂sθj

di = 0, (19)

This can be rewritten as

∫
i

−→mi
θdi×


∫
i
−→mi

θ
∑T

t=0
Ait

(1+r)t

∣∣∣∣∂Dt(ELoadSB
t )

∂ESolar
Rt

∣∣∣∣N⋆
i∫

i
−→mi

θdi
− λ

∫
i
−→mi

θsijdi∫
i
−→mi

θdi

+

∫
i

∂Ni

∂sθj
×


∫
i
m⋆

i
∂Ni

∂sθj

∑T
t=0

Ait

(1+r)t

∣∣∣∣∂Dt(ELoadSB
t )

∂ESolar
Rt

∣∣∣∣∫
i
∂Ni

∂sθj

− λ

∫
i
∂Ni

∂sθj

∂sij
∂Ni∫

i
∂Ni

∂sθj

+

(1− λ)Mj

∫
i
m⋆

i
∂sij
∂sθj

di∫
i
m⋆

i di
. (20)

56



Finally, plugging in the definitions of
∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

,
−−→
∆Dθ,int

j ,
−→
∂s
∂N

θ,int
j , and

∂sij
∂sθj

yields (30).

B.4 Numerical Algorithm for Calculating Optimal Subsidies

In this appendix, we outline the numerical algorithm we use to solve for the welfare-maximizing

subsidies.

1. Make a guess of the marginal cost of public funds, λ. Call this guess λ̂.

2. Make a guess of the set of subsidies. Let this matrix of all types of subsidies in all

states be denoted by ŝ.

3. Given the current guess of subsidies, ŝ, and the guess of the marginal cost of public

funds, λ̂, calculate the first-order conditions of the government’s problem for each

subsidy type and each state given by (30). We use analytical derivatives to evaluate

∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

−−→
∆Dθ,int

j , and
−→
∂s
∂N

θ,int
j .

4. If all of the first-order conditions are sufficiently close to 0, move on to the next step.

If not, update the guess of the subsidies are return to Step 3.

5. Given the current guess of subsidies, calculate the total government cost.

6. If the government cost is sufficiently close to G, then the current guesses, λ̂ and ŝ, solve

the constrained maximization problem. If not, take a new guess for λ̂ and return to

Step 2.

B.5 Details: Damage-Minimizing Subsidies

The government’s problem is to choose subsidies to minimize national damages, D (ELoad),

subject to the budget constraint that the total spending on subsidies cannot exceed some

value G: ∑
j

∫
i∈Ij

sijm
⋆
i di ≤ G,

where sij = sPanelj N⋆
i + skWh

j AiN
⋆
i + sCost

j pInsj (N⋆
i ) is the total subsidy paid to household i

conditional on installation, and G is the maximum amount the government can spend on

subsidies.
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We can express this constrained optimization problem as the Lagrangian

W = −D (ELoad)− λ

(∑
j

∫
i∈Ij

sijm
⋆
i di−G

)
. (21)

Taking the derivative of W with respect to sθj yields

∂W

∂sθj
=

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadMD

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di−
∫
i

m⋆
i

∂sij
∂sθj

di

)
, (22)

where ELoadMD
t denotes the excess load in time t evaluated at the optimal (damage-minimizing)

system of subsidies.

As in Appendix B.3, we can again use ∂Vi

∂sθj
= m⋆

i
∂sij
∂sθj

by the envelope theorem. Plugging

this in and rearranging, we can write the first-order condition as

∫
i

−→mi
θdi×


∫
i
−→mi

θ
∑T

t=0
Ait

(1+r)t

∣∣∣∣∂Dt(ELoadMD
t )

∂ESolar
Rt

∣∣∣∣N⋆
i∫

i
−→mi

θdi
− λ

∫
i
−→mi

θsijdi∫
i
−→mi

θdi

+

∫
i

∂Ni

∂sθj
×


∫
i
m⋆

i
∂Ni

∂sθj

∑T
t=0

Ait

(1+r)t

∣∣∣∣∂Dt(ELoadMD
t )

∂ESolar
Rt

∣∣∣∣∫
i
∂Ni

∂sθj

− λ

∫
i
∂Ni

∂sθj

∂sij
∂Ni∫

i
∂Ni

∂sθj

+

− λMj

∫
i
m⋆

i
∂sij
∂sθj

di∫
i
m⋆

i di
. (23)

Finally, plugging in the definitions of
∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

−−→
∆Dθ,int

j ,
−→
∂s
∂N

θ,int
j , and

∂sij
∂sθj

yields (24), which gives the first-order condition for each subsidy type in each state j:

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j − λ−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j − λ

−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

− λMj
∂sij
∂sθj︸ ︷︷ ︸

Mechanical Effect

= 0. (24)

These optimality conditions for a damage-minimizing planner share a similar structure to

those of the welfare-maximizing planner given by (30). The exception is how the two planners
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value increases in subsidies given to inframarginal households, which are represented the third

term in each of the first-order conditions (“Mechanical Effect”). For the damage-minimizing

planner, increases subsidies for these inframarginal households entail a fiscal cost with no

additional decrease in damages. Therefore, the number of inframarginal households (Mj)

enters negatively into the first order condition. The welfare-maximizing planner, on the other

hand, values the increase in utility associated with increases in subsidies for inframarginal

households. Therefore, each additional dollar of subsidies for an inframarginal household is

valued at (1− λ), reflecting both this increase in utility and the fiscal cost.

B.6 Details: Net-Cost Neutral Reforms

In this section we consider a planner who maximizes the sum of utility subject to a net-cost

budget constraint, where environmental damages are counted as a fiscal cost. Specifically,

the government maximizes
∫
i
Vidi subject to the constraint

D (ELoad) +
∑
j

∫
i∈Ij

sijm
⋆
i di ≤ G̃, (25)

where G̃ is the maximum net-cost the government can take on.

We can again express the government’s problem as a Lagrangian

W =

∫
i

Vidi− λ

(
D (ELoad) +

∑
j

∫
i∈Ij

sijm
⋆
i di− G̃

)
, (26)

whereD (ELoad) is total environmental damages, and sij = sPanelj N⋆
i +s

kWh
j AiN

⋆
i +s

Cost
j pInsj (N⋆

i )

is the total subsidy paid to household i conditional on installation.

Taking the derivative of W with respect to a given subsidy type θ ∈ {kWh,Panel,Cost}
in state j yields and following the logic from Appendix B.3, we arrive at the first-order

conditions which characterize the optimal set of subsidies:

∂Mj

∂sθj
×
(
λ
−−→
∆Dθ,ext

j − λ−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
λ
−−→
∆Dθ,int

j − λ

−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

− (1− λ)Mj
∂sij
∂sθj︸ ︷︷ ︸

Mechanical Effect

= 0.

(27)

Results The results are summarized in Table A3. The results are fairly similar to the

welfare-maximizing reforms that we present as our main results; we find that switching to
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(1) (2)

Baseline Net Cost Neutral

I. Average Subsidy ($Thousands)

Midwest 11.3 16.2

Northeast 18.2 17.4

South 10.4 15.3

West 12.0 13.9

II. Installations per 1000HHs

Midwest 4.1 6.3

Northeast 29.8 17.5

South 6.8 11.2

West 13.2 16.4

National 11.4 12.6

III. Annual Damages Offset ($Millions)

CO2e 69.8 76.2

NOx 18.0 19.5

PM2.5 16.7 16.3

SO2 37.0 35.1

Total 141.5 147.1

Table A3: Net-cost neutral reforms. The first panel shows the average present discounted value of subsidies
received for a 15-panel installation for each census region. The second panel gives the simulated number of
solar installations per 1000 households in the model for each Census region. The final panel gives the total
damages offset by rooftop solar.

the optimal net-cost neutral reform leads to over a 7% increase in aggregate environmental

benefits of solar panels.

C Results Appendix: For Online Publication

C.1 Installation Prices

Table A4 shows the results for estimating solar system installation prices using the Tracking

the Sun data using the following regression,

pInsR(j) (Ni) = p0,InsR(j) + p1,InsR(j)Ni + εij, (28)

where p0,InsR(j) is a fixed cost and p1,InsR(j) is a per-panel cost, and R(j) is the Census Region

containing state j. The table shows results for the full sample and each region, where the

intercept gives the fixed installation cost, and the coefficient on the number of panels is the
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per-panel cost. The linear model is a good fit for the data, as seen in Figure A7, which shows

our fitted line against a flexible smoothing function for each region.

Dep. Var.: Total Cost

Census Region Full sample Midwest Northeast South West

Model: (1) (2) (3) (4) (5)

Variables

(Intercept) 5,960.9∗∗∗ 10,129.9∗∗∗ 3,558.1∗∗∗ 7,772.5∗∗∗ 6,295.5∗∗∗

(28.8) (610.0) (57.0) (283.1) (33.9)

Num. Panels 1,078.7∗∗∗ 1,051.7∗∗∗ 1,156.7∗∗∗ 823.6∗∗∗ 1,071.5∗∗∗

(1.4) (27.7) (2.4) (11.9) (1.8)

Fit statistics

Observations 1,273,431 1,097 254,336 22,245 995,753

R2 0.55 0.53 0.67 0.54 0.51

Adjusted R2 0.55 0.53 0.67 0.54 0.51

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A4: Solar system installation prices.

C.2 Relationship Between Installations and Monetary Incentives

Figure A8 plots the average monetary benefit associated with installing a 15-panel system in

each state against the log installations per capita in each state.

Table A5 regresses tract-level log installations on the monetary benefits of installation,

where again we calculate the monetary benefits of installation as µij (N
⋆
i ) evaluated at

N⋆
i = 15, the average number of panels in a solar system in the data. Specifications with

“Demographic Controls” include controls for tract-level college completion percentage and

percent democrat. Columns (3) and (4) add Census region fixed effects while columns (5)

and (6) include Census division fixed effects. Across all specifications, we find that a $1000

increase in monetary benefits for a 15-panel installation is associated with a 7.9% to 10.5%

increase in installations.

C.3 Additional Regressions

Table A6 regresses tract-level data on average number of panels per installation on monetary

benefits of installation, where again we calculate the monetary benefits of installation as

µij (N
⋆
i ) evaluated at N⋆

i = 15, the average number of panels in a solar system in the data.
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Figure A7: Estimation results for solar system price regression, where the dashed black line is our estimated
model and the solid blue line shows the fit of a generalized additive model.

(1) (2) (3) (4) (5) (6)

Monetary Benefits 0.105*** 0.104*** 0.0793*** 0.0820*** 0.0865*** 0.0892***

(0.0332) (0.0330) (0.0158) (0.0186) (0.0157) (0.0176)

Observations 41,776 41,776 41,776 41,776 41,776 41,776

R-squared 0.187 0.201 0.388 0.411 0.421 0.445

Demographic Controls NO YES NO YES NO YES

Region FE NO NO YES YES NO NO

Division FE NO NO NO NO YES YES

*** p<0.01, ** p<0.05, * p<0.1

Table A5: Regression of log installations on the net present value of total monetary benefits associated with
solar panel installations. Monetary benefits measured in thousands of dollars. Standard errors clustered by
state.
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Figure A8: Monetary benefits and log installations per capita by state. The Y-axis plots plots the average
monetary benefit associated with installing a 15-panel system in each state. The X-axis gives log installations
per capita in each state.
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(1) (2) (3) (4) (5) (6)

Monetary Benefits 0.0812*** 0.0920*** 0.0770*** 0.0855*** 0.108*** 0.111***

(0.0226) (0.0215) (0.0224) (0.0220) (0.0308) (0.0313)

Observations 41,776 41,776 41,776 41,776 41,776 41,776

R-squared 0.013 0.018 0.027 0.030 0.042 0.043

Demographic Controls NO YES NO YES NO YES

Region FE NO NO YES YES NO NO

Division FE NO NO NO NO YES YES

*** p<0.01, ** p<0.05, * p<0.1

Table A6: Regression of average panel size on the net present value of total financial benefits associated with
solar panel installations. Financial benefits measured in thousands of dollars. Standard errors clustered by
state.

Across all specifications, we find that a $1000 increase in monetary benefits is associated with

a 0.08 to 0.11 increase in average panels per installation.

C.4 Decomposition of Differences in Installation Rates

Solar panel installation rates may differ across states for five main reasons: 1) subsidies,

2) electricity prices, 3) installation prices, 4) sunlight, and 5) household demographics. We

sequentially equalize each of these five factors across states and re-simulate the model.

First, we examine the role of subsidies by harmonizing subsidies across states. Specifically,

we set all subsidies equal to the population-weighted average across states. We then multiply

these subsidies by a constant such that the total number of installations nationally in this

counterfactual environment equals those in the baseline simulation. Table A7 shows the

standard deviation in installation rates across states relative to the standard deviation in the

baseline. Equalizing subsidies across states leads to a 52% drop in the standard deviation of

installation rates, suggesting that variation in state solar subsidies explains a large proportion

of the variation in installation rate across states.65

The following rows sequentially equalize electricity prices, installation prices, solar irra-

diance, and demographics. In each counterfactual, we set the object in question at a level

such that the total national installations equal the baseline value. The results show that

electricity prices and solar irradiance play the most important roles in explaining the remain-

ing variation in installation rates, with installation prices only playing a minor role.66 Taken

together, these results suggest that differences in subsidies and electricity prices across states

65In a second decomposition below, we simulate first equalizing energy prices before harmonizing subsidies.
We again find that energy subsidies and electricity prices are the two most important factors explaining
differences in installation rates across states.

66The remaining variation is due to differences in the distribution of building size (N̄i) across states.
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SD

Installs

Baseline 1

Harmonize Subsidies 0.48

Harmonize Electricity Prices 0.25

Harmonize Installation Prices 0.23

Equalize Sunlight 0.09

Harmonize Demographics 0.08

Table A7: Each row shows the standard deviation in installation rates across states relative to the baseline
level. Each row equalizes a given object across tracts and recalculates the standard deviation across states.
In each simulation, we set the object in question at a level such that the total national installations remains
at the baseline value.

SD

Installs

Baseline 1

Harmonize Electricity Prices 0.79

Harmonize Subsidies 0.25

Table A8: Alternative decomposition. Each row shows the standard deviation in installation rates across
states relative to the baseline level. Each row equalizes a given object across states and recalculates the
standard deviation across states. In each simulation, we set the object in question at a level such that the
total national installations remains at the baseline value.

are the most important drivers of differences in installation rates.

Table A8 repeats the analysis from above but equalizes electricity prices before equalizing

subsidy levels across states. Again, we can see that electricity prices and subsidies explain

the majority of the deviation in installation rates across states.

C.5 Power Plant Model

Here we present additional information about the power plant model estimation results.

Figures A9 and A10 show the model fit graphs for the main paper, broken out into regions.

These show that model performance is consistent within each interconnection. A11 shows

how fuel mix varies for each region.

Additionally, the model does a good job predicting total production from power plants.

Figure A12 shows the average hourly production for each fossil-fuel plant by month, compar-

ing the actual data to our estimated data. The predicted values are very close to the actual

values throughout the range of actual power plant production, indicating that the model can

predict individual plants’ production very well on average.

Figure A13 shows a histogram of estimated marginal damages for one kWh of production.

These are broken up by stack height and whether the plant’s production is above or below
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Figure A9: Model fit at the region level, excluding Texas as there is only one region in the Texas intercon-
nection. Dots represent an hour of production for each region, smoothed lines show the fit of a generalized
additive model.

66



Figure A10: Model fit at the region level by hour and season.
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Figure A11: Fuel mix of production by region. The X-axis gives excess load at the interconnection level and
the Y-axis gives the percent of electricity production that is produced by each of the fuel types. The dashed
lines show the fuel mix in the data while the solid lines show the simulated fuel mix.
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Figure A12: Model fit of average monthly production for each power plant. Each point represents one month
of the 4,625 dispatchable power plants that we estimate parameters for in the model.
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Figure A13: Marginal damages by power plant.

its median value.

C.6 Type of Subsidy in Optimal System

We now analyze how the government should optimally allocate subsidies across the three

subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh)

subsidies. To facilitate comparison, we calculate the present discounted value an “average

installation” would receive. Specifically, we calculate the subsidy value every household in

the model would receive if they purchased a 15-panel installation.67 We then average this

hypothetical subsidy value over all households. Table A9 shows the percent of the total

subsidy value coming from each subsidy type in each simulation. Under the current system,

over 80% of the value of subsidies comes from cost-based subsidies, which include the federal

67We define households as rooftops suitable for solar panel installations as defined by GPS data.
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(1) (2) (3)

State-Specific Subsidies

Baseline Welfare Max Damage Min

Unit Subsidies 6.8 0.3 0.4

Cost Subsidies 81.6 0.9 0.9

kWh Subsidies 8.1 98.8 98.7

Total 100.0 100.0 100.0

Table A9: Percent of total subsidy value from each type of subsidy for a 15-panel installation averaged across
all households in the model. Each column shows the subsidy values for a different simulation.

(1) (2) (3) (4) (5)

State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min

I. Average Number of Panels per installation

Midwest 14.82 14.87 14.88 14.87 14.89

Northeast 14.89 14.89 14.90 14.89 14.90

South 14.82 14.88 14.88 14.88 14.88

West 14.85 14.88 14.84 14.88 14.84

Table A10: Each entry gives the average number of solar panels in a solar installation across Census regions
in each model simulation.

investment tax credit, state investment tax credits, sales tax exemptions, and property tax

exemptions. On the other hand, the welfare-maximizing subsidies almost exclusively consist

of production-based subsidies, with 98.8% of the value of subsidies coming from this type of

subsidy. Intuitively, production-based subsidies incentivize installations for households where

sunlight, and therefore environmental benefits, are high.68 However, as we show in Section

6.5, the gains to reallocating across subsidy types within states are small relative to the gains

from reallocating subsidies across states.

C.7 Average Panel Size Across Counterfactuals

Table A10 shows the average number of panels per installation across Census regions in

each simulation. We can see that panel size does not significantly change across regions or

across simulations. These results suggest that extensive-margin adjustments shown in the

body of the paper play a much more important role quantitatively than the intensive-margin

adjustments shown here.

68One important caveat is that we assume households’ discount rate is given by the inverse of the real
interest rate. De Groote and Verboven (2019) find that households use a much higher implicit interest rate
than the market interest rate when evaluating the future benefits of solar panel installations. Therefore,
upfront investment subsidies are more cost-effective than production subsidies at inducing installations. It
would be straightforward to examine the robustness of our results to alternative values for the household
discount rate.
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C.8 State-Level Results

The first columns of Table A11 gives the baseline and welfare-maximizing subsidy in each

state. The following columns show the simulated number of solar panel installations per 1000

households under the current subsidies and under the welfare-maximizing subsidies.

The first two columns of Table A12 shows the state-level subsidies given the current

system and the damage-minimizing subsidies. The following columns of Table A12 show the

simulated number of solar panel installations per 1000 households given the current subsidies

and under the damage-minimizing subsidies.

C.9 Marginal Subsidy Increases: Results

Table A13 shows the damages offset per additional dollar of government funds associated

with marginal subsidy increases relative to the current system of subsidies. The first col-

umn (“Panel”) gives the damages offset per dollar associated with marginal increases in

panel-based subsidies, sPanelj , the second column (“Cost”) gives the damages offset per dol-

lar associated with marginal increases in cost-based subsidies, sCost
j , and the third column

(“kWh”) gives the damages offset per dollar associated with marginal increases in production-

based subsidies, skWh
j . For example, the first entry in the table tells us that a small increase

in panel-based subsidies in Alabama would lead to a 32-cent decrease in damages for each

additional dollar of government funds.

The three states with the largest damages offset per dollar are West Virginia, Pennsylva-

nia, and Maine. The three states with smallest damages offset are Washington, Oregon, and

Montana. Within a state, there are only small differences in the cost-effectiveness of various

subsidy types.

C.10 Unconstrained Optimal Subsidies

Theory We define welfare as

W =

∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−
∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

. (29)

The optimal system of subsidies must satisfy ∂W
∂sθj

= 0 for each type of subsidy in each
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Table A11: The first two columns shows the state-level subsidies given the current system and the welfare-
maximizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the welfare-maximizing
subsidies.
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Table A12: The first two columns shows the state-level subsidies given the current system and the damage-
minimizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the damage-minimizing
subsidies.
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%
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%
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%
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%
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%

31
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%

31
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%
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47
.5
%

47
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%

47
.5
%

M
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21
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%
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.5
%

21
.5
%
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20
.9
%

20
.9
%

20
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%
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a

13
.7
%

13
.6
%

13
.7
%

W
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m
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g

19
.1
%

19
.1
%

19
.1
%

Table A13: Damages offset per additional dollar of government funds associated with marginal subsidy
increases around the current system of subsidies. The first column (“Panel”) gives the damages offset per
dollar associated with marginal increases in panel-based subsidies, sPanelj , the second column (“Cost”) gives

the damages offset per dollar associated with marginal increases in cost-based subsidies, sCost
j , and the third

column (“kWh”) gives the damages offset per dollar associated with marginal increases in production-based
subsidies, skWh

j .
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state, which implies

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j −−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j −
−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

= 0, (30)

where all objects are as defined in Section 2.3.

The optimal policy balances two forces: 1) the decrease in damages and 2) the increase

in cost due to an increase in the number of panel installed, through both extensive and

intensive margin adjustments. Importantly, note that household utility does not show up in

this formula. This is because there is no first-order welfare effect on households for marginal

households (i.e. households who choose to install solar panels in response to the increase in

subsidies) because of the envelope theorem. Further, the utility increase for inframarginal

households (i.e. households who already chose to install solar panels before the increase in

subsidies) associated with receiving a larger subsidy for existing panels is exactly offset by

the cost of increasing subsidies for these households.69

Results Table A14 the baseline and optimal subsidy in each state. Optimal subsidies

are lowest in Washington and Oregon, at slightly above $2,000. Optimal subsidies are over

3 times as high in most of the Mid-Atlantic, with the highest subsidies at over $7,000 in

Delaware and Maryland. Optimal subsidies exceed current subsidies in only Pennsylvania,

West Virginia, and Maryland.

D Extensions and Robustness Appendix: For Online

Publication

D.1 Alternative Specifications of Household Utility

Table A15 recalculates our main results under alternative specifications of household utility.

Each entry shows the change in average subsidies, installations, and environmental benefits

associated with moving from the current system of subsidies to the welfare-maximizing system

of subsidies, given the specification in question. Column (1) considers a specification in which

69This is a direct consequence of 1) quasilinear utility and a utilitarian welfare function with equal Pareto
weights, which together imply that marginal social welfare weights (Saez and Stantcheva, 2016) are equalized
and there are no effects of total welfare of wealth redistribution, and 2) the assumption of that the marginal
cost of public funds is equal to one: the social planner values an increase in consumption for a given household
the same as an increase in government revenue.
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Expected Subsidy Expected Subsidy

Baseline Optimal Baseline Optimal

Alabama 5.6 4.6 Nebraska 8.8 4.3

Arizona 11.5 3.4 Nevada 6.8 3.3

Arkansas 5.6 4.3 New Hampshire 19.2 6.1

California 12.0 3.1 New Jersey 29.0 6.9

Colorado 9.8 3.0 New Mexico 11.0 3.5

Connecticut 16.9 6.1 New York 18.6 6.2

Delaware 9.8 7.1 North Carolina 8.6 4.6

Florida 10.0 4.9 North Dakota 11.6 3.9

Georgia 5.6 4.6 Ohio 7.5 6.7

Idaho 7.7 2.7 Oklahoma 5.6 4.6

Illinois 13.5 6.4 Oregon 11.5 2.2

Indiana 11.1 6.9 Pennsylvania 6.2 6.8

Iowa 19.6 4.0 Rhode Island 17.0 6.2

Kansas 13.6 4.4 South Carolina 9.1 4.7

Kentucky 6.1 4.3 South Dakota 13.1 3.7

Louisiana 15.0 4.4 Tennessee 7.4 4.4

Maine 5.8 6.1 Texas 15.7 3.6

Maryland 12.2 7.1 Utah 8.2 2.9

Massachusetts 25.6 6.1 Vermont 14.0 5.9

Michigan 7.2 3.8 Virginia 5.6 4.9

Minnesota 14.0 3.9 Washington 19.1 2.1

Mississippi 5.6 4.6 West Virginia 5.6 6.8

Missouri 10.9 4.2 Wisconsin 19.2 5.9

Montana 9.4 2.5 Wyoming 6.2 2.8

Table A14: The first two columns shows the state-level subsidies given the current system and the uncon-
strained optimal subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the welfare-maximizing
subsidies.
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(1) (2) (3) (3)

No Add Add Add

Demographics % College % Democrat % Homeowner

I. ∆ Average Subsidy ($Thousands)

Midwest 5.3 5.4 5.3 5.3

Northeast 0.4 0.5 0.4 0.4

South 4.7 4.7 4.7 4.6

West 0.3 0.4 0.4 0.4

II. ∆ Installations per 1000HHs

Midwest 2.9 2.9 2.8 2.8

Northeast -10.1 -10.3 -9.6 -9.6

South 4.7 4.8 4.3 4.3

West 0.8 0.8 0.9 0.9

III. ∆ Annual Damages Offset ($Millions)

CO2e 6.8 7.2 6.1 6.1

NOx 1.4 1.5 1.3 1.3

PM2.5 0.4 0.5 0.3 0.3

SO2 1.3 1.2 1.3 1.3

Total 9.8 10.4 9.0 9.0

Table A15: Counterfactual results under alternative model specifications. Each entry shows the change
of moving from the current system of subsidies to the optimal cost-neutral system of subsidies given the
specification in question. The first panel shows the change in the average present discounted value of subsidies
for a 15-panel installation for each census region. The second panel gives the change in the simulated number
of solar installations per 1000 households in the model for each Census region. The final panel gives the
change in total damages offset by rooftop solar. See text for details on each model specification.

the nonpecuniary component does not depend on tract-level demographics. In (2), we add the

tract-level fraction of individuals with a college education. In (3), we also add the fraction

of democrat voters, and in (4), we add the homeownership rate. Note that Column (3)

is the same as our baseline specification. The results are qualitatively very similar across

specifications.

D.2 Line Losses

We use the methodology from Borenstein and Bushnell (2022) to account for line losses be-

tween the power plant and households. Formally, losses for each region come from a constant

plus a factor proportional to the square of flow on the line: LRt = α1R+α2R

(
LoadRt − ESolar

Rt

)2
.

Note that the parameters α1R and α2R are both allowed to vary by region to reflect differ-

ences in grid characteristics across regions. We then adjust excess load by those losses,

ELoadLL
Rt = LoadRt − ENonD

Rt − ESolar
Rt + LRt. Losses enter positively since power plants must
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produce not only the amount of electricity demanded by households but also must make up

for the losses incurred in transporting electricity to the household. Adding line losses changes

the marginal damages offset by residential solar to

∣∣∣∣∂D (ELoad)

∂Ni

∣∣∣∣ = T∑
t=0

1

(1 + r)t
Ait

(
1 + 2α2R

(
LoadRt + ESolar

Rt

)) ∣∣∣∣ ∂Dt (·)
∂ELoadRt

∣∣∣∣ .
The installation of solar panels now has two benefits. As we have in our primary model, so-

lar panels reduce the electricity demand fulfilled by power plants, generating benefits equal to

the electricity produced by a panel, Ait, times the change in damages,
∣∣∣ ∂Dt(·)
∂ELoadRt

∣∣∣. Now, there is
an additional benefit from offsetting line losses, captured by the term 2α2R

(
LoadRt − ESolar

Rt

)
,

which is the marginal change in losses. Including line losses increase the average damages

offset by marginal installers,
−−→
∆Dθ,ext

j , and by intensive margin installers,
−−→
∆Dθ,int

j , when cal-

culating optimal subsidies.70

Borenstein and Bushnell (2022) estimate line losses as a proportion of total production

for over 1,600 utilities in the United States. We take the weighted average of these estimates

to create values for each region, weighting by the total electricity production of each utility.

Let γR be line losses as a proportion of total production in region R. We then follow their

assumption that 25% of line losses are independent of flow on the line, which allows us to

back out α1 = 0.25γR
∑

t

(
LoadRt − ESolar

Rt

)
and α2 = 0.75γR

∑
t(LoadRt−ESolar

Rt )∑
t(LoadRt−ESolar

Rt )
2 .

Results The results are summarized in Table A16. The first column gives cost-neutral

subsidies, installations, and damages offset given the current system of subsidies when we

account for line losses. The annual damages offset are slightly larger than the baseline model

in which we do not account for line losses.

The following summarize the results under (2) state-specific welfare-maximizing subsi-

dies, (3) state-specific damage-minimizing subsidies, (4) state-specific unconstrained optimal

subsidies. In all three counterfactuals, the subsidies and installations are similar to those in

the baseline model when we do not account for line losses. However, the environmental gains

are slightly larger than in the baseline model.

D.3 Improved Storage of Nondispatchable Electricity

Because of intermittent nature of many renewable energy sources, times when renewable

energy generation is high may not correspond with times when electricity demand is high.

70One caveat is that we do not adjust electricity production from solar panels to account for line losses
when residential solar panels transmit electricity back into the grid.
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(1) (2) (3) (4)

State-Specific Subsidies

Baseline Welfare Max Damage Min Unconstrained

I. Average Subsidy ($Thousands)

Midwest 11.3 16.7 17.1 6.0

Northeast 18.2 18.9 21.8 7.1

South 10.4 14.9 12.6 4.9

West 12.0 12.2 5.7 3.3

II. Installations per 1000HHs

Midwest 4.1 6.9 8.6 2.0

Northeast 29.8 20.7 28.7 5.4

South 6.8 11.0 9.4 3.4

West 13.2 13.8 6.8 4.9

National 11.4 12.4 11.3 3.8

III. Annual Damages Offset ($Millions)

CO2e 76.7 83.3 79.6 25.3

NOx 19.9 21.3 20.1 6.5

PM2.5 18.4 18.8 19.9 5.5

SO2 40.7 42.6 53.4 11.9

Total 155.7 165.9 173.0 49.2

Table A16: Optimal cost-neutral subsidies when accounting for line losses. The first panel shows the average
present discounted value of subsidies received for a 15-panel installation for each census region. The second
panel gives the simulated number of solar installations per 1000 households in the model for each Census
region. Households are defined as rooftops which are suitable for solar panel installations as defined by GPS
data. The final panel gives the total damages offset by rooftop solar.
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Improvements in energy storage technology would allow electricity generated by nondis-

patchable energy sources to be stored for times when it is most needed. What would be

the environmental benefits of these improvements in energy storage technology? And how

would the introduction of improved electricity storage technology change the optimal system

of solar subsidies?

As a simple way to try to answer these questions, we consider a setting in which elec-

tricity produced by nondispatchable sources (including household solar) can be imperfectly

reallocated over time. Specifically, given the total amount of electricity produced by nondis-

patchable sources in a year, we assume a proportion ω of this electricity is reallocated over

time such that the profile of usage of this reallocated electricity is proportional to electricity

demand.71 Formally, we write excess demand as

ELoadstorage
Rt =

1− ω
(
ANonD

R + ASolar
R

)︸ ︷︷ ︸
Reallocated Electricity

LoadRt − (1− ω)
(
ENonD

Rt + ESolar
Rt

)︸ ︷︷ ︸
Non-Reallocated Electricity

where ANonD
R =

∑
t E

NonD
Rt∑

t LoadRt
and ASolar

R =
∑

t E
Solar
Rt∑

t LoadRt
are region-specific constants which ensure

that total amount of nondispatchable energy utilized is equal to total nondispatchable energy

generated.72

Results We calculate the environmental benefits of this improved storage technology and

the welfare-maximizing cost-neutral subsidies given the new storage technology for three

values of ω in Table A17. Column (2), for example, shows the effects of this alternative

storage technology with ω = .25, holding the system of solar subsidies at their current levels.

As subsidies do not change, the distribution of installations is the same as in the case without

storage technology. Panel III shows that the improved storage technology leads to a decrease

in environmental damages valued at over $60 million annually. Column (3) recalculates the

optimal cost-neutral subsidies given that the new storage technology is in place. We find

that the optimal subsidies are very similar to the baseline case and that implementing the

optimal subsidies leads to similar reductions in environmental damages as we find without

the improved storage technology.

The remaining columns repeat this exercise for ω = .5 and ω = .75. In both scenarios, we

71This is highly stylized model of electricity storage. More generally, optimal storage and withdrawal of
electricity will depend on the distribution of the cost of electricity production by other sources over time
and space. See Holland, Mansur, and Yates (2022) for a richer model of electricity storage. It would be
straightforward to only be reallocated within the same day it is generated.

72Similar to Holland, Mansur, and Yates (2022), we assume that there are no electricity losses associated
with electricity storage, e.g. from charging batteries or decay of electricity over time.
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(1) (2) (3) (4) (5) (6) (7)

ω = .25 ω = .5 ω = .75

Improved +Optimal Improved +Optimal Improved +Optimal

Baseline Storage Subsidies Storage Subsidies Storage Subsidies

I. Average Subsidy ($Thousands)

Midwest 4.1 4.1 6.8 4.1 6.8 4.1 6.7

Northeast 29.8 29.8 20.0 29.8 19.8 29.8 19.7

South 6.8 6.8 11.0 6.8 11.0 6.8 10.9

West 13.2 13.2 14.3 13.2 14.6 13.2 14.7

II. Installations per 1000HHs

Midwest 11.3 11.3 16.6 11.3 16.6 11.3 16.6

Northeast 18.2 18.5 18.6 18.5 18.5 18.5 18.4

South 10.4 10.7 15.0 10.7 14.9 10.7 14.9

West 12.0 12.8 12.5 12.8 12.6 12.8 12.7

III. Annual Damages Offset by Stoarge and Rooftop Solar ($Millions)

CO2e 69.8 94.1 100.3 111.7 117.9 122.5 128.7

NOx 18.0 36.2 37.5 51.1 52.5 62.7 64.1

PM2.5 16.7 28.3 28.6 36.9 37.2 42.3 42.5

SO2 37.0 46.6 47.6 55.2 56.0 62.8 63.4

Total 141.5 205.2 214.0 254.9 263.5 290.3 298.7

Table A17: Optimal cost-neutral subsidies with improved storage technology. The first panel shows the
average present discounted value of subsidies received for a 15-panel installation for each census region. The
second panel gives the simulated number of solar installations per 1000 households in the model for each
Census region. The final panel gives the total damages offset by rooftop solar and by the increased storage
technology of renewable energy.

find large environmental benefits to the new technology. However, the optimal subsidies and

the environmental benefits associated with implementing those subsidies are very similar to

those in the baseline case.

Table A18 repeats this exercise with unconstrained optimal subsidies. The optimal un-

constrained optimal subsidies are nearly identical to the baseline case.

D.4 Cleaner Electricity Production

We present our results when we allow changes in electricity production in Table A19. The

first column gives the results under the current technology, as in our baseline results. The first

panel gives the change in average subsidy, measured in thousands of dollars when moving from

the current subsidies to the cost-neutral welfare-maximizing subsidies. The second panel gives

the change in installations per 1000 households. The final panel gives the percentage change

in environmental benefits when moving from the current to welfare-maximizing subsidies. As

before, we can see that moving to the optimal subsidies given the baseline technology leads

to an increase in environmental benefits of 6.4%.

The next three columns show the results when we recalculate welfare-maximizing subsi-

dies given that the scale of utility-scale solar and wind expand based on three scenarios of
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(1) (2) (3) (4) (5) (6) (7)

ω = .25 ω = .5 ω = .75

Improved +Unconstrained Improved +Unconstrained Improved +Unconstrained

Baseline Storage Optimal Storage Optimal Storage Optimal

I. Average Subsidy ($Thousands)

Midwest 4.1 4.1 5.4 4.1 5.4 4.1 5.4

Northeast 29.8 29.8 6.4 29.8 6.4 29.8 6.3

South 6.8 6.8 4.5 6.8 4.5 6.8 4.4

West 13.2 13.2 3.1 13.2 3.2 13.2 3.1

II. Installations per 1000HHs

Midwest 11.3 11.3 1.8 11.3 1.8 11.3 1.8

Northeast 18.2 18.5 5.0 18.5 5.0 18.5 5.0

South 10.4 10.7 3.2 10.7 3.2 10.7 3.2

West 12.0 12.8 4.7 12.8 4.9 12.8 4.8

III. Annual Damages Offset by Stoarge and Rooftop Solar ($Millions)

Total 141.5 205.2 105.3 254.9 154.8 290.3 190.0

IV. Annuitized Total Fiscal Cost ($Millions)

National 495.1 495.1 42.4 495.1 43.1 495.1 42.3

Table A18: Optimal unconstrained subsidies with improved storage technology. The first panel shows the
average present discounted value of subsidies received for a 15-panel installation for each census region. The
second panel gives the simulated number of solar installations per 1000 households in the model for each
Census region. The third panel gives the total damages offset by rooftop solar and by the increased storage
technology of renewable energy. The final panel gives total government cost under each subsidy scheme
converted to a n annuity value.

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Specifically,

we expand wind and solar based on their “reference case” projection, low-cost projection, and

high cost-projection. The high-cost scenario is associated with the smallest increase in utility-

scale solar and wind production, while the low-cost scenario is associated with the largest

increases.73 We refer to their reference case projection as the mid-cost projection. Across the

three scenarios, we find that moving to the optimal subsidies leads to a 10.0-10.8% increase

in aggregate environmental benefits.

In the final column, we recalculate results considering each coal plant to have “cleaned up”

by adjusting marginal damages from coal plants so that the distribution of marginal damages

from coal plants matches that of natural gas plants. Moving to the optimal subsidies leads

to a 5.2% increase in aggregate environmental benefits in this case.

Table A20 repeats this exercise with unconstrained optimal subsidies. In all cases, current

subsidies are all massively overfunded relative to the optimum. Moving to unconstrained op-

timal subsidies involves cutting funding for subsidies by 91.5% to 94.6% across specifications.

73Specifically, utility-scale solar increases by roughly 200%, 350%, and 500% in the three scenarios, while
wind increases by 45%, 50%, and 55%.
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(1) (2) (3) (4)

Current Increased Renewables Clean

Tech High Cost Mid Cost Low Cost Coal

I. ∆ Average Subsidy ($Thousands)

Midwest 5.3 6.0 6.1 6.3 3.9

Northeast 0.4 0.8 0.8 0.8 -0.2

South 4.7 5.1 5.1 5.1 4.7

West 0.4 -0.5 -0.5 -0.5 1.1

II. ∆ Installations per 1000HHs

Midwest 2.8 3.3 3.4 3.5 1.7

Northeast -9.6 -8.7 -8.7 -8.8 -10.4

South 4.3 4.8 4.8 4.8 4.2

West 0.9 -1.1 -1.2 -1.2 2.4

III. %∆ Environmental Benefits

Total 6.4 10.0 10.8 10.8 5.2

Table A19: Optimal cost-neutral subsidies under alternative assumptions about central generation energy
production. Each entry shows the change of moving from the current system of subsidies to the welfare-
maximizing cost-neutral system of subsidies given the specification in question. The first panel shows the
change in the average present discounted value of subsidies for a 15-panel installation for each census region.
The second panel gives the change in the simulated number of solar installations per 1000 households in the
model for each Census region. The final panel the percent increase in aggregate environmental benefits. See
text for details on each model specification.
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(1) (2) (3) (4)

Current Increased Renewables Clean

Tech High Cost Mid Cost Low Cost Coal

I. ∆ Average Subsidy ($Thousands)

Midwest -5.9 -6.1 -6.2 -6.3 -8.0

Northeast -11.8 -12.1 -12.3 -12.5 -13.5

South -5.9 -6.1 -6.3 -6.4 -7.1

West -9.0 -9.8 -10.0 -10.1 -9.7

II. ∆ Installations per 1000HHs

Midwest -2.2 -2.3 -2.3 -2.3 -2.6

Northeast -24.8 -24.9 -25.1 -25.2 -25.6

South -3.6 -3.7 -3.7 -3.8 -4.0

West -8.4 -9.0 -9.1 -9.1 -8.8

III. %∆ Environmental Benefits

Total -70.2 -72.1 -72.8 -73.4 -74.2

IV. %∆ Fiscal Cost

Total -91.5 -92.9 -93.3 -93.7 -94.6

Table A20: Effects of moving to unconstrained optimal subsidies results under alternative assumptions about
central generation energy production. Each entry shows the change of moving from the current system of
subsidies to the unconstrained optimal system of subsidies given the specification in question. The first panel
shows the change in the average present discounted value of subsidies for a 15-panel installation for each census
region. The second panel gives the change in the simulated number of solar installations per 1000 households
in the model for each Census region. The third panel the percent increase in aggregate environmental benefits.
The final panel gives the change in government cost as a percent of current government spending. See text
for details on each model specification.
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