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Robots and Al

Robots and artificial intelligence (AI) are powerful forces that will likely have
large impacts on the size, direction, and composition of international trade
flows. This book discusses how industrial robots, automation, and AI affect
international growth, trade, productivity, employment, wages, and welfare.
The book explains new approaches on how robots and artificial intelligence
affect the world economy by presenting detailed theoretical framework and
country-specific as well as firm-product level-specific exercises.

This book will be a useful reference for those researching on robots,
automation, Al and their economic impacts on trade, industry, and employment.
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1 Introduction

Lili Yan Ing and Gene M. Grossman

This book was written and edited by humans.

But soon many books, goods, and services will be produced, operated, and
supported by industrial robots that rely on artificial intelligence.

Over the past three centuries, we have witnessed various technological
advances that have revolutionized production methods, business organization,
and the way people work and live. Paradigm-changing innovations included
the steam engine, the electric motor, the digital computer, and a range of prod-
ucts and services falling under the rubric of Information and Communications
Technology (ICT).

More recently, we have seen remarkable advances in the availability and uses of
industrial robots and artificial intelligence (AI). George Devol is credited with
inventing the first industrial robot in the late 1950s. The National Inventors
Hall of Fame dubbed him the “grandfather of robotics” for his patent on the
first digitally-operated, programmable, robotic arm that came to be known as
Unimate. In 1961, Unimate was installed on the assembly line at General
Motors’ Inland Fisher Plant in Ewing, New Jersey. The machine transported
die castings from the assembly line and welded them to the body of the car.
In so doing, it substituted for human labor in performing a task that was
tedious and dangerous. Soon afterward, Devol and his business associate,
Joseph Engelberger, formed the world’s first robot manufacturing company,
which they named Unimation.

By 1967, industrial robots were being traded internationally. Unimate was
exported to the Swedish firm Svenska Metallverken for use in the die-casting
process for the company’s downstream client, Volvo. Soon, Unimate was
being manufactured by the Kawasaki Robot Company in Japan under a technical
licensing agreement and marketed throughout Europe. It continued to be used
mainly for “pick-and-place” tasks involving heavy and dangerous materials
(Wallen, 2008; Gasparetto and Scalera, 2019). Meanwhile, a German firm,
Keller and Knappich Augsburg (KUKA), had installed the first automatic
welding systems for refrigerators and washing machines as well as the first
multi-spot-welding line used by Volkswagen (Futura-Automation, 2019).

Before long, companies in Japan were installing robots for use in its fast-
growing manufacturing sector. Kawasaki Robots sold its Kawasaki-Unimate

DOI: 10.4324,/9781003275534-1
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2000 to the nascent automobile sector. Japanese firms imported the Versatran
from US producer AMF for automated handling of car parts. By 1972, Uni-
mate’s welding robots were also being used by Nissan Motors (Flamm, 1986).
Kawasaki (Kawasaki Robotics, 2021) claimed that its robots could save the
work of twenty employees, while being cleaner and safer than human labor.

In the years that followed, other emerging economies followed Japan’s lead.
Hyundai Motor, the largest automotive producer in South Korea, began to
import industrial robots for use in its production processes (Sung, 2004). By
1985, Taiwan had developed assembly robots for applications in electronics
and light assembly, while Singapore had installed about 0.6 industrial robot
per thousand manufacturing workers (Flamm, 1986). As the technology devel-
oped further, faster and more sophisticated robots began to be used for a
range of other manufacturing processes.

The annual number of installations of industrial robots worldwide more than
doubled from 2012 to 2019, reaching a total of 373,240 by the end of that
period. The operational global stock of robots increased from 1 million in
2009 to about 2.7 million in 2019. China, and to a lesser extent Japan,
became the fastest new adopters of industrial robots. Together they contributed
almost two-thirds of the global growth of industrial robots from 2012 to 2019
(Stanford University, 2021). The automotive and electronic industries remain
the two heaviest users of industrial robots, absorbing between them about 59%
of the new sales of total industrial robots in 2019 (IFR, 2020). The rapid
growth in investment surely reflects the precipitous decline in prices; the
average cost of an industrial robot fell by more than 60% between 2005 and
2017, from USD 68,659 to USD 27,074. Further price declines to under
USD 11,000 are expected by 2025 (Ark Invest, 2021). A combination of
other factors, such as the increase in robot functionality and flexibility, the
improved ease of use and interface, and growing awareness of the potential appli-
cations of robotic technology are also contributing to the worldwide growth in
robot usage (Furman and Seamans, 2019).

Research on artificial intelligence began at Dartmouth College in 1956. Text-
books define Al as a non-human system that perceives its environment and takes
actions to maximize the probability of achieving its goals. More colloquially, the
term Al is used to describe computations that mimic human cognitive functions,
such as “learning” or “problem solving.” By the middle of the 1960s, the
Department of Defense was investing heavily in research on Al, and laboratories
had been established all over the world. Al has improved massively in the last
decade, primarily due to the invention of machine learning techniques (particu-
larly deep neural networks) that enable the computers to have superior predictive
power at substantially reduced costs (Agrawal et al., 2019; Taddy, 2019). Many
Al-driven machines are now as good or better than humans in several instinctual
and unconscious mental tasks, as they can mimic human thinking in tasks involv-
ing perception, mobility, and pattern recognition (Baldwin, 2019). Thanks to
the advances in Al, more responsive and adaptable robots that can better interact
with humans, have improved sensory capabilities, and that can better interact
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with their environment to perform non-routine, uncertain, and more complex
tasks are becoming widely available at ever-lower costs. Indeed, the application
of Al to industrial robots is considered the most economically important
among its various potential uses (Cockburn et al., 2019).

Global corporate investment in Al increased by almost sixfold, mounting from
USD 12.7 billion in 2015 to as high as USD 67.9 billion in 2020. The United
States and China dominate Al investment with a 76% combined contribution
over the period from 2015 to 2020. But increases in demand for Al-related tech-
nologies are being observed around the globe. Brazil, India, Canada, Singapore,
and South Africa recorded the highest growth in Al-related hiring from 2016 to
2020 (Stanford University, 2021).

Economic benefits and costs of industrial robots and Al

Technological advances drive economic growth. Industrial robots, especially
those that apply artificial intelligence, offer perhaps the greatest scope for tech-
nological improvement and productivity gains in the modern industrial era.
Robots can increase the speed and precision of industrial processes while
making them safer and more reliable. They can leverage the time of workers,
while freeing humans to engage in more conceptual and interpersonal tasks.
Al can be used to enhance the quality and variety of products available to con-
sumers, provide new forms of entertainment, and offer solutions to pressing
medical and environment problems. Clearly, the potential for robots and Al to
improve the quality of life is enormous.

At the same time, new technologies almost always carry unintended conse-
quences. Industrial robots, armed with Al, are bound to take over a range of
tasks in production and thereby displace workers in the labor market. Workers
who perform tasks that can be performed more efficiently by robots may see a
fall in wages and a need to change jobs. Job displacement often brings loss of
self-esteem and significant economic and social adjustment costs. Moreover,
industrial robots threaten to widen income inequality after a period of diverging
fortunes for different skill groups, while Al raises concerns about personal privacy
and possibly much worse.

The enormous potential for productivity gain from robots and Al coupled
with their far-reaching and quite unequal effects on workers with different
skills have made them a fertile topic for economic research. Economists have
been keen to understand how technologies that directly substitute for humans
in the performance of certain tasks might have very different effects on income
distribution and worker welfare than earlier technological improvements, many
of which were mostly complementary to labor.

Robots and AI: productivity and trade

Early research on the benefits of industrial robots and Al has emphasized two
potential sources of gain. First, these technological advances reduce production
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and operational costs. Robots can perform many tasks faster than humans and
with greater precision and accuracy. Al can be used to predict problems along
the production line and to leverage computation as an input to production.
Agrawal et al. (2019), Atkinson and Ezell (2019), and Varian (2019), for
example, have studied the potential productivity gains from the use of Al and
robots and the associated declines in total production costs. Second, and
perhaps less obvious, industrial robots and Al can help markets to function
more efficiently. Al can be used to learn about human preferences, to allocate
goods and services from where they are most readily available to where they
are needed, thereby enhancing efficiency in logistics and delivery. These potential
benefits of Al have been touted in recent work by Parkes and Wellman (2015),
Atkinson (2019), Milgrom and Tadelis (2019), Davenport et al. (2019), and
McKinsey and Company (2019).

Previous studies have found large productivity gains and substantial price-
reducing effects of the application industrial robots and Al at both the firm
and aggregate levels. Notable examples of papers with such findings include Ace-
moglu and Restrepo (2018), Autor and Salomons (2018), Graetz and Michaels,
(2018), Agrawal et al. (2019), Koch et al. (2019), and Acemoglu et al. (2020).
Some authors also find that industrial robots and Al promote international trade.
For example, Brynjolfsson et al. (2019) report that an Al-based application that
provides automated translation service on a digital-trading platform increased
exports by 17.5%. Goldfarb and Trefler (2019) explain how industrial robots
and Al can facilitate not only goods trade, but also trade in services.

Robots and AI: employment and wages

Recent research also focuses on the worrisome consequences of automation and
Al for employment and wages, especially for those less-skilled workers perform-
ing routine tasks that can be performed by machines. Drawing on the existing
literature, Baldwin (2019) reports that between one and six of every ten jobs
is at risk of being replaced by robots in the coming two decades. Estimates
vary with estimation methods, but findings range from 36% for Finland (Pajari-
nen and Rouvinen, 2014), 47% for Germany (Brzeski and Burk, 2015), and 47%
for the United States (Frey and Osborne, 2017), to as high as 60% globally
(Bughin et al., 2017).

Automation and AT are likely to have heterogeneous effects in the labor market.
High-skilled workers, those employed in technology-intensive sectors, and those
performing non-routine tasks may benefit as industrial robots leverage their pro-
ductivity. Workers with less education, especially those performing manual tasks
on the production line, are most at risk; see, for example, Autor et al. (2015),
Graetz and Michaels (2018), Humlum (2019), Furman and Seamans (2019),
Stemmler (2019), Cheng et al. (2019), Acemoglu and Restrepo (2020), and
Barth et al. (2020). Greater digitalization in smart factories and advanced robotics
might reduce the importance of labor costs in determining competitive advantage,
laying greater emphasis instead on skills, complementary services, and other
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aspects of firm ecosystems (Hallward-Driermeier et al., 2017). Yet, recent studies
also argue that the productivity gains at the firm level that result from the adop-
tion of automation and Al could potentially expand demand (Autor and Salo-
mons, 2018; Bessen, 2018), which in turn may enhance labor as these firms
expand or create new tasks and occupations in service firms and elsewhere
(Autor and Salomons, 2018; Acemoglu and Restrepo, 2019; Dauth et al.,
2021; Koch et al., 2019; Autor et al., 2020).

Baldwin (2019) stresses the need for labor-market research that focuses on
occupations in addition to jobs. Displacement of jobs by machines generates
adjustment costs, as workers need to move within firms to perform different
tasks, or search for new jobs in different firms or expanding industries. But most
occupations conduct non-routine as well as routine tasks, so the medium-term
outlook may not be so bleak, as workers shift their attention to tasks that machines
cannot perform. Recent studies increasingly adopt a task-based approach to esti-
mating the labor-market impacts of industrial robots and Al, and these typically
predict less dire outcomes than those that focus on displacements. For example,
Arntz et al. (2016) using a task-based approach, estimate that only about 9% of
occupations in OECD countries are highly vulnerable to automation.

Whereas research findings are mixed about the net effects of continued advances
in the use of industrial robots and Al on certain segments of the labor market,
there is little disagreement about the distributional implications. Automation has
undoubtedly contributed to the fall in the labor share in national income; see
the review by Grossman and Oberfield (2022, forthcoming). Among workers,
the more-skilled workers whose human capital is most complementary to the
new technologies are bound to gain relative to the less-skilled workers for
whom industrial robots are substitutes; see Autor et al. (2015), Arntz et al.
(2016), Graetz and Michaels (2018), Bessen et al. (2019), Stemmler (2019),
Cheng et al. (2019), Gregory et al. (2019), and Acemoglu and Restrepo
(2020). The new occupations and tasks that Al will create will also likely benefit
the more skilled and better educated members of the labor force (Tirole, 2017;
Acemoglu and Restrepo, 2018; Stemmler, 2019; Barth et al., 2020; Dauth
etal., 2021). These likely implications of the new technologies for income distribu-
tion come on the heels of more than two decades of wage divergence and threaten
to further the social tensions that the greater dispersion has already ignited.

This book

Despite the vibrant and burgeoning literature, much remains to be known about
the economic effects of continued automation and the further development of
Al. How will these innovations affect countries at different levels of development
and different regions within countries? What are the occupations of the future?
How can policy best prepare socicties for these anticipated technological
changes? How will the technological developments affect world cooperation
and trade, for example by influencing the organization of global value chains?
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This book contributes to this ongoing project of research and learning. The
contributors to this volume take stock of the existing literature and draw
lessons from it, while extending it and taking it in new directions. The chapters
of this book are diverse in their topical and geographic coverage and in their
methodological approaches, be they theoretical or empirical, structural, or
reduced form. Yet they share a common faith that rigorous economic research
can help us to prepare for an uncertain and, for some, an intimidating future.

The book is organized in two parts. The first six chapters (Chapters 2-7)
mostly examine labor-market impacts of automation and Al. They analyze
how workers will be affected by the adoption of these new technologies in a
variety of occupations and in different countries and regions. The focus here is
on employment, wages, and worker welfare. The final three chapters (Chapters
8-10) focus more on productivity and trade, trying to measure the likely gains
along these dimensions from technological advances in robotics and Al in devel-
oped and developing countries.

Chapter 2 by Aghion, Antonin, Bunel, and Jaravel surveys the recent literature
on the effects of automation on labor demand. They describe two contrasting
views of the impacts of automation. In the more pessimistic view, robots primar-
ily substitute for labor at the task level. Then the direct effect of automation is to
reduce labor demand in firms that adopt robots, which exerts downward pressure
on the equilibrium wage. This direct effect may be counteracted in general equi-
librium by a wage drop that induces non-automating firms to employ more labor
while incentivizing the creation of new activities for labor to perform or the accu-
mulation of capital that boosts labor demand in view of the complementarity
between capital and labor at the aggregate level. In either case, employment
falls at automating firms and workers relocate to firms that do not automate
or to new tasks that cannot be performed by robots. The alternative, more opti-
mistic view stresses that firms that install robots become more productive, thus
expanding their market share at the expense of firms that do not automate.
Also, the productivity gains in automating firms may translate into lower prices
that stimulate consumer demand and expand the overall size of the market. In
this scenario, automation increases employment in the firms that adopt robots
and might even push the equilibrium wages higher.

Aghion et al. note that, while the evidence that is based on variation across
industries and local labor markets is mixed, the newer studies that make use of
firm-level data support a more optimistic view of automation. Most of the
studies using firm-level data do not find evidence of a falling equilibrium
wage, nor even of a declining labor share in firms that automate. Concerning
Al they cite Babina et al. (2020), who find that firms that invest in Al experience
faster sales and employment growth than their non-investing counterparts.

Finally, Aghion et al. report on their own previous work using firm-level data
from France. In their data, estimates using data on aggregate employment zones
find little or no support for the negative view at the aggregate level. When they
drill down to the firm or plant level, the productivity-enhancing effects of auto-
mation seems clear. Firms that automate gain market share and produce at larger
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scale. They also find no evidence that automation increases the wage of more-
skilled workers relative to that of less-skilled workers in firms that choose to
automate. Moreover, they report an overall positive effect of automation on
employment even at the industry level. Aghion et al. conclude that automation
is not the enemy of labor. By modernizing the production process, automation
makes firms more competitive, which enables them to win new markets and hire
more workers in a globalized world.

In Chapter 3, Bonfiglioli, Crino, Gancia, and Papadakis develop a simple but
illuminating model that highlights the interaction between automation and off-
shoring. In the model, industrial robots might take over tasks formerly per-
formed by domestic workers, but, in the presence of offshoring, they might
instead displace foreign workers. This distinction proves to be critical for the
wage and welfare effects of automation. In autarky, robots must, of course, dis-
place domestic workers. Then, substituting robots for domestic labor in perform-
ing some tasks generates a productivity effect and a capital-deepening effect that
tend to raise domestic wages, but a displacement effect that has the opposite
impact on wages. In the presence of offshoring, if robots displace domestic
workers, there is an additional terms-of-trade effect that adversely impacts the
welfare of domestic workers. Domestic workers may suffer from automation in
situations where they would have gained in autarky. In contrast, if robots displace
foreign workers and thereby bring part of the production process back home,
automation is always beneficial for domestic workers.

Motivated by these theoretical findings, the authors study the effects of imports
of industrial robots between 1990 and 2015 on US local labor markets. Using a
“shift-share” analysis, they estimate that imported robots displaced local workers
but nonetheless boosted domestic wages due to positive productivity effects (in
line with the Aghion et al. findings reported in Chapter 2). Next, they investigate
the relationship between local labor market impacts and offshoring. They show
that occupations at risk of replacement by robots have similar task content to
those that have been deemed offshorable. They also find the negative employment
effects of automation to be weaker in occupations that are offshorable than in
occupations that are less readily moved abroad. Finally, they show — in keeping
with their theoretical results — that commuting zones that are more exposed to off-
shoring experience smaller job displacement from robot imports than commuting
zones that are less exposed.

Chapter 4 by Faia, Laffitte, Mayer, and Ottaviano points to another, possibly
adverse effect of automation on employment and wages and stress a difference
between automation and offshoring. Citing Bainbridge (1983), who described
a “paradox of automation,” they model the idea that automation often requires
the efficient completion of complementary tasks that can only be performed by
workers with specialized human capital. Therefore, automation may induce
increased specialization by workers, who need not only more skills, but particular
skills. Faia et al. refer to the possibility that new technologies demand workers
with specialized knowledge in “core competencies” as “core-biased technological
change.”
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If the paradox of automation is operative, firms should become more selective
in their hiring practices as they invest in industrial robots. With greater search
and selectivity, the duration of unemployment spells should lengthen while mis-
match between worker skills and firm tasks should be reduced. The authors verify
these predictions using data on European occupations and industries for the
period from 1995 to 2010, finding that automation generates greater skill con-
centration, longer unemployment spells for displaced workers, and less educa-
tional mismatch between firms and workers. Interestingly, selectivity instead
fell in industries with high offshorability. They rationalize these findings in a
model in which automation strengthens the forces of assortative matching
between workers’ skills and firms’ tasks, whereas offshoring does just the
opposite.

In Chapter 5, Furusawa, Kusaka, and Sugita also study the effects of improve-
ments in industrial robots while considering advancements in Al as a separate
technological development. They assume that industrial robots perform
manual tasks that low-skilled workers would otherwise perform whereas Al sub-
stitutes for high-skilled labor in performing more conceptual tasks. Using a quan-
titative general-equilibrium model of task-based production in seventeen
industries and fifty countries that features input-output relationships and
global value chains, they simulate counterfactual histories in which trade costs
and robot technologies remain at their 1993 levels. They find that advances in
robot technology indeed contributed to lower wages for unskilled workers in
some countries, but the labor-market effects were modest compared to those
of falling trade costs. Meanwhile, robots generated productivity improvements
that benefited workers in some other countries. When they simulate the effects
of a tenfold further increase in the productivity of robots and Al, they find
that the former has much greater labor-market impacts compared to the latter,
largely because the estimated elasticity of substitution between AI and high-
skilled labor is much smaller than the elasticity of substitution between robots
and low-skilled labor. Only for Germany and Japan do they find significant
impacts of advances in Al technology, these being the two countries where Al
tasks shares are relatively large. Finally, they predict that advances in robot tech-
nology will increase wage inequality in most countries, whereas advances in Al
technology will have the opposite effect on wage inequality.

Baldwin and Dingel pose a rather different question in Chapter 6. Leveraging
recent work on telecommuting induced by the COVID-19 pandemic, they ask
how many of the newly remote jobs are likely to move overseas and how impor-
tant such “telemigration” will be in the development process. Assessing the pros-
pects for telemigration requires estimates not only of how many jobs are
potentially offshorable, but also of how many of the workers that reside
abroad have the relevant skills to perform these tasks and how substitutable
these foreign workers are for their domestic counterparts. To address these ques-
tions, they estimate a gravity model of telemigration in which the tally of jobs in
the importing country that can be performed remotely plays the role of the
“importer mass”; the population of suitably skilled workers in the exporting
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country plays the role of the “exporter mass”; and the Ghemawat (2007)
measure of the cultural, administrative, geographic, and economic (“CAGE”)
distance between countries captures bilateral trade frictions.

Using their estimates of the gravity equation, they simulate the effects of
further reductions in barriers to trade in services. The baseline simulations take
the elasticities with respect to trade costs to be constant, and then further liber-
alization is likely to have only very modest effects, because the initial service flows
are rather small. In a speculative final section, the authors relax the assumption
that trade elasticities are constant and consider instead the possibility that the rel-
ative productivity of the emerging country as a function of the task index rises
sharply at first but flattens out as more tasks are performed there. In other
words, they assume that the manifest comparative advantage of the South in
tasks that it already performs has a different shape than its latent comparative
advantage in tasks that are currently nontraded. In this scenario, small changes
in the trade costs for services can have quantitatively large impacts on extent
of telemigration, as the equilibrium moves from the status quo into a range of
much higher trade elasticities.

In Chapter 7, Hanson studies the forces that guide the location of Al-related
activities across the United States. Hanson first identifies Al-related jobs using
keywords that appear in Bureau of Census occupational titles. Then, using an
approach proposed by Lin (2011), he estimates the regional growth in jobs
related to Al by weighting employment growth in Al-related occupations by
the share of job titles in these occupations that were added since 1990. He
finds that, overall, the pattern of regional specialization in Al-related activities
mirrors that for ICT. However, foreign-born and native-born workers within
the sector tend to cluster in different locations. Whereas specialization of the
foreign-born in Al-related jobs is strongest in high-tech hubs with a preponder-
ance of private-sector employment, native-born specialization in Al-related jobs
is strongest in centers for military and space-related research.

Hanson then proceeds to investigate the factors that drive regional employment
growth in Al-related jobs. He associates changes in patterns of regional specializa-
tion in private Al activities with changes in the regional supplies of college-educated
immigrants. The author estimates the relationship between the employment share
of Al-occupations in a commuting zone and the projected local increase in college-
educated immigrants, where the projection is based on the national growth of
college-educated immigrants from each country of origin and the initial distribu-
tion of immigrants by nationality across commuting zones. He finds that growth in
the supply of foreign-born workers can account for much of the regional growth
in employment in Al-related occupations since 2000. An inflow of educated immi-
grants has virtually no effect on employment growth for native workers, suggesting
that any substitution that may occur is offset by complementarities. Overall, the
results in the chapter highlight the importance of immigration policy to continued
technological progress in Al activities.

Chapter 8 by Artuc, Bastos, Copestake, and Rijkers examines how the instal-
lation of industrial robots in advanced countries affects trade with developing
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countries. As suggested by Bonfiglioli et al. in Chapter 3, robots might substitute
for low-skilled workers in tasks oftshored to low-wage countries. Moreover, low-
income countries may lack the skills and infrastructure needed to participate
intensively in emerging global value chains if automation reduces the importance
of low labor costs as a source of international competitiveness. Motivated by
these concerns, the authors of this chapter investigate what effect automation
may have had on the trade participation and patterns of developing countries.
Is there evidence that growing use of industrial robots in the advanced countries
reduces export opportunities for developing countries?

The authors first constructed and calibrated a multi-sector, multi-country model
of two-stage production and trade in which robots can take over some (potentially
different) range of tasks in each sector. They simulate a decline in the price of
robots, holding fixed the ranges of tasks that robots can perform. Not surprisingly,
this induces industries in the North to install more robots. But they find, as well,
that exports from South to North expand in the same sectors that experience the
greatest robotization. This possibly counterintuitive finding reflects that robots
improve productivity in the North, and so the scale of production expands,
which in turn expands their demand for intermediate goods produced in the
South. The authors extend their model to include China as a separate country,
noting that its robot stock has expanded more than in other developing countries.
They study the impacts of China’s governmental support for investments in robots
and find that these may increase or decrease wages in China depending on the size
of the subsidies. As China induces installation of more robots, its trade pattern
comes to resemble that in the North, which reduces its trade with those countries
and expands its trade with countries in the South.

Artuc et al. recognize that their calibrated model is intended to capture long-
run effects and that automation might generate short-run adjustment costs. After
pointing to evidence of short-run adverse employment effects in the local labor
markets of some middle-income countries, especially for the least mobile workers
who previously performed tasks now executed by robots, they proceed to study
firm-level drivers of adoption of robots in developing countries and firm-level
consequences of robot adoption. They find that the initially larger and more
globally connected firms in the South are more likely to adopt robots and,
when they do so, they increase their market shares at the expense of firms that
do not automate. Thus, the spread of industrial robots can impose adjustment
costs not only on less-mobile and less-skilled workers, but also on smaller and
less globally active firms.

In Chapter 9, Ing and Zhang study automation in a developing country at a
very detailed level. They focus on firms in Indonesia, using product-level data
on production and trade for 2008 to 2012. Inasmuch as Indonesia imports
most of the industrial robots that it uses, and the firm-level data report imports
of this category of capital goods, Ing and Zhang have an excellent measure of
investment in robots at the firm level.

Ing and Zhang examine both the characteristics of firms that import industrial
robots in Indonesia and the subsequent performance of such firms. Firms that
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import robots are more productive than others, pay lower shares of their reve-
nues to labor, but pay higher wages. Over the five-year period, the firms that
automated achieved greater growth in outputs, greater growth in employment,
and larger export shares. The also produced goods of higher quality. In Indone-
sia, automation is associated with an increased demand for production workers,
analogous to the findings of Aghion et al. for France. Ing and Zhang rationalize
their empirical findings with a model of heterogeneous firms that choose their
investment in robots and their product quality to maximize profits. In their
model, the more productive firms automate more tasks, produce higher
quality, and thereby generate more revenues and hire more workers.

In Chapter 10, Sun and Trefler study trade in Al-enabled services. In partic-
ular, they examine trade in mobile applications, using a novel data set on inter-
national downloads of smartphone apps from 2014-2020. They merge these
data with data on Al patents held by the app’s parent company, from which
they develop a measure of “Al deployment” by year, exporting country, and
application category.

The analysis entails regression of various outcomes on Al deployment. Recog-
nizing that deployment is endogenous, they construct an instrument that is
meant to capture exogenous shocks to the cost of deployment. With analogy
to factor endowment theories of trade, they note that countries with deep exper-
tise in Al are likely to have cheap and ready access to the inputs used in deploying
Al, which in turn confers a comparative advantage to them in producing apps
that use this input intensively. Accordingly, they form their instrument by inter-
acting a measure of a country’s expertise in Al with a measure of an app cate-
gory’s Al intensity.

When the authors estimate a gravity equation for app downloads, they find
that greater Al deployment causes a sixfold increase in downloads at the level
of the importer-exporter dyad, app category, and year. An increase in Al deploy-
ment also causes a doubling of the number of different bilaterally traded apps.
Deployment induces high levels of creative destruction, that is, entry into and
exit from download of app varieties in the importing countries. Finally, Al
deployment generates gains from trade; consumer welfare in 2020 from app
downloads is estimated to be 2.5% higher than it would have been under a coun-
terfactual with no Al deployment.

Collectively, the research reported in this book paints a relatively optimistic
picture of a future with more industrial robots and improved artificial intelli-
gence. The studies provide further evidence that use of industrial robots and
Al raises productivity and lower costs. Although these technologies do seem
to substitute for relatively low-skilled labor in certain tasks, the induced produc-
tivity gains and attendant output expansion offset the direct negative effects on
these low-wage workers. Automation and Al can encourage greater international
division of labor in global value chains and promote trade in Al-enabled services.
Like all new technologies, there will be adjustment costs that must be managed
by policymakers. But it seems from the research in this book and elsewhere that,
overall, the forthcoming technological developments in the robotics and Al
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sectors ought to be welcomed, not discouraged. Along with the development of
robots and Al, it is our responsibility to ensure that they are human-centric and
designed to improve human welfare.
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2 The Effects of Automation
on Labor Demand

A Survey of the Recent Literature

Philippe Aghion, Céline Antonin,
Simon Bunel, and Xavier Jaravel

1. Introduction

Should we fear or welcome automation? On the one hand, fear may prevail if we
believe that human workers will be replaced by machines which perform their tasks,
thereby increasing unemployment and reducing the labor share. On the other
hand, we may welcome automation since it spurs growth and prosperity, as illustrated
by the big technological revolutions — steam engine in the early 1800s, electricity in
the 1920s — none of which generated the mass unemployment anticipated by some.

The fear that machines will destroy human jobs began long ago. Already in 1589,
when William Lee invented a machine to knit stockings, the working class was so
fearful of the consequences that he was rejected everywhere and even threatened.
Then came the first industrial revolution, the “steam engine revolution”, and in
its wake the so-called Luddite movement. Despite a 1769 law protecting machines
from being destroyed, destruction intensified as the weaving loom became wide-
spread, culminating with the Luddite rebellion in 1811-1812.

The second industrial revolution, the “electricity revolution”, occurred first in
the US in the late 19th century. Thirty years later, economists began to express
concern about the unemployment that this revolution would generate. In 1930,
Keynes wrote, “We are being afflicted with a new disease of which some readers
may not yet have heard the name, but of which they will hear a great deal in the
years to come — namely, technological unemployment.”' Once again, the predic-
tion of a large-scale increase in unemployment did not materialize.

More recently, the information technologies (IT) and artificial intelligence (AI)
revolutions have raised similar fears: by creating further opportunities to automate
tasks and jobs, IT and AI may increase unemployment and reduce wages. Conse-
quently, the idea that one should tax robots has become influential in recent years.

In this paper, we discuss the effects of automation on employment, appealing to
both the existing literature on Al and automation and our recent empirical work
using French data (Aghion etal., 2019, 2020). We first spell out the two contrasting
views on the subject. A first view sees automation as primarily destroying jobs, even
if this may ultimately result in new job creations taking advantage of the lower equi-
librium wage induced by the job destruction. The prediction is that automation
should reduce employment, wages, and the aggregate labor share. According to
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this first view, automation may reduce both the aggregate number of jobs and
wages, thus reducing the well-being of workers. An alternative viewpoint empha-
sizes the market size effect of automation: namely, automating firms become
more productive, which enables them to lower their quality-adjusted prices and
thereby increase the demand for their products; the resulting increase in market
size translates into higher employment by these firms. We provide empirical
support for the second view, drawing from our empirical work on French firm-
level data and a growing literature covering multiple countries.

The chapter is organized as follows. Section 2 presents the debate. Section 3
describes the emerging empirical consensus towards the more optimistic view of
automation, with positive direct effects on employment at the firm level.
Drawing on our recent empirical work, Section 4 describes the main methodo-
logical approaches and the main findings from the literature using data on
French plants, firms, and labor markets in recent years. Section 5 concludes.

2. The debate: what are the direct and indirect effects of
automation on employment?

In this section we briefly present the two contrasting views of automation and
employment.

a. The “negative” view: negative partial equilibrium effects and positive
generval equilibrium effects of automation on aggregate labor demand

The “negative” view? implies that automation reduces demand for labor and pushes
wages downward. The “partial equilibrium” (PE) effect is a fall in labor demand
through the substitutability between labor and machines at the task level. This
effect may then be counteracted in general equilibrium (GE) according to several
channels, which are summarized in Table 2.1 and described hereafter.

In Acemoglu and Restrepo (2016) it is counteracted by the fact that automa-
tion depresses the equilibrium wage, which in turn encourages the creation of
activities that initially employ labor (before being themselves subsequently
automated); this in turn increases the demand for labor and therefore limits
the wage decline. In Aghion, Jones and Jones (2017), the PE effect on labor
demand is counteracted by a “Baumol Cost Discase” GE effect whereby
labor becomes increasingly scarce relative to capital over time, which pushes
wages upward (due to the complementarity between labor and capital at the
aggregate level).

More formally, Acemoglu and Restrepo (2016) assume that final output is pro-
duced by combining the services of a unit measure of tasks X € [N — 1, NJ,
according to:

N o1 ﬁ
Y= < XiTpli)
N-1
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Table 2.1 Summary of Theoretical Predictions on the Impact of Automation on Labor Demand

Authors PE Effect of GE Effect of Predicted Predicted
Automation Automation Impact on Impact on
Employment Wayges in
n Automating
Automating Firms
Firms
Acemoglu &  Fall in labor Increase in labor Decrease Decrease
Restrepo demand demand through
(2020) through the a fall in wages
substitutability and the
between labor endogenous
and machines creation of new
at the task tasks for which
level. labor has a
comparative
advantage.
Aghion, Fall in labor Increase in labor Decrease Ambiguous
Jones & demand demand
Jones through the through the
(2017) substitutability complementarity
between labor between capital
and machines and labor at the
at the task aggregate level.
level.
Aghion, Increase in labor  Business stealing Increase Ambiguous
Antonin, demand effects reducing
Bunel & through the labor demand at
Jaravel increase in non-automating
(2020) productivity firms.
and in
consumer
demand.

where: (i) tasks X; with 7 > I are non-automated, produced with labor alone; (ii)
tasks X; with 7 < I can be automated, that is, capital and labor are perfect substi-
tutes within tasks, with ¢ — 1 denoting the constant elasticity of substitution
between tasks; (iii) N indexes the productivity of tasks;> (iv)

X, = a(i)K; +y(i) L,
where: (a) a(7) is an index function with a(Z) = 0if 2 > I and a(¢) = 1if i < I; (b)
p(d) = e. y(4) is the productivity of labor in task 7. Acemoglu and Restrepo
assume that y(7) is strictly — exponentially — increasing, so that labor has a compar-
ative advantage in the production of tasks with a high index.

In the full-fledged Acemoglu-Restrepo model with endogenous technological
change, the dynamics of I and N (i.c., the automation of existing tasks and the
discovery of new lines) result from endogenous directed technical change. Under
reasonable parameter values guaranteeing that innovation is directed towards
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using the cheaper factor, there exists a unique and (locally) stable Balanced
Growth Path (BGP) equilibrium.

Stability of this BGP follows from the fact that an exogenous shock to I or N
will trigger forces that bring the economy back to its previous BGP with the same
labor share. The basic intuition for this result is the following: if a shock leads to
over-automation, then the decline in labor costs will encourage innovation aimed
at creating new — more complex — tasks that exploit cheap labor, that is, it will
lead to an increase in N. In other words, the negative effect of automation on
labor demand in partial equilibrium is mitigated by a general equilibrium
effect, whereby the depressing effect of automation on wages encourages entry
of new activities that initially take advantage of labor becoming cheaper.

Aghion, Jones, and Jones (2017) point to another counteracting force, namely
the “Baumol Cost Disease” effect, which prevents automation from depressing
wages too much. There it is the complementarity between existing automated
tasks and existing labor-intensive tasks, together with the fact that labor
becomes increasingly scarce relative to capital over time, that allows for the pos-
sibility that the labor share remains constant over time.

More formally, final output is produced according to:

N
T -4, ( / Xﬁdi)
0

where p < 0 (i.e., tasks are complementary), A is knowledge and grows at cons-
tant rate g and, as in Zeira (1998):

L, if not automated

it

K, if automated

Under the assumption that a fraction f§, of tasks is automated by date # we can
re-express the previous aggregate production function as:

Y, = A K+ (1-5) L)

where K, denotes the aggregate capital stock and L, = L denotes the aggregate
labor supply.
In equilibrium, the ratio of capital share to labor share at time # is equal to:

aKt _ ﬁt o I<r g
ar B (1 - Bt) <ft>

Hence an increase in the fraction of automated goods f5, has two offsetting

~ . ~ .. . . 17[’
effects on %z (i) first, a positive effect which is captured by the term (£ R
ar 1-B;

which we label the partial equilibrium effect of automating tasks (holding the

K,

ratio I

p
constant); (ii) second, a negative effect captured by the term (%) , as

we recall that p < 0, which we label the GE effect of automation. This latter
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effect relates to the well-known Baumol Cost Disease: namely, as % increases due
T

to automation, labor becomes scarcer than capital which, together with the fact
that labor-intensive tasks are complementary to automated tasks (indeed we
assumed p < 0), implies that labor will command a sustained share of total
income.

While the previous two models emphasize different counteracting forces that
limit the wage decline induced by automation, both have in common that the
partial equilibrium effect of automation is to destroy employment. In particular,
this effect would be observed within firms that automate.

b. The “positive” view: positive partial equilibvium effects and negative
generval equilibvium effects of automation on labor demand

Recent work suggests a more “positive” view of automation: the direct effect of
automation may be to increase employment at the firm level, not to reduce it.?
The reason is that firms and plants that automate become more productive.
This allows them to offer a better quality-adjusted price than their competitors,
and therefore to “steal business” away from their competitors, and more gener-
ally to expand the size of their markets (domestic and foreign). This in turn
increases their demand for labor.*

Note that this channel does not exclude the possibility that total labor
demand, at the national, industry, regional or commuting zone level may not
respond so positively to automation and may even react negatively to it. There
may be an overall negative effect if automating firms induce a sufficiently large
decline in employment for non-automating firms and cause their exit. But a
main difference with the “old view”, is that, here, the direct dominant effect
of automation is the positive productivity effect, which may then be counteracted
by a “creative destruction” or “eviction” effect in general equilibrium. Further-
more, the negative GE effect is partly borne by international competitors, which
has implications for the desirability of taxing robots.

c. Implications for the taxation of robots

A growing theoretical literature has examined the reasons that may justify the
taxation of robots, notably limiting the potential rise in income inequality that
automation might create. Costinot and Werning (2018) examine whether taxa-
tion or protectionist trade policies might help to better distribute the economic
benefits of Al technologies.” Their results indicate that taxing the innovators or
developers of the technology is undesirable because it would impede innovation;
yet, if robots lead to an increase in inequality, a modest tax on the use of tech-
nology (as opposed to innovation per s¢) may be the optimal prescription
because of distributional concerns.

Optimal policy depends on the elasticity of employment and inequality to
robotization, which highlights the importance of distinguishing empirically
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between the two aforementioned views. As discussed in Aghion et al. (2020), the
second view implies that unilateral taxation of robots by a given country could be
counterproductive for industrial employment in that country, because of business
stealing effects across countries. According to that view, the positive effect of
automation will benefit countries that keep automating, while the negative GE
effect will be shared across countries, given that competition operates in world
markets. Therefore, as explained by Aghion et al. (2020), unilateral taxes on
robots or other automation technologies may be detrimental to domestic
employment: “without international coordination, in a globalized world
attempts to curb domestic automation in an effort to protect domestic employ-
ment may be self-defeating because of foreign competition.”

In the next section, we confront the two views with recent evidence from the
literature, covering many countries and time periods. Research designs using var-
iation across industries or labor markets deliver mixed evidence with regards to
the impact of automation on labor demand. Recent firm-level evidence delivers
clear causal evidence supporting the “new view”, with an increase in labor
demand at automating firms.

3. A survey of the empirical evidence from the recent literature

Early analyses hypothesized an increase in technological unemployment (Keynes,
1930; Leontief, 1952; Lucas & Prescott, 1974), however they lacked empirical
support. A next generation of studies were able to confront theoretical models
with data. Their analyses have been primarily conducted at the national or indus-
try level and have mostly conveyed the idea of automation having a negative
impact on aggregate employment and aggregate wages: automation is primarily
reducing labor demand. Yet these analyses fall short of describing the process
that goes on within firms. It is only over the past few years, thanks to the increas-
ing availability of new firm-level datasets, that analyses of the effects of automa-
tion on employment could be performed at a more disaggregated level.

In this section, we provide an overview of the recent empirical literature on
automation and employment. As our literature survey illustrates, the profession
has evolved from the more “negative” view of automation as primarily destroying
jobs, towards the more “positive” view of automation as enhancing productivity,
market size, and therefore labor demand and employment.

a. Mixed evidence from vesearch designs using vaviation
across industries and labor mavkets

How should automation be measured? Until recently, the number of reliable
sources on which empirical analyses of automation could be built was limited.
But since the 2010s, the International Federation of Robotics (IFR) has pro-
vided data on the deployment of robots by country and industry, and machine
learning algorithms have made it possible to measure automation using text anal-
ysis of patents. Therefore, recent papers notably investigate these new measures
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of automation, that is, the number of robots (Autor & Dorn, 2013; Acemoglu &
Restrepo, 2020; Cheng et al., 2019; Dauth et al., 2021; Gractz & Michaels,
2018), or automation-related patents (Mann and Pittmann, 2017; Webb,
2020).

As regards the first measure based on IFR data, Graetz & Michaels (2018) use
the robot aggregate count from IFR data on a panel of seventeen developed
countries and find no effect of automation on aggregate employment, despite
a reduction of the low-skilled workers’ employment share. Meanwhile, they
show that robot densification is associated with increases in both total factor pro-
ductivity and wages, and with decreasing output prices. Using the same measure
on a panel of fourteen European countries, Klenert et al. (2020) find that robot
use is correlated with an increase in total employment.

However, the empirical findings in Acemoglu and Restrepo (2020) suggest
that the job destruction effect of robotization dominates. More precisely, the
authors analyze the effect of the increase in industrial robot usage between
1990 and 2007 on US labor markets. Using variation in robot adoption
between commuting zones they estimate the labor market effects of robots by
regressing the local change in employment and wages on the local exposure to
robots.” The authors find that one more robot per thousand workers reduces
the employment to population ratio by about 0.2 percentage point and wage
growth by 0.42%, while productivity increases and labor share decreases. Accord-
ing to their estimates, each robot installed in the US replaces six workers. The
Acemoglu-Restrepo methodology has been applied to several other countries.
Chiacchio et al. (2018) find a displacement effect between three and four
workers per robot in six European countries, but do not point to robust and sig-
nificant results for wage evolution. Aghion et al. (2019) find a displacement
ceffect of ten workers per robot using French administrative data. However,
using German data, Dauth et al. (2021) report a null effect of exposure to
robots on aggregate employment. For low- and mid-skilled workers, they
report lower wages.

Attractive as it may be, this methodology based on aggregate robot count has
some shortcomings. First, a robot is a specific type of automation that is precisely
designed to replace human work, whereas broader measures of automation may
encompass machines that only partially substitute for human work. Another
concern stems from the fact that IFR data are available only at the country
level. Computing a local measure of exposure to robots — a Bartik measure —
requires making the strong hypothesis that the number of robots installed by a
given industry, divided by the importance of the industry in the commuting
zone, is the same across commuting zones. Yet, robotization by a given industry
may be more intense in commuting zone A than in commuting zone B even if
the shares of that industry are the same in both regions. Furthermore, the IFR
data is only available for 13 industries within manufacturing, making it difficult
to add a large set of industry-level controls without overfitting and thus raising
the possibility that variation in automation rates across industries may be corre-
lated with industry-level unobservables affecting labor demand (e.g., initial skill



22 Philippe Aghion et al.

composition may vary across industries with differing rates of automation). A
final potential concern is that variations in the robots exposure index across com-
muting zones are mostly related to the spatial distribution of automotive activi-
ties over the US territory in 1990, since industrial robots are predominant in the
automotive industry — automotive robots account for more than one-third of
total robots.

Another privileged measure of automation, based on text analysis of patents,
also yields mixed results. For instance, Webb (2020) uses a measure of automa-
tion that relies on the overlap between patent texts and workers’ tasks.® This
measure is applied to two historical case studies, software and industrial robots.
Webb highlights the displacement effect: jobs that were highly exposed to previ-
ous automation technologies saw declines in employment and wages over the rel-
evant periods. However, the results of Mann and Piittmann (2017), who also
measure automation using patent texts, paint a different picture.” Linking auto-
mation patents to industries and local labor markets, they find a positive effect
of automation on employment.

Whether it be the robot count or the patent measure, the aggregate measures
of automation/robotization at the country or industry level provide inconclusive
evidence. Cross-country or industry-level research designs make it difficult to
isolate a clear causal link between automation and employment. Firm-level
research, that has grown recently, sheds new light on this issue.

b. Fivm-level veseavch designs provide causal evidence
supporvting the “new view”

A number of recent studies using firm-level data supports the prediction a direct
positive effect of automation on employment in automating firms: in France
(Acemoglu et al., 2020, Aghion et al., 2020), in the Netherlands (Bessen et
al., 2019), in the United Kingdom (Chandler and Webb, 2019), in Canada
(Dixon et al., 2019), in Denmark (Humlum, 2019), and in Spain (Koch et al.,
2021). Table 2.2 reports the order of magnitude of employment (and wage) elas-
ticities to automation at the firm-level from these recent papers.

This positive effect may reflect either a net creation of jobs by automating
firms or lower separation rates by these firms. Several of these studies provide
quasi-experimental evidence to establish that automation camses an increase in
employment at the firm level. In the next section, we describe the methodology
in detail, focusing on our own empirical work on automation and employment at
the plant and firm levels.

Thus, the “negative” story faces difficulties when confronted by firm-level
data. At odds with the predictions of the “pessimistic” story, most of the
previously-mentioned studies do not find evidence of a falling equilibrium
wage nor of a declining labor share (e.g., Bessen et al., 2019; Dixon et al.,
2019; Humlum, 2019; Koch et al., 2021; Aghion et al., 2020).

Babina et al. (2020) bring out a similar result with firm-level investment in Al
technology. Firms that invest more in Al experience faster growth in sales and



Table 2.2 Recent Estimates of Effects of Automation on Firm-level Employment and Wages

Authors Country and — Measure of Automation Method — Impact on Firm-Level Impact on Firm-Level
Time Period Employment Wayges
Acemoglu, Lelarge, and  France Robot adoption by OLS Increase in hours worked for  +0.9 % (unweighted
Restrepo (2020) 2010-2015 firms (versus non robot adopters between + estimates), non
robot adoption) 5.4 % (employment significant
weighted estimates) and (employment
10.9 % (unweighted weighted estimates)
estimates)
Aghion, Antonin, Bunel, France Automation: machines Event Elasticity between 0.2 (OLS) N/A
& Jaravel (2020) 1994-2015 stock study, and 0.4 (IV)
v
Bessen, Goos, Salomons, Netherlands, = Automation “spikes”  Event  Automating firms have 1.8 to Not significant
& van den Berge (2019)  2000-2016 using automation study 2% higher employment
expenditures (all compared to non
automation automating firms
technologies)
Dixon, Hong, and Wu Canada, Robot capital stock Event  Elasticity of firm employment N/A
(2019) 1996-2017 (imports of robotics study to robot capital stock in the
hardware and robot [0.7-21% interval
purchases)
Koch, Manuylov, and Spain, Robot adoption Event  4-year elasticity to robot Not significant
Smolka, (2021) 1990-2016 study adoption: 10%

Source: cited papers.
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employment both at the firm- and industry-levels. Al allows the expansion of the
most productive firms ex ante: they grow larger, gain sales, employment and
market share. The authors report a null effect on productivity in the short run,
perhaps because of the novelty of Al technologies, which are not fully mastered
by workers.

Overall, these studies support the view that automation inside a firm fosters
greater labor productivity. It drives quality-adjusted prices down for consumers*
and increases product demand and market share of the firm, which can result in
net job growth. Provided that demand is elastic enough to prices, then growth in
demand will offset job losses.’ The increase in the market share will only last
until markets become saturated (Bessen, 2019). As Autor (2015) states it, “jour-
nalists and even expert commentators tend to overstate the extent of machine
substitution for human labor and ignore the strong complementarities
between automation and labor that increase productivity, raise earnings, and
augment demand for labor.”

Firm-level results are not directly informative about the impact of automation
on labor demand at the aggregate level. For example, the productivity effect may
contribute to the crowding-out of non-automating firms by automating firms.
Since the productivity effect inside the automating firms generates an increase
in product demand, the market share of these firms goes up at the expense of
its non-automating competitors. Empirically, firms whose competitors adopt
robots experience significant declines in value added and employment (Acemo-
glu, 2020; Aghion et al., 2020; Koch et al., 2021). For example, Koch et al.
(2021) find that robot-adopting firms create new jobs and expand the scale of
their operations, while non-adopters incur negative output and lose employment
because of tougher competition with high technology firms."

Thus, drawing on different measures of automation, different countries, and
various time periods, recent micro studies consistently point to the importance
of the productivity effect, with positive employment effects within automating
firms and potential displacement effects across firms.

c. Which workevs benefit ov lose from automation?

Separate from the debate about the impact of automation on overall labor
demand, there is a debate about the types of jobs that are created or destroyed
and the distributional effects of automation. The economics literature has long
considered technological change to be labor augmenting and favorable to skilled
workers. In the wake of the IT and computer revolution in the 1990s, research
has investigated the skill bias of technological progress. This hypothesis indeed
supported the idea of complementarity between technology and skilled workers
(see Acemoglu & Autor, 2011, for an overview). Technological change would
result in the polarization of the job market, i.c., the slower increase in mid-wage
occupations compared to both high-wage and low-wage occupations.

In the 2000s, following the critique of Card & DiNardo (2002), and the
seminal paper of Autor et al. (2003), the labor-replacing view of automation
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for routine tasks has become prevalent. According to this idea, automation replaces
routine jobs, and creates more demand for non-routine jobs that cannot be per-
formed by machines. Several studies have documented the decline in manufactur-
ing and routine jobs (Autor et al., 2003; Jaimovich & Siu, 2012; Autor & Dorn,
2013; Charnoz & Orand, 2017; Blanas et al., 2019).

Coming back to firm-level studies, some of them highlight a reallocation of
workers between occupations (Bessen, 2019; Bonfiglioli et al. 2020; Humlum,
2019; Acemoglu et al., 2020). Humlum (2019) notably reports a shift from
low-skilled to high-skilled workers in Denmark: labor demand shifts from produc-
tion workers toward tech workers, such as skilled technicians, engineers, or
researchers. In the same vein, Bonfiglioli et al. (2020) show that robot imports
by French firms increase productivity along with the employment share of high-
skill professions. Similarly, Bessen (2019) shows that computer automation
causes growth in well-paid jobs and decreases in low-paid jobs. Using Canadian
data, Dixon et al. (2019) document a polarization effect: investments in robotics
are associated with shrinking employment for mid-skilled workers, but with
increasing employment for low-skilled and high-skilled workers, notably manage-
rial activities. This shift from low-skilled to high-skilled workers may also contrib-
ute to boosting measured productivity (Humlum, 2019; Acemoglu et al., 2020).

Yet, some studies do not find any reallocation effect between different types of
workers and occupational categories (Aghion et al., 2020). This could be
explained by a reallocation effect within jobs, since automation technologies gen-
erally do not replace entire jobs but only a certain number of tasks (Acemoglu
and Autor 2011). Some human skills may become more valuable than ever in
the presence of machines (Brynjolfsson & McAfee, 2011). Automation may
thus lead to a restructuring of the task content of different jobs “within
worker” (Aghion et al., 2020), enhancing labor productivity and employment,
but without any change in the skill structure of firm’s labor force.

This is precisely the issue that Arntz et al. (2017) raise when they question
Frey and Osborne’s (2017) analysis on the future of Al. Frey and Osborne
(2017) tried to forecast the probability of computerization of 702 jobs and con-
cluded that 47% of employment in the US was at risk of automation in the next
ten or twenty years, while only 33% of jobs had a low risk of automation. But
their analysis disregards the task content of jobs. Arntz et al. (2017) show
that, when factoring in the heterogeneity of tasks within occupations, only 9%
of all workers in the US face a high risk of automation.

4. Recent empirical evidence from France

We illustrate the main points from the preceding literature review using French
data, drawing from our recent work (Aghion et al., 2019, 2020). We first show
that labor market level analysis using IFR data provides mixed support in favor of
the negative view. Second, we show that firm level and plant level analyses using
alternative measures of automation provide quasi-experimental evidence
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supporting the second view. We present the methodology and main results from
our existing work, as well as novel complementary specifications.

a. Labov market level analysis using IFR data

Aghion et al. (2019) reproduce the method developed by Acemoglu and
Restrepo (2017, hereafter AR) using French data over the 1994-2014 period,
analyzing the impact of increased robotization on employment at the aggregate
employment zone level."

To measure exposure to robots at the labor market — defined as commuting
zone — level, AR built a local exposure index, which combines two elements:
(i) the number of robots per worker in each of industry on the one hand and
(ii) the pre-existing share of employment in industry 7 for a given commuting
zone ¢. Thus, this local exposure index exploits the initial heterogeneity in indus-
try employment structures across commuting zones to distribute cross-industry
variation in the stocks of robots in the various industries, observed nationwide
during the sample period. More formally, the increases in robot exposure at
the commuting zone level is defined as:

RY RV .
US robot exposure 1993 —2007, = Z 1190 ( L’l’]jw — L’l};m)
il 17,1990 71,1990
where the sum is over all the 19 industries 7 in the IFR data; /}* stands for the
1990 share of employment in industry 7 for a given commuting zone ¢; R; and L,
stand for the stock of robots and the number of people employed in a particular
industry .
Keeping with AR, Aghion et al. (2019) measure the increase in robot exposure
in a French employment zone™ between 1994 and 2014 as:

L. 00, [ R; R, 0,
Robot exposure 1994—2014, = E e
L Li,1994 Li,l994

el c,1994

where L, o, refers to employment in the employment zone ¢ in industry 7 in
1994, L, g, refers to employment in employment zone ¢ in 1994, and L, 4,
refers to employment in industry ¢ in 1994. R, and R,,;, respectively
stand for the total number of robots in industry 7 in 1994 and 2014. This
index reflects the exposure to robots per worker between 1994 and 2014. The
outcome variable of interest is the evolution of the employment-to-population
ratio between 1990 and 2014.

In the baseline OLS specification, we study the impact of exposure to robots
on the evolution of employment-to-population ratio. Then we add controls such
as an exposure index for information and communication technologies (ICT)
TICExp,, built in a similar way as the exposure to robots index and an interna-
tional trade exposure index TradeExp to China and Eastern Europe. In some
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regressions, we also add a vector X, of control for the employment zone ¢: demo-
graphic characteristics, manufacturing shares, broad industry shares, broad
region dummies, and specific industry shares within manufacturing. The identi-
fication assumption is that, conditional on this set of controls, industries that are
exposed to an increase in the rate of automation are not simultaneously affected
by unobserved shocks to labor demand or labor supply.'® We can write:

L£,199f1

Pop. v, = o+ f,RobotsExp, + B, TradeExp, + B, TICExp, + X, + €,
¢,1994

To measure the impact of exposure to robots on local labor markets, the strategy
adopted is similar to the one initiated by Autor et al. (2013): the observed
change in robot exposure in U.S. industries is instrumented with changes in
robot exposure in the same industries in other developed economies. This
approach helps address U.S.-specific threats to identification affecting the OLS
approach: one may imagine a shock, which we do not capture in our controls,
but which may impact both the installation of robots and local labor markets
dynamics. Following AR, the stocks of robots in industries from other developed
countries (Germany, Denmark, Spain, Italy, Finland, Norway, Sweden, and the
United Kingdom) are used to build other indexes of exposure to robots. These
new indexes are then used to instrument the exposure index built on the French
stock of robots.

In this shift-share IV research design, identification arises from the heteroge-
neity in robotization shocks across industries, which is projected to the regional
RY§007 R;l./fgg:l
L0 Lo

. Indeed, as described in Borusyak et al. (2021), the employment

level. Identification stems from the robotization shocks and

Risoa _ Rijgo
Li 1994 Lij994

shares /1 are not tailored to exposure to robotization: they are “generic”, in
that they could conceivably measure an observation’s exposure to multiple
shocks, both observed and unobserved. Accordingly, it is important to control
for industry-level characteristics that may contaminate the industry-level identify-
ing variation, such as whether an industry belongs to manufacturing. Absent such
controls, we would conflate the potential effects of robotization with broad sec-
toral trends.'

Table 2.3 displays the results of the OLS estimation. This table shows a neg-
ative correlation between exposure to robots and change in employment-to-
population ratio. However, we observe that the level of significance decreases
as more controls are added. Significance is lost in column (5) once a control
for the local manufacturing industry share is included and the point estimate
falls substantially, indicating that broad sector trends play an important role.
The correlation is marginally significant in column (6) and non-significant in
columns 7 through (10), where we add several types of controls simultaneous
or exclude the commuting zones with the highest exposure to robots.

In the instrumental variable regression shown in Table 2.4, the coefficients of
robot exposure are significant when we consider broad controls from columns



Table 2.3 Eftect of Robot Exposure on Employment-to-Population Ratio, 1990-2014, OLS Estimates

Dependent Variable: Change in Employment-to-Population Ratio 1990-2014 (in %-age Points)

1Y 12 w0y addingg 8¢

1) 2) 3) &2 %) (6) 7) (8) 9) (10)
Robots Exposureio0a 2014 -1.090*** -0.749*** -0.594**  -0.515** -0.169 -0.549* -0.398 -0430 -1.074 -1.035
(0.253) (0.263) (0.239) (0.243) (0.239) (0.294) (0.244) (0.324) (0.768) (0.783)
TIC Exposure1o04 2014 -3.099* -2.397 -2.495* -0.304 -0.165 -0.154 1.519 1.493
(1.586) (1.594) (1.455) (1.620) (1.576) (1.588) (1.641) (1.648)
Trade Exposure1004 2014 -0.743***  -0.690*** -0.825*** 0.0857 -0.123 -0.124 0.200 0.201
(0.247) (0.215) (0.239) (0.243)  (0.278) (0.280) (0.335) (0.337)
Demographics Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes
Manufacturing industry share Yes Yes Yes Yes Yes Yes
Other broad industry shares Yes Yes Yes
Specific manufacturing industry shares Yes Yes
Remove highly exposed areas Yes Yes
Observations 297 297 297 297 297 297 297 295 297 295
R-squared 0.058 0.090 0.198 0.205 0.174 0.249 0.407 0.406 0.409 0.408

Source: Data from Aghion et al. (2019).

Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Other broad industry
shares cover the share of workers in agriculture, construction, retail, and the share of women in manufacturing in 1994. Specific manufacturing industry shares
cover the share of workers in automotive, rubber, food, and the share of women in manufacturing in 1994. Broad region dummies refer to the 13 metropolitan
regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors in parentheses. Levels of significance: *** p <
$0.01, ** p < $0.05, * p < $0.1. Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.



Table 2.4 Effect of Robot Exposure on Employment-to-Population Ratio, 1990-2014, IV Estimates

Dependent Variable: Change in Employment-to-Population Ratio 1990-2014 (in %-age Points)

(D 2) 3) (4) (%) (6) (7) (8) ©) (10)
Robots Exposurei994 2014 -1.317***  -1.010***  -0.974***  —0.737** -0.389 -0.790***  -0.686***  -0.986***  -1.305 -1.221
(0.325) (0.322) (0.271) (0.296) (0.248)  (0.300) (0.241) (0.351) (0.799)  (0.812)
TIC Exposurei99a-2014 -2.569 -1.699 -2.094 -0.176 -0.0323 0.101 1.590 1.547
(1.618) (1.578) (1.444) (1.590) (1.518) (1.538) (1.601)  (1.609)
Trade Exposureio0s 014 -0.670***  -0.589***  _(0.773*** 0.110 -0.0922 -0.0882 0.198 0.199
(0.242) (0.211) (0.230) (0.240) (0.276) (0.279) (0.322)  (0.323)
Demographics Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes
Manufacturing industry share Yes Yes Yes Yes Yes Yes
Other broad industry shares Yes Yes Yes
Specific manufacturing industry shares Yes Yes
Remove highly exposed areas Yes Yes
Observations 297 297 297 297 297 297 297 295 297 295
First-stage F-statistic 57.2 42.6 45.8 46.0 32.6 28.7 35.1 18.9 16.5 16.3
R-squared 0.055 0.087 0.193 0.203 0.172 0.248 0.405 0.400 0.409 0.408

Source: Data from Aghion et al. (2019).

Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Other broad industry
shares cover the share of workers in agriculture, construction, retail, and the share of women in manufacturing in 1994. Specific manufacturing industry shares
cover the share of workers in automotive, rubber, food, and the share of women in manufacturing in 1994. Broad region dummies refer to the 13 metropolitan
regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors in parentheses. Levels of significance: *** p$ <
$0.01, ** p$ < $0.05, * p$ < $0.1. Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.
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(1) to (4). Column (1) begins with a regression without any control and finds a
negative effect: one more robot per 1000 workers leads to a drop in the employ-
ment-to-population ratio of 1.317 percentage point. Column (2) adds controls
for ICT and imports exposures and the magnitude remains the same. Then,
columns (3) and (4) successively test the impact of demographic characteristics
and broad region dummies, leaving the results almost unaffected. In column
(5), adding a control for the manufacturing share alone is sufficient to lose sig-
nificance and substantially reduce the point estimate. The result highlights again
the importance of controlling for broad industry trends, as emphasized by Bor-
usyak et al. (2021).

Combining different sets of controls, the specifications in columns (6) through
(8) deliver negative and statistically significant IV estimates. In columns (9) and
(10), we replace broad industry shares controls by controls for specific industry
shares within manufacturing at the commuting zone level. Specifically, we
control for the three 2-digit industries that have the highest number of robots
at the end of the period and that account for 74% of the total number of
robots in 2014: automotive, rubber, and food industries. These are key industries
relative to the construction of the index. The coefficients remain large and neg-
ative; they become non-significant as these controls lead to larger standard
CITOrS.

Thus, the OLS and IV evidence from IFR data at the industry level suggest
that there is a negative impact of robots on labor demand, although the
results are sensitive to the choice of controls due to the small number of indus-
tries that are used as the source of identifying variation. Furthermore, the finding
of a negative or non-significant effect of robotization on employment at the
aggregate employment zone level could be consistent with either the “new
view” or “old view” on automation and employment. Indeed, this result could
reflect either the fact that robotizing firms destroy jobs and that this direct
effect is not fully offset by the counteracting general equilibrium effect
working through wage reduction and the resulting entry of new activities; or
the fact that the positive market size effect of automation at the firm level is
more than offset by the job destruction in the non-automating firms that are
partly or fully driven out of the market by the automating firms. To alleviate
the limitations of the research design and find out more about which of these
two stories applies, we need to move to a more disaggregated analysis of the
effect of automation on employment.

b. Fivm-level and plant-level analyses

In Aghion, Antonin, Bunel, and Jaravel (2020), henceforth AAB]J, we use three
complementary measures as proxies for automation at the firm level and plant
level. At the firm level, we use the balance sheet value of industrial equipment
and machines in euros, which is available for all French firms between 1995
and 2017. This type of capital is defined as “the equipment and machines
used for the extraction, processing, shaping and packaging of materials and
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supplies or for carrying out a service” (industrial machines) and “instruments or
tools that are added to an existing machine in order to specialize it in a specific
task” (industrial equipment). Within the manufacturing sector, this type of
capital accounts for 59% of total capital. Our second measure of automation
follows the Encyclopaedia Britannica (2015), which defines automation technol-
ogy as a “class of electromechanical equipment that is relatively autonomous
once it is set in motion on the basis of predetermined instructions or proce-
dures”.” For the manufacturing sector, the French statistical office (Insee)
records electricity consumption for motors directly used in the production
chain (motive power) since 1983. It distinguishes motive power from other
potential uses of electricity such as thermic/thermodynamic or electrolysis.
Thus, we are able to proxy automation by motive power, which excludes
heating, cooling, or servers uses. Our third measure, also available at the firm
level, uses the annual imports of industrial machines by all French firms
between 1995 and 2017. Following the spirit of the previous definition of indus-
trial equipment and machines, we track all the HS6-products that belong to this
definition. It includes 489 different types of machines that relate to the manufac-
turing industry and automation. In particular, it excludes computers and IT
capital, printers, elevators, etc.

In AABJ, we perform two types of event studies: (i) “extensive margin” event
studies at the firm level, exploiting the timing of the large investment in industrial
equipment and machines for each firm as an automation event, and (ii) distribu-
ted lead-lag analysis at the firm and plant level that allows for delayed responses to
changes in automation and takes into account continuous changes in the stock of
machines.

Our main finding from the event studies is that the impact of automation on
employment is positive, and in fact increases over time: namely, a 1% increase in
automation in a plant today increases employment by 0.2% immediately and by
0.4% after ten years. Results are similar at the firm level. In other words, condi-
tional on surviving, automation leads to a net increase in employment by auto-
mating firms and plants. The event studies also show that automation also
translates into an increase in a firm’s total sales in the years following automation.
The effect remains stable from year of investment in automation to eight years
after.

A potential concern is the endogeneity of firm choices of automation. For
instance, automation could be the result of a corporate growth strategy following
a demand shock. However, the event studies show no sign of pre-trend: condi-
tional on the controls included in the specification, plants that automate more at
time ¢ were on a comparable employment path in prior years and start diverging
afterwards. This restricts the potential set of confounders that could explain the
increase in employment — confounding shocks need to occur simultaneously to
the increase in automation. To further alleviate the endogeneity concern, we
examine the stability of the estimates when including more stringent time-
varying controls, notably 5-digit-industry by year fixed effects and firm-year
fixed effects. The specification with firm-year fixed effects only exploits variation
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in automation across plants within the same firm, controlling for all time-varying
demand and supply shocks at the firm level. We find that the estimates remain
stable, which further restricts the set of confounders (which must operate
across plants within the same firm in the same year).

All these findings speak to a “productivity” effect of automation, in line with
the “positive view” spelled out in the previous section: namely, firms that auto-
mate more become more productive. This enables them to obtain larger market
shares because their products offer consumers better value for money than their
competitors. The resulting gain in market share prompts those firms that auto-
mate to produce at a larger scale, and therefore to hire more employees.

In AABJ, we also consider the effect of automation on wages inequality within
firms. More specifically, we study its effect on the evolution of the ratio between
low-skilled workers” mean hourly wage and high-skilled workers’ mean hourly
wage. Figure 2.1 reports the results: we observe no differences in terms of evo-
lution between these two types of workers.

Note however that the event study research design does not fully address
potential correlated demand and supply shocks that could occur exactly at the
same time as the increase in automation. Thus, in order to estimate the causal
effects of automation on employment, sales, wages, and the labor share across
firms, we use a shift-share design.

In fact, the ideal design would randomly assign purchasing prices for machines
across firms. In AABJ, our idea is to approximate this hypothetical experiment
using a shift-share instrument, which leverages two components: (i) the time var-
iation in the implicit cost of imported machines over time across international

Mean Hourly Wage - Ratio Low/High Skilled
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Figure 2.1 Firm-Level Event Study of Automation on Hourly Wage Ratio between
Low- and High-Skilled Workers.

Source: reproduced using AABJ data.
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trading partners (the “shift” component); and (ii) the heterogeneity in pre-
existing supplier relationships across French firms (the “exposure shares” compo-
nent). The ideal “shock” variable would be the expected quality-adjusted price of
imported machines by French manufacturing firms. However, we cannot directly
observe these prices; that is why, instead, we infer changes in quality-adjusted
price from changes in export flows of these foreign machines.

The intuition behind the shift-share instrument is that firms will be differen-
tially exposed to these changes in quality-adjusted price of machines from differ-
ent trading partners due to their sticky pre-existing relationships. For instance, if
two French firms A and B import respectively 80% and 20% of their machines
from Italy, and machines produced in Italy suddenly have a better quality-
adjusted price, firm A will have more incentives to automate than firm B due
to its strong established relationship with Italian suppliers of machines.

The estimates of the impact of automation on employment using the shift-
share instrument are in line with the previous findings from the event studies.
The elasticity of firm employment to automation that we find ranges between
0.397 and 0.444 on a five-year horizon (Table 3A of AABJ), significant at the
5% or 1% level depending on the set of controls, and the first stage F-statistic
remains close to 10 in all specifications.

Next, we conduct the same exercise with sales and the labor share at firm level.
We find that sales increase in response to increased automation, with elasticities
ranging from 0.395 to 0.512 (Table 3B of AAB]J) across specifications. Using the
same specifications, we cannot reject the hypothesis that there is no impact of
automation on the labor share, which in turn suggests that the productivity
cffect may offset the task substitution channel in a way that leaves the labor
share unchanged at the firm level.

One can also look separately at specific industries. Particularly interesting is the
automobile industry, which accounts for the vast majority of industrial robots.
We still find a positive effect of automation on employment at the firm level, con-
sidering as treated the top 25% of firms in terms of biggest investment in indus-
trial machines (Figure 2.2). Thus, even in an industry for which industrial robots
are a non-negligible share of machines, the relation between automation and
employment remains positive.

What happens when we move from firm or plant level to industry level? Using
a shift-share design, AAB]J find a positive effect of automation on employment
also at the industry level, with point estimates ranging from 0.558 to 0.620
across specifications. This again speaks to the importance of the productivity
effect: manufacturing industries are integrated into international trade. Therefore
French firms that automate expand their export market at the expense of foreign
firms. This in turn explains why the productivity effect is the dominant effect
even at the industry level, as it is mostly foreign firms in foreign markets that
suffer from the resulting business stealing. In a closed economy, domestic
non-automating firms would suffer from the business-stealing by the automating
firms; the increase in employment in automating domestic firms would be more
likely to be counteracted by job destruction in non-automating domestic firms.
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Figure 2.3, which is a novel result using data from AAB]J, illustrates this busi-
ness-stealing — or eviction — effect: firms that invest significantly in new industrial
equipment substantially lower their likelihood of going out of business over the
following ten years compared to firms that do not make such an investment.

5. Conclusion

In this chapter, we relied on both the existing literature and our own empirical
work to discuss the effects of automation on employment. We pointed to two
contrasting views on the subject. A first view sees automation as primarily
destroying jobs, even if this may ultimately result in new job creations taking
advantage of the lower equilibrium wage induced by the job destruction. A
second view emphasizes the productivity effect of automation as the main
direct effect: namely, automating firms become more productive, which
enables them to lower their quality-adjusted prices and therefore to increase
the demand for their products; the resulting increase in market size translates
into higher employment by these firms. We provided direct empirical evidence
supporting the second view in the case of France, and we showed that the empir-
ical literature on automation and employment was also leaning in that direction
in a broad set of countries.

Overall, automation is thus not in itself an enemy of employment. By modern-
izing the production process, automation makes firms more competitive, which
enables them to win new markets and therefore to hire more employees in a
globalized world.

We can think of several avenues for further empirical research on automation
and the labor market. One would be to explore how automation interacts with
outsourcing and international trade. Another avenue would be to distinguish
between different types of sectors and industries. A third avenue would be to
introduce the distinction between routine and non-routine jobs. A fourth
avenue would be to refine the empirical analyses of the impact of automation
on the distribution of wages at the firm level, industry level, and by skill
groups. These and other extensions of the analyses surveyed in this chapter are
promising directions for future research.

Notes

1 Keynes, “Economic Possibilities for Our Grandchildren.”

2 In this model, a new (more complex) task replaces or upgrades the lowest-index
task. The fact that the limits of integration run between N - 1 and N imposes
that the measure of tasks used in production always remains at 1. Thus, an
increase in N represents the upgrading of the quality (productivity) of the unit
measure of tasks.

3 See Acemoglu et al. (2020), and Aghion et al. (2020).

4 We can draw a parallel between the productivity-enhancing effect of technolog-
ical progress and the productivity-enhancing effect of offshoring highlighted by
Grossman and Rossi-Hansberg (2008). In the offshoring process, when some
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tasks can more readily be performed abroad, firms that use this type of labor
intensively augment their profitability and expand at the expense of their compet-
itors that rely on other types of labor. This is turn leads to an increase in their
labor demand.

Based on a general static framework with a continuum of worker types, Costinot
and Werning derive optimal tax formulas that depend on a small set of sufficient
statistics that require relatively few structural assumptions.

Earlier studies used the measure of computers or IT as a proxy (Krueger, 1993;
Autor et al., 1998; Bresnahan et al., 2002; Beaudry, Doms and Lewis, 2010,
Michaels, Natraj and Van Reenen, 2014).

The local exposure to robots is an indirect measure of robot penetration at the
local level — a Bartik measure — which is based on the rise in the number of
robots per worker in each national industry on the one hand and on the local dis-
tribution of labor between different industries on the other hand.

Webb’s measure relies on the following pattern: the text of patents contains
information about what technologies do, and the text of job descriptions con-
tains information about the tasks workers do in their jobs. These two text
sequences are compared in order to quantify how much patenting in a particular
technology has been directed at the tasks of a given occupation. A score is attrib-
uted to each task, and the task-level scores are aggregated at the occupation level
in order to construct an automation exposure score for each occupation.

Mann and Pittmann classify patents as automation patents if their texts describe a
device that carries out a process independently of human intervention. They
match patents to the industries where they are likely to be used according to
the patents’ technology class and derive a measure of newly available automation
technology at a detailed industry and commuting-zone level.

Aghion et al. (2020) provide direct empirical evidence on the response of con-
sumer prices. Bonfiglioli et al. (2020) suggest that productivity gains from auto-
mation may not be entirely passed on to consumers in the form of lower prices.
For a discussion on the type of workers who benefit or lose from automation, see
Section 3.c.

Koch etal. (2021) first focus on the adoption decisions of firms. They show positive
selection, that is, firms that adopt robots in their production process are larger and
more productive than non-adopters before adopting robots. They also show that,
conditional on productivity, more skill-intensive firms are less likely to adopt
robots, and that exporters are more likely to adopt robots than non-exporters.
AR analyze the effect of the increase in industrial robot usage between 1990 and
2007 on US local labor markets. They find that one more robot per thousand
workers reduces the employment to population ratio by about 0.37 percentage
points and wage growth by 0.73 percent.

According to the official definition provided by Insee, an employment zone is a
geographical area within which most of the labor force lives and works. It pro-
vides a breakdown of the territory adapted to local studies on employment.
The source of identifying variation is at the industry level and outcomes are mea-
sured at the level of local labor markets, as discussed in the recent Bartik identi-
fication literature (e.g., Addo et al., 2019 and Borusyak et al., 2021).

Note that this research design only speaks to the effects of automation on
employment across local labor markets, using industry shocks as the source of
variation. It cannot speak to the overall (country-level) macroeconomic effect
of automation, which requires a model to account for reallocation of employ-
ment across industries and labor markets (e.g., Ngai and Pissarides 2007) or a
source of variation at the country level.

Definition from Encyclopaedia Britannica (2015), “Automation”.
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1 Introduction

The nature and the organization of production is undergoing a radical transfor-
mation. Advances in robotics technologies have led to the widespread use of
automation in tasks previously performed by workers. At the same time,
improvements in communication technologies have led companies to offshore
stages of production to low-wage countries. These two phenomena are having
a profound effect on advanced economies. Although they are believed to bring
about higher productivity and lower costs, they are also often blamed for the
decline in manufacturing employment and stagnation of real wages (see, for
instance, Baldwin, 2019). More recently, a new hypothesis is gaining attention:
that automation, which is much more prevalent in advanced economies, can
increase competitiveness and bring back jobs that had been previously relocated
to low-wage countries. Examples of this process of “reshoring” have started to
populate the business literature. Yet, its scope, causes and consequences are
still largely unknown.

In this chapter we study the interaction between automation and offshoring,
from the perspective of advanced countries. From a theoretical viewpoint, we
show that offshoring can change the welfare effects of automation. In particular,
if robots replace foreign-sourced tasks, automation is always beneficial for
domestic workers. However, if robots replace domestically-produced tasks, auto-
mation can be welfare-reducing for workers in the adopting country, even if it
would have been welfare-improving in autarky. These results underscore the
importance of identifying which workers are competing with robots more
directly. We therefore turn to US data across industries, occupations and local
labor markets to validate the predictions of the model and assess which scenario
is empirically more plausible.!

To illustrate our theoretical result, we start from a simple task-based model of
production that incorporates the standard effects of automation. In autarky, sub-
stituting labor with cheaper robots has a productivity effect, a capital deepening
effect and a displacement effect. While the first two effects raise welfare, the latter
one tends to lower real wages. But the negative effect is always dominated if the
supply of robot capital is sufficiently elastic.>2 In the presence of offshoring,

DOI: 10.4324,/9781003275534-3


https://doi.org/10.4324/9781003275534-3

Robots, Offshoring, and Welfare 41

however, there is a new terms-of-trade effect that redistributes income across
countries: automation lowers the relative wage of the workers that are displaced
by robots the most. If automation substitutes foreign labor, domestic workers do
not suffer any displacement, while they benefit from a higher productivity, capital
deepening and cheaper foreign inputs. In this case, automation triggers reshoring
and raises domestic welfare. However, if domestic workers are substituted by
robots, they are harmed both by the displacement effect and by the increase in
the cost of foreign inputs. In this case, automation can lower domestic welfare
even if the higher productivity and capital deepening would compensate the dis-
placement effect in autarky.

The model also illustrates that whether automation replaces domestic or
foreign workers may depend not only on exogenous characteristics of the tasks
they perform, but also on economic incentives, which depend on the wage
gap between countries. This opens the possibility that, since offshoring increases
foreign wages, the direction of automation may switch endogenously from
domestically-produced to foreign-sourced tasks. Finally, from a normative per-
spective, the model implies that, since automation targeted at offshored tasks
redistributes income from the foreign to the domestic country, policy makers
may have an incentive to distort the use of robots strategically.

In the second part of the chapter, we move to the empirical analysis. Recent
anecdotal evidence suggests that advanced countries across the world have
started to shift away from foreign inputs. For instance, Walmart (2016), the
biggest retailer in the world, launched the “Jobs in U.S. Manufacturing
Portal” website as part of a broader “Investing in American Jobs” initiative
which aims to bring manufacturing jobs back to the US. The COVID-19 pan-
demic has accelerated this trend by fostering automation and inducing govern-
ments to aim at increasing self-sufficiency in strategic sectors. However,
systematic evidence about reshoring, defined as a reduction in the growth of off-
shoring which can even turn negative, is scant.

Motivated by our model, we study the effect of industrial automation between
1990 and 2015 on US local labor markets and how it relates to oftshoring. To
measure automation and offshoring, we use high-quality trade data on US
imports of industrial robots and intermediate inputs, respectively, and assign
them to industries using detailed Import Matrices. We then project these mea-
sures across 722 US commuting zones based on the industry composition of
employment. We further instrument the change in US imports of industrial
robots with similar changes observed in eleven European countries. With this
data, we find that robot imports lower manufacturing employment. Since man-
ufacturing is the sector where automation is concentrated, this evidence suggests
that, on average, robots displace US workers. However, we also find positive
effects on wages, though not always significant, consistent with the hypothesis
that robots improve labor productivity.

Next, we ask how these effects depend on offshoring. To this end, we first
show that occupations at risk of automation, denoted for short as “replaceable”,
and those classified as “offshorable”, tend to have a relatively similar task
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content.® This suggests that automation and offshoring might indeed be substi-
tutes, in that they may affect similar occupations. Consistent with this evidence,
we find that robot imports tend to lower offshoring, both at the industry and at
the commuting zone level. Building on these results, we further unpack the neg-
ative employment effect of robot imports across different occupations. This exer-
cise rev