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Abstract

We explore the evolutionary dynamics of a population that consists
of cooperators and defectors, wherein each member of the many pairs
of players of a one-shot prisoner’s dilemma game is drawn at random,
and the number of descendents positively depends on the payoffs in the
game. We demonstrate how an inclination to migrate may be mapped
onto the overall evolutionary fitness of the cooperators. The threshold
value of the inclination to migrate parameter is obtained. Intensities
of migration higher than that value guarantee that in the long run, the
population will consist entirely of cooperators. The threshold value is
characterized by the payoff parameters lying at the base of the evolu-
tionary dynamies.
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1. Motivation

Societies, economies, and groups differ both in the extent to which they tend to engage in
migration and in the elasticity of their migratory response to conventional explanatory variables
of migration such as wage differential. For example, numerous studies suggest that those who
migrate to a country are more mobile within the country than those who are native-born, or
that, by and large, Americans are geographically more mobile than Europeans. At times, the
intensity of migration or the migration response, say to an inter-regional wage differential, is
considered to be too low or too high from the point of view of productive efficiency or social
welfare.! Consequently, tinkering with the conventional explanatory variables is thought of, and
sought, as a means of inducing additional migration or of curtailing excessive migration. The
purpose of this paper is to deepen our understanding of migration behavior by investigating the
possibility that a relatively high proclivity of today's population to engage in migration can be
attributed to a past evolutionary process that conferred an advantage on migration. Populations
that are hardwired with an inclination to migrate will be quite responsive to even small revisions
of standard economic and social variables as a means of triggering migration, or harder to subdue
if engaging in excessive migration. Thus, one reason why the propensity to migrate is higher in
one population than in another is not that in the former the wage differential across markets is
higher or that the pecuniary cost of movement is lower, but rather that members of the former
population are genetically predisposed to an inclination to migrate. In the presence of biology,
economics may need to bow its head somewhat.

2. Introduction

There is a fascinating literature, developed largely outside the field of economics, that seeks
to explain the evolution or extinction of cooperation and altruism in a population by resorting
to an environment of “haystacks” (Maynard Smith (1964), Cohen and Eshel (1976), Wilson
(1987)). Recently, Bergstrom (2002, 2003) has eloquently drawn the attention of economists to
this literature.

The key assumptions of the haystacks model are that individuals in a large population,
who are either “cooperators” or “noncooperators,” are randomly pooled into small groups (the
“haystacks™}; they reproduce within their groups; their descendents are dispersed to form a new
large population; the individuals who constitute the new large population are again randomly

1For examnple, with regional specificity of capital, an efficiency gain will be reaped if workers migrate from the
region where the marginal product of labor is low to the region where the marginat product of labor is high. The
gain will be maximized when M workers migrate such that the marginal products of labor (wage rates) across
the two regions are equalized. Any level of migration that falls short of M will be considered too low from the
point of view of productive efficiency.



pooled into small groups; and so on. The reproductive outcome of a group depends on the traits
of the individuals who constitute the group. The long-term composition of the population by
the “cooperator™ “noncooperator” trait emanates from the interplay between the reproductive
outcomes of the groups and the dispersal-cum-pooling process.

The purpose of this paper is to explore the dynamics of a simple haystacks-type model in
a setting that incorporates migration between haystacks. We show that when the reproductive
outcomes are represented by payoff functions in a prisoner’s dilemma game, a sufficient inclina-
tion to migrate will, in the long run, yield a population that consists entirely of “cooperators.”?

3. Random allocations without migration

Let there be an environment that consists of a large number of habitats (“haystacks”). Initially,
n of the habitats are populated, each by two adult individuals who are drawn at random from a
large population the size of 2n. A habitat cannot accommodate more than two adult individuals.
An individual is either a cooperator or a defector, as defined below. Let the proportion of
cooperators in the initial population be z € (0, 1), and let the proportion of defectors be 1 — =,
Thus, 2nz of the individuals are cooperators, and 2n(1 — z) are defectors.

Imagine a random populating of the habitats. By randomness we mean as follows: overall,
given a group of 2n objects, the set of pairs contains C3, = n(2n — 1) elements. If initially and
exogenously the group is subdivided into two parts of 2nz objects and 2n(1 — z) objects, say of
cooperators and defectors respectively, then there are three types of pairs in the set of all pairs:
nz(2nz — 1) pairs that consist of two cooperators, n(l — z) (2n(1 — =) — 1) pairs that consist of
two defectors, and the remainder 2nz - 2n(1 — x) pairs that are mixed.

We assume that in a randomly composed population, the fraction of the three types of pairs
are the same as in the set of all n(2n— 1) pairs. Since only n of these n(2n— 1) pairs are realized,
we need to divide the three numbers of pairs by a common factor of 2n — 1, thereby obtaining
the following numbers of pairs in a random allocation:

1
1= —
2nz -1
nz(2nz—1) _ na?—22Z  poirs of cooperators;
n—1 1— L+
2n
1m ot
n(l-2)(2nl=-2)-1) _ n(l - :;,-)2———2“(l —z) pairs of defectors;
n—-1 _1
2n
2nz-2n(l — x) 1 . p
= 2nz(l — z) T mized pairs. (1)
2n

2Bergstrom and Stark (1993), Stark (1999 and 2004) and Stark and Wang (2004) have drawn upon a Prisoner’s
dilemnma payoff function in their study of the evolution of altruism and cooperation.
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The two individuals in each habitat procreate asexually. An individual cannot procreate if he
is by himself. The individuals and their descendents live in their habitat for a fixed period of time.
At the end of that period, the adult individuals die, and their descendents, all of whom reach
adulthood, are dispersed into a single population. Then, again, half as many habitats as there
are individuals are populated, each by two individuals drawn at random from the population at
large.

Let the number of descendents of each of the original inhabitants at dispersal time be given by
the following payoff function of a one-shot prisoner’s dilemma game (where T > R > P > § > 0):

Column Player

C D
Row C| RRR ST
Player D| T,S P,F

By definition, an individual is a cooperator if he plays € in the single-shot prisoner’s dilemma.
game. An individual is a defector if he plays D in the single-shot prisoner’s dilemma game. There
is no strategic choice in our environment: the individuals are predisposed to play € or to play
D. Individuals inherit the program that they follow from their parents. The numbers T, R, P, S
are assumed to satisfy the following requirement: that the overall population never becomes
extinct. Alternatively, it can be assumed that only a proportion of a bundle T, R, P, S matters,
and that the overall population is held constant, in which case our inquiry seeks to unravel only
the change in the composition of the population.

It follows then that at dispersal time, the habitats populated by two cooperators each yield
2R descendent cooperators, and the habitats populated by one cooperator and one defector each
yield S descendent cooperators. Consequently, the total number of cooperators at dispersal time

is
1-
C'=nz’——&1@-2R+2nz(1—x) L TS5 (2
1= 1o
and, by way of an equivalent reasoning, the total number of defectors at dispersal time is equal
to . -1—
D’=n(1—-z)2——-—?f—(-1T_—£)~-2P+2nm(l—z) 1 T (3)

~n -5

The initial number of cooperators is € = 2nz and the initial number of detectors is D = 2n(1—x}.
We seek to caleulate D'/C” as a function of D/C. After dividing throughout by the common



n
term T we have

1=
2=(1—z)2-(1-T(11_—ﬂ).2p+2z(1—x)r
. 22 (1 - ﬁ) 2R 4 22(1 — 2)§
1
_l—m.(l_x)'(1__2n(1—x))'P+zT
B 1--2).R+(1-2)s
2 (1- 55 ) -R+1-2)

(l-z)-(l—ml_—xj-)-P+zT
. z-(l—ﬁ) R+ (1-2)S

P
'(1—3)P+zT—%

=D/C (4)

(1—:17).5'+:-:R—-2£n

Hence, we have P
D.r/cr _ (1 —$)P+$T— %

D/C 4 _ =

(1-2z)S+zR o

R-P

(1-2)(P=8)+a(T - R)+ —
=1+ 113

R
(1-2)S+zR-

min{P - S,T — R}
R
where Const. > 0, since for any prisoner’s dilemma game, T > Rand P > 5.2

Thus, after k iterations we will have

>1+

=1+ Const., (5)

(D'/C') = (D/C) - (1 + Const.)* — oo, (6)

that is, the share of cooperators in the population approaches zero exponentially. Thus, the
predicament is that in the wake of each cycle of matching, cohabiting, procreation, generational
replacement and dispersal, the ratio of defectors to cooperators in the overall population will
rise exponentially and the proportion of cooperators will decline exponentially: cooperators will
become extinct. {Recall Weibull (1995), and Stark (1999)).

3In the last but one fraction of (4), let us estimate the numerator from below, and the denominator from above.

As for the numerator, (1— z)(P = 8) +2(T - R) + Rz'n P o (1-2)(P-8)+z(T-R) > (1 -x)min{P—5,T—

R} +zmin{P—-8,T - R} = min{P— S,T— R}. As for the denominator, (1-z)S+zR— g‘- <(1-z)S+zR<
(l-z)R+zR=R.




4. Systematic allocations without migration

Suppose, alternatively, that the initial allocation to the n habitats is perfectly systematic rather
than perfectly random. In such a setting, the number of habitats populated by two cooperators
is nz, and the number of habitats populated by two defectors is (1 — z)n. There are no mixed
habitats. The habitats populated by cooperators each yield 2R cooperators, and the habitats
inhabited by defectors each yield 2P defectors. Let us, again, calculate the ratio of the number
of defectors to the number of cooperators at dispersal time. We obtain

2Pn(l-2) 1

e
D'je’ = 2Rnx

—= . (P/R) = (D/C) - (P/R). ()

Since P/R < 1, we now have the opposite predicament: cooperators will prevail and defectors
will exponentially become extinct.
Note that by continuity, in the long run the population will consist of only cooperators even

if the allocation to habitats is nearly systematic rather than perfectly systematic.

5. Random allocations with an inclination to migrate

Suppose that allocation is perfectly random, yet upon realization of the draw, individuals can
migrate between habitats. Given that T > R > P > 5, cooperators who are not matched
with cooperators will want to be matched with cooperators, as will defectors. The inclination
to migrate is premised on the assumption that if a revised matching is expected to yield more
offspring than the original matching, the revised matching will be preferred, and hence sought.
For a revised matching to occur, the two individuals in a newly-formed habitat need to be aware
of, and duly respond to, the mutual gains conferred by a revised matching. The inclination to
migrate is thus manifested in a willingness to resort to migration to other habitats and to admit
migrant cooperators from other habitats. Suppose that the prisoner’s dilemma payoff function
observes R — 8 > T — P (while still maintaining T > R > P > S). This additional inequality
implies that the gain to a cooperator who migrates from a mixed habitat to team up with a
cooperator is greater than the gain to a defector who migrates from a defector-defector habitat
to team up with a cooperator.!

In the presence of such a payoff structure, a cooperator in a mixed habitat will either migrate
to another mixed habitat to team up with the cooperator there, or accept a migrant cooperator
from another mixed habitat as his new cohabitant; and a defector in a mixed habitat will end

4We can reinterpret the differences in the parameters as follows: (P — T is the loss to a defector from
cohabiting with a defector rather than with a cooperator, whereas (§ — R) is the loss to a cooperator from
cohabiting with a defector rather than with a cooperator. Since (P — T') and (S — R) are losses, what we have
assumed is that —(S — R) > —(P — T); the loss to a cooperator from cohabiting with a defector is higher than
the loss to a defector from cohabiting with a defector.



up pairing with a defector from another mixed habitat. Individuals in cooperator-cooperator
habitats and in defector-defector habitats will stay put. This post-allocation migration pattern
is premised on the following considerations. When a cooperator from a mixed habitat migrates
to another mixed habitat, motivated to do so by the anticipated net gain in terms of added
offspring, the arriving cooperator has a competitive edge over defectors in pairing with the
cooperator in the destination mixed habitat because, given the payoff structure (R > S and
R—8 > T — P), the cooperator in the destination habitat will choose to play the one-shot game
with the arriving cooperator and the defector’s “power” to resist being crowded out is weaker
than the cooperator’s “power” of crowding himself in. On the other hand, since the cooperator
in a mixed habitat will either migrate to another mixed habitat or pair up with a cooperator
who migrates in from another mixed habitat, a defector in a mixed habitat will eventually end
up seeking pairing with a defector from another mixed habitat because otherwise he will have
no partner at his original habitat with whom to play the one-shot prisoner’s dilemma game
and hence, he will end up with no descendents at all. Obviously, cooperators in cooperator-
cooperator habitats have no incentive to move. In spite of their obvious desire to migrate in
order to be paired up with cooperators, defectors who in the wake of a random allocatior end
up in defector-defector habitats or, for that matter, defectors in newly-formed defector-defector
habitats, will not be able to so migrate since in this migration cum matching process they have
no competitive edge.®

Notice that the condition R~ S > T — P is tantamount to the assumption that a population
that consists of equal numbers of cooperators and defectors will have a survival edge upon
cooperators being paired with cooperators and defectors being paired with defectors, as opposed
to each cooperator being paired with a defector.

To see the joint result of random allocations and migration, we have to specify the intensity
of the migration process. If the intensity is very high, it is natural to expect that almost all
the cooperators will be successful in their migratory pursuits, and therefore, the outcome of the
process will be nearly systematic, which in turn will result in a long-run prevalence of cooperators.
Our natural inclination then is to relax the assumption of a very high intensity of migration,
and explore the ensuing outcome.

®Because this jnability to initiate successful pairing with cooperators, whether or not (any of) defectors have
the inclination to migrate is immaterial in the migration cum matching process. Hence, we will focus only on the
ramifications of the inclination to migrate, or the lack of it, among cooperators. Note that although defectors
caunot initiate migration, they may be forced into (passive) migration between mixed habitats that are either
cohabited with migration-inclined cooperators or visited upon by migrant cooperators.



6. The threshold intensity of migration

Let us analyze the long-run composition of a population in which, after each cycle of repro-
duction, generational replacement and random allocation, cooperators who are matched with a
defector are searching for a cooperator to match with, and either become successful in this pur-
suit or give up and pair with a defector. Clearly, we should expect the outcome to lie somewhere
between that of a random allocation and that of a systematic allocation. To measure the inten-
sity of migration (to model the technology of migration) we introduce a parameter m € [0, 1],
such that after each cycle, if previously there were a fraction ue of cooperators and a fraction
pp = 1 — pc of defectors, we will have a proportion pZ + mpucup of cooperator-cooperator
haystacks, a proportion p%, + mucup of defector-defector haystacks, and a remainder propor-
tion 2(1 — m)pcup of mixed haystacks. Our assumption means approximately that a fraction m
of cooperators from mixed haystacks will be successful in finding another mixed haystack with
the ensuing formation of a cooperator-cooperator pair and a defector-defector pair.

Let z be the initial share of cooperators, and let y be the initial share of defectors. Then, we

have
2n [2R(z? + mzy) + 25(1 — m)ay] (8)

new cooperators emerging and, similarly, we have
2n [2P(y* + may) + 2T(1 - m)xy] {9)

new defectors emerging,.
Following the line of reasoning in the preceding sections, and recalling that old individuals
die, we can calculate the ratio of the share of defectors to the share of cooperators in the next

round:
_ 2P(y* + may) + 2T(1 — m)zy
W/e) = 2R(z? + mxy) + 25(1 — m)zy
= (/o) gt ma T - m)e o

Rz +my)+ S(1 —m)y.
We will expect this ratio to decline iff

Ply+mz)+T(l—-mlzr < Rz +my)+ S(l—-mly &
z-[T(1-m)+mP-Rl<y-[S(1-m)+mR-P|&
z- Alm) <y-B(m), (11}

where A(m) =T(1-m)+mP—R=(T—R)— (T — P)mand B(m)=S(1-m)+mR—P—
{P — 8) + (R — S)m are both linear in m. However, A(m) is decreasing in m, whereas B(m) is

increasing in m. Both A(m) and B(m) cross zero, and particularly A(m) = 0 for m = g_ 5
-8

and B(ﬁ) =0form= %



It is easy to show that m < 1. Indeed, this inequality is equivalent to our assumed inequality
R—~8 > T — PS5 Hence, the path of the two functions is as per Figure 1. We have three
intervals for m: for small values of m, A(m) is positive and B(m) is negative, implying that the
inequality in {11) does not hold; for medium values of m, both A(m) and B(m} are negative and
the inequality in (11) either holds or not, depending on the value of y/x; and for values of m
that are close to 1, A{m) is negative and B(m) is positive, implying that the inequality in (11)
definitely holds.

In the medium interval, as m rises, the last inequality in (11) is more likely to hold. This
reflects the fact that the higher the intensity of migratory efforts by cooperators, the more likely
they will prevail ultimately in the population.

A(m)

B(m) Blm)

A(m)

Figure 1. A diagrammatic joint representation of A(m) and B(m).

‘We designate these three intervals as *cases:”

Case 1. m < m. Irrespective of the initial ratio y/z, unless it is exactly zero, y/z will rise
and ultimately approach exponentially quickly infinity; in the long run the entire population will
consist of defectors.

Case 2. m > 7. Irrespective of the initial ratio y/x, unless it is infinity, y/z will approach
exponentially quickly zero; defectors will become extinct and the entire population will consist
of cooperators.

Case 3. m € |m,T]. Then, we have dependence on the initial ratio of the share of defectors
to the share of cooperators. Namely, introduce

e Am) _T@—-m)+mP-R

B{m)  S(1-m)+mR-P’

*R-S>T-P& R+P>T+5« (R+P){R-P)>(T+8)(R—~P) ¢ R~ P*>TR4+SR-TP-5P &
TP+PS—P?> TR+ RS~ R? & TP+ PS—P'—T5 > TR+ RS~ 2 ~TS & (T- F)(P-5)} >

(12)

P-5 T-R
(T—R)(R-—S)&-RTS> T—p



We then have the following explicit Case 3 rule:

e I initially ¥/ < &, then in the long run, the population will consist entirely of cooperators.

¢ If initially y/z > k, then in the long run, the population will consist entirely of defectors,

And, if it so happens that initially y/x = &, then this is an unstable equilibrium point: this
exact value of the ratio will remain constant, but once it is perturbed by some external shock, it

will approach exponentially quickly either zero or infinity, depending on the sign of this shock.

7. Introducing costly migration

It is interesting and instructive to assume now that migration entails a cost of e, That is, a
cooperator who is initially paired with a defector and who wants to separate from the defector
in order to pair with a cooperator from a mixed pair, looses € in terms of descendents.

We now get that the ratio y/z falls iff

Ply+mz) + T{1 —m)z < R(z + my) + S(1 — m)y — mye <

z-[T'(1 —m)+mP — H < y[S1-m)+m(R—¢)— P (13)

I%epli}c{ating the calculations of the preceding section, we get that the threshold levels are now

T—p and A_S—¢ and we have three new intervals for m:

Case 1'. m < T_P'
rise and ultimately approach exponentially quickly infinity; in the long run the entire population

Irrespective of the initial ratio y/z, unless it is exactly zero, y/z will

will consist of defectors.

Case 2. m > Irrespective of the initial ratio y/x, unless it is infinity, y/z will

R-5-—¢
approach exponentially quickly zero; defectors will become extinct and in the long run the entire

population will consist of cooperators.
T-R P-S5

T-P'R—S—¢
of the share of defectors to the share of cooperators, with a new «":

Case 3. m € ] Then, again, we have dependence on the initial ratio

 Am) T(1-m)+mP-R
"TBm) S0-m+mR—c —P

(14)

‘What is extremely interesting is that the main conclusion, namely, that an all-cooperator

population will not change its composition under m > holds irrespective of ¢! Indeed,

all that changes is the threshold initial ratic of cooperat.ors_ to defectors: it increases, rendering
cooperators prevailing only less likely. Once we know that the initial ratio is equal to 1, we infer
that it surely exceeds the threshold, whatever the threshold may be.

To aid intuition at this point, consider a population that consists of cooperators only. Then,
only infinitesimal migration is needed to fend off a small invasion of defectors. That is, the

only cooperators who would be induced to migrate are those who are paired with defectors, and



what these cooperators will lose in terms of their descendents will be largely compensated for
the arrival of the descendents of the “lucky” cooperators. The overall “fitness” of a population
that consist only of cooperators is assured.

8. Concluding comments

A mutation that, say, instils a taste for migration in cooperating individuals (or even in both
types of individuals under R—S > T'— P) is likely to be sustained if, as a consequence of carrying
the mutation, the carrier’s likelihood of dynastic survival is enhanced (Falk and Stark 2001). In
the long run then, the population will consist of cooperators who are hard-wired with a taste
for migration. The proclivity to engage in migration that was critical to the cooperator’s ability
to fend off extinction and that conferred an evolutionary advantage over the millennia that
constitute the long run, is unlikely to dissipate swiftly.

Why will a population consisting only of cooperators have a survival edge over a population
consisting only of defectors? In a related paper (Stark, 1998) it was shown how, in a setting in
which nature is an additional player, the presence of a defector in a community, combined with
the realization of a bad state of nature, leads to extinction, whereas an all-cooperator community
is not so doomed. In the present setting too, an all-cooperator population has a survival edge over
an all-defector population. When nature plays a role, a bad state of nature can wipe out a large
number of individuals. In such circumstances, by the mere fact that R > P, more individuals
will always survive in an all-cooperator population than in an all-defector population.

The possibility of migration in a haystacks model has been acknowledged before. In a study
of the evolution of altruism in the haystacks model (Wilson 1987, p.1070) the author writes:
“Groups usually are initiated by more than one individual, and migration between groups takes
place prior to global dispersal.” Equally noteworthy is the conclusion that follows: *“These
events decrease the conditions for the evolution of altruism.” Interpreting altruism as playing
“cooperate” in a single-shot prisoner’s dilemma game (cf. Bergstrom and Stark 1993), the present
paper predicts an outcome that is exactly the opposite of the outcome predicted by Wilson.
Similarly, upon reviewing several versions of the haystacks model (Bergstrom 2002, p.77) the
author concludes: “For some parameter values, a population of cooperators will be sustained in
equilibrium. This is more likely if the migration rate [between haystacks] is relatively small.”
‘We have shown that the opposite may hold.

10



References

Bergstrom, Theodore C. (2002) “Evolution of Social Behavior: Individual and Group Selec-
tion,” Journal of Economic Perspectives 16, pp. 67-88.

Bergstrom, Theodore C. (2003) “Group Selection and Randomness: Reply,” Journal of Eco-
nomic Perspectives 17, pp. 211-212.

Bergstrom, Theodore C. and Stark, Oded (1993} “How Altruism Can Prevail in an Evolu-
tionary Environment,” American Economic Review 83, pp. 149-155.

Cohen D. and Eshel 1. (1976) “On the Founder Effect and the Evolution of Altruistic Traits,”
Theoretical Population Bieclogy 10, pp. 276-302.

Falk, Ita and Stark, Oded (2001) “Dynasties and Destiny: The Roles of Altruism and Impa-
tience in the Evolution of Consumption and Bequests,” Economice 68, pp. 505-518.

Maynard Smith, John (1964) “Group Selection and Kin Selection,” Nature 201, pp. 1145-
1147.

Stark, Oded (1998) “On the Economics of Vanishing,” Economics Letters 61, pp. 261-266.

Stark, Oded (1999) “Siblings, Strangers, and the Surge of Altruism,” Economics Letters 65,
pp- 135-142,

Stark, Oded (2004) “Cooperation and Wealth,” Journal of Economic Behavior and Orgeni-
zation 53, pp. 109-115.

Stark, Oded and Wang, You Qiang (2004) “On the Evolutionary Edge of Altruism: A Game-
Theoretic Proof of Hamilton’s Rule for a Simple Case of Siblings,” Journel of Evolutionary
Economics 14, pp. 37-42.

Weibul, Jurgen (1995) Evolutionary Game Theory, Cambridge, MA: MIT Press.

Wilson, David Sloan (1987) “Altruism in Mendelian Populations Derived from Sibling Groups:
The Haystack Model Revisited,” Evolution 41, pp. 1059-1070.

11



2004/90.

2005/1.

2005/2.

2005/3.
2005/4.

2005/5.
2005/6.
2005/7.
2005/8.
2005/9.
2005/10.

2005/11.
2005/12.

2005/13.

2005/14.

2005/15.

2005/16.

2005/17.

2005/18.

2005/19.

2005/20.
2005/21.

2005/22.

2005/23.

2005/24.

2005/25.

2005/26.

Recent titles

CORE Discussion Papers

Andreas EHRENMANN and Yves SMEERS. Inefficiencies in European congestion manage-
ment proposals.

Thierry BRECHET and Stéphane LAMBRECHT. Puzzling over sustainability: an equilibrium
analysis.

Ines LINDNER. Preference aggregation versus truth-tracking: asymptotic properties of a re-
lated story.

André DE PALMA and Stef PROOST. Imperfect competition and congestion in the city.
Malika HAMADI, Erick RENGIFO and Diego SALZMAN. Illusionary finance and trading
behavior.

Victor GINSBURGH, Patrick LEGROS and Nicolas SAHUGUET. How to win twice at an
auction. On the incidence of commissions in auction markets.

Victor GINSBURGH and Abdul NOURY. Cultural voting. The Eurovision Song Contest.
Victor GINSBURGH and Israel ZANG. Bundling by competitors and the sharing of profits.
Paolo COLLA. A market microstructure rationale for the S&P game.

Kristian BEHRENS and Jacques-Frangois THISSE. Regional inequality and product variety.
Pierre GIOT and Mikael PETITJEAN. Dynamic asset allocation between stocks and bonds
using the Bond-Equity Yield Ratio.

Helena BELTRAN, Pierre GIOT and Joachim GRAMMIG. Commonalities in the order book.
Helena BELTRAN, Alain DURRE and Pierre GIOT. Volatility regimes and the provision of
liquidity in order book markets.

Pierre GIOT and Armin SCHWIENBACHER. IPOs, trade sales and liquidations: modelling
venture capital exits using survival analysis.

Takaaki TAKAHASHI. Economic geography and endogenous determination of transportation
technology.

Denis CLAUDE and Jean HINDRIKS. Strategic privatization and regulation policy in mixed
markets.

Pierre M. PICARD and Eric TOULEMONDE. On monopolistic competition and optimal
product diversity: a comment on cost structure and workers’ rents.

Yasusada MURATA and Jacques-Frangois THISSE. A simple model of economic geography
a la Helpman-Tabuchi.

Claude D’ ASPREMONT and Rodolphe DOS SANTOS FERREIRA. Oligopolistic competi-
tion as a common agency game.

Alessandro FEDELE. Moral hazard in financial markets: Inefficient equilibria and monetary
policies.

Robert J. AUMANN and Jacques H. DREZE. Assessing strategic risk.

Robert J. AUMANN and Jacques H. DREZE. When all is said and done, how should you play
and what should you expect ?

Parkash CHANDER. Repetitive risk aversion.

Marc GERMAIN, Alphonse MAGNUS and Vincent VAN STEENBERGHE. Should devel-
oping countries participate in the Clean Development Mechanism under the Kyoto Protocol ?
The low-hanging fruits and baseline issues.

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEYV and Shlomo WEBER.
The egalitarian sharing rule in provision of public projects.

Arie PREMINGER and Raphael FRANCK. Forecasting exchange rates: a robust regression
approach.

Raouf BOUCEKKINE, David DE LA CROIX and Dominique PEETERS. Early literacy
achievements, population density and the transition to modern growth.



2005/217.

2005/28.

2005/29.

2005/30.

2005/31.

2005/32.

2005/33.

2005/34.
2005/35.

2005/36.
2005/37.

2005/38.

Recent titles

CORE Discussion Papers - continued

Stéphane LAMBRECHT, Philippe MICHEL and Emmanuel THIBAULT. Capital accumula-
tion and fiscal policy in an OLG model with family altruism.

Frederic MURPHY and Yves SMEERS. Forward markets may not decrease market power
when capacities are endogenous.

Lennart E HOOGERHEIDE, Johan F. KAASHOEK and Herman K. VAN DIJK. On the shape
of posterior densities and credible sets in instrumental variable regression models with reduced
rank: an application of flexible sampling methods using neural networks.

Yves SMEERS. Long term locational prices and investment incentives in the transmission of
electricity.

Andrea ATTAR, Eloisa CAMPIONI and Gwenaél PIASER. Multiple lending and constrained
efficiency in the credit market.

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER.
Stability of jurisdiction structures under the equal share and median rules.

Kristian BEHRENS and Yasusada MURATA. General equilibrium models of monopolistic
competition: CRRA versus CARA.

Axel GAUTIER. Network financing with two-part and single tariff.

Ori HAIMANKO, Michel LE BRETON and Shlomo WEBER. The stability threshold and two
facets of polarization.

Ana MAULEON and Vincent VANNETELBOSCH. Market integration and strike activity.
Steven GABRIEL and Yves SMEERS. Complementarity problems in restructured natural gas
markets.

Alexei SAVVATEEV and Oded STARK. An evolutionary explanation for the propensity to
migrate.

Books

M. FUJITA and J. THISSE (2002), Economics of agglomeration: cities, industrial location, and regional

growth. Cambridge, Cambridge University Press.

1. THOMAS (2002), Transportation networks and the optimal location of human activities: a numerical

geography approach. Cheltenham, E. Elgar.

J.J. GABSZEWICZ (2002), Strategic multilateral exchange. Cheltenham, E. Elgar.
M. FUJITA and J. THISSE (2003) , Economie des villes et de la localisation. Louvain-la-Neuve,

De Boeck.

V. GINSBURGH (ed.) (2003), Economics of Arts and Culture: Invited Papers at the 12th International

Conference of the Association of Cultural Economics International. Elsevier.

V. HENDERSON and J. THISSE (eds.) (2004), Handbook of Regional and Urban Economics 4.

Amsterdam, North-Holland.

F. MAUREL, A. PERROT, J.-C. PRAGER and J. THISSE (eds.) (2004), Villes et économies. Paris, La

Documentation Frangaise.

CORE Lecture Series

C. GOURIEROUX and A. MONFORT (1995), Simulation Based Econometric Methods.

A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality.

J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization.

B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through

Vertical Agreements.

D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming

problems: theory and practice.

R. AMIR (2002), Supermodularity and complementarity in economics.



