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Abstract 

 

Conventional meta-analyses of correlations are biased due to the correlation between the estimated 

correlation and its standard error. Simulations that are closely calibrated to match actual research 

conditions widely seen across correlational studies in psychology corroborate these biases and 

suggest a solution. UWLS+3 is a simple inverse-variance weighted average (the unrestricted 

weighted least squares) that adjusts the degrees of freedom and thereby reduces small-sample bias 

to scientific negligibility. UWLS+3 is also less biased than conventional random-effects estimates 

of correlations and Fisher’s z, whether or not there is publication selection bias. However, 

publication selection bias remains a ubiquitous source of bias and false positive findings. Despite 

the correlation between the estimated correlation and its standard error even in the absence of any 

selective reporting, the precision-effect test/precision-effect estimate with standard error (PET-

PEESE) nearly eradicates publication selection bias.  PET-PEESE keeps the rate of false positives 

(i.e., type I errors) within their nominal levels under the typical conditions widely seen across 

psychological research and with or without publication selection bias.  
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1. Introduction 

Correlations are widely used to summarize psychological research via inverse-variance weighted 

meta-analysis in spite of the fact that, by conventional definitions, the variance (and standard error, 

SE) of correlations is a function of the correlation estimate itself. What has yet to be fully 

recognized is that this dependence of the variance on the size of the correlation causes all 

conventional meta-analysis of correlations to be biased (Stanley, Doucouliagos, Maier et al., 

2023). The conventional approach to this dependence is to employ Fisher’s z transformation, as its 

SE is independent of the estimate of z (e.g., Borenstein et al., 2009).1 Yet, many meta-analyses of 

simple, untransformed correlations are routinely conducted in psychology. For example, a survey 

found that the majority meta-analysis published in the Psychological Bulletin (108 of 200) 

concerned correlations.  Within these 108 meta-analyses of correlations (84.3%) did not use the 

Fisher’s z transformation, but rather, the simple untransformed correlations (Stanley et al., 2018). 

We follow previous studies that found that conventional meta-analyses of bivariate and partial 

correlations and are biased, largely due to estimated correlations being inversely correlated with 

their variances (Stanely and Doucouliagos, 2023; Stanley, Doucouliagos, Maier et al., 2023). 

Fortunately, these biases are small-sample biases.  A new estimator, UWLS+3, is introduced below 

that reduces these biases to scientific negligibility by making a simple adjustment to the degrees 

of freedom.  However, these studies assumed that the sample sizes were constant across all studies 

within a meta-analysis and that there was no publication selection bias (PSB).  While these 

assumptions are necessary to isolate and to identify the small-sample bias caused by correlation’s 

mechanical inverse correlation with its own SE, these conditions do not hold, even approximately, 

for most meta-analyses of social science research.  

First, the range of sample sizes synthesized by the typical meta-analysis is many times its 

median value. Thus, at least some studies in most meta-analyses will be sufficiently large to reduce 

correlation’s small-sample bias to practical negligibility. Second, although not every area of 

research selects for statistical significance and thereby produces PSB, it is rare when PSB can be 

ruled out a priori. When present, PSB can be substantial, creating high rates of false positives in 

conventional meta-analyses (Kvarven, Strømland and Johannesson, 2020); also see Tables 3 

 
1 It should be noted that Fisher’s z transformation is not the same as the z-values, widely used throughout statistics 

and meta-analysis to represent the normal distribution.  
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below. In this study, we show that a small-sample correction, UWLS+3, reduces bias to negligibility 

and investigate whether conventional meta-analysis will still be biased when there is a wide range 

of sample sizes and heterogeneity, with and without accompanying selection for statistical 

significance. In short, conventional, inverse-variance weighted meta-analyses are still biased under 

typical research conditions seen in psychology.  However, we do not stop there.  We also identify 

those meta-analyses methods that have no notable biases with or without PBS as well as those that 

are able to maintain their nominal type I errors (that is, those do not have inflated rates of false 

positives) even with publication bias.  

 

2. Correlation and its Variances  

The conventional formula for the Pearson (bivariate) correlation coefficient, r, is: 

𝑟 =
∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)

(√(𝑋𝑖 − �̅�)2  ∙ √(𝑌𝑖 − �̅�)2)
⁄  i= 1, 2, …, n.        (1) 

When testing whether the association between X and Y is statistically significant, r’s variance is: 

  𝑆1
2 =

(1 − 𝑟2 )
(𝑛 − 2)

⁄               (2)  

t = 
𝑟

𝑆1
 is the conventional test statistic for testing the hypothesis: H0:  = 0. Correlation’s t-value 

is also equal to the t-value for the slope coefficient from the simple linear bivariate regression 

between X and Y.  See Stanley, Doucouliagos, Maier et al. (2023) Supplement for a numerical 

analysis proof.  

In contrast, conventional meta-analysis uses a different variance for correlations: 

 

      𝑆2
2 =

(1 − 𝑟2)2

(𝑛 − 1)⁄                (3) 

 

(Hunter and Schmidt, 1990; Borenstein et al., 2009, among many others). Note that the differences 

between these variance formulae are: 𝑆2
2 squares 𝑆1

2′
𝑠 numerator, 1 − 𝑟2 , and 𝑆2

2′
𝑠 degrees of 
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freedom, (𝑛 − 1), are one fewer.  Because -1< r < 1 and (𝑛 − 1) > (𝑛 − 2),   𝑆2
2 < 𝑆1

2  for all 

sample sizes and |𝑟| ≠ {0 or 1}. Simulations reported in Table 1, below, Table S1 of the 

Supplement, and in Stanley, Doucouliagos, Maier et al., (2023) establish that using 𝑆2
2 causes 

conventional meta-analyses to be twice as biased as those which use  𝑆1
2 and the CI’s produced by 

𝑆2
2 systematically cover less than 95% of the estimated mean correlations—also see Table 1, 

below. 

 Lastly, there are different ways to calculate correlations.  Following Gustafson (1961) and 

Fisher (1921), Stanley, Doucouliagos, Maier et al. (2023) demonstrate that eq. (4), below, gives 

the exact same values for estimated correlations as the more conventional correlation formula, Eq 

(1). 

 

𝑟 = 𝑡
√𝑡2 + 𝑑𝑓⁄              (4) 

 

Where 𝑑𝑓= n – 2.  t is the conventional t-test for the statistical significance of the slope coefficient 

of a bivariate regression or, equivalently, of the t-value of correlations using 𝑆1 . This t-formula 

for correlations, eq. (4), is central for our new small-sample correction, UWLS+3.  

 

3. Conventional Meta-analysis of Correlations 

Random-effects (RE) weighted averages are, by far the most, commonly employed meta-analysis 

approach used to systematically review and summarize correlations across studies in a given area 

of research in psychology. RE is, thereby, the conventional standard upon which to establish the 

bias of the conventional meta-analyses of correlations—see Table 1, below.  RE serves as the 

baseline from which to evaluate the statistical performance of alternative meta-analysis methods.   

 

3.1 The Unrestricted Weighted Least Squares Weighted Average 

The unrestricted weighted least squares (UWLS) is an alternative simple weighted average that 

has statistical properties practically equivalent to RE under ideal conditions for RE and notably 

superior if there is publication bias or if small-sample studies are more heterogeneous (Stanley and 

Doucouliagos, 2015 & 2017, Stanley, Doucouliagos and Ioannidis, 2017 & 2022b).  Also, UWLS 
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has been shown to be widely and notably superior to RE in most applications in psychology and 

medicine (Stanley, Doucouliagos and Ioannidis, 2022b; Stanley, Ioannidis, Maier et al., 2023).  

UWLS is calculated from the simple meta-regression: 

𝑡𝑗 =
𝑟𝑗

𝑆𝐸𝑗

= 𝛼1 (
1

𝑆𝐸𝑗

) + 𝑢𝑗            j =1, 2, . . . , k         (5) 

 

Where 𝑆𝐸𝑗  is SE of the jth correlation calculated as the square root of either 𝑆1
2 or 𝑆2

2 from their 

respective formulas; that is, eq. (2) or eq. (3), above. Any standard statistical software for 

regression analysis will automatically estimate UWLS (the slope coefficient, �̂�1 ), its standard 

error and, p-value.2  

Stanley, Doucouliagos and Havránek (2023) offer a new correction, UWLS+3, for the 

small-sample biases of the conventional meta-analysis of partial correlations first identified in 

Stanley and Doucouliagos (2023).  Table S1 of Appendix A of the supplement reports the biases 

of the conventional meta-analysis of bivariate correlations.  Like the biases of the meta-analysis 

of partial correlations, they are positive and can be of a notable magnitude for small samples. 

Following Fisher (1921), “sampling distribution of the partial correlation obtained from n pairs of 

values, when one variable is eliminated, is the same as the random sampling distribution of a total 

correlation derived from (n-1) pairs. By mere repetition of the above reasoning it appears that when 

s variates are eliminated the effective size of the sample is diminished to (n-s)” (p. 330).  We have 

verified Fisher’s insightful observation also works for partial correlations and vice versa. For both 

correlations and partial correlations, we have found that the small-sample biases of conventional 

 
2 For example, a simple R program is: 

#read in your data file that has a column for  

# correlations, labeled "r", and standard errors 

# as the sqrt of eq(2) labeled "ser". 

pathName = "C:/Users/USER/Documents/MyData.csv" 

dat = read.csv(pathName) 

r = dat$r 

ser = dat$ser 

k = length(r) #number of studies 

t = r/ser 

Precision=1/ser 

reg = lm(t ~ 0 + Precision) 

UWLS = as.numeric(reg$coefficients) 
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meta-analysis is nearly a perfect function of the inverse degrees of freedom (adjR2 = .999985)—

see Appendix A of the supplement. Thus, simple adjustments to the degrees of freedom, UWLS+3, 

can reduce these small-sample biases to scientific triviality. See Appendix A of the supplement for 

the numerical analysis of the small-sample biases of the meta-analysis of bivariate correlations. 

UWLS+3 is the unrestricted weighted least squares weighted average (i.e., eq. (5)) after 

three is added to the degrees of freedom in eq. (4), giving:  

 

𝑟3 = 𝑡
√𝑡2 + 𝑛 + 1

⁄              (6) 

 

These t-values are the t-values from the estimated bivariant regression slope coefficient or they 

may be equivalently calculated from the conventional t-value for correlations, t = 
𝑟

𝑆1
.  Again, 

correlations calculated from eq. (4), with df = n - 2, produce identical correlation values as those 

calculated from conventional formulas for correlations. We focus on UWLS+3 rather than 

corrections to RE because adjustments to UWLS have notably smaller biases than RE and RE’s 

small-sample correction in the presence of publication selection bias (PSB).  

 

3.2 Fisher’s z Transformation 

An issue that has long been recognized by meta-analysts is that the SEs of correlations are a 

mathematical function of the correlation itself—recall eqs. (2) and (3). This dependence is the 

source of the small-sample bias of the meta-analysis of correlations (Stanley, Doucouliagos, Maier 

et al., 2023). Strictly speaking, the inverse-variance weights are no longer optimal and create a 

bias.  To circumvent this issue, meta-analysts often first transform them to Fisher’s z, calculate the 

random-effects estimate, then convert this RE estimate from terms of z back to a correlation 

(Bornstein et al., 2009).3 Here, we call this z-transformed RE estimator, REz. Table 2 compares 

the statistical properties of REz to UWLS+3, PET-PEESE, and RE (from Table 1).  

 

 
3 Correlations are converted to z by: 0.5 ∙ ln [

(1 + 𝑟)
(1 − 𝑟)⁄ ] , and Fisher’s z is transformed back to correlations by: 

(𝑒(2𝑧) − 1)
(𝑒(2𝑧) + 1) 

⁄ .   
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3.3 PET-PEESE Model of Publication Selection Bias 

Publication selection bias (PSB), variously called: the “file drawer problem,” “publication bias,” 

“reporting bias,” “p-hacking,” and “questionable research practices” (QRP), has long been 

recognized by social scientists and medical researchers as a central problem for meta-analysis. 

PSB has been offered as a leading explanation of the widely discussed ‘replication crisis’, and 

recent meta-research surveys have shown that PSB is the central suspect in the exaggeration of 

psychology’s typical reported effect sizes and statistical significance (Klein, Vianello, Hasselman, 

et al., 2018; Bartoš, Maier, Wagenmakers, et al., 2023; Bartoš, Maier, Shanks, et al., 2023). 

 PET-PEESE ranks among the better methods to accommodate and reduce PSB (Bartoš, 

Maier, Wagenmakers, et al., 2023; Carter, Schonbrodt, Gervais & Hilgard, 2019). PET-PEESE is 

calculated as the slope coefficient from one of two meta-regressions:  

    𝑟𝑗 =    𝛿0 + 𝛿1𝑆𝐸𝑗 + 𝑢𝑗               (7) 

    𝑟𝑗 =    𝛾0 + 𝛾1𝑆𝐸𝑗
2 + 𝑒𝑗               (8) 

using weighted least squares (WLS) with 1/𝑆𝐸𝑗
2 as the weights (Stanley and Doucouliagos, 2014). 

If the regression coefficient, 𝛿0, is statistically significant (one-tail =.10), then the estimate of 𝛾0 

is PET-PEESE.  Otherwise, the estimate of the regression coefficient, 𝛿0, is PET-PEESE.  

PET-PEESE has been used in dozens of meta-analyses in psychology. For example, PET-

PEESE anticipated the failure of ego depletion to replicate (Carter et al., 2015; Haggard et al., 

2016). Kvarven, Strømland, and Johannesson (2020) conducted a systematic review of all pairs of 

preregistered multi-lab replications and meta-analysis. They compared RE, 3PSM (i.e., selection 

models of publication bias), and PET-PEESE to the findings from these large-scale preregistered, 

multi-lab replications. On average, RE was three times larger than the corresponding replication 

result, bias = .26 d (Cohen’s d), and RE had a 100% ‘false positive’ rate (Kvarven, Strømland, and 

Johannesson, 2020), and 3PSM was little better.  In contrast, PET-PEESE’s bias, relative to these 

preregistered multi-lab replications, is only .051d, and PET’s false positive rate is much lower than 
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RE’s, especially so (9%) when Cohen’s (1990) probabilistic proof of a null effect defines ‘false 

positive’ (Stanley, Doucouliagos, and Ioannidis, 2022a).4  

Incidentally, PET-PEESE belongs to the same family of UWLS estimators as UWLS+3 and 

along with other methods that reduce publication bias: WAAP (weighted average of the adequately 

powered)and WILS (weighted and iterated least squares)  (Stanley, Doucouliagos, and Ioannidis, 

2017; Stanley and Doucouliagos, 2022).5 UWLS may be seen as a PET-PEESE meta-regression 

model that uses the same weights but does not include any independent variable: neither SE nor 

SE2. 

Table 2, below, also reports simulations of a second version of PET-PEESE that regresses 

Fisher’s z on its SE or variance.  PPz first converts correlations to Fisher’s z, regresses these zs 

using corresponding versions of Eqs. (7) and (8), and then transforms PPz back to a correlation. 

PPz avoids the correlation of r and its SE when there is no publication bias. Another alternative 

solution, which we do not simulate here, would be to use the square root of the inverse sample size 

as an instrument for the standard error in PET-PEESE (Stanley, 2005; Irsova, Bom, Havranek, and 

Rachinger, 2023). Among other things, the instrumental-variable PET-PEESE technique accounts 

for the mechanical correlation between r and its SE. See Irsova, Bom, Havranek, and Rachinger 

(2023) for simulations of the instrumental estimator. 

 

3.4  An Illustration 

Eastwick et al. conducted a meta-analysis of the correlations of physical attractiveness and earning 

potential on men and women’s romantic evaluations (Eastwick, Luchies & Finkel et al., 2013).  

The research literature suggests that: “The attractiveness of the target affects men’s romantic 

evaluations more than women’s, and the earning prospects of the target affect women’s romantic 

evaluations more than men’s” (Eastwick, Luchies & Finkel et al., 2013, p. 627). This meta-analysis 

reported several random-effects estimates but focused on the gender differences and their 

moderators. For the sake of illustrating the methods discussed above, we focus on the correlation 

between the perceived earning potential of candidate men on women’s romantic evaluations. 

 
4 Only the precision-effect test (PET) provides a valid test (H0: 𝛿1=0, from Eq. (7) for the presence of a nonzero mean 

effect, after correcting for potential PSB.  
5 Both WAAP and WILS calculate UWLS on subset of the effect sizes. WAAP uses only those studies that have 

80% or higher power while WILS first removes those estimates most responsible for excess statistical significance. 
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Conventional random effects estimate the correlation of the earnings potential of the target on 

women’s romantic evaluations as 0.128 – 95% CI (0.092, 0.164), k=73. Using REz does not 

notably reduce these values– 0.127, 95% CI (0.092, 0.163).  This is to be expected as the 

correlation is small, and small correlations have smaller small-sample biases.  Furthermore, the 

sample sizes vary widely from 11 to over 7,000 with most studies having n > 100.   

On the other hand, UWLS+3 reduces the RE estimate by over 60%, 0.050, 95% CI (0.022, 

0.078). That is, UWLS+3 reduces a small correlation to a trivial one by Cohen’s benchmarks.  It is 

important to note that Eastwich et al. (2013) accept Cohen’s definition of ‘small’ effect sizes (.1 < 

r < .3) and use it to characterize their central findings—(Eastwick et al., 2013, Abstract). UWLS+3 

is calculated by first adjusting each correlation by eq. (6), giving 𝑟3, then applying the simple 

UWLS regression, eq. (5), of  t-values = 𝑟3/𝑆1  (DV) with precision,  1/𝑆1 ,  as the only independent 

variable and no constant—see eqs (6) and (5) and the Supplement for the STATA code. 

 The primary reason that UWLS+3 notably reduces the effect size is likely publication 

selection bias.  UWLS, in general, is widely known to reduce PSB more than corresponding 

random-effects, and the below simulations confirm that UWLS+3 is less biased than RE and REz.  

However, these simulations also show that all weighted averages are notably biased when there is 

a small correlation, PSB, and notable heterogeneity, as we see here (tau = 0.128; I2 = 85%).  

Testing whether the coefficient on SE in eq. (7) is statistically significant is a test for PSB 

(the Egger test), also called the funnel-asymmetry test, or FAT (Egger Smith & Schneider & 

Minder, 1997; Stanley, 2005; Stanley and Doucouliagos, 2014). The estimated FAT-PET meta-

regression, eq. (7), for these earnings-romance correlations and the associated Fisher’s z (Fz) are: 

   𝑟𝑗 =  −.026 + 1.94 ∙ 𝑆𝐸𝑗             (9) 

  t   =   (-1.37)  (5.19)   

 

  𝐹𝑧𝑗 =  −.029 + 1.94 ∙ 𝑆𝐸𝑗             (10) 

  t      =   (-1.55)  (5.39)   

 

Where the second line reports the t-values of the intercept (PET) and slope coefficients (FAT) in 

parentheses and both meta-regressions use inverse variances as WLS weights. Also note that  

𝑆𝐸𝑗 is different in eqs. (9) and (10). For correlations, 𝑆1 is its standard error, and Fisher’s z 

employs 1/sqrt(n-3) as its standard error. In both cases, PET fails to reject the null hypothesis that 
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earnings-romance correlation for women is zero (t= {-1.37; -1.55}; p > .05).  In other words, once 

potential publication selection bias (or small-study bias or funnel asymmetry) is accommodated, 

no evidence of a positive earnings-romance correlation remains.6 Also, both tests of the slope 

coefficients (FAT) are consistent with funnel asymmetry and, therefore, PSB (t= {5.17; 5.39}; p 

< .001).7  This funnel asymmetry is also seen in the funnel graph—see Figure 1.   

Consistent with this interpretation, observe that the largest sample estimates are all quite 

small.  For example, there are only two studies that are adequately powered (power > 80%), using 

UWLS+3 as the estimate of the population mean. These two studies are at the top of the funnel 

(Figure 1)— r = {-0.06, 0}. Considerations of power alone make the random-effects estimate 

dubious, whether Fisher’s z is used or not. Greater resilience to PBS is perhaps UWLS+3’s most 

important property. We turn next to simulations that show this to be a general property of UWLS+3. 

 
4. Simulations 

To better understand the statistical properties of the meta-analysis of correlations under research 

conditions commonly seen in psychology, we conduct Monte Carlo simulations.  Unlike 

replications or other empirical analyses, simulations allow us to set and thereby know the exact 

‘true’ (population) value, , of the correlations investigated. To ensure that they reflect typical 

research conditions found across psychology, we closely calibrate our simulations design to match 

the key research dimensions found in correlational research.  For this purpose, we employ 108 

Psychological Bulletin meta-analyses of correlations reported in Stanley et al. (2018).  These 108 

meta-analyses jointly contain 5,891 pairs of estimated correlations and their standard errors, from 

which we can also calculate the sample sizes.  

 
6 Because these intercepts are in the opposite direction of the meta-analysis estimates (i.e., negative), we interpret 

them as negligible. When the PET estimate is of the opposite sign as UWLS, PEESE, eq. (8), should not be calculated. 

In these cases, there is such a strong correlation with the standard error that any statistical evidence of a mean effect 

is erased once potential PSB in accommodated.  PEESE should be employed only if there is some evidence of an 

effect in the predominant direction. 
7 Note that the magnitude of the estimated FAT coefficients, 1.94, is quite substantial. When, the FAT coefficient is 

two or larger, Doucouliagos and Stanley (2013) categorize this as ‘severe’ publication selection because it implies that 

the average effect size is exaggerated by twice its SEs; just sufficient to can make a null effect appear statistically 

significant. The SE of Fisher’s z does not depend on the magnitude of the correlation (or Fz); thus, this clear positive 

correlation with SE cannot be dismissed as a statistical artifact of its variance formula.  Nor can the fact that the 

formula for 𝑆1
2depends on r be used to dismiss its positive correlation, eq. (9), as this formula embeds a slight negative 

correlation.      
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The median sample size is 95, which we round to 100, the 10th percentile uses a sample of 30, 

and 90th percentile is 424, which we round down to 400 so as not to exaggerate the likely precision 

of some studies in an area of research.  Although a very small percentage of studies use thousands 

and tens of thousands of observations, to assume larger sample sizes risks underestimating the 

biases of the majority of meta-analysis of correlations. Recall that the Supplement (Table S1) 

demonstrates how all meta-analyses of correlations and partial correlations have small-sample 

biases which predictably disappear with larger sample sizes at a rate proportional to 1/n.  Using 

these percentiles as our anchors, we fill in the remainder of the sample size distribution, n = {30, 

40, 50, 75, 100, 100, 125, 160, 200, 400}, to correspond to the sample size distribution observed 

across these 108 Psychological Bulletin meta-analyses.  

Similarly, the values of the population correlation are set to correspond to the observed 

distribution of random-effects estimates reported in these same 108 meta-analyses. The median 

absolute value of these 108 REs is 0.232, which, for convenience, we approximate by the sqrt 

(1/17) = 0.243. The 10th percentile is 0.07, which we ‘round’ up to sqrt (1/82) = 0.110.  As shown 

in previous studies and we confirm below, small values of  produce practically no bias unless 

study results are selected for their statistical significance (i.e., publication selection bias). Thus, 

we make this small correlation a bit larger, intentionally.  The 90th percentile of the RE distribution 

is 0.422, which we ‘round’ up to sqrt (1/5) = 0.447. The 10th and 90th percentiles reflect a range of 

 values likely seen in practice. However, as discussed in Section 3.1, all these values are likely 

an exaggerated reflection of the ‘true’ population mean as RE is widely recognized to be highly 

biased in the presence of PSB, a condition we simulate, corroborate, and discuss further below. 

Thus, one should focus on the results of the more representative correlation effect size, 0.243 and 

0.110, or consider the average across all three values of  reported in Tables 1 and 2 as 

‘representative.’  

In the heterogeneity conditions, labelled ‘Het’ in Tables 1 and 2, we again rely on what was 

found to be the typical across these 108 meta-analyses, mean I2 = 64.5%. Note that the typical 

heterogeneity reported in Tables 1 and 2, below, for the ‘Het’ case nearly reproduces this level of 

relative heterogeneity. To do so, we assume that heterogeneity is weakly and inversely correlated 

with sample size; that is, normally distributed with standard deviations of  ={.45, .45, .3, .3, .3, 

.3, .3, .3, .075, .075} as n = {30, 40, 50, 75, 100, 100, 125, 160, 200, 400}. Meta-research evidence 
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shows that psychology’s heterogeneity is inversely correlated with sample size, typically, and 

simulations confirm that these values of heterogeneity produce the level of correlated 

heterogeneity observed across dozens of psychology meta-analyses (Stanley, Doucouliagos and 

Ioannidis, 2022b). To generate random normal heterogeneity, we first convert each estimated 

correlation to Cohen’s d, add a random normal deviation with mean zero and standard deviations 

{.45, .45, .3, .3, .3, .3, .3, .3, .075, .075} and transform these Cohen’s ds back to correlations.8 

In the PSB condition, we follow previous studies by assuming that exactly half of the results 

contained in a meta-analysis have been selected to be statistically significant, while the first 

random result produced by the other 50% is reported, as it is, statistically significant or not, and 

included in the meta-analysis (Bartoš, Maier, Wagenmaker, et al.,  2023;  Bom and Rachinger, 

2019; Stanley and Doucouliagos, 2014, 2015; Stanley, Doucouliagos and Ioannidis, 2017).  We 

do not mean to imply that all areas of psychology have such strong selection for statistical 

significance. Thus, we also report cases of no selection for statistical significance. Table 2 reports 

the average statistical results across cases where there is 50% publication selection bias and where 

there is no selection for statistical significance.  The average across no publication selection bias 

(Het) and 50% PSB (PSB) is likely to better reflect typical areas of psychology, this average is 

reported in the last row of Table 2, labelled “PSB & Het Ave.” 

The full details of how we generate 500,000 correlation studies from individual subject data, 

collectively containing 64 million subjects, are reported in the Supplement and follow previous 

studies (Stanley, Doucouliagos, Maier et al., 2023; Stanley, Doucouliagos and Havránek, 2023). 

The central innovations relative to these other simulation studies are: (i) the use of a distribution 

of sample sizes, rather than a single fixed sample size, (ii) the inclusion of the typical level of 

heterogeneity, (iii) the infusion of 50% PSB, and (iv) the investigation of the performance of 

corrections for PSB, PET-PEESE, along with traditional and novel weighted averages. 

To generate estimated correlations between two variables, 𝑌𝑖 and 𝑋1𝑖, we begin with the simple 

linear regression: 

 

 
8 Random heterogeneity added to  produce asymmetric, nonnormal, sampling distributions that induce further 

estimation biases. Conversion to Cohen’s d avoids this added source of bias. Generating heterogeneity through random 

variations to X1’s regression coefficient, 𝛽1  of Eq. (9), below, produces approximately the same overall results.  
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𝑌𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + 휀𝑖                      (11) 

For the sake of transparency and simplicity, we assume that 𝛽0 = 𝛽1  = 1. 𝑋1𝑖 & 휀𝑖 are forced to 

be independently and normally distributed.  We generate 휀𝑖  as N(0,1), and 𝑋1𝑖 as N(0, .25), where 

.25 is the variance for  = 0.447. After which, eq. (11) determines the values of 𝑌𝑖.  Next, the 

bivariate regression, eq. (11), is estimated along with the t-value of the estimated regression 

coefficient 𝛽1.  This t-value is converted to a correlation by eq. (4).  With these simple data 

generating processes, we know that the population variance of 𝑌𝑖  is 1.25, because it is the sum of 

𝑋1𝑖 and 휀𝑖’s variances. The correlation squared must then be equal to the ratio of the variance of 

𝛽1𝑋1𝑖 to the variance of 𝑌𝑖.  That is,  = .25/1.25 =1/5, making  = √
1

5
 or 0.447.  0.447 is the 

approximate size of the 90th percentile of correlations in psychology as estimated by random 

effects.   In other simulation experiments, we set  approximately equal to the median effect size 

( = sqrt(1/17) = .243) by generating 𝑋1𝑖  as a random normal, N(0,1), divided by 4 and a ‘small’ 

effect size ( =sqrt(1/82)=.110) by dividing random N(0,1) by 9. Doing so makes 𝑋1𝑖
′ s variance 

equal to 1/16 and 1/81, respectively, while leaving the error variance at one.   

For each correlational study, all data are generated from eq. (11), this regression is 

estimated, then 𝑟 is calculated from eq. (4),  𝑆1
2 is calculated from eq. (2), and 𝑆2

2 from eq. (3). 

Each of these steps are repeated 50 times to represent one meta-analysis.9 From these 50 randomly 

generated estimated correlations, RE and the UWLS weighted averages are calculated. For each 

of 10,000 randomly generated meta-analysis, RE’s and UWLS’ biases, square roots of the mean 

squared errors (RMSE), and confidence intervals are calculated and then averaged across these 

10,000 replications. See the Supplement for the simulation code. Table 1 reports the results of 

these simulations using both versions of r’s variance—eq. (2) and eq. (3). 𝑆2
2 consistently produces 

twice the bias as 𝑆1
2. Table 1 also shows that 𝑆2

2 generates larger mean squared errors and inferior 

coverage (i.e., coverage rates that are often much different than their nominal 95% level). Several 

lessons can be drawn from this simulation study.  

 
9 In psychology, the average number of estimated correlations per meta-analysis is 55 (Stanley et al., 2018). The biases 

of correlations are largely independent of the number of correlations (k) meta-analyzed. In contrast, the sample size 

(n) of the primary study used to calculate correlations is a very important determinant of this bias, as meta-analysis of 

correlations suffers from small-sample bias (Stanley, Doucouliagos, Maier et al., 2023).In these simulations, we 

assume that the distribution of sample sizes reflects what is typically seen in psychology.  
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5. Results and Discussion 

First, Table 1 confirms that the conventional meta-analysis formula of correlations’ variance, 𝑆2
2 

(Borenstein et al., 2009), should not be used in meta-analysis when an obvious and simple 

alternative is always available, 𝑆1
2. In all cases, the biases, MSE and CIs are better when 𝑆1

2 is used 

rather than 𝑆2
2.  Thus, by simply not squaring the numerator of correlation’s variance formula, the 

biases and MSEs of conventional meta-analysis can be notably reduced, and the CIs improved.  

However, when there is no publication bias, the biases of conventional random effects are little 

more than rounding error (< .01). When there is notable selection for statistical significance (i.e., 

publication selection bias), biases of all simple meta-analysis methods can be substantial.  This is 

especially problematic for more than half of psychological research where effect sizes are small 

( =.11; .243). With notable publication bias, conventional random-effects meta-analyses of 50 

correlations are virtually certain to be falsely positive (that is, to be statistically significant when 

the correlation is, in fact, zero)—see Table 2.10 The publication bias of RE is especially pernicious, 

when research synthesis is needed most: small correlations.  For these, the bias of RE is likely to 

be as large as the true population correlation or nearly so, and RE is likely to falsely suggest a 

genuine effect where there is none (see Table 2). 

Table 2 reports two further meta-analysis estimators, UWLS+3 and REz, shown by 

(Stanley, Doucouliagos and Havránek, 2023) and (Stanley, Doucouliagos, Maier et al., 2023) to 

outperform conventional meta-analyses of correlations and partial correlations and to reduce their 

small-sample biases to negligibility.  Table 2’s simulations confirm that this remains the case even 

when meta-analyses have a typical distribution of sample sizes and heterogeneity, see the top two 

thirds of Table 2 and compare them to Table 1. However, as expected, both UWLS+3 and REz 

(along with RE and UWLS) have notable biases when there is 50% PSB. 

Note that UWLS+3 generally has better statistical properties than REz.  This is especially 

clear when the two most realistic cases, Het & PSB, are averaged—see the last row, labelled “PSB 

& Het Ave,” in Table 2. Like conventional meta-analyses, UWLS+3 and REz have unacceptable 

 
10 Table 2 reports that the type I error of the random effects estimates that are based on the z-transformation, REz, to 

be 99.85%. In all cases, REz has better statistical properties than the conventional RE of correlations.  Compare RE2 

in Table 1 to REz in Table 2.  
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biases and type I errors when there is notable publication bias.  Thus, if publication selection bias 

is a genuine risk, some PSB accommodation or correction should be used.  

In Section 3.3, above, we discussed PET-PEESE as a frequently employed method to 

reduce publication bias in psychology.  Researchers have questioned the validity of PET-PEESE 

and related meta-regression corrections for publication bias (based on the Egger regression) 

because SE can be correlated with effect size in the absence of publication bias (Egger et al. 1997; 

Moreno et al., 2009; Pustejovsky and Rodgers, 2019).  Thus, a surprising finding is that, even for 

correlations, where the correlation with SE in the absence of publication bias is mechanical, PET-

PEESE works well to reduce PSB and type I errors when there is publication bias – see the columns 

for PET-PEESE and PPz at the bottom of Table 2.  Average bias of PET-PEESE is only about 

.01, approximately 4 times smaller than conventional random-effects’ biases (using either 

correlations or Fisher’s z transformation).  

Despite the correlation between SE and r in the PET-PEESE meta-regressions, eqs. (7) and 

(8), PET-PEESE has very good statistical properties.  Especially relevant, note that PET’s type I 

errors are always within their nominal levels, whether or not there is publication bias. However, 

PET-PEESE is not perfect and can be improved through the Fisher’s z transformation because z is 

not correlated to its SE.  PPz reports the statistical properties of first converting correlations to z, 

calculating PET-PEESE in terms of Fisher’s z, and lastly converting PET-PEESE in terms of z 

back to a correlation.  On average, PPz has smaller bias, MSE, type I errors, and better CIs than 

PET-PEESE of correlations.  However, there is a potential problem with using PPz in the place 

of PET-PEESE. PPz is downwardly biased for small correlations (.11), and this is a rather crucial 

effect size range as Cohen’s guidelines suggest that anything less than .1 is ‘trivial’ or scientifically 

‘null’ (Cohen, 1990).  In contrast, PET-PEESE is never downwardly bias, and its upward biases 

are trivial (< .01) for small ‘true’ effect sizes.  When analyzing effects that may be null or trivial, 

it would, therefore, be better to use PET-PEESE of correlations but to rely on PPz in other cases. 

For the sake of robustness, we recommend that researchers report both. 

Surprisingly, across the two most representative research conditions, Het & PSB (that is, 

heterogeneity without PBS and heterogeneity with 50% PSB, respectively), UWLS+3 has the 

smallest average RMSE.  Yet, UWLS+3 does not correct for PSB, explicitly.  This relatively small 

RMSE is not a justification for only using UWLS+3 when PSB is suspected. While its RMSE is as 
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good or better than the alternatives, it also has unacceptable Type I errors (.9957) with 50% PSB. 

Because PSB can rarely be ruled out either a priori or though tests of PSB (as they all tend to have 

low power), PET-PEESE should be routinely reported along with UWLS+3 and the more 

conservative results emphasized.  

We also extend these findings about simple bivariate correlations to partial correlations, 

following Fisher’s (1921) observation that what works for correlations works for partial 

correlations. Stanley, Doucouliagos and Havránek (2023) demonstrates how the meta-analysis of 

partial correlations suffer from the same small-sample biases as do bivariate correlations and that 

the methods that accommodate these small-sample biases (i.e., REz and UWLS+3) are equally 

effective in the meta-analysis of partial correlations.  Here, we extend the same simulation design 

that produced Table 2 to partial correlations.   

To do so, we first generate the original correlational data by adding an independent 

variable, 𝑋2𝑖,  to eq. (9). 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 휀𝑖         (12) 

We make the same assumptions about the distribution of these variables and further assume that 

𝛽2 = 1 and force 𝑋2𝑖 to be independently and normally distributed, N(0,1).  Otherwise, this 

simulation design is identical with the simulations reported above and uses the same GAUSS code 

after replacing eq. (9) with eq. (10) (see the Supplement). The results for partial correlations (see 

Table S2 in the Supplement) are virtually the same as those reported in Table 2 and those found in 

Stanley, Doucouliagos and Havránek (2023). Thus, as Fisher correctly noted more than a century 

ago, what is true for correlations is also true for partial correlations once degrees of freedom are 

properly adjusted.  

 

6. Conclusions  

Conventional meta-analyses of correlations are biased, even under ideal conditions.  However, to 

isolate and to document these small-sample biases, Stanley, Doucouliagos, Maier et al. (2023) 

assumed that all studies in a meta-analysis had the same sample size and that there is no selection 

for statistical significance (i.e., no PSB). The purpose of this paper is to investigate the statistical 
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properties of conventional meta-analysis methods under typical conditions widely seen in 

correlational research in psychology. We find that these small-sample biases remain although they 

are, for the most part, negligibly small except when some results are selected for their statistical 

significance. 

When some results are selected for their statistical significance, PET-PEESE has little if 

any notable bias (< .02), and tests of the correlation’s statistical significance (PET) maintain their 

nominal type I errors. This is an especially surprising finding as estimated correlations are 

mechanically correlated with their standard errors, though inversely so, in the absence of PSB. 

This correlation is seen by some to be a disqualifying condition for the application of PET-PEESE 

and the related Egger regression to meta-analysis (Moreno et al., 2009; Pustejovsky and Rodgers, 

2019). PET-PEESE is a notable improvement over random-effects (RE) even when averaged 

across research areas where there is PSB and where there is no PSB (see the last row of Table 2). 

With PSB, RE can have biases as large as the population mean correlation it is estimating, and RE 

is virtually certain (99.85%) to falsely identify statistically significant correlations that do not exist 

(see Table 2, Type I errors).  

This study corroborates other findings of Stanley, Doucouliagos, Maier et al. (2023). They 

show that the conventional formula for the variance of correlations, 𝑆2
2 =

(1 − 𝑟2)2

(𝑛 − 1)⁄  

(Borenstein et al., 2009), should never be used in meta-analysis as it is statistically dominated in 

all cases by a simpler formula, 𝑆1
2 =

(1 − 𝑟2)
(𝑛 − 2)

⁄ , that does not square the dominator.   

We also show that a new simple weighted average, UWLS+3, statistically dominates RE 

whether or not correlations are first transformed to Fisher’s z (Table 2). This simple correction for 

small-sample bias, UWLS+3, adjusts the degrees of freedom and emerges as the preferred meta-

analysis estimator in the absence of PSB. With PSB, PET-PEESE, using either correlations or 

Fisher’s z, has the best statistical properties under typical correlational research conditions. Unless 

publication selection bias can be ruled out a priori (for example, in a meta-analysis of pre-

registered replications), we recommend researchers report PET-PEESE and emphasize whichever 

meta-analysis results (from PET-PEESE, REz or UWLS+3) are the more conservative.  
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Needless to say, there are limitations to our findings. They apply fully only to the 

specifications that we simulate, which assume that meta-analyses have the typical conditions seen 

widely across correlational studies in psychology, more or less. However, not all meta-analyses 

involve ‘typical’ correlational research. In particular, if all studies use small samples (n < 50 or n 

<100), small-sample biases will generally be larger and PET-PEESE is no longer valid as there 

will be too little variation in SE, and, as a result, PET-PEESE will produce unreliable estimates. 

When there is little variation in SE, the independent variable in the PET-PEESE meta-regression 

will have little useful information with which to estimate their slope coefficient. If there is 

insufficient information to estimate the slopes accurately, the estimates of the intercepts will be 

equally unreliable. In meta-analyses with little variation in SE, one should not employ PET-PEESE 

(Stanley, 2017).11   

To prevent any undue influence from one or a few overly influential effects, meta-analysts 

should always use influence statistics (also called leverage points or, incorrectly, ‘outliers’) to 

identify and remove such overly influential studies regardless of their cause. The criterion and 

method used to identify leverage points can be stated in a pre-analysis plan. Without the 

identification and removal of highly influential effect sizes, any meta-analysis result can be highly 

skewed towards simple coding/transcription/transformation errors or, in rare cases, fraud.12 

In summary, a simple adjustment to degrees of freedom can reduce the small-sample bias 

of the meta-analysis of correlations, and publication selection biases are almost fully corrected by 

PET-PEESE under typical conditions seen widely across correlational studies in psychology.  

 
11 However, it needs to be emphasized that meta-analyses in psychology typically have sufficient variation in sample 

size and SE to allow the PET-PEESE models to be reliably estimated.  Across 600 psychology meta-analyses, the 

typical (median) ratio between the smallest sample size and the largest is a factor of 20 (Bartoš, Maier & Wagenmakers 

et al., 2022).  Thus, the typical distribution of sample sizes across psychology is wider than the distribution of sample 

sizes used in this paper’s simulations. In those rare cases where there is little variation among samples sizes (e.g., n < 

100, for all studies), we recommend Bayesian model averaging that lets the research record, itself, decide on the 

appropriate weights (Bartoš, Maier & Wagenmakers et al., 2023).  
12 An illustrative example comes from Kivikangas’ et al. (2021) meta-analysis of the correlation between moral 

foundations and political orientation. In this area of research, one study stands out, Graham et al. (2011). It uses data 

from the YourMorals.org, which required the volition of over 200,000 individual subjects. Including this one study 

doubles the mean effect size, as Graham et al. (2011) reports both the largest correlations and the largest sample by 

more than an order of magnitude. This study’s large effect size is probably not an error and clearly not fraud. As 

Kivikangas et al. (2021) argue the large effect was likely the result of self-selection to participate by those with the 

more extreme political orientations.  Regardless of cause, such overly influential studies need to be omitted or 

accommodated through moderator analysis, just as Kivikangas et al. (2021) did. 
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Highlights 

What is already known? 

• All inverse-variance weighted meta-analyses of correlations are biased.  

• Dozens, perhaps hundreds, of meta-analyses of correlations are conducted each year. 

What is new? 

• We investigate the statistical properties of alternative meta-analysis estimators of the 

population correlation coefficient with simulations that closely match typical research 

conditions widely seen across correlational studies in psychology.  

• We explore a novel correction, UWLS+3, that reduces these small-sample biases to scientific 

negligibility.  

• UWLS+3 is the unrestricted weighted least squares weighted average that adjusts degrees of 

freedom to effectively eliminate small-sample bias.  It is less biased than random effects 

calculated on correlations or Fisher’s z whether there is publication selection bias or not. 

• Despite the mechanical correlation between estimated correlations and their standard errors, 

PET-PEESE effectively removes publication selection bias under the typical research 

conditions widely found across correlational studies in psychology.  
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FIGURE 1: A plot of the earnings-romance correlations for 

women against their precision,1/𝑆1 , on the vertical axis 

(Eastwick, Luchies & Finkel et al., 2013). 
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Table 1: The meta-analyses of correlations (RE and UWLS) using different formulas for the correlation variance 

Notes: HET/PSB describes different assumed conditions. With PSB, the simulations force both heterogeneity and 50% of the study results to be selected for statistical significance i.e. publication bias, 

Het assumes only heterogeneity, and None allows neither.  is the ‘true’ population correlation.  Bias is the difference between the meta-analysis estimate calculated from 50 estimated correlation 

coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 meta-analyses’ 95% confidence intervals that contain . 

RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ estimate of the mean. The subscripts (1 and 2) refer to the use of either correlation variance, 𝑆1
2, 

from eq. (2) or 𝑆2
2 from eq. (3) to calculate RE’s and UWLS’ weighted averages. I2 is a widely known, relative measure of heterogeneity. 

 

 

 

Design Bias Coverage RMSE 

Het/PSB  I2 RE2 RE1 UWLS2 UWLS1 RE2 RE1 UWLS2 UWLS1 RE2 RE1 UWLS2 UWLS1 

None .447 .1058 .0097 .0042 .0103 .0042 .8595 .9572 .8362 .8925 .0142 .0110 .0147 .0110 

None .243 .1069 .0065 .0028 .0069 .0030 .9261 .9562 .9177 .9318 .0139 .0123 .0140 .0123 

None .110 .1079 .0028 .0010 .0030 .0011 .9530 .9603 .9483 .9493 .0132 .0126 .0131 .0125 

Average .0063 .0027 .0067 .0028 .9129 .9579 .9007 .9245 .0138 .0120 .0139 .0120 

Het .447 .6023 .0075 .0007 .0197 .0057 .8991 .9357 .7676 .8960 .0192 .0173 .0254 .0162 

Het .243 .6491 .0036 -.0009 .0138 .0039 .9247 .9331 .8928 .9377 .0228 .0216 .0244 .0192 

Het .110 .6638 .0016 -.0006 .0068 .0019 .9276 .9308 .9404 .9511 .0240 .0229 .0225 .0201 

Average .0042 -.0003 .0135 .0038 .9171 .9332 .8669 .9283 .0220 .0206 .0241 .0185 

PSB .447 .5668 .0190 .0113 .0260 .0124 .7573 .8686 .5988 .8019 .0250 .0194 .0301 .0190 

PSB .243 .6171 .0527 .0451 .0478 .0363 .2305 .3304 .2846 .4439 .0562 .0488 .0510 .0400 

PSB .110 .6879 .0955 .0894 .0819 .0725 .0187 .0226 .0368 .0560 .0982 .0919 .0842 .0748 

Average .0557 .0486 .0519 .0404 .3355 .4072 .3067 .4339 .0598 .0534 .0551 .0446 

PB & Het Ave .0300 .0242 .0327 .0221 .6263 .6702 .5868 .6811 .0409 .0370 .0396 .0316 
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Table 2:  REz, UWLS+3 , and PET-PEESE meta-analyses of correlations 

 

Notes: HET/PSB describes different assumed conditions. With PSB, the simulations force both heterogeneity and 50% of the study results to be selected for statistical significance i.e. 

publication bias, Het assumes only heterogeneity, and None allows neither.  is the ‘true’ population correlation.  Bias is the difference between the meta-analysis estimate calculated from 

50 estimated correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 meta-analyses’ 95% 

confidence intervals that contain . Type I errors, by definition, must assume that  =0, and thereby only be reported once for each design condition.  RE is the random-effect’s estimate of 

the mean, and UWLS is the unrestricted weighted least squares’ estimate of the mean. UWLS+3, as discussed in text, is the unrestricted weighted least squares meta-average with 3 additional 

degrees of freedom, REz is the random effects estimate of the mean correlation after being transformed back from Fisher’s z, PP is PET-PEESE, and PPz is the PET-PEESE that uses the 

Fisher’s z transformation. I2 is a widely known, relative measure of heterogeneity. 

 

Design Bias Coverage RMSE 

Het/PSB  I2 UWLS+3 REz PP PPz UWLS+3 REz PP PPz UWLS+3 REz PP PPz 

None .447 .1042 .0001 .0016 .0128 .0001 .9480 .9555 .8674 .9469 .0101 .0103 .0198 .0153 

None .243 .1048 .0000 .0010 .0083 .0001 .9469 .9554 .9266 .9472 .0119 .0121 .0199 .0180 

None .110 .1076 .0002 .0006 .0033 -.0010 .9512 .9585 .9435 .9439 .0124 .0126 .0217 .0221 

Average .0001 .0011 .0081 -.0003 .9487 .9565 .9125 .9460 .0115 .0116 .0205 .0185 

Type I error rate .0250 .0206 .0248 .0265  

Het .447 .6019 .0012 -.0011 .0274 -.0008 .9561 .9378 .8170 .9719 .0153 .0172 .0343 .0210 

Het .243 .6500 .0013 -.0003 .0192 -.0008 .9562 .9376 .9347 .9736 .0187 .0212 .0321 .0254 

Het .110 .6635 .0003 -.0007 .0056 -.0066 .9543 .9334 .9684 .9777 .0201 .0228 .0350 .0369 

Average .0009 -.0007 .0174 -.0028 .9555 .9363 .9067 .9744 .0180 .0204 .0338 .0278 

 Type I error rate .0198 .0328 .0074 .0094  

PSB .447 .5650 .0080 .0093 .0198 -.0073 .9166 .8954 .8912 .9598 .0166 .0184 .0284 .0215 

PSB .243 .6160 .0341 .0445 .0141 -.0060 .5301 .3427 .9463 .9641 .0380 .0483 .0292 .0256 

PSB .110 .6877 .0715 .0888 .0057 -.0208 .0699 .0239 .8260 .8648 .0739 .0914 .0611 .0639 

Average .0379 .0476 .0132 -.0114 .5055 .4207 .8878 .9296 .0429 .0527 .0396 .0370 

Type I error rate .9957 .9985 .0169 .0104  
 

Type I error rate .0198 .0328 .0074 .0094  
 

Type I error rate .0198 .0328 .0074 .0094  
 

Type I error rate .0198 .0328 .0074 .0094  
 

Type I error rate .0198 .0328 .0074 .0094  
 

PSB & Het Ave .0194 .0234 .0153 -.0071 .7305 .6785 .8973 .9520 .0304 .0365 .0367 .0324 


