
Ing, Lili Yan (Ed.); Grossman, Gene M. (Ed.)

Book

Robots and AI: A New Economic Era

Routledge-ERIA Studies in Development Economics

Provided in Cooperation with:
Taylor & Francis Group

Suggested Citation: Ing, Lili Yan (Ed.); Grossman, Gene M. (Ed.) (2023) : Robots and AI: A New
Economic Era, Routledge-ERIA Studies in Development Economics, ISBN 978-1-000-62648-3,
Routledge, London,
https://doi.org/10.4324/9781003275534

This Version is available at:
https://hdl.handle.net/10419/281298

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.4324/9781003275534%0A
https://hdl.handle.net/10419/281298
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/




i

Robots and AI 

Robots and artificial intelligence (AI) are powerful forces that will likely have 
large impacts on the size, direction, and composition of international trade 
flows. This book discusses how industrial robots, automation, and AI affect 
international growth, trade, productivity, employment, wages, and welfare. 
The book explains new approaches on how robots and artificial intelligence 
affect the world economy by presenting detailed theoretical framework and 
country-specific as well as firm-product level-specific exercises. 

This book will be a useful reference for those researching on robots, 
automation, AI and their economic impacts on trade, industry, and employment. 

Lili Yan Ing is Lead Advisor (Southeast Asia Region) at the Economic Research 
Institute for ASEAN and East Asia (ERIA). Dr Ing was appointed as Lead 
Advisor to the Minister of Trade of the Republic of Indonesia in 2017–2019. 

Gene M. Grossman is the Jacob Viner Professor of International Economics in 
the Department of Economics and the School of Public and International Affairs 
at Princeton University. 
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1 Introduction 

Lili Yan Ing and Gene M. Grossman 

This book was written and edited by humans. 
But soon many books, goods, and services will be produced, operated, and 

supported by industrial robots that rely on artificial intelligence. 
Over the past three centuries, we have witnessed various technological 

advances that have revolutionized production methods, business organization, 
and the way people work and live. Paradigm-changing innovations included 
the steam engine, the electric motor, the digital computer, and a range of prod
ucts and services falling under the rubric of Information and Communications 
Technology (ICT). 

More recently, we have seen remarkable advances in the availability and uses of 
industrial robots and artificial intelligence (AI). George Devol is credited with 
inventing the first industrial robot in the late 1950s. The National Inventors 
Hall of Fame dubbed him the “grandfather of robotics” for his patent on the 
first digitally-operated, programmable, robotic arm that came to be known as 
Unimate. In 1961, Unimate was installed on the assembly line at General 
Motors’ Inland Fisher Plant in Ewing, New Jersey. The machine transported 
die castings from the assembly line and welded them to the body of the car. 
In so doing, it substituted for human labor in performing a task that was 
tedious and dangerous. Soon afterward, Devol and his business associate, 
Joseph Engelberger, formed the world’s first robot manufacturing company, 
which they named Unimation. 

By 1967, industrial robots were being traded internationally. Unimate was 
exported to the Swedish firm Svenska Metallverken for use in the die-casting 
process for the company’s downstream client, Volvo. Soon, Unimate was 
being manufactured by the Kawasaki Robot Company in Japan under a technical 
licensing agreement and marketed throughout Europe. It continued to be used 
mainly for “pick-and-place” tasks involving heavy and dangerous materials 
(Wallen, 2008; Gasparetto and Scalera, 2019). Meanwhile, a German firm, 
Keller and Knappich Augsburg (KUKA), had installed the first automatic 
welding systems for refrigerators and washing machines as well as the first 
multi-spot-welding line used by Volkswagen (Futura-Automation, 2019). 

Before long, companies in Japan were installing robots for use in its fast-
growing manufacturing sector. Kawasaki Robots sold its Kawasaki-Unimate 

DOI: 10.4324/9781003275534-1 
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2000 to the nascent automobile sector. Japanese firms imported the Versatran 
from US producer AMF for automated handling of car parts. By 1972, Uni
mate’s welding robots were also being used by Nissan Motors (Flamm, 1986). 
Kawasaki (Kawasaki Robotics, 2021) claimed that its robots could save the 
work of twenty employees, while being cleaner and safer than human labor. 

In the years that followed, other emerging economies followed Japan’s lead. 
Hyundai Motor, the largest automotive producer in South Korea, began to 
import industrial robots for use in its production processes (Sung, 2004). By 
1985, Taiwan had developed assembly robots for applications in electronics 
and light assembly, while Singapore had installed about 0.6 industrial robot 
per thousand manufacturing workers (Flamm, 1986). As the technology devel
oped further, faster and more sophisticated robots began to be used for a 
range of other manufacturing processes. 

The annual number of installations of industrial robots worldwide more than 
doubled from 2012 to 2019, reaching a total of 373,240 by the end of that 
period. The operational global stock of robots increased from 1 million in 
2009 to about 2.7 million in 2019. China, and to a lesser extent Japan, 
became the fastest new adopters of industrial robots. Together they contributed 
almost two-thirds of the global growth of industrial robots from 2012 to 2019 
(Stanford University, 2021). The automotive and electronic industries remain 
the two heaviest users of industrial robots, absorbing between them about 59% 
of the new sales of total industrial robots in 2019 (IFR, 2020). The rapid 
growth in investment surely reflects the precipitous decline in prices; the 
average cost of an industrial robot fell by more than 60% between 2005 and 
2017, from USD 68,659 to USD 27,074. Further price declines to under 
USD 11,000 are expected by 2025 (Ark Invest, 2021). A combination of 
other factors, such as the increase in robot functionality and flexibility, the 
improved ease of use and interface, and growing awareness of the potential appli
cations of robotic technology are also contributing to the worldwide growth in 
robot usage (Furman and Seamans, 2019). 

Research on artificial intelligence began at Dartmouth College in 1956. Text
books define AI as a non-human system that perceives its environment and takes 
actions to maximize the probability of achieving its goals. More colloquially, the 
term AI is used to describe computations that mimic human cognitive functions, 
such as “learning” or “problem solving.” By the middle of the 1960s, the 
Department of Defense was investing heavily in research on AI, and laboratories 
had been established all over the world. AI has improved massively in the last 
decade, primarily due to the invention of machine learning techniques (particu
larly deep neural networks) that enable the computers to have superior predictive 
power at substantially reduced costs (Agrawal et al., 2019; Taddy, 2019). Many 
AI-driven machines are now as good or better than humans in several instinctual 
and unconscious mental tasks, as they can mimic human thinking in tasks involv
ing perception, mobility, and pattern recognition (Baldwin, 2019). Thanks to 
the advances in AI, more responsive and adaptable robots that can better interact 
with humans, have improved sensory capabilities, and that can better interact 
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with their environment to perform non-routine, uncertain, and more complex 
tasks are becoming widely available at ever-lower costs. Indeed, the application 
of AI to industrial robots is considered the most economically important 
among its various potential uses (Cockburn et al., 2019). 

Global corporate investment in AI increased by almost sixfold, mounting from 
USD 12.7 billion in 2015 to as high as USD 67.9 billion in 2020. The United 
States and China dominate AI investment with a 76% combined contribution 
over the period from 2015 to 2020. But increases in demand for AI-related tech
nologies are being observed around the globe. Brazil, India, Canada, Singapore, 
and South Africa recorded the highest growth in AI-related hiring from 2016 to 
2020 (Stanford University, 2021). 

Economic benefits and costs of industrial robots and AI 
Technological advances drive economic growth. Industrial robots, especially 
those that apply artificial intelligence, offer perhaps the greatest scope for tech
nological improvement and productivity gains in the modern industrial era. 
Robots can increase the speed and precision of industrial processes while 
making them safer and more reliable. They can leverage the time of workers, 
while freeing humans to engage in more conceptual and interpersonal tasks. 
AI can be used to enhance the quality and variety of products available to con
sumers, provide new forms of entertainment, and offer solutions to pressing 
medical and environment problems. Clearly, the potential for robots and AI to 
improve the quality of life is enormous. 

At the same time, new technologies almost always carry unintended conse
quences. Industrial robots, armed with AI, are bound to take over a range of 
tasks in production and thereby displace workers in the labor market. Workers 
who perform tasks that can be performed more efficiently by robots may see a 
fall in wages and a need to change jobs. Job displacement often brings loss of 
self-esteem and significant economic and social adjustment costs. Moreover, 
industrial robots threaten to widen income inequality after a period of diverging 
fortunes for different skill groups, while AI raises concerns about personal privacy 
and possibly much worse. 

The enormous potential for productivity gain from robots and AI coupled 
with their far-reaching and quite unequal effects on workers with different 
skills have made them a fertile topic for economic research. Economists have 
been keen to understand how technologies that directly substitute for humans 
in the performance of certain tasks might have very different effects on income 
distribution and worker welfare than earlier technological improvements, many 
of which were mostly complementary to labor. 

Robots and AI: productivity and trade 
Early research on the benefits of industrial robots and AI has emphasized two 
potential sources of gain. First, these technological advances reduce production 



44 Lili Yan Ing and Gene M. Grossman 

and operational costs. Robots can perform many tasks faster than humans and 
with greater precision and accuracy. AI can be used to predict problems along 
the production line and to leverage computation as an input to production. 
Agrawal et al. (2019), Atkinson and Ezell (2019), and Varian (2019), for 
example, have studied the potential productivity gains from the use of AI and 
robots and the associated declines in total production costs. Second, and 
perhaps less obvious, industrial robots and AI can help markets to function 
more efficiently. AI can be used to learn about human preferences, to allocate 
goods and services from where they are most readily available to where they 
are needed, thereby enhancing efficiency in logistics and delivery. These potential 
benefits of AI have been touted in recent work by Parkes and Wellman (2015), 
Atkinson (2019), Milgrom and Tadelis (2019), Davenport et al. (2019), and 
McKinsey and Company (2019). 

Previous studies have found large productivity gains and substantial price-
reducing effects of the application industrial robots and AI at both the firm 
and aggregate levels. Notable examples of papers with such findings include Ace
moglu and Restrepo (2018), Autor and Salomons (2018), Graetz and Michaels, 
(2018), Agrawal et al. (2019), Koch et al. (2019), and Acemoglu et al. (2020). 
Some authors also find that industrial robots and AI promote international trade. 
For example, Brynjolfsson et al. (2019) report that an AI-based application that 
provides automated translation service on a digital-trading platform increased 
exports by 17.5%. Goldfarb and Trefler (2019) explain how industrial robots 
and AI can facilitate not only goods trade, but also trade in services. 

Robots and AI: employment and wages 
Recent research also focuses on the worrisome consequences of automation and 
AI for employment and wages, especially for those less-skilled workers perform
ing routine tasks that can be performed by machines. Drawing on the existing 
literature, Baldwin (2019) reports that between one and six of every ten jobs 
is at risk of being replaced by robots in the coming two decades. Estimates 
vary with estimation methods, but findings range from 36% for Finland (Pajari
nen and Rouvinen, 2014), 47% for Germany (Brzeski and Burk, 2015), and 47% 
for the United States (Frey and Osborne, 2017), to as high as 60% globally 
(Bughin et al., 2017). 

Automation and AI are likely to have heterogeneous effects in the labor market. 
High-skilled workers, those employed in technology-intensive sectors, and those 
performing non-routine tasks may benefit as industrial robots leverage their pro
ductivity. Workers with less education, especially those performing manual tasks 
on the production line, are most at risk; see, for example, Autor et al. (2015), 
Graetz and Michaels (2018), Humlum (2019), Furman and Seamans (2019), 
Stemmler (2019), Cheng et al. (2019), Acemoglu and Restrepo (2020), and 
Barth et al. (2020). Greater digitalization in smart factories and advanced robotics 
might reduce the importance of labor costs in determining competitive advantage, 
laying greater emphasis instead on skills, complementary services, and other 
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aspects of firm ecosystems (Hallward-Driermeier et al., 2017). Yet, recent studies 
also argue that the productivity gains at the firm level that result from the adop
tion of automation and AI could potentially expand demand (Autor and Salo
mons, 2018; Bessen, 2018), which in turn may enhance labor as these firms 
expand or create new tasks and occupations in service firms and elsewhere 
(Autor and Salomons, 2018; Acemoglu and Restrepo, 2019; Dauth et al., 
2021; Koch et al., 2019; Autor et al., 2020). 

Baldwin (2019) stresses the need for labor-market research that focuses on 
occupations in addition to jobs. Displacement of jobs by machines generates 
adjustment costs, as workers need to move within firms to perform different 
tasks, or search for new jobs in different firms or expanding industries. But most 
occupations conduct non-routine as well as routine tasks, so the medium-term 
outlook may not be so bleak, as workers shift their attention to tasks that machines 
cannot perform. Recent studies increasingly adopt a task-based approach to esti
mating the labor-market impacts of industrial robots and AI, and these typically 
predict less dire outcomes than those that focus on displacements. For example, 
Arntz et al. (2016) using a task-based approach, estimate that only about 9% of 
occupations in OECD countries are highly vulnerable to automation. 

Whereas research findings are mixed about the net effects of continued advances 
in the use of industrial robots and AI on certain segments of the labor market, 
there is little disagreement about the distributional implications. Automation has 
undoubtedly contributed to the fall in the labor share in national income; see 
the review by Grossman and Oberfield (2022, forthcoming). Among workers, 
the more-skilled workers whose human capital is most complementary to the 
new technologies are bound to gain relative to the less-skilled workers for 
whom industrial robots are substitutes; see Autor et al. (2015), Arntz et al. 
(2016), Graetz and Michaels (2018), Bessen et al. (2019), Stemmler (2019), 
Cheng et al. (2019), Gregory et al. (2019), and Acemoglu and Restrepo 
(2020). The new occupations and tasks that AI will create will also likely benefit 
the more skilled and better educated members of the labor force (Tirole, 2017; 
Acemoglu and Restrepo, 2018; Stemmler, 2019; Barth et al., 2020; Dauth 
et al., 2021). These likely implications of the new technologies for income distribu
tion come on the heels of more than two decades of wage divergence and threaten 
to further the social tensions that the greater dispersion has already ignited. 

This book 
Despite the vibrant and burgeoning literature, much remains to be known about 
the economic effects of continued automation and the further development of 
AI. How will these innovations affect countries at different levels of development 
and different regions within countries? What are the occupations of the future? 
How can policy best prepare societies for these anticipated technological 
changes? How will the technological developments affect world cooperation 
and trade, for example by influencing the organization of global value chains? 
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This book contributes to this ongoing project of research and learning. The 
contributors to this volume take stock of the existing literature and draw 
lessons from it, while extending it and taking it in new directions. The chapters 
of this book are diverse in their topical and geographic coverage and in their 
methodological approaches, be they theoretical or empirical, structural, or 
reduced form. Yet they share a common faith that rigorous economic research 
can help us to prepare for an uncertain and, for some, an intimidating future. 

The book is organized in two parts. The first six chapters (Chapters 2–7) 
mostly examine labor-market impacts of automation and AI. They analyze 
how workers will be affected by the adoption of these new technologies in a 
variety of occupations and in different countries and regions. The focus here is 
on employment, wages, and worker welfare. The final three chapters (Chapters 
8–10) focus more on productivity and trade, trying to measure the likely gains 
along these dimensions from technological advances in robotics and AI in devel
oped and developing countries. 

Chapter 2 by Aghion, Antonin, Bunel, and Jaravel surveys the recent literature 
on the effects of automation on labor demand. They describe two contrasting 
views of the impacts of automation. In the more pessimistic view, robots primar
ily substitute for labor at the task level. Then the direct effect of automation is to 
reduce labor demand in firms that adopt robots, which exerts downward pressure 
on the equilibrium wage. This direct effect may be counteracted in general equi
librium by a wage drop that induces non-automating firms to employ more labor 
while incentivizing the creation of new activities for labor to perform or the accu
mulation of capital that boosts labor demand in view of the complementarity 
between capital and labor at the aggregate level. In either case, employment 
falls at automating firms and workers relocate to firms that do not automate 
or to new tasks that cannot be performed by robots. The alternative, more opti
mistic view stresses that firms that install robots become more productive, thus 
expanding their market share at the expense of firms that do not automate. 
Also, the productivity gains in automating firms may translate into lower prices 
that stimulate consumer demand and expand the overall size of the market. In 
this scenario, automation increases employment in the firms that adopt robots 
and might even push the equilibrium wages higher. 

Aghion et al. note that, while the evidence that is based on variation across 
industries and local labor markets is mixed, the newer studies that make use of 
firm-level data support a more optimistic view of automation. Most of the 
studies using firm-level data do not find evidence of a falling equilibrium 
wage, nor even of a declining labor share in firms that automate. Concerning 
AI, they cite Babina et al. (2020), who find that firms that invest in AI experience 
faster sales and employment growth than their non-investing counterparts. 

Finally, Aghion et al. report on their own previous work using firm-level data 
from France. In their data, estimates using data on aggregate employment zones 
find little or no support for the negative view at the aggregate level. When they 
drill down to the firm or plant level, the productivity-enhancing effects of auto
mation seems clear. Firms that automate gain market share and produce at larger 
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scale. They also find no evidence that automation increases the wage of more-
skilled workers relative to that of less-skilled workers in firms that choose to 
automate. Moreover, they report an overall positive effect of automation on 
employment even at the industry level. Aghion et al. conclude that automation 
is not the enemy of labor. By modernizing the production process, automation 
makes firms more competitive, which enables them to win new markets and hire 
more workers in a globalized world. 

In Chapter 3, Bonfiglioli, Crinò, Gancia, and Papadakis develop a simple but 
illuminating model that highlights the interaction between automation and off-
shoring. In the model, industrial robots might take over tasks formerly per
formed by domestic workers, but, in the presence of offshoring, they might 
instead displace foreign workers. This distinction proves to be critical for the 
wage and welfare effects of automation. In autarky, robots must, of course, dis
place domestic workers. Then, substituting robots for domestic labor in perform
ing some tasks generates a productivity effect and a capital-deepening effect that 
tend to raise domestic wages, but a displacement effect that has the opposite 
impact on wages. In the presence of offshoring, if robots displace domestic 
workers, there is an additional terms-of-trade effect that adversely impacts the 
welfare of domestic workers. Domestic workers may suffer from automation in 
situations where they would have gained in autarky. In contrast, if robots displace 
foreign workers and thereby bring part of the production process back home, 
automation is always beneficial for domestic workers. 

Motivated by these theoretical findings, the authors study the effects of imports 
of industrial robots between 1990 and 2015 on US local labor markets. Using a 
“shift-share” analysis, they estimate that imported robots displaced local workers 
but nonetheless boosted domestic wages due to positive productivity effects (in 
line with the Aghion et al. findings reported in Chapter 2). Next, they investigate 
the relationship between local labor market impacts and offshoring. They show 
that occupations at risk of replacement by robots have similar task content to 
those that have been deemed offshorable. They also find the negative employment 
effects of automation to be weaker in occupations that are offshorable than in 
occupations that are less readily moved abroad. Finally, they show – in keeping 
with their theoretical results – that commuting zones that are more exposed to off-
shoring experience smaller job displacement from robot imports than commuting 
zones that are less exposed. 

Chapter 4 by Faia, Laffitte, Mayer, and Ottaviano points to another, possibly 
adverse effect of automation on employment and wages and stress a difference 
between automation and offshoring. Citing Bainbridge (1983), who described 
a “paradox of automation,” they model the idea that automation often requires 
the efficient completion of complementary tasks that can only be performed by 
workers with specialized human capital. Therefore, automation may induce 
increased specialization by workers, who need not only more skills, but particular 
skills. Faia et al. refer to the possibility that new technologies demand workers 
with specialized knowledge in “core competencies” as “core-biased technological 
change.” 
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If the paradox of automation is operative, firms should become more selective 
in their hiring practices as they invest in industrial robots. With greater search 
and selectivity, the duration of unemployment spells should lengthen while mis
match between worker skills and firm tasks should be reduced. The authors verify 
these predictions using data on European occupations and industries for the 
period from 1995 to 2010, finding that automation generates greater skill con
centration, longer unemployment spells for displaced workers, and less educa
tional mismatch between firms and workers. Interestingly, selectivity instead 
fell in industries with high offshorability. They rationalize these findings in a 
model in which automation strengthens the forces of assortative matching 
between workers’ skills and firms’ tasks, whereas offshoring does just the 
opposite. 

In Chapter 5, Furusawa, Kusaka, and Sugita also study the effects of improve
ments in industrial robots while considering advancements in AI as a separate 
technological development. They assume that industrial robots perform 
manual tasks that low-skilled workers would otherwise perform whereas AI sub
stitutes for high-skilled labor in performing more conceptual tasks. Using a quan
titative general-equilibrium model of task-based production in seventeen 
industries and fifty countries that features input-output relationships and 
global value chains, they simulate counterfactual histories in which trade costs 
and robot technologies remain at their 1993 levels. They find that advances in 
robot technology indeed contributed to lower wages for unskilled workers in 
some countries, but the labor-market effects were modest compared to those 
of falling trade costs. Meanwhile, robots generated productivity improvements 
that benefited workers in some other countries. When they simulate the effects 
of a tenfold further increase in the productivity of robots and AI, they find 
that the former has much greater labor-market impacts compared to the latter, 
largely because the estimated elasticity of substitution between AI and high-
skilled labor is much smaller than the elasticity of substitution between robots 
and low-skilled labor. Only for Germany and Japan do they find significant 
impacts of advances in AI technology, these being the two countries where AI 
tasks shares are relatively large. Finally, they predict that advances in robot tech
nology will increase wage inequality in most countries, whereas advances in AI 
technology will have the opposite effect on wage inequality. 

Baldwin and Dingel pose a rather different question in Chapter 6. Leveraging 
recent work on telecommuting induced by the COVID-19 pandemic, they ask 
how many of the newly remote jobs are likely to move overseas and how impor
tant such “telemigration” will be in the development process. Assessing the pros
pects for telemigration requires estimates not only of how many jobs are 
potentially offshorable, but also of how many of the workers that reside 
abroad have the relevant skills to perform these tasks and how substitutable 
these foreign workers are for their domestic counterparts. To address these ques
tions, they estimate a gravity model of telemigration in which the tally of jobs in 
the importing country that can be performed remotely plays the role of the 
“importer mass”; the population of suitably skilled workers in the exporting 
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country plays the role of the “exporter mass”; and the Ghemawat (2007) 
measure of the cultural, administrative, geographic, and economic (“CAGE”) 
distance between countries captures bilateral trade frictions. 

Using their estimates of the gravity equation, they simulate the effects of 
further reductions in barriers to trade in services. The baseline simulations take 
the elasticities with respect to trade costs to be constant, and then further liber
alization is likely to have only very modest effects, because the initial service flows 
are rather small. In a speculative final section, the authors relax the assumption 
that trade elasticities are constant and consider instead the possibility that the rel
ative productivity of the emerging country as a function of the task index rises 
sharply at first but flattens out as more tasks are performed there. In other 
words, they assume that the manifest comparative advantage of the South in 
tasks that it already performs has a different shape than its latent comparative 
advantage in tasks that are currently nontraded. In this scenario, small changes 
in the trade costs for services can have quantitatively large impacts on extent 
of telemigration, as the equilibrium moves from the status quo into a range of 
much higher trade elasticities. 

In Chapter 7, Hanson studies the forces that guide the location of AI-related 
activities across the United States. Hanson first identifies AI-related jobs using 
keywords that appear in Bureau of Census occupational titles. Then, using an 
approach proposed by Lin (2011), he estimates the regional growth in jobs 
related to AI by weighting employment growth in AI-related occupations by 
the share of job titles in these occupations that were added since 1990. He 
finds that, overall, the pattern of regional specialization in AI-related activities 
mirrors that for ICT. However, foreign-born and native-born workers within 
the sector tend to cluster in different locations. Whereas specialization of the 
foreign-born in AI-related jobs is strongest in high-tech hubs with a preponder
ance of private-sector employment, native-born specialization in AI-related jobs 
is strongest in centers for military and space-related research. 

Hanson then proceeds to investigate the factors that drive regional employment 
growth in AI-related jobs. He associates changes in patterns of regional specializa
tion in private AI activities with changes in the regional supplies of college-educated 
immigrants. The author estimates the relationship between the employment share 
of AI-occupations in a commuting zone and the projected local increase in college-
educated immigrants, where the projection is based on the national growth of 
college-educated immigrants from each country of origin and the initial distribu
tion of immigrants by nationality across commuting zones. He finds that growth in 
the supply of foreign-born workers can account for much of the regional growth 
in employment in AI-related occupations since 2000. An inflow of educated immi
grants has virtually no effect on employment growth for native workers, suggesting 
that any substitution that may occur is offset by complementarities. Overall, the 
results in the chapter highlight the importance of immigration policy to continued 
technological progress in AI activities. 

Chapter 8 by Artuc, Bastos, Copestake, and Rijkers examines how the instal
lation of industrial robots in advanced countries affects trade with developing 



1010 Lili Yan Ing and Gene M. Grossman 

countries. As suggested by Bonfiglioli et al. in Chapter 3, robots might substitute 
for low-skilled workers in tasks offshored to low-wage countries. Moreover, low-
income countries may lack the skills and infrastructure needed to participate 
intensively in emerging global value chains if automation reduces the importance 
of low labor costs as a source of international competitiveness. Motivated by 
these concerns, the authors of this chapter investigate what effect automation 
may have had on the trade participation and patterns of developing countries. 
Is there evidence that growing use of industrial robots in the advanced countries 
reduces export opportunities for developing countries? 

The authors first constructed and calibrated a multi-sector, multi-country model 
of two-stage production and trade in which robots can take over some (potentially 
different) range of tasks in each sector. They simulate a decline in the price of 
robots, holding fixed the ranges of tasks that robots can perform. Not surprisingly, 
this induces industries in the North to install more robots. But they find, as well, 
that exports from South to North expand in the same sectors that experience the 
greatest robotization. This possibly counterintuitive finding reflects that robots 
improve productivity in the North, and so the scale of production expands, 
which in turn expands their demand for intermediate goods produced in the 
South. The authors extend their model to include China as a separate country, 
noting that its robot stock has expanded more than in other developing countries. 
They study the impacts of China’s governmental support for investments in robots 
and find that these may increase or decrease wages in China depending on the size 
of the subsidies. As China induces installation of more robots, its trade pattern 
comes to resemble that in the North, which reduces its trade with those countries 
and expands its trade with countries in the South. 

Artuc et al. recognize that their calibrated model is intended to capture long-
run effects and that automation might generate short-run adjustment costs. After 
pointing to evidence of short-run adverse employment effects in the local labor 
markets of some middle-income countries, especially for the least mobile workers 
who previously performed tasks now executed by robots, they proceed to study 
firm-level drivers of adoption of robots in developing countries and firm-level 
consequences of robot adoption. They find that the initially larger and more 
globally connected firms in the South are more likely to adopt robots and, 
when they do so, they increase their market shares at the expense of firms that 
do not automate. Thus, the spread of industrial robots can impose adjustment 
costs not only on less-mobile and less-skilled workers, but also on smaller and 
less globally active firms. 

In Chapter 9, Ing and Zhang study automation in a developing country at a 
very detailed level. They focus on firms in Indonesia, using product-level data 
on production and trade for 2008 to 2012. Inasmuch as Indonesia imports 
most of the industrial robots that it uses, and the firm-level data report imports 
of this category of capital goods, Ing and Zhang have an excellent measure of 
investment in robots at the firm level. 

Ing and Zhang examine both the characteristics of firms that import industrial 
robots in Indonesia and the subsequent performance of such firms. Firms that 
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import robots are more productive than others, pay lower shares of their reve
nues to labor, but pay higher wages. Over the five-year period, the firms that 
automated achieved greater growth in outputs, greater growth in employment, 
and larger export shares. The also produced goods of higher quality. In Indone
sia, automation is associated with an increased demand for production workers, 
analogous to the findings of Aghion et al. for France. Ing and Zhang rationalize 
their empirical findings with a model of heterogeneous firms that choose their 
investment in robots and their product quality to maximize profits. In their 
model, the more productive firms automate more tasks, produce higher 
quality, and thereby generate more revenues and hire more workers. 

In Chapter 10, Sun and Trefler study trade in AI-enabled services. In partic
ular, they examine trade in mobile applications, using a novel data set on inter
national downloads of smartphone apps from 2014–2020. They merge these 
data with data on AI patents held by the app’s parent company, from which 
they develop a measure of “AI deployment” by year, exporting country, and 
application category. 

The analysis entails regression of various outcomes on AI deployment. Recog
nizing that deployment is endogenous, they construct an instrument that is 
meant to capture exogenous shocks to the cost of deployment. With analogy 
to factor endowment theories of trade, they note that countries with deep exper
tise in AI are likely to have cheap and ready access to the inputs used in deploying 
AI, which in turn confers a comparative advantage to them in producing apps 
that use this input intensively. Accordingly, they form their instrument by inter
acting a measure of a country’s expertise in AI with a measure of an app cate
gory’s AI intensity. 

When the authors estimate a gravity equation for app downloads, they find 
that greater AI deployment causes a sixfold increase in downloads at the level 
of the importer-exporter dyad, app category, and year. An increase in AI deploy
ment also causes a doubling of the number of different bilaterally traded apps. 
Deployment induces high levels of creative destruction, that is, entry into and 
exit from download of app varieties in the importing countries. Finally, AI 
deployment generates gains from trade; consumer welfare in 2020 from app 
downloads is estimated to be 2.5% higher than it would have been under a coun
terfactual with no AI deployment. 

Collectively, the research reported in this book paints a relatively optimistic 
picture of a future with more industrial robots and improved artificial intelli
gence. The studies provide further evidence that use of industrial robots and 
AI raises productivity and lower costs. Although these technologies do seem 
to substitute for relatively low-skilled labor in certain tasks, the induced produc
tivity gains and attendant output expansion offset the direct negative effects on 
these low-wage workers. Automation and AI can encourage greater international 
division of labor in global value chains and promote trade in AI-enabled services. 
Like all new technologies, there will be adjustment costs that must be managed 
by policymakers. But it seems from the research in this book and elsewhere that, 
overall, the forthcoming technological developments in the robotics and AI 
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sectors ought to be welcomed, not discouraged. Along with the development of 
robots and AI, it is our responsibility to ensure that they are human-centric and 
designed to improve human welfare. 
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2 The Effects of Automation 
on Labor Demand 
A Survey of the Recent Literature 

Philippe Aghion, Céline Antonin, 
Simon Bunel, and Xavier Jaravel 

1. Introduction 
Should we fear or welcome automation? On the one hand, fear may prevail if we 
believe that human workers will be replaced by machines which perform their tasks, 
thereby increasing unemployment and reducing the labor share. On the other 
hand, we may welcome automation since it spurs growth and prosperity, as illustrated 
by the big technological revolutions – steam engine in the early 1800s, electricity in 
the 1920s – none of which generated the mass unemployment anticipated by some. 

The fear that machines will destroy human jobs began long ago. Already in 1589, 
when William Lee invented a machine to knit stockings, the working class was so 
fearful of the consequences that he was rejected everywhere and even threatened. 
Then came the first industrial revolution, the “steam engine revolution”, and  in  
its wake the so-called Luddite movement. Despite a 1769 law protecting machines 
from being destroyed, destruction intensified as the weaving loom became wide
spread, culminating with the Luddite rebellion in 1811–1812. 

The second industrial revolution, the “electricity revolution”, occurred first in 
the US in the late 19th century. Thirty years later, economists began to express 
concern about the unemployment that this revolution would generate. In 1930, 
Keynes wrote, “We are being afflicted with a new disease of which some readers 
may not yet have heard the name, but of which they will hear a great deal in the 
years to come – namely, technological unemployment.”1 Once again, the predic
tion of a large-scale increase in unemployment did not materialize. 

More recently, the information technologies (IT) and artificial intelligence (AI) 
revolutions have raised similar fears: by creating further opportunities to automate 
tasks and jobs, IT and AI may increase unemployment and reduce wages. Conse
quently, the idea that one should tax robots has become influential in recent years. 

In this paper, we discuss the effects of automation on employment, appealing to 
both the existing literature on AI and automation and our recent empirical work 
using French data (Aghion et al., 2019, 2020). We first spell out the two contrasting 
views on the subject. A first view sees automation as primarily destroying jobs, even 
if this may ultimately result in new job creations taking advantage of the lower equi
librium wage induced by the job destruction. The prediction is that automation 
should reduce employment, wages, and the aggregate labor share. According to 
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this first view, automation may reduce both the aggregate number of jobs and
wages, thus reducing the well-being of workers. An alternative viewpoint empha-
sizes the market size effect of automation: namely, automating firms become
more productive, which enables them to lower their quality-adjusted prices and
thereby increase the demand for their products; the resulting increase in market
size translates into higher employment by these firms. We provide empirical
support for the second view, drawing from our empirical work on French firm-
level data and a growing literature covering multiple countries.

The chapter is organized as follows. Section 2 presents the debate. Section 3
describes the emerging empirical consensus towards the more optimistic view of
automation, with positive direct effects on employment at the firm level.
Drawing on our recent empirical work, Section 4 describes the main methodo-
logical approaches and the main findings from the literature using data on
French plants, firms, and labor markets in recent years. Section 5 concludes.

2. The debate: what are the direct and indirect effects of
automation on employment?

In this section we briefly present the two contrasting views of automation and
employment.

a. The “negative” view: negative partial equilibrium effects and positive
general equilibrium effects of automation on aggregate labor demand

The “negative” view² implies that automation reduces demand for labor and pushes
wages downward. The “partial equilibrium” (PE) effect is a fall in labor demand
through the substitutability between labor and machines at the task level. This
effect may then be counteracted in general equilibrium (GE) according to several
channels, which are summarized in Table 2.1 and described hereafter.

In Acemoglu and Restrepo (2016) it is counteracted by the fact that automa-
tion depresses the equilibrium wage, which in turn encourages the creation of
activities that initially employ labor (before being themselves subsequently
automated); this in turn increases the demand for labor and therefore limits
the wage decline. In Aghion, Jones and Jones (2017), the PE effect on labor
demand is counteracted by a “Baumol Cost Disease” GE effect whereby
labor becomes increasingly scarce relative to capital over time, which pushes
wages upward (due to the complementarity between labor and capital at the
aggregate level).

More formally, Acemoglu and Restrepo (2016) assume that final output is pro-
duced by combining the services of a unit measure of tasks X E [N - 1; N ],
according to:

Y =
{ N

N-1

X
s-1
s

i di
( ) s

s-1
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where: (i) tasks Xi with i > I are non-automated, produced with labor alone; (ii)
tasks Xi with i < I can be automated, that is, capital and labor are perfect substi-
tutes within tasks, with s- 1 denoting the constant elasticity of substitution
between tasks; (iii) N indexes the productivity of tasks;2 (iv)

Xi = α(i)Ki + g(i)Li

where: (a) α(i) is an index function with α(i) = 0 if i > I and α(i) = 1 if i < I ; (b)
g(i) = eAi . g(i) is the productivity of labor in task i. Acemoglu and Restrepo
assume that g(i) is strictly – exponentially – increasing, so that labor has a compar-
ative advantage in the production of tasks with a high index.

In the full-fledged Acemoglu-Restrepo model with endogenous technological
change, the dynamics of I and N (i.e., the automation of existing tasks and the
discovery of new lines) result from endogenous directed technical change. Under
reasonable parameter values guaranteeing that innovation is directed towards

Table 2.1 Summary of Theoretical Predictions on the Impact of Automation on Labor Demand

Authors PE Effect of
Automation

GE Effect of
Automation

Predicted
Impact on
Employment
in
Automating
Firms

Predicted
Impact on
Wages in
Automating
Firms

Acemoglu &
Restrepo
(2020)

Fall in labor
demand
through the
substitutability
between labor
and machines
at the task
level.

Increase in labor
demand through
a fall in wages
and the
endogenous
creation of new
tasks for which
labor has a
comparative
advantage.

Decrease Decrease

Aghion,
Jones &
Jones
(2017)

Fall in labor
demand
through the
substitutability
between labor
and machines
at the task
level.

Increase in labor
demand
through the
complementarity
between capital
and labor at the
aggregate level.

Decrease Ambiguous

Aghion,
Antonin,
Bunel &
Jaravel
(2020)

Increase in labor
demand
through the
increase in
productivity
and in
consumer
demand.

Business stealing
effects reducing
labor demand at
non-automating
firms.

Increase Ambiguous

17 The Effects of Automation on Labor Demand 17



using the cheaper factor, there exists a unique and (locally) stable Balanced
Growth Path (BGP) equilibrium.

Stability of this BGP follows from the fact that an exogenous shock to I or N
will trigger forces that bring the economy back to its previous BGP with the same
labor share. The basic intuition for this result is the following: if a shock leads to
over-automation, then the decline in labor costs will encourage innovation aimed
at creating new – more complex – tasks that exploit cheap labor, that is, it will
lead to an increase in N. In other words, the negative effect of automation on
labor demand in partial equilibrium is mitigated by a general equilibrium
effect, whereby the depressing effect of automation on wages encourages entry
of new activities that initially take advantage of labor becoming cheaper.

Aghion, Jones, and Jones (2017) point to another counteracting force, namely
the “Baumol Cost Disease” effect, which prevents automation from depressing
wages too much. There it is the complementarity between existing automated
tasks and existing labor-intensive tasks, together with the fact that labor
becomes increasingly scarce relative to capital over time, that allows for the pos-
sibility that the labor share remains constant over time.

More formally, final output is produced according to:

Yt = At

({ 1

0

X r
itdi
)1

r

where r < 0 (i.e., tasks are complementary), A is knowledge and grows at cons-
tant rate g and, as in Zeira (1998):

Xit =
Lit if not automated

Kit if automated

{

Under the assumption that a fraction bt of tasks is automated by date t, we can
re-express the previous aggregate production function as:

Yt = At(b1-r
t K r

t + (1- bt)1-rLr)1=r

where Kt denotes the aggregate capital stock and Lt - L denotes the aggregate
labor supply.

In equilibrium, the ratio of capital share to labor share at time t is equal to:

αKt

αL

= bt

1- bt

( )1-r Kt

Lt

( )r

Hence an increase in the fraction of automated goods bt has two offsetting

effects on αKt
αL
: (i) first, a positive effect which is captured by the term bt

1-bt

( )1-r

,

which we label the partial equilibrium effect of automating tasks (holding the

ratio Kt
Lt

constant); (ii) second, a negative effect captured by the term Kt
Lt

( )r

, as

we recall that r < 0, which we label the GE effect of automation. This latter
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effect relates to the well-known Baumol Cost Disease: namely, as Kt
Lt
increases due

to automation, labor becomes scarcer than capital which, together with the fact
that labor-intensive tasks are complementary to automated tasks (indeed we
assumed r < 0), implies that labor will command a sustained share of total
income.

While the previous two models emphasize different counteracting forces that
limit the wage decline induced by automation, both have in common that the
partial equilibrium effect of automation is to destroy employment. In particular,
this effect would be observed within firms that automate.

b. The “positive” view: positive partial equilibrium effects and negative
general equilibrium effects of automation on labor demand

Recent work suggests a more “positive” view of automation: the direct effect of
automation may be to increase employment at the firm level, not to reduce it.3

The reason is that firms and plants that automate become more productive.
This allows them to offer a better quality-adjusted price than their competitors,
and therefore to “steal business” away from their competitors, and more gener-
ally to expand the size of their markets (domestic and foreign). This in turn
increases their demand for labor.4

Note that this channel does not exclude the possibility that total labor
demand, at the national, industry, regional or commuting zone level may not
respond so positively to automation and may even react negatively to it. There
may be an overall negative effect if automating firms induce a sufficiently large
decline in employment for non-automating firms and cause their exit. But a
main difference with the “old view”, is that, here, the direct dominant effect
of automation is the positive productivity effect, which may then be counteracted
by a “creative destruction” or “eviction” effect in general equilibrium. Further-
more, the negative GE effect is partly borne by international competitors, which
has implications for the desirability of taxing robots.

c. Implications for the taxation of robots

A growing theoretical literature has examined the reasons that may justify the
taxation of robots, notably limiting the potential rise in income inequality that
automation might create. Costinot and Werning (2018) examine whether taxa-
tion or protectionist trade policies might help to better distribute the economic
benefits of AI technologies.5 Their results indicate that taxing the innovators or
developers of the technology is undesirable because it would impede innovation;
yet, if robots lead to an increase in inequality, a modest tax on the use of tech-
nology (as opposed to innovation per se) may be the optimal prescription
because of distributional concerns.

Optimal policy depends on the elasticity of employment and inequality to
robotization, which highlights the importance of distinguishing empirically
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between the two aforementioned views. As discussed in Aghion et al. (2020), the
second view implies that unilateral taxation of robots by a given country could be
counterproductive for industrial employment in that country, because of business
stealing effects across countries. According to that view, the positive effect of
automation will benefit countries that keep automating, while the negative GE
effect will be shared across countries, given that competition operates in world
markets. Therefore, as explained by Aghion et al. (2020), unilateral taxes on
robots or other automation technologies may be detrimental to domestic
employment: “without international coordination, in a globalized world
attempts to curb domestic automation in an effort to protect domestic employ-
ment may be self-defeating because of foreign competition.”

In the next section, we confront the two views with recent evidence from the
literature, covering many countries and time periods. Research designs using var-
iation across industries or labor markets deliver mixed evidence with regards to
the impact of automation on labor demand. Recent firm-level evidence delivers
clear causal evidence supporting the “new view”, with an increase in labor
demand at automating firms.

3. A survey of the empirical evidence from the recent literature

Early analyses hypothesized an increase in technological unemployment (Keynes,
1930; Leontief, 1952; Lucas & Prescott, 1974), however they lacked empirical
support. A next generation of studies were able to confront theoretical models
with data. Their analyses have been primarily conducted at the national or indus-
try level and have mostly conveyed the idea of automation having a negative
impact on aggregate employment and aggregate wages: automation is primarily
reducing labor demand. Yet these analyses fall short of describing the process
that goes on within firms. It is only over the past few years, thanks to the increas-
ing availability of new firm-level datasets, that analyses of the effects of automa-
tion on employment could be performed at a more disaggregated level.

In this section, we provide an overview of the recent empirical literature on
automation and employment. As our literature survey illustrates, the profession
has evolved from the more “negative” view of automation as primarily destroying
jobs, towards the more “positive” view of automation as enhancing productivity,
market size, and therefore labor demand and employment.

a. Mixed evidence from research designs using variation
across industries and labor markets

How should automation be measured? Until recently, the number of reliable
sources on which empirical analyses of automation could be built was limited.6

But since the 2010s, the International Federation of Robotics (IFR) has pro-
vided data on the deployment of robots by country and industry, and machine
learning algorithms have made it possible to measure automation using text anal-
ysis of patents. Therefore, recent papers notably investigate these new measures

20 Philippe Aghion et al. 20



of automation, that is, the number of robots (Autor & Dorn, 2013; Acemoglu &
Restrepo, 2020; Cheng et al., 2019; Dauth et al., 2021; Graetz & Michaels,
2018), or automation-related patents (Mann and Püttmann, 2017; Webb,
2020).

As regards the first measure based on IFR data, Graetz & Michaels (2018) use
the robot aggregate count from IFR data on a panel of seventeen developed
countries and find no effect of automation on aggregate employment, despite
a reduction of the low-skilled workers’ employment share. Meanwhile, they
show that robot densification is associated with increases in both total factor pro-
ductivity and wages, and with decreasing output prices. Using the same measure
on a panel of fourteen European countries, Klenert et al. (2020) find that robot
use is correlated with an increase in total employment.

However, the empirical findings in Acemoglu and Restrepo (2020) suggest
that the job destruction effect of robotization dominates. More precisely, the
authors analyze the effect of the increase in industrial robot usage between
1990 and 2007 on US labor markets. Using variation in robot adoption
between commuting zones they estimate the labor market effects of robots by
regressing the local change in employment and wages on the local exposure to
robots.7 The authors find that one more robot per thousand workers reduces
the employment to population ratio by about 0.2 percentage point and wage
growth by 0.42%, while productivity increases and labor share decreases. Accord-
ing to their estimates, each robot installed in the US replaces six workers. The
Acemoglu-Restrepo methodology has been applied to several other countries.
Chiacchio et al. (2018) find a displacement effect between three and four
workers per robot in six European countries, but do not point to robust and sig-
nificant results for wage evolution. Aghion et al. (2019) find a displacement
effect of ten workers per robot using French administrative data. However,
using German data, Dauth et al. (2021) report a null effect of exposure to
robots on aggregate employment. For low- and mid-skilled workers, they
report lower wages.

Attractive as it may be, this methodology based on aggregate robot count has
some shortcomings. First, a robot is a specific type of automation that is precisely
designed to replace human work, whereas broader measures of automation may
encompass machines that only partially substitute for human work. Another
concern stems from the fact that IFR data are available only at the country
level. Computing a local measure of exposure to robots – a Bartik measure –

requires making the strong hypothesis that the number of robots installed by a
given industry, divided by the importance of the industry in the commuting
zone, is the same across commuting zones. Yet, robotization by a given industry
may be more intense in commuting zone A than in commuting zone B even if
the shares of that industry are the same in both regions. Furthermore, the IFR
data is only available for 13 industries within manufacturing, making it difficult
to add a large set of industry-level controls without overfitting and thus raising
the possibility that variation in automation rates across industries may be corre-
lated with industry-level unobservables affecting labor demand (e.g., initial skill
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composition may vary across industries with differing rates of automation). A
final potential concern is that variations in the robots exposure index across com-
muting zones are mostly related to the spatial distribution of automotive activi-
ties over the US territory in 1990, since industrial robots are predominant in the
automotive industry – automotive robots account for more than one-third of
total robots.

Another privileged measure of automation, based on text analysis of patents,
also yields mixed results. For instance, Webb (2020) uses a measure of automa-
tion that relies on the overlap between patent texts and workers’ tasks.8 This
measure is applied to two historical case studies, software and industrial robots.
Webb highlights the displacement effect: jobs that were highly exposed to previ-
ous automation technologies saw declines in employment and wages over the rel-
evant periods. However, the results of Mann and Püttmann (2017), who also
measure automation using patent texts, paint a different picture.9 Linking auto-
mation patents to industries and local labor markets, they find a positive effect
of automation on employment.

Whether it be the robot count or the patent measure, the aggregate measures
of automation/robotization at the country or industry level provide inconclusive
evidence. Cross-country or industry-level research designs make it difficult to
isolate a clear causal link between automation and employment. Firm-level
research, that has grown recently, sheds new light on this issue.

b. Firm-level research designs provide causal evidence
supporting the “new view”

A number of recent studies using firm-level data supports the prediction a direct
positive effect of automation on employment in automating firms: in France
(Acemoglu et al., 2020, Aghion et al., 2020), in the Netherlands (Bessen et
al., 2019), in the United Kingdom (Chandler and Webb, 2019), in Canada
(Dixon et al., 2019), in Denmark (Humlum, 2019), and in Spain (Koch et al.,
2021). Table 2.2 reports the order of magnitude of employment (and wage) elas-
ticities to automation at the firm-level from these recent papers.

This positive effect may reflect either a net creation of jobs by automating
firms or lower separation rates by these firms. Several of these studies provide
quasi-experimental evidence to establish that automation causes an increase in
employment at the firm level. In the next section, we describe the methodology
in detail, focusing on our own empirical work on automation and employment at
the plant and firm levels.

Thus, the “negative” story faces difficulties when confronted by firm-level
data. At odds with the predictions of the “pessimistic” story, most of the
previously-mentioned studies do not find evidence of a falling equilibrium
wage nor of a declining labor share (e.g., Bessen et al., 2019; Dixon et al.,
2019; Humlum, 2019; Koch et al., 2021; Aghion et al., 2020).

Babina et al. (2020) bring out a similar result with firm-level investment in AI
technology. Firms that invest more in AI experience faster growth in sales and
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Table 2.2 Recent Estimates of Effects of Automation on Firm-level Employment and Wages

Authors Country and
Time Period

Measure of Automation Method Impact on Firm-Level
Employment

Impact on Firm-Level
Wages

Acemoglu, Lelarge, and
Restrepo (2020)

France
2010–2015

Robot adoption by
firms (versus non
robot adoption)

OLS Increase in hours worked for
robot adopters between +
5.4 % (employment
weighted estimates) and
10.9 % (unweighted
estimates)

+0.9 % (unweighted
estimates), non
significant
(employment
weighted estimates)

Aghion, Antonin, Bunel,
& Jaravel (2020)

France
1994–2015

Automation: machines
stock

Event
study,
IV

Elasticity between 0.2 (OLS)
and 0.4 (IV)

N/A

Bessen, Goos, Salomons,
& van den Berge (2019)

Netherlands,
2000–2016

Automation “spikes”
using automation
expenditures (all
automation
technologies)

Event
study

Automating firms have 1.8 to
2% higher employment
compared to non
automating firms

Not significant

Dixon, Hong, and Wu
(2019)

Canada,
1996–2017

Robot capital stock
(imports of robotics
hardware and robot
purchases)

Event
study

Elasticity of firm employment
to robot capital stock in the
[0.7–2]% interval

N/A

Koch, Manuylov, and
Smolka, (2021)

Spain,
1990–2016

Robot adoption Event
study

4-year elasticity to robot
adoption: 10%

Not significant

Source: cited papers.
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employment both at the firm- and industry-levels. AI allows the expansion of the
most productive firms ex ante: they grow larger, gain sales, employment and
market share. The authors report a null effect on productivity in the short run,
perhaps because of the novelty of AI technologies, which are not fully mastered
by workers.

Overall, these studies support the view that automation inside a firm fosters
greater labor productivity. It drives quality-adjusted prices down for consumers10

and increases product demand and market share of the firm, which can result in
net job growth. Provided that demand is elastic enough to prices, then growth in
demand will offset job losses.11 The increase in the market share will only last
until markets become saturated (Bessen, 2019). As Autor (2015) states it, “jour-
nalists and even expert commentators tend to overstate the extent of machine
substitution for human labor and ignore the strong complementarities
between automation and labor that increase productivity, raise earnings, and
augment demand for labor.”

Firm-level results are not directly informative about the impact of automation
on labor demand at the aggregate level. For example, the productivity effect may
contribute to the crowding-out of non-automating firms by automating firms.
Since the productivity effect inside the automating firms generates an increase
in product demand, the market share of these firms goes up at the expense of
its non-automating competitors. Empirically, firms whose competitors adopt
robots experience significant declines in value added and employment (Acemo-
glu, 2020; Aghion et al., 2020; Koch et al., 2021). For example, Koch et al.
(2021) find that robot-adopting firms create new jobs and expand the scale of
their operations, while non-adopters incur negative output and lose employment
because of tougher competition with high technology firms.12

Thus, drawing on different measures of automation, different countries, and
various time periods, recent micro studies consistently point to the importance
of the productivity effect, with positive employment effects within automating
firms and potential displacement effects across firms.

c. Which workers benefit or lose from automation?

Separate from the debate about the impact of automation on overall labor
demand, there is a debate about the types of jobs that are created or destroyed
and the distributional effects of automation. The economics literature has long
considered technological change to be labor augmenting and favorable to skilled
workers. In the wake of the IT and computer revolution in the 1990s, research
has investigated the skill bias of technological progress. This hypothesis indeed
supported the idea of complementarity between technology and skilled workers
(see Acemoglu & Autor, 2011, for an overview). Technological change would
result in the polarization of the job market, i.e., the slower increase in mid-wage
occupations compared to both high-wage and low-wage occupations.

In the 2000s, following the critique of Card & DiNardo (2002), and the
seminal paper of Autor et al. (2003), the labor-replacing view of automation
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for routine tasks has become prevalent. According to this idea, automation replaces
routine jobs, and creates more demand for non-routine jobs that cannot be per-
formed by machines. Several studies have documented the decline in manufactur-
ing and routine jobs (Autor et al., 2003; Jaimovich & Siu, 2012; Autor & Dorn,
2013; Charnoz & Orand, 2017; Blanas et al., 2019).

Coming back to firm-level studies, some of them highlight a reallocation of
workers between occupations (Bessen, 2019; Bonfiglioli et al. 2020; Humlum,
2019; Acemoglu et al., 2020). Humlum (2019) notably reports a shift from
low-skilled to high-skilled workers in Denmark: labor demand shifts from produc-
tion workers toward tech workers, such as skilled technicians, engineers, or
researchers. In the same vein, Bonfiglioli et al. (2020) show that robot imports
by French firms increase productivity along with the employment share of high-
skill professions. Similarly, Bessen (2019) shows that computer automation
causes growth in well-paid jobs and decreases in low-paid jobs. Using Canadian
data, Dixon et al. (2019) document a polarization effect: investments in robotics
are associated with shrinking employment for mid-skilled workers, but with
increasing employment for low-skilled and high-skilled workers, notably manage-
rial activities. This shift from low-skilled to high-skilled workers may also contrib-
ute to boosting measured productivity (Humlum, 2019; Acemoglu et al., 2020).

Yet, some studies do not find any reallocation effect between different types of
workers and occupational categories (Aghion et al., 2020). This could be
explained by a reallocation effect within jobs, since automation technologies gen-
erally do not replace entire jobs but only a certain number of tasks (Acemoglu
and Autor 2011). Some human skills may become more valuable than ever in
the presence of machines (Brynjolfsson & McAfee, 2011). Automation may
thus lead to a restructuring of the task content of different jobs “within
worker” (Aghion et al., 2020), enhancing labor productivity and employment,
but without any change in the skill structure of firm’s labor force.

This is precisely the issue that Arntz et al. (2017) raise when they question
Frey and Osborne’s (2017) analysis on the future of AI. Frey and Osborne
(2017) tried to forecast the probability of computerization of 702 jobs and con-
cluded that 47% of employment in the US was at risk of automation in the next
ten or twenty years, while only 33% of jobs had a low risk of automation. But
their analysis disregards the task content of jobs. Arntz et al. (2017) show
that, when factoring in the heterogeneity of tasks within occupations, only 9%
of all workers in the US face a high risk of automation.

4. Recent empirical evidence from France

We illustrate the main points from the preceding literature review using French
data, drawing from our recent work (Aghion et al., 2019, 2020). We first show
that labor market level analysis using IFR data provides mixed support in favor of
the negative view. Second, we show that firm level and plant level analyses using
alternative measures of automation provide quasi-experimental evidence
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supporting the second view. We present the methodology and main results from
our existing work, as well as novel complementary specifications.

a. Labor market level analysis using IFR data

Aghion et al. (2019) reproduce the method developed by Acemoglu and
Restrepo (2017, hereafter AR) using French data over the 1994–2014 period,
analyzing the impact of increased robotization on employment at the aggregate
employment zone level.13

To measure exposure to robots at the labor market – defined as commuting
zone – level, AR built a local exposure index, which combines two elements:
(i) the number of robots per worker in each of industry on the one hand and
(ii) the pre-existing share of employment in industry i for a given commuting
zone c. Thus, this local exposure index exploits the initial heterogeneity in indus-
try employment structures across commuting zones to distribute cross-industry
variation in the stocks of robots in the various industries, observed nationwide
during the sample period. More formally, the increases in robot exposure at
the commuting zone level is defined as:

US robot exposure 1993-2007c =
E
iEI

l1990ci

RUS
i; 2007

LUS
i; 1990

-RUS
i; 1993

LUS
i; 1990

( )

where the sum is over all the 19 industries i in the IFR data; l1990ci stands for the
1990 share of employment in industry i for a given commuting zone c; Ri and Li

stand for the stock of robots and the number of people employed in a particular
industry i.

Keeping with AR, Aghion et al. (2019) measure the increase in robot exposure
in a French employment zone14 between 1994 and 2014 as:

Robot exposure 1994-2014c =
E
iEI

Lic; 1994

Lc; 1994

Ri; 2014

Li;1994

-Ri; 1994

Li;1994

( )

where Lic; 1994 refers to employment in the employment zone c in industry i in
1994, Lc; 1994 refers to employment in employment zone c in 1994, and Li; 1994

refers to employment in industry i in 1994. Ri; 1994 and Ri; 2014 respectively
stand for the total number of robots in industry i in 1994 and 2014. This
index reflects the exposure to robots per worker between 1994 and 2014. The
outcome variable of interest is the evolution of the employment-to-population
ratio between 1990 and 2014.

In the baseline OLS specification, we study the impact of exposure to robots
on the evolution of employment-to-population ratio. Then we add controls such
as an exposure index for information and communication technologies (ICT)
TICExpr, built in a similar way as the exposure to robots index and an interna-
tional trade exposure index TradeExp to China and Eastern Europe. In some
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regressions, we also add a vector Xc of control for the employment zone c: demo-
graphic characteristics, manufacturing shares, broad industry shares, broad
region dummies, and specific industry shares within manufacturing. The identi-
fication assumption is that, conditional on this set of controls, industries that are
exposed to an increase in the rate of automation are not simultaneously affected
by unobserved shocks to labor demand or labor supply.15 We can write:

D
Lc;1994

Popc; 1994
= α+ b1RobotsExpc + b2TradeExpc + b3TICExpc + gXc + Ec

To measure the impact of exposure to robots on local labor markets, the strategy
adopted is similar to the one initiated by Autor et al. (2013): the observed
change in robot exposure in U.S. industries is instrumented with changes in
robot exposure in the same industries in other developed economies. This
approach helps address U.S.-specific threats to identification affecting the OLS
approach: one may imagine a shock, which we do not capture in our controls,
but which may impact both the installation of robots and local labor markets
dynamics. Following AR, the stocks of robots in industries from other developed
countries (Germany, Denmark, Spain, Italy, Finland, Norway, Sweden, and the
United Kingdom) are used to build other indexes of exposure to robots. These
new indexes are then used to instrument the exposure index built on the French
stock of robots.

In this shift-share IV research design, identification arises from the heteroge-
neity in robotization shocks across industries, which is projected to the regional

level. Identification stems from the robotization shocks
RUS
i; 2007

LUS
i; 1990

- RUS
i; 1993

LUS
i; 1990

and
Ri; 2014
Li;1994

- Ri; 1994
Li;1994

. Indeed, as described in Borusyak et al. (2021), the employment

shares l1990ci are not tailored to exposure to robotization: they are “generic”, in
that they could conceivably measure an observation’s exposure to multiple
shocks, both observed and unobserved. Accordingly, it is important to control
for industry-level characteristics that may contaminate the industry-level identify-
ing variation, such as whether an industry belongs to manufacturing. Absent such
controls, we would conflate the potential effects of robotization with broad sec-
toral trends.16

Table 2.3 displays the results of the OLS estimation. This table shows a neg-
ative correlation between exposure to robots and change in employment-to-
population ratio. However, we observe that the level of significance decreases
as more controls are added. Significance is lost in column (5) once a control
for the local manufacturing industry share is included and the point estimate
falls substantially, indicating that broad sector trends play an important role.
The correlation is marginally significant in column (6) and non-significant in
columns 7 through (10), where we add several types of controls simultaneous
or exclude the commuting zones with the highest exposure to robots.

In the instrumental variable regression shown in Table 2.4, the coefficients of
robot exposure are significant when we consider broad controls from columns
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Table 2.3 Effect of Robot Exposure on Employment-to-Population Ratio, 1990–2014, OLS Estimates

Dependent Variable: Change in Employment-to-Population Ratio 1990–2014 (in %-age Points)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Robots Exposure1994–2014 −1.090*** −0.749*** −0.594** −0.515** −0.169 −0.549* −0.398 −0.430 −1.074 −1.035
(0.253) (0.263) (0.239) (0.243) (0.239) (0.294) (0.244) (0.324) (0.768) (0.783)

TIC Exposure1994–2014 −3.099* −2.397 −2.495* −0.304 −0.165 −0.154 1.519 1.493
(1.586) (1.594) (1.455) (1.620) (1.576) (1.588) (1.641) (1.648)

Trade Exposure1994–2014 −0.743*** −0.690*** −0.825*** 0.0857 −0.123 −0.124 0.200 0.201
(0.247) (0.215) (0.239) (0.243) (0.278) (0.280) (0.335) (0.337)

Demographics Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes
Manufacturing industry share Yes Yes Yes Yes Yes Yes
Other broad industry shares Yes Yes Yes
Specific manufacturing industry shares Yes Yes
Remove highly exposed areas Yes Yes
Observations 297 297 297 297 297 297 297 295 297 295
R-squared 0.058 0.090 0.198 0.205 0.174 0.249 0.407 0.406 0.409 0.408

Source: Data from Aghion et al. (2019).

Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Other broad industry
shares cover the share of workers in agriculture, construction, retail, and the share of women in manufacturing in 1994. Specific manufacturing industry shares
cover the share of workers in automotive, rubber, food, and the share of women in manufacturing in 1994. Broad region dummies refer to the 13 metropolitan
regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors in parentheses. Levels of significance: *** p <
$0.01, ** p < $0.05, * p < $0.1. Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.
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Table 2.4 Effect of Robot Exposure on Employment-to-Population Ratio, 1990–2014, IV Estimates

Dependent Variable: Change in Employment-to-Population Ratio 1990–2014 (in %-age Points)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Robots Exposure1994–2014 −1.317*** −1.010*** −0.974*** −0.737** −0.389 −0.790*** −0.686*** −0.986*** −1.305 −1.221

(0.325) (0.322) (0.271) (0.296) (0.248) (0.300) (0.241) (0.351) (0.799) (0.812)
TIC Exposure1994–2014 −2.569 −1.699 −2.094 −0.176 −0.0323 0.101 1.590 1.547

(1.618) (1.578) (1.444) (1.590) (1.518) (1.538) (1.601) (1.609)
Trade Exposure1994–2014 −0.670*** −0.589*** −0.773*** 0.110 −0.0922 −0.0882 0.198 0.199

(0.242) (0.211) (0.230) (0.240) (0.276) (0.279) (0.322) (0.323)

Demographics Yes Yes Yes Yes Yes
Region dummies Yes Yes Yes Yes Yes
Manufacturing industry share Yes Yes Yes Yes Yes Yes
Other broad industry shares Yes Yes Yes
Specific manufacturing industry shares Yes Yes
Remove highly exposed areas Yes Yes
Observations 297 297 297 297 297 297 297 295 297 295
First-stage F-statistic 57.2 42.6 45.8 46.0 32.6 28.7 35.1 18.9 16.5 16.3
R-squared 0.055 0.087 0.193 0.203 0.172 0.248 0.405 0.400 0.409 0.408

Source: Data from Aghion et al. (2019).

Notes: Demographics control variables are population share by level of education and population share between 25 and 64 years old. Other broad industry
shares cover the share of workers in agriculture, construction, retail, and the share of women in manufacturing in 1994. Specific manufacturing industry shares
cover the share of workers in automotive, rubber, food, and the share of women in manufacturing in 1994. Broad region dummies refer to the 13 metropolitan
regions of France. Highly exposed areas are Poissy and Belfort-Montbéliard-Héricourt. Robust standard errors in parentheses. Levels of significance: *** p$ <
$0.01, ** p$ < $0.05, * p$ < $0.1. Sources: IFR, COMTRADE, EUKLEMS, DADS, Census data.
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(1) to (4). Column (1) begins with a regression without any control and finds a
negative effect: one more robot per 1000 workers leads to a drop in the employ-
ment-to-population ratio of 1.317 percentage point. Column (2) adds controls
for ICT and imports exposures and the magnitude remains the same. Then,
columns (3) and (4) successively test the impact of demographic characteristics
and broad region dummies, leaving the results almost unaffected. In column
(5), adding a control for the manufacturing share alone is sufficient to lose sig-
nificance and substantially reduce the point estimate. The result highlights again
the importance of controlling for broad industry trends, as emphasized by Bor-
usyak et al. (2021).

Combining different sets of controls, the specifications in columns (6) through
(8) deliver negative and statistically significant IV estimates. In columns (9) and
(10), we replace broad industry shares controls by controls for specific industry
shares within manufacturing at the commuting zone level. Specifically, we
control for the three 2-digit industries that have the highest number of robots
at the end of the period and that account for 74% of the total number of
robots in 2014: automotive, rubber, and food industries. These are key industries
relative to the construction of the index. The coefficients remain large and neg-
ative; they become non-significant as these controls lead to larger standard
errors.

Thus, the OLS and IV evidence from IFR data at the industry level suggest
that there is a negative impact of robots on labor demand, although the
results are sensitive to the choice of controls due to the small number of indus-
tries that are used as the source of identifying variation. Furthermore, the finding
of a negative or non-significant effect of robotization on employment at the
aggregate employment zone level could be consistent with either the “new
view” or “old view” on automation and employment. Indeed, this result could
reflect either the fact that robotizing firms destroy jobs and that this direct
effect is not fully offset by the counteracting general equilibrium effect
working through wage reduction and the resulting entry of new activities; or
the fact that the positive market size effect of automation at the firm level is
more than offset by the job destruction in the non-automating firms that are
partly or fully driven out of the market by the automating firms. To alleviate
the limitations of the research design and find out more about which of these
two stories applies, we need to move to a more disaggregated analysis of the
effect of automation on employment.

b. Firm-level and plant-level analyses

In Aghion, Antonin, Bunel, and Jaravel (2020), henceforth AABJ, we use three
complementary measures as proxies for automation at the firm level and plant
level. At the firm level, we use the balance sheet value of industrial equipment
and machines in euros, which is available for all French firms between 1995
and 2017. This type of capital is defined as “the equipment and machines
used for the extraction, processing, shaping and packaging of materials and
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supplies or for carrying out a service” (industrial machines) and “instruments or
tools that are added to an existing machine in order to specialize it in a specific
task” (industrial equipment). Within the manufacturing sector, this type of
capital accounts for 59% of total capital. Our second measure of automation
follows the Encyclopaedia Britannica (2015), which defines automation technol-
ogy as a “class of electromechanical equipment that is relatively autonomous
once it is set in motion on the basis of predetermined instructions or proce-
dures”.17 For the manufacturing sector, the French statistical office (Insee)
records electricity consumption for motors directly used in the production
chain (motive power) since 1983. It distinguishes motive power from other
potential uses of electricity such as thermic/thermodynamic or electrolysis.
Thus, we are able to proxy automation by motive power, which excludes
heating, cooling, or servers uses. Our third measure, also available at the firm
level, uses the annual imports of industrial machines by all French firms
between 1995 and 2017. Following the spirit of the previous definition of indus-
trial equipment and machines, we track all the HS6-products that belong to this
definition. It includes 489 different types of machines that relate to the manufac-
turing industry and automation. In particular, it excludes computers and IT
capital, printers, elevators, etc.

In AABJ, we perform two types of event studies: (i) “extensive margin” event
studies at the firm level, exploiting the timing of the large investment in industrial
equipment and machines for each firm as an automation event, and (ii) distribu-
ted lead-lag analysis at the firm and plant level that allows for delayed responses to
changes in automation and takes into account continuous changes in the stock of
machines.

Our main finding from the event studies is that the impact of automation on
employment is positive, and in fact increases over time: namely, a 1% increase in
automation in a plant today increases employment by 0.2% immediately and by
0.4% after ten years. Results are similar at the firm level. In other words, condi-
tional on surviving, automation leads to a net increase in employment by auto-
mating firms and plants. The event studies also show that automation also
translates into an increase in a firm’s total sales in the years following automation.
The effect remains stable from year of investment in automation to eight years
after.

A potential concern is the endogeneity of firm choices of automation. For
instance, automation could be the result of a corporate growth strategy following
a demand shock. However, the event studies show no sign of pre-trend: condi-
tional on the controls included in the specification, plants that automate more at
time t were on a comparable employment path in prior years and start diverging
afterwards. This restricts the potential set of confounders that could explain the
increase in employment – confounding shocks need to occur simultaneously to
the increase in automation. To further alleviate the endogeneity concern, we
examine the stability of the estimates when including more stringent time-
varying controls, notably 5-digit-industry by year fixed effects and firm-year
fixed effects. The specification with firm-year fixed effects only exploits variation
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in automation across plants within the same firm, controlling for all time-varying
demand and supply shocks at the firm level. We find that the estimates remain
stable, which further restricts the set of confounders (which must operate
across plants within the same firm in the same year).

All these findings speak to a “productivity” effect of automation, in line with
the “positive view” spelled out in the previous section: namely, firms that auto-
mate more become more productive. This enables them to obtain larger market
shares because their products offer consumers better value for money than their
competitors. The resulting gain in market share prompts those firms that auto-
mate to produce at a larger scale, and therefore to hire more employees.

In AABJ, we also consider the effect of automation on wages inequality within
firms. More specifically, we study its effect on the evolution of the ratio between
low-skilled workers’ mean hourly wage and high-skilled workers’ mean hourly
wage. Figure 2.1 reports the results: we observe no differences in terms of evo-
lution between these two types of workers.

Note however that the event study research design does not fully address
potential correlated demand and supply shocks that could occur exactly at the
same time as the increase in automation. Thus, in order to estimate the causal
effects of automation on employment, sales, wages, and the labor share across
firms, we use a shift-share design.

In fact, the ideal design would randomly assign purchasing prices for machines
across firms. In AABJ, our idea is to approximate this hypothetical experiment
using a shift-share instrument, which leverages two components: (i) the time var-
iation in the implicit cost of imported machines over time across international

Figure 2.1 Firm-Level Event Study of Automation on Hourly Wage Ratio between
Low- and High-Skilled Workers.

Source: reproduced using AABJ data.
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trading partners (the “shift” component); and (ii) the heterogeneity in pre-
existing supplier relationships across French firms (the “exposure shares” compo-
nent). The ideal “shock” variable would be the expected quality-adjusted price of
imported machines by French manufacturing firms. However, we cannot directly
observe these prices; that is why, instead, we infer changes in quality-adjusted
price from changes in export flows of these foreign machines.

The intuition behind the shift-share instrument is that firms will be differen-
tially exposed to these changes in quality-adjusted price of machines from differ-
ent trading partners due to their sticky pre-existing relationships. For instance, if
two French firms A and B import respectively 80% and 20% of their machines
from Italy, and machines produced in Italy suddenly have a better quality-
adjusted price, firm A will have more incentives to automate than firm B due
to its strong established relationship with Italian suppliers of machines.

The estimates of the impact of automation on employment using the shift-
share instrument are in line with the previous findings from the event studies.
The elasticity of firm employment to automation that we find ranges between
0.397 and 0.444 on a five-year horizon (Table 3A of AABJ), significant at the
5% or 1% level depending on the set of controls, and the first stage F-statistic
remains close to 10 in all specifications.

Next, we conduct the same exercise with sales and the labor share at firm level.
We find that sales increase in response to increased automation, with elasticities
ranging from 0.395 to 0.512 (Table 3B of AABJ) across specifications. Using the
same specifications, we cannot reject the hypothesis that there is no impact of
automation on the labor share, which in turn suggests that the productivity
effect may offset the task substitution channel in a way that leaves the labor
share unchanged at the firm level.

One can also look separately at specific industries. Particularly interesting is the
automobile industry, which accounts for the vast majority of industrial robots.
We still find a positive effect of automation on employment at the firm level, con-
sidering as treated the top 25% of firms in terms of biggest investment in indus-
trial machines (Figure 2.2). Thus, even in an industry for which industrial robots
are a non-negligible share of machines, the relation between automation and
employment remains positive.

What happens when we move from firm or plant level to industry level? Using
a shift-share design, AABJ find a positive effect of automation on employment
also at the industry level, with point estimates ranging from 0.558 to 0.620
across specifications. This again speaks to the importance of the productivity
effect: manufacturing industries are integrated into international trade. Therefore
French firms that automate expand their export market at the expense of foreign
firms. This in turn explains why the productivity effect is the dominant effect
even at the industry level, as it is mostly foreign firms in foreign markets that
suffer from the resulting business stealing. In a closed economy, domestic
non-automating firms would suffer from the business-stealing by the automating
firms; the increase in employment in automating domestic firms would be more
likely to be counteracted by job destruction in non-automating domestic firms.
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Figure 2.2 Firm-Level Event Study of Automation on Employment in the Automotive
Industry

Source: Data from AABJ data.

Figure 2.3 Effect of a Substantial Investment in Industrial Equipment on Probability
of Firm Exit.

Source: Data from AABJ (2020).
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Figure 2.3, which is a novel result using data from AABJ, illustrates this busi-
ness-stealing – or eviction – effect: firms that invest significantly in new industrial
equipment substantially lower their likelihood of going out of business over the
following ten years compared to firms that do not make such an investment.

5. Conclusion

In this chapter, we relied on both the existing literature and our own empirical
work to discuss the effects of automation on employment. We pointed to two
contrasting views on the subject. A first view sees automation as primarily
destroying jobs, even if this may ultimately result in new job creations taking
advantage of the lower equilibrium wage induced by the job destruction. A
second view emphasizes the productivity effect of automation as the main
direct effect: namely, automating firms become more productive, which
enables them to lower their quality-adjusted prices and therefore to increase
the demand for their products; the resulting increase in market size translates
into higher employment by these firms. We provided direct empirical evidence
supporting the second view in the case of France, and we showed that the empir-
ical literature on automation and employment was also leaning in that direction
in a broad set of countries.

Overall, automation is thus not in itself an enemy of employment. By modern-
izing the production process, automation makes firms more competitive, which
enables them to win new markets and therefore to hire more employees in a
globalized world.

We can think of several avenues for further empirical research on automation
and the labor market. One would be to explore how automation interacts with
outsourcing and international trade. Another avenue would be to distinguish
between different types of sectors and industries. A third avenue would be to
introduce the distinction between routine and non-routine jobs. A fourth
avenue would be to refine the empirical analyses of the impact of automation
on the distribution of wages at the firm level, industry level, and by skill
groups. These and other extensions of the analyses surveyed in this chapter are
promising directions for future research.

Notes
1 Keynes, “Economic Possibilities for Our Grandchildren.”
2 In this model, a new (more complex) task replaces or upgrades the lowest-index

task. The fact that the limits of integration run between N − 1 and N imposes
that the measure of tasks used in production always remains at 1. Thus, an
increase in N represents the upgrading of the quality (productivity) of the unit
measure of tasks.

3 See Acemoglu et al. (2020), and Aghion et al. (2020).
4 We can draw a parallel between the productivity-enhancing effect of technolog-

ical progress and the productivity-enhancing effect of offshoring highlighted by
Grossman and Rossi-Hansberg (2008). In the offshoring process, when some
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tasks can more readily be performed abroad, firms that use this type of labor
intensively augment their profitability and expand at the expense of their compet-
itors that rely on other types of labor. This is turn leads to an increase in their
labor demand.

5 Based on a general static framework with a continuum of worker types, Costinot
and Werning derive optimal tax formulas that depend on a small set of sufficient
statistics that require relatively few structural assumptions.

6 Earlier studies used the measure of computers or IT as a proxy (Krueger, 1993;
Autor et al., 1998; Bresnahan et al., 2002; Beaudry, Doms and Lewis, 2010;
Michaels, Natraj and Van Reenen, 2014).

7 The local exposure to robots is an indirect measure of robot penetration at the
local level – a Bartik measure – which is based on the rise in the number of
robots per worker in each national industry on the one hand and on the local dis-
tribution of labor between different industries on the other hand.

8 Webb’s measure relies on the following pattern: the text of patents contains
information about what technologies do, and the text of job descriptions con-
tains information about the tasks workers do in their jobs. These two text
sequences are compared in order to quantify how much patenting in a particular
technology has been directed at the tasks of a given occupation. A score is attrib-
uted to each task, and the task-level scores are aggregated at the occupation level
in order to construct an automation exposure score for each occupation.

9 Mann and Püttmann classify patents as automation patents if their texts describe a
device that carries out a process independently of human intervention. They
match patents to the industries where they are likely to be used according to
the patents’ technology class and derive a measure of newly available automation
technology at a detailed industry and commuting-zone level.

10 Aghion et al. (2020) provide direct empirical evidence on the response of con-
sumer prices. Bonfiglioli et al. (2020) suggest that productivity gains from auto-
mation may not be entirely passed on to consumers in the form of lower prices.

11 For a discussion on the type of workers who benefit or lose from automation, see
Section 3.c.

12 Koch et al. (2021) first focus on the adoption decisions of firms. They show positive
selection, that is, firms that adopt robots in their production process are larger and
more productive than non-adopters before adopting robots. They also show that,
conditional on productivity, more skill-intensive firms are less likely to adopt
robots, and that exporters are more likely to adopt robots than non-exporters.

13 AR analyze the effect of the increase in industrial robot usage between 1990 and
2007 on US local labor markets. They find that one more robot per thousand
workers reduces the employment to population ratio by about 0.37 percentage
points and wage growth by 0.73 percent.

14 According to the official definition provided by Insee, an employment zone is a
geographical area within which most of the labor force lives and works. It pro-
vides a breakdown of the territory adapted to local studies on employment.

15 The source of identifying variation is at the industry level and outcomes are mea-
sured at the level of local labor markets, as discussed in the recent Bartik identi-
fication literature (e.g., Adão et al., 2019 and Borusyak et al., 2021).

16 Note that this research design only speaks to the effects of automation on
employment across local labor markets, using industry shocks as the source of
variation. It cannot speak to the overall (country-level) macroeconomic effect
of automation, which requires a model to account for reallocation of employ-
ment across industries and labor markets (e.g., Ngai and Pissarides 2007) or a
source of variation at the country level.

17 Definition from Encyclopaedia Britannica (2015), “Automation”.
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3 Robots, Offshoring, and
Welfare

Alessandra Bonfiglioli, Rosario Crinò,
Gino Gancia, and Ioannis Papadakis

1 Introduction

The nature and the organization of production is undergoing a radical transfor-
mation. Advances in robotics technologies have led to the widespread use of
automation in tasks previously performed by workers. At the same time,
improvements in communication technologies have led companies to offshore
stages of production to low-wage countries. These two phenomena are having
a profound effect on advanced economies. Although they are believed to bring
about higher productivity and lower costs, they are also often blamed for the
decline in manufacturing employment and stagnation of real wages (see, for
instance, Baldwin, 2019). More recently, a new hypothesis is gaining attention:
that automation, which is much more prevalent in advanced economies, can
increase competitiveness and bring back jobs that had been previously relocated
to low-wage countries. Examples of this process of “reshoring” have started to
populate the business literature. Yet, its scope, causes and consequences are
still largely unknown.

In this chapter we study the interaction between automation and offshoring,
from the perspective of advanced countries. From a theoretical viewpoint, we
show that offshoring can change the welfare effects of automation. In particular,
if robots replace foreign-sourced tasks, automation is always beneficial for
domestic workers. However, if robots replace domestically-produced tasks, auto-
mation can be welfare-reducing for workers in the adopting country, even if it
would have been welfare-improving in autarky. These results underscore the
importance of identifying which workers are competing with robots more
directly. We therefore turn to US data across industries, occupations and local
labor markets to validate the predictions of the model and assess which scenario
is empirically more plausible.1

To illustrate our theoretical result, we start from a simple task-based model of
production that incorporates the standard effects of automation. In autarky, sub-
stituting labor with cheaper robots has a productivity effect, a capital deepening
effect and a displacement effect. While the first two effects raise welfare, the latter
one tends to lower real wages. But the negative effect is always dominated if the
supply of robot capital is sufficiently elastic.2 In the presence of offshoring,
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however, there is a new terms-of-trade effect that redistributes income across
countries: automation lowers the relative wage of the workers that are displaced
by robots the most. If automation substitutes foreign labor, domestic workers do
not suffer any displacement, while they benefit from a higher productivity, capital
deepening and cheaper foreign inputs. In this case, automation triggers reshoring
and raises domestic welfare. However, if domestic workers are substituted by
robots, they are harmed both by the displacement effect and by the increase in
the cost of foreign inputs. In this case, automation can lower domestic welfare
even if the higher productivity and capital deepening would compensate the dis-
placement effect in autarky.

The model also illustrates that whether automation replaces domestic or
foreign workers may depend not only on exogenous characteristics of the tasks
they perform, but also on economic incentives, which depend on the wage
gap between countries. This opens the possibility that, since offshoring increases
foreign wages, the direction of automation may switch endogenously from
domestically-produced to foreign-sourced tasks. Finally, from a normative per-
spective, the model implies that, since automation targeted at offshored tasks
redistributes income from the foreign to the domestic country, policy makers
may have an incentive to distort the use of robots strategically.

In the second part of the chapter, we move to the empirical analysis. Recent
anecdotal evidence suggests that advanced countries across the world have
started to shift away from foreign inputs. For instance, Walmart (2016), the
biggest retailer in the world, launched the “Jobs in U.S. Manufacturing
Portal” website as part of a broader “Investing in American Jobs” initiative
which aims to bring manufacturing jobs back to the US. The COVID-19 pan-
demic has accelerated this trend by fostering automation and inducing govern-
ments to aim at increasing self-sufficiency in strategic sectors. However,
systematic evidence about reshoring, defined as a reduction in the growth of off-
shoring which can even turn negative, is scant.

Motivated by our model, we study the effect of industrial automation between
1990 and 2015 on US local labor markets and how it relates to offshoring. To
measure automation and offshoring, we use high-quality trade data on US
imports of industrial robots and intermediate inputs, respectively, and assign
them to industries using detailed Import Matrices. We then project these mea-
sures across 722 US commuting zones based on the industry composition of
employment. We further instrument the change in US imports of industrial
robots with similar changes observed in eleven European countries. With this
data, we find that robot imports lower manufacturing employment. Since man-
ufacturing is the sector where automation is concentrated, this evidence suggests
that, on average, robots displace US workers. However, we also find positive
effects on wages, though not always significant, consistent with the hypothesis
that robots improve labor productivity.

Next, we ask how these effects depend on offshoring. To this end, we first
show that occupations at risk of automation, denoted for short as “replaceable”,
and those classified as “offshorable”, tend to have a relatively similar task
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content.3 This suggests that automation and offshoring might indeed be substi-
tutes, in that they may affect similar occupations. Consistent with this evidence,
we find that robot imports tend to lower offshoring, both at the industry and at
the commuting zone level. Building on these results, we further unpack the neg-
ative employment effect of robot imports across different occupations. This exer-
cise reveals that the employment losses are especially concentrated in occupations
performing non-offshorable and replaceable tasks. Finally, we look for heteroge-
neous effects across commuting zones specialized in industries with a different
prevalence of offshoring. This exercise reveals that commuting zones that are
more exposed to offshoring experience a relatively smaller negative effect on
manufacturing employment as a consequence of automation. Overall, this evi-
dence suggests that robot imports are associated with a reduction in offshoring,
which is however not enough to fully compensate for the negative displacement
effect on manufacturing employment.

This chapter makes several contributions to the literature. First, from a theo-
retical perspective, it shows that the welfare effects of automation may be very
different in the presence of offshoring. To do so, it combines models of automa-
tion (such as Zeira, 1998, Acemoglu and Restrepo, 2019, Hemous and Olsen,
2020) with models of offshoring (such as Grossman and Rossi-Hansberg,
2008, Rodriguez-Clare, 2010, Acemoglu, Gancia and Zilibotti, 2015). The lit-
erature has shown that both phenomena can have ambiguous welfare effects due
to the tension between a productivity effect, which tends to benefit everybody,
and a displacement effect, which tends to have adverse effects on workers that
compete with robots or imports. However, this chapter highlights two important
differences between automation and offshoring: first, they may affect different
workers; and, second, unlike foreign labor, robots can be reproduced. The com-
bination of these two features generates the terms-of-trade effect that can change
the welfare effect of automation. Artuc, Bastos and Rijkers (2018), Krenz, Pre-
ttner and Strulik (2018) and Furusawa and Sugita (2021) also develop models
of automation and trade in intermediate inputs, but assume that robots replace
domestic labor only.

Second, the chapter contributes to the empirical literature on the identification
of automation. Earlier papers use data from the International Federation of
Robotics, which are however available for nineteen aggregate sectors only. Rec-
ognizing the high concentration of this very specialized sector, in which Japan
and Germany alone account for 50 percent of global revenues, some recent
papers have turned to robot imports as a measure of automation. These
include Acemoglu and Restrepo (2020) and Blanas, Gancia and Lee (2019),
which use cross-country data; Acemoglu, Lelarge and Restrepo (2020) and Bon-
figlioli et al. (2020), which use firm-level data for France; and Humlum (2019),
which uses firm-level data for Denmark. In this chapter we show how to combine
data on robot imports together with Import Matrices to obtain an indicator of
industrial automation that varies across time and 66 industries. Following the lit-
erature on the measurement of offshoring started by Feenstra and Hanson
(1999), we also construct time-varying offshoring indicators at the industry
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level using the information on imported intermediate inputs contained in the
Import Matrices.

Third, in terms of empirical results, this chapter confirms the negative effect of
industrial robots on manufacturing employment often found in the literature
(see, for instance, Acemoglu and Restrepo, 2020, and Blanas, Gancia and Lee,
2019), but it also shows this effect to be weaker in occupations and commuting
zones that are more exposed to offshoring and hence where reshoring is more
likely. We obtain these findings following the shift-share approach across US
local labor markets first applied to study the effect of Chinese import competition
by Autor, Dorn and Hanson (2013) and automation by Acemoglu and Restrepo
(2020). To unpack the effects across occupations, we use the classifications of
replaceable tasks in Graetz and Michaels (2018) and of offshorable tasks in
Autor and Dorn (2013).

Our results are also related to two recent papers. Using firm-level data from
France, Aghion et al. (2020) find that machines have a positive effect on employ-
ment in sectors facing international competition. This is consistent with our view
that automation may displace imports. On the other hand, Faia et al. (2021)
show that automation can lower employment by making firms more selective
and argue that offshoring may amplify this effect. Using data for a panel of 13
European countries, they document a positive correlation between measures of
replaceability and offshorability and a fall over time in employment for occupa-
tions that are both replaceable and offshorable. Despite the use of different
proxies, we confirm these patterns in our data. However, we also find that the
employment losses in US commuting zones more exposed to robotization are
concentrated in non-offshorable jobs. This evidence is consistent with the hypoth-
esis that, while both automation and offshoring may displace workers, the effect of
an increase in the former can be partially offset by a decline in the latter.

Finally, the chapter is related to the nascent literature on reshoring. The
empirical evidence on this recent phenomenon is still inconclusive. For instance,
Krenz, Prettner and Strulik (2018) and Carbonero, Ernst and Weber (2018) find
evidence of robot-induced reshoring in a panel of countries and industries. Sim-
ilarly, Faber (2020), Artuc, Christiaensen and Winkler (2019), Stemmler (2019),
and Kugler et al. (2020) find evidence of reshoring in Mexico, Brazil and Colom-
bia. On the other hand, Hallward-Driemeier and Nayyar (2019) and De Backer
et al. (2016) argue that reshoring affects only a tiny minority of countries and
industries, while Stapleton and Webb (2020) show that robots had a positive
impact on imports and multinational activities of Spanish firms. Differently
from us, these papers are mostly concerned with the impact of reshoring on
developing countries, and none of them focuses on the US.

The remainder of the chapter is organized as follows. In Section 2, we build a
simple model to illustrate the welfare effects of automation in the presence of off-
shoring. In Section 3, we construct the main variables used in the empirical anal-
ysis and describe the main patterns in the data. In Section 4, we present the results
of the econometric analysis. Exploiting variation across occupations, industries
and space, we study the relationship between automation and offshoring, and
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how the effect of automation on labor market outcomes depends on offshoring.
Section 5 concludes.

2 A Simple Model of Industrial Robots and Offshoring

In this section, we build a simple two-country general-equilibrium model to
illustrate the welfare effects of automation and offshoring.4 The main lesson is
that the effects of automation on real wages can be very different depending
on whether robots displace tasks that are performed domestically or abroad.
The theory will also suggest a simple way to identify this displacement effect in
the data. Since the goal is to derive qualitative results that will guide the empirical
analysis, the model is deliberately kept as simple as possible.

2.1 The Basic Set-Up

The world economy comprises two countries, North and South, populated by
Ln and Ls units of workers, respectively. There is a single final good, which is
the numeraire and is freely traded. Production requires a set of tasks, which
can be performed by workers or robots. Robots differ from workers in that
they are in perfectly elastic supply and can only perform a subset of the existing
tasks. Specifically, there is a constant unit cost of producing robots, and we
sometimes refer to the endogenous supply of this factor as “robot capital”.
Workers in the two countries differ in their technological capabilities in that
labor in South can only be employed in a subset of the tasks that North can
perform. The production of tasks can be separated geographically at no costs.
In this model, automation is the replacement of any worker with robots and
offshoring is the replacement of a worker in North with one in South. We
start with a one-sector model, but later consider a generalization in which
workers displaced in one secotor may find employment in another. In both
cases, however, we allow offshoring and automation to have general equilib-
rium effects.

Production of the final good Y requires a measure one of tasks, which are
aggregated according to a Cobb-Douglas function:

lnY =
{ 1

0

ln xi di; (1)

where xi is the output of task i. We denote with pi the cost of this task. Then, the
demand for each task satisfies:

pixi = Y : (2)
With a symmetric Cobb-Douglas production function, each task gets the same
share of expenditure.

Tasks can be performed by workers in North, with productivity an and wage
wn, workers in South, with productivity as and wage ws, or robots, with a unit
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cost r (in terms of the numeraire Y) and productivity ar. We assume r < ar which,
as we will see, guarantees that some robots are always used in equilibrium.
Workers in North can potentially perform any task i E [0, 1]. Workers in
South, instead, can only perform a measure λ < 1 of tasks, and we refer to
these tasks as “offshorable”. Finally, robots can only perform a measure κ < 1
of tasks, and we refer to these tasks as “replaceable”. Some tasks can be both off-
shorable and replaceable. Accordingly, we define ξ as the probability that a
replaceable task is also offshorable.

We denote with mn,ms andmr the measure of tasks performed in equilibrium
by workers in North, South and by robots, respectively, and assume for simpli-
city that workers in different locations and robots cannot be combined to
produce the same task. This implies that ms + mn + mr = 1. Then, the cost of
task i is:

pi =

pn = wn
an
; if performed in North

ps = ws
as
; if performed in South

pr = r
ar
; if performed by robots:

{''''{
''''}

(3)

Imposing symmetry across tasks and labor-market clearing allows us to
compute the quantity of each task produced by workers:

xi =
xn = anLn

mn
if performed in North

xs = asLs
ms

if performed in South:

{{
} (4)

If task i is instead performed by robots, we can combine pr = r/ar with prxr = Y
to solve for its quantity:

xr =
Yar

r
: (5)

Substituting the quantities (4)-(5) into (1), we can solve for aggregate produc-
tion as:

Y = asLs

ms

( ) ms
1-mr anLn

mn

( ) mn
1-mr ar

r

( ) mr
1-mr

: (6)

Next, substituting prices (3) and quantities (4) into the demand function (2),
we obtain wages:

wn =
mn

Ln

Y ; (7)

with an analogous expression for ws. Intuitively, the wage is increasing in the
demand for labor, which is proportional to the measure of tasks performed
and total production, and decreasing in the supply of labor.
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Finally, we need to solve forms,mn, andmr. To this end, note that if ps < pn, then
offshorable tasks are cheaper in South and hence will never be produced in North.
This will be the case if wages per efficiency unit of labor in South are lower than in
North, i.e., wsan < wnas. In turn, this requires the technological capabilities of
South, as measured by λ, to be sufficiently low. A sufficient condition is

l
1- l- k(1- x) <

as

an

Ls

Ln

and we assume it to be always satisfied. Next, we focus on equilibria in which robots
are utilized. For this to be the case, automated tasks must be cheaper than those
performed by workers in North, pr < pn, which requires the cost of robots, r, to
be sufficiently low. As we will show later, this is guaranteed by the assumption r
< ar. Under these conditions, workers in North perform the set of tasks that are
neither replaceable nor offshorable:

mn = (1- l) - k(1- x):
Robots will also be used in offshorable tasks if pr < ps, which is equivalent to ras <
wsar. In this case, workers in South perform the set of tasks that are offshorable but
not replaceable:

ms = l- kx:

If instead pr > ps, then workers in South are cheaper than robots, which implies that
they perform all offshorable tasks, ms = λ. Finally, there is also an intermediate case
in which pr = ps and robots are used in a subset of the task that they can perform in
South.

2.2 Robots, Offshoring, and Real Wages

We are now in the position to study the effect of robots on real wages which, in
this model, coincide with welfare and also capture the demand for labor. We
focus mostly on North, although it is straightforward to derive the results for
South. Substituting (7) and (6) yields:

wn = an

as

an

wn

ws

( ) ms
1-mr ar

r

( ) mr
1-mr (8)

with

wn

ws

= Ls

ms

mn

Ln

: (9)

Equation (8) says that workers in North benefit from their own productivity, an,
but also from cheap labor in South, as

an

wn
ws
> 1, and cheap robots, ar

r > 1. It also
confirms that, under the assumptions ps < pn and r < ar, robots are cheaper
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than workers in North, i.e., ran < wnar. Equation (9), instead, shows that the
North-South wage gap, which we also refer to as the terms of trade, depends
on the division of tasks between the two countries. These equations depend
on the endogenous variables mn, ms and mr, but are general in that they also
apply to other models of offshoring and automation.5 To better understand
the effects of robots and offshoring, and how they interact, we start by consider-
ing them in isolation.

2.2.1 Offshoring Only

Suppose first that there is no automation, i.e., κ = 0. Then:

wn = an

as

an

wn

ws

( )l
= an

1- l
l

asLs

anLn

( )l
:

Offshoring, i.e., an increase in λ, has two effects. First, as long as aswn > anws,
production costs are lower in South, and hence relocating tasks there lowers
prices, which benefits all workers. Second, offshoring shifts the demand for
labor in favor of workers in South, thereby lowering wn/ws. This fall in the
terms of trade for workers in North tends to hurt them. Overall, the efficiency
effect dominates for low values of λ, when the wage gap is large, but it vanishes
for high values of λ, as the wage gap disappears for sufficiently high levels of off-
shoring. As a result, wn is an inverted-U function of λ.

2.2.2 Automation Only

Consider now the case with no offshoring, i.e., λ = 0 and ξ = 0. Then:

wn =
mn

Ln

Y = an

ar

r

( ) k
1-k
: (10)

Equation (10) shows that the real wage is always increasing in automation, κ.
There are three effects at work here. First, as long as ar > r, robots raise produc-
tivity. Second, as the measure of tasks performed by workers in North falls, there
is also a displacement effect. However, the latter is offset by robot-capital dee-
pening: the supply of robots increases so as to keep their price, r, constant. As
a result, differently from offshoring, workers do not suffer any deterioration of
their terms of trade from robots.6

2.2.3 Automation and Offshoring

We now study the effect of automation in the presence of offshoring. There are
two cases to consider, depending on the relative wage in South. If the wage in
South is sufficiently low, then offshoring is cheaper than using robots. We call
this the “large wage gap” case. But if the wage in South is high enough, then
offshorable tasks become at risk of automation. We call this the “small wage
gap” case.
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Large wage gap: pn > pr > ps. In this case, robots replace North workers only.
Without loss of generality, we can then set ξ = 0. Imposing mn = 1−λ−κ, ms = λ
and mr = κ into (8) and (9) yields:

wn = an

as

an

wn

ws

( )l ar

r

( )k
[ ] 1

1-k

with

wn

ws

= 1- l- k
l

Ls

Ln

:

Compared to the case without offshoring, there are two differences. First, the
productivity effect of robots is stronger, because they replace workers in North
that are now more expensive: as

an

wn
ws
> 1. As a result of this, robots can raise real

wages in North even if they would not be used in autarky (ar < r). On the
other hand, however, automation lowers the relative demand for North
workers and hence increases the relative wage of workers in South, which are
not competing with robots. Hence, workers in North now suffer from a negative
terms-of-trade effect. Because of the latter, robots can now lower the real wage in
North, even if they would have increased it in autarky (ar > r). More precisely, wn

falls with κ if

ln
as

an

wn

ws

( )l ar

r

[ ]
<

l(1- k)
1- l- k

:

This condition is more likely to be satisfied when r and ws are high because in this
case the productivity gains are small and the negative terms-of-trade effect may
dominate.

Small wage gap: pn > ps > pr. In this case, robots substitute workers in both
countries. Consider first the case ps > pr, which implies mn = (1 − λ) − κ(1 − ξ),
ms = λ−κξ and mr = κ. Imposing these conditions into (8) and (9) yields:

wn = an

as

an

wn

ws

( )l-kx
1-k ar

r

( ) k
1-k

with

wn

ws

= 1- l- k(1- x)
l- kx

Ls

Ln

:

The novelty is that the effect of robots on the terms of trade depends on ξ. If ξ > λ,
robots displace workers in South more than proportionally and hence improve the
terms of trade of North. In this case, wn necessarily increases with κ. If ξ < λ,
robots lower the terms of trade of North. In this case, the effects are qualitatively
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similar to the large wage gap case discussed previously, and they become identical
if ξ- 0. Finally, we can also consider the case of a tie, ps = pr, in which robots and
workers in South become perfect substitutes, and robots are used in an endoge-
nous measure of tasks smaller than κξ. This intermediate equilibrium prevails
when ps > pr for ms = λ, but ps < pr for ms = λ−κξ. In this range, the endogenous
margin of robot utilization in South keeps all wages constant at ws = asr/ar and
wn = anar/r.

We now briefly discuss some of the main implications of these results. The first
lesson is that robots replacing North workers may hurt them by increasing the
relative wage in South. Hence, in a world of global value chains, it is important
to understand who is competing with robots. In turn, this may depend both on
the technological characteristics of the tasks they perform and on the level of off-
shoring. The reason is that offshoring increases the relative wage in South, which
makes automation of offshored tasks more profitable. More in general, the model
suggests that both a decline in the cost of robots and technological catch-up in
South can trigger a switch in automation from domestically sourced tasks only to
offshored tasks too. These results also have important policy implications. In par-
ticular, since automation is likely to have terms-of-trade effects, which redistrib-
ute income between countries, policy makers may have an incentive to distort the
use of robots strategically.

2.3 Extension: Two-Sector Model

Both automation and offshoring are more prevalent in the manufacturing sector.
We now show how the displacement effect can be identified from the allocation
of labor between sectors that are differentially exposed to automation. To this
end, assume now that final output is produced combining manufacturing
goods, X, and services, Z, as follows:

Y = X αZ 1-α:

Labor is mobile between X and Z. As before, manufacturing workers in North
earn a share of sector revenue, αY, equal to the fraction of tasks they perform,mx

n:

wnL
x
n = mx

nαY ;

where Lx
n is employment in manufacturing in North. The service sector is sym-

metric, hence wnL
z
n = mz

n(1- α)Y . Combining these expressions yields the allo-
cation of labor in North:

Lx
n

Lz
n

= α
1- α

mx
n

mz
n

: (11)

Equation (11) shows that this allocation depends exclusively on the tasks per-
formed by domestic workers in the two sectors. The intuition is that the produc-
tivity effect affects both sectors equally and hence the allocation of labor only
depends on the displacement effect. For our purposes, equation (11) also
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implies that the effect of automation on the tasks performed by workers in North
can be read from changes in employment across sectors. In the remainder of the
chapter, we build on this result to identify the displacement effect of industrial
robots and test how it varies with offshoring. Given that industrial robots are
used almost exclusively in manufacturing, their adoption should have no direct
effect on mz

n. Hence, if we find that an exogenous shock to automation shifts
workers away from manufacturing, it must be that mx

n is falling. Moreover, we
will compare how the displacement effect differs across local labor markets and
occupations depending on their exposure to offshoring. If we find a weaker or
no displacement effect in areas or occupations where offshoring is more preva-
lent, it will be evidence consistent with the automation of foreign-sourced tasks.

3 Data and Stylized Facts

This section explains how we construct the main variables used in the empirical
analysis and illustrates the main patterns in the data.

3.1 Data and Variables

Our empirical analysis relates automation, offshoring and labor market outcomes
(employment and wages) across US local labor markets. Following Autor and
Dorn (2013), Autor, Dorn and Hanson (2013) and Acemoglu and Restrepo
(2019), among others, we identify local labor markets using the concept of com-
muting zone (CZ) introduced by Tolbert and Sizer (1996). CZs are defined as
clusters of counties characterized by strong commuting ties within them and
weak commuting ties among them. Our sample includes 722 CZs covering
the entire mainland United States.

LaborMarket Outcomes. For each CZ, we measure employment and wages, both
on aggregate and for different sectors (manufacturing and non manufactur-
ing) or skill groups of workers (college and non-college educated), using
micro-level data from two sources: the decennial Censuses, for the years 1990
and 2000; and the American Community Survey (ACS), for the years 2005,
2010 and 2015. Both data sources are extracted from IPUMS (Ruggles et al.,
2020).7

Following Autor and Dorn (2013), we restrict the estimation sample to
working-age individuals (aged 16 to 64) who are not unpaid family workers,
do not reside in institutional group quarters and have reported being employed
over the previous year. We construct CZ-level employment using sample
weights. To construct wages, we further exclude individuals who are self-
employed or farm workers, lack information on working hours, weeks or
wages, and report working less than 40 weeks per year and 35 hours per week.
We compute average wages as annual wages and salary income divided by total
hours worked. Wages are expressed at constant 2005 prices using the Personal
Consumption Expenditure Index. We also construct CZ-level population
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figures using data from the Censuses and the ACS. In the regressions, we use ten-
year equivalent changes of employment-to-population ratios and log average
wages, computed as 10 times the annualized change in each variable over a
given period (1990-2000, 2000-2005, 2005-2010 and 2010-2015).

Robot Exposure. To construct our proxy for automation at the CZ level, we use
high-quality data on US imports of industrial robots and project these imports
across local labor markets using information on the industrial structure of
employment in each CZ. We start by extracting the value of robot imports
from detailed product-level import data collected by the US Customs and avail-
able for the 1989–2018 period (Schott, 2008); robot imports are classified into
specific 10-digit product codes of the Harmonized Tariff Schedule (HTS)
classification.8 We apportion the overall value of US robot imports to 66 indus-
tries (defined according to the classification of the Bureau of Economic
Analysis, henceforth BEA industries) using information on the cross-industry
distribution of machinery (including robot) imports in each year extracted
from the US Import Matrices.9 Finally, we apportion the industry-level robot
imports to individual CZs based on the industrial structure of employment in
each CZ. In particular, our final measure of CZ-level robot exposure is con-
structed as follows:

DRobotsct =
E
j

lcjt . D lnRob Mjt ; (12)

where c denotes CZs; ΔlnRob_Mjt is the ten-year equivalent log change in US
robot imports in industry j over period t; and λcjt is the share of industry j in
total employment of CZ c at the beginning of period t.10

The choice of using imports to measure automation in the US is motivated by
the high concentration of the robot-producing sector. The vast majority of robot
production worldwide takes place in a handful of non-US countries (especially
Japan and Germany), while the US is not yet a major robot producer. Most of
the production of robots occurring in the US is made by local affiliates of
foreign multinationals and is aimed at serving manufacturing firms operating in
neighboring countries, mostly Canada and Mexico (see, e.g., Casanova, 2019).
On the contrary, the US is the second largest importer of robots worldwide,
and also the second country in the world in terms of net robot imports (see,
e.g., Furusawa and Sugita, 2021). Consistent with this, robot imports into the
US are highly correlated with the overall stock of robots installed in the
country, as recorded by the International Federation of Robotics (IFR): a regres-
sion of the log change in robot imports, ΔlnRob_Mjt, on the log change in the IFR
stock of robots across industries and time periods yields a coefficient of 0.998 (s.e.
0.058). While the IFR data have important limitations—most notably, they only
contain counts of robots (not values) and, by encompassing domestically-
sourced robots, they could reflect technological shocks affecting the domestic
labor market—such a high correlation suggests that robot imports are likely to
capture the bulk of the variation in the use of robots in the US.11 In Section

51 Robots, Offshoring, and Welfare 51



4.1, we will further show that, if we use net robot imports (i.e., imports minus
exports) to construct robot exposure, our main evidence is unchanged, in line
with the limited size of domestic production and exports of robots in the US.

As previously mentioned, to apportion nationwide robot imports to individual
industries, we use the cross-industry distribution of machinery imports obtained
from the US Import Matrices. This choice is made for consistency with the use of
import data but turns out to be inconsequential for the results. First, the distri-
bution of machinery imports across industries is very similar to the distribution of
total (domestic plus foreign) machinery purchases, as obtained from the US
Input-Output Tables: a regression of industry shares in total machinery pur-
chases on the corresponding shares in machinery imports yields a coefficient of
1.069 (s.e. 0.021). Consistent with this, our results are unchanged if we recon-
struct ΔRobotsct using industry shares in total machinery purchases to apportion
robot imports to individual industries (see Section 4.1). More generally, the
cross-industry distribution of machinery imports is also highly correlated with
the overall stock of installed robots in the US: a regression of the log IFR
robot stock on the log industry shares in machinery imports across the nineteen
aggregate sectors covered by the IFR data over 1993–2016 yields a coefficient of
0.541 (s.e. 0.123). This suggests that the cross-industry distribution of machin-
ery imports closely reflects the actual usage of robots across US industries.

Variation in ΔRobotsct across CZs could be driven by CZ-specific factors that
also influence labor market outcomes. For instance, positive demand shocks
may induce firms to automate and simultaneously raise employment and
wages. Similarly, firms may adopt robots to increase productivity after some neg-
ative labor market shock. This implies that the OLS estimates of the effects of
automation on labor market outcomes could be biased, either upward or down-
ward. To account for the potential endogeneity of ΔRobotsct, we build on Autor,
Dorn and Hanson (2013) and construct an instrument that is meant to isolate
the variation in ΔRobotsct induced by supply shocks in robot exporting countries,
rather than by shocks occurring in individual CZs. To construct the instrument,
we source (from UN Comtrade) data on robot exports from non-US countries
to eleven European economies over 1989–2018.12 To apportion the country-
level robot imports to individual industries, we use the share of each industry
in total machinery imports into a given country, as extracted from country-
specific Import Matrices available in the World Input-Output Database (Timmer
et al., 2015). Finally, we construct the instrument as follows:

DRobots Othct =
E

j

lcjt . D lnRob M Othjt ; (13)

where ΔlnRob_M_Othjt is the ten-year equivalent log change in robot exports from
non-US countries to the eleven European countries in industry j over period t.

Identification requires that supply shocks boosting robot exports from non-
US countries are uncorrelated with US-specific technology shocks affecting
labor market outcomes in individual CZs. Similarly, demand shocks in the
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eleven European importing countries must be uncorrelated with demand shocks
in US local labor markets. To assuage identification concerns, we will use a highly
demanding specification (presented in Section 4.1) that controls for a host of
fixed effects, both at the state and at the year level. These fixed effects absorb
any US-specific shock that is common to all CZs, as well as differential trends
across US states. The specification also controls for several proxies for other
types of shocks to trade, technology and demand conditions at the CZ level.
Overall, the wealth of controls and fixed effects included in the specification
should largely reassure that the IV results are not obviously driven by US-specific
shocks potentially correlated with the instrument.

Offshoring Intensity. Following Feenstra and Hanson (1999), we measure
offshoring as the share of imported intermediate inputs in total input purchases.
A higher value of this ratio corresponds to a greater usage of foreign inputs in
production, reflecting a more intensive relocation of production stages to
foreign countries. We construct offshoring intensities for the BEA industries
using US Input-Output Tables and Import Matrices over 1997–2018. We use
two complementary indicators of offshoring. The first, called broad offshoring,
considers imports of all types of inputs. The second, called narrow offshoring, con-
siders only imports of inputs that are closely related to the production process of an
industry and could thus be performed in house by firms.

The two indicators are constructed as follows:

B Offshjt =
E

hI MjhtE
h I Mjht + I Djht

( ) and N Offshjt =
I MjjtE

h I Mjht + I Djht

( ) ;

where I_Mjht and I_Djht denote imports and domestic purchases, respectively, of
intermediates made by industry j from industry h in period t; and I_Mjjt indicates
imports of intermediates made by industry j from within itself at time t. Then, we
construct the intensity of offshoring in each CZ similarly to eq. (12), using the
industry-specific offshoring indicators, B_Offshjt and N_Offshjt, in place of the
log change in robot imports. Namely,

B Offshct =
E

j

lcjt . B Offshjt and N Offshct =
E

j

lcjt .N Offshjt : (14)

Since we are not interested in identifying the effects of offshoring, we do not
build an instrument for it.13

Occupational Characteristics. Finally, we use information on occupational
characteristics to unpack the overall employment effects of automation across dif-
ferent groups of workers. Following Graetz and Michaels (2018), we classify
each occupation according to whether workers perform tasks that can or
cannot be replaced by robots. Graetz and Michaels (2018) define an occupation
as “replaceable” if its title corresponds to at least one of the robot application
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categories (e.g., welding, painting and assembling) identified by the IFR. We
source replaceability data by occupation from Graetz and Michaels (2018).

We also classify occupations depending on how easy it is to relocate their tasks
to foreign countries. Our main index of occupational offshorability is sourced
from Autor and Dorn (2013). The authors use the simple average of two vari-
ables constructed by Firpo, Fortin and Lemieux (2011), who employ data
from the O*Net database to measure the degree to which workers require
face-to-face interaction and physical presence on the job. The index is reversed,
so higher levels indicate higher offshorability. We standardize the index to have
mean 0 and standard deviation 1 across occupations, and define as offshorable all
occupations whose index is above the median. The two occupational character-
istics are available for 331 US Census occupations. We match these characteris-
tics to the US Censuses and the ACS using information on each worker’s
occupation of employment provided in the two data sources.14

3.2 Stylized Facts

We now present a number of facts about labor market outcomes, robot imports
and offshoring in the US over the period of analysis. Figure 3.1 shows the evo-
lution of employment from 1990 to 2015, based on the whole sample of

Figure 3.1 Employment-to-Population Ratio by Sector
Source: US Censuses (1990, 2000) and American Community Survey (2005–2015).
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individuals contained in the Censuses and the ACS. As a percentage of total pop-
ulation, overall employment has gone down from 70% in 1990 to 67% in 2015.
This aggregate trend masks heterogeneity between manufacturing and non-man-
ufacturing sectors. The employment-to-population ratio has steadily fallen in
manufacturing, moving from 13% in 1990 to 7% in 2015. At the same time,
employment has significantly risen relative to population in non-manufacturing
sectors, passing from 57% in 1990 to 60% in 2015. The existence of a shrinking
industrial sector and an expanding service sector are common trends to most
industrialized countries and reflect the structural change occurring in these econ-
omies over recent decades. As we show later on, automation has contributed to
these trends by inducing a reallocation of labor outside of manufacturing.

Figure 3.2 unpacks the overall trend in employment across occupations with
different characteristics. The figure shows average employment-to-population
ratios across CZs in a given year, separately for offshorable and replaceable occu-
pations. The difference between the overall employment-to-population ratio and
the ratio corresponding to either group is equal to the employment-to-population
ratio in the complement group of (non-offshorable or non-replaceable) occupa-
tions. Employment has increased in offshorable occupations, especially after the
year 2000. At the same time, after reaching a plateau in 2000, the employment
share of replaceable jobs has significantly declined in subsequent years, with a
rapid acceleration in 2010. These trends reveal a marked change in the occupa-
tional structure of US employment over recent decades: employment has
shifted from non-offshorable to offshorable jobs and from occupations that can
be replaced by robots to those that cannot.

These adjustments in the US labor market have been concurrent with signif-
icant changes in the importance of automation and offshoring. Figure 3.3
shows the evolution of US robot imports over the period of analysis. To high-
light the main trends in this variable, the graph reports overall imports in each
five-year interval starting in 1989. The graph also displays the evolution of the
two offshoring indicators, averaged across industries in each five-year period.
Two main facts emerge from Figure 3.3. First, robot imports have remained
at very low levels over the 1990s and the first half of the 2000s but have
rapidly risen thereafter with a marked acceleration after 2010. This confirms
that automation and adoption of industrial robots have significantly gained
momentum in the US over recent years.15 Second, the growth in offshoring
has decelerated in the second half of the 2000s and become negative after
2010. While the reduced incidence of offshoring could have resulted from
various factors, including the shrinkage of the manufacturing sector, it could
also reflect the tendency by firms to bring back foreign activites to the US.
From now on, we will accordingly refer to a reduction in the offshoring indica-
tors as “reshoring”, for brevity. In this sense, the concomitant increase in robot
imports and reduction in offshoring is consistent with anecdotal evidence,
according to which automation is leading firms to reshore an increasing
number of production stages.
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The aggregate trends in robot imports and offshoring hide heterogeneity
across sectors, as shown in Figure 3.4. The latter reports the average values of
robot imports per worker (panel a) and of the two offshoring indicators (panel
b) over the sample period, separately for manufacturing and non-manufacturing
sectors. Robot imports are almost entirely concentrated in manufacturing and
still almost inexistent in services. In particular, average robot imports per
worker amount to roughly 575,000$ in manufacturing and 63,000$ in non-
manufacturing industries. Similarly, despite the growth of service offshoring in
recent years (see, e.g., Crinò, 2010), offshoring is still higher in manufacturing
than in other sectors. According to both indicators, offshoring in manufacturing
exceeds offshoring in non-manufacturing industries by about three times over
the period of analysis.

Since different economic activities are not equally distributed in space, the het-
erogeneous incidence of automation and offshoring across industries is likely to
give rise to differences in the extent to which each CZ is exposed to these

Figure 3.2 Employment-to-Population Ratio by Occupation Group
Source: US Censuses (1990, 2000) and American Community Survey (2005-2015).

Notes: Replaceable occupations are those whose title corresponds to at least one of the robot
application categories identified by the International Federation of Robotics (Graetz and Michaels,
2018). Offshorability is measured by an index capturing the degree to which workers require face-
to-face interaction and physical presence on the job (Autor and Dorn, 2013). The index is rescaled
so that higher values indicate higher offshorability. Offshorable occupations are those for which
the index is above the sample median. All figures are arithmetic averages across CZs.
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phenomena. To document the geographical distribution of automation and off-
shoring in the US, Figure 3.5 reports two maps showing the mean of ΔRobotsct
(map a) and the average change in offshoring (maps b) in each CZ over the
sample period.16 Two facts are worth highlighting. First, both variables vary sub-
stantially in space. Interestingly, variation is high not only across but also within
states. This reflects the heterogeneous industrial structure of CZs and will be
crucial for our econometric analysis. Second, the correlation between automation
and offshoring is negative also across CZs. While automation has especially risen
in the Great Lakes region and in coastal states, offshoring intensity has especially
increased in South-Central United States. We will systematically document this
negative correlation in Section 4.2. For the time being, the descriptive evidence
in Figure 3.5 further corroborates the view that automation could have induced a
reshoring of activities in the US.

Finally, Table 3.1 reports summary statistics on the main variables used in the
regressions. All statistics are computed across CZs and time periods. The employ-
ment-to-population ratio has increased on average by 2.6 percentage points (p.
p.) per decade, as the combination of a 4.6 p.p. average decadal increase in non-
manufacturing industries and a 2 p.p. average decadal reduction in the

Figure 3.3 Robot Imports and Offshoring over Time
Source: US Customs data (Schott, 2008), Import Matrices and Input-Output Tables.

Notes: Robots are the overall value of US robot imports in each time period. Broad Offsh. and
Narrow Offsh. are averages of the two offshoring indicators across industries and years in
each time period.
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Figure 3.4 Robot Imports and Offshoring by Sector
Source: US Customs data (Schott, 2008), Import matrices and Input-Output Tables.

Notes: All figures are averages across year and industries within a sector.
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manufacturing sector. Average wages have risen by 0.1 log points per decade in
both sectors. Table 3.1 also confirms the significant increase in automation doc-
umented before, with ΔRobotsct being equal to 0.41 log points per decade on
average. The high standard deviation of ΔRobotsct points to significant variation
in robot exposure both in space and over time, consistent with the evidence
emerging from Figure 3.5. Finally, offshoring intensity is equal to 4.8 p.p. on

Figure 3.5 Robot Exposure and Offshoring across Commuting Zones
Notes: The first map shows the mean of Δ Robots in each CZ over the sample period. The second
map shows the average change in the broad offshoring indicator by CZ over time.
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average according to the broad indicator and to 1 p.p. according to the narrow
indicator. Also in this case, there is significant variation across CZs and time
periods as suggested by the high standard deviations reported in the table.

4 Empirical Analysis

In this section, we present the results of the econometric analysis. We start by
discussing the average effects of robot exposure on labor market outcomes
across CZs. We then provide novel evidence on the relationship between auto-
mation and offshoring, exploiting variation across occupations, industries and
space. Building on this evidence, we finally revisit the average employment
effects of robot exposure and unpack them across occupations and CZs with dif-
ferent exposure to offshoring.

4.1 Average Effects

To study how robot exposure affects labor market outcomes across CZs, we
build on Autor, Dorn and Hanson (2013) and Acemoglu and Restrepo
(2019), and estimate specifications of the following form:

DYct = αs + αt + b . DRobotsct +X
'

ct . g+ εct ; (15)

where ΔYct is the change in outcome Y in CZ c over period t; αs and αt are fixed
effects for US states and time periods, respectively; ΔRobotsct is our measure of

Table 3.1 Summary Statistics

Mean Std. Dev. Obs.

Δ Total Emp./Pop. 0.026 0.043 2888
Δ Mnfg Emp./Pop. −0.020 0.041 2888
Δ Non Mnfg Emp./Pop. 0.046 0.053 2888
Δ ln Avg Wages 0.100 0.115 2888
Δ ln Mnfg Wages 0.105 0.255 2888
Δ ln Non Mnfg Wages 0.103 0.125 2888
Δ Robots 0.411 0.699 2888
B_Offsh 0.048 0.033 2888
N_Offsh 0.007 0.017 2888

Notes: Statistics for variables in changes are computed across 722 CZs and four time periods:
1990–2000, 2000–2005, 2005–2010 and 2010–2015. Statistics for variables in levels
(B_Offsh and N_Offsh) are computed across 722 CZs and four years: 2000, 2005, 2010
and 2015. Changes in employment-to-population ratios and in log average wages over a
given time period are expressed in decadal terms. Robots is the weighted average of ten-year
equivalent log changes in US robot imports across industries, with weights given by the
industrial structure of employment in each CZ at the beginning of each time period.
B_Offsh and N_Offsh are weighted averages of the broad and narrow offshoring indicators
across industries, with weights given by the industrial structure of employment in each CZ
and year.
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CZ-level exposure to imported robots; Xct is a vector of controls for other
observable characteristics of the CZ (details follow); and εct is an error term.

We estimate eq. (15) by stacking ten-year equivalent first differences for four
time periods: 1990–2000, 2000–2005, 2005–2010 and 2010–2015. The state
fixed effects control for heterogeneous trends in labor market outcomes across
states, while the year fixed effects absorb shocks hitting outcomes uniformly in
all CZs. The control variables Xct include start-of-period proxies for the follow-
ing CZ-level characteristics: size (log employment), demographic composition of
the labor force (employment shares of female, foreign born and college-educated
workers), and composition of economic activities (employment share of workers
in routine-intensive occupations and offshoring intensity). These variables
account for heterogeneous trends across CZs characterized by different initial
conditions. Xct also includes proxies for other shocks potentially occurring in
CZ c over period t, namely, export shocks and shocks to import competition
from China and other countries. These variables control for changes in trade,
technology and demand conditions concurrent with the import of robots.17

We weight the observations by the initial-period share of each CZ in total pop-
ulation and correct the standard errors for clustering at the state level to account
for residual correlation across CZs within the same state. We first estimate eq.
(15) using OLS. Then, to account for possible endogeneity of ΔRobotsct, we
turn to 2SLS regressions, instrumenting ΔRobotsct with ΔRobots_Othct. Because
eq. (15) restricts coefficients to be the same across CZs, the parameter β mea-
sures the average effect of robot exposure on a given outcome across US local
labor markets.

Table 3.2 contains results for employment. OLS estimates are reported in
panel a and 2SLS estimates in panel b. To study how the effect of robot exposure
is influenced by the covariates, we first present results from a parsimonious spe-
cification including only state and year fixed effects (columns 1–3) and then add
control variables (columns 4–6). We estimate eq. (15) for three different out-
comes. The first, used in columns (1) and (4), is the change in total employment
over population. The other two outcomes, used in columns (2) and (5) and in
columns (3) and (6), respectively, are the changes in manufacturing and non-
manufacturing employment over population. Because total employment is the
sum of manufacturing and non-manufacturing employment, the properties of
linear estimators like OLS and 2SLS imply that the estimates of β reported in
columns (2) and (3) add up to the estimate reported in column (1); similarly,
the estimates of β shown in columns (5) and (6) add up to the estimate shown
in column (4). This provides us with an immediate way of decomposing the
employment effects of robot exposure across manufacturing and other sectors.

The OLS estimates show a negative and statistically significant correlation
between robot exposure and manufacturing employment. The correlation with
non-manufacturing employment is instead positive and becomes statistically sig-
nificant when adding control variables. The two effects partly offset each other,
so the correlation of robot exposure with overall employment is weak and not
always statistically significant. In Appendix Table B1, we dig deeper into the
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Table 3.2 Robot Exposure and Employment

(1) (2) (3) (4) (5) (6)

Δ Total
Emp./Pop.

Δ Mnfg
Emp./Pop.

Δ Non Mnfg
Emp./Pop.

Δ Total
Emp./Pop.

Δ Mnfg
Emp./Pop.

Δ Non Mnfg
Emp./Pop.

a) OLS

ΔRobots −0.012** −0.016*** 0.004 −0.006 −0.016*** 0.010*
[0.005] [0.004] [0.005] [0.004] [0.004] [0.006]

Obs. 2879 2879 2879 2157 2157 2157
R2 0.43 0.29 0.36 0.53 0.36 0.36

b) 2SLS

2nd Stage

ΔRobots 0.016 −0.056*** 0.072*** 0.006 −0.049*** 0.055***
[0.016] [0.014] [0.018] [0.010] [0.010] [0.014]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.23 0.20 0.01 0.52 0.30 0.29

1st Stage (Dep. Var.: ΔRobots)

ΔRobots_Oth 2.708*** 2.708*** 2.708*** 4.085*** 4.085*** 4.085***
[0.450] [0.450] [0.450] [0.411] [0.411] [0.411]

Kleibergen-Paap F-stat. 36.2 36.2 36.2 99.0 99.0 99.0

State FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Control variables no no no yes yes yes

Notes: The sample consists of 722 CZs and four time periods: 1990–2000, 2000–2005, 2005–2010 and 2010–2015. The dependent variables, indicated in
the columns’ headings except for the first-stage regressions, are ten-year equivalent changes in overall employment-to-population ratio (columns 1 and 4),
manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing employment-to-population ratio (columns 3 and 6). ΔRobots
is the weighted average of ten-year equivalent log changes in US robot imports across industries, with weights given by the industrial structure of
employment in each CZ at the beginning of each time period. The instrument ΔRobots_Oth is constructed analougously to ΔRobots using industry-level
data on robot exports from non-US countries to eleven European countries. Control variables are start-of-period log employment, offshoring intensity
(broad indicator), the employment shares of female workers, foreign-born workers, college graduates and routine-intensive occupations, and the ten-year
equivalent changes in exports, imports from China and imports from other countries over total employment. The first period with available data on
offshoring is 2000–2005. Regressions are weighted by the initial share of each CZ in total US population. Standard errors, reported in square brackets,
are correted for clustering within states. ***, ** and * denote significance at the 1%, 5% and 10% level, respectively.
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timing of these relationships. Using the parsimonious specification, we find that
the correlations are stronger when estimated on later periods (2005–2010 and
2010–2015) than on earlier periods (1990–2000 and 2000–2005). This is con-
sistent with the acceleration of robot imports occurring in the second part of the
sample, as documented in Figure 3.3. Moreover, we perform a falsification test
by regressing current employment changes on the first lead of ΔRobotsct. The
coefficients are always close to zero, which further suggests that the relationship
between robot exposure and employment is not driven by secular trends in out-
comes that antedate an increase in automation.

Appendix Table B1 also contains an extensive set of robustness checks on the
baseline specification. We show, in particular, that the main results are not driven
by outliers, as they remain unchanged when excluding CZs in the top percentile
of the distribution by ΔRobotsct in each period. We also control for exposure to
other types of capital and find that the correlations are not contaminated by
other forms of investment.18 Moreover, we find similar results when considering
alternative ways of constructing robot exposure, namely, by using (i) changes in
the stock of robot imports, (ii) changes in net robot imports, and (iii) the cross-
industry distribution of total machinery purchases to apportion nationwide robot
imports to individual industries.19

Finally, in Appendix Figure B1, we use alternative ways of correcting the stan-
dard errors for clustering. In particular, we account for residual correlation
within CZs over time (clustering by CZ); across CZs in the same state and
year (clustering by state-year); within CZs over time and across CZs in the
same state and year (two-way clustering by CZ and state-year); across CZs in
the same geographical neighborhood (spatial clustering); and across CZs with
similar industrial structure (clustering by industry similarity).20 The confidence
intervals around β are similar to, and frequently narrower than, the baseline con-
fidence intervals, suggesting that correcting the standard errors for clustering
within states provides a conservative inference.

We now turn to the 2SLS estimates. The bottom part of panel b shows that
the first-stage coefficient on ΔRobots_Othct is positive, large and very precisely
estimated, which underscores the strong predictive power of the instrument at
explaining differences in robot exposure across CZs.21 The second-stage coeffi-
cients, reported at the top of panel b, are larger than their OLS counterparts in
absolute value, suggesting OLS estimates to be biased towards zero. Qualita-
tively, however, the 2SLS estimates confirm the evidence emerged from the
OLS regressions. In particular, robot exposure reduces employment in manufac-
turing. This is consistent with robot adoption currently being larger in manufac-
turing than in other sectors. At the same time, robot exposure raises employment
outside of manufacturing. This is consistent with the model in Section 2.3 where
displaced workers in manufacturing find employment in the service sector.
Overall, the two effects almost exactly cancel out, so robot exposure has no sig-
nificant impact on overall employment.

To have a sense of the magnitude of these effects, we multiply the average
value of ΔRobotsct reported in Table 3.1 by the 2SLS coefficients shown in
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columns (5) and (6) of Table 3.1. This yields −0.02 for manufacturing employ-
ment and 0.022 for non-manufacturing employment. Accordingly, in a CZ with
average robot exposure, manufacturing employment would fall by 2 p.p. per
decade relative to population, roughly the average change documented in
Table 3.1. At the same time, non-manufacturing employment relative to popu-
lation would increase by 2.2 p.p. per decade, approximately half the size of the
average change reported in Table 3.1. These figures suggest that automation
has significantly contributed to the reallocation of employment from manufac-
turing to non-manufacturing sectors occurring in the US over the sample period.

Finally, in Table 3.3, we complement the employment results by studying the
implications of robot exposure for wages. The estimates show that automation
increases average wages. The effect is driven by non-manufacturing sectors.
Together with our previous evidence on employment, this further suggests that
robot exposure increases labor demand outside of manufacturing. When sepa-
rately considering college-educated and non college-educated workers, we find
positive wage effects for both groups, although the point estimate is larger and
precisely estimated for high-skill individuals. In manufacturing, the effect of auto-
mation on average wages is negative, albeit imprecisely estimated, consistent with
automation reducing labor demand in this sector. When separately considering
workers with and without a college degree, we find a small positive estimate of
β for the former group and a larger negative estimate for the latter. While none
of these coefficients is precisely estimated, these results suggest that robots tend
to reduce labor demand in manufacturing especially for low-skill individuals.

Overall, these results are broadly consistent with Acemoglu and Restrepo
(2019), who study the effect of automation across US CZs over the 1990–
2007 period using data on the stock of robots in nineteen industries from the
IFR. Similarly to us, they find evidence of negative employment effects, which
are more pronounced in manufacturing. However, they also find stronger nega-
tive effects on wages.

4.2 Robots and Offshoring

Having documented the average effects of robot exposure on labor market out-
comes, we turn to the main part of the analysis. Our interest lies in understanding
how automation interacts with offshoring and what consequences such an inter-
action could have for the US labor market. In this section, we analyze the rela-
tionship between robot exposure and offshoring using different sources of
variation in the data. In the next section, we turn to investigating the implica-
tions for US employment.

As a starting point, we study the nature of tasks that can be performed by
robots. Specifically, we ask whether robots are suited for tasks with a high
degree of offshorability or for relatively hard-to-offshore activities. To this
purpose, we take advantage of the occupation-level measures of offshorability
and replaceability introduced in Section 3. We regress the offshorability index
of Autor and Dorn (2013) on the replaceability dummy of Graetz and Michaels
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Table 3.3 Robot Exposure and Wages

(1) (2) (3) (4) (5) (6) (7)

Δ ln Avg
Wages

Δ ln Mnfg
Wages

Δ ln Mnfg Wages
(College)

Δ ln Mnfg Wages
(Non-College)

Δ ln Non Mnfg
Wages

Δ ln Non Mnfg
Wages (College)

Δ ln Non Mnfg Wages
(Non-College)

a) OLS

ΔRobots 0.031** 0.003 0.017 0.004 0.039*** 0.044*** 0.032
[0.012] [0.023] [0.030] [0.027] [0.013] [0.014] [0.022]

Obs. 2157 2157 2151 2154 2157 2157 2157
R2 0.52 0.20 0.18 0.08 0.49 0.51 0.24

b) 2SLS, 2nd Stage

ΔRobots 0.064* −0.075 0.013 −0.102 0.097*** 0.114*** 0.055
[0.033] [0.097] [0.099] [0.105] [0.030] [0.032] [0.034]

Obs. 2157 2157 2151 2154 2157 2157 2157
R2 0.51 0.19 0.18 0.06 0.48 0.50 0.23

Notes: All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns’ headings, are ten-year equivalent log changes in
average wages (column 1), manufacturing wages (column 2), manufacturing wages of college graduates (column 3), manufacturing wages of non-college
graduates (column 4), non-manufacturing wages (column 5), non-manufacturing wages of college graduates (column 6) and non-manufacturing wages of
non-college graduates (column 7). ΔRobots is the weighted average of ten-year equivalent log changes in US robot imports across industries, with weights
given by the industrial structure of employment in each CZ at the beginning of each time period The instrument is ΔRobots_Oth, constructed analogously to
ΔRobots using industry-level data on robot exports from non-US countries to eleven European countries All regressions include state fixed effects, year fixed
effects and the same control variables as in Table 3.2, and are weighted by the initial share of each CZ in total US population. Standard errors reported in
square brackets are correted for clustering within states ***,** and * denote significance at the 1%, 5% 10% level, respectively.
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Table 3.4 Robots Exposure and Offshoring Across Occupations, Industries and Commuting Zones

(1) (2) (3) (4) (5) (6) (7)

Offshorability (AD,
2013)

Offshoring
(Broad)

Offshoring
(Narrow)

Offshoring
(Broad)

Offshoring
(Narrow)

Offshoring
(Broad)

Offshoring
(Narrow)

Replaceability 0.277**
[0.130]

Δ ln Rob_M −0.076*** −0.080***
[0.006] [0.005]

ΔRobots −0.019*** −0.024*** −0.014*** −0.017***
[0.004] [0.003] [0.005] [0.004]

Obs. 331 535 408 2157 2157 2157 2157
R2 0.01 1.00 1.00 0.69 0.71 0.68 0.68

Sample Occupations Industries Panel CZs Panel
Estimator OLS OLS OLS OLS OLS 2SLS 2SLS

Notes: The regression in column (1) is estimated on a cross-section of occupations. The dependent variable is an indicator of offshorability, which measures the
degree to which workers in a given occupation require face-to-face interaction and physical presence on the job (Autor and Dorn, 2013). Replaceability is a
dummy equal to 1 for occupations whose title corresponds to at least one of the robot application categories identified by the International Federation of
Robotics, and equal to 0 otherwise (Graetz and Michaels, 2018). The regressions in columns (2) and (3) are estimated on a panel of 66 industries. The
dependent variables are changes in the broad and narrow offshoring indicators, respectively, over five-year periods. Δ ln Rob_M is the log change in US robot
imports in each industry. The regressions include fixed effects for industries and sector-year pairs, and are weigthted by start-of-period industry employment.
The repressions in columns (4)-(7) are estimated on a panel of CZs. The dependent variables are weighted averages of ten-year equivalent changes in the
industry-level offshoring indicators, with weights given by the industrial structure of employment in each CZ at the beginning of each time period. ΔRobots is
the weighted average of ten-year equivalent log changes in US robot imports across industries, with weights given by the industrial structure of employment in
each CZ at the beginning of each time period. In columns (6) and (7), the instrument is ΔRobots_Oth, constructed analougously to ΔRobots using industry-
level data on robot exports from non-US countries to eleven European countries. The regressions include state fixed effects, year fixed effects and the same
control variables as in Table 3.2, and are weighted by the initial share of each CZ in total US population. Standard errors, reported in square brackets, are
robust to heteroskedasticity in column (1), corrected for clustering within industries in columns (2) and (3), and corrected for clustering within states in
columns (4)−(7). ***, ** and * denote significance at the 1, 5 and 10% level, respectively.
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(2018) across 331 US Census occupations. The results are reported in column
(1) of Table 3.4. The coefficient on the replaceability dummy is positive and sta-
tistically significant, implying that replaceable occupations are more offshorable
than non-replaceable occupations, on average. Given that the offshorability
index is standardized with mean 0 and standard deviation 1, the coefficient
implies a sizable difference of 28% of a standard deviation between the average
offshorability of replaceable and non-replaceable occupations.

In untabulated regressions, we have assessed the robustness of this result using
two alternative offshorability indices, developed by Blinder (2009) and Blinder
and Krueger (2013), respectively. The Blinder (2009) indicator assigns each
occupation an offshorability degree based on the author’s subjective assessment
of how amenable tasks are to electronic delivery. The Blinder and Krueger
(2013) indicator quantifies the offshorability of an occupation based on informa-
tion from household surveys and professional coders’ assessment of the ease with
which tasks can be relocated abroad. Also in these cases, we found positive and
precisely estimated coefficients on the replaceability dummy, suggesting that the
positive correlation between replaceability and offshorability does not depend on
how we measure the latter characteristic.

These results imply that automation and offshoring affect similar occupations.
Accordingly, automation may act as a substitute for offshoring, allowing firms to
use robots in tasks that were previously performed abroad. We now provide
more direct evidence of this substitutability by studying the relationship
between robot imports and the two offshoring indicators across industries. To
this purpose, we regress changes in the offshoring indicators on changes in
log robot imports over five-year periods across industries. We control for indus-
try fixed effects to absorb industry-specific trends and for sector × year fixed
effects to soak up common shocks across sectors; the regressions are weighted
by industry employment at the beginning of each period. The results are
reported in columns (2) and (3) of Table 3.4. Regardless of the offshoring indi-
cator, the coefficient on robot imports is always negative and very precisely esti-
mated: industries experiencing a more rapid growth in robot imports also
exhibit a relatively larger reduction in offshoring. This finding is consistent
with robots substituting tasks that used to be performed abroad and suggests
that the rise of automation over the sample period has been associated with a
reshoring of activities to the US.

In the remaining columns of Table 3.4, we complement the previous results
with evidence across CZs. To this purpose, we estimate eq. (15) using
changes in the two offshoring indicators as the dependent variables.22 We
run these regressions using both OLS (columns 4 and 5) and 2SLS
(columns 6 and 7), to mitigate concerns with reverse causality and omitted
variables; in the latter case, we use ΔRobots_Othct as an instrument for ΔRo-
botsct. The coefficient on ΔRobotsct is always negative and highly statistically
significant. Consistent with the descriptive evidence emerging from Figure
3.5, firms have more intensively resorted to reshoring in CZs characterized
by stronger robot exposure.
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4.3 Robot Exposure, Offshoring and Employment

That robots and offshoring are substitutes for one another has potentially impor-
tant implications for the employment effects of automation. If robots induce
reshoring, their effects are likely to be heterogeneous both across occupations
and across CZs. First, automation may induce a relatively larger reduction in
domestic employment in occupations that are harder to offshore. The reason is
that, in offshorable occupations, automation should partly affect foreign employ-
ment and foster reshoring to the US. Second, automation may lead to a relatively
smaller reduction in domestic employment in CZs characterized by a higher off-
shoring intensity, as the scope for reshoring is relatively larger in these CZs. We
now revisit the average effects of robot exposure on employment in the light of
these considerations. In particular, we allow the effects to vary across jobs and in
space, and study whether this heterogeneity is consistent with the substitutability
between robots and offshoring documented before.

Our first exercise consists of unpacking the effects of robot exposure across
occupations with different characteristics. To this purpose, we decompose the
overall change in the employment-to-population ratio across mutually exclusive
groups of occupations, and then re-estimate eq. (15) using changes in group-
specific employment over population as the dependent variables. The results are
reported in Table 3.5. To begin with, in panel a, we divide occupations into
two groups and use OLS regressions to describe the central tendencies in the
data. Columns (1) and (2) show, as expected, that robot exposure is associated
with a significant fall in employment in replaceable occupations but no change
in non-replaceable occupations. More interestingly, columns (3) and (4) show
that robot exposure is uncorrelated with employment in offshorable jobs, but
strongly negatively correlated with employment in non-offshorable tasks.

In panel b, we examine this heterogeneity in greater detail by dividing occu-
pations into four mutually exclusive groups, which are obtained by combining
replaceability and offshorability. For instance, offshorable-replaceable occupa-
tions are those for which the replaceability dummy is equal to 1 and the offshor-
ability indicator is above the sample median; the other groups are defined
accordingly. The results show that the employment changes in non-replaceable
occupations are uncorrelated with robot exposure regardless of offshorability.
On the contrary, for replaceable occupations, employment changes are uncorre-
lated with robot exposure if these occupations are also offshorable but strongly
negatively correlated if they are non offshorable. The 2SLS regressions reported
at the bottom of the table confirm the qualitative pattern of results. Hence,
automation has heterogeneous effects across occupations depending on offshor-
ability: while offshorable occupations are largely sheltered from automation,
non-offshorable occupations whose tasks can be replaced by robots bear the
burden of the negative effects of automation.

Next, we turn to the second exercise and study whether the employment
effects of robot exposure vary across CZs depending on offshoring intensity.
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Table 3.5 Robot Exposure and Employment Across Occupation Groups

(1) (2) (3) (4)
Replaceable (GM, 2018) Non-Replaceable (GM, 2018) Offshorable (AD, 2013) Non-Offshorable (AD, 2013)

a) OLS

ΔRobots −0.010* 0.003 0.006 −0.013***
[0.005] [0.005] [0.005] [0.005]

Obs. 2157 2157 2157 2157
R2 0.19 0.17 0.30 0.46

Offshorable & Replaceable Offshorable & Non-Replaceable Non-Offshorable & Replaceable Non-Offshorable & Non-Replaceable

b) OLS
ΔRobots 0.001 0.005 −0.011** −0.002

[0.003] [0.005] [0.005] [0.004]
Obs. 2157 2157 2157 2157
R2 0.09 0.28 0.23 0.21

c) 2SLS, 2nd Stage

ΔRobots 0.018 −0.001 −0.033** 0.019
[0.012] [0.021] [0.014] [0.015]

Obs. 2157 2157 2157 2157
R2 0.06 0.28 0.21 0.19

Notes: All regressions are estimated on a panel of 722 CZs. The dependent variables are ten-year equivalent changes in employment (relative to population) in
mutually exclusive groups of occupations, as defined in the columns’ headings. Offshorable occupations are those for which the offshorability index developed
by Autor and Dorn (2013) is above the sample median. Replaceable occupations are those whose title corresponds to at least one of the robot application
categories identified by the International Federation of Robotics (Graetz and Michaels, 2018). Non-offshorable and non-replaceable occupations are
defined accordingly. ΔRobots is the weighted average of ten-year equivalent log changes in US robot imports across industries, with weights given by the indus-
trial structure of employment in each CZ at the beginning of each time period. The instrument is ΔRobots_Oth, constructed analogously to ΔRobots using
industry-level data on robot exports from non-US countries to eleven European countries. All regressions include state fixed effects, year fixed effects and
the same control variables as in Table 3.2, and are weighted by the initial share of each CZ in total US population. Standard errors, reported in square brackets,
are correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.
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Table 3.6 Robot Exposure, Offshoring and Employment, Broad Offshoring Indicator

(1) (2) (3) (4) (5) (6)

Δ Total Emp./
Pop.

Δ Mnfg Emp.
/Pop.

Δ Non Mnfg Emp./
Pop.

Δ Total Emp./
Pop.

Δ Mnfg Emp./
Pop.

Δ Non Mnfg Emp./
Pop.

a) Baseline b) No Machinery in Offshoring Indicator

ΔRobots −0.002 −0.037*** 0.035*** −0.003 −0.041*** 0.037***
[0.011] [0.012] [0.012] [0.012] [0.012] [0.012]

ΔRobots ×
B_Offsh

−0.057 0.330** −0.387** −0.032 0.377** −0.409**
[0.133] [0.157] [0.168] [0.141] [0.145] [0.158]

B_Offsh 0.067 −0 279*** 0.346*** 0.062 −0 245*** 0.307***
[0.067] [0.057] [0.072] [0.064] [0.049] [0.068]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.36 0.36 0.53 0.37 0.36

c) Additional Interactions of Robot Exposure d) Exposure to Other Types of Capital

ΔRobots −0.259 −0.035 −0.224 0.000 _0.047*** 0.047***
[0.160] [0.130] [0.150] [0.009] [0.012] [0.015]

ΔRobots ×
B_Offsh

−0.061 0 427*** _0.488*** −0.176 0.553*** −0.730***
[0.125] [0.114] [0.173] [0.145] [0.179] [0.227]

B_Offsh 0.019 −0 321*** 0 339*** −0.143 −0.400* 0.257
[0.061] [0.062] [0.081] [0.222] [0.218] [0.262]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.38 0.36 0.54 0.37 0.38

Notes: All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns’ headings, are ten-year equivalent changes in
overall employment-to-population ratio (columns 1 and 4), manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing
employment-to-population ratio (columns 3 and 6). ΔRobots is the weighted average of ten-year equivalent log changes in US robot imports across industries,
with weights given by the industrial structure of employment in each CZ at the beginning of each time period. B_Offsh is the weighted average of the start-of-
period broad offshoring indicator across industries, with weights given by the initial industrial structure of employment in each CZ. In panel b, the offshoring
indicator excludes imports of machinery made by each industry. All regressions are estimated with OLS; include state fixed effects, year fixed effects and the
same control variables as in Table 3.2, and are weighted by the initial share of each CZ in total US population. The regressions in panel c also include inter-
actions of ΔRobots with log employment and the employment shares of female workers, foreign-born workers, college graduates and routine-intensive occu-
pations at the beginning of each period. The regressions in panel d also include four variables measuring the exposure of each CZ to software, ICT, machinery
and other types of capital. These variables, which enter both linearly and interacted with B_Offsh, are constructed analogoulsy to ΔRobots using ten-year equiv-
alent log changes in expenditure on each type of capital across industries in place of log changes in US robot imports. Standard errors, reported in square
brackets, are correted for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.
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Table 3.7 Robot Exposure, Offshoring and Employment, Narrow Offshoring Indicator

(1) (2) (3) (4) (5) (6)

Δ Total Emp./
Pop.

Δ Mnfg Emp.
/Pop.

Δ Non Mnfg Emp./
Pop.

Δ Total Emp./
Pop.

Δ Mnfg Emp./
Pop.

Δ Non Mnfg Emp./
Pop.

a) Baseline b) No Machinery in Offshoring Indicator

ΔRobots −0.002 −0.023*** 0.021*** −0.002 −0.024*** 0.022***
[0.006] [0.007] [0.008] [0.007] [0.006] [0.008]

ΔRobots ×
N_Offsh

−0.162 0.322* −0.484** −0.139 0.349** −0.488**
[0.129] [0.167] [0.203] [0.134] [0.153] [0.192]

N_Offsh 0.099 −0 319*** 0.418*** 0.088 −0.335*** 0 423***
[0.079] [0.070] [0.090] [0.081] [0.064] [0.087]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.36 0.36 0.53 0.36 0.36

c) Additional Interactions of Robot Exposure d) Exposure to Other Types of Capital

ΔRobots −0.266* −0.038 −0.228 −0.007 −0.022*** 0.015*
[0.158] [0.122] [0.150] [0.005] [0.007] [0.008]

ΔRobots ×
N_Offsh

−0.169 0.389** −0.558** −0.303** 0.802*** −1.106***
[0.143] [0.146] [0.210] [0.134] [0.154] [0.192]

N_Offsh 0.040 −0.387*** 0.428*** −0.267 −0.535* 0.268
[0.081] [0.085] [0.106] [0.404] [0.272] [0.343]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.54 0.38 0.36 0.55 0.37 0.39

Notes: All regressions are estimated on a panel of 722 CZs. The dependent variables, indicated in the columns’ headings, are ten-year equivalent changes in
overall employment-to-population ratio (columns 1 and 4), manufacturing employment-to-population ratio (columns 2 and 5), and non-manufacturing
employment-to-population ratio (columns 3 and 6). Δ Robots is the weighted average of ten-year equivalent log changes in US robot imports across industries,
with weights given by the industrial structure of employment in each CZ at the beginning of each time period. N_Offsh is the weighted average of the start-of-
period narrow offshoring indicator across industries, with weights given by the initial industrial structure of employment in each CZ. In panel b, the offshoring
indicator excludes imports of machinery made by each industry. All regressions are estimated with OLS; include state fixed effects, year fixed effects and the
same control variables as in Table 3.2, and are weighted by the initial share of each CZ in total US population. The regressions in panel c also include inter-
actions of ΔRobots with log employment and the employment shares of female workers, foreign-born workers, college graduates and routine intensive occu-
pations at the beginning of each period. The regressions in panel d also include four variables measuring the exposure of each CZ to software, ICT, machinery
and other types of capital. These variables, which enter both linearly and interacted with N_Offsh, are constructed analogoulsy to ΔRobots using ten-year equiv-
alent log changes in expenditure on each type of capital across industries in place of log changes in US robot imports. Standard errors, reported in square
brackets, are corrected for clustering within states. ***, ** and * denote significance at the 1, 5 and 10% level, respectively.
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To do so, we augment eq. (15) with an interaction between ΔRobotsct and the
start-of-period level of either offshoring indicator, B_Offshct or N_Offshct.23 We
report results for the overall employment-to-population ratio and for its manu-
facturing and non-manufacturing components. Given the well-known difficulty
in instrumenting interaction terms, we focus on OLS regressions.

The results are reported in Table 3.6 for the broad offshoring indicator and in
Table 3.7 for the narrow measure. Strikingly, in the regression for manufacturing
employment, the coefficient on the interaction between robot exposure and off-
shoring is always positive and very precisely estimated. This confirms that auto-
mation reduces manufacturing employment relatively less in CZs that are initially
more reliant on offshoring. To quantify the extent of heterogeneity, we use the
estimated (linear and interaction) coefficients on ΔRobotsct along with the
observed distribution of offshoring across CZs in our data. This exercise
reveals that the employment effect of robot exposure is negative in the majority
of CZs; yet, for a small fraction of high offshoring-intensive CZs (the top 5% by
B_Offshct and the top 1% by N_Offshct), automation actually leads to an increase
in manufacturing employment. In the regression for non-manufacturing employ-
ment, the coefficient on the interaction between robot exposure and offshoring is
always negative and precisely estimated, consistent with the view that displaced
workers reallocate, at least partially, outside of the manufacturing sector.

In the remaining panels, we submit the baseline results to various robustness
checks. In panel b, we re-compute the offshoring indicators by excluding imports
of machinery made by each industry. This avoids the offshoring measures to be
contaminated by robot imports. In panel c, we augment the specification by
adding interactions of ΔRobotsct with all other start-of-period controls included
in Xct. This prevents our coefficients of interest from being influenced by differ-
ences in other CZ-level characteristics that could interact with automation.
Finally, in panel d, we extend the specification by including the four variables
measuring exposure to other types of capital, both linearly and interacted with
offshoring. This allays the concern that the baseline results could be driven by
the correlation between robot adoption and other forms of investment. In all
cases, the results confirm that offshoring plays an important role at mediating
the employment effects of automation across US local labor markets.

5 Conclusions

In this chapter, we have studied the effects of automation, measured by the adop-
tion of industrial robots, in the presence of offshoring. The literature has mostly
studied these phenomena in isolation. This is unfortunate, because what we have
shown is that offshoring can change the impact of automation in important ways.
In particular, when robots affect differentially domestically-produced and
foreign-sourced tasks, automation has terms-of-trade effects that redistribute
income across countries. This has important implications. While automation
replacing foreign workers is necessarily welfare-improving for the domestic

72 Alessandra Bonfiglioli et al. 72



economy, automation replacing domestically-produced tasks can lower the real
wage of domestic workers through a deterioration of the terms of trade.

These results underscore the importance of identifying which workers are in
more direct competition with robots and motivate the empirical analysis con-
ducted in the chapter. Using US data across industries, occupations and local
labor markets, we have studied the interaction between automation and offshor-
ing over the 1990–2015 period. Our results suggest that industrial robots dis-
place US workers from manufacturing industries, but that the effect is weaker
in CZs that are more exposed to offshoring. We also found that industrial
robots lower the incidence of offshoring and that their negative employment
effects are concentrated in occupations performing tasks that are classified as
non-offshorable. These results are consistent with the view that automation con-
tributes to the reshoring of economic activity, which in turn tends to mitigate
any adverse labor market effects for US workers.

We conclude by discussing some limitations and possible extensions of our
analysis. The empirical findings in this chapter are based entirely on US data.
However, we consider equally important to study the effect of US automation
on low-wage countries. Consistent with our results, some papers tend to find
negative effects on labor market outcomes in the developing world (see, for
instance, Faber, 2020, Artuc, Christiaensen and Winkler, 2019, Stemmler,
2019, Kugler et al. 2020). Yet, it would be desirable to combine data across
countries to directly identify the terms-of-trade effect of automation. We view
this as an interesting direction for future research.

From a normative perspective, the result that automation is likely to redistribute
income across countries implies that policy makers may have an incentive to
promote the adoption of technologies that lower the dependence on foreign
inputs. Such an effort can, however, lead to an inefficient equilibrium with
excessive automation and too little trade. In fact, we speculate that foreign compe-
tition may even be the trigger for the adoption of policies aiming at self-sufficiency.
Exploring this scenario and possible remedies goes beyond the scope of this paper
but seems another important and interesting avenue for future research.

Notes
We thank Philippe Aghion, Italo Colantone, Pascual Restrepo, Yu Zheng and
seminar participants at Warwick University, Paris Trade Seminars, ESSIM for useful
comments.

1 We define automation as the replacement of human labor with robots. Robots
are programmable machines that have the capability to move on at least three
axes. Unlike other pieces of equipment, robots are designed to replicate
human actions.

2 Although we study a static model, we follow the literature in referring to the
endogenous increase in the supply of robot as “capital deepening”. See, for
instance, Acemoglu and Restrepo (2021).
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3 To measure replaceability, we use the classification of occupations developed by
Graetz and Michaels (2018). To measure offshorability, we use the index
employed by Autor and Dorn (2013). The two indexes capture different dimen-
sions. For instance, replaceable occupations tend to perform manual and repeti-
tive works, while offshorable occupations do not require face-to-face interaction
and physical presence on the job.

4 The model builds on earlier formalizations of automation, such as Zeira (1998),
Acemoglu and Restrepo (2019) and Hemous and Olsen (2020); and offshoring,
such as Grossman and Rossi-Hansberg (2008), Rodriguez-Clare (2010) and
Acemoglu, Gancia and Zilibotti (2015).

5 For instance, they would still apply in a model where automation and offshoring
opportuinities are endogenous as in Acemoglu, Gancia and Zilibotti (2015),
Grossman and Rossi-Hansberg (2008) or Acemoglu and Restrepo (2018). See
Appendix A for more details on the relationship between the model in the text
and the task-based approach.

6 This result would change if the supply of robots were not perfectly elastic. In this
case, r would also increase with κ.

7 The Censuses and the ACS are 5% and 1% samples, respectively, of the US pop-
ulation and are representative at the level of micro-regions known as Public Use
Microdata Areas (PUMAs). We map PUMAs to CZs using a crosswalk developed
by Autor and Dorn (2013). We have also experimented with an extended sample
including ACS data for the year 2020. In this case, because the automation data
illustrated in the following are available up to the year 2018, we have used data
for 2018 to construct automation variables referring to the year 2020. Our main
results hold also in this extended sample (available upon request).

8 In particular, imports of industrial robots for multiple uses, lifting, handling,
loading or unloading and industrial robot parts are classified in the following
HTS codes: 8479899540, 8479500000, 8428900100, 8428908015,
8428900120, 8428900220, 8479909740 and 8479909540.

9 Specifically, we compute US robot imports in industry j and year t as Rob_Mjt =
ωjt.Rob_Mt, where Rob_Mt is the total value of US robot imports and !jt is the
share of industry j in total US imports of machinery in year t, constructed
from the US Import Matrices.

10 We construct λcjt using data from the County Business Patterns (CBP). In the
CBP, industries are defined according to the 6-digit level of the 2012 NAICS
classification. We map BEA industries into 6-digit NAICS industries using a
crosswalk provided with the US Input–Output Tables. In case of missing data
on robot imports for some years, we use data for the closest available year.
Robot imports are expressed at constant 2005 prices using the US Consumer
Price Index.

11 Consistent with this, our main results would continue to hold if robot exposure
was constructed using the log change in the IFR stock of robots in place of the
log change in robot imports in eq. (12).

12 The eleven European countries are Austria, Denmark, Finland, France, Germany,
Italy, Netherlands, Spain, Sweden, Switzerland and the UK. In the UN Com-
trade database, trade in industrial robots is recorded under code 847950 of the
Harmonized System classification.

13 Wright (2014) proposes a plausibly exogenous measure of offshoring, derived
using variation in US offshoring to China.

14 In case an index is missing for an occupation, we use information for the corre-
sponding broader occupational group.

15 See, among others, Acemoglu and Restrepo (2019) for additional evidence on the
growth in the usage of industrial robots in the US based on data from the IFR.
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16 The change in offshoring in a CZ is constructed as ΔB_Offshct = ∑jλcjt.ΔB_Offshjt,
where ΔB_Offshjt is the change in offshoring in industry j over period t. For each
CZ, Figure 3.5 shows the mean of ΔRobotsct (map a) and the mean of ΔB_Offshct
(map b) across all available time periods.

17 The proxies for the demographic composition of employment and the share of
routine-intensive occupations are constructed following Autor, Dorn and
Hanson (2013). Unless otherwise indicated, we control for offshoring intensity
using the broad offshoring indicator; the first period with available data on off-
shoring is 2000–2005. The proxies for export shocks and for shocks to import
competition from China and other countries are defined as changes in a given
variable divided by start-of-period employment in the CZ, and are constructed
as in Autor, Dorn and Hanson (2013) using trade data from Schott (2008).

18 These variables are constructed analogously to ΔRobotsct, by replacing
ΔlnRob_Mjt in eq. (12) with ten-year equivalent log changes in expenditure on
software and databases, ICT, machinery and other types of capital and machinery.

19 The proxy for robot exposure based on changes in the stock of robot imports
over a given period is constructed as ΔRobots_Stkct = ∑jλcjt∑τ E tln(1+ Rob_Mjτ),
where τ denotes individual years within time period t. The other two proxies
are constructed analogously to eq. (12).

20 We implement the correction for spatial clustering using the approach presented
in Conley (1999). We define the spatial cluster of a CZ as including all other CZs
within a range of 660 km or 768 km. These distances ensure that the spatial
cluster of the most remote CZ consists of at least 5 or 10 CZs, respectively.
The resulting clusters can overlap with each other and can span different states.
To define industry similarity, we instead use cluster analysis and group CZs
into 25, 50 or 100 groups characterized by a similar industrial structure, as
proxied by the industry shares in total CZ employment, λcjt. The standard
errors are then corrected for clustering within each group of CZs.

21 The Kleibergen-Paap F-statistic for excluded instruments easily exceeds the value
of 10, which is normally considered as the rule-of-thumb threshold for instru-
ment relevance.

22 In particular, the dependent variables are constructed as follows: ΔB_Offshct =
∑jλcjt.ΔB_Offshjt and ΔN_Offshct = ∑jλcjt.ΔN_Offshjt, where ΔB_Offshjt and
ΔN_Offshjt are changes in a given offshoring indicator in industry j over period t.

23 The control variables Xct already include the linear term of B_Offshct. When inter-
acting ΔRobotsct with N_Offshct, we use a linear term in N_Offshct in place of the
linear term in B_Offshct.
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Appendix A

A More General Model of Automation
and Offshoring

We consider now a more general case in which productivity varies across tasks
and factors, as in the models of offshoring and automation in Grossman and
Rossi-Hansberg (2008) and Acemoglu and Restrepo (2018). Tasks are allocated
to factors so as to minimize costs:

pi = min
ws

as;i

;
wn

an;i

;
r
ar;i

{ }
:

Using pi, we can then solve for output of each task:

xs;i = as;iLs

ms

xn;i = an;iLn

mn

xr;i = ar;iY
r

:

Using these quantities into (1), we obtain (6) where

ax - exp
{
iENx

lnax;i

mx

di
( )

is now endogenous and is equal to the average productivity over the tasksNx per-
formed by factor x E {s, n, r}. Equations (7) (8) and (9) are still valid.

In this model, a shock to automation is an increase in some ar,i. This can raise
mr (the extensive margin of automation), ar (the intensive margin of automa-
tion), or both. In turn, the change in mr and/or ar can affect the allocation of
tasks to the other factors too. Holding constant mr, an increase in ar benefits
all factors. This is the most benign form of automation, corresponding to
factor-augmenting technical change without any displacement. Holding cons-
tant ar, the effects of an increase in mr are those discussed Section 2.2. This is
the case in which automation displaces workers. The general model shows that
mr and ar may change simultaneously. The result that automation can lower
both the relative and the real wage of displaced workers still holds. This is
because the effect of displacement on wages is unchanged. However, the produc-
tivity effect may be weaker or stronger in the more general model.
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Table 3.B1 Robot Exposure and Employment, Additional Results and Robustness

(1) (2) (3) (4) (5) (6)

Δ Total Emp./Pop. Δ Mnfg Emp./Pop. ΔNon-Mnfg Emp./Pop. Δ Total Emp./Pop. Δ Mnfg Emp./Pop. ΔNon-Mnfg Emp./Pop.

a) Sample: 1990–2005 b) Sample: 2005–2015

ΔRobots −0.010 −0.012** 0.003 −0.013*** −0.019*** 0.006
[0.009] [0.005] [0.007] [0.005] [0.005] [0.006]

Obs. 1441 1441 1441 1438 1438 1438
R2 0.50 0.28 0.59 0.30 0.32 0.08

c) Placebo, Future Rob_Exp d) Excl. CZs in Top 1% of Rob_Exp

ΔRobots 0.001 −0.001 0.001 −0.004 −0.018*** 0.014**
[0.001] [0.001] [0.002] [0.005] [0.004] [0.006]

Obs. 3600 3600 3600 1937 1937 1937
R2 0.41 0.30 0.33 0.54 0.37 0.37

e) Exposure to Other Types of Capital f) Cumulative Stock of Robot Imports

ΔRobots −0.004 −0.016*** 0.012** −0.0002*** −0.0003*** 0.0001
[0.005] [0.005] [0.006] [0.0001] [0.0001] [0.0001]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.54 0.37 0.37 0.53 0.36 0.35

g) Net Robot Imports h) Industry Shares of Machinery Purchases

ΔRobots −0.005* −0.013*** 0.008** −0.005* −0.013*** 0.008**
[0.003] [0.003] [0.004] [0.003] [0.003] [0.004]

Obs. 2157 2157 2157 2157 2157 2157
R2 0.53 0.37 0.36 0.53 0.37 0.36

Notes: The table contains additional results and robustness checks on the OLS regressions reported in Table 3.2. All regressions are estimated on a panel of
722 CZs. The samples used in panels a and b cover two time periods: 1990–2000 and 2000-2005 in panel a; 2005–2010 and 2010–2015 in panel b. In panel
c, Δ Robots enters with a one-year lead. Panel d excludes CZs in the top percentile of the distribution of ΔRobots in each year. Panel e includes four variables
measuring the exposure of each CZ to software, ICT, machinery and other types of capital. In panel f, ΔRobots is constructed as the weighted average of
cumulative sums of log US robot imports across industries, with weights given by the industrial structure of employment in each CZ at the beginning of
each period. In panel g, ΔRobots is constructed using US net robot imports (imports minus export) rather than US robot imports. In panel h, ΔRobots is
constructed by apportioning US robot imports to individual industries using industry shares in total (domestic plus foreign) machinery purchases from the
US Input-Output Tables, rather than industry shares in machinery imports from the US Import Matrices. The specifications in panels a include state and
year fixed effects; the specifications in panels d-h also include the same control variables as in Table 3.2. All regressions are weighted by the initial share of
each CZ in total US population. Standard errors, reported in square brackets, are corrected for clustering within states. ***, ** and * denote significance
at the 1%, 5% and 10% levels, respectively.
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a) ¢ Mnfg Emp./Pop.

b) ¢ Non Mnfg Emp./Pop.
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Figure 3.B1 Robot Exposure and Employment: Alternative Corrections of Standard
Errors

Notes: The figure plots the OLS coefficients on ΔRobots obtained with the baseline specifications
reported in columns (5) and (6) of Table 3.2 (top and bottom graph, respectively), together with
90% confidence intervals corresponding to alternative ways of correcting the standard errors, as
indicated on the horizontal axis. The baseline confidence intervals refer to standard errors cor-
rected for clustering within states. The Conley (1999) confidence intervals refer to standard
errors corrected for residual correlation among CZs belonging to the same spatial cluster, as
defined by the reported cutoff distance. The last three confidence intervals are obtained by
first using cluster analysis to create 25, 50 or 100 groups of CZs with a similar industrial structure
of employment and then correcting the standard errors for clustering within each group.
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4 On the Employment
Consequences of Automation
and Offshoring
A Labor Market Sorting View

Ester Faia, Sébastien Laffitte, Maximilian Mayer,
and Gianmarco Ottaviano

1 Introduction

Automation and offshoring are two of the most debated global developments
with potentially disruptive effects on the labour market and momentous implica-
tions for workers’ employment opportunities and wages. Understanding their
effects, their relative importance and their possible interactions is, therefore, of
preeminent relevance and, as such, has attracted a lot of research.1

The existing literature highlights that, from a country’s point of view, auto-
mation and offshoring may affect employment opportunities and wages in two
main ways. On the one hand, automating or offshoring some tasks implies that
these tasks are not performed by the country’s workers any longer so that the
demand for their services falls. This is the negative “substitution effect”, which
may cause employment and wages to fall. On the other hand, reallocating tasks
from the country’s workers to automated systems or foreign workers may
promote production efficiency, which in turn expands production activities
with a beneficial impact on employment opportunities and wages. This is
the positive “productivity effect”, which may cause employment and wages
to rise.

In the case of automation, most studies stress capital-labour substitution.2

This is of primary importance and particularly relevant for automation related
to the adoption of robots and machines in production. It may affect different
workers differently. With “skill-biased technological change” (SBTC), new tech-
nology complements workers with high skills. With “routine-biased technologi-
cal change” (RBTC), new technology crowds out workers from traditional
routine tasks while creating additional jobs involving new complex tasks (see
e.g. Acemoglu and Restrepo, 2018b, for a detailed discussion).

Differently from these studies, the present paper investigates the possible exis-
tence of an additional negative effect of automation on workers’ employment
opportunities and wages. This effect is related to what has been called the
“paradox of automation” (Bainbridge, 1983). The idea is that, as automation
intensifies, the efficient completion of related tasks increasingly requires human
operators with specialized knowledge of automated systems involving specific
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algorithms, software and machines. Hence, according to the paradox, the more
advanced an automated system is, the more crucial the contribution of the spe-
cialized human operator may end up being.3 The associated growing demand for
specialized knowledge is conducive to a form of workers’ specialization that
increasingly matters above and beyond what would be needed by the vertical
skill content of tasks or their degree of routineness. In this respect, by fostering
tasks’ horizontal knowledge differentiation, automation also demands workers’
horizontal skill differentiation. We call this “core-biased technological change”
(CBTC), whereby new technology requires workers with specialized knowledge
(“core competencies”) independently of them being high or low skilled, or their
tasks being more or less routine intensive.

Our investigation of the possible consequences of CBTC for the labor market
emphasizes the challenges workers and firms face in matching the formers’ hor-
izontally differentiated skills with the latters’ horizontally differentiated tasks in
the presence of search frictions and rising match assortativity due to automation
(see Shimer and Smith, 2000). In a perfectly competitive labor market, more
assortativity would increase the surplus of all equilibrium matches as these take
place only between “ideal” partners, that is, between workers and firms with per-
fectly matched skills and tasks. In contrast, with search costs not all matches nec-
essarily involve ideal partners as some firms or workers may find it optimal to
accept less-than-ideal counterparts (“mismatch”) in order to avoid incurring
the opportunity cost of additional search. When the “paradox of automation”
is at work, as automation proceeds the surplus of ideal matches increases relative
to that of less-than-ideal matches, amplifying the losses from mismatch and
making both firms and workers more selective in choosing their partners. As
selectivity increases, firms and workers become more willing to spend time search-
ing for better matches. As a result, unemployment duration rises, mismatch falls
and specialized knowledge concentrates more on the tasks specifically requiring it.

One could argue that a similar mechanism may be relevant also for offshoring
if interpreted as another form of technological change.4 For example, the more
sophisticated a country’s global value chains are, the more crucial may be the
contribution of specialized knowledge by the country’s workers.5 Management
studies emphasize what they call “offshoring management capability” (Mihalache
and Mihalache, 2020). According to Mukherjee, Gaur and Datta (2013), coor-
dination capabilities (e.g. those leveraging IT coordination applications for
enterprise resource planning or customer-relationship management software)
are important for creating value through offshoring because geographically dis-
persed knowledge needs to be transferred and integrated. Manning, Massini
and Lewin (2008) argue that, to use science and engineering talent at globally
dispersed locations, firms need capabilities such as recruiting, developing, and
retaining talent, coordinating globally dispersed innovation activities, and collab-
orating with external partners. Mukherjee et al. (2019) stress the role of contract
negotiation skills, the ability to monitor and evaluate the performance of suppli-
ers, or the knowledge of alternative supplier arrangements and their cost
structure.
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Whether the “paradox of automation” is of any practical relevance, and
whether something similar applies also to offshoring is, first of all, an empirical
issue. We look for traces of the paradox at the sector-occupation level.6 We
focus on 92 occupations at the 3-digit ISCO-88 level and 16 (out of 21)
sectors according to the NACE Rev.2 classification. To make sure that our
results are not driven by specific countries or institutional contexts, our dataset
covers 13 European countries in the period 1995−2010. We analyze the
impact of automation and offshoring on “selectivity” as measured by skill con-
centration, unemployment duration and educational mismatch. To this end,
our dataset combines data on employment from the European Labour Force
Survey (EU-LFS) with occupation-level measures of “automatability” as in Ace-
moglu and Autor (2011) and “offshorability” as in Blinder and Krueger (2013).
We find that over the period of observation, sectors with higher initial automat-
ability experienced a differential increase in selectivity. By contrast, we find that
sectors with higher initial offshorability experienced a differential decrease in
selectivity.

We argue that these findings are consistent with the “paradox of automation”
and CBTC in the case of automation, while they are inconsistent with something
similar happening in the case of offshoring. We spell out our argument through a
growth model that, beyond productivity and substitution effects, features search
frictions in the labor market and two-sided heterogeneity of horizontally differ-
entiated skills and tasks. Workers and firms in our model are risk-neutral and
maximize lifetime discounted utility in continuous time. They meet through a
random matching process governed by a canonical constant return to scale func-
tion based on one-to-one relations with congestion externalities for each task
(see Mortensen and Pissarides, 1994). For analytical transparency, workers’
skills and firms’ tasks are assumed to be uniformly and symmetrically distributed
around a circle describing the space of their heterogeneous characteristics. Due
to search frictions, workers and firms do not match perfectly, but instead
search and optimally accept less-than-ideal matches in an interval around their
ideal ones. “Mismatch” is measured by the distance between matched skills
and tasks along the circle and negatively affects match surplus. We use a numer-
ical implementation based on specific functional forms to show that the empirical
patterns we have uncovered in the data can be reproduced by our model as long
as match surplus is assumed to be: (i) log-submodular in mismatch and automa-
tion, so that matches at shorter distance have a comparative advantage in exploit-
ing automation; (ii) log-supermodular in mismatch and offshoring, so that
matches at longer distance have a comparative advantage in exploiting offshor-
ing; (iii) log-supermodular in automation and offshoring so that, for given mis-
match, the impact of more automation on match surplus is amplified when there
is more offshoring. When these conditions are met, the model predicts that more
selectivity is associated with less employment as firms and workers are willing to
search longer for the ideal counterpart. It therefore implies that automation and
offshoring have opposite effects on employment due to their opposite effects
on selectivity. While automation reduces employment by raising selectivity,
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offshoring increases employment by reducing selectivity. The model also predicts
that more selectivity is associated with more wage inequality between ideal and
less-than-ideal matches as the surplus of the former increases relative to the
surplus of the latter.

The rest of the chapter is organized as follows. Section 2 offers some anecdotal
examples of the “paradox of automation” and discusses survey evidence on spe-
cialization trends in occupations. Section 3 introduces the dataset and describes
the empirical analysis. Section 4 presents the model, discusses the conditions on
assortativity needed to make it consistent with the empirical findings of Section
3, and studies its implications for employment and wage inequality under those
conditions. Section 5 concludes.

2 Ironies of Automation and Skill Specialization

The notion of “core-biased technological change” (CBTC) emphasizes the pos-
itive impact that new technologies may have on the horizontal assortativity of
skills and tasks. This notion speaks to what was termed the “paradox of automa-
tion” around forty years ago by cognitive psychologist Lisanne Bainbridge in a
still influential paper titled Ironies of Automation (Bainbridge, 1983). Bain-
bridge’s idea is that, as automation intensifies, the efficient completion by
humans of tasks related to the automated systems increasingly requires workers
with specialized knowledge of the specific systems. As a result, automation
raises the assortativity between workers’ specialized skills and firms’ specific tasks.

In her paper, Bainbridge notes that the classic aim of automation is to replace
human manual control, planning and problem solving by automatic devices and
computers. Yet, this may have ironic implications:

[T]he more advanced a control system is, so the more crucial may be the
contribution of the human operator [as] the designer who tries to eliminate
the operator still leaves the operator to do the tasks which the designer
cannot think how to automate. [In this respect, there] are two general cat-
egories of task left for an operator in an automated system. He may be
expected to monitor that the automatic system is operating correctly, and
if it is not he may be expected to call a more experienced operator or to
take over himself. To take over and stabilize the process requires manual
control skills, to diagnose the fault as a basis for shut down or recovery
requires cognitive skills.

When called to intervene, a more experienced operator may in turn face similar
challenges, only at a higher level. In any case, relevant experience requires
“special training”. A traditional example is the flight deck (Malquist and Rapo-
port, 2021):

More automation should mean more training. Today’s highly automated
planes create surprises pilots aren’t familiar with. The humans in the
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cockpit need to be better prepared for the machine’s quirks. [. . .] Modern
jet aircraft developed using classic methods lead to scenarios that wait for
the right combination of events. Unlike legacy aircraft built using only
basic electrical and mechanical components, the automation in these
modern jets uses a complex series of situations to “decide” how to
perform. [. . .] In the case of the [Boeing] MAX crashes, pilots found them-
selves in confusing situations, i.e., the automation worked perfectly, just not
as expected. [. . .] Although these challenges can often be “designed out”,
pilots can’t wait for planes that are better-designed. They need to be
trained now to understand that an aircraft’s response depends on the com-
puter “process model”.

The training needed can be extremely specific in terms of “core competencies”
(Aviation Voice, 2008):

[Boeing and Airbus] have very different philosophies about their aircraft.
[. . .] Boeing has a traditional control wheel, whereas Airbus has a highly
automated system and a side stick. According to Airbus, the absence of
the larger yoke ensures much more comfortable flying. It also allows oper-
ating the array of computers easier with more space and one free hand.
The competitor states that the yoke is an essential tool to handle emergen-
cies. It does not prevent a pilot from overriding the autopilot if necessary
and allows for better coordination between the pilot and co-pilot.

Training in aviation is so specific that generally pilots must be “type-rated”, that
is, they must be certified with additional training beyond the scope of the initial
license and aircraft class training, tailored to the aircraft type they are asked to fly
(Aviation Voice, 2008):

Pilots type-rated on both Airbus A320 and Boeing 737 say that it took a
while for them to get used to a fundamentally different way to operate an
aircraft.

The general point is that, if an automated system has an error, the system will
multiply the error until the error is fixed or the system is shut down. Fixing
the error or shutting down may require system-specific experience. Both fixing
the error or shutting down may require that a human takes control who
knows immediately and exactly what to do. As the knowledge required is very
specific, the human holding it is not readily replaced with another human
without appropriate system-specific experience. While the need of all this may
be tragically self-evident in the case of a flying aircraft, it may be very important
also in other less dramatic situations (Kaufmann, 2012):

Imagine a fully automated production line that makes computer processors
that sell for $200. All the human operators have to do is to push a button,

86 Ester Faia et al. 86



and the production system starts cranking out 2,400 finished products per
minute. [. . .] Imagine that a drill used to bore holes in the silicon wafer
becomes misaligned, and starts drilling microscopic holes through the
middle of the processor core. Every second the system keeps working, 40
chips are ruined. Assume each processor costs $20 in material costs—that
means the factory start losing $800 every second the error isn’t found.
Every minute the system keeps running, the company loses $48,000 in
raw materials. And that’s just the direct cost—if you take into account
that each processor would sell for $200, the company is losing $528,000
a minute: $48,000 in direct costs and $480,000 in opportunity cost. [. . .]
When an error happens, operators need to get involved quickly and flaw-
lessly—otherwise, the automated system will amplify the effects of the
error until it is fixed.

Having difficulty “finding the right skills or talent” or “filling jobs” is often
quoted as one of the main issues raised by employers. For example, the 2018
Talent Shortage Survey by Manpower Group (2018) highlights how talent
shortage has been increasing over time, leaving a growing number of jobs
unfilled all around the world.7 The shortage is strongly linked to technology,
but does not necessarily depend on a dearth of workers with higher education
(Manpower Group, 2018, p.6):

Most of the top ten in-demand roles today require post-secondary training
and not always a full university degree.[. . .] In the digital age, employment
will not always require a college degree, but will rely heavily on continual
skills development as even the most traditional roles are augmented with
new technology.

A wide range of jobs with different education and routine contents are affected
across sectors. Higher than average recruitment bottlenecks tend to be
reported in manufacturing, ICT and health care for jobs such as skilled
trades workers, machine operators, sales representatives, engineers, techni-
cians, ICT professionals, workers in marketing posts, drivers and office
support staff (Cedefop Eurofound, 2018).8 A concern for both firms and
workers is that retraining from a known to a different machine can be a
costly time-consuming process, making them cautious about potential mis-
match. This is consistent with evidence collected by Bartel, Ichniowski and
Shaw (2007) and Koren, Csillag and Köllo (2020), according to which
workers assigned to new machines or IT-enhanced capital equipment are
required to have “better” technical and problem-solving skills. These are
likely to be horizontally differentiated and acquired mostly through experience
as highlighted by Dauth et al. (2019).9 Black, Hasan and Koning (2020)
report survey evidence that the changing demand of skills has affected how
firms search for new hires, in particular through increased firm-driven search
for skilled workers.
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3 Empirical Evidence from Occupational Data

In this section, we look for evidence consistent with CBTC in occupational data.
In particular, we are interested in assessing whether and how more automation
and offshoring may lead to higher match selectivity, which we measure in
terms of longer unemployment duration, less mismatch, and more concentration
of specialized knowledge in specific tasks. While matched employer-employee
data with detailed information in skills and tasks would arguably be the most
natural setup for our investigation, occupational data have the advantage of
being available for several countries in a harmonized way, thus allowing us to
control for country-specific aspects.

3.1 Data and Variables

For our investigation we use occupational data on European countries extracted
from the European Labour Force Survey (hereafter EULFS). To include the
maximum number of available countries and keep a consistent classification of
occupations, we restrict our analysis to the years 1995−2010. This leads to a
sample of 13 countries with various labor market institutions and economic sit-
uations. The countries are: Austria, Belgium, Denmark, France, Germany,
Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, and the
United Kingdom.

We focus on 92 occupations at the 3-digit ISCO-88 level and 16 sectors
according to the NACE Rev.2 classification. To ensure the stability of the
sector definition across years, we group these 16 sectors into 11 sectors.10 We
aggregate worker-level observations into country × sector × occupation × year
cells. For each country, sector and occupation we have information on employ-
ment, number of employees, number of hours worked and number of unem-
ployed workers (see Appendix A for more details on the data).

We exploit long-differences between 1995 and 2010 assuming that automa-
tion and offshoring shocks materialize between these two dates as documented
in other studies.11 Henceforth, the long-difference of any variable Y between
1995 and 2010 will be simply denoted ΔY.

3.1.1 Measuring Automation and Offshorability

The EULFS is merged with data on occupations’ exposure to automation
(“automatability”) and to offshoring (“offshorability”). We use these variables
to infer actual automation and offshoring in the subsequent years, which we
do not observe. The underlying idea is that automation and offshoring are two
general long-run trends whose effects can be assessed in terms of the differential
exposure of different occupations to them.

To measure the “automatability” of an occupation we use its Routine Task
Intensity index (RTI) as computed by Acemoglu and Autor (2011), which has
been widely used in previous studies (see among many other Autor, Levy and
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Murnane, 2003; Autor and Dorn, 2013; Goos, Manning and Salomons, 2014).12

The RTI builds on information about the task content of occupations available
from the Occupational Information Network (ONET). We use a crosswalk
to go from the SOC 2000 classification used in ONET to the 4-digit ISCO-
88 classification before aggregating to the 3-digit ISCO-88 classification (see
Appendix A for additional details). Comparing our RTI measure with an alterna-
tive measure of automatibility constructed by Frey and Osbourne (2013) reveals
a large positive correlation between them with only few exceptions for specific
occupations.13

To measure the “offshorability” of an occupation we adopt the index devel-
oped by Blinder and Krueger (2013) (hereafter BK). This index builds on
questionnaires as well as qualitative observations, and it is constructed by
professional coders based on an occupational classification of workers. Offshor-
abilty is then reported on a 4-step qualitative scale from Highly Non-Offshorable
(1) to Highly Offshorable (4).14 A different measure is provided by Acemoglu
and Autor (2011), who instead build a quantitative index based on aggregating
several ONET indicators. While correlations between these different measures
are mostly positive (see Appendix A for additional details), we use the BK index
as our benchmark measure of offshorability as Goos, Manning, Salomons (2014)
find that this index is more reliable when compared with actual offshoring
measures.15

While both automation and offshoring may displace workers, it is important
to note that they are conceptually quite different. The likelihood of automa-
tion is linked to the routineness of a task, hence to the possibility that the task
can be performed algorithmically by a computer or a robot. By contrast, off-
shorability à la Blinder and Krueger (2013) refers to the ability to perform
one’s work duties, for the same employer and customers, in a foreign
country, even though the supply of the good or the service is still based in
the home country. Accordingly, while the correlation between our measures
of automatability and offshorability is positive, there are important exceptions
across occupations (see column 4 and 5 in Table 4.1 and Appendix A for a full
picture).

3.1.2 Measuring Selectivity

We proxy “selectivity” in terms of unemployment duration, mismatch and concen-
tration of specialized knowledge in specific tasks. We capture the last by the con-
centration of occupations’ employment across sectors. In the wake of Costinot and
Vogel (2010) the underlying idea is that, while a sector may cover a rich menu of
occupations, these include a submenu of “core” occupations that are dispropor-
tionately concentrated in the sector. While the change in concentration is likely
determined by many concurrent factors, more concentration triggered by
higher automatability or offshorability would still be consistent with the channel
of selectivity we are looking for. Specifically, let O = {o1; . . . ; o92} be the set of
occupations, K = {k1; . . . ; k11} be the set of sectors and I = {i1; . . . ; i13} be the
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set of countries in our sample. Consider occupation o E O in sector k E K of
country i E I with employment denoted by Loki. Our measure of occupation o’s
employment concentration across sectors k E K in country i is given by the Her-
findhal index

SSOoi =
E
kEK

LokiE
kEKLoki

( )2

; (1)

where SSO is a mnemonic for “sectoral selectivity of occupation”. Two remarks
on eq. (1) are in order. First, as each occupation is not present in every sector, a
key feature of SSO is that it is not standardized to account for the number of
sectors used in the estimation. To understand this point, assume, for instance,
that an occupation is equally observed in five different sectors in 1995, but
disappears from one of the sectors in 2010 with previous employment from
this sector evenly reallocated to the other four sectors. The distribution of
the occupation’s employment across sectors is, therefore, uniform both in
1995 and in 2010. A standardized Herfindahl index would be equal to zero
in both cases, implying that no change in selectivity would be detected
between 1995 and 2010 for this occupation. Second, high SSO implies that
few sectors account for a large share of the occupation’s employment. There-
fore, an increase in SSO corresponds to an increase in concentration and thus
more selectivity.

Our second measure of selectivity is based on the consideration that, if either
automation or offshoring make specialized skills more salient, then firms may be
willing to search longer for the right worker. We use unemployment duration as
a proxy for workers’ and firms’ willingness to wait. This is computed at the occu-
pation level by associating unemployed workers to their last occupation. Given
the small number of observations in any given cell, we use occupations defined
by the 2-digit ISCO classification. Moreover, when using this selectivity
measure, we have to exclude France and the Netherlands from the sample due
to data availability constraints.

Finally, our third measure of selectivity is based on the consideration that, if
either automation or offshoring make specialized skills more salient, then the
mismatch between workers’ skills and firms’ tasks should decrease. Therefore
we use educational mismatch as a proxy for the extent to which workers’ skills
in given occupations are aligned with the occupations’ task content. We consider
both over-education and under-education by comparing each worker’s years of
education with those of her or his peers in a given occupation, sector and
country at the time of observation. A worker is considered as over-educated
when the worker’s educational level is above the average of the worker’s 10-
year cohort by more than 2 standard deviations; vice versa, a worker is consid-
ered as under-educated when the worker’s educational level is below the
average of her or his 10-year cohort by more than 2 standard deviations (see
e.g. Hartog, 2000, for a similar definition). Also in this case, given the small
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number of observations in any given cell, we use occupations defined by the 2-
digit ISCO classification. However, poor data availability for educational vari-
ables restricts our analysis to the years from 1998 to 2010. We then gauge
changes in selectivity from changes in the shares of over- and under-educated
workers in each occupation × industry × country cell. The underlying idea is
that, if automation or offshoring makes firms more selective, we may observe
a fall in under-education and possibly a rise in over-education among matched
workers in more exposed sectors.

3.2 Descriptive Statistics

Table 4.1 presents descriptive statistics on the occupational characteristics aggre-
gated at the 2-digit level for clarity. Occupations are ranked from the least to the
most “automatable” (i.e. routine-intensive). Column 1 displays the percentage
point change in the share of hours worked between 1995 and 2010. Overall,
the change is smaller (or negative) for occupations that are more “automatable”.
Among the ten most automatable occupations only Customer Service Clerks (42)
and Sales and Services Elementary (91) do not exhibit a fall in the share of hours
worked. On the contrary, the share of hours worked in occupations with a low
routine content systematically increases. This illustrates the impact of routine-
biased technological change on employment trends. Column 2 reports the
change in unemployment. The ranking is less clear but the majority of low-RTI
occupations experienced a decrease or stability in their unemployment rate.

3.3 Automation, Offshoring and Employment

Figure 4.1 looks at the direct effects of automatability on employment and
its interplay with offshorability. We collapse observations to the occupation
level and divide the 92 occupations into two groups according to median
offshorability.16

Overall (dashed line), occupations with a low share of automatable tasks in
1995 experience an increase in total hours worked in subsequent years. Vice
versa, occupations with a high share of automatable tasks in 1995 experience a
decrease in total hours worked in subsequent years.

When considering the interaction with offshorability, a more nuanced pattern
emerges. While the negative relationship between automatability and employ-
ment is confirmed for highly offshorable occupations (solid black line), the
observed change in hours worked in occupations with low offshorability (solid
grey line) is unrelated to the automatability of their tasks.17

3.4 Automation, Offshoring and Selectivity

To assess whether selectivity has any role to play in explaining the relative
decrease in hours worked in occupations more exposed to automation and
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Table 4.1 Descriptive Statistics: Occupations

Occupations ranked by Automation Probability Δ Share of
Hours

Δ Unemployment
Rate

Routine Task
Intensity

Offshorability
(BK)

Rank
Offshorability

(1) (2) (3) (4) (5)

Corporate managers (12) 0.10 -0.03 -1.83 -0.19 10
Other professionals (24) 0.43 0.18 -1.71 0.09 11
General managers (13) 0.20 0.08 -1.60 -0.59 8
Physical, mathematical, and engineering

professionals (21)
0.40 -0.45 -1.33 0.96 17

Life science and health professionals (22) 0.02 -0.46 -1.23 -0.87 6
Life science and health associate professionals (32) 0.63 -0.01 -0.87 -0.83 7
Other associate professionals (34) 0.39 0.28 -0.78 0.48 13
Physical and engineering science associate profes-

sionals (31)
0.12 0.01 -0.05 0.61 15

Personal and protective service workers (51) 0.74 0.48 0.17 -0.94 4
Models, salespersons and demonstrators (52) -0.57 0.30 0.21 -0.95 1
Office clerks (41) -0.26 -0.33 0.27 1.56 19
Extraction and building trades workers (71) -0.43 0.30 0.32 -0.95 3
Metal, machinery and related trade workers (72) -0.66 -0.07 0.39 -0.56 9
Customer services clerks (42) 0.02 0.60 0.68 0.56 14
Sales and services elementary occupations (91) 0.46 0.32 0.95 -0.91 5
Laborers in mining. construction. manufacturing and

transport (93)
-0.10 0.08 1.02 0.43 12

Precision. handicraft. printing and related trades
workers (73)

-0.43 -0.63 1.03 1.86 20

Drivers and mobile-plant operators (83) -0.07 0.17 1.19 -0.95 2
Stationary-plant and related operators (81) -0.22 -0.01 1.19 2.31 21
Other craft and related trade workers (74) -1.52 -0.11 1.46 1.02 18
Machine operators and assemblers (82) -1.31 0.03 1.48 0.93 16

Occupations are ranked from least to most routine-intensive. Δ Share of Hours and Δ Unemployment Rate is the change in hours worked and the
unemployment rate between 1995 and 2010 respectively. Data is from the EULFS. Routine Task Intensity is taken from Acemoglu and Autor (2011)
and Offshorability from Blinder and Krueger (2013). Both are standardized to have a mean of 0 and a standard deviation of 1.
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offshoring documented in Figure 4.1, we estimate the following equation:

DYoki = b1RTIo + b2Offshoro + b3RTIo XOffshoro + Z '
okiC+ moi + Eoki: (2)

On the left hand side, the dependent variable ΔYoki corresponds to the long-term
change in selectivity as captured by our three measures. For SSO and unemploy-
ment duration, ΔYoki is the difference between 1995 and 2010, while for under-
education or over-education, ΔYoki is the difference between 1998 and 2010.
This is due to the limited availability of educational data before 1998 as
already mentioned. As SSO measures the concentration of occupation o across
sectors k, the sample is aggregated at the occupation×country level. On the
right hand side of (2), the explanatory variables RTIo and Offshoro are the
indices of automatability and offshorability respectively, while Zoi is a set of
control variables including the initial values of selectivity and of the employment
share of the cell. We also include occupation×country fixed effects (μoi) except
when the dependent variable is SSO, in which case we include country fixed
effects (μi). As the indices of automatability and offshorability are standardized
to have a mean of 0 and a standard deviation of 1, β1 can be interpreted as the
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Figure 4.1 The Impact of Routineness and Offshorability on Labour Hours
Notes: Figure 4.1 plots the change in hours worked from 1995 to 2010 against the occupational
rank of routineness. Data on employment is aggregated at the occupation level. Routineness of
the occupation is taken from Acemoglu and Autor (2011) and data on offshorability comes from
Blinder and Krueger (2013). Occupations belong to the low or high offshorability sample if they
are below or above the median offshorability. Occupations with below- (above-) median off-
shorability are displayed in grey dots (black dots) with the corresponding linear sample fit
plotted as the solid grey (black) line. The overall sample fit is plotted as a dashed line.

93 Consequences of Automation and Offshoring 93



effect of automatability when offshorability is equal to its average value. Analo-
gously, β2 can be interpreted as the effect of offshorability when automatability
is equal to its average value. Moreover, the effect of automatability when offshor-
ability is one standard deviation larger than the average is given by β1+β3. This is
also the effect of offshorability when automatability is one standard deviation
larger than the average. Unless specified otherwise, we comment on the effect
of a variable when the other is at its average value.

The corresponding estimates are reported in Table 4.2. In this table, column
1 reports the results for SSO. It shows that occupations with higher initial auto-
matability become more selective along the period when offshorability is at its
average value. The coefficient is, however, imprecisely estimated and its p-
value is slightly above the conventional levels of statistical significance. The
effect of offshoring when automatability is at its average value is, instead, pre-
cisely estimated and negative. Automation and offshoring have thus opposite
effects on the concentration of occupations across sectors. Though the trend
of increasing concentration may be driven by other factors, the pattern is in
line with an increase in selectivity for occupations more exposed to automation
and a decrease in selectivity for occupations more exposed to offshoring. More-
over, as the interaction term between RTIo and Offshoro is positive and signifi-
cant, the increase in concentration for occupations more exposed to automation
is more pronounced for those that are also more exposed to offshoring. For
instance, when offshorability is larger than its average value by one standard
deviation, the effect of automatability on SSO is almost twice as large and sig-
nificantly different from 0 (β1+ β3 = 0.16 with p−value = 0.016). Column 2
reports the results for unemployment duration. We observe that the occupa-
tions more exposed to automation experience a larger increase in unemploy-
ment duration when offshorability is at its average value. This effect is
reinforced for occupations that have higher degrees of offshorability. On the
contrary, the effect of offshorability on unemployment duration is negative
and imprecisely estimated. This effect becomes more negative as RTI decreases
(i.e. as automatability decreases). Finally, columns 3 and 4 report the results for
educational mismatch, looking at the shares of under- and over-educated
workers separately. Column 4 shows that under-education falls in more auto-
matable occupations and increases in more offshorable occupations. The inter-
action between automation and offshoring is negative, in line with the results in
columns 1 and 2. By contrast, in column 3 over-education reacts in the opposite
direction.

Overall, this empirical investigation reveals empirical patterns in line with
increased selectivity in occupations exposed to automation and decreased selec-
tivity in occupations exposed to offshoring. In particular, the patterns observed
for automation are in line with the automation paradox, first highlighted by
Bainbridge (1983) and discussed in Section 2. The empirical investigation also
reveals that the interaction with offshorability generally reinforces the selectivity
induced by automatability.18
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Table 4.2 Selectivity, Automation and Offshoring.

(1) (2) (3) (4)
Δln(SSO) Δln(Unemp. duration) ΔUnder ed. % ΔOver ed. %

RTI 0.0802 0.0413* -0.00439*** 0.00336***
(0.0506) (0.0244) (0.000685) (0.000756)

Offshor. -0.123** -0.0300 0.00274*** -0.00207**
(0.0525) (0.0328) (0.000836) (0.000923)

RTI × Offshor. 0.0792* 0.0558* -0.00236*** -0.00107
(0.0473) (0.0332) (0.000729) (0.000753)

Observations 1,063 905 1,915 1,915
R-squared 0.148 0.189 0.172 0.246
Fixed effects Country Country-Industry Country-Industry Country-Industry

The table reports coefficients of estimating (2). The dependent variable is our proxy for selectivity. Δln(SSO) is the log change of the Sectoral Selectivity of an
Occupation calculated as the Herfindahl index of occupational employment shares across industries in a country. In Column 1, the dataset is aggregated at the
country × occupation level. It is aggregated at the country × sector × occupation level in columns 2 to 4. RTI is routine-task intensity as in Acemoglu and
Autor (2011) and Offshor. measures the offshorability of an occupation as in Blinder and Krueger (2013). Standard errors in parentheses are clustered at the
occupation level in column 1 and at the country × occupation level in columns 2 to 4.*** p < 0.01, ** p < 0.05, * p < 0.1.
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4 A Search Model with Core-Biased Technological Change

In this section we rationalize the empirical findings of the previous section in
terms of a simple labor-market sorting model that explains how automation
and offshoring can affect match selectivity and employment as observed in the
data.

Following Becker (1973) and Shimer and Smith (2000), the model relies on
two key elements. The first is assortativity between firms’ tasks and workers’ skills
required to perform those tasks, which implies that there exist “ideal” pairings of
skill and tasks producing maximum match surplus.19 The second element is
search frictions, which implies that, as the ideal pairings cannot be immediately
located, firms and workers sort according to acceptance regions around their
ideal matches. The smaller the acceptance regions, the more selective workers
and firms are. More selectivity implies less mismatch between tasks and skills,
and more concentration of specialized knowledge in specific tasks. It also
implies longer unemployment duration as workers and firms are more willing
to forego less-than-ideal matches and wait for alternative future matches closer
to the ideal ones. The degree of selectivity depends on the differential surplus
of ideal matches with respect to less-than-ideal ones. In particular, anything
that increases the differential surplus raises selectivity. Vice versa, anything that
decreases the differential surplus reduces selectivity.

We show that calibrating the way automation and offshoring affect match
surplus allows the model to replicate the empirical patterns highlighted in the pre-
vious section. Specifically, increased selectivity in occupations exposed to automa-
tion and decreased selectivity in occupations exposed to offshoring require the
differential surplus of ideal matches with respect to less-than-ideal ones to be
raised by automation and reduced by offshoring. Moreover, the observation
that the interaction with offshorability generally reinforces the effect of automat-
ability requires the positive impact of automation on the differential surplus to be
enhanced by offshoring. As we will see, these requirements discipline the assorta-
tivity properties of the production process.

4.1 Matching, Search and Heterogeneity

There are two types of heterogeneous agents: workers and firms. Time is contin-
uous, and in each moment the timing of events is as follows. Firms with hetero-
geneous tasks decide whether or not to enter the labor market and randomly
meet one-to-one with workers with heterogeneous skills. After observing their
respective tasks or skills, each firm and the worker it has met decide whether
to match or not. If they decide to match, they bargain on the wage as a fraction
of the match surplus according to the Nash protocol. The steady state pure strat-
egy of each firm or worker is to decide which workers or firms to match with,
taking the strategies of all other firms and workers as given.

All agents are risk-neutral, infinitely lived and maximize the present value of
their future income streams, discounted by the common discount factor ρ.
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Income streams are determined by the match surplus generated by firms and
workers through production. Horizontal differentiation in workers’ skills and
firms’ tasks is introduced in terms of different addresses along a characteristics’
space represented by a unit circle. Along the unit circle, there is an exogenous
measure of domestic workers L > 0 with skills indexed x E [0, 1] clockwise
from noon (“skill address”). The distribution of skills across addresses is deter-
mined by a uniform p.d.f. gw(x). Given unit support, there are thus L workers
at each address. Likewise, there is a measure of firms with tasks indexed y E
[0, 1] clockwise from noon (“task address”). While the measure of workers L
is exogenously given, the measure of firms is endogenously determined by free
entry and exit. The distribution of tasks is also governed by a uniform p.d.f.
gf (y). Uniformity is assumed for simplicity as it will lead to the same equilibrium
outcome for all addresses.

When a worker with address x and a firm with address y are matched, they
produce joint surplus s(x, y, A, Ω). This surplus depends on the degree of auto-
mation A, the extent of offshoring Ω and the distance between the addresses of
skill x and task y:

d(x; y) = min x - y + 1; y - x[ ] (3)

where the min function selects the shorter arc distance of clockwise and counter-
clockwise travels between x and y along the unit circle. An “ideal”match happens
for x = y and thus implies d(x, y) = 0. We will focus on the symmetric pure strat-
egy steady state with the acceptance region given by the interval [−d*, d*] cen-
tered around the ideal match d = 0 for all x E [0, 1] and y E [0, 1].
Accordingly, we will leave the dependence of d on x and y implicit, and simply
use s(d, A, Ω) to denote the match surplus at distance d with degree of automa-
tion A and extent of offshoring Ω. As the acceptance interval has measure 2d*, we
will use 1/d* as the model’s index of “selectivity”.

All agents know their own type and the types of all potential partners they
meet. However, due to search frictions, domestic firms and workers are not nec-
essarily all paired in a productive match.20 Firms can be either producing (P) or
vacant (V). Workers can be either employed (E), or unemployed (U). By defini-
tion, the sum of employed and unemployed workers equals the labour force,
E +U = L, and we set L = 1 by choice of units. Hence, E + U = 1 holds both
in the aggregate and for each address.

Only vacant firms and unemployed workers engage in search. Meeting rates
are set according to a standard random search setup featuring Poisson distributed
meeting intervals. We adopt a linear matching technology described by a homo-
geneous-of-degree-one Cobb-Douglas matching function M(U, V) = WUξV1−ξ,
where W is matching efficiency, U is unemployment, V are vacancies and ξ E
(0, 1) is the elasticity of new matches to unemployment.21 In this setup the
Poisson arrival rate can be derived as a function of aggregate labor market tight-
ness V/U. We can then define qv = M(U, V)/V = W(U/V)ξ as the rate at which
vacant firms meet unemployed workers and qu = M(U, V)/U = W(V/U)1−ξ as the
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rate at which unemployed workers meet vacancies. Matches can be destroyed by
separation shocks, which we assume to happen with per-period probability δ E
(0, 1).

Firms face a cost c > 0 of maintaining a job either filled or vacant paid in units
of the final good. Match surplus is shared according to the Nash bargaining solu-
tion with worker bargaining weight α E (0, 1). We impose zero outside options
for both workers and firms by normalizing the unemployed workers’ and vacant
firms’ income to 0.22

The equilibrium of the model is determined as follows. To avoid cluttering the
notation, we leave the dependence of variables on automation and offshoring
implicit for now. A worker’s discounted value of being employed ve(d) equals
the current wage plus the option value of the potential future loss from unem-
ployment:

rve(d) = w(d) - d
(
ve(d) - vu

)
: (4)

Given that unemployed workers’ income is normalized to 0, a worker’s dis-
counted value of being unemployed vu equals the option value of the potential
future gain from employment:

rvu = 2qu

{ d*

0

(
ve(z) - vu

)
dz; (5)

which takes into account that an unemployed worker meets a vacancy at endog-
enous rate qu and converts the meeting into a job if the worker’s type falls in the
acceptance interval of measure 2d* centered at d = 0. The discounted value of a
filled vacancy vp(d) equals what is left of the match surplus after the wage w(d)
and the maintenance cost c have been paid plus the option value of the potential
future loss from exogenous separation at rate δ:

rvp(d) =
(
s(d) - w(d) - c

)
- d vp(d) - vv
( )

(6)

The value of an unfilled vacancy vv satisfies

rvv = -c + 2qv

{ d*

0

vp(z) - vv
( )

dz; (7)

where the right-hand side corresponds to the option value of filling the vacancy
at endogenous rate qv in the future net of the maintenance cost c.

The set of equilibrium conditions is then completed by the Nash bargaining
rule

1- α( )
(
ve(d) - vu

)
= α vp(d) - vv

( )
(8)

together with the free entry condition for the value of a vacancy (vv = 0), the zero
cutoff value condition for a filled vacancy associated with maximum mismatch d*
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(vp(d*) = 0), and the steady state flow condition for employment

qu =
dE

2d* 1- E( ) : (9)

The last condition requires job destruction δE to be exactly offset by job creation
2qud*(1 − E) as an unemployed worker meets a vacancy at rate qu and matches
with the corresponding firm at a rate given by the ratio between the measures
of the acceptance interval (equal to 2d*) and of the characteristic space (equal
to 1).

Using the free entry and zero cutoff conditions, the set of equilibrium condi-
tions can be reduced to a system of the two equations,

1- α( ) 2W
1

1- x qu( )- x
1-x

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

{ d*

0

s(z)dz = c (10)

and

1- α( ) d+ r+ 2W
1

1- x qu( )- x
1-x

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

s(d*) = c; (11)

in employment E and maximum mismatch d* with match surplus s(d) and
meeting rate qu given by (9).23 Solving this system gives the equilibrium
values of E and d*, which can then be used to evaluate the equilibrium wage
of domestic workers as follows:

w(d) = α d+ r+ 2qu( )
d+ r+ 2 1- α( )W

1

1- x qu( )- x
1-x + 2αqu

s(d): (12)

4.2 Automation, Offshoring and Assortativity

Having laid out the search model with two-sided heterogeneity, we can now
discuss how assortativity should be affected by automation and offshoring for
the model’s predictions to be consistent with the empirical patterns discussed
in Section 2 and highlighted in Section 3. To this aim we make the dependence
of match surplus s(d) on automation and offshoring explicit by rewriting it as
s(d, A, Ω).

There are three requirements that the model’s predictions should fullfill in
order to be in line with the empirical patterns. First, the differential surplus of
ideal matches with respect to less-than-ideal ones should be increased by automa-
tion. Second, the differential surplus should be decreased by offshoring. Third
and last, the positive impact of automation on the differential surplus should
be reinforced by offshoring.

The first requirement is fullfilled by the model’s predictions if match surplus
s(d, A, Ω) is log-submodular in d and A. Analogously, the second requirement
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is fulfilled if match surplus s(d, A, Ω) is log-supermodular in d and Ω. In words,
better matches (i.e. matches at smaller distance d) have a comparative advantage
in exploiting automation, whereas worse matches (i.e. matches at longer distance
d) have a comparative advantage in exploiting offshoring. The third and last
requirement is met if match surplus s(d, A, Ω) is log-supermodular in A and
Ω. In words, matches with a higher degree of automation have a comparative
advantage in exploiting offshoring, and vice versa matches with a larger extent
of offshoring have a comparative advantage in exploiting automation. Note
that log-submodularity in A and d implies that, as automation proceeds (larger
A), workers and firms attribute increasingly higher value to ideal matches relative
to less-than-ideal ones. This is what we call “core-biased technological change”
(CBTC).

We show that these assumptions on log-modularity allow the model to repro-
duce the observed empirical patterns through a numerical implementation based
on a specific microfounded functional form for match surplus s(d, A, Ω).

4.3 A Simple Numerical Example

Assume that production by matched worker x and firm y takes place according to
a constant return to scale Cobb-Douglas production function employing capital
and labor as inputs with total factor productivity B > 0 and capital share β E (0, 1).
Output is sold in a perfectly competitive product market at a given price normal-
ized to unity. The worker’s productivity is determined by match distance d(x, y),
the degree of automation A and the extent of offshoring Ω. Leaving again the
dependence of d on x and y implicit, we use L(d, A, Ω) to denote such produc-
tivity, which corresponds also to the worker’s efficiency units of labor as the
worker is assumed to supply one unit of labor inelastically. The corresponding
capital services can be rented in a perfectly competitive capital market at rental
rate ρ > 0. Match surplus is then obtained by subtracting capital services from pro-
duction. Given perfect competition, capital services are related to L(d, A, Ω) by
the firm’s profit maximizing condition that the value of the marginal productivity
of capital equals its rental rate. As a result, match surplus evaluates to:

s(d;A;O) = FB
1

1- bL(d;A;O); (13)

with bundling parameter F - 1- b( ) b=r( ) b
1-b.

Each task consists of subtasks that are differentiated over a two-dimensional
continuum in terms of their “automatability” and “offshorability”, inversely mea-
sured by indices a E [0, 1] and ω E [0, 1] respectively. The two-dimensional rep-
resentation captures the fact that automatability and offshorability are
conceptually and empirically quite different as highlighted in Section 3.1.1.
The worker’s productivity in performing a subtask with automatability a and
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offshorability ω is given by:

l(d; a;o) = Fao- 1

2
gaa + goo( )d; (14)

with F > 0. According to (14), in the absence of mismatch (d = 0), the worker is
more productive in subtasks with low automatability (large a) and low offshorabil-
ity (large ω). Crucially, in the presence of mismatch (d > 0), for given d, automat-
ability and offshorability affect the mismatch penalty γaa+ γωω, where γa and γω are
fixed parameters whose signs will play a crucial role in what follows.

The firm first decides which subtasks to automate or offshore; it then looks for
a worker whom to assign the remaining tasks to. Given (14), the firm has a stron-
ger incentive to automate subtasks with low a and to offshore subtasks with low
ω. Hence, if there are costs of automation and offshoring and these are an
increasing function of the measure (“number”) of subtasks that are automated
and offshored, there will exist thresholds of automatability A E [0, 1] and off-
shoring Ω E [0, 1] such that subtasks (a, ω) with a E [0, A] are automated, sub-
tasks with ω E [0, Ω] are offshored, and subtasks with a E [0, A] and ω E [0, Ω]
are both automated and offshored. For the remaining tasks with a E [A, 1] and ω
E [Ω, 1] the firm searches for a worker.24

The productivity of a matched worker with skill at distance d from the firm’s
task can then be evaluated by integrating (14) with respect to a and ω with a E
[A, 1] and ω E [Ω, 1] to obtain:

L(d;A;O) = 1-A( ) 1- O( )
1

4
F 1+A( ) 1+ O( ) - 1

4
ga 1+A( ) + go 1+ O( )[ ]d

{ }
;

(15)

where the term (1−A)(1−Ω) outside the curly brackets is the measure
(“number”) of subtasks performed by the worker as they are neither automated
nor offshored (“extensive margin”), while the term inside the curly brackets is
the worker’s average productivity across these subtasks (“intensive margin”).
When more subtasks are automated (larger A) or offshored (large Ω), there
are three effects on the matched worker’s productivity (15). First, the extensive
margin shrinks as the worker is assigned fewer subtasks. This is the “substitution
effect”. Second, the productivity of the ideal match (d = 0) increases as the
matched worker can specialize in subtasks with higher a or higher ω in which
the worker is more productive. This is the “productivity effect”. Third, the pro-
ductivity of less-than-ideal matches (d > 0) increases or decreases relative to the
ideal match (d = 0) depending on the signs of γa and γω. This is the “mismatch
penalty effect”.

The sign of the mismatch penalty effect is determined by the assumptions
on the log-modularity of labor productivity L(d, A, Ω) and thus of match
surplus s(d, A, Ω), given that by (13) the latter inherits the log-modularity
properties of the former. In particular, L(d, A, Ω)—and thus s(d, A, Ω)—is
log-submodular in A and d if and only if, for all d '

> d and A'
> A, we have
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s(d '
, A'

)/s(d, A'
)<s(d '

, A)/s(d, A), which is the case for γω < 0. Analogously,
L(d, A, Ω)—and thus s(d, A, Ω)—is log-supermodular in Ω and d if and only
if, for all d '

> d and Ω
'
> Ω, we have s(d '

, Ω
'
)/s(d, Ω'

)>s(d '
, Ω)/s(d, Ω), which

is the case for γa > 0. Moreover, for γω < 0 and γa > 0, L(d, A, Ω)—and thus
s(d, A, Ω)—is also log-supermodular in A and Ω.

Figures 4.2, 4.3 and 4.4 provide graphical representations of the effects of
automation and offshoring on the theoretical correlates of our three measures
of selectivity. Parameter values are drawn from the literature except for those
of the mismatch penalty parameters and productivity of the optimal match,
which we treat as free parameters chosen in order to deliver empirically relevant
equilibrium rates of unemployment between around 2% and 7%.25 The concen-
tration of occupations’ employment across sectors is proxied in the model by the
Herfindahl index of concentration of skills’s employment (in efficiency units)
across tasks in the acceptance interval:

H = 1

2

{ d*

0

L(z;A;O)[ ]2dz
{ d*

0

L(z;A;O)dz
[ ]2 :

Unemployment duration is computed as the inverse of the rate qu at which
unemployed workers meet vacancies. Mismatch is measured by the length d*

of (half) the acceptance interval. Figures 4.2, 4.3 and 4.4 then show that, for
the chosen parameter values, selectivity is an increasing function of automation
(left panels) and a decreasing function of offshoring (right panels), no matter
whether we measure selectivity in terms of employment concentration,
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Figure 4.2 Employment Concentration. This figure plots simulated employment
concentration over a range of automation A on the x-axis for Ω = 0.05
(dashed) and Ω = 0.2 (solid) in the left panel and over a range of
offshoring Ω on the x-axis for A = 0.05 (dashed) and A = 0.2 (solid)
in the right panel. Simulations are based on the system of equations
(10)–(11) and parameters as specified in Table 4.C1.
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unemployment duration and mismatch. They confirm that our model is able to
qualitatively reproduce the empirical patterns we uncovered in the data.26

The parametrized model can then be used to investigate how automation and
offshoring may affect workers’ employment opportunities and wages, which we
do not observe in the data. The results of this investigation, corresponding to
the effects on selectivity reported in the previous figures, are shown in Figure
4.5 for employment and Figure 4.6 for wages. Figure 4.5 shows that, for the
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Figure 4.4 Mismatch. This figure plots simulated mismatch d* over a range of automation
A on the x-axis for Ω = 0.05 (dashed) and Ω = 0.2 (solid) in the left panel
and over a range of offshoring Ω on the x-axis for A = 0.05 (dashed) and
A = 0.2 (solid) in the right panel. Simulations are based on the system of
equations (10)–(11) and parameters as specified in Table 4.C1.
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Figure 4.3 Unemployment Duration. This figure plots simulated unemployment
duration over a range of automation A on the x-axis for Ω = 0.05
(dashed) and Ω = 0.2 (solid) in the left panel and over a range of
offshoring on the x-axis for A = 0.05 (dashed) and A = 0.2 (solid) in the
right panel. Simulations are based on the system of equations (10)–(11)
and parameters as specified in Table 4.C1.

103 Consequences of Automation and Offshoring 103



chosen parameter values, equilibrium employment E is a decreasing function of
automation A (left panel) and an increasing function of offshoring (right panel).
As for interactions, the figure reveals that employment is log-supermodular in
automation and offshoring: the negative impact of automation on employment
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Figure 4.5 Employment. This figure plots simulated employment rates over a range
of automation A on the x-axis for Ω = 0.05 (dashed) and Ω = 0.2 (solid) in
the left panel and over a range of offshoring Ω on the x-axis for A = 0.05
(dashed) and A = 0.2 (solid) in the right panel. Simulations are based
on the system of equations (10)–(11) and parameters as specified in
Table 4.C1.
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Figure 4.6 Relative Wages of Best vs. Worst Match. This figure plots of the wages of
the best possible match (d = 0) relative to the worst possible match (d = d*)
over a range of automation A on the x-axis for Ω = 0.05 (dashed) and Ω =
0.2 (solid) in the left panel and over a range of offshoring Ω on the x-axis
forA = 0.05 (dashed) andA = 0.2 (solid) in the right panel. Simulations are
based on the system of equations (10)–(11) with wages computed as in
(12) and parameters as specified in Table 4.C1.
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is stronger when there is more offshoring.27 Figure 4.6 shows that automation
increases wage inequality between the best (d = 0) and worst (d = d*)
matches, especially when there is more offshoring.28

To summarize, for standard parameter values drawn from the literature, if
better matches between firms and workers have a comparative advantage in
exploiting automation, our model reproduces the observed effects of automation
and offshoring on our three measures of selectivity. The model then implies that
automation reduces employment by increasing workers’ and firms’ selectivity. If
worse matches between firms and workers have a comparative advantage in
exploiting offshoring, it also predicts that offshoring raises employment by
decreasing workers’ and firms’ selectivity. Lastly, if matches with a higher
degree of automation have a comparative advantage in exploiting offshoring,
the model predicts that offshorability reinforces the impact of automation.
These predictions are consistent with the automation paradox discussed in
Section 2 and what we called “core biased technological change”.

5 Conclusion

Automation and offshoring may affect a country’s workers employment opportu-
nities and wages in two main ways. As some tasks are automated or offshored,
these tasks are not performed by the country’s workers any longer and the
demand for their services falls. This is the negative “substitution effect”, which
leads to reduced employment opportunities and wages. Nonetheless, reallocating
tasks from the country’s workers to automated systems or foreign workers may
also promote production efficiency, which in turn allows production activities to
expand with a beneficial impact on employment opportunities and wages. This is
the positive “productivity effect”, which may cause employment and wages to rise.

With regard to the substitution effect, existing studies mainly focus on the
impact of automation on capital-labor substitution, which is particularly relevant
for the adoption of robots and machines in production. They have highlighted
that different workers are affected differently depending on their education
(“skill-biased technological change”) or the routineness of their tasks
(“routine-biased technological change”).

In the present chapter we have investigated the possible existence of an addi-
tional negative effect of automation on workers’ employment opportunities and
wages. As automation intensifies, specialized knowledge (“core competencies”)
becomes increasingly salient above and beyond what would be needed by the
education content of tasks or their degree of routineness. As a result, workers
and firms become more selective in matching their specialized skills and
tasks. We have called this aspect of automation “core-biased technological
change” (CBTC), and argued that something similar could be relevant also
for offshoring: the more sophisticated a country’s global value chains are, the
more crucial may be the contribution of specialized knowledge by the country’s
workers.
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We have looked for evidence consistent with CBTC in occupational data for
European industries. We have found that automation reduces employment
opportunities. More interestingly for the purposes of our analysis, automation
also increases workers’ and firms’ selectivity as captured by longer unemployment
duration, less skill-task mismatch, and more concentration of specialized knowl-
edge in specific tasks. This does not happen in the case of offshoring, though off-
shoring reinforces the effects of automation.

We have shown that a labor market model with two-sided heterogeneity and
search frictions can rationalize our empirical findings as long as one is willing to
assume that better matches between firms and workers have a comparative advan-
tage in exploiting automation, worse matches between firms and workers have a
comparative advantage in exploiting offshoring, and matches with a higher
degree of automation have a comparative advantage in exploiting offshoring.
Directly testing these properties has not been possible with the occupational
data used in this chapter, and we leave it to future research exploiting matched
employer-employee data with detailed information in skills and tasks.
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A Data Description

We use the annual files of the European Labour Force Survey (EULFS) made
available by Eurostat. This survey combines labour force surveys conducted at
the national level in European countries. It has the advantage to provide harmo-
nized information on basic labour markets variables. Our final database corre-
sponds to country × industry × occupation × year cells. The information on the
sector is based on the broad NACE sectors (21 sectors in the NACE Rev.2 clas-
sification) and the information on the occupation is based on the 3-digits ISCO-
88 classification. The EULFS is used to derive the number of employed and
unemployed workers in each cell by collapsing individual observations using
the provided weighting coefficients. We also use the EULFS to compute the
unemployment duration in each cell.

Construction of the variables We keep the employed people as defined by
the ILO criteria and derived by Eurostat. It is less common to compute unem-
ployment at the sector × occupation level since workers can be mobile across
sectors and occupations. We define unemployment in a given sector and a
given occupation as the number of unemployed people who had this precise
occupation in this precise sector. This measure corresponds to the true and
unobservable unemployment rate at the sector × occupation level if workers do
not move across sectors and occupations.

Dataset selectionWe restrict our dataset to the 13 following countries: Austria,
Belgium, Germany, Denmark, Spain, France, United Kingdom, Greece, Ireland,
Italy, Luxembourg, Netherlands and Portugal. This group of countries corre-
sponds to all countries that provided data at least from 1995. It is important to
note that France and the Netherlands do not provide enough information to
compute the unemployment rate at the cell level. Following Goos, Manning
and Salomons (2014), we also drop the following industries: Agriculture, For-
estry, Fishing (A); Mining and Quarrying (B), Public Administration and
Defence and Compulsory Social security (O); Education (P) and Extra-territorial
organizations and bodies (U). These sectors corresponds to public sectors and
agricultural sectors. They account for 26% of all jobs in our sample. The following
occupations, closely associated to the sectors deleted are also dropped from the
sample: Legislators and senior officials (ISCO-88: 11); teaching professionals
(ISCO-88: 23); teaching associate professionals (ISCO-88: 33); market-oriented
skilled agricultural and fishery workers (ISCO-88: 61); agricultural, fishery and
related labourers (ISCO-88: 92).29 Finally, our data contains information, virtu-
ally complete, at the cell level for 92 occupations, in 16 sectors.

Table 4.A1 sums up the coverage of our database relative to official statistics.
According to official Eurostat statistics, we cover around 70% of the employment
in each country, except for Luxembourg for which we only cover 58.5% of the
employment. This is due to the fact that Luxembourg is a small country with
a large institutional sector driven by the presence of some European institutions.
Our coverage of unemployment is a bit less precise, going from 36.2% of official
unemployment numbers in Italy to 69.6% in Denmark. This is principally due to
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the lack of precise reporting of the last job for unemployed people and to
dropped industries. Especially the coverage is very low for Portugal in 1995
(around 10%).

The time frame of our analysis corresponds to 1995–2010 in order to include
the maximum number of countries. Our analysis stops in 2010 because after this
date, a change in the occupation classification (ISCO-88 to ISCO-08) prevents
us from accurately representing changes in the time series.

A.1 Offshorability

Three different measures of offshorability are proposed in the literature: by Blinder
(2009), by Blinder and Krueger (2013, hereafter BK) and by Acemoglu and Autor
(2011, hereafter AA). In the first two cases, the authors propose a qualitative scale
of offshorability, ranking occupations from “Highly Non-Offshorable” (1) to
“Highly Offshorable” (4) following Blinder (2009). Blinder then proposes a qual-
itative ranking of occupations according to their degree of offshorability. BK only
provide 4 categories. AA propose a quantitative index of offshorability based on
ONET. 30 Their measure aggregates several ONET indicators: Face to face discus-
sions, Assisting and Caring for Others, Performing for or Working Directly with
the Public, Inspecting Equipment, Structures, or Material, Handling and Moving
Objects, 0.5*Repairing and Maintaining Mechanical Equipment, 0.5*Repairing
and Maintaining Electronic Equipment.

While Blinder and BK measures are based on questionnaires and qualitative
observations about offshorability; the AA measure is not. The two types of mea-
sures are likely to diverge for some occupations. In Table 4.A2, we compute the
correlation coefficient between these measures. The correlation between Blinder
and BK indices is large while for both indices the correlation with the AA
measure is quite low.

Table 4.A1 Database Coverage (in % of official Eurostat figures)

Country # of employees # of unemployed workers

Austria 70.9% 56.1%
Belgium 70.5% 51.5%
Germany 75.4% 62.3%
Denmark 73.3% 69.6%
Spain 70.5% 61.1%
France 69.1% -

United Kingdom 74.2% 59.8%
Greece 61.1% 42.3%
Ireland 66.5% 51.1%
Italy 71.8% 36.2%

Luxembourg 58.5% 44.0%
Netherlands 68.0% -
Portugal 69.8% 38.6%
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For instance, Models, Salespersons and Demonstrators (code 52) is an occu-
pation classified among the five most offshorable occupations according to the
AA index while it is ranked as Highly Non-Offshorable by Blinder (2009).
Teaching professionals (code 23) are also in the same situation. On the contrary,
Machine operators and assemblers (code 82) are ranked as offshorable in Blinder
(2009) while being ranked as a low offshorability activity by the AA index.

In their data appendix Goos, Manning and Salomons (2014) compare differ-
ent offshorability index with actual offshorability measures. Blinder/BK types of
measures seem more reliable. We consider these two measures as our preferred
ones, using the BK index in our baseline regressions.

A.2 Automatability

We proxy the probability of future automation of an occupation using the RTI
measure constructed by Autor and Dorn (2009). This measure correlates with
the one provided by Frey and Osbourne (2013). Using the files by Acemoglu
and Autor (2011) and the definition of the RTI by Lewandowski et al. (2017)
we compute the RTI index based on DOT data.31 The measure of the RTI is
standardized in order to have a mean of zero and a standard error of one. We
use a crosswalk to go from SOC 2000 classification to 4-digit ISCO-88 classifi-
cation and then aggregate it to the 3-digit ISCO-88 classification. At this level
the correlation between the RTI (“routineness”) and measure by Frey and
Osborne (“probability of automation”) is 0.77 (see Figure 4.A1). However,
the two variables diverge for some occupations.

To assess the evolution of routine jobs across countries and industries, Dao et
al. (2017) also use an index of “routineness” fixed for the nine 1-digit ISCO-88
occupations. They then assume that the partition of jobs within 1-digit ISCO
occupations is fixed among countries, industries and time. We relax this assump-
tion by only assuming that the RTI of a 3-digit ISCO occupation is fixed. This
way we are able to observe the evolution in the automatability by country, indus-
try and occupation.

A.3 Relation Between Offshorability and Automatability

In this subsection we document that automatability and offshorability are not
trivially correlated. First, conceptually the two concepts are different. Offshor-
ability is defined as “the ability to perform one’s work duties (for the same

Table 4.A2 Correlation Table between Offshorability Measures

AA (2011) Blinder (2009) BK (2013)

Acemoglu-Autor (2011) 1 –
Blinder (2009) 0.34 1 –
Blinder-Krueger (2013) 0.25 0.94 1
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employer and customers) in a foreign country but still supply the good or service
to the home market” (Blinder and Krueger, 2009) while the automatability is
more strictly linked to the routineness of a task, its possibility to be solved algo-
rithmically, etc. Figure 4.A2 documents the correlation between the two variables.
There is a global positive correlation, but the figure also highlights the diversity of
RTI/offshorability combinations. Especially some occupations are both offshor-
able and routine-intensive (42: Customer service clerks; 73: Precision, handicraft,
printing and related trades workers; 74: Other craft and related trade workers; 81:
Stationary-plant and related operators; 82: machine operators and assemblers).
Others are not routine intensive but offshorable (21: Physical, mathematical
and engineering science professional) while some are protected from offshorability
but at risk of automation (83: Drivers and mobile-plant operators; 91: sales and
services elementary occupations; 93: labourers in mining, construction, manufac-
turing and transport). Finally, some occupations are both protected from automa-
tion and from offshorability (12: corporate managers; 13: general managers; 22:
life science and health professionals). Note, however, that the scope of occupa-
tions that are not routine intensive but offshorable is very limited.

A.4 Merging Procedure

Our matching strategy could be decomposed as follows: i) We only keep the
observations before 2011, ii) we compute the RTI for each 4-digit ISCO-88
using official crosswalks, iii) we average the probabilities of automation when
many SOC occupations are matched into a single ISCO occupation, iv) we

0

.5

1

P
ro

b.
 o

f a
ut

om
at

io
n 

(F
re

y 
&

 O
sb

ou
rn

e,
 2

01
3)

−1 −.5 0 .5

RTI

n = 109    RMSE =  .1983753

prob_c~388 = .61149 + .86154 rti    R2 = 59.6%

Figure 4.A1 Correlation between Automation Probability and Routineness

113 Consequences of Automation and Offshoring 113



take the unweighted average probability of automation to aggregate our measure
at the 3-digit ISCO-88 levels, v) we match each occupation with its RTI, vi) we
proceed in the same way to assign RTI and offshorability indexes to occupation
reported at the 2-digit ISCO level. Finally, when necessary, we obtain the
measure of routine task intensity and offshorability at the 2-digit ISCO level
by collapsing (with appropriate weights) all observations at the 3-digit level in
their corresponding 2-digit ISCO occupation.

B Model Solution

This Appendix provides a detailed derivation of (10), (11) and (12) in the main
text. The steady state equilibrium is characterized by the following equations:

Surplus function:

s(d;A;O) = FB
1

1-b(1-A)(1- O) 1

4
F (1+A)(1+ O)-

{
(16)

1

4
[ga(1+A) + go(1+ O)]d

}
;

(17)
where we occasionally omit the dependence on A and Ω for brevity.
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Matching function:

M (U ;V ) = WU xV 1-x: (18)

Resource constraint:

E +U = L = 1: (19)

Flow condition:

2d*M (U ;V ) = dE: (20)

Meeting probabilities:

qv = M (U ;V )=V = W U=V( )x: (21)

qu = M (U ;V )=U = W V =U( )1-x
: (22)

Optimality conditions:

rvE(d) = w(d) - d vE(d) - vU( ); (23)

rvP(d) = s(d) - w(d) - c( ) - d vP(d) - vv( ); (24)

rvU = 2qu

{ d*

0

vE(z) - vU( )dz; (25)

rvV = -c + 2qv

{ d*

0

vP(z) - vV( )dz: (26)

Bargaining outcome:

1- α( ) vE(d) - vU( ) = α vP(d) - vV( ): (27)
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Free entry condition:

vV = 0: (28)

Zero cutoff value condition:

vP(d*) = 0: (29)

From this system of 13 equations in 13 unknowns (E, U, V, M, qv, qu, w, vE, vp,
vU, vV, s, d*), (10) and (11) can be obtained as follows. Subtract (25) from (23)
to obtain:

{ d*

0

vE(z) - vu( )dz =

{ d*

0

w(z)dz
r+ d+ 2qu(y)

:
(30)

Subtract (26) from (24) to obtain:

{ d*

0

vP(z) - vV( )dz =

{ d*

0

s(z) - w(z)( )dz
r+ d+ 2qv(y)

:
(31)

Substitute into the integral of (27)

1- α( )
{ d*

0

vE(z) - vU( )dz = α
{ d*

0

vP(z) - vV( )dz (32)

to obtain:

w(z) = α d+ r+ 2qu(y)( )s(z)
d+ r+ 1- α( )2qv(y) + α2qu(y)

: (33)

Substitute (27) into (26) to obtain:

rvV = -c + 2qv(y)
1- α
α

{ d*

0

vE(z) - vU( )dz: (34)

Substitute (33) into (30) to obtain:

{ d*

0

vE(z) - vu( )dz =
α
{ d*

0

s(z)dz
d+ r+ 1- α( )2qv y( ) + α2qu y( ) :

(35)
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Hence (34) and (35) imply:

rvV = -c +
1- α( )2qv(y)

{ d*

0

s(z)dz
d+ r+ 1- α( )2qv y( ) + α2qu y( )

(36)

Using (20) and (19) in (22) gives:

qu =
M (U ;V )

U
= dE

2d* L - E( ) : (37)

Using (20) and (19) gives

V = dE
2d*WU x

( ) 1
1-x

;

which, once substituted into (21), gives:

qv = W
1

1-x dE( )- x
1-x L - E( )

x
1- x(2d*)

x
1- x; (38)

or equivalently

qv = W
1

1-x qu( )- x
1-x: (39)

Substituting (39) into (33) gives (12) in the main text:

w(d) = α d+ r+ 2qu( )
d+ r+ 2 1- α( )W 1

1-x qu( )- x
1-x + 2αqu

s(d):

Now substitute (39) into (36) to obtain:

rvV = -c +
2 1- α( )W

1

1- x qu( )- x
1-x

{ d*

0

s(z)dz

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

: (40)
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Hence using the free entry condition vv = 0, (40) becomes:

2 1- α( )W 1
1-x qu( )- x

1-x

{ d*

0

s(z)dz

d+ r+ 2 1- α( )W 1
1-x qu( )- x

1-x + 2αqu
= c; (41)

which is (10) in the main text where (17) implies:{ d*

0

s(x;A;O)dx = FB
1

1-b 1-A( ) 1- O( ) 1
4
d*

F 1+A( ) 1+ O( ) - 1

2
ga 1+A( ) + go 1+ O( )[ ]d*

{ }

Finally, substitute the free entry condition and (29) into (24) to obtain

w(d*) = s(d*) - c;

which, together with (17) evaluated at d*

w(d*) = α d+ r+ 2qu( )s(d*)
d+ r+ 2 1- α( )qv + 2αqu

;

gives:

1- α( ) d+ r+ 2qv
d+ r+ 2 1- α( )qv + 2αqu

s(d*) = c:

Substituting (39) gives:

1- α( ) d+ r+ 2W
1

1-x qu( )- x
1-x

d+ r+ 2 1- α( )W 1
1-x qu( )- x

1-x + 2αqu
s(d*) = c; (42)

which is (11) in the main text where

s(d*;A;O) = FB
1

1-b 1-A( ) 1- O( )
1

4
F 1+A( ) 1+ O( ) - 1

4
ga 1+A( ) + go 1+ O( )[ ]d*

{ }

and

qu =
dE

2d* 1- E( ) :

given L = 1.

C Parameter Values

Table 4.C1 reports the parameter values used in Section 4
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1 See, for example, Autor and Dorn (2009), Ottaviano, Peri and Wright (2013),
Goos, Manning and Salomons (2014), Graetz and Michaels (2018), Acemoglu
and Restrepo (2020a), Dauth et al. (2017) on the empirical side; Acemoglu and
Autor (2011), Aghion, Jones and Jones (2017), Acemoglu and Restrepo
(2018b) and Acemoglu and Restrepo (2018a), Caselli and Manning (2019) on
the theoretical one. Most of these studies tend to focus more on the effects of
either automation or globalization (for instance Grossman and Rossi-Hansberg,
2008, Costinot and Vogel, 2010 or Costinot, Vogel and Wang, 2012) than on
their interactions. Empirical assessments of their simultaneous effects across US
regions can be found, for example, in Autor, Dorn and Hanson (2013, 2015)
and with a global perspective, both theoretically and empirically, in, for example,
Arkolakis et al. (2018).

2 See, for instance, Acemoglu and Restrepo (2018b) and Acemoglu and Restrepo
(2018a) and, on employment, also Bostrom (2014), Brynjolfsson and McAfee
(2014), Goos, Manning and Salomons (2014), Ford (2015), Susskind and Sus-
skind (2015), White House (2016), Stone (2016), Frey and Osbourne (2013),
Caselli and Manning (2019), Acemoglu and Restrepo (2019), Acemoglu,
Lelarge and Restrepo (2020), and Acemoglu and Restrepo (2020b) and
Fornino and Manera (2019) regarding the reversability of capital investments.

3 See Section 2 for concrete examples.
4 See, e.g., Grossman and Rossi-Hansberg (2008), Costinot and Vogel (2010),

Ottaviano, Peri and Wright (2013), Goos, Manning and Salomons (2014).

Table 4.C1 Parameters

Parameter Description Value

α Bargaining Weight 0.5
ρ Patience 0.04
δ Per-period Separation Shock 0.05
ξ Matching Function Elasticity 0.5
W Matching Function Constant 0.4
β Capital share in CB 0.33
c Vacancy Cost 1
F Max. Productivity 115
B Factor Aug. Technology 25.5
γA Mismatch penalty A 115
γB Mismatch penalty Ω -53

Notes: Table 4.C1 shows parameter values used for the numerical example in the main text.
Parameter values are standard values drawn from Hagedorn, Law and Manovskii (2017)
except for the mismatch penalty parameters whose values have been chosen in order to
deliver empirically relevant equilibrium rates of employment. As we do not model
endogenous separations we choose a higher separation rate compared to Hagedorn, Law and
Manovskii (2017) and closer to Fujita and Ramey (2012).
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5 For example, in the offshoring model by Antras, Garicano and Rossi-Hansberg
(2006), cross-country hierarchical teams are formed where less skilled countries
specialize in production and more skilled countries specialize in problem
solving. In the model of global value chains by Antras, Garicano and Rossi-Hans-
berg (2006), in which production of the final good is sequential and subject to
mistakes, countries with lower probabilities of making mistakes at all stages spe-
cialize in later stages of production.

6 In the wake of Costinot and Vogel (2010) the underlying idea is that, while a
sector may cover a rich menu of occupations, these include a submenu of
“core occupations” that are disproportionately concentrated in the sector.

7 The 2018 Talent Shortage Survey by ManpowerGroup covers 39,195 employers
across six industry sectors in 43 countries and territories: Argentina, Australia,
Austria, Belgium, Brazil, Bulgaria, Canada, China, Colombia, Costa Rica, Czech
Republic, Finland, France, Germany, Greece, Guatemala, Hong Kong, Hungary,
India, Ireland, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Norway,
Panama, Peru, Poland, Portugal, Romania, Singapore, Slovakia, Slovenia, South
Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, UK and USA.

8 In spring 2014 the European Centre for the Development of Vocational Train-
ing of the European Union (Cedefop) undertook the first European skills and
jobs survey (ESJS), a large-scale primary data collection of about 49,000 adult
employees in 28 EU Member States. Cedefop Eurofound (2018) summarizes
many of the insights gained by closer empirical scrutiny of this new European
data set.

9 Koren, Csillag and Köllo (2020) also find that the productivity of workers
assigned to new machines rises and their wages increase but become more
unequal.

10 Following Goos, Manning and Salomons (2014), occupations and sectors closely
associated with public and agricultural activities are dropped. We also drop 3-
digit ISCO occupations that are not precisely reported. These occupations are
dropped from the final sample. This corresponds to 1.1% of total hours
worked in the sample and this only affects six countries in the sample.

11 For instance, Chiacchio, Petropoulos and Pichler (2018) shows that robot pen-
etration in the EU28 has tripled over this period and particularly between 1995–
2007 relative to the years 2007–2015. A similar pattern can be observed for off-
shoring as measured by foreign direct investment and intermediates trade in the
WTO and UNCTAD statistics.

12 We follow the definition of Lewandowski et al. (2017): RTIo = ln(Routine Cog-
nitiveo+ Routine Manualo)−ln(Non-Routine Analyticalo+ Non-Routine Interper-
sonnalo). Throughout we standardize RTI to have a mean equal to zero and a
standard deviation of one.

13 The measure used by Frey and Osbourne (2013) builds on the selection of solu-
tions that engineers need to devise for specific occupations to be automated and
it is given by the probability of computerization based on a Gaussian process
classifier.

14 The index of Blinder (2009) is constructed in the same way, but it reports a qual-
itative ranking of occupations according to their degree of offshorability.

15 We obtain data from the Princeton Data Improvement Initiative (https://
krueger.princeton.edu/pages/princeton-data-improvement-initiative-pdii). The
matching procedure of occupations with our automatability and offshorability
indices is detailed in Appendix A. Throughout we standardize the BK index to
have a mean equal to zero and a standard deviation of one.

16 We aggregate our data at the cell level (country × sector × occupation × year) into
occupation × year cells and for each occupation we compute the log change in
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hours worked across the countries in our sample: Dln Hourso( ) =
ln Hours2010o

( )- ln Hours1995o

( )
.

17 The paper by Bonfiglioli, Crinò, Gancia, and Papadakis (2021) in this volume
studies the effect of imported industrial robots on US local labor markets between
1990 and 2015, unveiling empirical patterns consistent with “reshoring” whereby
imported robots substitute foreign workers more than US workers. Related to
our Figure 4.1, after classifying occupations in terms of their “replaceability”
(by robots) and “offshorability”, they show in their Table 5 that the employment
changes in non-replaceable occupations are uncorrelated with robot exposure
regardless of offshorability. This holds also for replaceable occupations if they
are also offshorable, whereas the correlation is negative if they are non-offshorable.
It should be noted, however, that, while in a robustness check they measure “off-
shorability” as we also do, our measure of “automatability” based on routine
intensity as in Acemoglu and Autor (2011) is quite different from their measure
of “replaceability” based on robot application categories as in Graetz andMichaels
(2018). Moreover, “reshoring” seems to be less relevant in Europe than in the US
(De Backer et al., 2016; Kinkel, Dewanti and Zimmermann, 2017; Vanchan,
Mulhall and Bryson, 2018).

18 The results on educational mismatch may resonate with the implications of tradi-
tional models of SBTC, but there is a crucial difference. In those models the
demand of workers with higher education rises and the demand of workers with
lower education falls in occupations more exposed to technological change. Yet,
typically this is not connected to the evolution of over/under education.

19 Matches are one-worker-one-job relationships, and therefore we do not consider
the complementarities between workers within the same firm as in Eeckhout and
Kircher (2018). While complementarities within the firms are certainly impor-
tant, they are not immediately relevant for our purposes.

20 In the absence of search or information frictions all workers and firms would be
matched to their optimal partner as in Becker (1973).

21 See Mortensen and Pissarides (1994). Our assumption departs from the non-
linear matching function employed in models with two-sided heterogeneity à
la Shimer and Smith (2000). In particular, our matching technology implies
that congestion externalities arise for each task.

22 If the outside option were positive, workers would simply search for longer
periods of time.

23 See Appendix B for detailed derivations.
24 While we do not dwell on the determination of A and Ω, it would be straightfor-

ward to explicitly endogenize them by specifying the costs of automation and off-
shoring. Most naturally, A and Ω would be determined as decreasing functions of
those costs. Compative statics results would then be stated with respect to the
cost parameters driving the choice of A and Ω rather than with respect to A
and Ω. As this would not add much insight to the analysis, we prefer to keep
the costs of automation and offshoring in the background and discuss the com-
parative statics with respect A and Ω.

25 See Appendix C for additional details.
26 To give some idea about the quantitative consistency of the calibrated model

with the motivating evidence, consider deviations from point A = 0.2 and Ω =
0.2 in the left panel of Figure 4.2 (i.e. black line). Increasing A to 0.35 corre-
sponds to an increase in concentration of 8% comparable to the estimated
increase of 8% in response to a 1 standard deviation increase in automatability
(RTI) reported in Table 4.2. Similarly, in the right panel of Figure 2 increasing
Ω to 0.35 (with A = 0.2) translates to a 17% decrease in selectivity in the model
which is comparable to the estimated 12% drop in SSO in response to a 1 standard
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deviation increase in offshorability. Similarly, consider decreasing A from 0.2 to
0.05, that is moving from the black to the dotted line in the right panel of Figure
4.2, while keeping Ω = 0.35: selectivity decreases by roughly 30% relative to the
case of A = 0.2 and Ω = 0.2. This is comparable to empirically predicted drop in
SSO by 27% when offshorability increases and automatability decreases by 1 stan-
dard deviation respectively. A similar exercise based on unemployment duration
in Figure 4.3 reveals that the magnitude of the model’s predictions roughly aligns
with the estimated effects; mapping over- and under-education to a suitable
model-analogue for interpretation is, however, difficult.

27 For instance, the left panel of Figure 4.5 clearly shows that, after denoting equi-
librium employment by E(A, Ω), for A

'
> A and Ω

'
> Ω with Ω = 0.05 and Ω

'
=

0.2, we have E(A
'
, Ω

'
)/E(A

'
, Ω)>E(A, Ω

'
)/E(A, Ω). This derives from the fact

that E(A, Ω
'
) is a flatter function of A than E(A, Ω). While less visible, the

same applies to the right panel.
28 For instance, the left panel of Figure 4.6 clearly shows that, after denoting the equi-

librium wage ratio byW(A, Ω), for A
'
> A and Ω

'
> Ω with Ω = 0.05 and Ω

'
= 0.2,

we have W(A
'
, Ω

'
)/W(A

'
, Ω)>W(A, Ω

'
)/W(A, Ω). While less visible, the same

applies to the right panel of Figure 4.6. In Figure 4.6 the wage of the best
match is an order of magnitude larger than the wage of the worst match. While
this gap between the two extremes of the wage distribution may look unrealistically
large, comparing the 75% and 25% percentiles reveals that the wage in the former
percentile is only about twice as large as that in the latter percentile.

29 These occupations respectively account for 0.12%, 0.27%, 0.53%, 0.39% and
0.07% observations in the sectors kept.

30 This index is inspired by Firpo, Fortin and Lemieux (2011)
31 Lewandowski et al. (2017) slightly modify the RTI definition compared to Autor and

Dorn (2009) in order to adapt it to the use of ONET data instead of DOT data:
RTI = ln(Routine Cognitive + Routine Manual)−ln(Non-Routine Analytical +
Non-Routine Interpersonnal).
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5 The Impacts ofAI,Robots, and
GlobalizationonLaborMarkets
Analysis of a Quantitative General
Equilibrium Trade Model

Taiji Furusawa, Shoki Kusaka,
and Yoichi Sugita

1 Introduction

A generally held view about the complementarity between labor and capital is
that workers benefit from increased capital. However, the story can be very dif-
ferent when it comes to a special kind of capital, namely industrial robots, which
the International Standard Organization (ISO) defines as ‘an automatically con-
trolled, reprogrammable, multipurpose manipulator programmable in three or
more axes, which can be either fixed in place or mobile for use in industrial auto-
mation applications’ (ISO 8373:2012). These industrial robots can perform tasks
that factory workers would otherwise perform. Therefore, they may substitute for
low-skilled, manual labor.

Technological progress has also occurred in areas that put high-skilled
workers’ cognitive jobs at risk. In particular, artificial intelligence (AI) continues
to advance at an amazing pace. It complements and substitutes for various types
of workers in the medical and pharmaceutical industries among others, and
changes future perspectives in many industries. Brynjolfsson and McAfee
(2011) and Baldwin (2019) argue that robot technology and AI advance at an
explosive pace so that only those that can utilize such new technology benefit.
Meanwhile, the majority of workers may be left behind with lower pay.

Globalization, defined here as declining costs of trade in goods and services,
has contributed to the global spread of robots and AI. World trade in robots
has been steadily increasing since approximately 2000, as shown in Figure 5.1,
although it still occupies a tiny portion (0.13% in 2018) of the world trade in
capital goods. A notable feature of the robot and AI industries is that a small
number of countries hold significant shares in world production and exports.
Figure 5.2 shows the dominance of Japan and Germany in robot exports in
2018. AI companies are also geographically concentrated in a few countries
such as the US, China, the UK, Germany, France, and India (Samoili et al.,
2020).

Using a quantitative general-equilibrium trade model, this chapter assesses
the impacts of robot/AI technological progress and globalization on labor
markets in the world economy. In our model, robots can perform low-
skilled labor’s tasks and AI high-skilled labor’s tasks in the manner of the
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Figure 5.1 World Trade in Goods, Capital, and Robots

Figure 5.2 Robot Exports and Imports Across Countries in 2018
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task-based approach developed by Acemoglu and Autor (2011), Acemoglu and
Restrepo (2018a; 2018b), and Grossman and Rossi-Hansberg (2008, 2012).
Following Eaton and Kortum (2002), Caliendo and Parro (2015), Sugita et
al. (2019), and Furusawa and Sugita (2020), we also incorporate the important
feature of global value chains (GVCs) linking multiple industries in multiple
countries. A task-based model with a GVC structure enables us to address a
rich set of questions regarding globalization, technology adoption, and income
inequality.

In Section 2, we set up a model with robots but not AI and evaluate the effects
of past technological progress and globalization. Section 3 presents our unique
dataset that includes five production factors: two labor skill groups, robot instal-
lation, input-output tables, and bilateral trade for 17 ISIC 2-digit industries and
50 countries. We develop a novel method to use the data and the model’s struc-
ture, notably the gravity equation of robot trade, in estimating two critical
parameters: robot income shares in low-skilled task production in each industry
and each country and elasticities of substitution between robots and low-skilled
labor in each industry. The robot income shares are sizable in some industries but
are generally small at the country level. The elasticities of substitutions are around
a moderate number of 2. In Section 4, we first simulate the world economy in
2014, where either robot-related technology or trade costs are assigned their
1993 levels. The effect of advances in robot technology on labor markets is
much smaller than that of trade liberalization from 1993 to 2014 despite being
sizable in the most affected industries. Our results suggest that the macroeco-
nomic impact of past robot technological progress on labor markets in 2014
was limited. Then, we simulate a future world where the task-productivity of
robots becomes ten times its 2014 level. The share of tasks that robots would
perform would still be small in most countries as would the impact on the
labor market.

Finally, in Section 5, we extend our baseline model with robots to incorpo-
rate the substitution of AI for high-skilled labor. With limited data on trade in
AI services, we estimate elasticities of substitution between AI and high-skilled
labor in 17 industries and conduct a counterfactual analysis on the impact of a
tenfold increase in AI task-productivity on labor markets. These elasticities of
substitution are smaller than the estimated elasticities of substitution between
robots and low-skilled labor. As a consequence, we find that its impact on the
labor market is smaller than that of robotics and that advances in AI technol-
ogy would decrease wage inequality between high-skilled and low-skilled
labor.

The effects of automation on the labor market have been studied extensively.
Autor et al.(2003) and Autor and Dorn (2013) show that automation replaces
workers performing routine tasks, contributing to employment and wage polar-
ization. Industrial robots primarily displace low-skilled production workers
in factories. Graetz and Michaels (2018) and Acemoglu and Restrepo (2020)
find that robot adoption reduces low-skilled workers’ employment share and
lowers employment and wages across commuting zones in the US, respectively.
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However, they find evidence that robots raise firms’ productivity (Acemoglu,
Lelarge, and Restrepo, 2020b), which could benefit all workers, including
the adversely affected low-skilled workers, by reducing consumer prices. Recent
studies on AI also report similar job-replacing and productivity-enhancing
effects.1

Recent papers by Humlum (2019), Adachi (2021), and Artuc, Bastos, and
Rijkers (2020) add new insights to the literature on the labor market impacts of
robots in the world economy. Humlum (2019) constructs a dynamic general-
equilibrium trade model that incorporates firms’ choice of robot adoption and
workers’ choice of occupation and simulates the model with parameters estimated
from Danish data to assess the impact of robot adoption on the Danish labor
market. Adachi (2021) develops an open-economy model to analyze the impact
of falling robot costs in Japan on the US labor market. He estimates elasticities
of substitution between robots and labor across occupations and conducts a coun-
terfactual analysis to assess the contribution of robots to wage polarization in the
US. Like our model, Artuc et al. (2020) independently developed a quantitative
Ricardian trade model with two-stage production that incorporates substitution
of robots and labor. They analyze the effects of robotization in the North on
trade patterns, wages, and welfare in the world.

Our analysis contributes to this new strand of the literature by enriching the
model of the labor market and global trade structure to analyze the impact of
globalization and the adoption of robots and AI on labor markets across the
world. It is our contribution to estimate the robot shares of income at the
country-industry-year level and use these estimates to estimate the elasticities
of substitution between robots and low-skilled labor at the industry level. It is
also worth conducting a rigorous model analysis with data and revealing the mac-
roeconomic effect of robots and AI is small relative to the effect of globalization.

2 Model

We set up a model that is rich enough to quantify the effect of robotics and glob-
alization on labor markets. The basic structure of our model is similar to those of
Caliendo and Parro (2015), Sugita et al. (2019), and Furusawa and Sugita
(2020). The fact that only a small number of countries export a large fraction
of all robots traded in the world suggests that we need a multi-country model
that incorporates differential industrial structures across countries. Building a
model that allows differential industrial structures is also important because the
use of robots (and AI) is heavily concentrated in some industries as we will see
later. The model should also accommodate a GVC structure because its develop-
ment is a prominent feature of globalization since the 1990s.

2.1 Basic Settings

N countries, indexed by i, n 2 {1,..., N}, produce S goods and services, indexed
by s, k 2 {1,..., S}, for infinite time periods, indexed by t 2 {0,..., 1}. The
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industry S represents the robot-producing industry. The model incorporates five
factors of production: specific factor (G) only in the agriculture and mining
industries, low-skilled labor (L), high-skilled labor (H), non-robot capital (K),
and robots (R). Industry-specific factors and labor are supplied inelastically. Con-
sumers invest and accumulate non-robot capital and robots. Goods are tradable
across countries but services and factors are not. Robots and non-robot capital
are tradable across countries only at the time of their investment. Once they
are installed as capital goods, consumers can only lend them to domestic firms.
All goods and factors are traded in perfectly competitive markets.

Each non-robot industry s 2 {1, .., S − 1} produces two types of goods with
different usages: final usage and intermediate usage. Final goods, denoted by f,
are used only as final consumption and investment, whereas intermediate
goods, denoted by m, are used only as inputs for production. Consumers do
not consume robots. Goods of each usage u 2 {f, m} in industry s consist of a
continuum of varieties ωsu 2 [0, 1].

Country n’s representative consumer has a two-tier utility function with a
Cobb-Douglas upper tier and a constant-elasticity-of-substitution (CES) lower
tier:

Un ¼
E1
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bt lnQ f
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where β 2 (0, 1) is the time discount factor, Q f
nt the aggregate final consump-

tion, Q sf
nt the industry-level consumption and

ES=1

s¼1 α
s
nt ¼ 1. We let ωsf denote

a variety of final good s, qsf
nt o

sfð Þ country n’s consumption of ωsf at time t, and
σsf > 0 the elasticity of substitution between varieties of final good s.

A firm in industry s 2 {1,..., S} in country n produces Ynt units of variety ωsu of
usage u with the Cobb-Douglas production function:
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where
E

vb
s
vnt þ

ES
k¼1 b

sk
nt ¼ 1, As

nt is the country-industry specific component of
the total factor productivity (TFP), Zsn(ωsu) the idiosyncratic component, and
{Gnst, Knst, Hnst} the inputs of industry-specific factor, non-robot capital and
high-skilled labor, respectively. Factor Tnst is a composite input of tasks that
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either low-skilled labor or robots may perform, which we explain in detail in
Section 2.2. Msk

nt is a CES composite of intermediate good k where msk
nt o

kmð Þ is
the input of variety ωkm and σkm > 0 the elasticity of substitution. The idiosyncratic
productivity Zsn(ωsu) varies across varieties, independently following the Fréchet
distribution F s zð Þ ¼ exp =z=ysð Þ with industry-specific parameter θs.

Consumers and firms in country n purchase each variety ωsu with the lowest
price that is given by pnt o

suð Þ = minN
i¼1pnit o

suð Þ, where pnit(ωsu) is the unit cost
of supply from country i to country n. There exits trade costs dsu

nit such that
pnitðosuÞ = dsu

nitpiitðosuÞ. Trade costs consist of ad valorem tariffs tsnit and ice-
berg non-tariff barriers Dsu

nit such that dsu
nit ¼ ð1þ tsnitÞDsu

nit . Trade costs are
assumed to satisfy the triangle inequality dsu

njtd
su
jit > dsu

nit . Trade costs may differ
between final usage and intermediate usage within industries.

2.2 Robot and Labor Substitution in Low-Skilled Task Production

We model the substitution of robots for low-skilled labor, following the task-
based approach of Acemoglu and Restrepo (2018b; 2020). The task-based
model can address that robots substitute labor for particular tasks, while simulta-
neously complementing workers for other tasks. The input of low-skilled tasks
for the production of good s, Tist, in (2) is given by the Cobb-Douglas composite
of a continuum of tasks v 2 [0, 1]:

Tnst ¼ exp
{ 1

0

lnTnstðvÞdv
( )

, TnstðvÞ = gstðvÞRnstðvÞ þ LnstðvÞ, ð3Þ

where Tnst(v) is the amount of task v performed by either low-skilled labor or
robots and γst(v) represents the task-productivity of robots. Low-skilled labor
and robots are perfect substitutes. Tasks are ordered by the comparative advan-
tage of robots so that g0

stðvÞ < 0 holds.
For a given low-skilled wage rate wLnt and robot rental rate wRnt, there exists a

threshold task vnst defined by wRnt/γst(vnst) = wLnt. Robots perform tasks v < vnst,
while low-skilled workers perform v > vnst. The threshold vnst can be expressed as
a function of the relative factor prices:

vnst ¼ vst
wRnt

wLnt

( )
= g=1

st

wRnt

wLnt

( )
, ð4Þ

where g=1
st is the inverse function of γst, so that vst is a decreasing function. From

the optimal assignment of each task, the task composite (3) becomes

Tnst ¼ GstðvnstÞ
Rnst

vnst

( )vnst Lnst

1= vnst

( )1=vnst

, ð5Þ

where GstðxÞ = exp
{ x

0

lngst vð Þdv
( )

captures the productivity advantage of robots

over low-skilled labor.
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The function vst in (4) is the key function that determines the impact of robots
on low-skilled labor’s income. As seen in (5), the equilibrium value vnst of func-
tion vst determines the income shares of robots and low-skilled labor. In industry
s in country n at time t, low-skilled workers receive the share bs

Tnt 1= vnstð Þ of the
industry’s revenue, while robots receive the share bs

Tntvnst . We will estimate vst in
(4) from data.

2.3 Robot and Capital Accumulation

A representative consumer invests and accumulates robot capital and non-robot
capital, lending them to local firms in their country. The robot stock Rnt and the
non-robot capital stock Knt in country n are accumulated as follows:

Rntþ1 ¼ IR
nt þ 1= dRð ÞRnt and Kntþ1 ¼ IK

nt þ 1= dKð ÞKnt , ð6Þ
where IR

nt and IK
nt are investment in robot and non-robot capital, respectively, and

δR and δK are the depreciation rates. For simplicity, the investment technology of
non-robot capital is given by the same CES aggregator as the consumption
aggregator Q f

nt expressed by (1). Investment in robots is also expressed as a

CES aggregate of varieties of robots, IR
nt =

{ 1

0

IR
nt oRð Þ

sR=1
sR doR

[ ] sR
sR=1

, where

σR > 0 is the elasticity of substitution and IR
it oRð Þ is the robot investment of

variety ωR.
A representative consumer’s maximization problem can be expressed in two

steps. Let wKnt denote the rental rate of non-robot capita. Let Pnt and PR
nt be

the price index of consumption/capital investment and robot investment,
respectively. The upper-tier problem is to choose the aggregate consumption
Qnt and investment ðIR

nt , I
K
nt Þ:

max
fQnt ,IKnt ,I

R
nt g

E1
t¼0

bt
n lnQnt

s.t. Pnt Qnt þ IK
nt

( )þ PR
ntI

R
nt ¼ wKntKnt þ wRntRnt þ Ent and ð6Þ,

where Kn0 and Rn0 are given, and Ent represents income from other sources
including labor income, distributed trade balance, and tariff revenue. We assume
that the economy is in a steady state, where Knt = Kn, Rnt = Rn, Qnt = Qn,
IK
nt ¼ dKKn, and IR

nt ¼ dRRn. Then, the Euler equation gives us the following
expressions for the rental rates of capital:

wRnt ¼ PR
nt rn þ dRð Þ and wKnt ¼ Pnt rn þ dKð Þ, ð7Þ

where rn = (1−βn)/βn is the real interest rate.
In the second-tier problem, the consumer chooses demands for individual

varieties of goods, taking fQ s
nt , I

K
nt , I

K
Rtg as given. It follows from Eaton and

Kortum (2002) that the trade share of country i’s products of usage u in industry
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s in country n is given by
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where γsu is a constant, csit is the value of the Cobb-Douglas function of factor
prices and intermediate good price indexes (shown in (17) in the Appendix),
and Psu

nt is the price index for goods of usage u in industry s in country i satis-
fying

Psu
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The trade share equation (8) relates trade flows to prices in importing coun-
tries and leads to the gravity equation. We exploit this relationship to estimate
robot prices from robot trade data.

2.4 Equilibrium Conditions for Counterfactual Analyses

Following Dekle et al. (2008) and Caliendo and Parro (2015), we consider a
system of equilibrium conditions for changes in variables. We denote the counter-
factual change in variable x by x̂ t = x '

t=xt , where xt is the value of variable x in equi-
librium at time t while x '

t is its value in equilibrium of the counterfactual economy.
We relegate to the Appendix the description of the system of equilibrium

Table 5.1 Countries in Our Dataset

Argentina Hong Kong Korea
Australia Hungary Romania
Austria India Russian Federation
Belgium Indonesia Singapore
Brazil Ireland Slovakia
Bulgaria Israel Slovenia
Canada Italy South Africa
Chile Japan Spain
China Latvia Sweden
Croatia Lithuania Switzerland
Czech Republic Mexico Taiwan
Denmark Netherlands Thailand
Estonia New Zealand Turkey
Finland Norway United Kingdom
France Philippines United States
Germany Poland Vietnam
Greece Portugal Rest of the world
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3 Data and Estimation

3.1 Data

We construct a unique dataset for our quantitative general equilibrium analysis.
The dataset includes information about bilateral trade in goods and robots,
input-output tables, country-industry-year-level output and input allocations,
and country-year-level factor prices for: 50 countries and the rest of the world
(Table 5.1); 13 good industries and four service industries, which closely
follow the 2-digit ISIC (International Standard Industrial Classification) codes;
five production factors; and four years (2004, 2007, 2011, 2014).

This section explains the data on robots and labor skill groups. The data
sources for other variables are conventional in the literature: the Global Trade
Analysis Project (GTAP) database version 10, the Penn World Table, and the
International Labour Organization (ILO) stat database. Details on the data con-
struction are relegated to the Online Appendix.

Robot Stocks, Robot trade, and Robot Prices: the International Federa-
tion of Robotics (IFR) database reports the physical quantity of newly installed
industrial robots for 71 countries and 18 industries since 1993. The IFR follows
the ISO 8373 definition of robotics, mentioned in the Introduction, and has
been used in the literature, e.g., Graetz and Michaels (2018) and Acemoglu
and Restrepo (2020). Following the procedure in Graetz and Michaels
(2018), we construct robot stocks using the perpetual inventory method with
the depreciation rate δR = 0.1. We collect bilateral trade in industrial robots
from the UN Comtrade database, which contains the category of the 6-digit
harmonized system code 847950, “industrial robots for multiple uses”. We
construct time-series data on the price for robots in Japan, unit robot price in
Japan in 2014 calculated from the IFR data, and the time-series robot price
indices with the benchmark of the 2015 price collected from the Bank of
Japan (BoJ) Corporate Goods Price Index database. The BoJ monthly surveys
prices of industrial robots and reports quality-adjusted price indices since
1990, which to our knowledge is the only data on quality-adjusted robot
prices in our sample period.

Labor Skill Groups: following Weingarden and Tsigas (2010), we aggregate
10 occupations in the International Standard Classification of Occupations
(ISCO-08) from the ILO database into two skill categories. The high-skill
group includes: (1) Managers, (2) Professionals, and (3) Technicians and Asso-
ciate Professionals. The low-skill group includes: (4) Clerical Support Worker,
(5) Service and Sales Workers, (6) Skilled Agricultural, Forestry, and Fishery
Workers, (7) Craft and Related Trades Workers, (8) Plant and Machine Opera-
tors and Assemblers, and (9) Elementary Occupations. We removed the category
“Armed Forces Occupations” from the data.
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3.2 Parameter Estimation

Cobb-Douglas Parameters: we calibrate the Cobb-Douglas parameters of
utility and production functions {αsnt, βsnt} from expenditure shares calculated
from the data.

Trade Elasticities We estimate Fréchet parameters θs, also called trade
elasticities, by exploiting variations of bilateral tariffs in the gravity model, in
the spirit of Caliendo and Parro (2015). Trade costs dsu

nit are modeled as
lndsu

nit ¼ ln 1þ tsnit
( )þEkTCni,kd

su
kt þ ~εsunit , where tsnit is the bilateral tariff rate,

~εsunit the idiosyncratic trade costs, and TCni, k the k-th variable of the country-
pair characteristics commonly used in the gravity analysis.2 Substituting lndsu

nit

into (8) yields the following gravity model with fixed effects:

lnpsu
nit ¼ bs ln 1þ tsnit

( )þE
t

E
k

TCni,k bf
kt þ I u¼mf gb

m
kt

( )
Ifyear¼tg

þ exs
it þ imsu

nt þ εsunit ,

ð10Þ

where I{year = t} and I{u = m} are year dummies and intermediate goods dummies,
respectively, exs

it the exporter-time fixed effect, and imsu
it the importer-time-usage

fixed effect.
We estimate (10) by OLS for each tradable-good industry (IFR industry from

1 to 13) separately, pooling all four periods (2004, 2007, 2011, 2014) and
excluding observations without tariff information.3 Table 5.2 reports the esti-
mated elasticities θs = −βs with standard errors clustered at the exporter-
importer-year level. The estimates have small standard errors and are generally
higher (but within a comparable range) than those in other studies (e.g.,
Caliendo and Parro (2015)).4 For non-tradable service industries, we choose
the median estimate of 10.582 as their θs, because our approach (as in other
similar approaches) cannot be applied to non-tradable industries.

Table 5.2 Estimated Trade Elasticities

IFR Description θ SE n.obs

1 Agriculture, forestry, and fishing 4.456 (1.341) 15,940
2 Mining and quarrying 18.685 (5.029) 15,890
3 Food and beverages 8.429 (0.759) 15,952
4 Textiles 6.799 (0.721) 15,960
5 Wood and furniture 11.535 (1.663) 15,950
6 Paper 17.533 (1.743) 15,948
7 Plastic and chemical products 11.142 (1.087) 15,962
8 Glass, ceramics, stone, and mineral products 8.913 (1.172) 15,958
9 Metal 14.522 (1.459) 15,962
10 Electrical, electronics, and machinery 11.228 (1.212) 15,962
11 Automotive 10.582 (0.883) 15,950
12 Other vehicles 9.198 (1.621) 15,934
13 All other manufacturing branches 6.545 (1.017) 15,950

Notes: Standard errors (SE) are clustered at the exporter-importer-year level. All estimates are
statistically significant at 1% level.
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Robot Prices and Production: we estimate the prices and production of
robots from the gravity equation of trade in industrial robots. Let XR

nt = XR
nnt þE

i 6¼nX
R
nit be country n’s total expenditure (i.e., investment) on robots. The trade

share equation (8) implies the following gravity equation of robot trade:

lnXR
nit ¼ lnXR

nt þ yR lnPR
nt þ yR ln AR

it/c
R
it

( )= yR lndR
nit . ð11Þ

Modeling trade costs of robots as lndR
nit ¼

E
kTCni,kdkt þ ~εnit as in (10), we esti-

mate the gravity equation with fixed effects:

lnXR
nit ¼ zMnt þ zEit þ

E
k TCni,kbkt þ unit , ð12Þ

where zMnt is the importer-time fixed effect and zEit the exporter-time fixed effect.
We estimate (12) by the Poisson pseudo maximum likelihood (PPML), includ-

ing the observations with zero trade. Choosing Japan as a benchmark country, we
drop the constant term and the importer-year dummy zMbt for the country b =
JAPAN for each year.5 We see from (11) that the estimated coefficient of the
importer-time dummy ~zMnt equals ~zMnt ¼ lnXR

nt þ yR lnPR
nt = lnXR

bt þ yR lnPR
bt

( )
.6

Rearranging this equation yields the price index of robots in country n relative
to the benchmark country b:

PR
nt

PR
bt

¼ exp
1

yR
~zMnt = ln

E
i 6¼nX

R
nit þXR

nntE
i 6¼bX

R
bit þXR

bbt

) )[ ]
. ð13Þ
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Figure 5.3 Estimated and Actual Robot Prices
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We obtain robot prices and robot rental rates from (13). As an estimate of θR,
we use the estimated trade elasticity in the IFR industry 10 “Electrical, electron-
ics, and machinery” that includes industrial robots. We calculate domestic trade

by XR
nnt ¼ exp ~zEnt þ ~zMnt = yR lndR

nnt

[ ]
for each country n where we estimate

domestic trade costs yR lndR
nnt by the gravity equation (12) for the IFR industry

10 using the domestic trade data.
Using the robot price in Japan PR

bt , we can now calculate robot price PR
nt for each

country from (13). Figure 5.3 compares the estimated robot prices with the unit
prices in the IFR database in the four countries, Germany, Japan, Korea, and the
USA. The estimated robot prices are reasonably close to the actual ones, except
in Germany.7 Finally, we calculate the robot rental rate wRnt from (7), where we
collect the real interest rate rnt from the World Development Indicators and
choose a depreciation rate of δR = 0.1, following Graetz and Michaels (2018).

Robot Income Shares: based on the robot-stock data and estimates of the
robot rental rates, we calculate the robot income share in the income from
low-skilled tasks, vnst ¼ wRntRs

nt/ wRntRs
ns þ wLntLs

nt

( )
and report it for selected

countries in 2014 in Table 5.3.8 Columns (1), (2), and (3) report the median,
minimum, and maximum shares. Column (4) reports the aggregate robot
income share, defined by vnt =

E
swRntR

s
nt/
E

s wRntR
s
nt þ wLntL

s
nt

( )
. Table 5.3

illustrates that the income shares of industrial robots in low-skilled tasks are
very small in most industries across all countries.9

3.3 Elasticities of Substitution between Robots and Low-Skilled Labor

We assume that the function vst in (4) takes the following logistic function:

vnst ¼ vst
wRnt

wLnt

( )
¼

exp ist = ss = 1ð Þ ln wRnt

wLnt

þ Enst

( )

1þ exp ist = ss = 1ð Þ ln wRnt

wLnt

þ Enst

( ) , ð14Þ

Table 5.3 Robot Income Shares in Low-Skilled Tasks in 2014

Industry-Level Shares Aggregate
Median Min Max Share

Country (1) (2) (3) (4)

China 0.01% 0.00% 0.89% 0.04%
Germany 0.09% 0.00% 3.26% 0.21%
India 0.00% 0.00% 1.40% 0.02%
Indonesia 0.00% 0.00% 0.33% 0.02%
Japan 0.17% 0.00% 2.78% 0.29%
Korea 0.04% 0.00% 3.43% 0.31%
Singapore 0.19% 0.00% 5.20% 0.30%
Thailand 0.02% 0.00% 5.21% 0.24%
United States 0.01% 0.00% 1.13% 0.03%
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where ιst and Enst capture the sector-year specific determinants and the unob-
served determinants of the robot demands other than the relative rental rate of
robots, respectively.10 Given that the task production function (5) implies
vnst ¼ wRntR

s
nt/ðwLntL

s
nt þ wRntR

s
ntÞ ¼ ðwRntR

s
nt/wLntL

s
ntÞ/½1þ ðwRntR

s
nt/wLntL

s
ntÞ[,

formulating vst by (14) is equivalent to formulating the relative demand function
for robots to be log-linear:

ln
Rs

nt

Ls
nt

¼ ist = ss ln
wRnt

wLnt

þ Enst , ð15Þ

where σs is the elasticity of substitution between robots and low-skilled labor. It
follows from (14) that σs > 1 must hold for vst to be a decreasing function.

Since Enst may be correlated with wRnt, we use an instrument (IV) for wRnt that
shifts only the supply function. As such an IV, we use country n’s geographical

access to robot exporters defined by znt =
E

i 6¼n AR
it

( )yR
cRit d

R
nit

( )=yR
and calculate

~znt ¼
E

i 6¼nX
R
nit/X

R
nt PR

nt

( )yR
from the estimated robot gravity equation (12).

Since the robot price satisfies PR
nt/g

R
( )=yR ¼ znt þ AR

it

( )yR cRntd
R
nnt

( )=yR
as shown

in (9), it is clear that the IV ζnt utilizes the variation in the price of imported

robots. Moreover, since the exporter-specific component AR
it

( )yR
cRit
( )=yR

of ζnt
is common for all importers at time t, trade cost dR

nit is the main source of
cross-sectional variation of ζnt across countries. The exclusion restriction is that

Table 5.4 Elasticities of Substitution Between Robots and Low-Skilled labor

IFR Description σs Robust
SE

1st Stage
F

n.obs

1 Agriculture, forestry, and fishing 2.028 (0.209) 20.1 118
2 Mining and quarrying 1.435 (0.360) 15.4 82
3 Food and beverages 2.158 (0.173) 23.5 182
4 Textiles 2.879 (0.238) 14.9 120
5 Wood and furniture 2.927 (0.316) 21.5 140
6 Paper 1.947 (0.200) 17.9 133
7 Plastic and chemical products 1.775 (0.177) 25.2 189
8 Glass, ceramics, stone, and mineral

products
1.995 (0.171) 24.5 170

9 Metal 2.181 (0.179) 25.0 189
10 Electrical, electronics, and machinery 2.065 (0.215) 20.8 176
11 Automotive 1.826 (0.203) 21.2 175
12 Other vehicles 1.793 (0.173) 28.8 170
13 All other manufacturing branches 1.906 (0.173) 22.8 178
14 All other non-manufacturing branches 1.221 (0.209) 24.8 132
15 Electricity, gas, and water supply 1.724 (0.152) 22.0 99
16 Construction 1.070 (0.195) 26.9 145
17 Education, research, and development 1.757 (0.202) 20.8 175

Notes: Standard errors are heteroscedasticity robust standard errors. The first stage F-values
differ across industries because of the difference in the sample sizes.
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trade cost dR
nit is uncorrelated with Enst, the unobserved determinants of the robot

demand.11

We estimate (15) for each industry by the two-stage least squares with

ln ~znt/wLnt

( )
an IV for ln(wRnt/wLnt). The equation (15) includes only the

year fixed effect, but not country fixed effects because the variation of dR
nit in

ζnt is mostly cross-sectional so that ζnt has little time-series variation. Table 5.4
reports estimates of σs with the heteroscedasticity-robust standard errors. The
standard errors are small and the first stage F-statistics are all greater than 10.
Point estimates of σs are greater than 1 in all industries.12

The elasticities of substitution in Table 5.4 can be compared with estimates
in other studies. Adachi (2021) estimates elasticities of substitution between
robots and labor within five occupation groups (production, transportation,
other routines, services, abstract) in the US labor market. All of our estimates
fall in the range of his estimates from 0.8 (abstract) to 4.29 (transportation).
There are also studies that estimate the elasticities of substitution between
capital and labor. Most of them report estimates that are smaller than 1 (e.g.,
Antras (2004)). Our estimates suggest that in many industries, robots and
low-skilled labor are more substitutable than general capital and labor. This
makes sense since robots generally can perform tasks more flexibly than other
types of capital.

4 Counterfactual Analysis

We conduct counterfactual analyses to quantify the impact of past and future
automation by robotics on the global economy. In Section 4.1, we simulate
counterfactual world economies in 2014 where robot-related technology and
costs of international trade are set at their levels in 1993. Whereas, in section
4.2, we simulate counterfactual world economies in 2014 where robot technol-
ogy has advanced from its 2014 level.

4.1 The Impacts of Robotics and Globalization from 1993 to 2014

4.1.1 Changes in Trade Costs and Robot Technology from 1993 to 2014

To analyze the effect of progress in robot technology and the reduction in trade
cost separately, we consider two counterfactual scenarios: only the robot technol-
ogy is set at the 1993 level (Robot effect), and only trade costs are set at the 1993
level (Trade effect).13 As for the trade effect, we confine ourselves to examining
the impact of a change in international trade costs relative to domestic trade
costs.14

Trade Effect We estimate changes in trade costs between 1993 and 2014, fol-
lowing Novy (2013). Assuming that trade costs are bilaterally symmetric and
common across usages (i.e., ds

nit = dsf
nit ¼ dsf

int ¼ dsm
nit ¼ dsm

int) and that domestic
trade costs remain the same (i.e., ds

nn2004 ¼ ds
nn1993), a change in trade costs
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between 1993 and 2004 can be expressed from (8) as:

d̂ s
nit ¼

ds
ni1993

ds
ni2004

¼ Xs
ii1993X

s
nn1993X

s
ni2004X

s
in2004

Xs
ni1993Xs

in1993Xs
ii2004Xs

nn2004

( )1/ð2ys Þ
. ð16Þ

With the estimates of θs in Table 5.2, we estimate trade costs from the data on
international and domestic trade: the CEPII TradeProd database (De Sousa,
Mayer, and Zignago, 2012) and the International Trade and Production Data-
base for Estimation (Borchert, Larch, Shikher, and Yotov, 2020).15

Robot EffectWe calibrate the progress in robot-related technology from 1993
to 2014 by matching predicted values of two target variables in the model with
the data. The first target is robot density, which is defined as the stock of industrial
robots per 1000 workers. According to Graetz and Michaels (2018) and our own
calculation from the IFR data, robot density in the world increased by 3.79-fold
from 1993 to 2014. The second target is the price index of industrial robots in
Japan, which declined from 100 in 1993 to 65.5 in 2014. The model predicts
these changes, when the robot task-productivity and TFP for robot production
were lower in 1993 than in 2014 by 35% and 31.5%, respectively, i.e., ĝ s2014ðvÞ ¼
ls2014 ¼ 0.65 and ÂR

n2014 ¼ ÂR
2014 ¼ 0.685. These counterfactual changes in robot

technology are assumed to be common for all countries.

4.1.2 Results

This section reports the results of our counterfactual analyses about the effects
on: (1) the relative price of robots to that of low-skilled labor and on robot
density, (2) real wage rates for low-skilled and high-skilled workers, and (3)
robot-worker replacement.

Table 5.5 The Impact of Robotics and Globalization from 2014 back to 1993: Robot
Price and Robot Density

Robot Rental/
Low-Skilled Wage

Robot Density (per 1000 workers)

Robot Trade 2014 Robot Trade

Country (1) (2) (3) (4) (5)

China +47.1% +5.0% 0.221 -69.0% -7.3%
Germany +47.1% +11.4% 4.793 -68.3% -29.1%
India +47.1% +13.5% 0.022 -67.0% -25.1%
Indonesia +47.1% -15.8% 0.039 -65.8% +51.2%
Japan +47.1% +2.2% 8.386 -69.5% -8.3%
Korea +47.1% +8.2% 6.331 -69.8% -22.0%
Thailand +47.1% -21.0% 0.521 -66.3% +10.7%
United States +47.1% -3.0% 1.525 -68.6% +12.5%

World +47.1% +13.0% 0.740 -69.1% +13.1%

Notes: Robot density is the number of industrial robots per 1000 workers (including both high-
skilled and low-skilled workers). The value of “robot rental/low-skilled wage” in the world is
the mean value of the countries in the sample.
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Columns (1) and (2) in Table 5.5 show the effect of robot technology and
trade on the relative price of robots to that of low-skilled labor, wRit/wLit, for
selected countries. Column (1) shows that the relative price of robots in 2014
would have been about 47% higher if robot technology was at the 1993 level.
Although not shown in the table, our analysis reveals that the change in relative
price is almost entirely attributed to the increase in robot rental rate. Column (2)
indicates that the impact of trade costs are smaller than those of robot technology
and vary across the countries. In most countries, the relative price of robots
would have been higher if trade costs were at their 1993 levels. This is partly
because a decline in trade costs lowered robot prices from 1993–2014. It is
also because trade liberalization benefited low-skilled workers in those countries.

The impact on robot density reflects these changes in the relative price of
robots, as illustrated in columns (4) and (5). Robot density would have been
69.1% lower on average in the world if robot technology was at its 1993 level.
The impact of robot technology is similar in magnitude across countries, while
that of trade costs is heterogeneous. The impact of robot technology and trade
is rather large in most countries. Yet, the macroeconomic impact of increases in
robot density can still be small, especially in countries with a small robot density
in 2014 (see column (3)).

Let us turn to our main counterfactual analysis of the effects on labor markets.
Table 5.6 shows the effects of robot technology and trade on the real wage rate for
low-skilled labor, wLit/P

f
it , the real wage rate for high-skilled labor, wHit/P

f
it , and

the skill wage premium, wHit/wLit. Robot installation directly displaces low-skilled
labor. This is why the real wage rate for low-skilled labor would have been higher
in Germany and the world average if robot technology was set at the 1993 level,
though the general price level would have been higher in that case. The real
wage rates for low-skilled labor would have been lower in some other countries,
albeit only to a small degree. This suggests that robot installation increases

Table 5.6 The Impact of Robotics and Globalization from 2014 back to 1993: Wages

Real Wage for Low-
Skilled

Real Wage for
High-Skilled

Skill Wage
Premium

Robot Trade Robot Trade Robot Trade

Country (1) (2) (3) (4) (5) (6)

China -0.01% -4.96% -0.03% -5.37% -0.02% -0.43%
Germany +0.03% -5.89% -0.07% -5.00% -0.10% +0.95%
India -0.00% -6.37% -0.01% -2.37% -0.01% +4.28%
Indonesia -0.01% +0.64% -0.02% +0.64% -0.01% -0.00%
Japan -0.01% -2.14% -0.11% -1.50% -0.10% +0.66%
Korea +0.00% -4.59% -0.16% -4.88% -0.17% -0.30%
Thailand +0.00% +7.28% -0.11% +9.99% -0.11% +2.53%
United States +0.00% -0.47% -0.02% -0.74% -0.02% -0.27%

World +0.01% -4.15% -0.04% -2.92% -0.04% +1.16%

Notes: The values for the World are the mean values of the countries in the sample.
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productivity, thereby benefiting all the workers regardless of their skill level. The
effect of progress in robot technology on the real wage rate for high-skilled labor
is positive in every country (as shown as negative numbers in Column (3)), reflect-
ing the productivity effect and the complementarity between the low-skilled and
high-skilled tasks. As a result, progress in robot technology increased the skill
wage premium in every country in 1993–2014. This effect is relatively large in
Japan and Korea, as the real wage rates for the high-skilled labor would have
been much lower than in other countries if robot technology was at its 1993 level.

The effect of trade on real wage rates for both high-skilled and low-skilled
labor is rather heterogeneous across countries, as shown in Columns (2) and
(4). The effect of trade on the skill premium is also heterogeneous. The skill
premium would have been lower in China, Korea, and the United States if
trade costs were at their 1993 levels, which supports the argument that globali-
zation entails wage inequality. But globalization appears to have mitigated wage
inequality in other countries.16

The most notable result here, however, is that the impact of trade is generally
much greater in size than robot technology. This is because robot shares are still
small in 2014 (as shown in Table 5.3), so the impact on the labor market is limited.

Even though robotics has a minor impact on wages on the economy as a
whole, it can have a substantial impact on some industries. Table 5.7 shows
the industry that is estimated to have installed the largest number of robots
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Table 5.7 The Impacts of Robotics and Globalization from 2014 back to 1993:
Robot-Worker Replacement

The most Robot Installing Industry

Robot Change in Low-
Skilled LaborIndustry Name

Change Robot Trade

Country (1) (2) (3) (4)

China Automotive -50,933 65,934 1,752,039
Germany Automotive -85,275 11,362 -149,281
India Automotive -5,394 26,952 -138,858
Indonesia Plastic and chemical products -1,629 1,488 600,476
Japan Electrical, electronics, and -130,283 10,572 -526,303

machinery
Korea Electrical, electronics, and -68,512 8,872 -169,508

machinery
Thailand Automotive -6,972 17,055 -256,422
United States Automotive -73,910 7,147 127,833

World Automotive -488,763 213,092 504,859

Notes: The most robot-installing industry is an industry with the largest increase in robot stocks
from the counterfactual equilibrium (where both robot and trade costs are set at their 1993
levels) to the 2014 equilibrium. The robot change is the change in the number of industrial
robots in the most robot-installing industry. Columns (3) and (4) show the effects of
changes in robot technology and trade costs on the number of low-skilled workers in the
most robot-installing industry.



from 1993 to 2014 for each country and the change in the number of low-skilled
workers employed in such industries. The automotive industry, plastic and chem-
ical industries, and electrical, electronics, and machinery industries are most
affected. The number of low-skilled workers in China, India, and Thailand
among others would have been substantially higher in these respective industries
if robot technology was at its 1993 level. It is worth emphasizing that in the
automotive industry, which is one of the industries that install a large number
of robots, robot technology displaced 213,092 low-skilled workers worldwide,
while trade liberalization displaced 504,859 workers according to our simula-
tion. In the automotive industry, the labor-displacement effect of robotics is
rather large, nearly half the volume of that of trade.

4.2 The Impacts of Future Robot Automation

From the counterfactual analysis described in the previous section, we have found,
among others, that progress in robot technology made only a minor impact on
labor markets as a whole in the period of 1993–2014. This can be simply
because the advances in robot technology were still at an early stage in 2014.
In this section, therefore, we make a bold assumption that the robot productivity
will increase tenfold (i.e., lt ¼ ÂS

t ¼ 10), from the 2014 level and assess the impli-
cations of progress in robot technology of that scale on the labor market.

Table 5.8 shows the change in the share of tasks performed by robots in the
most affected industry for each country and the change in the country’s overall
robot density from the 2014 economy to the counterfactual economy (CF).
The worldwide robot task share in the electrical, electronics, and machinery
industry would increase approximately tenfold from 0.002 to 0.021. It would

Table 5.8 Tenfold Increases in Robot Productivity: Robot Usage

Robot Task Share (vnst) in the most
Robot Installing Industry

Country-Level Robot
Density (per 1000

Workers)

IFR 2014 CF 2014 CF

Country (1) (2) (3) (4) (5)

China 10 0.001 0.012 0.22 2.03
Germany 11 0.033 0.186 4.79 45.53
India 11 0.014 0.087 0.02 0.16
Indonesia 7 0.003 0.015 0.04 0.26
Japan 10 0.010 0.111 8.39 90.93
Korea 10 0.018 0.181 6.33 64.43
Thailand 11 0.052 0.273 0.52 3.68
United States 11 0.011 0.072 1.52 13.46

World 10 0.002 0.021 0.74 7.31

Notes: The most robot-installing industry is an industry with the largest increase in robot stocks
from 2014 to the counterfactual equilibrium. Their IFR industry codes are shown in column
(1). The values for the World are the mean values of the countries in the sample.
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still be too small to make an impact on the macroeconomy, although the shares
of the most affected industries would become rather sizable in some countries,
such as Germany, Japan, and Thailand. The tenfold increase in robot technology
would increase each country’s robot share and robot density about tenfold, as
columns (4) and (5) illustrate.

Such large changes in robot technology engender a much greater impact on
the labor market than observed in the previous section’s counterfactual analysis.
Table 5.9 presents the aggregate labor market impact, showing the changes in
the real wage rates for low-skilled and high-skilled labor and the skill
premium. As robot technology advances, high-skilled workers would benefit in
all countries. Low-skilled workers would also benefit in all countries in this
list. The skill premium would increase in all countries in the list but India. The
tenfold increase in robot technology would make sizable positive impacts on
the real wage rate for high-skilled labor and hence increase the skill premium
by non-negligible percentage points in countries such as Germany, Japan, and
Korea. But, as a whole, even the tenfold increase in robot productivity would
make only a moderate impact on the global labor market.

We also investigate to what degree low-skilled workers would be relocated as a
result of the technological progress, which is reported in column (4). In some
countries, such as Germany, Japan, and Korea, a sizable percentage of workers
would be relocated.17 But, we see that the impact of progress in robot technol-
ogy on the labor market would still not be that large on average.

5 AI

This section extends our analysis of robots to AI. We assume here that AI can
perform the high-skilled labor’s tasks Hnst and reformulate the production func-
tion (3) in the same manner as robots substitute for the low-skilled workers.

Unlike robots that are a special sort of capital, we treat AI as a service to which
user firms subscribe. Thus, we directly calculate each country’s expenditure on AI
to derive the share of AI in high-skilled tasks. The difficulty, though, is that we
do not have data on such expenditures, specifically on AI. AI trades are recorded
in the GTAP database as part of trades in the communication sector, which
includes postal services, motion pictures, and others.

To find an appropriate share of AI in the communication sector, we make a
bold assumption that the world average share of AI in the most AI installing
Industry, namely “All other non-manufacturing branches” (IFR industry 14),
equals 0.002, the world average share of robots in the most robot-installing
industry. Using the World Input-Output Database (WIOD) Release 2016, we
calculate the trade shares of “computer programming, consultancy, and the
related activities; information service activities” in those in the communication
sector. When only 1.5% of those shares are related to AI, the world average
share of AI in the most AI installing Industry equals 0.002.

We estimate the elasticities of substitution between AI and the high-skilled
labor in 17 IFR industries, in the same manner as we have done with robots.
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Table 5.10 shows the results. In every industry, the estimated elasticity is smaller
than that of robots and low-skilled labor, suggesting that the high-skilled labor is
less substitutable by AI than the low-skilled labor is by robots. Indeed, the esti-
mated elasticities are smaller than 1 in ten industries. In the following simulations
of the 2014 economy with enhanced AI productivities, we replace those

Table 5.9 Tenfold Increases in Robot Productivity: Labor Market Impacts

Real Wage
for

Low-Skilled

Real Wage
for

High-Skilled

Skill
Wage

Premium

Aggregate
Low-Skilled

Labor Relocation

Country (1) (2) (3) (4)

China +0.55% +0.90% +0.35% 0.32%
Germany +0.60% +2.04% +1.44% 0.94%
India +0.17% +0.07% -0.10% 0.19%
Indonesia +0.30% +0.47% +0.17% 0.30%
Japan +2.12% +3.30% +1.16% 1.01%
Korea +1.74% +4.41% +2.62% 1.38%
Thailand +1.22% +2.22% +0.99% 0.59%
United States +0.19% +0.47% +0.28% 0.20%

World +0.39% +0.99% +0.60% 0.54%

Notes: The skill wage premium is the ratio of the high-skilled wage rate to low-skilled wage rate.
The aggregate low-skilled labor relocation is calculated by

ES
s¼1 L

s 0
i2014 = Ls

i2014/2L
s
i2014 and shown

as a percentage, where Ls
i2014 and Ls 0

i2014 denote the actual and counterfactual numbers of low-
skilled workers employed in industry s in 2014, respectively. We divide the sum of changes in
employment over the industries by 2 to avoid double counting. The values for the World are
the mean values of the countries in the sample.

Table 5.10 Elasticities of Substitution Between AI and High-Skilled Labor

IFR Description σAL Robust SE 1st Stage F n.obs

1 Agriculture, forestry, and fishing 0.958 (0.087) 162.61 204
2 Mining and quarrying 1.113 (0.093) 162.61 204
3 Food and beverages 1.026 (0.071) 162.61 204
4 Textiles 0.936 (0.077) 162.61 204
5 Wood and furniture 0.873 (0.078) 162.61 204
6 Paper 1.033 (0.076) 162.61 204
7 Plastic and chemical products 1.045 (0.076) 162.61 204
8 Glass, ceramics, stone, and mineral

products
0.824 (0.073) 162.61 204

9 Metal 0.710 (0.071) 162.61 204
10 Electrical, electronics, and machinery 0.727 (0.076) 162.61 204
11 Automotive 0.506 (0.089) 162.61 204
12 Other vehicles 0.740 (0.0923) 162.61 204
13 All other manufacturing branches 0.828 (0.073) 162.61 204
14 All other non-manufacturing branches 1.192 (0.072) 162.61 204
15 Electricity, gas, and water supply 1.189 (0.088) 162.61 204
16 Construction 0.956 (0.091) 162.61 204
17 Education, research, and development 1.251 (0.080) 162.61 204

Notes: Standard errors are heteroscedasticity robust standard error. The first stage F-values are
identical for all industries because the first stage is common for all industries.
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elasticities with 1 because our model requires the elasticity to be greater than or
equal to 1.18

With these estimates of the elasticities of substitutions, we follow the same
procedure conducted in the analysis of robots and obtain the estimated impact
on labor markets. To isolate the effect of AI on labor markets, we simulate the
2014 economy with the AI productivities (AI’s counterpart of γst) that is 10
times as large as those in 2014, but leave the robot productivities at 2014
levels. Table 5.11 shows simulated changes in AI task shares. Compared with
Table 5.8, resulting changes in the AI shares are much smaller than those in
the robot shares when the robot productivity becomes tenfold, reflecting the
observation that the elasticity of substitution between AI and high-skilled
labor is smaller than that between robots and low-skilled labor in every industry.

Table 5.12 shows the estimated impacts of a tenfold increase in AI productiv-
ity on labor markets. As expected, low-skilled workers benefit from the progress
in AI technology. The impact on real wage rates for low-skilled labor, however,

Table 5.11 Tenfold Increases in AI Productivity: AI Shares

AI Task Share in the most AI Subscribing Industry

IFR 2014 CF

Country (1) (2) (3)

China 14 0.0007 0.0011
Germany 14 0.0031 0.0048
India 17 0.0003 0.0005
Indonesia 14 0.0006 0.0009
Japan 14 0.0020 0.0032
Korea 14 0.0011 0.0017
Thailand 14 0.0004 0.0006
United States 14 0.0007 0.0011

World 14 0.0020 0.0030

Notes: The values for the World are the mean values of the countries in the sample.

Table 5.12 Tenfold Increases in AI Productivity: Labor Market Impacts

Real Wage Real Wage Skill
for Low-Skilled for High-Skilled Wage Premium

Country (1) (2) (3))

China +0.07% -0.04% -0.11%
Germany +0.56% +0.45% -0.11%
India +0.07% -0.04% -0.11%
Indonesia +0.07% -0.08% -0.15%
Japan +0.37% +0.26% -0.11%
Korea +0.14% +0.02% -0.12%
Thailand +0.02% -0.08% -0.11%
United States +0.18% +0.07% -0.11%

World +0.35% +0.20% -0.14%

Notes: The values for the World are the mean values of the countries in the sample.
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are smaller than those of robots on the real wage rate for high-skilled labor, as
shown in Table 5.9, due to the smaller elasticities of substitution between AI
and high-skilled labor. The impacts are relatively large in Germany and Japan,
both of which have relatively large AI task shares both in 2014 and in the coun-
terfactual equilibrium, as shown in Table 5.11. Similarly to the case of robotics,
progress in AI productivity increases the real wage rates for high-skilled labor,
which AI substitutes, in some countries such as Germany and Japan. Wage
inequality would be reduced in all the countries.

6 Conclusion

This chapter has quantified the impact of past and future robot/AI progress on
labor markets in a general equilibrium trade model with task substitutions
between robots and low-skilled labor and between AI and high-skilled labor.
Based on our new estimates of robot/AI income shares and elasticities of substi-
tution for labor, the model shows that past technological progress of industrial
robots had much smaller macroeconomic impacts on labor markets than the
past trade liberalization and that the future impact of tenfold increases in the pro-
ductivity of robot and AI on would be modest.

As Brynjolfsson and McAfee (2011) emphasize, robot technology advances at
an exponential pace. It is likely that the benchmark year of 2014 was still on the
verge of rapid technological advances, so our simulation may well have underes-
timated the future impact of robots and AI. The narrow definition of robotics
may also have contributed to the underestimation. Technological progress in
AI and robots have indeed been more rapid than we had anticipated. These
are likely to reinforce each other in the technology-development stage and also
at the stage of industrial usage. As Brynjolfsson and McAfee (2011) and
Baldwin (2019) argue, the impacts of AI and robotics on the labor market,
and more broadly the global economy, may soon become quite large.
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1 Acemoglu et al. (2020a) show that establishments whose workers engage in tasks
compatible with current AI capabilities increase the hiring of workers in AI posi-
tions but decrease non-AI hiring. They also observe no discernible industry-level
impact on employment or wages. Frey and Osborne (2017) assess how 702 occu-
pations are susceptible to computerization and find evidence that wages and edu-
cational attainment exhibit a negative relationship with the susceptibility of
computerization. Felten et al. (2018) assess which occupations are heavily
affected by AI advances.
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2 TCni includes the logarithm of distance, dummy variables for contiguity,
common language, ever-colonial relationship, and a dummy indicating interna-
tional trade (i.e., i 6¼ n) as opposed to intranational trade. These variables are
from the CEPII datasets.

3 We also estimated (10) by the Poisson pseudo maximum likelihood (PPML) and
found the PPML estimates slightly greater than those in Table 5.2.

4 Our estimates of trade elasticities are robust to the removal of observations with
small trade shares. The Online Appendix shows the comparison of our estimates
with those of some other studies: Caliendo and Parro (2015), Giri et al. (2021),
and Shapiro (2016). It also shows the results of the same counterfactual analysis
as presented in Section 4.1 but with mean estimates by those studies instead of
our own. With smaller trade elasticities, price variation would be greater, and
hence the impact of robotics and trade on real wage rates would tend to be
greater. But, our main message about the size of the macroeconomic impact of
robotics would remain valid.

5 If we included the constant term in (12), we would have to drop one importer-
year dummy and one exporter-year dummy for each year to avoid perfect collin-
earity. Instead, we choose to drop the constant term and the benchmark country’s
importer-time dummy.

6 From the comparison of the gravity equation (12) with its theoretical counterpart
(11), especially when n = b, it is apparent that the coefficient of the exporter-time
dummy equals ~zEit ¼ yRln AR

it/c
R
it

( )þ lnXR
bt þ yRlnPR

bt

( )
. By including the

exporter-time dummy for all exporting countries without the constant term
(which would reflect the benchmark country’s importer-time fixed effect), the
coefficient of the exporter-time dummy reflects the benchmark country’s
importer-time fixed effect as well as the exporter-time fixed effect in question.

7 The prices in Germany are underestimated, possibly because German robots are
of higher quality. If we remove the data for Germany, the root mean squared
errors would be 13,806 dollars, which is slightly lower than one standard devia-
tion of 14,439 dollars in the sample. The correlation between the estimated
prices and the prices in the data would be 0.39.

8 The results of this estimation and all subsequent analyses for other countries are
reported in the Online Appendix.

9 The estimated income shares of robots are so small partly because the IFR’s def-
inition of industrial robots is very narrow. The definition excludes machines that
only work in specialized tasks.

10 A limitation of the logistic formulation (14) is that it always predicts a strictly pos-
itive vnst > 0, even though the data includes vnst = 0 for some industries in some
countries. In our counterfactual analysis, we deal with this zero robot-use case in
the two ways. In the first approach, we set vnst = 0 and v̂nst ¼ 1, whenever vnst = 0.
In the second approach, we replace vnst = 0 with min{vist > 0 : i = 1, . . ., N}. We
take the first approach in a simulation where robot usage is expected to decrease
in the counterfactual scenario and take the second approach otherwise.

11 The exclusion restriction would be violated if, for example, the robot productiv-
ity is heterogenous across countries and correlated with the distance to robot
exporting countries.

12 They are statistically greater than 1 at 1% level of significance in all but three
industries, 2 (Mining and quarrying), 14 (All other non-manufacturing
branches), and 16 (Construction).

13 We also examined another scenario to show the Combined effect, where both
robot technology and trade costs are set at their 1993 levels. The combined
effect is not very different from the sum of the two individual effects, suggesting
the interaction of the two effects is not large in scale.
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14 It is difficult to estimate changes in domestic and international trade costs sepa-
rately with our data, because the trade share of a country’s products in a market,
which we use to estimate the elasticities of substitution between input varieties in
production, depends on the relative costs of international trade to those of
domestic trade but not on them separately.

15 We connect the two datasets in the year 2000. Equation (16) cannot be applied if
either Xs

nit or X
s
int is zero or missing. In such cases, we choose the median trade

costs for other products between the same pair of countries.
16 Our model allows countries to have different factor endowments as well as differ-

ent production technologies. Therefore, part of the heterogeneity of this impact
of trade across countries can be explained by the traditional Stolper-Samuelson
effect. The effect of trade liberalization on factor prices is complex (see, for
example, Grossman and Rossi-Hansberg (2008); and Feenstra (2015), Chapter
4). It is beyond the scope of the chapter to identify the main cause of each specific
result as to the effect of trade on real wage rates.

17 In terms of the number of workers, 465,418 workers in Japan and 165,852
workers in the United States, for example, would be relocated.

18 As shown in (14), if the elasticity of substitution is smaller than 1, a decrease in
the relative price of AI would decrease the share of tasks that are performed by AI
in our model with a Cobb-Douglas production of the composite task as formu-
lated in (3). We imposed the restriction that the elasticity is greater than 1 to
prevent such implausible demand responses to the AI price shocks from happen-
ing in our simulations.

19 We introduce Ont to match country n’s total expenditure with its total income in
each year t.
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A APPENDIX: EQUILIBRIUM CONDITIONS

From the production functions (2), the unit cost index csit in (8) is given by

csit ¼ xsiw
bsGit
Git w

bsHit
Hit w

bsKit
Kit w

bsTit
Tist

YS
k¼1

Pkm
it

( )bskit , ð17Þ

where xs
i is a constant, wGit the industry-specific factor price and wHt the high-

skilled labor wage. From (5), the unit cost of the set of low-skilled tasks wTist

in industry s in country i at time t becomes

wTist ¼
wRitð Þvist wLitð Þ1=vist

GstðvistÞ
. ð18Þ

Let Xsu
nt be country n’s tariff-inclusive expenditure on usage u in industry s. Let

Y s
nt be the tariff-exclusive gross revenue of industry s in country n that satisfies

Y k
nt ¼

EN
i¼1

pkfint
1þtkint

Xkf
it þEN

i¼1

pkmint
1þtkint

Xkm
it . The Cobb-Douglas production and utility

functions imply

Xsm
nt ¼

ES
k¼1

bks
ntY

k
nt ,

Xsf
nt ¼ αs

n Vnt þ TRnt þ TDnt =XS
nt

( )
for s ¼ 1, ..., S = 1,

XSf
nt ¼ IR

nt ¼ dRRnt and XSm
nt ¼ 0,

ð19Þ

where Vnt = ∑swHsntGsnt+ wHntHnt+ wLntLnt+ wKntKnt+ wRntRnt is the factor

income, TRnt =
ES

s¼1

EN
i¼1

tsnit
1þtsnit

ðpsf
nitX sf

nt þ psm
nitX

sm
nt Þ the sum of the tariff

revenue, Ont other exogenous income sources, and TDnt ¼
ES

s¼1

EN
i¼1

psfnit X
sf
ntþpsmnitX

sm
nt

1þtsnit
= psfintX

sf
it þpsmintX

sm
it

1þtsint

( )
the trade deficit exogenously given.19

For the production factors, the Cobb-Douglas production function implies

bs
GntY

s
nt ¼ wGnstGnst ,ES

s¼1

bs
HntY

s
nt ¼ wHntHnt ,

ES
s¼1

bs
KntY

s
nt ¼ wKntKnt , ð20Þ

ES
s¼1

1= vst
wRnt

wLnt

( )( )
bs
TntY

s
nt ¼ wLntLnt , and

ES
s¼1

vst
wRnt

wLnt

( )
bs
TntY

s
nt ¼ wRntRnst .
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Since the consumer price index is Pnt ¼
QS=1

s¼1 Psf
nt

( )αs , the Euler equations (7) are
written as:

YS=1

s¼1

Psf
nt

( )αs ¼ wKnt

rn þ dK
and PR

nt ¼
wRnt

rn þ dR

. ð21Þ

Conditions (9), (8), (17), (19), (20) and (21) determine the equilibrium
allocation.
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6 Telemigration and Development
On the Offshorability of
Teleworkable Jobs

Richard Baldwin and Jonathan I. Dingel

1 Introduction

The future of globalisation is changing for one ineluctable reason. The cost of
moving weightless things (ideas and data) is falling radically faster than the
cost of moving heavy things (goods). Telemigration – namely, working from
home when home is abroad – is a small but fast-growing aspect of globalisation’s
weightless future.

Will telemigration have a measurable impact on development? The answer to
this question turns on the answer to a second question: How many service-sector
jobs will be offshored from rich nations to emerging markets? Since answering
this requires all sorts of unknowable things, economists have tended to focus
on a narrower question: How many jobs are offshorable?

More than a decade ago, Alan Blinder (2007) tackled the narrower question by
looking at features of jobs in the United States. His answer was based on two
vectors. The first vector described the offshorability of each occupation. The
second vector was the number of US workers employed in each occupation.
The inner product of these vectors yielded the number of US jobs that could
be offshored. Blinder’s answer was: “I estimate that somewhere between 22%
and 29% of all US jobs are or will be potentially offshorable within a decade or
two (I make no estimate of how many jobs will actually be offshored).”1

One goal of this chapter is to argue that moving from the narrow question to
the broader question should involve switching from a focus on the nature of
occupations to broader considerations that point to the gravity equation as a
way of roughly quantifying the value of work that might be offshored to
workers in lower-wage economies. We develop the exercise in Section 3 (theoret-
ical motivation) and Section 4 (quantification exercise).

The conclusion of our rough quantification exercise is that telemigration is start-
ing from too low of a base to allow it to become a major force for development –
unless something radical changes. The constant-elasticity gravity model we employ
embeds a series of assumptions that limit the impact of modest declines in trade
costs. Correspondingly, telemigration should not be much of a threat to the
service workers in high-wage nations. This soothing conclusion flies in the face
of the anxiety that online offshoring evokes in high-wage nations. For example,
David Wessel (2004) wrote in The Wall Street Journal:
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Much of the American anxiety about outsourcing to India and China can be
boiled down to this simple question: Will there be good jobs left for our
kids? . . . Tens of millions of increasingly skilled Chinese and Indian
workers are joining the global economy at a moment when technology
can dispatch white-collar work overseas almost instantly.

What is the source of this mismatch between popular perceptions and our quan-
tification exercise? Is the model we are using missing something, or does the
popular anxiety reflect the familiar disconnect between trade economists and
the public regarding the role of comparative advantage in general equilibrium?
In Section 5, we explore the possibility that the mismatch might be the fault
of the model.

Canonical frameworks rule out the possibility that modest changes in trade
frictions can generate radical changes in employment patterns. Quantitative
Ricardian trade models, starting from Eaton and Kortum (2002), typically
assume that the pattern of comparative advantage is symmetric across countries.2

More broadly, quantitative trade models typically feature a constant trade elastic-
ity, so that the direct effect of a symmetric decline in trade costs is a symmetric
increase in exports by both high- and low-wage nations.

In Section 5, we articulate circumstances that allow marginal changes to have
radical effects. The analytic framework features both trade in goods and telemi-
gration, which is trade in services. In this simple two-country model of telemigra-
tion, a symmetric decline in the costs of trading services internationally can have
very asymmetric consequences for the exports of developed and developing
economies. The key is to assume that latent comparative advantage takes a differ-
ent shape than typically assumed in quantitative trade models. In short, it is a
model in which telemigration could meaningfully shape low-wage nations’ devel-
opment journeys, with attendant effects on the service-sector employment pros-
pects of workers in high-wage economies.3

2 Offshored jobs: Beyond the two-vector approach

Blinder’s seminal calculations turned primarily on his judgement of the offshor-
ability of particular occupations using a four-way categorisation that ranged from
non-offshorable (category IV) to highly offshorable (category I). The judgement
was guided by a decision tree illustrated in Figure 6.1.

These judgements were then matched with the number of US workers
employed in the relevant occupations. The two vectors he used are shown in
Table 6.1. The calculation was done under a “conservative” assumption –

scenario Low in the table – that includes all jobs in category I and II occupations,
and an “aggressive” assumption – scenario High in the table – that also includes
all category III occupations. The inner product of the low scenario vector and
the jobs vector yields the answer that about 29 million jobs are offshorable,
which was about 22% of the labour force in 2004. The inner product of
the high scenario vector with the jobs vector gives the answer that about
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38 million jobs might be offshorable (about 29% of all jobs). Blinder refined the
first vector, which describes the offshorability of each occupation, in subsequent
research (Blinder 2009; Blinder and Krueger 2013).

Some researchers came up with broadly similar results, while others found
much lower figures. McKinsey Global Institute (2005) looked at eight represen-
tative sectors in various high-wage economies and estimated that about 11% of
the jobs were offshorable to developing countries. Bardhan and Kroll (2003)
found that about 11% of all US jobs were offshorable, but they limited them-
selves to occupations where some offshoring was already occurring. Van
Welsum and Vickery (2005) gauged that 20% of total US employment was off-
shorable. Jensen and Kletzer (2010) used a very different approach that leveraged
location data inside the US. Geographically concentrated service sectors were
more tradable, they suggested, because service consumers tend to be dispersed
in proportion to the population. Their work implied that 38% of US workers
are in tradable, and therefore offshorable, occupations. In brief, the estimates
were never negligible, but some were less than half those of Blinder’s original
estimate.

2.1 The two-vector approach

Last year, Dingel and Neiman (2020) took a two-vector approach to answer a
question that seems similar to Blinder’s: how many jobs can be done at home?
Using job traits from the Occupational Information Network (O*NET)

Figure 6.1 Blinder’s Classification Procedure.
Source: Blinder (2007).
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survey, they built the first vector by classifying each occupation as able to be per-
formed remotely or not. The second vector, as with Blinder, contained the
number of people working in the corresponding occupations. The inner
product of the two provided the answer to the question.

But the Dingel-Neiman and Blinder questions differ in subtle but important
ways. Dingel and Neiman (2020) asked how many workers could sit in their
homes during the pandemic and perform the same job they were (overwhelm-
ingly) performing at their employers’ offices prior to the pandemic. Quite obvi-
ously, the main issue is the nature of the jobs: can they be performed remotely?
The nature of the workers is irrelevant as far as teleworkability is concerned
because the exercise considers whether the same workers could do the jobs
from home.

Blinder (2007) answered a very different question. He asked whether, for
example, a Uruguayan political analyst could do the same job as an American
political analyst by exporting the service to US customers currently serviced by
that American analyst. Here both the nature of the job and the nature of the

Table 6.1 Major Occupations ranked by Offshorability Score (OS)

Occupation OS Scenarios Workers

Low High

Computer programmers I 1 1 389,090
Telemarketers I 1 1 400,860
Computer systems analysts I 1 1 492,120
Billing and posting clerks and machine operators I 1 1 513,020
Bookkeeping, accounting, and auditing clerks I 1 1 1,815,340
Computer support specialists I and

II
1 1 499,860

Computer software engineers, applications II 1 1 455,980
Computer software engineers, systems software II 1 1 320,720
Accountants II 1 1 591,311
Welders, cutters, solderers, and brazers II 1 1 358,050
Helpers – production workers II 1 1 528,610
First-line supervisors/managers of production
and operating workers

II 1 1 679,930

Packaging and filling machine operators and
tenders

II 1 1 396,270

Team assemblers II 1 1 1,242,370
Bill and account collectors II 1 1 431,280
Machinists II 1 1 368,380
Inspectors, testers, sorters, samplers, and weighers II 1 1 506,160
General and operations managers III 1 1,663,810
Stock clerks and order fillers III 1 1,625,430
Shipping, receiving, and traffic clerks III 1 759,910
Sales managers III 1 317,970
Business operations specialists, and all others IV 916,290

Source: Authors’ elaboration of information in Blinder (2007), Table 2.
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workers would seem to matter: can the service be provided from another country
and are there foreign workers who can provide it? Note that Blinder (2007)
explicitly recognises the point, “the task is to estimate the number of jobs that
are potentially offshorable, meaning that Americans performing those jobs face
potential competition from, say, Indian or Chinese workers.”

2.2 Additional considerations

Whether an “offshorable” job (in the sense of Blinder 2009) is actually per-
formed offshore depends on a number of other considerations. First, there
must be foreign workers who are capable of doing the work. We would want
to incorporate data that speaks to the number of potential foreign suppliers in
each occupation. Occupations that can be performed remotely tend to be skill-
intensive, high-wage jobs in the United States (Dingel and Neiman 2020). As
Blinder (2006) discussed, this is part of the concern about the labour-market
consequences of emerging markets exporting such services to developed econo-
mies. It also means that the potential foreign suppliers are not the total foreign
labour force but the number of foreign workers who possess the relevant skills, as
revealed by, for example, educational attainment or current occupation.

Second, one must address the fact that domestic and foreign workers are still
not perfect substitutes even when they have the same level of educational attain-
ment or occupational title. For example, English-speaking Canadians might be
pretty good substitutes for English-speaking Americans in many teleworkable
jobs, but Portuguese-speaking Brazilians seem less likely to be able to immedi-
ately perform the relevant language-intensive tasks. Even English speakers
from different countries may find that their interactions with customers and
co-workers are subject to a variety of linguistic and cultural frictions, as captured
by the quip that the United States and Great Britain are two countries separated
by a common language.

As it turns out, such frictions may be particularly relevant in the kinds of occu-
pations that can be performed remotely. The O*NET surveys that Dingel and
Neiman (2020) used to classify occupations as able to be performed remotely
also characterize the language intensity and importance of soft skills in each occu-
pation on a scale from 1 to 5. Figure 6.2 shows that teleworkable occupations
place much greater importance on command of the English language than
those occupations that cannot be performed remotely. The occupation with
the highest importance of English language score is public relations specialist
(4.96 out of 5). While this job can be performed remotely, it also is an occupa-
tion in which linguistic nuance and precision are very important.

More broadly, jobs that can be done remotely tend to rely on soft skills, which
embed elements that are specific to particular social and cultural contexts.
Deming (2017) documents a rising return to social skills in the United States
in recent decades and emphasizes that the fastest growing cognitive occupations
have been those requiring significant interpersonal interaction. As shown in
Figure 6.3, jobs that can be done remotely are also occupations that typically
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place greater importance on oral expression and written expression. Figure 6.4
shows that teleworkable jobs also typically place greater importance on persua-
sion and social perceptiveness. Both sales engineers and mathematical technicians
can telework, but they are at opposite extremes in terms of the importance of
persuasion (4.25 versus 1.66 out of 5). To the extent that social and cultural con-
texts vary across countries, this makes it less likely that a public relations specialist
or a sales engineer located in Hanoi is a perfect substitute for one located in
Seattle.

2.3 CAGE distance

One way to articulate the question about the substitutability of workers from dif-
ferent linguistic, cultural, and social contexts is to view it as a matter of “dis-
tance” between workers. The metaphoric distance encompasses a variety of
dimensions. For example, activities that can be performed remotely but must
be performed synchronously will be sensitive to differences in time zones
(Bahar 2020). Considering pairs of countries, Ghemawat (2007) dubs differ-
ences in these cultural, administrative, geographic, and economic factors the

Figure 6.2 Importance of English Language for Teleworkable versus Non-Teleworkable
Jobs

Source: Authors’ elaboration of O*NET data. The classification of occupations as teleworkable
or not is from Dingel and Neiman (2020).
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Figure 6.3 Importance of Oral and Written Expression for Teleworkable versus Non-teleworkable Jobs
Source: Authors’ elaboration of O*NET data. The classification of occupations as teleworkable or not is from Dingel and Neiman (2020).
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Figure 6.4 Importance of Persuasion and Social Perceptiveness for Teleworkable Versus Non-teleworkable Jobs
Source: Authors’ elaboration of O*NET data. The classification of occupations as teleworkable or not is from Dingel and Neiman (2020).
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“CAGE” distance between them. In this sense, French-speaking Canadians in
Quebec can be considered “farther” from New York employers than English-
speaking Canadians in Calgary, even though Calgary is over 3000 kilometres
farther away.

This framing of the substitutability between domestic and foreign workers as a
bilateral distance leads immediately to a standard concern in trade – the existence
of alternative suppliers. The likelihood of US firms hiring foreign workers from a
given country depends not just on the bilateral CAGE distance to that country,
but also on the bilateral distances to alternative sources of workers.

Thus, in addition to the two-vector approach that estimates the mass of tele-
workable jobs in one nation that might be supplied from abroad, one should
consider the mass of potential suppliers in other nations and a measure of “dis-
tance” between the two. In moving from the question of “how many developed-
economy jobs are offshorable?” to “how many developed-economy jobs could
go offshore to emerging markets?”, we have added considerations about the
exporting nation’s economic mass and bilateral impediments to such potential
trade in services. That points to the gravity equation for international transac-
tions, a long-standing means of summarizing the expected volume of trade
between economies.

2.4 Gravity is a hard habit to shake off

The simplest gravity equation predicts that bilateral trade in goods will be pro-
portional to the economic mass of the origin nation times the economic mass
of the destination nation divided by the bilateral distance (Head and Mayer
2014). In thinking about occupation-level transactions, one would need the
demand for teleworkable tasks in the importing nation, a measure of potential
supply in the exporting nation, and a notion of distance. The tally of jobs in
the importing nation that can be performed remotely is the relevant importer
mass, the population of suitably skilled workers is the relevant exporter mass,
and various “CAGE” distances capturing bilateral trade frictions.

As it turns out, estimation using importer and exporter fixed effects addresses
the role of competing alternative suppliers and obviates the need to gather data
on the mass variables, albeit at the cost of restricting thought experiments about
potential supply. Before getting there, it is worth being explicit about how we are
thinking about telemigration as trade in services in the context of the gravity
equation.

3 A first-pass gravity equation for telemigration

To guide our thinking about using gravity to study telemigration, it is useful to
lay out the steps in the model’s simplest derivation. Here we sketch the gravity
model in which all economic activity is in the service sector. This one-sector
exposition follows Baldwin and Taglioni (2006).

158 Richard Baldwin and Jonathan I. Dingel 158



Suppose that each potential telemigrant provides nationally differentiated
labour services (the Armington assumption).4 Workers in nation o (“origin”)
charge a price in market d (“destination”) of pod. The export of services from
workers in nation o to nation d is:

podxod = shareodEd

where shareod is the share of expenditure in market d on services supplied by
workers in o. Ed is total expenditure on teleworkable jobs in nation d. Next,
we link shares to relative prices using a CES demand function:

shareod ¼
pod
Pd

( )1=s

, where Pd ¼
ER

k¼1

ðpkdÞ1=s

(
@

)
A

1/ð1=sÞ

, s > 1

where R is the number of nations in the world. Assuming perfect competition,
the equilibrium price is

pod ¼ todwoao

where ao is the unit labour coefficient, wo is the equilibrium wage, and tod is the
bilateral iceberg cost. Thus, exports from o to d are:

Vod ¼ todwoaoxod ¼
todwoao

Pd

( )1=s

Ed

Here Vod is the aggregate value of telemigration payments from o to d, i.e., the
bilateral value of trade in services.

Finally, we use the general equilibrium adding-up condition to solve for prices
and wages. Nation o has income Yo ¼ woLo (where Lo is the labour supply), which
in general equilibrium, must match output, so wages have to adjust such that

Yo ¼
ER

d¼1
Vod. Thus:

Yo ¼ ðwoaoÞ1=s
ER

d¼1

tod
1=s Ed

Pd
1=s

( )

Solving for the producer price of the services in nation o, we get:

po
1=s ¼ Yo

Oo

, where Oo =
ER

i¼1

toi
1=s Ei

Pi
1=s

( )

Here Oo is a measure of market access; the capital-omega is a mnemonic for
‘openness’ since it measures the openness of nation o’s exports to world markets.
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Plugging in the solution into the expression for Vod is the last step. It yields a
first-pass gravity equation for offshoring:

Vod ¼ tod
1=s YoEd

OoPd
1=s

( )

Thus, Yo is the total labour income of teleworkers in origin nation o, and Ed is the
spending in destination nation d on labour in teleworkable jobs. This could be
estimated in log-linear form.

The two core messages from Sections 2 and 3 are that 1) offshoring jobs will
generate cross-border trade in services, and 2) bilateral trade in services can be
empirically modelled using the gravity equation. To illustrate how one may
use the gravity-based approach to quantify potential trade in services, we
update gravity regressions estimated by Head, Mayer, and Ries (2009). Using
Eurostat data covering 1992–2006, they found a strong negative correlation
between physical distance and bilateral trade in services.

4 Quantifying potential growth in trade in services

The combined forces of rapid technological progress in digital communication tools
(Baldwin 2019) and an extended experiment with remote work imposed by the
coronavirus pandemic (Dingel and Neiman 2021) may substantially reduce
the importance of physical proximity for trade in services relative to the turn of
the century. We use the gravity regression to illustrate the scope for greater services
trade if physical distance becomes less relevant and discuss the frictions associated
with cultural, linguistic, and social differences between trading nations.

Unfortunately, data on trade in services is quite crude relative to data on trade
in goods – and extremely crude compared to the occupation-level data used in
Blinder (2007) and Dingel and Neiman (2020) and shown in Figures 6.2
through 6.4. There are more than 800 distinct 6-digit occupations in those
data sets. The ILO provides employment counts for 40 distinct 2-digit occupa-
tional groups for more than 80 countries. By contrast, bilateral trade flows for
services are reported for only a dozen or so broad categories of services. Head,
Mayer, and Ries (2009) report estimates for only four categories of services trade.

The advantage of using reported flows of services trade is that it allows one to
assess the role of international business frictions without having to construct a
model of the relevant economic masses. As mentioned, these masses are absorbed
in importer-year and exporter-year fixed effects. The consequences of differences
in language, cultural, and physical proximity are estimated using variation in ser-
vices trade across pairs of countries.

4.1 Data

We estimate gravity service regressions using data released since Head, Mayer,
and Ries (2009) – henceforth HMR – wrote their study. We use trade flows
for 12 service sectors in 2005–2019, as reported by the OECD-WTO Balanced
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Trade in Services (BaTIS) dataset, and flows for 11 service sectors in 1995–2006,
as reported in the previous BaTIS edition (Fortanier et al. 2017; Liberatore and
Wettstein 2021). In sharp contrast to the data employed by HMR, these services
trade data sets report very few zeros.5 Following HMR, we include log physical
distance, differences in time zones, and dummy variables indicating a colonial
relationship, shared language, and a common legal system for each pair of
countries.6

While one might combine estimates of the frictions impeding international
services trade with proxies for latent occupation-level demand and supply for tel-
eworkable tasks, here we confine ourselves to discussing the direct effects associ-
ated with the estimated elasticities of the gravity regression.

4.2 Gravity estimates of bilateral frictions for trade in services

Table 6.2 shows our results for total services. The first five columns are for the
1995–2006 period (corresponding to the original HMR period). The signs
and magnitudes of the point estimates are all reasonable in light of their prior

Table 6.2 Total-Services Gravity Regressions: Various Country Samples, Linear
Fixed-Effects Model

(1)
Full

(2)
EU

(3)
OECD

(4)
G20

(5)
EU/OECD

2005–2019
(6)
EU/OECD

Distance
(log)

−1.155a
(0.007)

−1.763a
(0.046)

−1.505a
(0.034)

−0.746a
(0.034)

−1.475a
(0.033)

−1.249a
(0.025)

Distance
(log) ×
trend

−0.009a
(0.001)

0.027a
(0.006)

0.009b
(0.004)

−0.004
(0.005)

0.009b
(0.004)

0.003
(0.002)

Time zone
diff.

0.080a
(0.001)

−0.310a
(0.030)

0.105a
(0.006)

−0.026a
(0.004)

0.091a
(0.006)

0.057a
(0.004)

Shared
language

0.473a
(0.007)

−0.331a
(0.058)

0.037
(0.030)

0.372a
(0.036)

0.089a
(0.028)

0.205a
(0.022)

Colonial link 1.198a 0.104c 0.192a 0.254a 0.273a 0.344a
(0.020) (0.054) (0.043) (0.045) (0.040) (0.032)

Shared legal
origin

0.106a
(0.004)

0.360a
(0.022)

0.272a
(0.015)

0.095a
(0.023)

0.228a
(0.015)

0.180a
(0.011)

Sample All o,d in
EU

o,d in
OECD

o,d in
G20

o,d in EU/
OECD

o,d in EU/
OECD

Obs. 382,552 7,792 13,456 4,104 15,976 23,510
R2 0.845 0.925 0.926 0.914 0.917 0.914

Notes: Regressions include origin−year and destination−year fixed effects. Statistical significance
at the 1%, 5%, and 10% levels is indicated by a, b, and c.
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findings. Like HMR, we find that distance has a large, negative coefficient that is
more negative than what is typically found for goods trade. Given that the total-
services data are such a grab-bag of phenomena – everything from airline tickets
and online game playing to pipeline fees and call centres – it is hard to character-
ise all the roles bilateral distance may play. It may seem counterintuitive that dis-
tance should matter more for trade in services, which is less connected to the
transportation of physical objects. Total services, however, includes many flows
for which face-to-face interaction may be important for setting up, maintaining,
or operating the international exchange. For instance, distribution services,
tourism, transportation, and financial services are all major services categories
and likely require managers and specialists to move among facilities. The coeffi-
cients on time-zone differences, shared language, colonial link, and shared legal
origin are all significant in the full sample.

The coefficients vary substantially across estimation samples defined by different
sets of countries. This could reflect substantial heterogeneity within the “total ser-
vices” set of activities. Trade in services within the EU, for instance, likely has a
very different composition than trade among the G20 nations.7 Beyond such com-
positional effects, measurement error and other data features may also vary across
the samples. Finally, the relevant elasticities may not be global constants.8

The sixth column of Table 6.2 reports estimates for more recent years (2005–
2019) for the set of nations where both are in the EU and/or the OECD. The
estimated effects of distance, shared legal origin, and timezone are smaller, and
the distance trend becomes insignificant, but the effect of shared language
more than doubles. The coefficient on the dummy for a colonial link also
increases in magnitude. We refrain from overinterpreting these differences in
coefficients, since the nature of trade in services shifted considerably between
2005 and 2019, let alone between the 1990s and the later period.

To address some of the concerns about heterogeneity within total services, we
present the same regressions for different types of services in Table 6.3. The
sample of nations is the EU/OECD sample and the 2005–2019 period, so
the first column of Table 6.3 is identical to the sixth column of Table 6.2.

The results show that there is meaningful variation in the point estimates
across service categories, but most of them retain the expected sign and not
too dissimilar magnitudes. Contrasting Tables 6.2 and 6.3 shows that the
sample of countries used has a much greater influence on the estimated coeffi-
cients than breaking out total services trade into component categories.

When thinking about telemigration, the category that corresponds most
clearly to the model we have in mind is ‘Other Business Services’ (OBS)
shown in column 5. Since the EU/OECD sample does not include India – a
key player in telemigration – we present analogous estimates for recent years
for a sample of nations that includes all the G20 nations as origin and destination
countries in Table 6.4.

The point estimates for the OBS column of Table 6.4 are the ones we use in
the quantification exercise. The next step is to think about how to relate the flow
of services to jobs.
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4.3 Translating services flows into jobs

Embracing the bold approximation that OBS services imports are payments to
foreign service workers, the bilateral service trade flow can be interpreted as
the “wage bill” for telemigrants between pairs of countries. This is crude, but
it allows us to tackle order-of-magnitude questions when it comes to the
impact of making telemigration easier.

Put simply, emerging economies currently export very modest volumes of
other business services. In 2019, China and India’s total OBS exports were
$68 billion and $51 billion, respectively. These small initial volumes would
need to expand massively to be associated with meaningful numbers of new tele-
migrant jobs. If telemigrants earned $10,000 per year ($5 an hour for 2000
hours per year), a doubling of OBS exports would only create a few million tele-
migrants in these economies.

Table 6.3 Sectoral Gravity Regressions: Linear Fixed-Effects Model, EU/OECD
Sample, 2005–2019.

(1)
Total

(2)
OCS

(3)
Finance

(4)
IT

(5)
OBS

Distance (log) −1.249a −1.285a −1.517a −1.253a −1.219a
(0.025) (0.030) (0.039) (0.035) (0.033)

Distance (log)
× trend

0.003
(0.002)

0.006b
(0.003)

−0.001
(0.004)

0.012a
(0.004)

−0.002
(0.003)

Time zone
diff.

0.057a
(0.004)

0.063a
(0.005)

0.114a
(0.007)

0.023a
(0.006)

0.058a
(0.006)

Shared
language

0.205a
(0.022)

0.188a
(0.025)

0.226a
(0.039)

−0.000
(0.032)

0.197a
(0.030)

Colonial link 0.344a 0.234a 0.220a 0.295a 0.163a
(0.032) (0.037) (0.051) (0.045) (0.042)

Shared legal
origin

0.180a
(0.011)

0.190a
(0.013)

0.226a
(0.020)

0.199a
(0.017)

0.234a
(0.016)

Sample o,d in EU/
OECD

o,d in EU/
OECD

o,d in EU/
OECD

o,d in EU/
OECD

o,d in EU/
OECD

Obs. 23,510 23,503 22,396 23,263 23,355
R2 0.914 0.891 0.843 0.851 0.859

Notes: Regressions include origin-year and destination-year fixed effects. Statistical significance at
the 1%, 5%, and 10% levels is indicated by a, b and c. The service sectors are Other Commercial
Services (OCS, which is non-government services that are not transportation or travel), Finance
(financial services including those delivered locally by foreign branches, etc), IT (includes telecom-
munications and software services), and Other Business Services (OBS, which is trade-related ser-
vices, operational leasing/rentals, and miscellaneous business, professional and technical services
such as legal, accounting, management consulting, public relations services, advertising, market
research and public opinion polling, research and development services, architectural, engineer-
ing, and other technical services, agricultural, mining and on-site processing).
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Consider how many jobs might come from increased bilateral exports to the US
or EU as a result of lower service trade costs. Since physical distance is the canon-
ical shifter of bilateral trade costs, we consider the consequences of reducing its
negative impact on bilateral services trade. Per Table 6.4, the estimated impact
of distance on trade became less negative during 2005–2019. However, this
trend is neither statistically nor economically significant. The estimated coefficient
on the interaction of log distance and a linear time trend (0.004) is less than 1% of
the log-distance coefficient (-0.707). At that rate, decades would have to pass for
an appreciable change in trade volumes to arise. Rather than tracing out the impact
of this trend, we choose to consider the consequences of a more radical shift.

Our thought experiment is to consider the numbers of emerging-market jobs
that might be created by a 25% decline in the bilateral distance between econo-
mies. Imagine the reduced cost of physical distance applying to one pair of coun-
tries in isolation. For example, it is about 14,000 kilometres from Palo Alto to
Bangalore; slicing off a quarter of this distance would put Bangalore near
Taipei. The distance elasticity of -0.707 implies exports would be about 18%
higher. We then translate this change in export value into a number of telemi-
grants by our crude assumption about wages. This calculation overstates the
increase in bilateral exports and the number of telemigrants to the extent that

Table 6.4 Sectoral Gravity Regressions: Linear Fixed-Effects Model, G20 Sample,
2005–2019

(1)
Total

(2)
OCS

(3)
Finance

(4)
IT

(5)
OBS

Distance (log) −0.775a −0.696a −0.831a −0.901a −0.707a
(0.026) (0.028) (0.039) (0.032) (0.029)

Distance (log) ×
trend

0.004
(0.003)

0.003
(0.003)

0.001
(0.004)

0.009a
(0.003)

0.004
(0.003)

Time zone diff. −0.011a −0.014a 0.007 −0.003 −0.001
(0.003) (0.003) (0.005) (0.004) (0.003)

Shared language 0.431a 0.477a 0.558a 0.384a 0.396a
(0.024) (0.027) (0.039) (0.035) (0.029)

Colonial link 0.185a 0.054 −0.150b 0.087b −0.036
(0.034) (0.042) (0.059) (0.042) (0.035)

Shared legal origin 0.067a 0.074a −0.046b 0.126a 0.173a
(0.015) (0.020) (0.023) (0.021) (0.021)

Sample o,d in G20 o,d in G20 o,d in G20 o,d in G20 o,d in G20
Obs. 5,130 5,130 5,119 5,130 5,129
R2 0.926 0.925 0.913 0.910 0.921

Notes: Regressions include origin−year and destination−year fixed effects. Statistical significance
at the 1%, 5%, and 10% levels is indicated by a, b, and c. For service sector definitions, see notes
of previous table.
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it neglects substitution between export destinations and general-equilibrium
effects on wages that would dampen the response.

The first line of Table 6.5 reports the value of US OBS imports in 2019 from
four partners: China, India, Brazil, and Canada. The United States is the largest
destination for Brazilian, Canadian, and Indian exports of OBS. It is China’s
second largest destination after Hong Kong. The figures are all very modest:
about $11 billion from India and Canada and even less from China and Brazil.
Thus, any export growth will be starting from low initial values. Consolidated
across all EU members, China and India do export more OBS to the EU, but
these values are again modest. These small flows explain why even seemingly
large changes in the impact of distance on OBS flows will have rather modest
effects on jobs.

We convert the import values to a baseline of foreign jobs using a proxy for the
relevant foreign wage: the average hourly wage of an IT worker. US workers in
computer and mathematical occupations average $41.51 per hour (Dingel and
Neiman 2020). Canadian wages are about three-quarters of that, while those
in Brazil, China, and India are notably lower.9 The resulting numbers of telemi-
grant jobs suggested by the calculation are 190,000 in Canada, 400,000 in
Brazil, 360,000 in China, and 2.38 million in India.

As a result, the jobs increases associated with an 18% increase in US OBS
imports are very modest. For India, the number is 420,000 more telemigrant
jobs. The figure is less than 70,000 for the three other economies. The job
increases associated with increased exports to the EU are similarly modest.

The headline result from these calculations is that the job-impact numbers are
very small when we compute growth from initially small bilateral export values.
India’s labour force is in the region of a half-billion workers. The job impact

Table 6.5 Increases in Telemigration Associated with 25% Reduction in Bilateral
Distance

Canada Brazil China India

Telemigrants selling to US
US OBS imports in 2019 (billions USD) 11.37 3.19 8.85 11.13
Hourly wage 30.00 3.96 12.45 2.34
Base jobs (millions) 0.19 0.40 0.36 2.38
Percent increase in US imports of OBS 0.18 0.18 0.18 0.18
Jobs increase (millions) 0.03 0.07 0.06 0.42

Telemigrants selling to EU
EU OBS imports in 2019 (billions USD) 5.52 4.18 22.31 18.32
Hourly wage 30.00 3.96 12.45 2.34
Base jobs (millions) 0.09 0.53 0.90 3.91
Percent increase in EU imports of OBS 0.18 0.18 0.18 0.18
Jobs increase (millions) 0.02 0.09 0.16 0.69

Notes: This table computes the jobs increases associated with the bilateral export increases
implied by bilateral distance declining by 25%. OBS imports in 2019 are from WTO data.
The distance elasticity is from Table 4.3 column 5. We assume 2,000 hours of work per year.
Remaining numbers are authors’ calculations.
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suggested by the rough calculations in Table 6.5 is tiny compared to that. The
job increases for Brazil and China are similarly modest.

Of course, physical distance is not the only source of trade costs. New digital
tools and organizational practices might diminish the frictions associated with
time-zone or linguistic differences. One could compute such consequences
similar to our previous distance-driven scenario. But an important reason the
jobs numbers in Table 6.5 are small is that the 2019 exports of other business
services are small, implying a small number of new telemigrants associated with
any modest shift in trade costs.

4.4 Modest changes are insufficient for a big development impact

Our rough quantification exercise could be greatly refined, but refinements of
the elasticities estimated in Section 4.2 are essentially immaterial to the basic con-
clusion. The current volume of service trade of the type that could be construed
as representing payments to telemigrants is just too small for a doubling or tri-
pling to have meaningful consequences for emerging markets’ development tra-
jectories. A radical increase in trade flows would be necessary to produce many
new service-sector jobs in emerging markets. This is not impossible.10 For
example, between 2005 and 2019, the nominal value of Other Business Services
exported by China and India both had annual growth rates of 12%. Such growth
also reflects supply shifts, not merely declining trade costs.

The next section explores the economic logic of a model in which modest
changes in the frictional barriers to trade in services could lead to more radical
changes than those suggested by our quantification exercise.

5 A simple model of telemigration: could comparative advantage
work differently with services?

Telemigration evokes anxiety in rich nations. “This year’s mass experiment with
remote working has, for some, triggered a prickling sense of unease: if I can do
my job from home in London, Brooklyn or Canberra, could someone else do it
more cheaply from Sofia, Mumbai or Manila?” wrote Sarah O’Connor (2020) in
the Financial Times. The fear is that digitally enabled telemigration will be asymmet-
ric: it will expose tens of millions of office workers based in rich nations to foreign
competition without providing them additional, offsetting export opportunities.

Is this anxiety well-founded? The conventional gravity approach would suggest
that it is not. In these quantitative models, the elasticity of trade flows with
respect to trade costs is constant. As a result, the direct effect of a common
decline in the costs of trading services is a common proportionate increase in
the exports of services by all economies. Even neglecting developed economies’
potential export expansion, the quantification of their increased imports from
emerging economies suggests that the number of jobs at stake is modest.
There is some nuance in terms of general-equilibrium effects, but the assumptions
of the gravity equation that make the pattern of comparative advantage symmetric
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and the trade elasticity constant essentially rule out highly asymmetric responses
to a common decline in trade costs. On the other hand, we have little evidence to
support restricting attention to these particular functional forms.

Two intriguing empirical patterns suggest that it may be fruitful to build a
model that allows us to illustrate the possibility behind the anxiety. First, most
rich nations run a trade surplus in services and so would seem to have a compar-
ative advantage in services (WTO 2019, Figure B.9). Specifically, developed
nations account for about 75% of global service exports, and they export more
than they import. Most of this services trade, about 70%, takes place in so-
called traditional services. Specifically, these are distribution services (20% of
world total), financial services (19%), telecommunications, computer and
audio-visual services (13.2%), transportation (12%), and tourism (8%).11 Corre-
spondingly, developing countries as a whole are net importers of services. In a
conventional gravity model, a decline in the cost of trading services would rein-
force this initial pattern of comparative advantage.

The second fact is that developing economies have the edge in office and pro-
fessional services that are exported via digital platforms (ILO 2021). These cat-
egories are currently much smaller than traditional services (Other Business
Services and professional services account for 4% and 3% of world services
trade, respectively), but they are growing faster. The fact that rich nations are
running trade deficits in one of the fastest-growing service-trade segments
raises the possibility that further advances in digital technology may not simply
reinforce past patterns of trade in services.

To evaluate the possibility that the future expansion of service trade may be
asymmetric, we need a general-equilibrium trade model that allows us to
address two key questions. Why are today’s services exports largely “running
uphill,” from high-wage nations to low-wage nations? Why is there a presump-
tion that reducing the costs of telemigration will lead to an asymmetric rise in
cross-border flows that reverses this pattern? Along the way, the model will
allow us to consider a few other issues such as: “How do low trade costs for
goods interact with higher trade costs for services?” and “If international relative
wages are mostly determined today by things like international labour productiv-
ity differences and country size, what happens to relative wages when telemigra-
tion gets much easier?”

To address these questions, we use the Dornbusch, Fischer, and Samuelson
(1977) – henceforth DFS – model as a basis for thinking about telemigration.
The model is familiar, so we move through the analysis quickly. To fix ideas
and introduction notation, we first present the well-known DFS model for
trade in goods.

5.1 The DFS model for goods

The world economy has two nations (North and South). Markets are perfectly
competitive. There is a continuum of goods, indexed by z. Production
employs only labour and exhibits constant returns to scale. Labour endowments
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in North and South are L and L*, respectively. Unit costs for good z are:

waðzÞ, w*a*ðzÞ, z ¼ 0, . . . , 1

where aðzÞ and a*ðzÞ are the unit labour input coefficients for North and South,
and w and w* are their respective wages. North, as the rich nation, is assumed to
have an absolute advantage in every sector, but only relative efficiencies, a*(z) ⁄ a
(z), matter for the pattern of trade (Ricardo, 1817). Indexing the sectors so that
North’s productivity advantage is greatest in low-z sectors, we have:

AðzÞ ¼ a*ðzÞ
aðzÞ > 1, A0ðzÞ < 0, o ¼ w

w* , z ¼ 0, . . . , 1

North’s wage relative to South’s wage is ω. Preferences are identical across
people and nations, and are Cobb-Douglas with b(z) as the expenditure share

for good z. Also, Bðz0Þ ¼
{ z0

0

bðzÞdz and Bð1Þ ¼ 1.

Adding trade costs

Trade is subject to symmetric, iceberg trade costs, so firms must ship τ > 1 units to sell
one unit in the other nation; domestic trade is costless. Since North goods pay τ to
get inside South’s market, the South-market threshold or borderline good, which we
label as zS , is defined by the equal price condition twaðzSÞ ¼ w*a*ðzSÞ; likewise the
North-market threshold good, zN , is defined by waðzN Þ ¼ tw*a*ðzN Þ.

Closing the model requires the relative wage, and this is determined by the North
labour market clearing condition. Given the preferences, it is: wL ¼ w*L*BðzSÞ þ
wLBðzN Þ because North consumers buy North-made goods in the 0, . . ., zN
range while South consumers spend only on North export goods, 0, . . ., zS. To
recap, the three equilibrium conditions are:

to ¼ AðzSÞ, o ¼ tAðzN Þ, o ¼ BðzN Þ
1= BðzSÞ

L*

L
ð1Þ

It is convenient to have a simple, two-dimensional diagram, so we collapse the 3-
equation system into a 2-equation system by assuming explicit functional forms.
We assume A(z)=1/z, and b(z)=1 for all z, so Bðz0Þ ¼ z0. Additional simplification
comes from supposing L=L*. With these, zN ¼ zSt2 and the equilibrium conditions
are:

o ¼ t
zF

, o ¼ zF
1= zF

t2 ð2Þ

The equilibrium o, zF are defined by the intersection of the two conditions in the
left panel of Figure 6.5.

The right panel shows the classic non-traded goods analysis in DFS. The
upward sloped line is the ratio of North to South production costs; it is linear
due to A(z)=1/z.
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. When North’s relative cost is low enough, it is competitive inside the South
market despite the trade cost. This is true for the range zero to zS ; North
exports these goods.

. When North’s relative cost is high enough, South goods are competitive in
North despite the trade costs. This is true for the range from zN to unity;
South exports these goods.

. Goods between the two thresholds are non-traded.

Note that neither of the two key questions is clarified by this diagram. The trade
is not particularly “uphill” (exports and imports necessarily balance in value
terms), and a reduction of τ would bring forth more North and more South
exports in the same proportion (an outcome that is indeed guaranteed by the
equilibrium conditions).

We laid out this goods-only model to fix ideas and notation. It also gives us a
departure point where most trade is in goods, so ω is predominately determined
by goods trade.

5.2 A simple model of telemigration: adding services
and service-linked trade costs

Adding services is simple if we embrace a two-tier Cobb-Douglas preferences
structure with γ as the expenditure share on goods (gamma is a mnemonic for
goods). Here we are taking the task approach to services akin to the model of
Grossman and Rossi-Hansberg (2006).

We label the relative productivity curve for service “tasks” as:

SðtÞ ¼ s*ðtÞ
sðtÞ > 1, S 0ðtÞ < 0, tSo ¼ SðtSÞ, o ¼ tSSðtN Þ

where s(t) and s*(t) are the unit labour input coefficients for North and
South service “tasks” (s and t are mnemonics for services and tasks respectively).
The final two expressions define the threshold tasks, tN and tS , which

Figure 6.5 DFS Model and Non-traded Goods
Source: Authors’ elaboration.
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delineate the non-traded services range. The new labour clearing market
condition, which now must include spending on services, is:
wL ¼ gfw*L*zS þ wLzNg þ ð1= gÞfw*L*tS þ wLtNg. This simplifies to:

o ¼ gzS þ ð1= gÞtS
1= fgzN þ ð1= gÞtNg

Assumptions reflecting the peculiarities of services trade: the “hockey stick”

We add two elements to the model to adapt it to the services context. First is that
the trade costs in services are very high – so high that there is little cross-border
trade in services (compared to the size of the sector). This echoes the fact that
service provision often requires, or is much easier, when the service provider
and buyer are in the same room at the same time (and moving humans is expen-
sive compared to moving goods). Second, we assume that the pattern of compar-
ative advantage explains the fact that much of this “mode-1” services trade
consists of Northern exports of highly sophisticated services (finance, engineer-
ing, communications, etc.).

The first feature – high service trade costs – does not require a modification of
the model, just the application of a different parameter value. To get the second
feature, however, requires more substantial changes. Specifically, we assume the
1/S(t) curve has the “hockey-stick” shape shown in Figure 6.6.

Before thinking about the microfoundations of the hockey stick shape, con-
sider what the S(t) curve would look like under Eaton and Kortum (2002)
assumptions.12 When 1/sðtÞ and 1/s*ðtÞ are Fréchet distributed, as in Eaton
and Kortum (2002), the SðtÞ curve has the shape shown in Figure 6.7. Note
that since the support of the Fréchet distribution is unbounded, there will

Figure 6.6 Non-traded Service Tasks in the “Service-Enabled” DFS Model
Source: Authors’ elaboration.
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always be extreme values that can overcome any finite level of trade costs. Thus,
every country is predicted to exports some tasks, regardless of sectoral-level
average productivities. To put it more graphically, the S(t) generated by the
Fréchet assumption has two blades: one pointing up and one pointing down.13

Moreover, the patterns of manifest comparative advantage (in tasks actually
traded) and latent comparative advantage (in non-traded tasks) are the same.
That assumption delivers a constant trade elasticity.

By contrast, we consider the single-blade pattern of relative productivities
depicted in Figure 6.6. Why might relative productivities exhibit this “hockey-
stick” shape? We briefly step outside the model to think about continuous tech-
nological diffusion that tends to narrow extreme productivity differences across
economies on a task-by-task basis.

Without innovation, there is a natural tendency for the seepage of know-how
to flatten the relative productivity curve. Imagine that products and processes
are invented in the advanced economy, so a(z) tends to be less than a*(z),
but the cross-sectional differences will tend to fade in a Vernon (1966)-like
fashion. That is, things such as good roads, institutions, and trust can explain
why German workers are more productive than, say, Turkish workers in every
sector, but unless German industry keeps innovating, the German-Turkish pro-
ductivity ratios will tend towards a constant in all sectors. In other words, this
mechanism allows for persistent absolute advantages but only shorter-lived

Figure 6.7 The Relative Efficiency Curve with Eaton-Kortum Assumptions

Source: Authors’ elaboration; the Fréchet distributions are FðsÞ ¼ e=2s=y
, Fðs*Þ ¼ e=2s*=y

s,
s* > 0. We randomly sample 5,000 draws from these Fréchet distributions, compute the unit-
cost ratios, and plot those ratios in rank order.
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comparative advantages. The disappearance of comparative advantage is acceler-
ated if the pace of know-how seepage increases with the size of the productivity
gap. In this conceptualisation, the A(z) curve gets its slope from the fact that
German industry innovates faster in high-technology sectors. The left part of
the A(z) curve is continuously pulled upward by fresh innovations even as the
gap between a(z) and a*(z) is continuously narrowed by technological diffu-
sion. In this story, Germany has a comparative advantage in its most innovative
sectors.

Why might S(t) look like a hockey stick in services but not goods?

Moving this line of thinking to the service sector, things change since innovation
in the service sector is famously slow. This leads to what is known as Baumol’s
cost disease. A recent University of Chicago Booth School of Business survey
of leading economists framed it as: “Because labour markets across different
sectors are connected, rising productivity in manufacturing leads the cost of
labour-intensive services to rise.” Nordhaus (2008) documents the fact.

The point is that slow innovation results in a very flat relative productivity curve
as the slow innovation gives technological diffusion enough time to reduce differ-
ences in the cross-sector profile of relative labour productivities (i.e., to flatten the
S-curve). The exceptions to this are those service tasks that are high-tech. They
involve rapid innovation and coordination of many complex things. This is
what turns what otherwise would be a “baseball-bat” shaped 1/S(t) curve into
a “hockey-stick” shaped 1/S(t) curve. In particular, it adds the “blade” that indi-
cates that the North has a marked comparative advantage in sophisticated services
where innovation is rapid.

Implications of the hockey-stick productivity profile

It would take substantial empirical investigation to verify that the relative produc-
tivity profile has a “hockey-stick” shape. Before economists invest in such
research, however, it is useful to show that if it were true, then it would imply
intriguing possibilities relative to the standard logistic-shaped curve that is
assumed in the conventional gravity model analysis. To that end, we resume
the analysis taking the hockey-stick shape as given.

The equal price conditions that define the threshold tasks, tN and tS, are
twsðtSÞ ¼ w*s*ðtSÞ and wsðtN Þ ¼ tw*s*ðtN Þ, which imply:

tSo ¼ SðtSÞ, o ¼ tSSðtN Þ
As drawn in Figure 6.6, the North’s productivity edge is only high enough to
overcome the services barriers for a small range of services tasks. Thus, North
exports services tasks indexed by zero to tS. The inverse S(t) curve, however, flat-
tens out, so the lower South wage (which is largely determined by goods market
conditions) is not low enough to allow South service providers to be competitive
inside the North market. In other words, South exports no services to the North
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because o > tSSð1Þ: there are no services tasks where the South’s relatively low
wage is low enough to overcome its productivity disadvantage given the high
trade costs. Thus, South exports some goods, and it imports goods and services
from North.

The goods sector is crucial to this story. Obtaining the asymmetric trade in ser-
vices result requires a goods sector where trade is fairly free and comparative
advantage is fairly symmetric. Without this, the usual “Ricardian wage equilibra-
tion” would drive the relative wage to a point where both North and South were
competitive in some service tasks.

The final change is to adapt the equilibrium labour-market condition to
incorporate services. For the general case, where both North and
South export some service tasks, we will have two service thresholds. In the
Figure 6.6 case, however, there is only one, so:
wL ¼ gfw*L*zS þ wLzNg þ ð1= gÞfw*L*tS þ wLg, which simplifies to:

o ¼ gzS þ ð1= gÞtS
gð1= zN Þ

ð3Þ

When tS is small, the second expression shows that the relative wage is mostly
determined by trade in goods as in the classic DFS model.

5.3 Telemigration and development

Here we use the model to guide thinking about how telemigration could affect
the future of globalisation. In the initial situation, South service tasks are not
competitive inside North, but there is an incipient arbitrage opportunity. If a
North firm could – via some new digital technology – purchase tasks in South
without incurring the trade costs, they would do so for most tasks. For
example, if something held the relative wage fixed, but the tS became unity for
a particular service-producing firm in the North, that firm would find it
cheaper to source all tasks from t@ to 1 in the South (see Figure 6.6). This
could be the source of the anxiety that is often associated with telemigration.
Based on partial-equilibrium thinking, which takes relative wages as fixed,
digital technology that makes telemigration easier would seem to bring many
more service-sector workers in high-wage nations into direct wage competition
with low-wage service workers.

Trade consequence of lower service trade costs

Figure 6.8 shows what a substantial reduction in the service trade costs would do
to the services trade pattern. The dashed lines show the new situation with ts
falling to ts

0. This would greatly expand South service exports and only slightly
increase North service exports, so the relative demand for North labour would
fall – bringing the equilibrium relative wage down from oe to oe 0.

A twist on this thought experiment that may have some additional contact
points with reality considers asymmetric changes in telemigration frictions.
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Consider the impact of an asymmetric adoption of the necessary digital tech-
nology by North firms but not South firms. For example, we might imagine that
the general economic and digital conditions in the North make it easy for South
workers to telemigrate Northwards, but the “digital divide” makes it hard for
North workers to telemigrate Southwards. In this case, it becomes much easier
for South to exports services since, for instance, the North digital coverage
and sophistication makes it easier for North firms to integrate remote workers
in their service value chains.

The main message from this model is that digital technology could open much
greater export opportunities for South-based telemigrants than North-based tel-
emigrants. In other words, the anxiety in the popular debate can be rationalised
by a profile of comparative advantage in services of the hockey-stick shape.

Given this pattern of productivities, for many office workers and professionals
in high-wage nations, telemigration would be a new source of competition, while
it would be a new source of opportunities for rather fewer high-wage workers.
With the “twin-blades” model of Figure 6.7, rapid technological advances that
made remote workers less remote create vast new export opportunities. In
other words, if the pandemic-induced experience of “work from home” portends
a shift to “work from anywhere” but substantially increased trade in services
mimics the current pattern of trade in services, then developed economies will
experience substantial services export growth.

Figure 6.8 Asymmetric Expansion of Service Exports
Source: Authors’ elaboration.
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For completeness, we solve for the equilibrium when there is costless trade in
both goods and services.14

6 Concluding remarks

The COVID-19 pandemic has introduced huge numbers of employers and employ-
ees to remote work. Remote-work arrangements that had been technologically fea-
sible for years but not broadly employed were rapidly adopted in the absence of any
alternative. As the economy returns to normal, employers are likely to re-evaluate
the kinds and numbers of workers that they employ. Some may return to their
pre-pandemic practices, but massive disruptions produce opportunities to
pivot, and some temporary shocks have permanent consequences. Some invest-
ments in remote work capacity are very likely to stick (Barrero, Bloom, and
Davis 2021).

It seems inevitable that some of the tasks that can be done remotely will be
done by telemigrants rather than domestic workers. Again, this will not be due
to a massive change in the frontier of possibilities – telemigration is already wide-
spread in sectors like web design and customized software development. It will, if
it happens, be due to many more firms changing practices to adopt these tech-
nologies. In short, it would seem that the pandemic has brought forward the
date of the “Next Industrial Revolution” that Alan Blinder (2006) famously con-
templated a decade and a half ago.

This chapter is an attempt to think about how we might evaluate the size of
the increased offshoring of office and professional jobs from high-wage to low-
wage nations. The starting point is to recognize that many jobs that can be per-
formed remotely require soft skills that make domestic and foreign workers
imperfect substitutes. The equilibrium number of telemigrants, therefore,
depends on the number of potential foreign suppliers of these tasks and the bilat-
eral frictions that impede trade in these services.

Our quantification is based on two simple ingredients. The first is interpreting
trade in certain services as payments to telemigrants so that the gravity equation
for trade flows can be used to describe how the volume of transactions will
respond to lower trade costs. We updated gravity regressions estimated by
Head, Mayer, and Ries (2009) to ballpark these magnitudes. The second ingredi-
ent is to assess the development potential of this trade by crudely translating trade
flows into numbers of jobs using average wages and the approximation that pay-
ments for these services are mainly payments to workers. This is clearly not true for
some types of services trade – fees for using oil pipelines, for instance – but it
seems sensible for categories like Other Business Services, which contains many
of the activities that would be transformed by remote work going global.

Our quantification exercise yields a simple message: the number of offshored
jobs is unlikely to be transformative when it comes to the development paths of
most emerging economies. This conclusion stems from a point of fact and a
point of economic logic. First, the current baseline of trade in Other Business
Services is very small. Multiplying these flows by a factor of two or three

175 Telemigration and Development 175



would not translate to many jobs in emerging markets. Second, quantitative
trade models that assume constant elasticities cannot generate very large
responses to modest declines in trade costs. There are no “tipping points” in
canonical structural gravity models.

The final contribution of our chapter is to propose a simple model of telemi-
gration in which modest changes in trade costs can have large effects. The key
ingredient is that the pattern of comparative advantage has a hockey-stick
shape rather than the symmetric shape typically assumed in quantitative trade
models. In this account, emerging markets have tremendous potential to
export services that is not evident in the current pattern of trade flows.

Our chapter raises many questions for future research. It suggests that making
the optimistic case for telemigration-led development will be harder than one
might have thought. At the very least, it suggests that making the case would
require substantial departures from the standard gravity-based account typically
employed in empirical exercises.
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1 The quotation is from the abstract of Blinder (2007). The paper was published as
Blinder (2009).

2 In Eaton and Kortum (2002), productivity follows a Fréchet distribution. This
distribution’s location parameter, which governs absolute advantage, is country-
specific. Its shape parameter, which governs comparative advantage, is common
across countries.

3 The possibility of a disruptive outcome is the focus of Baldwin (2019).
4 The assumption that workers in different nations produce imperfect substitutes is

merely a convenient shortcut to obtain a constant-elasticity gravity equation. The
substantive assumption is that the aggregate import demand system is CES. For
example, Eaton and Kortum (2002) provide a Ricardian model in which workers
in different nations compete to produce the same set of goods that yields a
constant-elasticity gravity equation.

5 See Liberatore and Wettstein (2021) for a detailed description of the relevant
data construction and imputation procedures underlying the BaTIS data.

6 We obtain the distance, colonial, and language covariates from the CEPII
website associated with Head, Mayer, and Ries (2010) and Head and Mayer
(2014). We obtain the legal-origin covariate from La Porta, Lopez-de-Silanes,
and Shleifer (2008). We use time-zone data posted by Herman Wong.

7 The G20 countries include members of the European Union, the G7 (France,
Germany, Italy, Britain, US, Canada, and Japan), and the BRICS (Brazil,
Russia, India, China, and South Africa), plus Argentina, Australia, Indonesia,
South Korea, Mexico, Saudi Arabia, and Turkey.

8 Indeed, the notably smaller distance elasticity for the G20 sample is driven by
observations in the left tail of the bilateral-distance distribution, suggesting a
rejection of the constant-elasticity specification.

176 Richard Baldwin and Jonathan I. Dingel 176



9 Hourly wages for “natural and applied sciences and related occupations” in
Canada are 37.87 CAD (StatCan Table 14–10–0340–01 for 2019 full-time
employees). Average monthly earnings for information, communication, finan-
cial, and professional occupations in Brazil were 3,445 BRL in 2019 (Q27 in Pes-
quisa Nacional Por Amostra De Domicílios contínua, Instituto Brasileiro de
Geografia e Estatística, 2012–2020). Urban male “technicians & associate pro-
fessionals” in India average 28,923 INR per month (Table 55, Annual Report,
Periodic Labour Force Survey, 2019–20). Average earnings for “information
transmission, software, and information technology” workers in China were
161,352 CNY per year in 2019 (Table 4–15, China Statistical Yearbook
2020). We convert these to US dollars at (roughly) 1 CAD = 0.79 USD, 1
BRL = 0.19 USD, 1 CNY = 0.15 USD, and 1 INR = 0.013 USD. We assume
2,000 hours of work per year.

10 Indeed, Kehoe and Ruhl (2013) emphasize the contribution of growth in previ-
ously least-traded goods to total trade growth in episodes of structural transfor-
mation and trade liberalization.

11 2017 values from Figure B.2 of WTO (2019).
12 Eaton and Kortum (2002) note that the Kortum (1997) and Eaton and Kortum

(1999) models of innovation and diffusion deliver a Fréchet distribution of pro-
ductivities. Costinot, Donaldson, and Komunjer (2012) and Caliendo and Parro
(2015) provide multi-sector models in which productivities within each sector
follow the Fréchet distribution. These models generate constant-elasticity
gravity equations for sectoral trade flows.

13 When 1
sðtÞ and

1
s*ðtÞare Fréchet distributed with the same shape parameter, then the

log difference in unit costs, ln(S(t)), follows the logistic distribution.
14 With free trade, there is only one threshold in goods and one in services,

which we label as ze and te. The equilibrium conditions are: oe ¼ AðzeÞ,
oe ¼ SðteÞ, oe ¼ gzeþð1=gÞte

1=fgzeþð1=gÞteg. To provide closed-form solutions we can assume
that the S(t) curve takes the form SðtÞ ¼ 1/

---
t

p
. This does not fully reflect the

hockey stick shape, but it makes calculations simple and thus transparent.
Imposing functional forms: oe ¼ 1

Ze ,oe ¼ 1
ðteÞ1/2 , g ¼ 1

2.
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7 Immigration and Regional
Specialization in AI

Gordon Hanson

1 Introduction

There is immense academic and policy interest in how artificial intelligence (AI)
will affect labor markets. Given the disruptive impacts of technological change on
earnings and employment in recent decades, such interest is understandable. The
rapid pace of skill-biased technical change after 1980 is credited with raising the
earnings premia for workers with college degrees (Katz & Autor, 1999), which
contributed to greater income inequality in many high-income countries. Amid
these changes, the automation of routine tasks shifted employment away from
middle-skill jobs, leaving a more hollowed-out earnings distribution in its
wake (Autor & Dorn, 2013; Goos et al., 2014). The expanding use of industrial
robots (Acemoglu & Restrepo, 2020) and employment of contract workers via
Uber-like platforms (Abraham et al., 2019; Chen et al., 2019) are the most
recent ways in which new technology is upending the world of work. With the
potential for AI to convert many job tasks into algorithmic routines that can
be performed by machines, yet another wave of disruption may be on the
horizon (Autor et al., 2020).

In this chapter I turn my attention not to the labor-market consequences of AI
but to the forces governing where AI itself is being created. Three innovations
have helped make AI possible (Varian, 2018). One is new approaches to
machine learning, another is advances in high-speed and special-purpose com-
puting, and a third is the proliferation of very large data sets in digital format.
Machine learning combines techniques from statistics and computer science to
predict outcomes or learn patterns from raw data. When embedded in a
system that feeds in data, applies domain expertise, and governs learning, AI is
the result (Taddy, 2018). This process requires specialized teams of computer
scientists, data scientists, electrical and computer engineers, network systems ana-
lysts, and software programmers, as well as workers with knowledge of the
domains in which AI will operate. The need for high-speed computing arises
from the non-linearity and high dimensionality of prediction models, which
require large data sets for training, validation, and testing. Of the key inputs to
AI, it is the final stage of machine learning and systems engineering that
appears to be the most location specific. Creating AI involves computer hardware
manufactured elsewhere, data collected from disparate sources, and teams of spe-
cialists who tend to work in close proximity.
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If AI comes anywhere close to its forecasted potential, there will be an enor-
mous market for AI-related goods and services. Just as employment in new tech-
nology tends to be highly geographically concentrated (Moretti, 2012, 2019;
Bloom et al., 2020), it is natural to expect AI-related activities to exhibit
strong patterns of spatial agglomeration. Understanding emerging comparative
advantage in jobs related to AI is therefore important for evaluating how the
technology will change national and global trade patterns. Trade in AI-related
services is poorly measured, both because it is new and because revenue flows
from trade in technology services are hard to detect in conventional data. To
study what comparative advantage in the production of AI might look like, I
take US commuting zones as my unit of analysis (Tolbert & Sizer, 1996). A
regional focus allows me to measure comparative advantage via abundantly avail-
able employment data rather than via poorly documented trade flows. Because
the US is at the frontier of innovations in AI and IT, it is where regional com-
parative advantage in new technology is likely to manifest itself first. Even with
this focus, the newness of AI creates measurement challenges. I study the occu-
pations that appear to encompass AI-related activities, recognizing that such cat-
egories will also include jobs in IT that do not necessarily involve AI. The analysis
is therefore subject to the maintained hypothesis that the spatial allocation of
employment in AI will resemble that in non-AI jobs that require AI-like skills.

My aim is to understand regional changes in US AI-related employment over
the last two decades. Although machine learning dates to the 1950s (Cockburn
et al., 2018), the field did not begin to flourish until the 1990s. It was not until
after 2000, and especially after 2010, that it came into widespread use (Taddy,
2018). The first step in the analysis is to identify occupations likely to be involved
in the production of AI. Within occupations associated with STEM disciplines, I
select the occupational codes that are likely to contain AI-producing jobs based
on their associated Census-defined job titles having at least one term from each
of the two following sets: computer, data, or software; and design/designer,
engineer, research/researcher, or science/scientist. This procedure identifies
30 occupational titles out of 707 total titles in the broader STEM category, as
being AI-related. The selected job titles include, for example, “artificial intelli-
gence specialist” and “information scientist.” Using a wider filter identifies
146 AI-related titles. Because employment can be measured at the occupational
code but not at the title level, I focus on the codes that contain these titles.
Within these codes, I use results in Lin (2011) to identify the occupational
titles that were created after 1990, which is when advances in AI began to accel-
erate. Following his work, I interpret new job titles as evidence of the creation of
new types of work.1 The creation of new work in AI-related occupations is a
signal of AI-related innovations in employment. To measure employment
growth in AI jobs over 2000 to 2018, I weight employment growth in AI-
related occupations over the period by the share of job titles within an occupa-
tion that were new as of 2000. By varying the restrictiveness of the filters used
to define AI-related jobs, I check the robustness of the findings to the definition
of AI-related activities.
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An alternative way to measure employment in AI would be to use job postings
that explicitly mention the application of artificial intelligence. A rapidly emerg-
ing literature takes this approach to examine changes in labor-market outcomes
for the occupations that appear likely to be disrupted by AI (see, e.g., Brynjolfs-
son et al., 2018; Felten et al., 2018; Acemoglu et al., 2020; Bloom et al., 2020;
Webb, 2020). Less work is devoted to figuring out which jobs are involved in the
creation of AI and its applications. Acemoglu et al. (2020) use job-posting data
from Burning Glass to measure the expansion of jobs in AI-producing activities.
The advantage of these data is that job postings contain explicit mention of skills
related to AI (e.g., computer vision, deep learning, machine learning).2 Disad-
vantages include job postings being unavailable in complete form until 2010
and a lack of information on the ultimate number of hires that result from post-
ings. My focus on employment growth in AI-related jobs since 2000 explains my
choice to define AI-related occupations using the the Census Bureau list of occu-
pational titles.

The second step in the analysis is to examine regional specialization in AI-
related occupations. Two patterns stand out in the data. One is that regional spe-
cialization in AI-related jobs is greatest in commuting zones that became hubs
for technology jobs in the 1980s or 1990s. These CZs include Austin, Boston,
Oakland, San Jose, Seattle, and Washington, DC. Their specialization in AI-
related occupations was already substantial in 2000 and became more substantial
still by 2018. These are the same cities in which high-tech startups and patenting
in high-tech domains are also concentrated (Chatterji et al., 2014; Moretti,
2019). A second pattern is that increased specialization in AI-related jobs in
tech-oriented CZs is due primarily to the employment of foreign-born men.
Whereas the CZs in which native-born workers are most concentrated in AI-
related jobs include cities specialized in government-funded military research
(Colorado Springs, CO; Alexandria, VA) and space research (Melbourne, FL;
Huntsville, AL), those in which foreign-born men are most concentrated in
AI-related fields account for the largest AI employment clusters and are the
ones in which private firms dominate the high-tech landscape. Looking across
the origin countries of these foreign-born workers, there is wide variation in
revealed comparative advantage in AI-related jobs. Comparative advantage in
AI-related occupations is strongest for workers born in East and South Asia
and weakest for workers born in Latin America and the Caribbean and the
US. Although women account for a relatively small share of employment in
AI-related occupations, their revealed comparative advantage in AI by country
of birth is similar to that for men.

It is well known that across occupations specialization varies among foreign-
born workers by their country of origin and that immigrants from specific coun-
tries tend to concentrate in specific US cities (see, e.g., Patel & Vella 2013;
Hanson & Liu 2017; Burstein et al. 2020). These regularities are also manifest
in the case of AI-related activities. Because the skills required to create artificial
intelligence and related innovations in information technology are scarce and
because some countries seem better than others at producing workers capable
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of acquiring the required skills, the regions that are best positioned to attract
high-skilled foreign-born workers appear to be the ones most likely acquire
comparative advantage in AI. Over the period 2000 to 2018, foreign-born
workers accounted for 54.6% of the increase in hours worked in AI-related
activities.

The third step in the analysis is to identify the factors behind regional employ-
ment growth in AI-related jobs. Motivated by the importance of highly educated
foreign-born workers in AI-related employment, I model changes in regional
specialization in AI as a function of the change in college-educated immigrant
labor supply confronting each region. I estimate the change in the CZ share
of employment of prime-age college-educated workers in AI-related occupations
over the 2000 to 2018 period as a function of the projected local increase in
college-educated immigrants. Inspired by the shift-share approach of Altonji &
Card (1991) and Card (2001), I predict the increase in the supply of college-
educated immigrants in a CZ using national growth in college-educated immi-
grants from each origin country (outside of the CZ) and the initial-period
share of the CZ in the employment of college-educated immigrants from each
origin country (outside of AI-related jobs). For men, the immigrant supply
shock is strongly positively correlated with employment growth in AI-related
occupations. This effect comes entirely from increased employment of the
foreign born. The impact of the immigrant labor-supply shock on the employ-
ment of native-born men is small and imprecisely estimated, indicating that arriv-
ing foreign-born workers neither crowd-in nor crowd-out the native-born in AI-
related activities. Results are similar for the employment of women in AI-related
occupations, though coefficient magnitudes are smaller, consistent with relatively
weaker specialization in AI-related jobs on the part of foreign-born females. I
find similar results whether using worker counts or hours worked to measure
employment and whether using a narrow or a broad definition of AI-related
occupations.

Whereas in earlier decades computer power and data availability were binding
constraints on the advancement of AI, today computer power and data availabil-
ity are vastly improved. The supply of workers sufficiently skilled to design the
computing architecture, devise the learning algorithms, apply the domain
science, and construct the business systems necessary to create AI is likely to
be a constraining factor. Not surprisingly, building successful teams involves a
global search for talent (Hanson & Slaughter, 2018). My results suggest that
the US regions that are best positioned to attract foreign talent are those that
are acquiring a stronger comparative advantage in AI-related activities. Three
important actors in the global talent search are the US government, which reg-
ulates the supply of visas to high-skilled immigrants (Lazear, 2021); US univer-
sities, which admit many future US foreign-born tech workers as students
(Bound et al., 2017, 2021); and US technology companies, whose recruitment
strategies also help bring skilled foreign workers to the US (Kerr & Lincoln,
2010). The interdependent choices of these actors create a business ecosystem
in which innovation in AI has been able to flourish. However, it does not
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appear to be the only ecosystem that is conducive to such innovation. To create
AI, China is taking a more state-directed approach, including trade protection for
domestic technology firms (Goldfarb & Trefler, 2018) and is relying mostly on
domestic talent. In terms of academic journal publications and awarded patents,
its approach has had some success (Xie & Freeman, 2020). When it comes to
projecting my results to the world as a whole, one needs to address how these
different ecosystems will fare in global competition with each other, a subject
on which my analysis is silent.

The empirical results connect to several bodies of literature. A first is analysis of
the labor market consequences of regional labor-supply shocks related to immi-
gration. My finding that arriving immigrant workers neither crowd in nor crowd
out native-born workers in AI-related jobs is consistent with results in Burstein et
al. (2020) across all occupations dedicated to tradable activities.3 Because arriv-
ing immigrant workers can be absorbed into the production of exports (i.e., AI
routines), they need not displace existing native-born workers. A second body of
related work addresses the occupational comparative advantage of immigrants.
Foreign-born workers from non-English-speaking countries tend to avoid jobs
that are intensive in communication-based tasks (Dustmann & Fabbri, 2003;
Peri & Sparber, 2009; Oreopoulos, 2011), and to specialize in STEM fields
(Hunt & Gauthier-Loiselle, 2010), especially those related to computing and
engineering (Hunt, 2015). Specialization in STEM may account for the over-
representation of the foreign-born among US inventors (Kerr & Lincoln,
2010; Hunt, 2011; Bernstein et al., 2018) and for the positive correlation
between growth in college-educated immigrant labor supply and regional pro-
ductivity growth (Peri et al., 2015). The concentration of foreign-born
workers in AI-related activities is the latest manifestation of the propensity for
immigrant labor to specialize in technology-oriented fields in the US labor
market.

My analysis does not address why immigrants with skills applicable to AI are
drawn to the US. The concentration of leading IT firms in the US is one expla-
nation for the attraction. Another is that the highly educated are drawn to the US
because it offers rewards to skill that are large relative to other high-income des-
tination countries (Grogger & Hanson, 2011). Nor does my work account for
why workers from particular countries appear to excel in AI fields. Hanson &
Liu (2021) find that immigrants specializing in jobs more intensive in abstract
and quantitative reasoning tend to come from countries that deliver higher
quality K-12 education, as evidenced by their students achieving higher PISA
exam scores. Similar forces may be at work regarding specialization in AI. It is
also unclear whether the specialization of foreign-born workers in AI will trans-
late into a comparative advantage in AI in their countries of origin. Whereas
China is both a major source of AI talent to the US labor market and the
home to leading AI firms, India checks the first box but not the second (at
least as far as conventional data reveal). By implication, the presence of firms
with core capabilities in computing (or protection from foreign firms with
such capabilities) may be necessary for AI to develop.
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In Section 2, I describe how I measure AI-related employment; in Section 3, I
present descriptive evidence on specialization in AI-related jobs across US com-
muting zones; in Section 4, I present empirical analysis of how immigrant labor-
supply shocks affect regional employment in AI-related occupations; and in
Section 5, I conclude.

2 Measuring Employment in AI-Related Occupations

Artificial intelligence distinguishes itself by requiring technical skills in computer
science, engineering, math, and related disciplines, and by being new (or at least
new at a scale to become detectable by employment surveys). My approach to
measuring employment in AI-related occupations keys on both of these features:
the technical definitions of occupations and their newness. Of course, new work
in AI-related fields may include new work in IT that is not exclusive to AI. I
therefore refer to my measures as capturing growth in “AI-related” jobs rather
than in jobs that are solely dedicated to AI.

2.1 Defining AI-Related Occupational Categories

The Census Bureau defines occupational codes by grouping together workers
who perform similar tasks on the job. Over time, it modifies the codes, with
most major revisions occurring during census years. To measure employment
growth for a uniform set of occupations over a multi-decade period, I use
Census occupational codes for 1990, as harmonized by Dorn (2009), Autor &
Dorn (2013), and Deming (2017).4 Each occupational code has an attached
set of jobs, which are defined in the Census Alphabetical List of Occupation
Titles. I use these titles to create filters to capture AI-related job growth.

The creation of AI combines the efforts of workers with training across a wide
range of technical disciplines, including computer engineering, computer
science, data science, and software engineering. Supporting the workers who
construct machine-learning algorithms and design their implementation on ded-
icated computer hardware are specialists who create and manage large databases,
provide expertise in relevant domains (e.g., oncologists and radiologists for the
use of AI to detect cancer), and develop and market AI products, among
other tasks. In order to focus on jobs that are core to innovations in AI, I
target the first group of occupations and not the second.

I define the universe of potential AI-related occupations as those in STEM,
using the STEM definition in Hanson & Slaughter (2018). They take the
Census Bureau categorization of STEM jobs and remove those in which a rela-
tively high fraction of workers lack a college degree (e.g., lab technicians, com-
puter support staff, drafters). The resulting set of occupations includes all
computer programmers, computer scientists, engineers, mathematical scientists,
network systems analysts, and life and physical scientists.5

To define AI-related jobs, I apply a progressively finer set of filters to these
broad STEM categories, which creates four versions of occupations:
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. V.0 (version 0) occupations: I remove occupation codes from the Hanson &
Slaughter (2018) definition that appear to be related to administrative or
supportive roles or that are tied to scientific disciplines that appear to be far
removed from AI.6 The resulting set of modified STEM occupations had
707 titles in 2000, of which 137 were added between 1990 and 2000, as
seen in Table 7.2.

. V.1 occupations: I select from V.0 occupations those whose titles have at
least one of the following terms: analyst (subject to restrictions), architect,
designer/design, developer, engineer, programmer, researcher/research,
scientist, or statistician/statistical. The resulting set of potential AI occu-
pations had 325 titles in 2000, of which 68 were added after 1990.

. V.2 occupations: I select from V.1 occupations those whose titles have at
least one of the following terms: designer/design, developer, programmer,
researcher/research, scientist, and statistician/statistical; and engineer plus
computer, data, or software. The resulting set had 146 titles across 18
occupation codes in 2000, of which 48 titles were added after 1990. This
version is my broad definition of AI-related jobs.

. V.3 occupations: I select from V.2 occupations those that have at least one
term from the group {designer/design, researcher/research, scientist, or
statistician/statistical} and one term from the group {computer, data, soft-
ware}. The resulting set has 30 titles across five occupation codes in 2000, of
which 16 titles were added after 1990. This version is my narrow definition
of AI jobs and is the baseline for the analysis. V.3 codes and titles appear in
Appendix Table A.1.

Table 7.1 describes the application of the V.0 to V.3 filters to modified Census
1990 occupation codes and shows the total number of job titles as of 2000 for
each version. In the empirical analysis, I use V.2 and V.3 occupations only.7

Throughout the text, for notational clarity, I refer to the sets of occupations that
contain AI titles as V.0t–V.3t for each version in a given year t. Similarly, the sets
of occupation titles are denoted V.0.Tt–V.3.Tt.

Appendix Table 7A.1 lists job titles for V.3 occupations. This narrow definition
includes five Census 1990 occupations: computer hardware engineers, computer
scientists and systems analysts, computer software engineers, network systems
and data communications analysts, and statisticians. The 30 AI-related job
titles include artificial intelligence specialist, information scientist, computer
research, computer systems engineer, and software applications engineer.
Whereas the first two of these are AI-specific jobs, the latter three are likely to
span AI and non-AI-specific activities. Other job titles also appear likely to
include AI and non-AI specific jobs (e.g., software requirements engineer,
systems analyst engineer, computer engineer). By targeting job titles created
after 1990, as I discuss in the next section, my approach helps narrow the
focus on AI-related activities, but may do so imperfectly. The resulting measures
of AI-related employment growth are therefore likely to include some non-AI
jobs in information technology that nonetheless require AI-like skills. On the

8
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Table 7.1 Occupation Title Filters for AI-Related Jobs

Version: V.0 V.1 V.2 V.3

# Identified Titles: 707 325 146 30

Occupation title filters Analyst Analyst
Scientist Scientist Scientist Scientist + Software/

Data/Computer
Administration/administrator

Researcher/research Researcher/research Researcher/research Researcher/research + Software/
Data/Computer

Designer/design Designer/design Designer/design Designer/design + Software/
Data/Computer

Architect Architect
Technician
Programmer Programmer Programmer
Developer Developer Developer
Integrator
Engineer Engineer Engineer + Software/

Data/Computer
Engineer + Software/

Data/Computer
Statistician/statistical Statistician/statistical Statistician/statistical

Manager
Planning/planner

Health
Consultant
Specialist
Supervisor
Tester
Installer

Coordinator
Officer
Operator

Investigator
etc.

This table reports keywords used to define versions V.0 to V.3 of occupational titles. These keywords act as inclusion criteria, subject to discretion. In
particular, “analyst” is used in a wide variety of occupation titles, mandating many exclusions (e.g., “forms analysts”). V.0 applies no keyword filters; its
associated column reports representative keywords that appeared in many of its occupation titles. The V.1 to V.3 filters are based on the listed keywords.
They exclude engineering occupations that appear unconnected to AI (agricultural, biomedical, chemical, civil, environmental, industrial, marine,
materials, mechanical, mining and geological, petroleum, and other engineers).
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other hand, one may be concerned that designating just 30 job titles as being AI-
related is too narrow. For this reason, I also use the broader V.2 definition of AI
titles as a robustness check in the empirical analysis.

2.2 AI-Related Employment

Although AI as a concept has been around for well over half a century, AI-spe-
cific occupations did not become prominent enough to merit their own job titles
in public surveys until more recently. After slow progress in the 1970s and
1980s, advances in the field began to accelerate in the 1990s (Cockburn et al.,
2018).9 I use the creation of new job titles after 1990 as an indication of the
intensity of innovation across occupations.

The Census Bureau tracks how jobs change over time. To account for
changes, it adds and subtracts job titles from occupational codes, where a title
defines a specific job performed within an occupation. When the Census adds
new titles to occupation codes, it indicates that there are new lines of work
within an occupation that appear at sufficient frequency to merit official
mention. Within my V.3 definition of AI-related jobs, after 1990 the Census
added titles for artificial intelligence specialist and information scientist to the
computer scientists and systems analysts occupational category (see Table
7A.1), which signified the expansion computer science jobs to include these
fields. Lin (2011) uses the addition of new titles to measure the creation of
new work at the level of an occupation code. Using his categorization, I
define new AI-related work within an occupation using the job titles that were
created after 1990 (by his designation) and that are AI-related (by my
designation).10

For occupation codes that register new titles in AI-related activities after 1990,
Table 7.2 reports 1990 occupation categories in the first column, the total
number of job titles for the occupation in 2000 in the second column, the
number of titles for V.0 to V.3 occupations in 2000 in the next four columns,
and the number of potentially AI-related titles added after 1990 for V.0 to
V.3 occupations in the final four columns. After 1990, there were 48 new AI-
related job titles added in V.2 occupations, representing a 50.0%
(¼ jV .2.T2000 j=jV .2.T1990 j

jV .2.T1990 j ¼ 48
146=48

) increase in job titles in the category, and 16 new
AI-related job titles in V.3 occupations, representing a 114.3%
(¼ jV .3.T2000 j=jV .3.T1990 j

jV .3.T1990 j ¼ 16
30=16

)) increase in job titles in the category. For both defini-
tions, the largest increase in job titles was for computer scientists and systems
analysts.

2.3 Alternative Approaches to Measuring AI

To provide context for my analysis, I discuss other approaches to measuring AI-
related production and work activities. Bloomk et al. (2020) use earnings confer-
ence calls and patent filings to document the rollout of 20 new technologies
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Table 7.2 Occupation Codes and Numbers of Associated Titles

# AI Titles # New, AI Titles

Occupation Total # Occupation
Titles

V.0 V.1 V.2 V.3 V.0 V.1 V.2 V.3

Computer
programmers

22 22 18 18 0 11 10 10 0

Computer systems
analysts and
computer
scientists

162 97 52 34 24 65 32 24 15

Operations and
systems research-
ers and analysts

24 24 9 1 0 6 2 0 0

Engineers and other
professionals,

n.e.c.

58 58 13 4 0 12 5 2 0

Atmospheric and
space scientists

19 19 17 17 0 3 3 3 0

Marine engineers
and naval
architects

13 13 10 2 0 2 1 1 0

Electrical engineers 60 60 54 9 3 9 5 3 1
Petroleum, mining,

and geological
engineers

36 36 0 0 0 5 0 0 0

Mathematicians and
statisticians

27 27 13 10 3 3 0 0 0

Industrial engineers 46 46 0 0 0 5 0 0 0
Mechanical
engineers

41 41 40 9 0 4 4 2 0

Chemical engineers 23 23 16 2 0 2 2 1 0
Physicists and
astronomers

29 29 20 20 0 2 2 2 0

Biological scientists 53 53 11 11 0 2 0 0 0
Civil engineers 54 54 0 0 0 2 0 0 0
Management

analysts
31 31 7 0 0 1 0 0 0

Aerospace engineers 42 42 37 9 0 1 0 0 0
Other financial

specialists
27 11 8 0 0 2 2 0 0

Metallurgical and
materials
engineers

21 21 0 0 0 0 0 0 0

This table reports the following values for each occupation that contains job titles in the V.0 to
V.3 definitions: the total number of occupation titles as of 2000 (column 2), the number of
column 2 titles that are potentially related to AI (columns 3-6), and the number of column
3-6 titles that were new as of 2000 (columns 7-10). The final two metrics are shown for V.0
(STEM occupations), V.1 (potential AI occupations), V.2 (broad AI-related occupations),
and V.3 (narrow AI-related occupations) categories. The remaining, unlisted 310 occupations
had zero potentially AI-related titles.
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between 2002 and 2020. For the 10 most-cited U.S. patents in each year
between 1976 to 2016, they apply text analysis to identify the most common
technical bigrams (e.g., word pairs) that appear in the filings for these patents.
From the resulting bigrams, they identify those that appear most frequently in
corporate earnings calls over 2002 to 2020 and then collect these terms into
20 technology groups. Of these 20, one is artificial intelligence (whose associated
keywords are artificial intelligence, machine learning, neural networks, deep
learning, predictive analytics, and language processing). Three other new tech-
nologies include applications of AI (driverless, machine vision, virtual reality),
while two others are computing technologies that are used to create AI
(cloud, disk drive).

Using this categorization, they calculate the exposure of firms and occupations
to new technologies, where exposure to a specific technology is defined as the
share of all technical bigrams that appear in earnings calls for a firm (from
2002 forward) or Burning Glass job postings for an occupation (from 2010
forward) that are comprised of the bigrams associated with that technology.
These data allow Bloom et al (2020) to track exposure to new technologies
across U.S. industries, occupations, and regions. For AI, firm exposure increased
modestly from 2010 to 2015 and rapidly thereafter. As a technology diffuses over
time, the desired education level listed in job postings tends to decline.11

For my purposes, their measure of technology exposure, which is not yet pub-
licly available, represents a shock to labor demand that may be difficult to sign.
For instance, the two most exposed occupations to virtual reality are computer
hardware engineers and fine artists. One may imagine that the technology repre-
sents a strongly positive shock for engineers but an ambiguous shock for fine
artists (e.g., positive for those working in digital media and negative for those
working in non-digital media).

Other work focuses on identifying occupations exposed to the job-displacing
impacts of AI. The measure in Felten et al. (2019) combines the Electronic
Frontier Foundation AI Progress Measurement dataset, which tracks technolog-
ical progress across categories of AI activities (e.g., image recognition), with
crowdsourced assessments of how well these categories apply to O*NET
ability scales (e.g., depth perception), to measure the vulnerability of occupations
to AI, based on the importance of each ability scale to an occupation. In two
related approaches, Brynjolfsson et al. (2019) use crowdsourcing to evaluate
the suitability of machine learning for detailed work activities in O*NET, and
then construct an occupation-level measure of exposure to AI based on occupa-
tion intensities in these activities, while Webb (2020) defines occupation-level
exposure by identifying the overlap between Google Patents Public Data and
O*NET tasks. Acemoglu et al. (2020) calculate exposure to AI at the establish-
ment level by using the establishment intensity of employment across occupa-
tions for each of these three AI occupation-exposure measures.

These advances in measuring occupation or establishment-level exposure to the
disruptive impacts of AI are welcome. None, however, appears to be directly useful
for detecting which occupations are most likely to be engaged in producing AI.
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3 Preliminary Analysis

In this section, I examine which U.S. commuting zones are most specialized in
AI-related activities, in which commuting zones are AI-related activities most
concentrated, and how revealed comparative advantage in AI-related activities
varies across workers according to their region of birth. I focus on prime-age
workers (ages 25 to 54) who have at least four years of college education. I
measure employment as hours worked (weeks worked last year × usual hours
worked per week × sampling weight) for individuals who are not in group quar-
ters and who had positive earnings in the previous year. Data are from the 2000
Census, the 2005–2009 ACS five-year sample (which I ascribe to 2009), and the
2014-2018 ACS five-year sample (which I ascribe to 2018).

3.1 CZ Specialization in AI-Related Occupations

Figure 7.1 shows the share of hours worked by the college-educated in AI-
related occupations for the V.3 definition across commuting zones. Specifically,
letting Lg,f

oct refer to hours worked in a given occupation o, CZ c, year t, and by
gender g and foreign born status f, this share is given by the expression,
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Figure 7.1 Share of Hours Worked in AI-Related Occupations by Commuting Zone
The figures show the share of hours worked (in percentage terms) in AI-related occupations
(V.3 definition) for prime-age, college-educated men or women in a given CZ for 2000 and
2018. AI hours worked is measured as hours worked in a given AI-related occupation times
the share of all 2000 jobs titles in that occupation that were created after 1990 and that were
AI-related. Shares are for all workers in panel (a), foreign-born workers in panel (b), and
native-born workers in panel (c).

(a) All Workers
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where soV .3.T ¼ jV .3.To
2000

j=jV .3.T o
1990

j
jV .3.To

2000
j is the share of titles in a given occupation o that are

new and related to AI, thus proxying for the fraction of hours worked in a given
occupation that is devoted to new AI-related work. Unreported figures for
the V.2 definition of occupations are very similar. The first panel shows the
share of all CZ workers employed in AI-related occupations, first for men and
then for women; the second panel shows foreign-born workers employed in

West New York
Bloomington-Normal, IL

San Jose-Sunnyvale-Santa Clara, CA

Oakland-Fremont-Hayward, CASeattle-Bellevue-Everett, WA

0
.5

1
1.

5
2

20
18

0 .5 1 1.5 2
2000

Men, College+

Washington SurroundingWest New York

San Jose-Sunnyvale-Santa Clara, CA

Oakland-Fremont-Hayward, CA
Seattle-Bellevue-Everett, WA

0
.5

1
1.

5
2

20
18

0 .5 1 1.5 2
2000

Women, College+

(b) Foreign-born Workers

Huntsville, AL

Palm Bay-Melbourne-Titusville, FL

South Arlington-AlexandriaColorado Springs, CO

Provo-Orem, UT

0
.2

.4
.6

.8
1

20
18

0 .2 .4 .6 .8 1
2000

Men, College+

Huntsville, AL

Palm Bay-Melbourne-Titusville, FL

South Arlington-Alexandria

Bloomington-Normal, IL

Colorado Springs, CO

0
.2

.4
.6

.8
1

20
18

0 .2 .4 .6 .8 1
2000

Women, College+

Figure 7.1 (Continued)

(c) Native-born Workers
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AI-related occupations as a share of total CZ employment; and the third panel
shows native-born workers employed in AI-related occupations as a share of
total CZ employment.12 In each graph, the share of CZ employment in AI-
related jobs for 2018 appears on the vertical axis and the corresponding share
for 2000 appears on the horizontal axis. To help identify the individual CZs in
the figures, Appendix Table 7A.2 lists the top 20 CZs in each of the six plots.
Unreported plots for employment shares using worker counts are very similar.

Three patterns are apparent in the data. The first is that there is persistence in
which CZs are specialized in AI-related activities. In each figure, there is a strong
positive correlation between the share of CZ employment in AI-related jobs in
2000 and 2018, as indicated by the clustering of points along the 45-degree
line. Most points are modestly to substantially above the line, indicating a
strengthening of regional specialization in AI-related activities over time. The
second is that across CZs and over time, specialization of men in AI-related activ-
ities tends to be much stronger than that for women. Male AI employment
shares tend to be two to three times as large as those for women. This pattern
is consistent with the relatively greater specialization of men in STEM-related
jobs across occupations (e.g., Hanson & slaughter, 2018).

The third pattern relates to differences in native-born and foreign-born specia-
lization in AI-related activities across CZs. When considering all workers together
in the first panel, specialization in AI-related activities is strongest in three types of
CZs: hubs for high-tech industry (e.g., San Jose, CA), university towns (e.g.,
Bloomington, IL), and cities specialized in government or military research
(e.g., Colorado Springs, CO). When I separate foreign-born and native-born
workers, we then see that when it comes to specialization in AI-related activities
the two groups of workers tend to cluster in different places. The share of foreign-
born workers specialized in AI-related activities as a share of CZ total employment
is largest in conventional high-tech hubs (San Jose, CA; Oakland, CA; Austin,
TX; Boston, MA; Seattle, WA), and major cities (New York, NY; Washington,
NY; Dallas, TX). For the native-born, by contrast, the share of their employment
in AI-related activities as a share of CZ total employment is highest in locations
that have government, military, or space-related research facilities (Colorado
Springs, CO; Alexandria, VA; Melbourne, FL; Huntsville, AL) or that are univer-
sity towns (Bloomington, IL; Provo, UT). For both men and women, the overlap
of the top 10 CZs in terms of AI specialization by the foreign-born and native-
born includes just two commuting zones, Washington, DC, and Raleigh, NC.
Because government and military research tends to require higher-level security
clearances, it may be that native-born workers are better positioned to take
these types of jobs. Foreign-born workers appear to excel in taking up jobs in
CZs populated by private employers and non-governmental research entities.

3.2 Concentration of AI-Related Employment in Tech-Oriented CZs

Figure 7.2 shows the share of commuting zones in national hours worked by the
college-educated in AI-related occupations by the V.3 definition, where figures
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Figure 7.2 Share of CZ in National Hours Worked in AI-Related Occupations
The figures show the share of a commuting zone in national hours worked (in percentage terms)
in AI-related occupations (V.3 definition) for prime-age, college-educated men or women in a
given CZ for 2000 and 2018. AI hours worked is measured as hours worked in a given AI-
related occupation times the share of all 2000 jobs titles in that occupation that were created
after 1990 and that were AI-related. Shares are for all workers in panel (a), foreign-born
workers in panel (b), and native-born workers in panel (c).

(b) Foreign-born Workers
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for the V.2 definition are very similar. The first panel includes all workers, first for
men and then for women; the second panel includes foreign-born workers only;
and the third panel includes native-born workers only. In each graph, the CZ
share of national employment in AI-related jobs for 2018 appears on the vertical
axis and the corresponding share for 2000 appears on the horizontal axis. Fol-
lowing notation from Section 3.1, the expression for these shares is given by,

100 *
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To help identify the individual CZs in the figures, Appendix Table 7A.3 shows
the top 20 CZs in each of the six figures. Unreported plots for employment
shares using worker counts are very similar.

The largest hubs account for a substantial share of US AI-related employment.
These patterns are persistent over time, as indicated by the concentration of data
points along the 45-degree line. The top five hubs (Washington, Los Angeles,
Oakland, Chicago, San Jose) accounted for 23.1% of male AI-related employ-
ment in 2018 and the top 10 (top five plus Boston, New York, West New
York, Atlanta, Dallas) accounted 40.9% of male AI-related employment in that
year. Figures for women are similar, as are the CZs in which their employment
is concentrated. Consistent with overall patterns of spatial agglomeration in
high-tech activities (Moretti, 2012, 2019; Bloom et al., 2020), US employment
in jobs that require AI-like skills are highly geographically concentrated.

As with regional specialization in AI-related jobs, it is again the case that the com-
muting zones that account for the largest clusters of AI-related employment differ
depending on whether one is examining foreign-born or native-born workers. For
foreign-born men, San Jose (8.6% in 2018) and Oakland (8.1% in 2018) are the
largest clusters of AI-related employment, whereas for native-born men San Jose
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(1.8% in 2018) and Oakland (3.4% in 2018) are ranks 12 and five, respectively. For
native-born men, Washington, DC (4.9% in 2018) and Boston (3.3% in 2018) are
the largest clusters of AI-related employment, whereas for foreign-born men Wash-
ington, DC (5.6% in 2018) and Boston (3.7% in 2018) are ranks five and eight,
respectively. This provides further evidences of differences in specialization patterns
of the foreign and native-born when it comes to AI-related jobs.

3.3 Revealed Comparative Advantage in AI-Related Occupations

In this section, we consider the extent to which foreign and native-born workers
differ in their specialization in AI-related jobs. Existing literature indicates that
across all STEM-related occupations, the foreign-born show stronger patterns of
specialization than do the native-born (Hanson & Liu, 2017; Hanson & Slaughter,
2018). Here, we narrow the focus to the revealed comparative advantage of the
two groups in jobs that are related to AI. Of course, the specialization of
foreign-born workers in AI-related occupations indicates comparative but not
absolute advantage in these jobs. Immigrant specialization in AI may represent
an absolute advantage in the activity. On the contrary, US-born workers may
have an absolute advantage in all occupations, but end up specializing in non-
STEM sectors because of a relatively strong advantage in tasks that require commu-
nication and social skills, which may be relatively important in non-STEM activities.

To begin, Figure 7.3 shows the share of hours worked by the prime-age and
college-educated in AI-related occupations (V.3 definition) by worker place of
birth. I group birth countries into eight regions based on similarities in education
levels and specialization in STEM occupations: the US; Africa and the Middle
East; China and Hong Kong; Europe, Australia and New Zealand; India;
Korea, Japan, and Taiwan; Latin America and the Caribbean; and Other
Asia.13 For men, the share of AI-related jobs (V.3 definition) held by those
born in the US declined from 75.2% in 2000 to 65.2% in 2018. This drop was
due almost entirely to the increased employment of men born in India, whose
share of AI-related employment rose from 7.8% in 2000 to 16.9% in 2018.
Over 2000 to 2018, foreign-born workers accounted for 54.6% of the increase
in employment in AI-related jobs, with workers born India alone accounting
for 63.7% (or 35.3% of the nationwide increase) of this increase. Patterns for
women are similar. The share of native-born women in AI-related employment
fell between 2000 and 2018 (from 78.1% to 65.1%), with rising shares for
women born in India (from 4.8% to 16.4%) accounting for most of this decline.

To characterize specialization in AI-related jobs, one needs to adjust for the
overall presence of a national origin group in the economy. I do so by calculating
revealed comparative advantage in AI-related employment among workers in the
U.S. labor market:

RCAn ¼ ln
Lai

n /L
ai

Ln/L

( )
,
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Figure 7.3 Share of Hours Worked by the College Educated in AI-Related Occu-
pations by Worker Region of Birth
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where Lai
n /L

ai is the share of national-origin group n in US employment (of the
college educated) in AI-related occupations (which is shown in Figure 7.3) and
Ln/L is the share of national-origin group n in national employment (of the
college educated) across all occupations. RCA values for men and women in
2000 and 2018 appear in Figure 7.4. Workers born in India display the strongest
revealed comparative advantage in AI-related employment. The log RCA value
for Indian men of 1.37 in 2018 indicates that their employment share in AI
was 3.9 (= exp(1.37)) times their employment share across all occupations in
the US. Women born in India display an even stronger revealed comparative
advantage in AI-related activities. For both men and women, China and Hong
Kong is the region with the next strongest RCA in AI-related jobs. Robustly neg-
ative log RCA values for individuals born in the US and Latin America and the
Caribbean indicate that among the college educated, their employment shares in
AI-related activities were substantially below their employment shares across all
occupations.

Does revealed comparative advantage on the part of Indian and Chinese
workers in AI-related occupations simply reflect a generic comparative advantage
across all jobs that are related to STEM disciplines? Appendix Tables 7A.4 to
7A.8 show employment shares and log RCA values for national origin groups
using the V.0 definition of STEM-related jobs (707 titles), the V.1 definition
of potentially AI-related jobs (325 titles), and the V.2 broad definition of AI-
related jobs (146 job titles). These categories represent substantially larger
employment levels than the 30 AI-related job titles in the V.3 definition. In
2018, workers born in India accounted for 4.3% of total employment of
college-educated men in the US, 10.9% of employment in V.0 occupations,
12.1% of employment in V.1 occupations, and 14.6% of employment in V.2
occupations, as compared to their 16.9% of employment in V.3 occupations. A
similar patterns holds for women born in India, whose employment shares rise
from 2.2% among all college-educated workers to 9.3% in V.0 occupations and
to 16.4% in V.3 occupations. As we narrow the definition of jobs related to
AI, the revealed comparative advantage of workers from India in these occupa-
tions intensifies. For men born in China or Hong Kong, their 2018 employment
shares rise from 1.4% across all occupations to 2.7% in V.0 occupations and to
3.4% in V.3 occupations, while for women born in the region their employment
shares rise from from 1.4% across all occupations to 4.3% for V.0 occupations and
to 5.3% for V.3 occupations. For workers born in India and China, specialization
in narrowly defined AI-related jobs is much stronger than specialization in
STEM-related occupations overall.

Which factors account for the revealed comparative advantage of workers from
China and India in AI-related activities? One possibility is that immigrant specia-
lization in AI is a result, not of an absolute disadvantage among US-born workers
in these jobs, but of an overwhelming absolute advantage of the U.S.-born
workers in non-AI fields. If, for instance, non-AI jobs place a higher premium
on social and communication skills (which may be relatively unimportant in pro-
ducing AI) and the U.S. educational system (including K-12 schooling) is
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Figure 7.4 Revealed Comparative Advantage in AI-Related Occupations for
College-Educated Workers by Region of Birth
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particularly adept at imparting these skills, then workers born in the US may spe-
cialize in non-AI occupations (and non-STEM occupations in general), despite
having an absolute advantage across all trades. For Chinese immigrants, language
barriers may put them at a further disadvantage in non-STEM positions.14

A second factor may be the quality of technical training in engineering and
math in the two countries. China has invested heavily in its university training
in STEM (Xie & Freeman, 2020), while India’s technical institutes excel in engi-
neering and math. Strong engineering and math skills may have left workers from
the countries well-positioned to move into AI, as the field has expanded.15 A
related factor, which may be both a result of and a contributor to the countries’
revealed occupational comparative advantage in computer science and engineer-
ing, is the relatively strong capabilities of Indian and Chinese firms in technology
fields. Indian firms, such as Infosys, Tata Consultancy Services, and Wipro, are
among the leading providers of technology-related services globally. Because
Alphabet, Amazon, Apple, Facebook, Microsoft, and other major US tech com-
panies appear to excel in all stages of technology production and distribution,
Indian firms may have an incentive to specialize in the relatively narrow category
of software programming and related technology services, which are used inten-
sively in AI. Indian tech firms may offer training for workers who wish to obtain
visas to work in the US technology sector. For its part, China has developed a set
of national technology companies in Alibaba, Baidu, Tencent, and others, which
occupy similar market niches as the big five US tech firms. Because of barriers to
entry in China, the two groups of companies tend not to compete head to head
in their national markets. Like Indian companies, these firms may provide a train-
ing ground for workers seeking to break into the US job market.

A final factor may be US immigration policy. Prior to 1990, there were few
individuals of Indian or Chinese origin in the US. As a result, few US residents
would have been able to sponsor individuals from these countries for family-
based immigration visas, which by law account for the strong majority of perma-
nent visas that the US government gives out each year. Their primary means of
obtaining a US permanent legal residence visa, or green card, has been through
employer-sponsored visas, the supply of which equal a legally mandated 15% of
all restricted visas (i.e., visas other than those awarded to immediate family
members of US residents) awarded in a given year. The need to obtain
employer-sponsored green cards may have meant that the Indian and Chinese
immigrants selected for admission have been disproportionately likely to reflect
the types of high-skilled workers in most demand by US companies, including
those in high tech.

H-1B visas, which were introduced in 1990 and allow workers to hold a job in
the US for three years and to renew the visa for a second three-year stay, are
claimed overwhelmingly by workers in technology-related fields (Bound et al.,
2017, 2021). These visas operate as queues for employer-sponsored green
cards. One pathway to an employer sponsored green card is first to obtain an
H-1B temporary work visa, which allows a worker to demonstrate her talents
to a US employer before that employer undertakes the time-consuming task of
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employment sponsorship. A second and related pathway is to obtain a student
visa, complete an undergraduate or graduate degree in the US, and then
secure an H-1B visa. The need for many Chinese and Indian immigrants to
obtain an H-1B visa to gain entry to the US may create a selection mechanism
that favors workers who excel in jobs that require skills applicable to AI.

4 Regression Analysis

In this section, I present the core empirical results of the chapter. I estimate the
change in CZ specialization in AI-related activities as a function of the immigrant
labor-supply shock confronting the CZ, defined as local exposure to national
growth in the number of college-educated immigrants. The estimation covers
the long-period change 2000 to 2018; results for stacked first differences over
2000 to 2009 and 2009 to 2018 are shown in the appendix. This time period
spans the slower growth in AI-related activities of the early 2000s and the accel-
eration in growth after 2010. All specifications control for regional business
cycles and initial-period CZ demographic composition and exposure technolog-
ical change, manufacturing decline, and globalization.

Before presenting the specification, it is worth articulating the implicit exper-
iment that underlies the analysis. After 2000, US technology firms began to
invest more heavily in AI (due to technological breakthroughs). Their footloose
nature left them free to locate where they saw fit. Also after 2000, the US had
substantial inflows of highly educated foreign-born workers. Because of historical
patterns of immigrant settlement, workers from specific origin countries tended
to congregate in specific US commuting zones; and because of historical patterns
of occupational specialization, workers from specific origin countries were drawn
to specific types of jobs. The quasi-experiment I evaluate is whether CZs seeing
larger inflows of foreign-born workers with a proclivity to work in AI—where
these inflows were the combined byproduct of historical settlement and speciali-
zation patterns—became more specialized in AI-related activities. For the quasi-
experiment to be valid, inflows of foreign-born workers to a CZ must not have
been caused by investments of local firms in AI. A challenge for the estimation is
to construct the immigrant supply shock so as to minimize the potential for such
reverse causality.

How would the immigrant labor supply shock affect employment of different
types of workers? We would expect the direct effect to be expanded employment
of foreign-born workers in AI-related jobs. The magnitude of this impact may
differ between foreign-born men and women, if the two groups differ in their
tendencies to specialize in AI. The indirect impact of the shock on native-born
workers in a CZ is of indeterminate sign. On the one hand, AI-producing
firms may expand employment of native-born workers, either because foreign
and native-born workers are complements in production or because of agglom-
eration economies that induce AI firms to expand employment of all factors. On
the other hand, if native and foreign-born workers in AI-related jobs are substi-
tutes, firms may be inclined to replace native-born workers with foreign-born
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workers, if the latter has a comparative advantage in AI-related tasks. Because AI
is a tradable, this crowding-out effect may be attenuated. When studying the
adjustment of native-born employment to immigrant labor supply shocks across
all occupations, Burstein et al. (2020) found neither crowding in nor crowding
out—on net, arriving immigrant workers do not displace native-born workers
within occupations whose services are tradable. With these alternative adjustment
mechanisms in mind, I allow the impact of the immigrant labor supply shock to
differ between men and women and between the native and foreign-born.

4.1 Empirical Specification

The core empirical specification takes the form,

DY v
cgt ¼ bg0 þ bg1Dzvcgt þ bXcgt þ Ecgt, ð1Þ

where DY v
cgt is the change in the share of employment for prime-age, college-

educated workers of gender g (female, male) in commuting zone c (722 CZs
in the continental US) in AI-related occupations of type v (V.3, V.2) over
time period τ (2000-2018).16 I use hours worked to measure employment in
the baseline analysis; results using worker counts appear in the appendix. I esti-
mate equation (1) separately for men and women. I measure the employment
change in the numerator of the dependent variable to be, alternatively, for all
workers, foreign-born workers, and native-born workers (such that the estimated
βg1 values for the latter two groups sum to that of the first group).

The immigrant labor-supply shock, Dzvct, is defined as follows (where all values
are gender-group specific and hereafter I suppress the gender-group index):
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This shock, which follows the logic of shift-share instruments for immigrant
labor supply developed by Altonji and Card (1991) and Card (2001), is the
product of three terms. Term C is the change in the employment of prime-
age, college-educated individuals of a given gender for national-origin group n
outside of CZ c over period τ (e.g., the change in the number of college-
educated Indians in the US living outside of Austin between 2000 and 2018),
normalized by the employment of prime-age, college-educated individuals in
CZ c in the initial period. By leaving out quantities of CZ c in the numerator
of this term, I utilize information on immigration of group n, excluding those
migrants who chose CZ c as their destination (and may have been motivated
by economic conditions in the CZ in making their emigration decision). This
value therefore summarizes the generic attraction of college-educated immi-
grants of national origin group n to the US over time period τ. An assumption
needed for identification is that labor-demand shocks in CZ c did not affect
immigrant inflows in other CZs.17

204 Gordon Hanson 204



Term B is the share of workers from national-origin group n employed outside
of AI-occupation-group v that resided in CZ c in the year 2000. Excluding AI-
related occupations in this share captures the initial-period attraction of CZ c to
college-educated immigrants from origin n that is generic to the CZ and not spe-
cific to AI-related activities. Term A is the share of college-educated workers of
national origin group n outside of CZ c that worked in AI occupation group v in
the initial time period. Excluding CZ c from this value captures the generic spe-
cialization of national origin group n in AI-related activities. Multiplying terms
A, B, and C, and then summing across national origin groups produces the
imputed inflow of immigrant workers in AI-related occupations to a CZ,
which is based on the specialization of immigrants in AI-related occupations
(outside of the CZ), the concentration of different immigrant groups in the
CZ (outside of AI-related activities), and national growth in immigrant popula-
tions (outside of the CZ). The specification in (1) is therefore equivalent to a
first-stage regression in which the CZ employment of workers in AI-related
occupations is the endogenous variable and the projected change in CZ immi-
grant labor supply is the instrument.

The vector of control variables Xcg τ includes state fixed effects (to control for
regional business cycles); the sum of the shares in (2) (i.e., ∑nAcnBcn which
follows the recommendation of Borusyak et al. (2020) when using shift-share
shocks as regressors); and CZ shares for the year 2000 of the college educated
in the population, the foreign-born in the population, women in total employ-
ment, employment in manufacturing (to control for secular trends in the
sector), employment in routine-intensive jobs (to control for exposure to auto-
mation and related forms of skill-biased technological change), and employment
in offshorable jobs (to control for exposure to globalization). The third group of
controls follows those used by Autor et al. (2013) in their analysis of local-labor-
market adjustment to trade-related, labor-demand shocks. I cluster standard
errors by state and weight regressions by CZ total employment (of prime-age,
college-educated workers of the given gender group) in the initial period.
Summary statistics for the dependent variables and immigration-shock measures
used in the analysis appear in Appendix Table 7A.9.

It is important to state what the specification in (1) does and does not allow us
to identify. As a difference-in-difference regression, it allows us to compare
changes in specialization in CZs with larger versus smaller immigrant labor
supply shocks. Any common impact of immigration on specialization in AI
across all CZs is absorbed by the constant term (and cannot be recovered
without imposing further structure on the estimation). I am thus able to study
relative changes in specialization due to relative differences in immigrant
inflows, and not the aggregate impact of immigration on AI employment.

4.2 Baseline Estimation Results

The baseline estimation results appear in Table 7.3, where AI-related occupa-
tions are defined for the narrow V.3 job titles. All coefficients except those for
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the immigration shock are suppressed. Consider first the results for all men,
shown in column 3 of the first panel. The coefficient estimate of 1.68 (t-value
= 2.56) implies that when comparing CZs at the 75th and 25th percentiles of
exposure to the immigrant labor-supply shock, the more exposed CZ would
have a 0.08 (= 1.68 × (0.08 − 0.03)) larger annual percentage-point increase
in the share of college-educated men employed in AI-related activities. This
increase represents a full standard-deviation change in the dependent variable.

Columns 1 and 2 decompose the dependent variable in column 3 into two
terms: the portion due to the increase in CZ employment of the foreign-born
and the portion due to the increase in CZ employment of the native-born. By
construction, coefficients in columns 1 and 2 sum to that in column 3. The
highly precise coefficient estimate of 1.93 (t-value = 4.69) in column 1 implies
that when comparing CZs at the 75th and 25th percentiles of exposure to the
immigrant labor-supply shock, the more exposed CZ would have a 0.09
(= 1.93 × (0.08 − 0.03)) larger annual percentage-point increase in the share
of college-educated men who are employed in AI-related activities and who
are foreign born, which represents a 1.2 standard-deviation increase in the

Table 7.3 Long Difference (2000–2018): Immigration Impact on CZ Specialization
in AI-Related Occupations (V.3)

Men Women

Foreign-
born

Native-
born

All Foreign-
born

Native-
born

All

(1) (2) (3) (4) (5) (6)

Immigrant
shock (v3)

1.927 −0.242 1.684 0.776 0.107 0.883
(0.411) (0.324) (0.658) (0.393) (0.262) (0.626)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.797 0.380 0.541 0.695 0.528 0.304
DV Mean 0.076 0.063 0.139 0.019 −0.018 0.001
DV 25th

percentile
0.032 0.026 0.107 0.005 −0.040 −0.020

DV 75th
percentile

0.088 0.090 0.167 0.027 −0.002 0.017

DV : 100X 10
Dt X D AI ðv3Þ hours worked by nativity group

total hours worked

The dependent variable is the change in the share of hours worked in AI-related occupations (V.3
definition) for the long difference 2000–2018 for men (columns 1–3) and women (4–6), shown
separately for all workers (columns 5 and 6), foreign-born workers (columns 1 and 2), and native-
born workers (columns 3 and 4). The immigrant shock for AI-related occupations (V.3 definition)
is defined in equation (2). The sample is individuals 25 to 54 years old with at least a bachelor’s
degree residing in one of the 722 commuting zones in the continental US. All regressions include
a constant, the summed product of the weights used in the immigration shock, state fixed effects,
and initial-period shares of the college educated in the population, the foreign-born in the
population, females in total employment, employment in manufacturing, employment in
routine-intensive jobs, and employment in offshorable jobs. Standard errors (in parentheses) are
clustered by state. Regressions are weighted by CZ employment (of prime-age, college
educated workers of the designated gender) in the initial period.
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dependent variable. By contrast, in column 2 when the dependent variable is the
change in native-born men employed in AI, the coefficient on the immigration
shock is small, negative, and imprecisely estimated (β = −0.24, t-value = 0.75).
This means that an immigrant labor-suppy shock at the CZ level works to
expand employment in AI-related activities entirely through increased employ-
ment of the foreign born. The shock neither crowds in nor crowds out the
employment of native-born men in a CZ’s AI-related occupations.18

The concentrated impact of CZ-level immigrant labor-supply growth on
foreign-born AI employment is notable because nationally, foreign and native-
born workers have contributed roughly equally to the increase in AI employ-
ment. Of the mean change in the share of men employed in AI over 2000 to
2018 in Table 7A.9, 54.6% is due to greater employment of the foreign-born
and 45.4% is due to greater employment of the native-born. Despite this
similar contribution, the two groups have responded quite differently to local-
ized high-skilled immigrant labor-supply shocks. Consistent with the descriptive
evidence in Figures 7.1, the factors driving expanded AI-related regional employ-
ment for the foreign-born appear to be distinct from those for the native-born.

It is important to note that the results in Table 7.3 are not mechanical. CZs
exposed to a larger overall increase in college-educated immigration experience
larger employment growth specific to AI-related activities. Because AI-related
occupations account for a very small share of total employment, there is no auto-
matic connection between the expanded supply of college graduates in a CZ and
greater specialization in AI-related activities. The results for women, to which I
now turn, confirm this reasoning.

Estimation results for women appear in the second panel of Table 7.3. Impacts
of the immigration supply shock on AI-related employment of all college-edu-
cated women, shown in column 6, are positive but imprecisely estimated (β =
0.88, t-value = 1.41). This overall effect combines a positive but small and impre-
cise impact on the AI employment of native-born women in column 5 (β = 0.11,
t-value = 0.42) and a larger, positive, and more precisely estimated impact on the
AI employment of foreign-born women in column 4 (β = 0.78, t-value = 1.98).
Given the differential specialization of men and women in AI-related jobs—over
2000 to 2018, employment shares in AI-related occupations rose by 0.14 per-
centage points annually for men but just 0.001 percentage points annually for
women—the immigration labor-supply shock has substantially larger impacts
on male versus female employment. By the same token, the specialization of
foreign-born men in AI-related activities means that increased access to
college-educated male immigrants drives a region to specialize relatively more
strongly in AI-related activities.

Burstein et al. (2020) provide a theoretical framework that explains how exog-
enous increases in the supply of foreign-born workers to specific occupations
need neither crowd in nor crowd out the employment of native-born workers,
at least in jobs whose output is tradable. Tradability implies that firms can
absorb immigrant workers in an occupation (e.g., using machine learning to
create AI) by expanding exports to other regions. As long as a region is small
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in the sense of its output changes having minimal impacts on prices in national or
global markets, then the expansion in the employment of the foreign born need
not displace any native-born workers, even where foreign and native-born
workers are perfectly substitutable on the job. Because AI-related occupations
are highly tradable, the results in Table 7.3 appear to be consistent with Burstein
et al. (2020) logic.

Beyond the tradable-sector adjustment mechanism, there may be other factors
at work that affect how foreign and native-born workers sort themselves across
jobs related to AI. AI has many applications in national defense, national intelli-
gence, and space-related research (Allen and Chan, 2017). Jobs in these applica-
tions, whether they be for private employers, universities, non-profit research
organizations, or the government, often require a security clearance. Native-
born workers may be better positioned to acquire such clearances. Although
Census and ACS data do identify whether or not workers are employed by gov-
ernment entities, the data are not sufficiently granular to identify which private
employers are engaged in activities related to national security. One task for
future research is to evaluate whether greater access to high-skilled immigrant
labor leads a region to adjust the types of AI activities in which it engages.

Additionally, native-born workers with strong cognitive skills may be drawn to
highly-paid jobs in finance and away from AI. Because many jobs in investment
banking appear to involve deal making, which may draw on communication and
social skills, native-born workers may have an advantage in securing them.
Hanson and Liu (2021) report that in terms of intensity in abstract and quanti-
tative reasoning, financial managers rank 5th out of 30 occupations, just behind
engineers, mathematicians, and scientists. By contrast, when it comes to intensity
of interpersonal communication on the job, financial managers rank 11th, engi-
neers rank 23rd, and scientists and mathematicians rank 28th.

4.3 Robustness Checks

Next, I explore the robustness of the empirical results in three dimensions. First,
I use alternative measures of employment. Appendix Table 7A.10 displays results
using worker counts, rather than hours worked, to measure employment. For
men and women and all nativity groups, the results in Table 7A.10 are very
similar to those in Table 7.3. The implication is that the immigration shock
has comparable impacts on the intensive margin (hours worked) and extensive
margin (worker counts) of AI employment.

Second, I adjust the definition of time periods used in the analysis. Instead of
the 2000 to 2018 long difference, I organize the data in stacked first differences
over two time periods, 2000 to 2009, during which growth in AI was relatively
slow, and 2009 to 2018, during which growth in AI was relatively rapid (Bloom
et al., 2020). The results, which appear in Appendix Table 7A.12, are very similar
in terms of coefficient signs and magnitudes to those in Table 7.3. Shortening
the time periods and expanding the sample size allows for more precision in
the coefficient estimation. For women, the impact of the immigration shock
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on employment in AI-related occupations is now positively and strongly precisely
estimated for all women and for foreign-born women. The impact on native-
born women remains small and imprecisely estimated.

Finally, I broaden the definition of AI-related occupations. The V.3 measure I
have used so far in the estimation defines AI jobs to comprise 30 job titles, of
which 16 were created after 1990. The broader V.2 definition includes 146
job titles, of which 48 were created after 1990. Table 7.4 reports results for
V.2 AI-related occupations using employment measured as hours worked, and
the 2000 to 2018 long difference. Appendix Tables 7A.11 and 7A.13 show cor-
responding V.2 results for employment measured using worker counts and
stacked first differences over 2000 to 2009 and 2009 to 2018, respectively.
For men, the results in Tables 7.3 and 7.4 are qualitatively similar. For either
measure, the high-skilled immigration shock has a strongly positive impact on
employment in AI-related occupations, which is due entirely to the expanded
employment of the foreign born. The results differ in terms of magnitudes.
The coefficient on the immigration shock for V.3 occupations is twice as large
(1.95 = 1.93/0.99) as for V.2 occupations. For women, the change in coefficient

Table 7.4 Long Difference (2000-2018): Immigration Impact on CZ Specialization
in AI-Related Occupations (V.2)

Men Women

Foreign-
born

Native-
born

All Foreign-
born

Native-
born

All

(1) (2) (3) (4) (5) (6)

Immigrant
shock (v2)

0.989 0.217 1.206 0.280 0.119 0.400
(0.260) (0.278) (0.476) (0.283) (0.153) (0.352)

State FE Yes Yes Yes Yes Yes Yes
Obs. 722 722 722 717 717 717
Adj. R-squared 0.675 0.478 0.398 0.637 0.534 0.466
DV Mean 0.102 −0.037 0.065 0.003 −0.130 −0.128
DV 25th
percentile

0.027 −0.145 −0.045 −0.029 −0.190 −0.196

DV 75th
percentile

0.141 0.046 0.157 0.028 −0.067 −0.065

DV : 100X 10
Dt X D AI ðv2Þ hours worked by nativity group

total hours worked

The dependent variable is the change in the share of hours worked in AI-related occupations (V.2
definition) for the long difference 2000–2018 for men (columns 1–3) and women (4–6), shown
separately for all workers (columns 5 and 6), foreign-born workers (columns 1 and 2), and
native-born workers (columns 3 and 4). The immigrant shock for AI-related occupations (V.2
definition) is defined in equation (2). The sample is individuals 25 to 54 years old with at least a
bachelor’s degree residing in one of the 722 commuting zones in the continental US. All
regressions include a constant, the summed product of the weights used in the immigration
shock, state fixed effects, and initial-period shares of the college educated in the population, the
foreign-born in the population, females in total employment, employment in manufacturing,
employment in routine-intensive jobs, and employment in offshorable jobs. Standard errors (in
parentheses) are clustered by state. Regressions are weighted by CZ employment (of prime-age,
college educated workers of the designated gender) in the initial period.
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magnitudes is even more substantial. The immigration shock coefficient for
foreign-born women in Table 7.4 is only one-third (0.36 = 0.78/0.28) as
large as in Table 7.3 and is quite imprecisely estimated (t-value = 0.99).

One interpretation of the finding that the high-skilled immigration shock has a
larger impact on employment shares in narrow versus broad AI-related occupa-
tions is that the supply of skilled labor is a more binding constraint for former
than for the latter. Relaxing this constraint would then generate larger adjust-
ment in V.3 than in V.2 occupations. Because narrow V.3 job titles are associated
with the more skilled jobs than the broad V.2 titles, this interpretation appears
plausible.

5 Discussion

The frenzy over artificial intelligence rivals that surrounding the space race of the
1950s and 1960s. With applications of AI still in its early stages, observers are
free to make bold claims about how the technology will cause widespread job
loss, usher in a future of driverless transportation, render language barriers obso-
lete, or bring forth other massive disruptions. Whatever the future of AI, it is
likely to inspire heavy investments in new ventures for some time to come.
Where these investments occur will help determine the future spatial distribution
of activities in IT. Because AI is the current frontier of IT, which locations host
its creation is of enormous interest to government and industry alike.

In the US, the regions that are best able to attract the computer scientists, data
scientists, and computer systems engineers who are most adept at machine learn-
ing and related activities are likely to be the ones that acquire a comparative
advantage in AI. Globalization has made it possible to obtain advanced computer
hardware just about anywhere. Advances in digital communications now allow
data to flow freely across space. Because these two key AI ingredients are foot-
loose, the location of their production may have little bearing on the location
of AI production. The technical talent that creates AI is also footloose. In the
US, much of this talent is foreign born—and from India and China in particular.
The location choices of newly arrived immigrants, whether low-skilled or high-
skilled, tend to follow the location choices of previous generations of workers
from their origin countries. So too has it been in the case for AI-related
workers. US commuting zones that were most exposed to increases in the
supply of college-educated immigrants—based on the previous specialization pat-
terns of these regions and their historical attraction to foreign-born arrivals—have
seen the largest increase in the share of employment devoted to AI-related jobs.
The lesson from this regularity is that access to high-skilled immigration relaxes
the talent constraint that limits the expansion of AI. The US government, by reg-
ulating the volume and composition of high-skilled labor inflows from abroad, in
effect regulates the pace of growth in AI.

The US model of innovation in AI—in which private-sector firms competing
in open markets make their own investment decisions and hire talent from
around the world—stands in contrast with that of China. China’s tech
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firms enjoy protection from foreign competition, receive subsidies for R&D and
other performance measures, and benefit from the government’s appetite for
facial recognition and other AI applications (US firms, for their part, also
receive government subsidies, at least in indirect form through public funding
of basic and applied research and possibly in direct form through government
procurement). One presumes that the talent constraint in AI production
applies in China, just as in the US. What remains to be seen is whether the rel-
ative openness of the US to immigration gives it an advantage in the sector.

Notes
I thank Gene Grossman, Lili Yan Ing, and Chris Tonetti for helpful comments, and
Savannah Noray for excellent research assistance.

1 For literature that examines the creation of new work across all occupations and
over longer time spans, see Atalay et al. (2020) and Autor et al. (2020).

2 Bloom et al. (2020) develop a conceptually related approach to identify new tech-
nology by tracking the presence of key words or phrases in company earnings
calls and Burning Glass job postings.

3 See Borjas and Doran (2012) for evidence on how arriving Russian mathemati-
cians displaced US scholars working in subfields of mathematics in which Soviet-
era research was relatively specialized.

4 These codes were modified slightly to accommodate work in military-related
occupations.

5 To this list, I add financial and management analysts, which may include workers
engaged in quantitative finance (an active area of AI). These categories are
dropped in V.2, which contains broad AI titles.

6 The excluded occupations, based on their 2000 Census codes, are: computer and
information systems managers, engineering managers, financial specialists (all
other), computer support specialists, database administrators, network and com-
puter systems administrators, engineering technicians, computer operators, data
entry keyers, and computer control programmers and operators. Among life
and physical scientists, I exclude agricultural and food scientists, chemists and
materials scientists, conservation and forestry scientists, and surveyors, cartogra-
phers, and mapping scientists.

7 In unreported results, I perform analysis for V.0 and V.1 occupations and obtain
similar results.

8 Note that the 30 job titles designated to be AI-related exclude many other titles
within the five occupation codes that appear to be support roles, e.g., as indicated
by the terms analyst, consultant, developer, integrator, planner, specialist, tester,
or writer.

9 Perhaps the signature AI achievement of the decade was IBM’s Deep Blue
machine-learning-based system defeating world champion Gary Kasparov in
chess in 1997.

10 Ideally, one would like to track the creation of new occupational titles separately for
each decade. Such an exercise is unfortunately beyond the scope of this chapter.

11 An amalgam of their approach and mine would be to use Burning Glass data to
measure the share of new jobs for each job title within a Census occupation code,
which would improve upon my somewhat crude metric of effectively treating the
number of jobs per title as the same across titles.
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12 The shares in the second and third panels add to the total shares shown in the first
panel.

13 See Appendix Tables 7A.6 and 7A.8 for the values reported in these figures as
well as values for the V.2 definition of AI-related jobs.

14 If countries whose spoken languages are more distant from English are better at
technical straining, then language may confound analysis of the impact of educa-
tion quality on occupational comparative advantage in the U.S. One measure of
the quality of a country’s educational instituions in imparting cognitive skills is
test scores from the Program for Internatoinal Student Assessment (PISA).
Hanson and Liu (2021) report that the correlation between PISA math scores
and linguistic distance to the U.S. is just 0.17.

15 This would not explain the specialization of Chinese and Indian workers in AI
over STEM in general.

16 Both the dependent variable, DY v
cgt, and the immigration labor-supply shock,

Dzvcgt, are expressed in decadalized terms by multiplying them by 10/4t,
where 4t is the length of time period τ.

17 This approach to identification is analogous to assuming “exogeneity of the
shifts” as defined by Borusyak et al. (2020) for shift-share instruments. An alter-
native would be to assume “exogeneity of the shares” as elaborated by Gold-
smith-Pinkham et al. (2020).

18 This finding mirrors the Burstein et al. (2020) result on how native-born
employment in tradable occupations (such as AI) adjusts to an immigrant
labor supply shock.
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Table 7A1 Job Titles Associated with AI-Related Occupations (V.3 definition)

216

Occupation Occupation Title V.3 AI New

Computer scientists and
systems analysts

Computer software engineers

Analyst \ n.s.

Artificial intelligence specialist
Business systems analyst

Computer analyst
Computer consultant \ n.e.c. or n.s.

Computer research
Computer scientist

Computer systems analyst
Computer systems design analyst

Computer systems designer
Computer systems, planning
Computing systems analyst

Consultant, systems, computer or data
processing

Data processing consultant
Data processing systems analyst
Data processing systems project

planner
Digital computer systems analyst

Engineering systems analyst
Health systems analyst, computer

Information scientist
Information systems consultant
Information systems specialist

Information technology specialist,
general or n.s.

Information technology specialist,
systems analysis

Methods analyst, computer
Scientific systems analyst

Software consultant \ n.e.c.
Supervisor, computer analyst

Systems analyst, computer systems
Systems analyst, data processing

Systems architect
Technician, computer or computer

laboratory
Applications developer

C.N.E. (certified Novell engineer)
Computer applications developer
Computer programmer analyst
Computer specialist, software

Engineer, Microsoft certified systems
(MCSE)

Engineer, computer applications
Engineer, computer software \ n.e.c.

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

(Continued)
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Table 7A1 (Continued)
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Occupation Occupation Title V.3 AI New

Network systems and data
communications analysts

Engineer, computer software
applications

Engineer, computer software systems
Engineer, computer systems
Engineer, software \ n.e.c.

Engineer, software applications
Engineer, software requirements

Engineer, software systems
Engineer, system

Engineer, system EDP
Engineer, systems analyst

Info. technology specialist, software
engineering,applications

Inf. technology specialist, software
engineering,systems

M.C.S.E (Microsoft certified systems
engineer)

Program analyst
Programmer analyst

Quality assurance specialist,
applications

Quality assurance specialist, systems
software

Software QA tester
Software applications specialist

Software designer
Software developer

Software development specialist
Software installer

Software specialist, systems
Software writer

Supervisor, software engineering
Tester, software

Chat room host/monitor

Communications consultant
Computer consultant, networks

Computer integration
Data communications analyst

Engineer, network
Info. technology specialist, internet
Info. technology specialist, network

services
Internet developer
Intranet developer
Manager, website

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

(Continued)
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Table 7A1 (Continued)

218

Occupation Occupation Title V.3 AI New

Statisticians

Computer hardware engineers

Multimedia telecom. systems
integrator

Network analyst
Network architect
Network consultant
Network designer
Network specialist
Network support

Network systems analyst
Network systems integrator
Software consultant, data

communications
Software consultant, networks

Systems integrator
Systems planner

Telecommunications specialist
Web designer
Web developer
Web specialist
Webmaster

Analytical statistician
Applied statistician

Biometrician
Biostatistician

Engineer, statistical
Mathematical statistician

Sampling expert
Statistician

Survey statistician
Time study statistician
Computer designer
Computer layout
Computer tester

Engineer, computer \n.e.c. or n.s.
Engineer, computer hardware

Engineer, design \ n.s.
Engineer, installation, computers exc.

PCs
Microchip specialist

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

This table lists all occupation titles that correspond to Census occupation codes that have at least
one AI-related title by the V.3 definition. Column 3 (4) indicates whether a title is AI-related
(added after 1990).



Table 7A2 Top 20 CZs in Terms of Share of CZ

All Workers

Hours Worked in AI-Related Occupations,

Foreign-Born Workers

2000

219

Native-Born Workers

Rank

1

Men Women

San Jose-Sunnyvale- San Jose-Sunnyvale-

Men Women

San Jose-Sunnyvale- San Jose-Sunnyvale-

Men Women

Colorado Springs, Huntsville, AL
Santa Clara, CA Santa Clara, CA Santa Clara, CA Santa Clara, CA CO

2 Colorado Springs, Huntsville, AL Oakland-Fremont- Oakland-Fremont- South Arlington- Colorado Springs,
CO Hayward, CA Hayward, CA Alexandria CO

3 Washington Colorado Springs, West New York West New York Palm Bay- Martinsville, VA
Surrounding CO Melbourne-

Titusville, FL

A
I

4 Bloomington- Washington Washington Washington Bloomington- IPalm Bay-
Normal, IL Surrounding Surrounding Surrounding Normal, IL

m

Melbourne- m
iTitusville, FL

5 Raleigh-Cary, NC Martinsville, VA Dallas Surrounding Seattle-Bellevue- Huntsville, AL

graWashington
Everett, WA

tiSurrounding
6 Palm Bay- Palm Bay- Austin-Round Rock, Edison, NJ Raleigh-Cary, NC

onBloomington-
Melbourne- Melbourne- TX

a

Normal, IL
Titusville, FL Titusville, FL

nd

7 South Arlington- Raleigh-Cary, NC Boston-Quincy, MA Dallas Surrounding Provo-Orem, UT

R

South Arlington-
Alexandria

egiAlexandria
8 Austin-Round South Arlington- Edison, NJ Pike County, KY Binghamton, NY

onRaleigh-Cary, NC
Rock, TX Alexandria

al

9 Binghamton, NY Oakland-Fremont- Seattle-Bellevue- Raleigh-Cary, NC Denver-Aurora, CO Denver-Aurora, CO
Hayward, CA Everett, WA

Spec

10 Denver-Aurora, CO Bloomington- Raleigh-Cary, NC Boston-Quincy, MA Washington

iaBinghamton, NY
Normal, IL Surrounding

liz

11 Huntsville, AL Binghamton, NY Chicago-Naperville- Wilmington, DE- San Jose-Sunnyvale-

ation

Austin-Round
Joliet, IL MD-NJ Santa Clara, CA Rock, TX

12 Oakland-Fremont- Denver-Aurora, CO Los Angeles-Long Houston Rockingham. Baltimore
Hayward, CA Beach-Glendale, Surrounding Strafford County,

219Surrounding
CA NH

(Continued)



Table 7A2 (Continued)

All Workers Foreign-Born Workers

220Native-Born Workers

Rank

13

14

15

16

17

18

19

20

This ta
educat
that oc

Men Women

Dallas Surrounding Dallas Surrounding

Provo-Orem, UT Seattle-Bellevue-
Everett, WA

Boston-Quincy, Boston-Quincy,
MA MA

Rockingham. Austin-Round
Strafford County, Rock, TX
NH

Seattle-Bellevue- Baltimore
Everett, WA Surrounding

West New York Wilmington, DE-
MD-NJ

Atlanta Columbus, OH
Surrounding

Rochester, MN West New York

ble reports the top 20 commuting zones in term
ed men and women in 2000. AI hours worked ar
cupation that were created after 1990 and that

Men Women

Atlanta Surrounding Los Angeles-Long
Beach-Glendale,
CA

Miami-Miami Columbus, OH
Beach-Kendall, FL

San Diego-Carlsbad- Goldsboro, NC
San Marcos, CA

Houston Chicago-Naperville-
Surrounding Joliet, IL

New York New York
Surrounding/ Surrounding/
New York New York

Columbus, OH Atlanta Surrounding

Bloomington- Sullivan County,
Normal, IL MO

Wilmington, DE- Kirksville, MO
MD-NJ

s of the share of CZ hours worked in AI-related oc
e measured as hours worked in a given AI-related o
were AI-related.

G
ordon

H
anson
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Men Women

Austin-Round San Jose-Sunnyvale-
Rock, TX Santa Clara, CA

Rochester, MN Dallas Surrounding

Dallas Surrounding Hagerstown-
Martinsburg,
MD-WV

Omaha-Council Seattle-Bellevue-
Bluffs, NE-IA Everett, WA

Baltimore Boston-Quincy,
Surrounding MA

Seattle-Bellevue- Madison, WI
Everett, WA

Boston-Quincy, Chaffee County,
MA CO

Winchester, VA-WV East Charlotte

cupations (V.3 definition) for prime-age, college-
ccupation times the share of all 2000 jobs titles in



Table 7A3 Top 20 Commuting Zones in Terms o

All Workers

f CZ Share of National Hours Worked in AI-Related Occupations

Foreign-Born Workers

221

Native-Born Workers

Rank

1

Men Women

Washington Washington

Men Women

San Jose-Sunnyvale- San Jose-Sunnyvale-

Men Women

Washington Washington
Surrounding Surrounding Santa Clara, CA Santa Clara, CA Surrounding Surrounding

2 Los Angeles-Long Oakland-Fremont- Oakland-Fremont- Oakland-Fremont- Boston-Quincy, MA Boston-Quincy, MA
Beach-Glendale, Hayward, CA Hayward, CA Hayward, CA
CA

3 Oakland-Fremont- Chicago-Naperville- West New York Washington Chicago-Naperville- Chicago-Naperville-
Hayward, CA Joliet, IL Surrounding Joliet, IL

A
IJoliet, IL

4 Chicago-Naperville- Boston-Quincy, MA Los Angeles-Long West New York Los Angeles-Long INew York
Joliet, IL Beach-Glendale, Beach-Glendale,

m

Surrounding/
CA CA

m
iNew York

5 San Jose-Sunnyvale- New York Washington Los Angeles-Long Oakland-Fremont-

graOakland-Fremont-
Santa Clara, CA Surrounding/ Surrounding Beach-Glendale, Hayward, CA

tiHayward, CA
New York CA

on

6 Boston-Quincy, MA Los Angeles-Long New York New York New York

a

Los Angeles-Long
Beach-Glendale, Surrounding/ Surrounding/ Surrounding/

ndBeach-Glendale,
CA New York New York New York

R

CA
7 West New York West New York Chicago-Naperville- Chicago-Naperville- Atlanta Surrounding

egiWest New York
Joliet, IL Joliet, IL

on

8 New York San Jose-Sunnyvale- Boston-Quincy, MA Boston-Quincy, MA Denver-Aurora, CO

alAtlanta Surrounding
Surrounding/ Santa Clara, CA
New York

Spec

9 Atlanta Surrounding Atlanta Surrounding Dallas Surrounding Seattle-Bellevue- West New York

iaPhiladelphia, PA
Everett, WA

liz

10 Dallas Surrounding Seattle-Bellevue- Seattle-Bellevue- Dallas Surrounding Seattle-Bellevue-

ation

Denver-Aurora, CO
Everett, WA Everett, WA Everett, WA

11 Seattle-Bellevue- Philadelphia, PA Atlanta Surrounding Atlanta Surrounding Dallas Surrounding Seattle-Bellevue-
Everett, WA

221Everett, WA
12 Denver-Aurora, CO Dallas Surrounding Houston Houston San Jose-Sunnyvale- Warren-Farmington

Surrounding Surrounding Santa Clara, CA Hills-Troy, MI

(Continued)



Table 7A3 (Continued)

All Workers Foreign-Born Workers

222

Native-Born Workers

Rank

13

14

15

16

17

18

19

20

This ta
college
titles in

Men Women

Philadelphia, PA Warren-Farmington
Hills-Troy, MI

Minneapolis- Denver-Aurora, CO
Bloomington,
MN-WI

Warren-Farmington Minneapolis-
Hills-Troy, MI Bloomington,

MN-WI
Houston Houston
Surrounding Surrounding

Raleigh-Cary, NC Baltimore
Surrounding

Baltimore Raleigh-Cary, NC
Surrounding

Hartford, CT Hartford, CT

San Diego- Phoenix-Mesa-
Carlsbad-San Scottsdale, AZ
Marcos, CA

ble reports the top 20 commuting zones in terms
-educated men and women in 2000. AI hours wo
that occupation that were created after 1990 an

Men Women

Warren-Farmington Philadelphia, PA
Hills-Troy, MI

Philadelphia, PA Warren-Farmington
Hills-Troy, MI

Miami-Miami Miami-Miami
Beach-Kendall, Beach-Kendall,
FL FL

San Diego- Minneapolis-
Carlsbad-San Bloomington,
Marcos, CA MN-WI

Minneapolis- Raleigh-Cary, NC
Bloomington,
MN-WI

Denver-Aurora, CO San Diego-
Carlsbad-San
Marcos, CA

Austin-Round Hartford, CT
Rock, TX

Hartford, CT Baltimore
Surrounding

of the CZ share of national hours worked in AI-r
rked are measured as hours worked in a given AI-
d that were AI-related.

G
ordon

H
anson
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Men Women

Philadelphia, PA Dallas Surrounding

Minneapolis- Minneapolis-
Bloomington, Bloomington,
MN-WI MN-WI

Warren-Farmington Baltimore
Hills-Troy, MI Surrounding

Baltimore Houston
Surrounding, Surrounding

Houston San Jose-Sunnyvale-
Surrounding Santa Clara, CA

Raleigh-Cary, NC Raleigh-Cary, NC

Hartford CT Hartford, CT

Phoenix-Mesa- Phoenix-Mesa-
Scottsdale, AZ Scottsdale, AZ

elated occupations (V.3 definition) for prime-age,
related occupation times the share of all 2000 jobs
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Table 7A4 Share of Hours Worked in All Occupations among Prime-Age, College-
Educated Workers by Region of Birth

2000 2004–09 2014–18

Men
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New Zealand + Canada
Women
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New Zealand + Canada

86.5
2.5
1.4
0.9
2.1
1.3
1.9
3.4

88.4
2.5
0.7
0.9
1.1
1.1
2.5
2.7

83.1
3.7
1.8
1.2
3.1
1.4
2.2
3.6

85.6
3.6
0.9
1.2
1.6
1.3
2.7
3.1

81.5
3.9
2.1
1.4
4.3
1.3
2.1
3.5

84.5
4.0
1.2
1.4
2.2
1.1
2.5
3.0

Each cell reports the fraction of hours worked by a particular national origin group for men and
women with at least a college education and who are 25 to 54 years old. The data are from the
2000 Census and the 2005–2009 and 2014–2018 five-year ACS samples.

Table 7A5 Share of Hours Worked in V.O and V.I Occupations among Prime-Age,
College-Educated Workers by Region of Birth

V.O Hours

2000

V.I Hours

2004–09 2014–182000 2004–09 2014–18

Men
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New
Zealand + Canada

Women
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New
Zealand + Canada

80.2
1.9
1.5
2.1
5.0
1.7
2.9
4.6

80.6
2.0
0.8
3.5
3.3
2.3
3.3
4.2

75.7
2.5
1.8
2.5
7.8
1.9
3.2
4.7

75.9
2.7
1.1
4.2
6.0
2.1
3.6
4.4

72.9
3.0
2.1
2.7

10.9
1.5
2.6
4.3

73.1
3.0
1.3
4.3
9.3
1.6
3.3
4.0

78.8
1.9
1.5
2.4
5.7
1.8
3.0
4.8

79.0
2.0
0.8
4.0
3.8
2.6
3.4
4.2

74.2
2.4
1.7
2.8
8.9
2.0
3.3
4.7

73.9
2.8
1.2
4.7
7.0
2.3
3.9
4.4

71.4
2.9
2.1
2.9

12.1
1.6
2.7
4.3

71.8
3.1
1.3
4.5

10.2
1.7
3.5
3.8

Each cell reports the fraction of hours worked by a particular national origin group for men and
women with at least a college education and who are 25 to 54 years old in V.0 or V.1
occupations. Data are from the 2000 Census and the 2005–2009 and 2014–2018 five-year
ACS samples.
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Table 7A6 Share of Hours Worked in V.2 and V.3 Occupations among Prime-Age,
College-educated Workers by Region of Birth

V.2 Hours

2000

V.3 Hours

2004–09 2014–182000 2004–09 2014–18

Men
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New

Zealand + Canada
Women
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New

Zealand + Canada

76.6
2.0
1.6
2.7
6.6
2.0
3.4
5.2

76.4
1.9
0.9
4.9
4.7
2.9
3.6
4.7

71.3
2.4
1.8
3.2

10.4
2.2
3.6
5.2

70.3
2.2
1.2
5.7
9.2
2.4
4.3
4.7

67.5
2.9
2.2
3.4

14.6
1.7
3.1
4.6

65.1
2.8
1.4
5.6

15.4
1.8
4.1
3.9

75.2
2.1
1.6
3.0
7.8
2.0
3.4
5.0

78.1
1.9
0.8
4.5
4.8
2.8
3.4
3.7

68.8
2.4
1.9
3.3

12.6
2.1
3.7
5.2

70.8
2.2
1.2
5.5

10.2
2.2
3.9
4.0

65.2
3.0
2.3
3.4

16.9
1.6
3.0
4.7

65.1
2.7
1.4
5.3

16.4
1.8
3.8
3.6

Each cell reports the fraction of hours worked by a particular national origin group for men and
women with at least a college education and who are 25 to 54 years old in V.2 or V.3
occupations. Data are from the 2000 Census and the 2005–2009 and 2014–2018 five-year
ACS samples.
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Table 7A7 Revealed Comparative Advantage in V.O and V.I Occupations by Worker
Region of Birth

V.O Hours

2000

V.I Hours

2004–09 2014–182000 2004–09 2014–18

Men
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New
Zealand + Canada

Women
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New
Zealand + Canada

-0.08
-0.27
0.05
0.82
0.89
0.29
0.44
0.30

-0.09
-0.23
0.17
1.35
1.08
0.70
0.28
0.43

-0.09
-0.39
-0.00
0.76
0.94
0.28
0.36
0.26

-0.12
-0.28
0.17
1.29
1.35
0.51
0.27
0.34

-0.11
-0.26
-0.01
0.67
0.93
0.19
0.23
0.20

-0.15
-0.26
0.12
1.10
1.43
0.36
0.27
0.30

-0.09
-0.25
0.03
0.94
1.02
0.36
0.48
0.34

-0.11
-0.22
0.19
1.49
1.23
0.83
0.34
0.44

-0.11
-0.42
-0.04
0.85
1.07
0.33
0.39
0.28

-0.15
-0.26
0.20
1.39
1.50
0.60
0.35
0.34

-0.13
-0.28
-0.01
0.75
1.04
0.23
0.25
0.20

-0.16
-0.25
0.12
1.13
1.53
0.43
0.32
0.26

Calculation is: ( ) ( )P P
Lkgost / Lgost

RCA o
kgst = ln

v2O o v2O( ( ) ( )P P
Lkgost / L

)
gost

o2O o2O

where L is hours worked and Ov is the set of occupations with a positive share
of new STEM or potential AI work according to V.0 or V.1. This is calculated
for each year (t), gender (g), and national origin group (k) among either men
or women 25 to 54 years old with at least a college education. Data are from
the 2000 Census and the 2005–2009 and 2014–2018 five-year ACS samples.
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Table 7A8 Revealed Comparative Advantage in V.2 and V.3 Occupations by Worker
Region of Birth

V.2 Hours

2000

V.3 Hours

2004–09 2014–182000 2004–09 2014–18

Men
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New

Zealand + Canada
Women
Native born
Latin America + Caribbean
Africa and Middle East
China + Hong Kong
India
Korea + Japan + Taiwan
Other Asia
Europe + Australia + New

Zealand + Canada

-0.12
-0.21
0.09
1.06
1.15
0.46
0.58
0.43

-0.15
-0.27
0.21
1.67
1.45
0.95
0.38
0.54

-0.15
-0.43
0.02
0.99
1.22
0.42
0.48
0.37

-0.20
-0.48
0.26
1.59
1.77
0.65
0.44
0.42

-0.19
-0.27
0.04
0.90
1.22
0.31
0.37
0.26

-0.26
-0.35
0.18
1.35
1.94
0.46
0.47
0.26

-0.14
-0.18
0.11
1.14
1.33
0.48
0.58
0.38

-0.12
-0.29
0.20
1.60
1.47
0.89
0.32
0.29

-0.19
-0.42
0.07
1.03
1.42
0.38
0.52
0.37

-0.19
-0.50
0.25
1.56
1.87
0.56
0.35
0.26

-0.22
-0.27
0.08
0.90
1.37
0.25
0.36
0.27

-0.26
-0.40
0.17
1.29
2.00
0.46
0.40
0.19

Calculation is:

RCAkgst = ln(
P
o2Ov

Lkgost

( )
/
P
o2Ov

Lgost

( )
P
o2O

Lkgost

( )
/
P
o2O

Lgost

( ) )

where L is hours worked and Ov is the set of occupations with a positive share
of new STEM or potential AI work according to V.2 or V.3. This is calculated
for each year (t), gender (g), and national origin group (k) among either men
or women 25 to 54 years old with at least a college education. Data are from
the 2000 Census and the 2005–2009 and 2014–2018 five-year ACS samples.
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Table 7A9 Summary Statistics for Dependent Variables and Immigration Shocks

227

Variable Obs Mean Std. Dev. P25 P75

Male hours worked

V.3
All
Foreign born
Native born
Immigrant shock

V.2
All
Foreign born
Native born
Immigrant shock

Male employment

722
722
722
722

722
722
722
722

.139

.076

.063

.052

.065

.102
−.037
.153

.078

.073

.052

.035

.178

.131

.158

.101

.107

.032

.026

.027

-.045
.027

−.145
.078

.167

.088

.09

.076

.157

.141

.046

.219

V.3
All
Foreign born
Native born
Immigrant shock

V.2
All
Foreign born
Native born
Immigrant shock

Female hours worked

722
722
722
722

722
722
722
722

.144

.08

.064

.068

.058

.106
−.048
.2

.08

.076

.054

.045

.187

.139

.166

.131

.113

.033

.024

.035

−.055
.028

−.156
.104

.173

.096

.094

.101

.155

.157

.035

.296

V.3
All
Foreign born
Native born
Immigrant shock

V.2
All
Foreign born
Native born
Immigrant shock

Female employment

722
722
722
717

722
722
722
717

.001

.019
−.018
.032

−.128
.003

−.13
.114

.033

.022

.032

.024

.104

.053

.098

.084

−.02
.005

−.04
.014

−.196
−.029
−.19
.049

.017

.027
−.002
.048

−.065
.028

−.067
.168

V.3
All
Foreign born
Native born
Immigrant shock

V.2
All
Foreign born
Native born
Immigrant shock

722
722
722
717

722
722
722
717

.005

.019
−.015
.034

−.115
.005

−.12
.118

.031

.022

.031

.025

.101

.054

.094

.088

−.015
.006

−.034
.015

−.18
−.023
−.173
.052

.02

.026
0
.051

−.053
.029

−.063
.176

This table reports means of the outcome variables and immigration shocks used in the regression
analysis. The outcomes are changes employment shares (hours worked, worker counts) by
gender group (male, female) in AI-related occupations (V.3, V.2) by nativity group (all
workers, foreign-born, native-born) over 2000 to 2018. The immigration shock (defined in
equation (2)) is the projected change in the supply of workers (by gender, employment
definition) in AI-related occupations (by AI definition) relative to total initial-period labor
supply in the CZ over 2000 to 2018. All variables are multiplied by 100 and decadalized
(multiplied by 10 divided by the number of years between time periods). The sample
includes individuals 25 to 54 years old with at least a bachelor’s degree. Results are weighted
using CZ total employment of prime-age, college-educated workers of the gender group in
the initial period.
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Table 7A10 Long difference (2000-2018): Immigration Impact on CZ Specialization
in AI-Related Occupations (V.3)

Men Women

Foreign-
Born

(1)

Native-
Born

All Foreign-
Born

Native-
Born

All

(2) (3) (4) (5) (6)

Immigrant
shock (v3)

1.529
(0.341)

−0.269
(0.267)

1.259
(0.553)

0.872
(0.373)

0.027
(0.220)

0.899
(0.561)

State FE
Obs.
Adj. R-squared
DV Mean
DV 25th

percentile
DV 75th

percentile

Yes
722
0.787
0.080
0.033

0.096

Yes
722
0.397
0.064
0.024

0.094

Yes
722
0.520
0.144
0.113

0.173

Yes
717
0.705
0.019
0.006

0.026

Yes
717
0.544

−0.015
−0.034

−0.000

Yes
717
0.319
0.005

−0.015

0.020

DV : 100x 10
Dt x D AI (v3) employment of nativity group

total employment

The dependent variable is the change in the share of workers employed in AI-related
occupations (V.3 definition) for the long difference 2000–2018 for men (columns 1–3) and
women (4–6), shown separately for all workers (columns 5 and 6), foreign-born workers
(columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock for
AI-related occupations (V.3 definition) is defined in equation (2). The sample is individuals
25 to 54 years old with at least a bachelor’s degree residing in one of the 722 commuting
zones in the continental US. All regressions include a constant, the summed product of the
weights used in the immigration shock, state fixed effects, and initial-period shares of the
college educated in the population, the foreign-born in the population, females in total
employment, employment in manufacturing, employment in routine-intensive jobs, and
employment in offshorable jobs. Standard errors (in parentheses) are clustered by state.
Regressions are weighted by CZ employment (of prime-age, college educated workers of the
designated gender) in the initial period.
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Table 7A11 Long difference (2000–2018): Immigration Impact on CZ Specialization
in AI-Related Occupations (V.2)

Men Women

Foreign-
Born

(1)

Native-
Born

All Foreign-
Born

Native-
Born

All

(2) (3) (4) (5) (6)

Immigrant
shock (v2)

0.763
(0.224)

0.088
(0.247)

0.851
(0.422)

0.382
(0.270)

0.091
(0.145)

0.473
(0.334)

State FE
Obs.
Adj. R-squared
DV Mean
DV 25th
percentile

DV 75th
percentile

Yes
722
0.667
0.106
0.028

0.157

Yes
722
0.494

−0.048
−0.156

0.035

Yes
722
0.390
0.058

−0.055

0.155

Yes
717
0.648
0.005

−0.023

0.029

Yes
717
0.530

−0.120
−0.173

−0.063

Yes
717
0.476

−0.115
−0.180

−0.053

DV : 100x 10
Dt x D AI (v2) employment of nativity group

total employment

The dependent variable is the change in the share of workers employed in AI-related
occupations (V.2 definition) for the long difference 2000–2018 for men (columns 1–3) and
women (4–6), shown separately for all workers (columns 5 and 6), foreign-born workers
(columns 1 and 2), and native-born workers (columns 3 and 4). The immigrant shock for
AI-related occupations (V.2 definition) is defined in equation (2). The sample is individuals
25 to 54 years old with at least a bachelor’s degree residing in one of the 722 commuting
zones in the continental US. All regressions include a constant, the summed product of the
weights used in the immigration shock, state fixed effects, and initial-period shares of the
college educated in the population, the foreign-born in the population, females in total
employment, employment in manufacturing, employment in routine-intensive jobs, and
employment in offshorable jobs. Standard errors (in parentheses) are clustered by state.
Regressions are weighted by CZ employment (of prime-age, college educated workers of the
designated gender) in the initial period.
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Table 7A12 Stacked First Differences (2000–2009 and 2009–2018): Immigration
Impact on CZ Specialization in AI-Related Occupations (V.3)

Men Women

Foreign-
Born

(1)

Native-
Born

All Foreign-
Born

Native-
Born

All

(2) (3) (4) (5) (6)

Immigrant
shock (v3)

1.835
(0.260)

−0.203
(0.232)

1.631
(0.444)

0.729
(0.242)

0.285
(0.181)

1.014
(0.369)

State × Year FE
Obs.
Adj. R-squared
DV Mean
DV 25th

percentile
DV 75th

percentile

Yes
1444
0.719
0.092
0.031

0.109

Yes
1444
0.453
0.112
0.065

0.139

Yes
1444
0.564
0.203
0.142

0.244

Yes
1438
0.550
0.023
0.004

0.034

Yes
1438
0.420
0.002

−0.019

0.022

Yes
1438
0.388
0.025

−0.005

0.044

DV : 100x 10
Dt x D AI (v3) hours worked by nativity group

total hours worked

The dependent variable is the change in the share of hours worked in AI-related occupations
(V.3 definition) for stacked first differences over 2000–2009 and 2009–2018 for men
(columns 1–3) and women (4–6), shown separately for all workers (columns 5 and 6),
foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The
immigrant shock for AI-related occupations (V.3 definition) is defined in equation (2). The
sample is individuals 25 to 54 years old with at least a bachelor’s degree residing in one of
the 722 commuting zones in the continental US. All regressions include a constant, the
summed product of the weights used in the immigration shock, state fixed effects, and
initial-period shares of the college educated in the population, the foreign-born in the
population, females in total employment, employment in manufacturing, employment in
routine-intensive jobs, and employment in offshorable jobs. Standard errors (in parentheses)
are clustered by state. Regressions are weighted by CZ employment (of prime-age, college
educated workers of the designated gender) in the initial period.
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Table 7A13 Stacked First Differences (2000–2009 and 2009–2018): Immigration
Impact on CZ Specialization in AI-Related Occupations (V.2)

Men Women

Foreign-
Born

(1)

Native-
Born

All Foreign-
Born

Native-
Born

All

(2) (3) (4) (5) (6)

Immigrant
shock (v2)

1.099
(0.199)

0.202
(0.209)

1.300
(0.350)

0.279
(0.239)

0.333
(0.150)

0.612
(0.284)

State × Year FE
Obs.
Adj. R-squared
DV Mean
DV 25th
percentile

DV 75th
percentile

Yes
1444
0.566
0.116
0.013

0.169

Yes
1444
0.398
0.045

−0.078

0.154

Yes
1444
0.375
0.161
0.052

0.251

Yes
1438
0.429
0.007

−0.035

0.038

Yes
1438
0.371

−0.083
−0.142

−0.029

Yes
1438
0.362

−0.076
−0.143

−0.009

DV : 100x 10
Dt x D AI (v2) hours worked by nativity group

total hours worked

The dependent variable is the change in the share of hours worked in AI-related occupations
(V.2 definition) for stacked first differences over 2000–2009 and 2009–2018 for men
(columns 1–3) and women (4–6), shown separately for all workers (columns 5 and 6),
foreign-born workers (columns 1 and 2), and native-born workers (columns 3 and 4). The
immigrant shock for AI-related occupations (V.2 definition) is defined in equation (2). The
sample is individuals 25 to 54 years old with at least a bachelor’s degree residing in one of
the 722 commuting zones in the continental US. All regressions include a constant, the
summed product of the weights used in the immigration shock, state fixed effects, and
initial-period shares of the college educated in the population, the foreign-born in the
population, females in total employment, employment in manufacturing, employment in
routine-intensive jobs, and employment in offshorable jobs. Standard errors (in parentheses)
are clustered by state. Regressions are weighted by CZ employment (of prime-age, college
educated workers of the designated gender) in the initial period.



8 Robots and Trade

Implications for Developing Countries

Erhan Artuc, Paulo Bastos,
Alexander Copestake, and Bob Rijkers

1. Introduction

Modern industrial robots can perform a variety of repetitive tasks with consistent
precision and are increasingly used in a wide range of industries and applications.
The global operational stock of industrial robots reached a record high of 2.7
million units last year (IFR, 2020) and robot adoption is projected to grow stea-
dily. The accelerating automation of industrial production has stoked concerns
that large swaths of the workforce, especially the unskilled, may suffer wage and
job losses (e.g., Bloom et al., 2018). These fears are in part predicated on the
experience of OECD countries, where robot adoption has contributed to pro-
ductivity growth at the expense of the employment share and wages of low-
skilled workers (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020).
Recent estimates suggest that around 14% of jobs across the OECD area are
at risk of disappearing because of automation, while another 32% are likely to
see significant changes (OECD, 2018).

While robotization has been especially pronounced in advanced economies,
workers in developing countries could also be at risk. Low-skilled workers, for
whom robots substitute particularly well, are disproportionately located in
developing countries. Robotization might move production closer to consum-
ers in high-income markets and undermine prospects for industrialization and
export-led development (Rodrik, 2018; Hallward-Driemeier and Nayyar,
2019). Developing countries are particularly exposed to automation-induced
trade declines, since reduced trade and communication barriers have allowed
the offshoring of repetitive and labor-intensive tasks to low-wage countries
(Grossman and Rossi-Hansberg, 2008; Antras, 2015; World Bank, 2020).
Low-income countries may lack the skills and infrastructure that are needed
to meaningfully participate in emerging global value chains, as automation
diminishes the importance of low labor costs as a determinant of international
competitiveness (Rodrik, 2018).

In this chapter, we first use a Ricardian framework to examine the impact on
developing countries of robotization in developed countries. Drawing on Artuc,
Bastos and Rijkers (2018), in Section 2 we present theory and evidence indicat-
ing that robot adoption in the high-wage advanced economies promoted trade
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between developed and developing countries. We highlight that such adoption
can ultimately benefit workers in developing countries, particularly through
lower prices and increased demand for intermediate inputs. The impact of robot-
ization is shown to depend on the initial degree of robotization. In Section 3, we
extend this framework by adding China explicitly to the calibrated model, noting
that its robot stock has expanded rapidly in recent years to become by far the
world's largest (in absolute terms). We analyze the impact of China's subsidies
for robotization, as described in Cheng et al. (2019), and find ambiguous
effects on wages of Chinese workers depending on the size of the subsidy. Inter-
estingly, as China increasingly subsidizes industrial robots, its pattern of compar-
ative advantage becomes more similar to that of OECD countries, which reduces
its total trade with them. The opposite conclusion applies to trade between China
and developing countries.

The Ricardian framework we adopt focuses on long-run and aggregate effects
and abstracts from adjustment costs. In the short run, workers cannot move
freely across sectors, regions and occupations. In Section 4 we consider broader
empirical evidence on the impacts of robotization in developed countries on
workers in developing countries. Alongside support for the long-run predictions
of the Ricardian model, we catalog evidence of negative short-run employment
effects in the local labor markets of some middle-income countries, particularly
for the least mobile workers previously performing tasks that can now be executed
by robots. These adverse impacts on local labor markets highlight the role for
policy to alleviate distributional issues arising from frictions during the automation
transition. We also look beyond comparative statics and note that developed-
country automation could exacerbate 'premature de-industrialization' (Rodrik,
2016) by discouraging investment in sectors with the highest growth potential.
This in turn may help explain the emergence of robot subsidies in some developing
economies, particularly China.

Furthermore, robot adoption may be driven by factors other than just the rel-
ative prices of robots and workers. Within each country, larger and typically less
labor-intensive firms are more likely to be able to afford the fixed costs of upgrad-
ing production technology, while firms engaged in complex production networks
may attach higher value to the increased precision and reliability enabled by
robotics. In Section 5 we therefore move beyond relative prices to provide new
evidence on firm-level drivers of adoption in developing countries, while in
Section 6 we consider the impact of this adoption on firm-level outcomes. Our
empirical analysis draws on firm-level data from ten developing countries. We
find support for both the scale and precision hypotheses, aligning with firm-
level evidence from developed countries. After adopting robots, these initially
larger and more globally connected firms tend to expand further. These firm-
level mechanisms help to explain why we observe more and earlier robot adoption
in developing countries than our stylized Ricardian model would predict. But
they also add a firm-side element to the earlier distributional concerns: it is not
just relatively disadvantaged workers who are most threatened by robotization,
but also smaller, less productive, less internationally active firms. Given that
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low-skilled workers are also disproportionately more likely to work in these firms,
the dual threat is a key issue for policymakers to consider.

We conclude by surveying these opportunities and challenges for developing
countries raised by automation. In the long run, industrial robots in developed
countries could promote trade between advanced and developing countries,
and enhance global welfare. And while China's growing robotization (driven
in part by subsidies) might reduce productivity differences with advanced econ-
omies, and thereby the gains from inter-industry trade with them, it need not
hinder future prospects for industrialization and export-led growth in lower-
income countries. However, technological change, both in advanced and devel-
oping countries, necessitates labor-market adjustment and can create severe dis-
tributional tensions, which are not limited to the transition period. As robots
catch up with humans in many abilities, so policy must keep pace with adoption.

2. Implications of robotization in advanced economies for
developing countries

Drawing on Artuc, Bastos and Rijkers (2018), we first use a Ricardian framework
to examine the impact on developing countries of robotization in developed
countries. We start by inspecting drivers of robot adoption at the country and
industry level (see Figure 8.1). High-wage rich countries tend to use more
robots (panel A), suggesting that the potential for cost savings is an important
determinant of adoption. There is wide variation across industries in the propor-
tion of jobs that are replaceable (calculated using the share of occupations involv-
ing tasks that can potentially be performed by robots, following Graetz and
Michaels 2018), and this indeed predicts realized robot density (panel B).

Motivated by these patterns, the multi-country, multi-sector Ricardian model
features: (i) a higher cost of labor in the North, and (ii) an industry-specific
robotization frontier (i.e., the range of tasks for which humans are substitutable
by robots varies across sectors).1 The model features two-stage production, with
intermediate goods produced in the first stage and final goods produced in the
second stage. In the production process, robots can take over some tasks previ-
ously performed by humans.2

In the model, a subset of tasks required in the production of intermediate and
final goods can be executed either by workers or robots, while other tasks can only
be performed by humans. The range of tasks that can be performed by robots
varies across sectors. The industry-specific robotization frontier, relative factor
prices and productivity determine the extent of robot use within sectors. Produc-
tion of each final-good variety further requires a composite intermediate good
from the same industry. In equilibrium, varieties of intermediate inputs and final
goods are sourced from the country that supplies at the lowest price. Thus,
there are two layers of competition: (1) between robots and workers in factor
markets; and (2) between countries in sector-specific product markets for inputs
and outputs.3 Relative production costs (driven by factor prices and technology)
determine country-specific robotization and trade patterns.

234 Erhan Artuc et al. 234



Figure 8.1 Robotization Across Countries and Sectors
Notes: Panel A depicts the relationship between average robot density by country (averaged
across years) and the initial GDP per capita. Panel B depicts the relationship between average
robot density by sector (averaged across countries and years) and the share of replaceable
jobs in the industry, as measured in Graetz and Michaels (2018), using the distribution of
hours worked across occupations and industries from the 1980 US Census. Robot density is
defined as the log of one plus the number of robots in use per million worker-hours.

Source: Artuc, Bastos and Rijkers (2018).

Panel B: Sectors in which automation is feasible adopt more robots

Panel A: Robot adoption is higher in richer countries
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With many countries in the model, a fall in the global price of industrial
robots initially induces robotization in Northern countries, defined as those
with a higher initial cost of labor.4 This shift impacts relative production costs
between countries, and therefore trade patterns. Producers substitute robots
for domestic labor in automatable tasks, leading to lower costs of production
in Northern countries, and hence to an increase in exports to Southern coun-
tries.5 The more striking growth in same-sector imports from Southern coun-
tries reflects the sum of two competing forces. On one hand, lower costs in
Northern countries make domestic producers and input suppliers there more
competitive relative to foreign ones, which lowers the demand for goods pro-
duced abroad as consumers and producers substitute them with domestic
goods. On the other hand, the increased scale of production in Northern coun-
tries also leads to an overall surge in the demand for intermediate inputs. If these
are sourced from abroad, imports from lower-wage Southern countries in these
industries can rise.

The two-stage production structure helps us to differentiate comparative
advantage patterns for intermediate inputs and final goods, as well as the differ-
ences in the demand. Robotization in Northern countries increases productivity
of North in both stages of production but does not necessarily reduce the
demand for intermediate inputs produced by South, since the scale effect can
potentially dominate the substitution effect.

Between 1995 and 2015, the production expansion effect seems to have dom-
inated. Indeed, empirical results in Artuc, Bastos and Rijkers (2018) show that
the robot-induced surge in Northern imports from the South is concentrated
in intermediate inputs such as parts and components. To gauge the relationship
between robotization and North-South trade, the empirical analysis combined
robot stock data from the International Federation of Robotics, labor hours
data from EU KLEMS, and trade data for 1995–2015 from CEPII BACI.
The following baseline specification was estimated:

Tradenmit = bRobotsnit +Cnmt + Lit + E (1)

where Tradenmit denotes the log of (1+exports) from developed country n to devel-
oping country m in sector i and year t or alternatively the log of (1+imports)
sourced from developed country n in sector i and year t; Robotsnit denotes a
measure of robot usage in country n in sector i in year t; Cnmt denotes a fixed
effect by exporter-importer-year; Litdenotes an industry-year fixed effect; and E

the error term. Equation (1) includes exporter-importer-year fixed effects both to
allow for pair-specific shocks (such as fluctuations in relative income and exchange
rates) and to control for country pair specific determinants of trade (e.g., distance,
having a common language etc.). It further includes industry-year fixed effects to
account for factors that are specific to each industry in each year. Standard errors
are clustered by developed country. To address the possibility of reverse causality
in the relationship between robotization and trade, as well as potential biases
caused by omitted variables or measurement error, an instrumental-variables
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approach was followed. Specifically, the analysis uses the triple interaction between
the (pre-determined) share of workers engaged in replaceable tasks in each sector,
the country's initial income per capita, and the global stock of robots as an instru-
ment for robotization.6

The instrumental-variables estimates reveal that a 10% increase in robot density
in a robotizing industry in the North boosts its exports to the South by 11.8%. Sur-
prisingly, it also induces a 6.1% increase in its imports from the South within the
same broad sector. The latter effect is primarily driven by imports of parts and com-
ponents.7 These empirical results can be explained by two key features of the Ricar-
dian trade model with a multi-stage production technology: (1) productivity effects
of robotization in the North, such that replacing workers with (cheaper) robots
increases output and exports; and (2) trade in intermediate goods, such that an
expansion in Northern final production can increase imports of inputs from the
South within the same broad sector.8

Given these patterns, how are further reductions in robot prices likely to
impact global trade, wages and welfare? To answer this question, the Ricardian
model was calibrated with three countries and three sectors. In particular, the
quantitative model features a representative high-income Northern country, a
representative country in the South, and a group of other (lower-income) devel-
oped countries.9,10 Among the three sectors considered, two sectors are tradable,
and the other sector is non-tradable. Production is subject to robotization in just
one of the tradable sectors, consisting of the automotive, rubber and plastic, elec-
tronics, chemicals, metal and machinery industries. The non-robotized tradable
sector consists of all other manufacturing industries, including food and textiles,
agriculture, mining and utilities. The non-tradable sector consists of construction
and services.

Simulating the impact of future reductions in robot prices offers several insights,
which are illustrated in Figure 8.2. As robot prices decline, producers in the North,
who face higher wages, will adopt progressively more robots (panel A). When
prices decline even further it also becomes profitable for less developed countries,
where producers face lower labor costs, to robotize production. Robot adoption is
associated with an initial reduction in the number of jobs in the automating sector
(panel B). Yet once all tasks that can be automated are performed by robots,
further reductions in robot prices boost the demand for labor in the robotized
sector because they make workers in those sectors more productive. The impact
of automation on jobs is thus state-dependent: while industrial robots compete
with workers in the early stages of adoption, they complement them in subse-
quent stages, since we assume that the range of automatable tasks is fixed.
This also explains the U-shaped relationship between robot prices and wages
in North and “Other” (panel C).11 Interestingly, lower robot prices also gradually
raise the wages of workers in the South.12 As robot prices fall, aggregate welfare
increases in all countries but more so in the countries that adopt more robots
(panel D).

Turning to trade flows, as Northern producers in the robotized industry
demand progressively more intermediate inputs to enable their expansion of
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production (shown in Figure 8.3 panel A), their demand for Southern exports of
intermediates surges (panel B).13 Underlying this increased demand are two
forces, decomposed in panel C. The scale effect is the increase in Northern
demand resulting from their higher productivity when using robots. This is
offset by a substitution effect, in which the increased productivity of Northern
producers raises the share of total demand that they supply (e.g., a reduction
in the share of goods imported), which necessarily implies a lower share for
Southern producers.14 The same two forces also apply to Southern exports of
final goods to the North (Panel D). In this case the scale effect is weaker
because it only includes higher Northern demand for final goods – i.e., it
excludes the extra demand for intermediate inputs caused by the expansion of
Northern final-good producers. Nonetheless, in both cases the scale effect dom-
inates, causing a rise in total Southern exports to the North.15

We also investigate the dependence of these results on the specific parameters
chosen for the model. Figure 8.A1 in the Appendix repeats Figure 8.3 panels C
and D for different values of the trade elasticity.16 All the results are qualitatively
robust, with only the size of the effects changing. For instance, while substitution

Figure 8.2 Effects of Robot Price Reductions
Notes: This figure presents results from simulations of the effects of lower robot prices on robot
use, labor allocation, wages and welfare. As robot prices fall, initially only North adopts robots
(panel A for a 0–60% reduction in robot price), then Other also adopts (60–85%). Eventually
these are both fully robotized; beyond 85% all effects are driven by Southern robotization.

Source: Artuc, Bastos and Rijkers (2018).

Panel A: Robot use in robotized industry
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Figure 8.2 (Continued)

Panel B: Labor use in robotized industry

Figure 8.2 (Continued)

Panel C: Wages
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effects are very large in the high-trade-elasticity case, the scale effect always dom-
inates.17 In contrast, Figure 8.A2 repeats the baseline simulations with a lower
elasticity of substitution between robots and workers, such that robots are mod-
elled as being more similar to conventional capital.18 Compared to Figure 8.2, we
see that investment in robots is more gradual as their prices fall (panel A), and
Northern producers in the robotized industry actually increase their total labor
use for large price reductions (panel B). Since workers are less easily substituta-
ble, wages rise almost monotonically in North (panel C), in stark contrast to the
baseline U-shaped relationship in which Northern wages initially fall substantially
as robots displace workers. Nonetheless, Southern wages fall, along with South's
exports to the North in the robotized sector (panel D). The substitution effect is
now much stronger than the scale effect, so exports of final goods collapse in the
robotized sector. Thus, our stated conclusions are specific to automation per se,
as opposed to capital investments that complement Northern workers. The key
characteristic of robots, that they substitute particularly well for human
workers for a sizable subset of tasks in manufacturing industries, is critical in gen-
erating state-dependent comparative statics.

Robustness, indirect effects and heterogeneity

Artuc, Bastos and Rijkers (2018) run extensive robustness checks on the core
empirical predictions of the model, which analyze bilateral trade flows as a function

Figure 8.2 (Continued)

Panel D: Welfare (Real GDP)
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of automation in developed countries.19 Yet such automation could also have indi-
rect effects by increasing competition in developing countries' other export
markets. If North automates, and so increases its exports to Other, this could dis-
place Southern exports to Other. A commonly held concern is that automation in
developed countries could shut developing countries out of global value chains.

In the calibrated model, however, such effects are small. Figure 8.2 shows that
automation in developed countries (corresponding to a 0%–60% reduction in
robot prices in panel A) leads to only a very small reduction in labor use in the
robotized industry in South (panel B). We evaluate whether this prediction is
realistic using World KLEMS data (Jorgenson, 2017) that allow us to move
beyond bilateral trade flows.20 We regress industry i log employment or value
added ymit in developing country m on its exposure to developed-country auto-
mation, measured by robot intensity in developed countries n, weighted by their
share of m's baseline exports:

ymit = b . ln(1+
X

kEnomkit0
Robotskit) +Cmt + Lit + Emit (2)

Figure 8.3 Effects of Robot Adoption on Trade in the Robotized Industry
Notes: This figure presents results from simulations of the effects of increased robot density
(resulting from lower robot prices, as per Figure 8.2 panel A) on North-South trade in the
robotized industry. Panels C and D decompose the mechanisms underpinning the impacts in
panel B, on South's exports of intermediate and final goods respectively.

Panel A: North's exports to South
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Figure 8.3 (Continued)

Panel B: South's exports to North

Figure 8.3 (Continued)

Panel C: South's exports to North, parts only
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where omkit0
is baseline exports in industry i from m to k, as a share of total

exports of i from m to all n, and Robotskit is the number of robots per million
worker hours in country-industry ki. Table 8.1 shows only a weak negative rela-
tionship between exposure to foreign robotization and value added as well as
employment. These results are robust to instrumenting exposure to developed
country-automation with the log of the baseline-weighted product of replace-
ability, initial GDP per capita and the global robot stock (as described for
regression (1) previously). While data availability limits the sample substantially
relative to the regressions with bilateral trade flows, these results are consistent
with the those from the calibrated model. Indirect effects do not seem to play
an important role; the key conclusion – that Northern automation increases
Southern imports and exports – is not affected.

These average impacts may mask heterogeneity across different types of devel-
oping countries. Whilst the available input-output data used to quantify trade
models do not make it possible to credibly simulate fine-grained country-level
heterogeneity across a wide range of developing countries, we can use the empir-
ical approach outlined previously to examine how different types of countries are
impacted by automation. In a new extension, we run the previous model sepa-
rately within sub-samples by income level and region.

The results are shown in Figure 8.4. First, we find robust effects on imports at
all income levels (panel A): in each case, robotization significantly raises both

Figure 8.3 (Continued)

Panel D: South's exports to North, final only
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Table 8.1 Exposure to Foreign Robotization, Employment and Value Added

ln Value Added ln Employment

(1) (2) (3) (4)

Exposure to developed-country robotization −0.107 −0.261 0.295 −0.663
(0.233) (0.495) (0.976) (1.858)

Observations 1,676 1,169 1,676 1,169
Specification OLS 2SLS OLS 2SLS
Kleibergen-Paap rk Wald-F 14.218 14.218
Country-Year FE Y Y Y Y
Industry-Year FE Y Y Y Y

Notes: Standard errors in parentheses, clustered at the country-industry level. (Insufficient vari-
ation to cluster at country- or industry-level alone.) ***p < 0.01, **p < 0.05, *p < 0.1.
Unbalanced panel of industry-level data between 1980 and 2016. Models (2) and (4) instrument
exposure with the log of the baseline-weighted product of replaceability, initial GDP per capita
and the global robot stock.

Source: World KLEMS.

Figure 8.4 Heterogeneity of Effects of Northern Robotization on North-South Trade
Notes: this figure presents IV estimates of the heterogeneous effects of increased robot density
in the OECD on imports from developing countries, using the empirical approach outlined in
equation (1).

Panel A: Heterogeneity across income levels of importers
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total imports and imports of parts and components from developing countries.
The scale effect of robotization on imports from developing countries thus
appears to consistently outweigh the substitution effect within sectors. Second,
we examine the effect of developed-country robotization on imports from devel-
oping countries in particular regions. We find that the effects are strongest in
South and East Asia and Latin America, with slightly less of an effect in sub-
Saharan Africa, a mixed picture in the Middle East/North Africa, and no signif-
icant effect in Europe and Central Asia. This points to factors beyond relative
prices driving the heterogeneity – particularly regional trade linkages and
global value chain participation, which are particularly strong in South and
East Asia. These mechanisms are investigated in more detail in Section 5.

3. Implications of growing robotization in China

While global robot use has been increasing steadily, adoption of industrial robots has
been especially rapid in China – particularly in the last few years (see Figure 8.5).
This adds an extra dimension to the mechanisms described previously. Rather
than technological progress leading to an exogenous fall in robot prices, which
encourages high-wage countries to automate, China's robotization has been sup-
ported by large subsidies and a plethora of government programs. Faced with a
rapidly ageing population, robotization has been promoted by various levels of
government (Cheng et al., 2019). The Ministry of Industry and Information

Figure 8.4 (Continued)

Panel B: Heterogeneity across regions
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Technology (MIIT) released its 'Guidance on the Promotion and Development
of the Robot Industry' in 2013, which aimed for a robot density of 10 per 1000
workers in factories. Subsequently, the 2015 'Made in China 2025' program
raised this to 15; the Robotics Industry Development Plan released in 2016 by
the MIIT, National Development and Reform Commission, and Minister of
Finance further encouraged robot use in a broader range of sectors, including ser-
vices. At a regional level, examples of automation-promoting initiatives include
the government of Guangdong Province's USD150 billion fund to invest in
automation technology (Yang, 2017).

To study the impact of automation subsidies in China, we use the framework of
Artuc, Bastos and Rijkers (2018) with four countries.21 The simulations include: (i) a
representative country for the South (an average of Turkey, Taiwan, Mexico, Indo-
nesia, India, Brazil, Mexico), (ii) a representative country for the North (an average
of high automation counties, USA, Denmark, etc. excluding the outliers of Korea
and Japan), (iii) the large 'Other' country, containing the totality of the OECD,
and (iv) China. Everything in the model operates as before, except we now
include a subsidy such that the robot price in China is (1- subsidy) x price.22

This therefore increases robot investment in China in an analogous way to the
global price reductions modelled in Figure 8.2 panel A.

Figure 8.5 China's Robot Stock has Grown Rapidly
Notes: This figure shows the operational stock of robots over time for leading countries. China's
robot stock has expanded rapidly, such that it is now the largest of any country. Note, however,
that the robot stock per manufacturing worker in China continues to be considerably smaller
than in the OECD. Source: International Federation of Robotics.
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In the quantified model, China's robot subsidies now push them closer to the
comparative advantage profile of developed countries and away from that of
developing countries. Specifically, we find that robotization increases signifi-
cantly with subsidies, so labor use in the robotized industry in China initially
declines as the subsidy rises (first part of Figure 8.6 panel A).23 This reduces
labor demand, and so lowers wages (first part of panel B). However, beyond
a threshold level – approximately a 60% subsidy in the figures – further subsidies
increase labor demand and wages. Once all automatable tasks are performed by
robots instead of humans, additional subsidies simply lower production costs
and expand output. In other words, there is a robotization frontier beyond
which further declines in robot prices are unambiguously beneficial for
workers. From this point, further subsidies encourage additional investment
in a technology that is now complementary to the remaining human workers.24

Turning to trade flows, exports by China's robotized sectors increase unam-
biguously with subsidies, while China's imports in those sectors decrease
unambiguously. As China's robot subsidies push it closer to the relative productiv-
ity profile of high-income countries (and further away from that of low-income

Figure 8.6 Simulated Effects of Increased Chinese Robot Subsidies
Notes: This figure presents results from simulations of the effects of Chinese robot subsidies on
labor use in the robotized industry, wages and trade. Everything in the model operates as before,
except that there is now an extra country, calibrated to fit China, which subsidizes robots such
that the robot price there is (1- subsidy) x price.

Panel A: Labor use in robotized industry
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Figure 8.6 (Continued)

Panel B: Wages

Figure 8.6 (Continued)

Panel C: Trade with high income countries
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Figure 8.6 (Continued)

Panel D: Trade with developing countries

Figure 8.6 (Continued)

Panel E: Rob. ind. imports from South, parts

249 Robots and Trade 249



countries), classical comparative advantage discourages trade with high-income
countries and encourages it with low-income countries. We see in panel C that
China's trade with the North may increase for lower subsidy levels, but will prob-
ably decline over time as subsidies continue and China's specialization patterns
become more similar to those in the OECD. In contrast, China's trade with the
South increases unambiguously (panel D), because subsidies make China more dif-
ferent to other developing countries, as its comparative advantage moves to robot-
intensive sectors.

Once again, these aggregate effects result from several interacting mechanisms.
Consider, for instance, total Chinese imports of goods produced in the robotized
sector in the South (panels E and F). Subsidies in China increase Chinese pro-
ductivity and output in this sector, which increases imports from the South
through both elements of the scale effect (i.e. general consumption plus
higher demand for intermediate goods). Yet subsidies also further reduce the rel-
ative competitiveness of Southern producers in the robotized sector, reducing
Chinese imports from the South (the substitution effect). For large subsidies
(approximately greater than 60%), the substitution effect increasingly outweighs
the scale effect, so total Chinese imports of robotized-sector goods from the
South fall. Once again, this is most pronounced in final goods – since the offset-
ting scale effect is larger for parts because they benefit from both elements of the
scale effect.25

Figure 8.6 (Continued)

Panel F: Rob. ind. imports from South, final
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Interestingly, other countries' wages and labor allocations are hardly impacted
by China's subsidies. The subsidy increases both total imports from and exports to
developing countries, which nets out the impact on wages. The impact on labor
use in the automatable sector is noticeable, but small, since developing country
labor markets are only indirectly exposed to robotization in China through inter-
national trade. Therefore, the subsidy in China causes a modest labor shift in
developing countries from automatable industries to non-automatable industries,
with only marginal impacts on wages.

Accounting for continued population ageing in China would strengthen these
results. As documented by Acemoglu and Restrepo (2021), middle-aged workers
have a comparative advantage over older workers in manual production tasks,
such that demographic changes that reduce their share of the population raise
labor costs in manufacturing. Thus continued ageing would further increase
the relative attractiveness of robots, paralleling and reinforcing the impacts that
we find for a robot subsidy.

4. Broader evidence: global value chains, frictions and de-
industrialization

Our findings dovetail with empirical evidence from other recent studies. Robot-
ization by Spanish firms increased their demand for inputs from developing
countries and also led them to increase their number of affiliates in developing
countries (Stapleton and Webb, 2020).26 Robot usage has also promoted green-
field FDI from high-income countries to low-income countries (Hallward-
Driemeier and Nayyar, 2019). This evidence is particularly informative about
future trends because greenfield FDI decisions are a forward-looking indicator
of where production is expected – unlike trade flows, which reflect past invest-
ment decisions. In contrast to fears of automation driving mass reshoring,
there is reason to be cautiously optimistic that the positive scale/productivity
effect of developed country automation on offshoring may outweigh the negative
substitution effect.

However, the focus of our Ricardian model is on long-run and aggregate effects.
In the short run, workers cannot move freely across sectors or between sub-
national regions. Sector-specific skills, frictions and sunk investments could drive
transitional unemployment and growing inequality; workers in robot-competing
sectors and localities could lose out from Northern robotization. Recent studies
find evidence for such effects. To gauge the impact of US robots on employment
in Colombia, Kugler et al. (2020) use employer-employee matched data from
social security records. They measure exposure to US robotization by combin-
ing baseline Colombian local labor market-industry employment shares with
industry-time robot adoption in the US and find that such exposure reduces
employment and earnings in Colombia. Their estimates imply that, between
2011 to 2016, the adoption of 70,000 new robots in the US led to the cumulative
loss of between 63,000 and 100,000 Colombian jobs. The negative effects are
largest for women, older and middle-aged workers, and those employed in small
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and medium-size businesses – groups which may be least mobile across locations
or industries to find new employment.

Similarly, Faber (2020) examines the impact of US robotization on employ-
ment in Mexican local labor markets between 1990 and 2015. He combines
initial Mexican local labor market-industry employment shares with a measure
of offshorability and changes in US robot intensity and again finds a sizeable
negative impact on Mexican employment. Although Mexico also automated
industrial production in this period, and the coarse industry-level robots data
make it difficult to distinguish between the effects of robotization in the US
and at home, he finds that the burden of robotization falls most heavily on
low-educated machine operators in the manufacturing sector – again, a group
likely to be less mobile across locations and occupations. Also focusing on
Mexico, but over 2004–2014 Artuc, Christiaensen and Winkler (2019) find
less of an effect of US robotization on Mexican regional exports and local
labor markets. They find evidence that the informal sector expands, acting as
an 'employment buffer' as in Dix-Carneiro et al. (2019), but that automation
nonetheless hits the unskilled and other already-disadvantaged workers
hardest. Wage inequality thus increases, especially in the local labor markets
most exposed to foreign automation. Taken together, this evidence suggests
that while robotization could promote trade and increase real wages in develop-
ing countries in the medium and long run, in the short run governments will
need to be attentive to those workers and regions that are most vulnerable in
the transition.

Furthermore, long-run risks are non-negligible. The model described previ-
ously focuses on static gains from trade. Over time, developed-country robotiza-
tion could also push developing economies away from some sectors with higher
long-run potential for learning-by-doing or technology transfers. This could
compound existing difficulties in trying to grow technology-intensive 'infant
industries' to a competitive scale, and exacerbate 'premature de-industrialization'
(Rodrik, 2016). Such dynamics may help explain why some developing coun-
tries, such as China, have opted to subsidize robots.

5. Robot adoption in developing countries: beyond relative
prices

The Ricardian model described previously abstracts from firm-level heteroge-
neity in order to emphasize country- and sector-level effects. In reality, many
factors beyond robot prices, wages and subsidies will influence the incentives
to adopt robots. First, we can conceptualize robotization as a one-off or
per-period fixed cost that lowers marginal production costs. In this case, we
might expect only larger, more productive, export-oriented firms to undertake
such investment, in the spirit of Melitz (2003) and Bustos (2011). Alterna-
tively, robotization could be conceptualized as an upgrade to product
quality – for instance, by allowing greater precision and reliability, as discussed
in Verhoogen (2008) and Rodrik (2018). These attributes may be most valued
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by firms that are tightly integrated into complex production networks, involv-
ing the coordination and assembly of many interdependent components
(Kremer, 1993; Verhoogen, 2008; Demir et al., 2021). The cost of producing
a defective widget compounds rapidly if its failure negates all the other inputs
into a complex final product. By this reasoning, we might then expect more
automation in firms that are tightly integrated into global value chains,
where the costs of errors (or the payoffs to quality) are highest. Such mecha-
nisms will drive some robot adoption within developing countries, despite
the availability of cheap labor. A first glance at high-level cross-country corre-
lations do indeed point to a positive association between GVC participation
and robot adoption (Figure 8.7).

To investigate such relationships further, we use the near-universe of firm-
level trade transactions from ten developing countries, identifying automation
events from imports of industrial robots.27 The shares of firms that have ever
imported robots are shown in Figure 8.8. Consistent with the patterns pre-
sented in Section 2, the electronics and automotive sectors have the highest
shares of robot use. Defining 'automators' as firms that import robots at
some point in the sample period, we regress automator status on a range of

Figure 8.7 Robot Use and Participation in Global Value Chains
Notes: This graph shows the correlation between robot density and GVC participation in 2015,
using the data and methodology outlined in the World Development Report 2020 (World
Bank, 2020). GVC exports are defined as those crossing more than one border. One outlier
(Republic of Korea) is excluded from the graph for clarity, but is included in the correlation
calculation.
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Figure 8.8 Share of Firms that Imported Robots by Country and Industry
Notes: The figure draws on data from the World Bank's Exporter Dynamics Database, which covers all trade transactions except those of oil and arms. We use
data from importer-exporters in Bangladesh, Chile, China, Colombia, Ecuador, Egypt, Mexico, Peru, Romania and South Africa, which contain 10,312 sep-
arate robot purchases by 4,646 distinct firms. Note that the range of years displayed for each country varies, according to the current availability of customs data
in the EDD.
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firm characteristics, using only observations prior to the first observed robot
purchase by each firm.28 The resulting ex-ante correlations are shown in
Figure 8.9.29 Firms adopting robots are larger, more diversified across products
(yet simultaneously more specialized in their core products), and more inte-
grated with GVCs. This resonates with the literature on technology adoption.
Firms adopting robots in developed countries are generally larger, more pro-
ductive and growing faster (Humlum, 2019; Koch et al., 2019; Acemoglu et
al., 2020; Bonfiglioli et al., 2020). In China, firms that adopt robots also
tend to be larger, have more capital per worker, pay higher wages, and are
less likely to be state-owned (Cheng et al., 2019).

We supplement this evidence with detailed firm-level data from the Vietnam
Technology and Competitiveness Surveys 2010–14. These data record explicitly
whether a firm uses computer-operated machines, and are also not restricted to
firms that trade internationally. Table 8.2 shows summary statistics for automat-
ing vs. non-automating firms. The patterns are similar: in general, automators are
larger, pay higher wages, are more likely to export and to be foreign owned.
Moving to partial correlations in Table 8.3, and accounting for province, indus-
try and year fixed effects, we find that automators have more assets, earn higher

Figure 8.9 Ex-ante Correlates of Automation
Notes: Confidence intervals shown for 95% significance level. Fixed effects: industry-year,
country-year. Standard errors clustered at the firm level.Source: the World Bank's Exporter
Dynamics Database.
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Table 8.2 Summary Statistics for Automating vs. Non-automating Firms in Vietnam

(1) Computer Operated Machines = 0 (2) Computer Operated Machines = 1 (1)−(2)

Mean SD Min Max Mean SD Min Max Diff S.E.

log employment 4.092 1.367 0.693 10.091 4.907 1.413 0.693 9.429 −0.814*** (0.027)
log avg. wage 3.401 0.632 0.000 10.085 3.736 0.599 0.065 8.405 −0.335*** (0.011)
Exporter 0.391 0.488 0.000 1.000 0.609 0.488 0.000 1.000 −0.218*** (0.009)
log revenues 9.580 1.989 0.000 16.604 10.952 2.046 0.000 16.952 −1.372*** (0.038)
log leverage 0.420 0.194 0.000 0.693 0.430 0.179 0.000 0.693 −0.010** (0.003)
log fixed assets 8.363 2.073 0.000 17.279 9.990 2.134 0.000 16.395 −1.627*** (0.040)
State-owned 0.435 0.496 0.000 1.000 0.330 0.470 0.000 1.000 0.105*** (0.009)
Privately-owned 0.370 0.483 0.000 1.000 0.265 0.441 0.000 1.000 0.105*** (0.008)
Foreign-owned 0.195 0.396 0.000 1.000 0.405 0.491 0.000 1.000 −0.210*** (0.009)

N (obs.) 28,097 3,141 31,238

Notes: Standard errors in parentheses, clustered by firm. Data for the 2010–2013 period. Leverage is normalized to lie between 0 and 1.
Source: Vietnam Technology and Competitiveness Surveys.
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revenues, pay higher wages, are more likely to be foreign-owned, and have higher
levels of labor productivity.

Surveying this evidence, it seems likely that domestic robot adoption will pri-
marily help the largest, most productive and most globally integrated firms in
developing countries. Smaller and less productive firms miss out, in line with
Rodrik (2018) and Goger et al. (2014).

6. Firm-level implications

Larger, internationally active firms are more likely to adopt robots. How do they
change ex-post? Drawing on firm-level data for ten developing countries, we
address this question using an event study approach (based on Bessen et al.,
2020). We estimate30:

ln Yft =
X2

s /=-1,s=-2
bs xAutoEventft-s + α .Xft + αct + αit + αf + Eft (3)

where Xft controls for firm age. An automation event is defined as a period in
which the firm spends more than three times its average cost-share on robots,

Table 8.3 Firm-Level Correlates of Automation in Vietnam

Dep. Variable: Firm with Computer-Operated Machines

(1) (2)

log employment -0.001 0.003
(0.003) (0.004)

log avg. wage 0.025*** 0.017***
(0.004) (0.004)

Exporter 0.014 0.012
(0.007) (0.008)

log revenues 0.008*** 0.007**
(0.002) (0.002)

log leverage -0.041** -0.039**
(0.013) (0.013)

log fixed assets 0.022*** 0.022***
(0.002) (0.002)

State-owned 0.006 0.001
(0.005) (0.005)

Foreign-owned 0.031** 0.030**
(0.010) (0.011)

Province-Industry FE N Y
Industry FE Y N
Year Y Y
N (obs.) 31,233 31,109
R2 0.077 0.145
F-stat 72.458 59.066

Notes: Standard errors in parentheses, clustered by firm. Firm-level data for the 2010–2013
period. Leverage is normalized to lie between 0 and 1.
Source: Vietnam Technology and Competitiveness Surveys.
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not including robot purchases in the current period. Specifically:

AutoEventf t

= 1
RobotPurchasesf ,t=t

TotalNonRobotImports f
> 3x RobotPurchases f ,t /=t

TotalNonRobotImports f

. }
(4)

To mitigate selection effects, for example, automators being particularly well-
managed, we restrict our main sample to only firms that do, at some point, auto-
mate. Thus the relevant counterfactual, against which the effect captured by β is
measured is the trend in firms that do automate, but not in the same period as
the firm under consideration. We find that after adopting robots, firms increase
their exports and market share, and expand their range of export products and
destinations (Figure 8.10). Robotizing firms are not only larger ex-ante; their
adoption of robots also coincides with a further expansion ex-post.31

In other words, we have evidence consistent with robotization boosting the
growth of initially larger firms in developing countries. Robotization could
thus contribute to increasing the average firm size in developing countries,
and thereby raise aggregate productivity (Hsieh and Klenow, 2014). Yet this evi-
dence also adds a firm-side element to the earlier distributional concerns: it is not
just more disadvantaged workers who are most threatened by robotization, but

Figure 8.10 Impact of Robot Adoption on Firm Export Outcomes
Notes: All variables in logs. Confidence intervals shown for 95% significance level. Standard
errors clustered at the firm level.

Source: the World Bank's Exporter Dynamics Database.
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7. Conclusion

Industrial robots will place conflicting pressures on developing countries. In the
long run, robot adoption in developed countries will most probably catalyze inter-
national trade and enhance global welfare. This conclusion is likely to be reinforced
by the fact that other new technologies – such as high-speed internet and digital
platforms – will further reduce the costs of trading and coordinating across
borders (Brynjolfsson et al., 2019; Freund and Weinhold, 2002, 2004) and will
create entirely new products and tasks (Acemoglu and Restrepo, 2018; Nakamura
and Zeira, 2018). Furthermore, China’s growing robotization (driven in part by
subsidies) might reduce productivity differences with advanced economies (and
thereby the gains from inter-industry trade with them) and need not hinder pros-
pects for industrialization and export-led growth in lower-income countries.

At the same time, trade and technological change will necessitate labor market
adjustment and could create severe distributional tensions both during and after
the transition to automated production. Robot adoption in developing countries
could exacerbate disparities between, on the one hand, the more advanced inter-
nationally active firms that account for a large share of exports, and on the other
hand, the small-scale, informal firms that account for a large share of low-skilled
and manual employment. These firm-level disparities may also accentuate income
disparities across households in developing countries. Furthermore, over time
developed-country automation could discourage developing countries from
investing in some sectors with high growth potential, contributing to ‘premature
de-industrialization’ (Rodrik, 2016). Weighing these risks against the potential
gains from specializing in labor-intensive exports will be a difficult balancing
act. Informing policies that harness the growth potential of globalization and
technological progress while ensuring the attendant gains are equitably shared
is thus an important task for future research.
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also smaller, less productive, less internationally active firms.32 Given that low-
skilled workers are also more likely to work at such firms, this dual threat is a
key issue for policymakers to consider. As Rodrik (2018) notes, a key objective
will be to “disseminate throughout the rest of the economy the capabilities
already in place in the most advanced parts of the productive sector”. In the
meantime, robot adoption may place temporary support systems – whether
state welfare systems, social networks or the informal sector (Dix-Carneiro et al.,
2019; Dix-Carneiro and Kovak, 2019) – under increasing strain. Reaping the ben-
efits of robot adoption at home and abroad, whilst mitigating the downsides, will
be a key policy challenge.



Appendix

This section provides an overview of the model; further details can be found in
Artuc et al. (2018). The task-based Ricardian framework combines several
ideas from the literature: productivity differences across countries and sectors
(Eaton and Kortum, 2002), two-stage production with trade in intermediates
and final goods (Yi, 2003; Caliendo and Parro, 2015) and feasible robotization
of some tasks previously performed by humans (Acemoglu and Restrepo, 2020).

We denote countries by m and n, sectors by i, and production stages by s,
where s = 1 refers to intermediate inputs (first stage) and s = 2 refers to final
goods (second stage). Workers are mobile across stages and sectors, but not
across countries. Robots are equally available in all countries, at the same (exog-
enous) rental rate, and are owned by residents of the country that robotizes pro-
duction. The representative household in country n maximises Cobb-Douglas
utility

Un =
Y
i

(Q n,i
2 )gn,i

where Q n,i
2 is the amount of composite final good from sector i demanded by

consumers in country n, and gn,i is a constant with
E

i g
n,i = 1. The composite

final good Q n,i
2 results from the aggregation of final stage varieties by consumers,

as described in detail in the following.
A continuum of varieties o E [0, 1] is produced in each sector i of country n.

These varieties can be produced either as intermediate inputs in the first stage or
as final goods in the second stage. We define the set of first and second stage vari-
eties in industry i respectively as Si

1 and Si
2, such that Si

1 u Si
2 = {0, 1}. The pro-

duction function for varieties ω is:

qn,i(o) = zn,i(o)(Fn,i
s (o))αn,iF (Q n,i

1 (o))αn,iM (T n,i(o))αn,iT

where Q n,i
1 is a first stage composite, Fn,i

s (o) is a fixed factor specific to the indus-
try-stage, T n,i(o) is a composite task input, and zn,i(o) is productivity drawn
from a Frechet distribution with shape parameter θ. Aggregation of stage s vari-
eties o E Si

s then yields the stage s composite good Q n,i
s .



The production of the composite task input T n,i for variety ω requires per-
forming a range of tasks k E [0, 1]. We assume that tasks from 0 to Ki can be per-
formed by robots or humans, while tasks between Ki and 1 can only be
performed by workers. In some industries, robotization is not feasible, and
hence 9i : Ki = 0. The subset of tasks that can be robotized is thus given by
Ki, while the subset of tasks that cannot be robotized is given by 1-Ki. The
robotization frontier and the productivity of robots are assumed to be industry
specific, but not stage specific.

To perform one unit of task k of variety ω within industry i, 0i
LzL(k) labor units

are required. If k < Ki, 0i
RzR(k) robot units can perform the same task. zR(k) and

zL(k) are distributed Weibull with shape parameter ν. Thanks to the distributional
assumptions, the optimal set of tasks performed by robots is then given by the
expression

Kn,i
R = (0i

RwR)-n

(0i
R wR)-n + (0i

L w
n
L)-n K

i

and depends upon the automation frontier Ki, the elasticity of substitution
between robots and workers 1+ν, and the productivity-adjusted relative price
of workers versus robots 0i

L w
n
L/0

i
R wR. The average unit cost of tasks from 0 to

Ki is given by the standard CES function

wn,i
TA

= ci
3 ( (0i

R wR)-n + (0i
L w

n
L)-n)-1

n

and depends on wages wn
L, the unit cost of robots wR and the elasticity of sub-

stitution between robots and workers.33 Similarly, the unit cost of tasks from
Ki to 1 is wn,i

TN
= ci

30
i
Lw

n
L. Combining these expressions, the cost of producing

a task with robots, relative to the cost of producing it without robots, is:

On,i = 1-Ki +Ki 1-Kn,i
R

Ki

( )1
n

Intuitively, robots bring no cost benefit (i.e. On,i=1) if there is no potential for
robotization in an industry (Ki = 0), while the relative cost is minimized (i.e.
On,i is close to zero) if robots are free to rent (wR = 0) and can be used for all
tasks (Ki = 1). Analogously, labor demand per task is

Xn,i = 1-Ki + Ki 1 - Kn,i
R

Ki

( )1+1
n

such that labor demand is lower when robots (i) are cheaper or (ii) can be used
more widely.
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We can use On,i to express the unit price of output under robotization:

cn,is = cn,i
4 (rn,is,F )α

n,i
F (Pn,i

1 )αn,iM (On,iwn
L)α

n,i
T

where Pn,i
1 is the price of (first-stage) inputs. A larger cost reduction from robot-

izing (i.e., On,i closer to zero) lowers output prices. This in turn raises the prob-
ability that country n is the lowest-priced provider of a stage s variety to country:

pm,n,i
s = cn,i

s,4 t
m,n,i( rm,i

s,F )α
m,i
s,F (Pn,i

1 )αn,is,M (On,i wn
L)α

n,i
s ,T

Pm,i
s /ci

2

(
(

(
A

-y

In other words, robotization at home increases exports to other countries. In the
calibrated model, initial higher wages lead the richer Northern countries n to
adopt more robots than Southern countries m. Declines in robot prices then
induce further robotization, which disproportionately lowers production costs
in the North and thus increases exports to the South and to the third country
('Other').

In contrast, the effect of Northern robotization on imports sourced from the
South is theoretically ambiguous. On the one hand, robotization makes North-
ern producers more competitive at home (i.e. pn,n,i

s is larger), which implies that
some varieties that were previously imported from the South are now sourced
domestically. On the other hand, robotization leads to an expansion in the
scale of production, which raises demand for first-stage varieties sourced from
the South (i.e. Qm,i

1 is larger).
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Figure 8.A1 South's Exports to North in the Robotized Industry
Notes: This figure presents results from simulations of the effects of lower robot prices (and so
increased robot usage) on Southern exports to North in the robotized industry, for a range of
trade elasticities. Panels A and B show results for a trade elasticity of 10 (versus 4 in Figure 3 in
the main text), while panels C and D use a trade elasticity of 2. The results are qualitatively
robust across all cases, with only the size of the effects changing. For full discussion, see
Section 2 in the main text. Note the differential scaling of the y-axes for the different scenarios.

Panel A: Parts only, high trade elasticity
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Figure 8.A1 (Continued)

Panel B: Final goods only, high trade elasticity

Figure 8.A1 (Continued)

Panel C: Parts only, low trade elasticity
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Figure 8.A1 (Continued)

Panel D: Final goods only, low trade elasticity
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Figure 8.A2 Low Elasticity of Substitution between Robots and Workers
Notes: This figure presents results from simulations of the effects of lower robot prices on robot
use, labor allocation, wages and trade, for a case with low elasticity of substitution between
robots and workers. Specifically, this elasticity is 3 in these graphs, rather than 10 in the baseline
case – so robots are thus modelled as being similar to conventional capital. For full discussion,
see Section 2 in the main text.

Panel A: Robot use in robotized industry
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Figure 8.A2 (Continued)

Panel B: Labor use in robotized industry

Figure 8.A2 (Continued)

Panel C: Wages
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Notes
1 A technical outline of the model is provided in the Appendix.
2 The model combines elements from a large number of papers in the literature,

including Grossman and Rossi-Hansberg (2008), Eaton and Kortum (2002),
Acemoglu and Restrepo (2020), Caliendo and Parro (2015), Lee and Yi
(2018), and Artuc and McLaren (2015).

3 Offshoring in the model takes place through imports of intermediate inputs,
which embody tasks performed abroad. This allows us to calibrate all trade
flows, production functions and labor shares using the World Input-Output
Database. Given our focus on industrial robots and trade in goods, the distinc-
tion between offshored tasks and intermediate inputs is largely semantic (Gross-
man and Rossi-Hansberg, 2008). Future research could extend the model by
allowing direct offshoring of tasks to consider cases where this distinction is
more substantive (e.g. in services trade).

4 Throughout this chapter the set of tasks that can feasibly be performed by robots
is fixed. Increased robotization results only from a fall in the price of existing
robots, not an expansion in their functionality. Technological advances which
enable robots to perform new tasks, or indeed create new human-only tasks,
are a distinct issue, which we leave to other work (e.g. Acemoglu and Restrepo,
2018).

5 In the model, which assumes full employment, the displaced workers compete for
the remaining non-automated tasks, bidding down wages and generating a
second-order increase in hiring.

6 Following Graetz and Michaels (2018), we measure replaceability by comparing
robot applications recorded by the IFR with three-digit occupation names and

Figure 8.A2 (Continued)

Panel D: South's exports to North in robotized industry
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descriptions in the US Census, then aggregating to the industry level using the
occupation-composition of industries. See Artuc et al. (2018) for further
details of the empirical strategy and variable construction.

7 When running separate regressions for intermediates vs. other goods, the respec-
tive increases in imports from the South are 6.8% and 5.6% (using the Broad Eco-
nomic Categories (BEC) classification of goods) or 8.6% and 4.9% (using the
classification from Schott, 2004).

8 Specifically, the net increase in imports of parts and components implies that the
robotization-induced scale effect, which increases demand for imported interme-
diates, outweighs any robotization-based reshoring (i.e., substitution effects from
increased robot use by Northern intermediates producers).

9 We use the World Input Output Database (WIOD) to calibrate international
trade, production functions and labor shares. In the baseline simulation, we
use WIOD data for 2005 to calibrate initial trade patterns. We group countries
into three broad categories, based on their income per capita, robot density
and data availability. The group of countries in the North is composed of
Belgium, Germany, Denmark, Finland, France, Italy, Netherlands, Sweden and
the United States. The group of countries in the South is composed of Brazil,
China, India, Indonesia, Mexico, Turkey and Taiwan, China. Based on these
two groupings, we construct the representative countries in the North and
South. The group of other developed countries results from the aggregation of
other OECD and EU countries for which data are available in WIOD. This
group consists of Australia, Austria, Bulgaria, Canada, Czech Republic, Spain,
the United Kingdom, Greece, Croatia, Hungary, Ireland, Portugal, the Slovak
Republic, Poland, Norway and Switzerland. Various robustness checks in Artuc
et al. (2018) find that results are qualitatively robust across a variety of alternative
groupings.

10 This setup is suitable for illuminating the relevant dynamics without losing
tractability. If we were to aggregate within groups, rather than averaging to
create representative countries, the North would account for more than 50%
of world GDP, and the bulk of world trade would occur within the North.
This setting would underrepresent the importance of North-South trade,
and trade as share of GDP would be very small. To avoid this aggregation
bias, we instead construct representative countries in the North and the
South. Considering a relatively large group of other developed countries is
also important to allow for the possibility that competitiveness gains associated
with robot adoption in the North translate into higher demand for its final-
goods exports.

11 Broadly, lower robot prices initially cause displacement of human labor at the
'extensive margin', but subsequently reduce costs and increase productivity at
the 'intensive margin' (Acemoglu and Restrepo, 2019). Such sequencing
could help explain differing empirical findings on the impact of robots: coun-
tries in the displacement phase (e.g., the USA (Acemoglu and Restrepo,
2020)) may experience larger wage declines from additional robotization
than countries further ahead in the process of adoption (e.g., Germany
(Dauth et. al, 2021)).

12 However, for a sufficiently large reduction in robot prices (greater than 85% in
Figure 8.2 panel A) the South in turn adopts robots, lowering Southern wages
(panel C) due to the initial substitution effect of robot adoption.

13 We place particular emphasis on the trade results because they illuminate the
various mechanisms behind the modelled impacts on wages and GDP, and
because they relate most closely to our core regressions.

14 This effect could theoretically drive 'reshoring' of production.
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15 Future research with more granular data on robot use (i.e., distinguishing
between robots used in the production of final vs. intermediate goods) could
also separate these mechanisms in reduced-form empirics. Here, our regressions
focus on the net effect, which we can observe. In the simulations, we have exper-
imented with a larger trade elasticity and found that, for final goods, the substi-
tution effect could indeed outweigh the scale effect – but only for a very high
trade elasticity (Figure 8.A1 panel B).

16 Specifically, Figure 8.A1 uses trade elasticities of 2 and 10, whereas the baseline
model uses 4.

17 The paths of other key variables (e.g., labor use, wages, welfare) are almost
unchanged across the various trade elasticity scenarios.

18 Specifically, Figure 8.A2 uses an elasticity of substitution between robots and
workers of 3, rather than 10 in the baseline model. The trade elasticity is reset
to 4.

19 In particular, Artuc, Bastos, and Rijkers (2018) check that the results are not
driven by a select few sectors, the financial crisis, tariff patterns or correlations
between robotization and other types of investment. The results are also
robust to alternative specifications using the inverse hyperbolic sine, variation
over longer time periods, alternative instruments, and an alternative proxy for
automation.

20 Specifically, we use an unbalanced panel of value added and employment data
from Russia, China, India, Cyprus, Colombia, Costa Rica, El Salvador, Hondu-
ras, Peru, and the Dominican Republic between 1980 and 2016.

21 Adding an additional country to the model, as opposed to re-calibrating South to
represent China, allows us to consider the impact of subsidies on China's trade
with both developed and developing countries.

22 The subsidy is financed by taxing all Chinese factors of production in proportion
to income.

23 The strength of this effect depends on the level of initial robot prices. If robot
prices are already low (so automation levels in the world are already high) then
subsidies are more effective, as at this point even small subsidies tip robots into
being the cheaper production option in China. This is the scenario shown in
the graphs. Versions for a starting point of high robot prices and low automation
levels are qualitatively similar, but with the impact of the subsidy only kicking in
once it reaches a higher level (60%+) – effectively all the action in the graphs shifts
rightwards.

24 In the very long run, new tasks can be created and/or some existing tasks can
become obsolete – thus the robotization frontier can also move, which is an
aspect omitted from our model. Depending on the direction of the shift of the
robotization frontier, labor demand can increase or decrease.

25 How do these falls in imports from the South relate to the increasing overall
imports from the South in panel D? Note that panel D shows total trade, so
also includes the non-robotized tradeable sector. As China specializes in the
robotized sector, it increases its imports in this other sector, generating a net
increase in aggregate imports from the South.

26 Interestingly, Stapleton, and Webb (2020) illuminate a firm-level analogue of the
contrasting forces in our model, finding that firm-level sequencing matters for
the net impact of robotization on offshoring. For firms that had not yet offshored
any production, robotization simply allowed them to expand, which caused them
to begin new offshoring. In contrast, for firms that had already offshored some
production, there was also a negative effect on offshoring – as robots allowed
some previously-offshored production to be automated domestically. In the
Spanish case they find that the effect for the former group dominates, with
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robotization in the full sample having a net positive impact on imports from
lower-income countries.

27 Source: The World Bank's Exporter Dynamics Database, which covers all trade
transactions except those of oil and arms. We use data from importer-exporters
in Bangladesh, Chile, China, Colombia, Ecuador, Egypt, Mexico, Peru,
Romania and South Africa, which contain 10,312 separate robot purchases by
4646 distinct firms.

28 We also include industry-year and country-year fixed effects and cluster at the
firm level.

29 Concentration is measured by a Herfindahl index of export sales, using each firm-
product's share of total firm exports. Market shares are the firm's share of total
sales from the home country to each given export destination, which are then
averaged across all the firm's export dyads. Offshoring is the sum of imports in
the same HS4 category as goods sold by the firm, following the 'narrow'
measure of Hummels et al. (2014). Roundtripper is a dummy that takes value
one only for firms which export and import the same HS6 product to the
same partner in a given year. Relationship stickiness is a weighted average
across either exports or imports of the measure of Martin et al. (2020).

30 We use a four-year window to maximise the number of automation events for
which pre- and post-trends can be detected, given the short panel lengths in
some of our countries. Results are qualitatively robust to using a longer
window and fewer observations.

31 If we expand the sample to include never-adopters, rather than only not-now-
adopters, the relative post-adoption expansion is even larger.

32 This aligns with findings from developed countries that large firms adopting
robots expand at the expense of more labor-intensive competitors (Koch et al.,
2019; Acemoglu et al., 2020). Smaller and less productive firms may also be
more vulnerable to automation-driven business-stealing from abroad (Aghion
et al., 2020).

33 Parameters ψ throughout denote various constants.
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1 Introduction

A significant increase in wages in developed countries since the 1980s has pushed
firms to invest in and use more automation equipment. To offset high labor costs
in these economies, manufacturers have been replacing workers with machines.
Industrial robots and equipment that use artificial intelligence (AI) – what we
call ‘automation equipment’ – not only helps human workers perform their
tasks more efficiently, but also improves precision, accuracy, and reliability,
thereby reducing overall costs while also raising product quality and overall firm
productivity. The use of automation equipment has increased in emerging coun-
tries such as Singapore, Taiwan, South Korea, and Hong Kong, since the 2000s;
in China, it has grown notably since 2015. Thailand, Malaysia, Indonesia, as well
as other developing countries have followed suit.

While automation reduces costs, improves product quality, and increases pro-
ductivity, it may also displace workers. A number of studies have examined the
effects of automation on productivity, product quality, wages, and employment
in developed countries, but studies of automation effects in developing countries
are still rare. This is partly because relatively low levels of automation in develop-
ing countries make it difficult to measure automation and partly because firm-
level data for these countries are often lacking.

With these challenges in mind, we undertook to examine ‘automation in
Indonesia’ for two reasons. First, Indonesia has exhibited one of the highest
growth rates in automation among developing countries, with annual growth
in the use of automation equipment averaging 24% for more than a decade
(since 2007). Second, Indonesia, with a population of 276 million people
in 2021, is the fourth most populated country in the world. Almost 60% of
its population is in the labor force. In this context, the displacement of
workers by automation equipment can create huge social challenges. It there-
fore becomes important to understand how firms in a developing country
such as Indonesia make decisions about automation and how these decisions
are correlated with overall economic outcomes. We examine this question in
three steps.
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In the first step, we define automation in Indonesia. Most existing studies
focus exclusively on industrial robots, an advanced type of automation equip-
ment that is sometimes used as a proxy for automation. Yet, industrial robots
accounted for less than 1% of Indonesia's total imports of automation equipment
over the last two decades. The share of industrial robots increased from a mere
0.15% of all imported automation equipment in 2000 to 1.45% in 2019. An
exclusive focus on industrial robots thus misses the complete story of automation
in Indonesia. Instead, we use a broader definition of automation that includes
regulating and control instruments, numerically controlled appliances, automatic
machine tools, and other types of automation equipment, consistent with a
recent study by Acemoglu and Restrepo (2021).

To obtain a comprehensive picture of automation in Indonesia, one would
ideally include both domestically produced and imported equipment. Appar-
ently, the amount and value of domestically produced automation equipment
in Indonesia is still very low: most equipment of this type is only assembled in
Indonesia while engines and other major parts are produced overseas. The Inter-
national Federation of Robotics (IFR) maintains a database that records annual
installations of industrial robots. In 2019, China, Japan, the United States, South
Korea, and Germany were the top five installers of industrial robots. The IFR
database also reports robot density as measured by the number of industrial
robots in operation for every 10,000 workers. Using this ratio as a measure of
automation intensity, the countries with the highest levels of automation inten-
sity in 2019 were mostly developed countries such as Japan (364 robots per
10,000 workers) and Germany (346 robots per 10,000 workers). Other coun-
tries with high automation intensity by this measure were Singapore, South
Korea, and China. However, IFR does not have data on domestically produced
robots in Indonesia.

We therefore focus on imports and exports of automation equipment to Indo-
nesia using UN Comtrade, an international database of trade statistics maintained
by the United Nations (the classification of automation equipment is based on
Harmonized System 6-digit codes). The data show that Indonesia ran a
massive trade deficit in automation equipment from 2000 to 2019. Moreover,
the data reveal interesting patterns. For example, imports of the type of automa-
tion equipment used in the textile and apparel industries, such as weaving and
knitting machines and other textile machinery, declined as a share of all automa-
tion equipment imports. This is consistent with a slowdown in these industries,
which had been darlings of the Indonesian economy in the 1990s. The data
also show significant increases in imports of automation equipment that is inten-
sively used in high-tech industries such as motor vehicles and metals. Imports of
other general automation equipment, such as regulating and control equipment
and automatic conveyors, also increased. Considering that most of the automa-
tion equipment used in Indonesia is imported, it is reasonable to use imports
of automation equipment as a proxy for Indonesia's overall level of automation.

In the second step, we undertake an empirical analysis of the effects of auto-
mation on productivity, quality, and employment. Previous studies take either
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a macro-level approach, looking at country-level or regional labor market out-
comes (e.g., Graetz and Michaels (2018) for cross-country evidence; Acemoglu
and Restrepo (2020) for labor markets in the United States; Adachi, Kawaguchi,
and Saito (2022) for labor markets in Japan), or they rely on firm-level data to
identify the effects of automation, mostly in terms of employment (e.g., Koch,
Manuylov and Smolka (2021) using Spanish data; Humlum (2019) using
Danish data; Acemoglu, Lelarge and Restrepo (2020) using French data). We
use a firm–product level approach, employing three data sets from the most dis-
aggregated micro-level database of Indonesian manufacturing firms. The data-
base, which compiles results from an annual survey of about 35,000 firms,
includes raw materials and product outputs at the firm level, and exports and
imports at the firm level. Merging these three main data sets leaves us with a
total sample of 118,570 firms for the period 2008–2012.

Merging the three data sets allows us to identify each manufacturing firm's
direct imports of automation equipment. Because the firm-level import data
are consistent with nationally aggregated import data, we conclude that the
firm-level data are fairly representative. This consistency is illustrated by three
observations: (i) Indonesian firms run large deficits of automation equipment
throughout the years, (ii) both the firm-level data and the national data show
the same patterns in terms of imports of automation equipment by industry
(for example, a substantial reduction in shares of imports for the textile and
apparel industries and an increase in shares of imports for the motor vehicle
and metals industries), and (iii) we find that more industries overall have
become active in importing automation equipment. During the study period,
3.07% of manufacturers in our sample imported automation equipment. In
2012, these firms accounted for 13.57% of total outputs and 12.75% of total pro-
duction workers.

Using the merged data, our analysis documents cross-sectional associations
between firm-level automation status and other firm-level outcomes. Our find-
ings show that firms that imported automation equipment during the study
period (henceforth, 'automators') produced more outputs, hired more workers,
and had relatively higher labor productivity and total factor productivity (TFP)
than firms that never imported any automation equipment (henceforth, 'non-
automators'). In addition, automators paid relatively higher wages for both pro-
duction and non-production workers, had lower labor shares, and used capital
more intensively than non-automators. Automators also produced more varieties
of outputs and were more actively engaged in exports and imports. Moreover,
automators produced outputs of relatively higher inferred quality than non-
automators.

To see how automation correlates with firm outcomes over time, we conducted
estimations based on a firm-level long-difference specification. We find that auto-
mators see larger increases in outputs and productivity. Automators also experi-
ence larger increases in export shares and higher inferred product quality. We
also examine its impacts on employment. While most studies to date have found
that advanced automation, such as the adoption of industrial robots, tends to
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2 Automation in Indonesia: What Do the Data Tell Us?

In this section, we identify ‘automation equipment’ using Harmonized System
(HS) product codes, describe Indonesia’s export and import patterns of automa-
tion equipment, and examine direct imports of automation equipment by Indone-
sian manufacturing firms. First, we collect the HS 6-digit codes used by Acemoglu
and Restrepo (2021) to define industrial automation equipment. These codes
include the following types of equipment: industrial robots, machinery, numeri-
cally controlled machines, automatic machine tools, automatic welding machines,
weaving and knitting machines, other textile dedicated machinery, automatic con-
veyors, and regulating and control instruments. We refer to equipment with these
product codes as ‘automation equipment’. We can then identify the quantity and
value of automation equipment purchased from abroad by a country or a manu-
facturing firm.

Using UN Comtrade data from the World Bank’s World Integrated Trade
Solution (WITS) database, we observe annual exports and imports of automation
equipment to Indonesia, by value, for the 2000–2019 period (Figure 9.1). Since
Indonesia is not a major producer of automation equipment, we can see that
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substitute for production workers in developed economies, we find that Indone-
sian automators employ more workers compared to non-automators. In particular,
we document a relative increase in the number of production workers compared to
non-production workers. Thus, our results suggest that different levels of automa-
tion may result in different employment outcomes. In Indonesia and perhaps other
developing countries that are at earlier stages of automation, automation can be a
complement to the employment of production workers because it increases the
overall scale of production, and ultimately, the level of employment in the manu-
facturing sector.

As a last step, we propose a theoretical framework of heterogeneous firms that
incorporates firm-level automation decisions to rationalize our empirical results.
Because automation offers a better option for completing some easily automated
tasks that would otherwise be performed by human workers, it lowers the unit
cost of production. Meanwhile, automation equipment is purchased for a fixed
cost. Firms differ in productivity and decide the quality of goods they produce.
The model predicts that more productive firms are more likely to automate,
produce more outputs, and produce higher-quality goods than non–automators.
These results are consistent with our empirical findings. The model also predicts a
theoretically ambiguous correlation between employment and automation status
due to two opposite effects: a positive size effect that increases labor demand of
automators and a negative substitution effect that reduces their labor demand.

The rest of this chapter is organized as follows. Section 2 presents firm- and
product-level data and discusses what these data tell us about automation in
Indonesia. Section 3 reports empirical evidence on automation in Indonesia at
the firm and product level. Section 4 offers a possible explanation for our empir-
ical results by proposing a theoretical framework. Section 5 concludes.



the value of its automation exports is much smaller than the value of its automa-
tion imports. As indicated in Figure 9.1, Indonesia ran a massive trade deficit in
automation equipment, with a significant increase in import value over the last
two decades, from $871 million in 2000 to $3.9 billion in 2019. Automation
equipment accounted for about 2.3% of Indonesia's total imports (by value) in
2019. Imports increased over the last several decades, with noticeably higher
growth since 2008: annual imports grew 24% between 2007 and 2013;
imports then declined between 2014 and 2017 and subsequently increased
again.

Based on the UN Comtrade data, four patterns in Indonesia's imports of auto-
mation equipment are worth noticing. First, imports of weaving and knitting
machines and other textile dedicated machinery showed a persistent and signifi-
cant decline as a share of total imports of automation equipment. These two
types of equipment together accounted for more than 45% of total automation
imports in the early 2000s; they accounted for only around 18% in 2019. This
contraction is consistent with the declining shares of the textile and apparel
industries in Indonesia's overall economy (where they have been referred to
as 'sunset industries') and their slow growth prospects.1 Second, regulating
and control instruments have become the most important category of imported
automation equipment, growing as a share of all automation imports from around
20% in 2000 to around 35% in 2019. The trend of rising imports of regulat-
ing and control instruments reflects the expansion of high-tech industries

Figure 9.1 Exports and Imports of Automation Equipment by Firms in Indonesia,
2000–2019
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that use this type of equipment intensively, such as in the motor vehicles and
metals industries. Third, the industrial robots and dedicated machinery cate-
gories also show substantial increases as a share of overall automation
imports. In 2019, these two types of equipment accounted for around 10%
of automation equipment imports. Last, imports of automatic machine tools
have been relatively stable during this period, accounting for around 20% of
imported automation equipment in most years.2

We next examine firm-level production and trade data from Statistics Indonesia
(BPS) to identify automators. As a first step, we combined three main micro-level
data sets. The first data set is from an annual survey of large and medium-sized
manufacturing firms in Indonesia. The survey includes around 35,000 firms
annually and records firm-level production and financial information, including
information on gross production output, value added, number of production
and non-production workers, wages, capital, domestic and foreign equity
shares, materials usage, and export and import shares. The second data set
includes specific, additional information from the manufacturing survey, includ-
ing detailed information on outputs and inputs and raw materials at the firm-
product level. Specifically, the data set reports the annual value, quantity, and
export value of each product that a firm produces. It also documents the
annual value and quantity of each product that a firm purchases domestically
or imports as an input material.3 The third data set contains customs trade infor-
mation including value, quantity, HS product code, and import country of
origin, as well as export destination countries for each Indonesian firm in a
given year. The customs trade data set is essential for identifying direct
imports of automation equipment at the firm level. We match these three data
sets using a unique firm identifier provided by BPS. The merging and cleaning
steps we implemented to ensure good data quality left us with matched
samples spanning from 2008 to 2012.

Our approach to identifying automation at the firm level follows Humlum
(2019) and Acemoglu, Lelarge, and Restrepo (2020), who use imports of
industrial robots as an indicator of firm-level robot adoption by Danish and
French firms. Due to data limitations, our firm-level measure of automation
only captures direct imports of automation equipment from abroad during
the sample period; it does not account for purchases of automation equipment
from domestic wholesalers and retailers. Therefore, the matched sample focuses
on a subset of manufacturing firms that implement automation – as indicated by
their direct imports of automation equipment in a particular time period (as
explained in the previous section, we use imports of automation equipment
as the best proxy for automation in Indonesia, at the national and firm level,
for which data can be obtained at this time). Moreover, since imports of auto-
mation equipment to Indonesia began growing rapidly after 2008, we expect
that most purchases and installations of automation equipment have taken
place since 2008.

Table 9.1 reports the annual growth and composition of direct imports of
automation equipment by Indonesian manufacturing firms using the matched

280 Lili Yan Ing and Rui Zhang 280



data set. Direct imports of automation equipment fell significantly in 2009, but
recovered rapidly and substantially grew in subsequent years. The global financial
crisis in 2008 was likely to be responsible for the decline of imports in 2009.
However, a strong rebound following the decline may suggest that financially
unconstrained firms managed their resources so that they could build up their
automation capacities during the crisis-induced downturn in product demand.
The same pattern holds for almost all types of automation equipment and is
broadly consistent with the pattern we observe in the UN Comtrade data at
the national level. This suggests that the matched firm–product level data set pro-
vides a good representative sample for an overview of automation in Indonesia.4

Turning to the types of automation equipment included in Table 9.1, we see
that weaving and knitting machines and other textile dedicated machinery
together accounted for 66% of the total value of automation equipment
imports in 2008, but was only 35% in 2012. This decline can be explained by
the overall contraction of the textile and apparel industries in Indonesia over
the same period. Whereas, import shares for both industrial robots and numer-
ically controlled machines increased significantly from 2008 to 2012. These
increases were driven by expansion in the industries that were the primary
users of these types of equipment, particularly motor vehicles, transport equip-
ment, metals, and rubber and plastics (Table 9.2). Table 9.2 also reports the

Table 9.1 Direct Imports of Automation Equipment by Indonesian Manufacturing
Firms

Equipment Type

Growth (in %)

2008 2009 2010 2011 2012

Automatic machine tools . −67.59 286.45 21.24 24.73
Automatic welding machines . −64.11 29.85 148.51 21.47
Industrial robots . −87.71 1953.86 −11.21 88.86
Numerically controlled machines . −45.70 245.17 59.78 61.80
Other textile dedicated machinery . −14.86 50.98 83.88 20.98
Regulating & control instruments . 49.13 −6.71 23.38 29.23
Weaving & knitting machines . −64.39 110.74 52.15 −41.18

Total . −57.30 154.64 48.91 12.29

Equipment Type

Shares (in %)

2008 2009 2010 2011 2012

Automatic machine tools 8.79 6.67 10.12 8.24 9.16
Automatic welding machines 4.68 3.94 2.01 3.35 3.62
Industrial robots 4.83 1.39 11.21 6.68 11.24
Numerically controlled machines 14.61 18.58 25.18 27.02 38.93
Other textile dedicated machinery 9.34 18.62 11.04 13.63 14.69
Regulating & control instruments 1.00 3.48 1.28 1.06 1.22
Weaving & knitting machines 56.75 47.32 39.16 40.02 20.96

Total 100.00 100.00 100.00 100.00 100.00

Source: Authors' calculation from BPS data.
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industry composition of direct imports of automation equipment – in other words,
the distribution of automation imports across industries. The textiles industry sub-
stantially declined, from 61% to 25%, in its share of the value of total direct imports
of automation equipment. By contrast, other industries, such as rubber and plas-
tics, motor vehicles, and basic metals, significantly increased their shares. Overall, it
seems that Indonesian manufacturing firms have shifted from importing automa-
tion equipment that is specific to certain industries to importing equipment that is
applicable to a broader range of industries.

Next, we use our matched data set to examine the distribution of direct imports
of automation equipment across different types of firms. We classify an active firm
in the current year as either an incumbent firm or an entering firm (a new firm)
based on whether the firm is active in the previous year. If a firm that is active
in 2009 is also active in 2008, it is classified as an incumbent firm in 2009. Oth-
erwise, it is classified as an entering firm in 2009. Similarly, we can classify an active
firm in the current year as an incumbent firm or an existing firm. If a firm that is
active in 2009 is also active in 2010, it is classified as an incumbent firm in 2009.
Otherwise, it is classified as an existing firm in 2009. The general message is that
the intensive margin drives aggregate changes in firms' direct imports of automa-
tion equipment: incumbent firms accounted for more than 90% of direct imports

Table 9.2 Shares of Direct Imports of Automation Equipment (in %), by Industry

ISIC 2-digit industry 2008 2009 2010 2011 2012

Food 1.34 0.46 0.19 0.83 1.12
Beverage 0.00 0.00 0.00 0.03 0.00
Tobacco 0.02 0.03 0.03 0.01 0.56
Textiles 61.21 55.32 45.43 41.50 24.91
Apparel 2.45 2.76 2.02 5.10 2.77
Leather 0.10 0.67 0.16 3.72 1.23
Wood and Straw 0.01 0.00 0.06 0.04 0.03
Paper 0.00 0.34 0.01 0.01 0.39
Printing 0.09 0.00 0.00 0.00 0.00
Chemicals 1.30 2.31 0.90 0.56 0.05
Medicine 0.00 0.01 0.00 0.00 0.00
Rubber and Plastics 2.40 7.20 3.68 3.20 5.49
Non-metallic Minerals 0.62 0.04 0.47 0.22 0.43
Basic Metals 0.68 1.89 1.91 3.54 9.70
Fabricated Metal 1.47 5.01 2.26 6.67 4.15
Computer, Electronic and Optical 0.98 3.63 2.38 2.62 3.08
Electrical Equipment 2.23 4.78 4.47 1.83 0.94
Machinery 9.62 1.73 5.57 1.13 4.40
Motor Vehicles 7.82 6.89 24.55 23.57 32.14
Other Transport Equipment 4.50 5.73 2.71 4.52 6.02
Furniture 2.49 0.11 2.20 0.03 0.72
Other Manufacturing 0.68 1.10 0.99 0.82 1.78
Repair and Installation 0.00 0.00 0.00 0.04 0.09

Total 100.00 100.00 100.00 100.00 100.00

Source: Authors' calculation from BPS data.
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of automation equipment in all years; in 2010, newly entering firms accounted for
about 10% of direct imports.5 Over the years, more firms imported automation
equipment. The fraction of medium-sized and large manufacturers that had ever
imported automation equipment increased from 0.98% in 2008 to 3.07% in
2012. Overall, relatively few firms in Indonesia, even among medium-sized and
large manufacturers, import automation equipment.

We offer some statistics to shed light on the importance of automators. In
2008, 6.43% of production workers and 4.21% of non-production workers in
our sample were hired by manufacturing firms that directly import automation
equipment. In 2012, these numbers were 12.75% and 9.25% respectively. Man-
ufacturers that directly imported automation equipment at least once during the
period 2008–2012 accounted for 6.69% of total outputs in our sample. This
number increased to 13.57% in 2012. In short, employment and output shares
for direct importers of automation equipment roughly doubled from 2008 to
2012. On average, firms that directly import automation equipment hired
more workers and produced more outputs than other firms.

3 Automation in Indonesia: Evidence at the Firm–Product
Level Evidence

This section investigates the association between firm-level automation and firm-
level outcomes. Our empirical analysis does not attempt to infer causality
between automation and firm-level outcomes. Instead, we aim to document cor-
relations between automation and firm-level outcomes. The analysis consists of
two parts. The first part focuses on cross-sectional comparisons between firms
that directly import automation equipment and firms that do not. The second
part examines correlations between automation and firm outcomes over time,
using an empirical approach that follows Koch, Manuylov, and Smolka (2021)
and Acemoglu, Lelarge, and Restrepo (2020) and a firm-level long-difference
specification.

3.1 Cross-Sectional Comparisons

How do automators differ from non–automators in a given industry? We use the
following empirical specification to examine these cross-sectional differences:

yft = ba x aft +Xft + dit + drt + Eft , (1)

where y is the outcome variable, and f, t, i, and r represent firm, year, Interna-
tional Standard Industrial Classification of All Economic Activities (ISIC)
2-digit industry code, and region (located on Java or not),6 respectively. The
indicator variable aft takes the value of 1 if firm f imported automation equipment
at least once during 2008–2012; otherwise it takes the value of 0.7 The set of
control variables Xft includes firm export share, import share, and foreign owner-
ship, which may correlate with yft and aft at the same time.8 Export share and
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import share are values from 0 to 1, so there are exporters, importers, and firms
that neither export nor import in the estimation sample. Importantly, we include
industry–year fixed effects δit and region–year fixed effects δrt to control for
time-varying shocks specific to an industry (e.g., technological progress) and spe-
cific to a location (e.g., costs of labor, energy, land, ICT, and other location specific
variables). Therefore, βa is the 'automation premium' identified within an ISIC
2-digit industry in a given year. The error term is denoted by Eft. This term may
contain unobserved confounding factors that affect firm-level outcomes yft, such
as management capability or financial constraints.9 Standard errors are clustered
at the firm level to account for potential within-firm correlation in the error term.

In the first set of results, we focus on firm-level measures of size and produc-
tivity. The variables of interest are gross output value, employment, labor pro-
ductivity, and total factor productivity (TFP).10 To visualize the cross-sectional
difference between automators and non–automators, Figure 9.2 plots the distri-
butions of log output, log employment, log labor productivity, and log TFP for
these two groups of firms separately, without controlling for other firm-level
attributes Xft. The visualization shows that automators have higher output,
employ more workers, and have higher labor productivity and TFP.

We estimate (1) to further control for other firm characteristics that may be
correlated with yft and aft11. Table 9.3 reports the results. We find that automa-
tors produce more output and hire more employees than non-automators – by
around 1.389 and 0.995 log points, respectively. Meanwhile, automators also

Figure 9.2 Size and Productivity: Automators versus Non-automators
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exhibit higher labor productivity and TFP. The labor productivity premium is
about 0.396 log points, while the TFP premium is about 1.445 log points.12

These results are consistent with empirical findings for Spanish manufacturing
firms that adopt industrial robots (Koch, Manuylov, and Smolka, 2021).

We then turn to differences in factor price and factor usage between automa-
tors and non-automators. Figure 9.3 shows that automators pay higher wages for
both production and non-production workers. A possible explanation is that
automators hire workers with different skills and occupations than the workers
hired by non-automators. At the same time, automators have lower labor
shares and higher capital-labor ratios compared to non-automators.

Table 9.4 documents the cross-sectional regression results. After controlling
for trade participation, foreign ownership, industry-year fixed effects, and
region-year fixed effects, we find that automators pay higher wages for produc-
tion and non-production workers. The wage premiums are very similar for both
types of workers (0.15 log points).13 Meanwhile, automators also have lower
labor shares (−0.208 log points) and higher capital-labor ratios (0.445 log
points).14

We next investigate outcomes related to the number of different products or
outputs generated by a firm and the firm's participation in international trade.
First, we focus on firms' variety of outputs and variety of inputs.15 Figure 9.4
suggests that differences in these two variables are not as visible as differences
in the variables shown in previous figures.16 Second, we plot the distributions
of export and import shares, including those observations that report zero
value. Automators export more of their outputs and import more of their
inputs than other firms.

Table 9.3 Automation, Size, and Productivity: Cross-Sectional Comparison

(1) (2) (3) (4)
Dependent Variable:
(in Log)

Output Employment Value Added per
Worker

TFP

Automation 1.389*** 0.995*** 0.396*** 1.445***
(0.085) (0.060) (0.048) (0.112)

Export share 0.860*** 0.756*** 0.031 1.144***
(0.038) (0.026) (0.021) (0.045)

Import share 1.424*** 0.804*** 0.641*** 1.316***
(0.055) (0.036) (0.031) (0.071)

Foreign-owned 1.448*** 0.745*** 0.708*** 1.425***
(0.046) (0.031) (0.028) (0.059)

Fixed effects industry-year, region-year
No. of observations 110,735 110,735 109,039 69,655

TFP = total factor productivity.
Notes: This table reports the cross-sectional comparisons of firm-level size and
productivity measures between firms that import automation equipment and firms
that do not. Standard errors clustered at the firm level are shown in parentheses. *,
**, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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We include the control variables and estimate (1). In Table 9.5 columns 1 and
2, we compare firms with similar export and import intensities and foreign own-
ership but different levels of automation. We find that automators produce a
greater variety of outputs than other firms – by 0.095 log points – but do not

Figure 9.3 Factor Usages: Automators versus Non-automators

Table 9.4 Automation and Factor Usages: Cross-Sectional Comparison

(1) (2) (3) (4)
Dependent Variable:

(in Log)
Production

Wage
Non-Production

Wage
Labor
Share

Capital-Labor
Ratio

Automation 0.150*** 0.151*** −0.208*** 0.445***
(0.030) (0.032) (0.043) (0.084)

Export share 0.040*** 0.147*** 0.047** −0.049
(0.015) (0.018) (0.019) (0.037)

Import share 0.383*** 0.481*** −0.197*** 0.464***
(0.019) (0.022) (0.025) (0.056)

Foreign-owned 0.337*** 0.361*** −0.329*** 0.807***
(0.016) (0.019) (0.025) (0.052)

Fixed effects industry-year, region-year
No. of observations 110,707 90,251 109,038 72,635

Notes: This table reports the cross-sectional comparisons of firm-level factor usages between
firms that import automation equipment and firms that do not. Standard errors clustered at
the firm level are shown in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels.
Source: Authors' calculation from BPS data.
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Figure 9.4 Output and Input Varieties and Trade Participation: Automators versus
Non–automators

Table 9.5 Automation, Input-Product Varieties, Trade Shares: Cross-Sectional
Comparison

(1) (2) (3) (4)
Dependent
Variable:

Log no. of Produced
Varieties

Log no. of Input
Varieties

Export
Share

Import
Share

Automation 0.095*** −0.006 0.087*** 0.150***
(0.026) (0.027) (0.013) (0.014)

Export share 0.034*** 0.079*** 0.065***
(0.012) (0.014) (0.005)

Import share 0.057*** 0.101*** 0.093***
(0.015) (0.019) (0.008)

Foreign-owned 0.032** −0.071*** 0.196*** 0.234***
(0.014) (0.017) (0.008) (0.008)

Fixed effects industry-year, region-year
No. of
observations

110,735 110,735 110,735 110,735

Notes: This table reports the cross-sectional comparisons of firm-level input and product
varieties and trade shares between firms that import automation equipment and firms that do
not. Standard errors clustered at the firm level are shown in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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seem to use a greater variety of inputs. In column 3 (4), we compare the export
(import) shares of firms with similar import (export) intensities and foreign own-
ership but different levels of automation. We find that automators are more likely
to engage in international trade: these firms export 8.7 percentage points more of
their outputs and import 15 percentage points more of their inputs. Therefore,
firms that engage in more exporting and importing seem more likely to invest in
automation equipment.

Using the product-level information for Indonesian manufacturing firms, we
next examine how automation is correlated with product-level outcomes across
different firms. We focus on product-level market shares, prices, and product
quality (or product appeal), as inferred from sales and price information.

We define product quality as 'inferred quality' because it cannot not be directly
observed in the data. We follow Khandelwal, Schott, and Wei (2013) and Fan,
Li, and Yeaple (2015) to infer quality from sales and price data in a constant elas-
ticity of substitution (CES) preference:

U =
{
oEO

q(o) . z(o)Z[ ]s-1
s do

( ) s
s-1

, s > 1, Z > 0,

where q(ω) is the quantity of variety ω consumed and z(ω) is the quality (or
appeal) of the variety. In this equation, σ is the elasticity of substitution
between different varieties and η governs customer's preference for quality rela-
tive to quantity. The budget constraint of the customer is:{

oEO
p(o) . q(o)do < X ,

where X is the total expenditure. The demand function of each variety ω is thus:

q(o) = z(o)Z(s-1) . p(o)-s . Ps-1 . X.

Conditional on price p(ω), higher quality z(ω) increases the demand for a partic-
ular variety ω. We use P to denote the CES quality-adjusted price index that
aggregates all varieties in the market. The sales revenue of variety ω thus follows:

x(o) = p(o) . q(o) = z(o)Z(s-1) . p(o)1-s . Ps-1 . X.

Therefore, the product quality or product appeal of variety ω can be expressed as:

Z ln z(o) = 1

s- 1
ln s(o) + ln p(o) - lnP ,

where s(o) = x(o)
X is the market share of variety ω. Using information on firm–

product level outputs, we construct the quality measure as follows:

Zk ln zfgt =
1

sk - 1
ln sfgt + ln pfgt - lnPkt , (2)
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where f, g, k, and t stand for firm, product, industry, and year, respectively. We
assume that different products produced by different firms in the same industry k
are imperfect substitutes for one another. sfgt = xfgt

Xkt
is the market share of firm f 's

product g in industry k in year t. Therefore, conditional on price, we assign
higher quality to a firm/variety with a higher market share. Because we infer
quality within a particular industry in a particular year, variation in price index
Pkt at the industry–year level does not affect our empirical results so long as
industry–year fixed effects are included in the analysis.

We define k using HS 4-digit product codes and use the estimated for Indo-
nesia from Broda and Weinstein (2006). Figure 9.5 shows that products made
by automators account for larger market shares than products made by non–
automators. On the other hand, the price distributions of products made by
these two types of firms do not seem to differ. Therefore, it is reasonable to
expect that automators also produce high-quality goods, as indicated in the
lower-left panel of Figure 9.5.

To estimate these cross-sectional differences more precisely, we use the same
empirical specification in Table 9.6 as we do in Tables 9.3–9.5, including the
same control variables. Instead, however, we control for HS-4-digit-year fixed
effects17 to compare the product-level outcomes of firms with similar trade inten-
sities and foreign ownership but different levels of automation statuses. First, we
find that products made by automators account for larger market shares than
other products, on average. The automation premium in the market share is
about 1.175 log points. Second, the price difference between products made

Figure 9.5 Product-Level Characteristics: Automators versus Non–automators
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by automators and products made by non–automators is economically and statis-
tically insignificant (point estimate of −0.002 log points with a standard error of
0.122). Third, we document a significant automation premium in the inferred
product quality or product appeal. On average, the inferred quality of goods sup-
plied by automators is 0.441 log points higher than the inferred quality of goods
supplied by non-automators.

To summarize, cross-sectional comparisons between automators and non-
automators reveal systematic differences. Automators have higher product
output and employ more workers; they also have higher labor productivity and
TFP. Automators pay higher wages but their wage bills are lower as a share of
sales, and they use capital more intensively. Moreover, these firms produce
more varieties of output and are more actively engaged in international trade.
Finally, the products made by automators account for higher market shares
and exhibit higher inferred quality. These empirical results indicate that automa-
tion is highly selective – thus, automators tend to be exceptional.

3.2 Firm-Level Changes

Having examined cross–sectional correlations between automation and firm-level
outcomes across firms (and products), we turn next to an analysis of whether
firm-level changes in various outcomes are associated with automation status.
We use a long-difference specification, similar to that used in Acemoglu,
Lelarge and Restrepo (2020), as follows:

Dyf ,2012-2008 = bDa x Daf ,2012-2008 +Xf ,2008 + di + dr + Ef , (3)

Table 9.6 Automation and Product Quality: Cross-Sectional Comparison

(1) (2) (3)
Dependent Variable (in Log): Market Share Price Inferred Quality

Automation 1.175*** −0.002 0.441***
(0.117) (0.122) (0.150)

Export share 0.637*** 0.080** 0.369***
(0.048) (0.038) (0.046)

Import share 1.165*** −0.193** 0.462***
(0.081) (0.075) (0.102)

Foreign-owned 1.057*** −0.052 0.493***
(0.062) (0.056) (0.070)

Fixed effects HS4-year, region-year
No. of observations 118,570 118,570 118,570

HS = Harmonized System.
Notes: This table reports the cross-sectional comparisons of product-level character-
istics between firms that import automation equipment and firms that do not.
Standard errors clustered at the firm level are shown in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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where Δyf,2012–2008 is the long-difference of firm f's outcome variable y during
the sample period 2008–2012. The indicator variable Δaf,2012−2008 takes the
value of 1 if firm f imported any automation equipment during the period
2008–2012; otherwise, it takes a value of 0. The set of lagged variables
in 2008 Xf,2008 controls for a firm's initial conditions, including log labor
productivity, log employment, log capital–labor ratio, log ratio between non-
production worker compensation and production worker compensation,
foreign ownership, export share, and import share. The ISIC 2-digit fixed
effect δi accounts for industry-specific trends in this period. The region fixed
effect δr differs for firms that locate on Java and firms that do not. Finally,
the error term εf contains other unobserved confounding factors. In this speci-
fication, we exploit how changes in firm-level outcomes vary with the firm's
automation status.

Our long-difference specification controls for unobserved time-invariant firm
characteristics that affect both Δyf,2012–2008 and Δaf,2012–2008. The lagged vari-
ables Xf,2008 also control for some firm-specific changes that may correlate
with these lagged variables. However, we may still suffer from omitted variable
bias because unobserved time-varying firm characteristics in εf could still drive
Δyf,2012–2008 and Δaf,2012–2008 at the same time. For example, suppose a firm
becomes financially healthier. In that case, the firm may be more likely to
import automation equipment as an investment to expand production. This
would cause a positive correlation between automation decisions and gross
output value. Therefore, we interpret the empirical results in the long-difference
specification as reflecting associations between automation decisions and changes
in firm-level outcomes, rather than causal effects of automation on firm-level
outcomes.

Table 9.7 reports results from our long-difference regressions, using output,
value added, and TFP as dependent variables. By construction, the long-difference
specification only uses firms active in both 2008 and 2012 – most of these firms
were also present for all five years of the period 2008–2012. Firm entry and exit
leaves us with a sample of 17,496 firms (Table 9.7 column 1). Column 1 shows
that automators during this period also see a larger increase in their gross output
value – by 0.145 log points – than other firms in the same period. In column 2,
we further control for the lagged log non-production share of the workforce as a
measure of skill intensity and for the lagged log K/L ratio as a measure of capital
intensity. Due to missing values for these two variables, the sample size in
column 2 drops to 8,947 firms.18 After controlling for initial skill and capital
intensities, we still see a larger increase in output value, by 0.189 log points,
for automators. Columns 3 and 4 show that automators experience a larger
increase in value added – by 0.167 and 0.212 log points, respectively.
Columns 5 and 6 further report the estimation results for TFP. We find that
automators' TFP also grow faster than non-automators' TFP – by 0.223 and
0.204 log points. Overall, automators also see relative increases in gross
output, value added, and TFP. These associations might indicate that
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Table 9.7 Automation, Size, and Productivity: Long-Difference Specification

(1) (2) (3) (4) (5) (6)

Dependent Variable: (Log Difference) Output Value Added TFP

Automation 0.145*** 0.189*** 0.167*** 0.212*** 0.223*** 0.204***
(0.056) (0.072) (0.056) (0.074) (0.074) (0.074)

Lagged log labor productivity −0.350*** −0.385*** −0.446*** −0.548*** −0.163*** −0.175***
(0.011) (0.019) (0.012) (0.020) (0.012) (0.016)

Lagged log employment −0.046*** −0.013 −0.008 0.035** −0.083*** −0.076***
(0.010) (0.014) (0.011) (0.014) (0.012) (0.013)

Lagged foreign ownership 0.157*** 0.074 0.182*** 0.065 0.063 0.058
(0.041) (0.054) (0.041) (0.056) (0.053) (0.057)

Lagged export share −0.057 −0.116** −0.064* −0.098** −0.103** −0.115**
(0.038) (0.047) (0.038) (0.048) (0.042) (0.046)

Lagged import share 0.158*** 0.078 0.214*** 0.154** 0.114* 0.074
(0.048) (0.066) (0.048) (0.069) (0.058) (0.065)

Lagged log non-production share 0.045*** 0.081*** 0.011
(0.011) (0.012) (0.011)

Lagged log K/L ratio 0.070*** 0.118*** 0.034***
(0.010) (0.010) (0.009)

Fixed effects industry, region
No. of observations 17,496 8,947 17,288 8,841 9,921 7,934

Note: This table reports how firm size and productivity measures vary with the imports of automation equipment over time. Standard errors clustered at the
firm level are shown in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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automation increases output and productivity, or firms that oversee better
growth opportunities are also the ones that choose to automate.

In Table 9.8, we use the long-difference specification to examine changes in
firm-level employment. In columns 1 and 2, we observe a relative increase of
0.113 and 0.204 log points in total employment associated with firms that
import automation equipment. Similar findings are documented by Koch, Man-
uylov and Smolka (2021) and Acemoglu, Lelarge, and Restrepo (2020) in their
analysis of the firm-level impacts of adopting industrial robots for Spanish and
French firms, respectively. We further examine the impacts on the employment
of production and non-production workers. Columns 3 and 4 show a larger
increase in employment of production workers for automators compared to
non-automators – by 0.115 and 0.230 log points, respectively. By contrast,
columns 5 and 6 reveal no significant increase in the employment of non-production
workers by automators relative to non-automators. Therefore, the relative increase
in firm-level employment among automators mainly reflects a relative increase in
these firms' employment of production workers.

Although we are cautious about interpreting our long-difference results as
causal, it is still worthwhile to compare our findings with findings from previous
studies that use data from developed economies. In these economies, automation
equipment such as industrial robots tends to substitute for production workers
who perform routine tasks. Therefore, one would expect production workers
to be negatively affected by the adoption of advanced automation technologies.
This hypothesis is supported by Humlum (2019), who finds that Danish produc-
tion workers experience subsequent wage losses when their employers adopt
industrial robots. In addition, Acemoglu, Lelarge, and Restrepo (2020) find
that production workers' employment shares declined following the adoption
of industrial robots by firms in France.

By contrast, Indonesia, as a developing economy, is still at a relatively early
stage of automation.19 At this stage, automation equipment other than indus-
trial robots, such as numerically controlled machines and automatic machine
tools, may increase production workers' efficiency and accuracy in performing
specific tasks and thereby enable increased production.20 Our conjecture, there-
fore, is that early-stage automation is more likely to complement production
employment.

We further explore whether importing automation equipment is associated
with firm-level changes in factor usage. Table 9.9 reports results for this part
of the analysis. We find that changes in labor share, production wage, non-
production wage, and capital–labor ratio do not seem to differ between automa-
tors and non-automators. Combined with the results in Tables 9.7 and 9.8, we
see similar increases in total wage bill and output for automators, leaving the total
wage bill as a share of output invariant. Finally, our results for the capital–
labor ratio also suggest that capital grows at the same rate as employment for
automators.

Table 9.10 examines changes in output variety and international trade parti-
cipation. We see no significant difference in output and input variety between
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Table 9.8 Automation and Employment: Long-Difference Specification

(1) (2) (3) (4) (5) (6)

Dependent Variable: (Log Difference) Employment Production Employment Non-Production Employment

Automation 0.113*** 0.204*** 0.115*** 0.230*** 0.028 0.054
(0.038) (0.044) (0.039) (0.046) (0.051) (0.065)

Lagged log labor productivity 0.053*** 0.027*** 0.059*** 0.025*** 0.023*** 0.035***
(0.005) (0.007) (0.006) (0.008) (0.008) (0.011)

Lagged log employment −0.177*** −0.138*** −0.173*** −0.138*** −0.158*** −0.106***
(0.006) (0.008) (0.007) (0.009) (0.009) (0.012)

Lagged foreign ownership 0.008 −0.011 0.010 −0.015 0.012 0.015
(0.026) (0.033) (0.028) (0.035) (0.036) (0.044)

Lagged export share 0.036 −0.012 0.023 −0.039 0.098*** 0.064
(0.023) (0.028) (0.024) (0.029) (0.037) (0.043)

Lagged import share 0.072** 0.072* 0.081*** 0.061 0.036 0.071
(0.029) (0.037) (0.030) (0.053) (0.041) (0.053)

Lagged log non-production share 0.008 0.053*** −0.143***
(0.006) (0.007) (0.010)

Lagged log K/L ratio 0.020*** 0.016*** 0.022***
(0.005) (0.005) (0.008)

Fixed effects industry, region
No. of observations 17,892 9,130 17,889 9,130 13,349 7,668

Notes: This table reports how firm-level employment varies with the imports of automation equipment over time. Standard errors clustered at the firm level are
shown in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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Table 9.9 Automation, Wages, and Capital-Labor Ratio: Long-Difference Specification

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: (Log Difference) Labor Shares Production Wages Non-Production Wages K/L Ratio

Automation −0.024 0.048 0.068* 0.073 −0.037 0.054 −0.053 0.066
(0.060) (0.086) (0.040) (0.060) (0.055) (0.082) (0.112) (0.093)

Lagged log labor productivity 0.189*** 0.291*** −0.303*** −0.287*** −0.269*** −0.222*** −0.081*** 0.131***
(0.015) (0.026) (0.008) (0.014) (0.011) (0.015) (0.015) (0.017)

Lagged log employment −0.198*** −0.200*** −0.045*** −0.050*** −0.055*** −0.063*** 0.138*** 0.100***
(0.011) (0.016) (0.007) (0.010) (0.010) (0.014) (0.017) (0.017)

Lagged foreign ownership −0.111*** −0.038 0.091*** 0.048 0.001 −0.037 −0.050 0.086
(0.041) (0.057) (0.027) (0.041) (0.039) (0.052) (0.079) (0.074)

Lagged export share 0.107** 0.070 −0.007 −0.006 0.019 0.002 −0.055 −0.100
(0.042) (0.051) (0.029) (0.036) (0.044) (0.050) (0.062) (0.062)

Lagged import share −0.209*** −0.153** −0.026 −0.032 −0.135*** −0.053 −0.045 0.090
(0.048) (0.073) (0.031) (0.048) (0.045) (0.061) (0.076) (0.078)

Lagged log non-production share −0.103*** 0.017* −0.272*** 0.042***
(0.014) (0.009) (0.014) (0.013)

Lagged log K/L ratio −0.151*** −0.059*** −0.034*** −0.429***
(0.012) (0.008) (0.010) (0.017)

Fixed effects industry, region
No. of observations 17,288 8,841 17,889 9,130 12,842 7,668 10,118 8,083

Notes: This table reports how firm-level wages and capital/labor ratio vary with the imports of automation equipment over time. Standard errors clustered at
the firm level are shown in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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Table 9.10 Automation and Input-Output Varieties and Trade: Long-Difference Specification

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: (Difference) Log no. of Produced
Varieties

Log no. of Input Varieties Export Share Import Share

Automation

Lagged log labor productivity

Lagged log employment

Lagged foreign ownership

Lagged export share

Lagged import share

Lagged log non-production share

Lagged log K/L ratio

−0.005
(0.028)
0.001
(0.004)
−0.006
(0.004)
0.020
(0.019)
0.017
(0.018)
−0.019
(0.022)

0.044
(0.039)
−0.005
(0.006)
−0.008
(0.007)
−0.031
(0.029)
−0.003
(0.024)
0.030
(0.033)
0.002
(0.005)
0.006
(0.004)

−0.018
(0.037)
−0.017***
(0.005)
−0.015**
(0.006)
0.040
(0.027)
0.007
(0.025)
−0.091***
(0.031)

−0.036
(0.054)
−0.024***
(0.008)
−0.024***
(0.009)
0.028
(0.040)
0.040
(0.033)
−0.200***
(0.049)
−0.003
(0.007)
0.002
(0.006)

0.042***
(0.014)
−0.004***
(0.001)
0.030***
(0.002)
0.090***
(0.010)
−0.487***
(0.013)
0.018*
(0.009)

0.059***
(0.021)
−0.004
(0.003)
0.031***
(0.003)
0.105***
(0.015)
−0.463***
(0.016)
0.027*
(0.015)
0.003
(0.002)
−0.006***
(0.002)

0.033***
(0.013)
0.003***
(0.001)
0.010***
(0.001)
0.071***
(0.008)
0.013**
(0.006)
−0.306***
(0.012)

0.018
(0.017)
0.001
(0.002)
0.011***
(0.002)
0.056***
(0.011)
0.024***
(0.007)
−0.305***
(0.017)
0.003**
(0.001)
0.002
(0.001)

Fixed effects
No. of observations 17,496 8,947 17,659

industry, region
9,017 17,496 8,947 17,659 9,017

Notes: This table firm-level input and output varieties and trade shares vary with the imports of automation equipment over time. Standard errors clustered at
the firm level are shown in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors’ calculation from BPS data.
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4 Interpreting Empirical Findings: A Simple Framework

This section proposes a simple model of heterogeneous firms that make firm-
level automation decisions to rationalize our empirical findings. Our model is
stylized and shares many features with existing models that characterize the
sorting of firms based on differences in the decisions they make (e.g., Melitz,
2003; Antras, Fort, and Tintelnot, 2017). Therefore, we highlight key elements
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automators and other firms. However, automators experience a relative increase
in their export share of 4.2 percentage points when we do not control for skill
and capital intensities and a relative increase of 5.9 percentage points when we
do control for skill and capital intensities. The evidence on import shares is
mixed. In column 7, automators see a larger increase in import share (3.3 per-
centage points) than non–automators when we do not control for skill and
capital intensities. This increase is statistically significant. When we include skill
and capital intensities in column 8, the estimated coefficient obtained in the
smaller and more restricted sample becomes smaller and more imprecise (point
estimate 0.018 with a standard error of 0.017).

Finally, we turn to outcomes at the firm–product level in Table 9.11. Due to
massive entry and exit at the firm–product level during the period 2008–2012,
we are left with 5,871 firm–product pairs in the long-difference specification
(Table 9.11 column 1). Column 1 shows that products made by automators
also exhibited a larger but statistically insignificant increase in market share.
When we further control for skill and capital intensities in It, the estimation
sample size falls to 2,851 firms. It shows that importing automation equipment
is associated with an increase of 0.499 log points in product-level market share.
We also estimate how changes in the product-level price vary with automation
status. Columns 3 and 4 show that the price increase is associated with importing
automation equipment, but the coefficients are not statistically significant.
Columns 5 and 6 indicate that automators also see a larger increase – of 0.478
and 0.604 log points – in the inferred quality of their products.

To summarize, we identify the associations between changes in various
firm-level outcomes and automation status. Consistent with the empirical find-
ings of studies that use firm-level data from other countries, we find that
importing automation equipment is associated with larger increases in output
and employment. The larger increase in employment is mainly concentrated
in production workers, while changes in labor share and wages are not system-
atically associated with automation status. Automation is also correlated with
increases in export share, product-level market share, and product-level inferred
quality.

We reiterate that our findings should not be interpreted as reflecting causality
because we do not use exogenous shocks or policy changes that induce firms to
automate (such as a reduction in the cost of automation equipment) to study
how automation affects firm-level outcomes. Such exogenous variations would
be needed to make causal inferences but are beyond the scope of this chapter.



Table 9.11 Automation and Product-Level Outcomes: Long-Difference Specification

(1) (2) (3) (4) (5) (6)

Dependent Variable: (Log Difference) Market Share Price Quality

Automation 0.238 0.499* 0.221 0.294 0.478** 0.604**
(0.243) (0.289) (0.155) (0.229) (0.223) (0.299)

Lagged log labor productivity −0.420*** −0.484*** −0.226*** −0.204*** −0.473*** −0.510***
(0.033) (0.046) (0.026) (0.039) (0.036) (0.051)

Lagged log employment −0.178*** −0.143*** 0.006 0.008 −0.091** −0.056
(0.036) (0.052) (0.030) (0.044) (0.037) (0.054)

Lagged foreign ownership 0.173 0.106 0.180 0.057 0.303 0.107
(0.129) (0.185) (0.113) (0.219) (0.137) (0.244)

Lagged export share −0.065 −0.168 0.217** 0.129 0.159 0.056
(0.108) (0.130) (0.106) (0.123) (0.120) (0.140)

Lagged import share 0.105 −0.121 0.127 0.186 0.263 0.314
(0.193) (0.276) (0.124) (0.249) (0.188) (0.351)

Lagged log non-production share −0.025 0.014 0.005
(0.033) (0.029) (0.037)

Lagged log K/L ratio 0.034 0.070*** 0.089***
(0.029) (0.024) (0.031)

Fixed effects HS 4-digit, region
No. of observations 5,871 2,851 5,871 2,851 5,871 2,851

Notes: This table reports how product-level outcomes vary with the imports of automation equipment over time. Standard errors clustered at the firm level are
shown in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Source: Authors' calculation from BPS data.
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and main predictions of the model here but leave the technical details in Appen-
dix A for interested readers.

In our framework, automation equipment can be purchased for a fixed cost.
This equipment lowers the unit cost of production by offering alternative and
better technologies to complete automated tasks in the production process
that were previously exclusively performed by human workers. The marginal
costs and benefits of automation constitute the trade-offs that firms must con-
sider when deciding whether to automate or not.

We assume that firms differ in productivity. Firms decide the quality of goods
they produce; quality is modeled as a residual demand term in a CES preference.
Higher quality entails a higher unit cost of production and a higher fixed cost of
investment. However, because consumers value higher quality, a firm will con-
sider the marginal costs and benefits of reaching a particular level of product
quality so as to maximize profits. As the decision to automate features economies
of scale, only firms with sufficiently high productivity find it profitable to
automate.

Our model generates several predictions about cross-sectional differences in
firm characteristics between automators and non-automators. First, automators
have higher output and productivity than non-automators.21 Second, because
automation lowers the unit cost of production for any given level of product
quality, automators produce higher-quality products.22 The model also predicts
an ambiguous correlation between firm-level employment and automation
because of two opposite forces. On the one hand, a reduction in unit cost
leads to a positive size effect that increases demand for labor. On the other
hand, automation equipment reduces the share of tasks performed by human
workers, leading to a substitution effect that depresses demand for labor. The
net effects hinge on which force is dominant and depend on the values of
related parameters.

5 Conclusions

We conduct an empirical analysis of automation in Indonesia, with a particular
focus on how firm-level automation is associated with different firm-level out-
comes. We measure direct imports of automation equipment by Indonesian
firms and describe patterns of automation by these firms. Combining data on
firm-level imports of automation equipment with other micro-level information,
we find that automators produce more outputs, hire more workers, and have
higher productivity. They also pay higher wages, have lower labor shares, and
use capital more intensively. We find further that automators produce a larger
variety of outputs, engage more actively in exports and imports, and produce
higher-quality goods. Using a firm-level long-difference specification, we find
that automators see larger increases in outputs, employment of production
workers, export shares, and inferred product quality. Last, we propose a simple
theoretical framework of heterogeneous firms that make decisions to automate
to rationalize our empirical results.
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We offer suggestive evidence on the correlations between automation and
other firm and product-level outcomes. To further establish causality, we
would need to rely on exogenous shocks or policy changes that affect the costs
and benefits of automation. In addition, it would be essential to understand
how automation benefits a firm and to identify barriers to automation. For
example, does automation facilitate the production of high-quality goods? Do
financial constraints prevent a firm from purchasing automation equipment?
We plan to extend our future research along these lines.

Notes
1 In the late 1990s, the textile and apparel industries accounted for about 16% of

the manufacturing value added in Indonesia. This figure dropped to about 7%
during the 2008–2012 sample period.

2 We observe Indonesia's exports and imports of automation equipment from
2000 to 2019, by type and by Harmonized System 6-digit product code,
based on the UN Comtrade WITS database.

3 We define a 'product' as a unique Kode Klasifikasi Industri (KKI) 9-digit code or
a unique textual product description.

4 For all firms that imported automation equipment for at least once during 2008–
2012, about 42% of them have imported in at least two successive years.

5 As the matched samples consist of medium-sized and large manufacturing firms,
the samples may be less subject to entry and exit. However, as we show later,
automators are usually large and productive firms amongst this selective
sample, so we expect that the inclusion of small firms in future studies (if data
are available) would not significantly change the results.

6 Java is one of Indonesia's main islands. It is home to 56% of Indonesia's popula-
tion as well as some of the country's main businesses and a large number of man-
ufacturing firms. Java accounted for 57% of Indonesia's GDP in 2012.

7 Ideally, the automation indicator should also capture firms' purchases of automa-
tion equipment before 2008. Unfortunately, this information is not provided in
our data sets.

8 For example, firms that use imported inputs may have lower production costs and
larger sales and may find it easier to import automation equipment because they
already know how to find suitable suppliers in other countries.

9 Since the decision to automate is endogenous, there is a possibility that Eft corre-
lates with aft due to omitted variables. Therefore, we view our empirical results as
descriptive rather than causal.

10 To obtain a simple measure of TFP, we run the following regression:

lnYft = bK lnKft + bL lnLft + bM lnMft + df + dt + Eft ,

where Yft, Kft, Lft and Mft are the gross output value, capital stock, employ-
ment, and material cost of firm f in year t, respectively. The terms δf and δt
are firm-specific and year-specific fixed effects; Eft is the error term. Measured
TFP in log is thus lnT F̂Pft = lnYft - b̂K lnKft - b̂L lnLft - b̂M lnMft .

11 For example, access to export markets may generate larger sales and raise incen-
tives to automate.

12 The number of observations in Table 9.3 column 4 drops significantly because
around 35% of the observations in the firm–year sample report zero capital stocks.
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13 The number of observations in Table 9.4 column 2 is fewer than in column 1
because some firms in the sample do not report wages or compensation for
non-production workers.

14 Again, the number of observations in Table 9.4 column 4 drops because of
reported zero values in the capital stock variables.

15 For the purposes of this analysis, we define a 'variety' (or a distinct product) based
on whether it has a unique KKI 9-digit code or a unique textual description.

16 Because we subtract industry–year averages when plotting the distributions,
observations with negative values appear in the figures.

17 The numbers of observations are close to those reported in the previous firm-
level regressions for two reasons. First, around 60% of firms in the sample are
single-product firms. Second, not all the products in the sample can be
mapped to an HS code.

18 This is mainly because many firms in the sample report a zero value of their
capital stocks.

19 According to Aswicahyono and Rafitrandi (2020), the stock of operational indus-
trial robots relative to the number of workers is still low in Indonesia compared to
other countries in the Association of Southeast Asian Nations (ASEAN), such as
Singapore, Malaysia, Thailand, and the Philippines.

20 For example, regulating and control instruments can help production workers
become more efficient in identifying and correcting flaws and defects in the pro-
duction process.

21 One can extend along the argument of selection to incorporate other cross-sectional
features in the data. For example, more productive firms pay higher wages, export
more outputs, import more inputs from abroad, and are more likely to automate.

22 The model also explains why the prices of goods produced by automators do not
differ from those of goods produced by non-automators. On the one hand, auto-
mation directly decreases marginal cost given output quality. On the other hand,
by lowering unit cost, automation is also associated with higher quality that
increases marginal cost. The magnitudes of these two opposite effects depend
on the values of model parameters.
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A Model Details

Motivated by the empirical evidence, we develop a theoretical framework to
understand firm-level automation decisions. The model features cost-minimizing
allocation of tasks between labor and automation equipment, heterogeneous firm
productivity, endogenous quality choice, and automation decisions subject to var-
iable benefit and fixed cost. We use this model to derive predictions about the
cross-sectional features of automators.

A.1 Allocation of Tasks between Labor and Automation Equipment

We first describe a framework of task allocation to illustrate how a firm decides to
allocate its production tasks between labor and automation equipment. Follow-
ing Acemoglu and Restrepo (2018) and Koch, Manuylov, and Smolka (2021),
we assume that each firm produces a final good y by combining a continuum
of tasks, m(ν), with a constant elasticity of substitution (CES) technology:

y(φ) = φx
{ 1

0

m(v)r-1
r dv

( ) r
r-1

, (A.1)

where ρ is the elasticity of substitution between tasks and φ is the Hicks-neutral pro-
ductivity, which varies across firms. For an automator, every task can be completed by
labor or automation equipment. For a non-automator, tasks are completed by labor.

For a given firm φ, the unit cost of completing ν using labor is:

cl(v) =
w

zl(v)
,

and the unit cost of completing ν using automation equipment is:

ca(v) =
r

za(v)
,

where w and r are the cost shifters of using labor and automation equipment to
complete tasks, respectively. The terms zl(ν) and za(ν) denote idiosyncratic effi-
ciency shocks of completing task ν using labor and automation equipment,
respectively. These idiosyncratic shocks reflect the idea that it may still be



efficient to complete certain tasks using labor because not all tasks are equally
'automatable'.1 An automator minimizes the cost of completing ν by choosing
between labor and automation equipment:

c(v) = min
w

zl(v)
,

r
za(v)

{ {
. (A.2)

For a non-automator, its unit cost of performing ν is simply w
zl (v).

Following Eaton and Kortum (2002), we assume that zl(ν) for each task is
independently drawn from a Fréchet distribution:

Pr zl(v) < z[ ] = Fl(z) = exp -Tl . z-y
[ ]

, (A.3)

where Tl determines the mean of the efficiency draws and θ governs the disper-
sion of the efficiency draws when labor is used to perform tasks. za(ν) for each
task is also independently drawn from a Fréchet distribution:

Pr za(v) < z[ ] = Fa(z) = exp -Ta . z-y
[ ]

, (A.4)

with Ta determining the mean of the efficiency draws when automation equip-
ment is used to perform tasks. The distribution of cl(ν) and ca(ν) are thus:

Gl(c) = 1- Fl

w
c

( )
= 1- exp - Tl . w-y( )cy[ ]

Ga(c) = 1- Fa

r
c

( )
= 1- exp - Ta . r-y( )cy[ ].

For an automator, the distribution of c(ν) is

G(c) = 1-Ps=l,a 1- GS(c)[ ] = 1- exp - Tl . w-y + Ta . r-y
( .

cy
[ ]

. (A.5)

The probability that the firm uses automation equipment to perform a particular
task ν thus follows:

la = Pr ca v( ) < c1 v( )[ ] =
{ `

0

1- G1 c( )[ ]dGa c( ) = Ta . r-y

Ta . r-y + T1 . w-y
.

(A.6)

λa is also the fraction of tasks that an automator allocates to automation equip-
ment. Therefore, an increase in the overall efficiency of automation equipment,
Ta, leads to an expansion of the share of automated tasks and, therefore, a decline
in the share of tasks performed by labor.

We can also show that, for an automator, the cost distribution of tasks per-
formed by automation equipment and the cost distribution of tasks performed
by labor are both G(c) in the equilibrium. Such a no-arbitrage condition is a
result from the cost minimization of an automator seeking the lowest cost for
each task ν across different options (labor and automation equipment).
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Therefore, the unit cost of an automator φ is:

c(φ, a(φ) = 1) = E c(v)1-r | a(φ) = 1
[ ] 1

1-r

φ
= g0 .

Ta . r-y + Tl . w-y( )-1
y

φ
,

(A.7)

where g0 = G 1- r-1

y

( . 1
1-r is a constant that depends on the value of r-1

y .
2 a(φ) is an

indicator function of whether the firm automates or not. Similarly, the unit cost
of a non-automator φ is:

c(φ, a(φ) = 0) = E c(v)1-r | a(φ) = 0
[ ] 1

1-r

φ
= g0 .

Tl . w-y( )-1
y

φ
. (A.8)

Hence, the purchase of automation equipment allows a firm to source tasks from
a broader choice set, either from automation equipment or labor, depending on
the associated costs. The firm uses automation equipment to complete easily
automated tasks and uses labor to complete less automatable tasks. As a result,
automation decreases a firm's effective production cost.

While automation lowers production costs for a particular firm, it is also costly
because of related purchase, installation, and maintenance costs. We model these
costs of automation as a fixed cost fa. The introduction of the automation-related
fixed cost follows the assumption in Koch, Manuylov and Smolka (2021). More
broadly, our theoretical treatment of the benefits and costs of automation also
resembles Antras, Fort, and Tintelnot (2017), who assume that a fixed cost is
incurred when a firm chooses to include additional supplying countries in its
sourcing strategy. In our setup, automation adoption effectively allows a firm
to expand its sourcing of tasks from only {l} to {l, a}, at the expense of incurring
the additional fixed cost fa.

A.2 Costly Quality Upgrading

A firm φ also decides the quality of its output, z(φ, a(φ)). Increasing product
quality is also costly, and we allow for two types of quality upgrading costs.
First, the variable cost of producing one unit of goods with quality z(φ, a(φ)) is:

c(φ, a(φ)) x z(φ, a(φ))α, α > 0. (A.9)
Higher quality output requires a higher marginal cost of production. Parameter α
governs the rate at which the marginal cost of production increases with output
quality. This is a standard assumption used in studies about product quality, e.g.,
Khandelwal (2010); Kugler and Verhoogen (2012).

Second, there is another fixed cost associated with quality investment:

z(φ, a(φ))x, x > 1. (A.10)
The fixed cost of quality investment is assumed to be increasing in quality. We
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use ξ > 1 to capture the diminishing returns to quality investment. A similar
assumption about the fixed cost of quality upgrading is also used by Fan, Li,
and Yeaple (2015). As will become evident later, the fixed cost of quality invest-
ments gives rise to economies of scale related to quality upgrading, so the firm-
level quality choice will also interact with the decision to automate.

A.3 Firm-level Pricing, Sales, and Profit

Next, we discuss how firms make decisions about automation and product
quality. Firms produce and supply differentiated goods to their customers. The
preference of a representative customer follows a CES form:

u =
{
oEO

q(o) . z(o)Z[ ]s-1
s do

( ) s
s-1

, s > 1, Z > 0. (A.11)

where q(ω) is the quantity of variety ω consumed, z(ω) is the quality of the
variety, σ is the elasticity of substitution between different varieties, and η
governs customer's preference for quality relative to quantity. The budget con-
straint of the customer is:{

oEO
p(o) . q(o)do < X ,

where X is the total expenditure. The demand function of each variety ω is thus:

q(o) = z(o)Z(s-1) . p(o)-s . Ps-1 .X . (A.12)

The CES quality-adjusted price index P aggregates all active varieties in the
market. Conditional on price p(ω), higher quality z(ω) increases the demand
for a particular variety ω.

Each firm produces one variety, so we index variety ω using productivity φ.
The market is monopolistically competitive. Given quality z and market-level
aggregates P and X, a firm's optimal price is

p(φ, a(φ)) = s
s- 1

. c(φ, a(φ)) . z(φ, a(φ))α

It follows that firm-level sales x(φ, a(φ)) and profit π(φ, a(φ)) are:

x(φ, a(φ)) = s
s- 1

. c(φ, a(φ)) . z(φ, a(φ))α-Z
( )1-s

Ps-1X

p(φ, a(φ)) = x(φ, a(φ))
s

- z(φ, a(φ))x.
(A.13)

Next, we solve for the optimal quality level z(φ, a(φ)) given a firm's productivity
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φ and automation adoption decision a(φ). The maximization problem is

max
z(φ,a(φ))

1

s
s

s- 1
c(φ, a(φ))z(φ, a(φ))α-Z

( )1-s

Ps-1X - z(φ, a(φ))x.

The optimal quality choice is therefore:

z(φ, a(φ)) = g1
Ps-1X

c(φ, a(φ))s-1

" # 1
-z-(Z-α)(s-1)

, (A.14)

where g1 = Z-α
x

s-1
s

( .s] ] 1
z-(Z-α)(s-1)

. We can further calculate the price of φ given its

automation decision a(φ):

p(φ, a(φ)) = gα1 .
s

s- 1
. c(φ, a(φ))z

-z-Z(s-1)
z-α)(s-1) . Ps-1X( ) α

z-(Z-α)(s-1). (A.15)

Sales and profit for firm φ given its automation decision a(φ), are:

x(φ, a(φ)) = zts
(Z- α)(s- 1) z(φ, a(φ))

xp(φ, a(φ))

= zx

(Z- α)(s- 1) - 1

[ ]
z(φ, a(φ))x. (A.16)

We impose ξ > (η − α)(σ − 1) to ensure that firms earn non-negative profits.
Under this parameter assumption, lower production cost, higher price index,
and higher demand all lead a firm to choose higher quality, resulting in higher
sales and profits.

A.4 Automation Decisions and Firm-Level Outcomes

We now discuss the automation decision. It entails solving the cut–off productiv-
ity, φ*

a, at which a firm is indifferent between automation and no automation:

p φ*
a, a φ*

a

( . = 0
( . = p φ*

a, a φ*
a

( . = 1
( .- fa.

We can therefore solve φ*
a:

φ*
a =

g2 . f
x-(Z-a)(s-1)

(s-1)x
a

P .X 1
s-1

( .[ Ta . r-y + Tl . w-y( ) (s-1)x
y[x-(Z-α)(s-1)] - (Tl . w-0) (s-1)x

y[x-(Z-α)(s-1)]]x-(Z-α)(s-1)
(s-1)x

.

(A.17)

where g2 = g0g
(Z-α)(s-1)-x

s-1
1

x
(Z-α)(s-1) - 1
] ](Z-α)(s-1)-x

(s-1)x
is a constant term. The numerator of

the right-hand side of (A.17) represents the incremental cost of purchasing auto-
mation equipment for a given firm φ, while the denominator multiplied by φ is
the incremental profit of purchasing automation equipment for that firm. Thus,
only firms with φ > φ*

a have higher incremental profit than the cost of
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automation, and will therefore choose a(φ) = 1. The automation decision rule is
described in Proposition 1.

Proposition 1. Firms with φ > φ*
a purchase automation equipment. Firms with

φ < φ*
a do not purchase automation equipment. The term φ*

a is defined by (A.17).
As long as automation features economies of scale, there is selection or sorting

into automation. Only firms with sufficiently high productivity will find it sensi-
ble to purchase automation equipment because they can take advantage of the
resulting reduction in production cost to spread their fixed costs fa across a
greater volume of output. Meanwhile, firms that automate also exhibit higher
product quality, larger sales, and higher profit. These 'automation premiums'
reflect two factors. First, automators are more productive than non-automators,
as shown by Proposition 1. Second, automation leads to a lower production cost
(c(φ, a(φ) = 1) < c(φ, a(φ) = 0)).

Intuitively, a higher fixed cost of automation fa increases the cut–off φ*
a. A larger

market size X increases aggregate demand and therefore lowers barriers to auto-
mation. Finally, a better automation technology (higher Ta or lower r) leads to a
higher marginal benefit of automation and, therefore, increased automation.

Proposition 2 describes the differences between automators and non-
automators in various firm-level outcomes.

Proposition 2. Compare an automator (a(φ) = 1) to a non–automator (a(φ'
) =

0) where both face the same P and X. The differences in production cost, quality,
price, and sales are (note that φ > φ

' according to Proposition 1):

c(φ, a(φ) = 1)
c φ', a φ'( ) = 0( ) =

φ'

φ
. Ta . r-y + Tl . w-y( )-1

y

Tl . w-y( )-1
y

= φ'

φ
1- la( )1y < 1

z(φ, a(φ) = 1)
z φ', a φ'( ) = 0( ) =

c(φ, a(φ) = 1)
c φ', a φ'( ) = 0( )

( ) 1-s
-x-(Z-α)(s-1)

> 1

p(φ, a(φ) = 1)
p φ', a φ'( ) = 0( ) =

c(φ, a(φ) = 1)
c φ', a φ'( ) = 0( )

( ) x-Z(s-1)
x-(Z-α)(s-1)

x(φ, a(φ) = 1)
x(φ, a(φ) = 0) =

z(φ, a(φ) = 1)
z(φ, a(φ) = 0)

( )x

> 1.

(A.18)

The difference in total labor compensation is

W (φ, a(φ) = 1)
W φ', a φ'( ) = 0( ) =

x(φ, a(φ) = 1)
x φ', a φ'( ) = 0( ) . 1- la( )

= φ'

φ

( ) x(1-s)
z-(Z-α)(s-1)

1- la( )1-s
y

x
z-(Z-α)(s-1)+1

. (A.19)

Recall that la = Ta .r-y

Ta .r-y+Tl .w-y is the fraction of tasks performed by automation
equipment in an automator. Proposition 2 shows that automation is associated
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with decreased unit production costs, increased product quality, and increased
sales. The correlations between automation and total labor compensation,
however, are ambiguous: while size effect x(φ,a(φ)=1)

x φ' ,a φ'( )=0( ) tends to raise payments
to labor by increasing sales; substitution effect 1 − λa tends to depress the
share of revenue allocated to labor. Thus, the net effects depend on the param-
eter values. Likewise, the correlations between automation and product
prices are also ambiguous. On the one hand, automation decreases marginal
production costs, given a certain level of output quality. On the other hand,
by lowering the unit production cost, automation is also associated with
quality upgrading that increases the marginal cost. The net effects depend on
whether ξ > η(σ − 1).

Notes
1 For example, it may be easier to automate the process of assembling parts and

components to make a product, but not the design process used to create the
product.

2 G(.) is the Gamma function. Specifically, G(z) =
{ `

0

xz-1exp(-x)dx, in which z is

a constant.
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10 AI, Trade, and Creative
Destruction: A First Look

Ruiqi Sun and Daniel Trefler

The transformative potential of artificial intelligence (AI) is apparent from our
daily use of smartphones. We log in using AI-enabled facial recognition, issue
commands with AI-enabled speech recognition, conduct AI-enabled internet
searches, buy from stores pushing AI-enabled recommendations, and receive
goods shipped with AI-enabled logistics systems. Not only has AI enabled the
creation of new services, it has improved on existing services and disrupted
older services in a familiar process of creative destruction (Schumpeter, 1942).
All of these changes can be seen in the palm of our hand and are meticulously
tracked by corporations. This chapter uses big data on international App down-
loads and AI patents to track how AI is changing the pattern of trade in services,
the variety of services available in each country, and the process of creative
destruction.

The early hype about AI has given way to more sober analysis showing that to
date AI has had limited effects on tasks (Brynjolfsson, Mitchell, and Rock, 2018),
employment, and wages (Acemoglu, Autor, Hazell, and Restrepo, 2020). Less is
known about AI's impact on international trade either theoretically or empiri-
cally. In this chapter we explore that impact on (a) bilateral trade flows, (b)
the variety of goods imported, and (c) the creation and destruction of varieties.
The impact of AI on trade flows is of great interest, but ultimately we care about
welfare. We thus also calculate the welfare effects due to AI-induced changes in
the availability of varieties to consumers.

There is good reason to expect all three of the previous impacts. (a) For bilat-
eral trade flows, McKinsey Global Institute (2019) predicts that AI will reduce
outsourced business process and IT services. It will also reduce goods trade by
facilitating additive manufacturing that moves production to the point of con-
sumption. McKinsey predicts that together these developments will reduce
trade by a trillion dollars. Of course, this reduction in trade tells us nothing
about AI's impact on welfare. Indeed, in McKinsey's scenario, trade volumes
and welfare likely move in opposite directions. (b) For product variety, AI
leads both to new services (horizontal differentiation) and to improvements on
existing services (vertical differentiation). These are known to affect the pattern
of trade and the welfare gains from trade, usually in positive ways. See
Krugman (1979), Helpman (1981), Feenstra (1994, 2010), Melitz (2003),

DOI: 10.4324/9781003275534-10

https://doi.org/10.4324/9781003275534-10


Broda and Weinstein (2006), and Hsieh, Li, Ossa, and Yang (2020) for analysis
of horizontal differentiation. (c) For creative destruction, AI's impact on vertical
differentiation disrupts and displaces existing services. On this process of creative
destruction through endogenous innovation see Aghion and Howitt (1992) and
Akcigit and Kerr (2018) for closed-economy models and Grossman and
Helpman (1991a,b) for both closed- and open-economy models.

Despite intense public interest in AI, research on the impacts of AI on trade,
product variety and creative destruction is almost nonexistent. Goldfarb and
Trefler (2019a) review the theoretical issues for international trade raised by
AI. They argue that key features of AI are scale, local knowledge diffusion,
and the degree of international knowledge diffusion. Scale and local knowledge
diffusion/externalities have implications for trade flows that have long been
understood in the economic geography literature. As well, the degree of local
versus international diffusion is central to the endogenous growth literature
e.g., Rivera-Batiz and Romer (1991), Grossman and Helpman (1991b) and
Irwin and Klenow (1994). Goldfarb and Trefler (2019a,b) also argue that AI
affects trade costs in complex ways. For example, privacy concerns create addi-
tional trade costs not usually considered by international trade economists.
Further, interstate competition can create national regulatory responses best
characterized as a privacy race to the bottom. Royal Society-National Academy
of Sciences (2019) summarizes the proceedings of a Washington D.C. sympo-
sium on international harmonization of AI regulations, including a summary
of Goldfarb's and Trefler's views.

The only empirical paper directly on AI and trade is by Brynjolfsson, Hui, and
Liu (2019). They show that eBay's introduction of a machine translation system
increased its exports by 17.5%. This is the opposite of McKinsey Global Insti-
tute's (2019) speculations. Our work is closely related to Brynjolfsson et al.
The advantage of their approach is that it carefully identifies the exact AI
(machine translation) and the exact mechanism for eBay. In contrast, we will
work with a wide set of AIs, companies, and services. This allows us to employ
the standard gravity equation for examining impacts on trade as well as
product variety and creative destruction.

There are other more distantly related papers. Beraja, Yang, and Yuchtman
(2020) show how Chinese government security contracts for facial recognition
software provided confidential security data to Chinese firms, data that improved
these firms' products. By implication, the paper shows how government subsidies
in the AI sphere can improve competitiveness. More tangential to our interests
here, Bailey, Gupta, Hillenbrand, Kuchler, Richmond, and Stroebel (2020)
use Facebook data to construct bilateral social connections between countries
and show that these are a more powerful determinant of bilateral trade flows
in goods than are traditional determinants such as distance and borders.
Though tangential to our main results, we include their bilateral social connec-
tions measure and find that it impacts App-based service trade as well.1

This review, even if missing some citations from the rapidly growing AI litera-
ture, clearly demonstrates that the literature on AI and trade is very small. This is
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in part because trade in AI-enabled services is hard to document. At the core of
this chapter is the observation that there is actually a vast amount of data available.

Motivated by the tremendous amount of AI that underlies our smartphone
Apps, this chapter is about international trade in mobile App services as well as
its implication for product variety and creative destruction. The core of our
analysis is based on two types of data. The first is data from a private data pro-
vider (SensorTower) on the number of mobile App downloads by App, by pro-
ducer country, and by user country for the period 2014–2020. The second
data source is Bureau van Dijk's Orbis Intellectual Property patent database.
We adopt the methodology behind the WIPO PATENTSCOPE Artificial
Intelligence Index to determine whether or not a patent in Orbis is an AI
patent. We review this complex methodology in Section 2.3. A difficult part
of building our database is merging the App and patent databases. Each app
in the SensorTower data is identified with an ultimate owner. For example,
Alphabet owns Google Chrome, Nest Home, YouTube, Waze, and Fitbit.
We then match ultimate owners with those in Orbis. We do the match by
hand for the 834 ultimate owners with the most downloads globally. We
show in the following that the Apps and ultimate owners excluded from our
analysis are mostly small and obscure.

We use information about each ultimate owner's Apps, AI patents, and assets to
develop a measure of 'App-deployment' by year, exporter, and App category. App
categories are defined as follows. The Apple App Store places Apps into 19 App
groups (e.g., social networking, productivity). We further refine each group by
19 2-digit NACE industries (e.g., mining, finance). We refer to this cross of
groups × industries as 'App categories'. There are 292 categories. Aggregating
up from Apps and ultimate owners, we compute AI patent counts by category ×
exporter × year bins. This is our novel measure of AI deployment by category ×
exporter × year bins. (We scale this measure by the value of assets held by firms
in the bin; however, our results are not sensitive to this scaling.)

We can summarize our database handily by comparing it to COMTRADE, the
standard international trade database used for gravity estimation. We have 53
exporters, 84 importers, seven years (2014–2020), and 292 App categories
(App categories are like HS2 or HS4 codes in COMTRADE). Further, many
studies of creative destruction and changes in the number of traded varieties
(e.g., Broda and Weinstein, 2006) define varieties as US HS10 product lines.
There are roughly 20,000 HS10 codes/varieties. In contrast, we have 82,850
Apps/varieties.

Our main results flow from regressions of various outcomes on our AI deploy-
ment measure. An obvious concern is the endogeneity of AI deployment. We
therefore need an instrument that captures exogenous shocks to the cost of
deployment. Heckscher-Ohlin theory provides one. A country with deep AI
expertise will have cheap and ready access to the inputs used in deploying AI,
which in turn provides a cost advantage that is especially pronounced in App cat-
egories that use these inputs intensively. We therefore instrument App deploy-
ment with the interaction of (1) a country's AI expertise as measured by its AI
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research output and (2) an App category's AI intensity. This serves as an exog-
enous shifter of the costs of AI deployment.2

We have three main IV findings. All of them exploit within-App-category
variation.

1. Bilateral Trade: We estimate a gravity model of App downloads whose
dimensions are importer-exporter dyads, App categories, and years. Using
IV, we find that AI deployment causes a sixfold increase in App downloads.

Beyond the Brynjolfsson et al. study of eBay's use of machine translation, this
is the first and most systematic evidence of the impact of AI on trade.

2. Varieties: AI deployment doubles the number of bilaterally traded Apps/
varieties.

3. Creative Destruction and Welfare:
(a) Entry and Exit: AI deployment causes high levels of entry into and exit

out of the Apps/varieties available in the importer country. That is, it
causes creative destruction.

(b) Welfare: We calculate the welfare implications of entry and exit using
Feenstra's (1994, 2010) technique. We find that in 2020, welfare
from Apps was 2.5% higher than it would have been under the counter-
factual of no AI deployment. Both are large numbers and the range
depends on whether the elasticity of substitution between Apps is
high (5) or low (2). An important caveat is that in the Feenstra
formula we use download shares rather than expenditure shares.

These three results demonstrate that AI deployment in the mobile App space has
already had tangible effects on trade, product variety, creative destruction, and
welfare.

One might wonder whether our conclusions are the result of a spurious cor-
relation between AI patenting and other unobservables. To examine this, we
consider non-AI patents and find that their effects are modest and their inclusion
in the analysis does not affect our results.

Section 1 provides background on mobile Apps and AI. Section 2 describes the
database. Section 3 uses bilateral gravity equations to estimate the impact of AI
deployment on trade. Section 4 estimates the impact of AI deployment on the
extensive margin, that is, on the number of Apps/varieties. Section 5 examines
the impact of AI deployment on entry, exit, creative destruction and welfare.

1 A Brief Overview of Apps and AI

As wireless internet technology and personal portable devices have come down in
cost and risen in accessibility, mobile applications have become a fixture of daily
life. In 2020, the number of mobile internet users hit 4.3 billion globally or 92%
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of all internet users.3 Each and every day we use mobile applications to read our
mail, browse the internet, post to our social network, shop, bank, take photos,
play games, watch videos, and more. The mobile application industry has been
fast-growing and will continue to expand at a significant pace. It currently gen-
erates upwards of $700 billion in revenues and is growing rapidly.4

The biggest two application marketplaces, App Store (for iOS) and Google
Play (for Android), launched in 2008 alongside the release of the first smart-
phones (iPhone 3G and T-mobile G1). At the time, these two application mar-
ketplaces had about 500 Apps. Today the App Store has 1.82 billion Apps and
Google Play has 2.8 billion Apps.

Turning from Apps to AI, Agrawal, Gans, and Goldfarb (2018) define AI as a
collection of complementary technologies involving algorithms, data, and com-
puting power that allow predictive programs to automatically improve their per-
formance through experience. The authors date the commercial introduction of
AI to 2012. Since then, some of the companies that have pushed the frontiers of
AI have grown to be among the biggest in the world. Table 10.1 lists the eight
largest companies in the world by market capitalization. Column 2 is 2020
market capitalization in millions USD. Every one of these companies uses AI
to improve its services and expand its service offerings. One, albeit limited, indi-
cation of this is the number of AI patents held by these companies. These com-
panies have a large number of such patents. (We do not have data for Tesla,
which is not in our dataset.)

Table 10.1 The World's Largest Companies: AI, Growth, Location, and
Internationalization

Total Downloads

Company

Market
Cap
($B)

AI
Patents

2011
Rank Nationality

Worldwide
(millions)

Foreign
Share

(1) (2) (3) (4) (5) (6) (7)

1. Apple $2,254 1,071 3 USA 151 76%
2. Microsoft $1,682 7,088 10 USA 4,023 81%
3. Amazon $1,634 509 77 USA 3,015 69%
4. Alphabet $1,185 5,675 28 USA 16,155 81%
5. Facebook $777 1,243 <500 USA 21,913 91%
6. Tencent $683 2,930 178 China 7,160 22%
7. Tesla $668 - <500 USA - -
8. Alibaba $629 1,767 <500 China 5,065 52%

Notes: Data for 2011 and 2020 are as of December 31. See https://en.wikipedia.org/wiki/
List_of_public_corporations_by_market_capitalization#2020. Market capitalization is in millions
USD. 2011 ranks are from the Financial Times FT500 as of March 31, 2011 (http://media.ft.
com/cms/33558890-98d4-11e0-bd66-00144feab49a.pdf). AI patents are computed by the
authors as described in the following. '<500' means the company is not on the list. Data on
Tesla's AI patents are not part of our database, but the company is at the frontier of AI
algorithms for autonomous vehicles. Google Play is not available in China, so Android App
downloads in China are imputed in this table. We estimate China's total downloads as China's
iOS downloads divided by the market share of Apple devices in China (21.8% in 2020).
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Two things stand out in the table. For one, with the exception of Apple and
Microsoft, these companies had relatively little presence in the 2011 list of the
largest companies in the world. Indeed, Facebook, Tesla and Alibaba were not
even in the top 500. This illustrates just how dynamic these companies are
and, by implication, how dynamic are the effects of AI likely to be. For
another, all of these companies are based either in the United States or China.
This has led Kai-Fu (2018), former CEO of Google China, to argue that in
the future these two countries will produce all AI-enabled services, and the
rest of the world will be stuck paying hefty royalties. This potentially has dramatic
implications for the pattern of international service trade flows.

Table 10.1 makes two other points about these companies. Column 6 shows
that these firms all have heavily downloaded Apps, an average of 8 billion per
firm. Column 7 shows that these Apps are heavily downloaded internationally.
On average, 61% of these firms' downloads are done outside of the firms'
home countries. This fact is not unique to our top-tier companies: The
median value of foreign download shares is 64% in our sample of 834 firms.
This is quite remarkable compared to the goods economy where all but a few
of the largest multinationals earn most of their revenue in their home markets.
Thus, App services are much more internationalized than say manufacturing.
Interestingly, the Chinese companies in one table are much less internationalized
than their US counterparts.

2 The Data

2.1 Mobile Application Data

Our primary database is the App download data purchased from SensorTower.
SensorTower is the largest and most reliable company providing App-level meta-
data. The data track App-level downloads by user country from 2014 to 2020 for
the Apps available in the Apple App Store and Google Play, which are the biggest
application marketplaces for the iOS and Android operating systems.5 Each App
in the Apple App Store and Google Play has a unique, time-invariant product ID
and is accompanied by the name of the developer, the name of the selling pub-
lisher (App terminology for 'firm'), and the selling publisher's website. Sensor-
Tower consolidates App IDs to deal with the fact that an App may have
different IDs in different countries, e.g., TikTok in the US and Douyin in
China. We use consolidated IDs to avoid overstating the number of Apps. Sen-
sorTower also creates a 'unified' firm name that keeps track of the fact that pub-
lishers often have different names in different countries and sometimes have
different names across wholly owned subsidiaries. We use the unified firm
name to link with patent and financial data.

The App Store and Google Play place Apps into groups.6 These are displayed
in Table 10.2 along with the top-3 Apps in the group. For each App, the table
also shows the company and its headquarters country. Most of the top Apps are
owned by large digital platforms located in the US and China.
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Table 10.2 App Categories

Group AI
Patents

Single-
category AI
Patents

Top 3 Apps by Download in 2020

Games 5,560 1,270 Garena Free Fire (Garena, Singapore),
PUBG MOBILE (PUBG,
Singapore), Subway Surfers (Sybo
Game, Denmark)

Photo and Video 4,357 295 Instagram (Facebook, US), Snapchat
(Snap, US), Likee (Bigo, US)

Utilities 14,193 632 UC-broswer (Alibaba, China),
Truecaller (True Software,
Sweden), Chrome (Google, US)

Social
Networking

1,448 16 Whatsapp (Facebook, US), Facebook
(Facebook, US), Messenger
(Facebook, US)

Entertainment 6,417 307 TikTok (ByteDance, China), Netflix
(Netflix, US), Youtube (Google,
US)

Shopping 3,442 412 Amazon (Amazon, US), Wish
(ContextLogic, US), Shopee
(Shopee, Singapore)

Music 1,601 528 Spotify (Spotify, Sweden), Youtube
Music (Google, US), Shazam
(Apple, US)

Finance 11,791 2,608 Google Pay (Google, US), Paypal
(Paypal, US), Caixa Tern (Caixa
Economica Federal, Brazil)

Education 13 12 Google Classroom (Google, US),
YouTube Kids (Google, US),
Duolingo (Duolingo, US)

Productivity 7,621 59 Shareit (SHAREit, China), Gmail
(Google, US), Microsoft Word
(Microsoft), Word (Microsoft, US)

Business 3,225 2,861 Zoom (Zoom, US), Google Meet
(Google, US), Microsoft Team
(Microsoft, US)

Lifestyle 20,133 2,871 Pinterest (Pinterest, US), Tinder
(IAC, US), Airtel Thanks (Bharti
Airtel, Indian)

Sports, Health,
and Fitness

1,608 1,569 Aarogya Setu (NIC, India), Home
Workout (ABISHKKING,
Singapore), Mi Fit (Xiaomi, China)

Books, News, and
References

183 175 Wattpad (Wattpad, Canada), Amazon
Kindle (Amazon, US), Audible
(Audible, US)

Travel 1,892 160 Uber (Uber, US), Google Earth
(Google, US), Booking.com
(Booking.com, Netherlands)

Food and Drink 52 22

(Continued)
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One obvious issue with groups is that they are not fine enough to be useful.
For example, the 'Utilities' group includes Google's Chrome and Toyota's
DV, an application for real-time video display. To deal with this we interact
the 19 App groups with the 19 2-digit NACE industries to define 292 App cat-
egories at the level of App group × NACE industry.7

There are billions of Apps in the App Store and Google Play, many of which
have no downloads or just one or two. It is not computationally feasible to deal
with terabytes of such data. We therefore initially restrict the sample by selecting
the 1,000 most downloaded unified firms. Over our 2014–2020 sample period
these unified firms had 223 billion downloads of 82,850 Apps.

We are using download data whereas revenue data would be better. To show
that the two are correlated, we divide our Table 10.3 subsample into two bins,

Table 10.2 (Continued)

Group AI
Patents

Single-
category AI
Patents

Top 3 Apps by Download in 2020

McDonald's (McDonald's, US), Uber
Eat (Uber, US), Domino's Pizza
(Domino's Pizza, US)

Navigation 6,991 4,041 Google Map (Google, US), Waze
(Google, US), Gaode Map
(Alibaba, China)

Weather 12,280 10,747 Whether&Radio (WetterOnline,
German), The Weather Channel
(IBM, US), Whether Forcast
(Smart-Pro, Indian)

Medical 303 251 NHS COVID-19(GOV, UK),
COCOA(GOV, Japan), Pregnancy
+ (Health&Parenting, UK)

Total 103,110 28,836

Notes: Groups are ordered by downloads with the most downloaded group on top. Some firms
have patents in multiple categories. Since we cannot assign all patents to groups (see Table 10.3)
and since we want to avoid double counting patents in the “AI Patents” column, we assign all of
a firm's patents to its largest (most downloaded) group. We do this for this table only.

Table 10.3 Summary Statistics of Downloads: Full Sample and Subsample

Percentiles

Sample N Mean Std. Dev. 10th 50th 90th

Full Sample 78,042,301 7,819 231,443 2 35 3,514
Subsample 4,733,652 47,204 841,535 2 107 22,496

This table reports statistics on the number of Apps and their downloads. An observation refers to
a unique App × importer × year triplet where importer is the country downloading the App.N is
the number of observations. The columns report moments of the distribution of downloads
across App-importer-year observations.
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one for Apps with revenues and one for Apps without revenues. In Figure 10.1
we plot the kernels of log downloads separately for the two bins. The kernel for
revenue-generating App downloads is substantially right-shifted relative to the
kernel for free App downloads. This illustrates that more-downloaded Apps
tend to be revenue-generating Apps.

2.2 Linkage to Patent and Financial Data

Our core analysis is about the impact of AI on a variety of trade and welfare out-
comes. We will be measuring AI using patent data. We use SensorTower's
unified firm names to link with the Bureau Van Dijk Orbis Intellectual Property
database. This provides us with patent and financial data. We were unable to reliably
match firm names across the two data sets using machine learning tools. We there-
fore select the largest 1,000 unified firms in the world (as measured by global down-
loads) and then find by hand their global ultimate owners in the Orbis database. We
match 834 of the 1,000 firms. Unlike many studies, there is no linkage error here.8

To investigate the representativeness of our sample we also looked at the
100,000 unified firms with the most downloads—these are not matched to
patent and financial data—and call this the 'full sample'. Table 10.3 displays
summary statistics for the full sample and our subsample.9 Two things stand
out. First, our sample is skewed towards unified firms with large downloads
(see the 90th percentile column). Second, both samples have 10th percentile
downloads that equal 2 so that our sample differs from the full sample primarily
in dropping Apps with extremely small download numbers.

This vividly illustrates that our sample selection criteria do not drop any major
apps or firms. One would be hard pressed to recognize any of the Apps excluded
from our analysis. The highest-ranked App excluded from our data is slither.io,

Figure 10.1 Distributions of log Downloads: Free vs. For-Pay Apps
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an obscure action game from Kooapps. The highest-ranked firm not in our data
is SayGames, an obscure game startup from Belarus whose most popular App is
Twist Hit!. In short, we do not think that our subsample excludes any important
Apps or that conclusions drawn from it are biased for our set of questions.

2.3 AI Patent Data

To estimate the impact of AI on trade and welfare we need to be precise about
what we mean by AI and how we measure it. We use AI-related patents as the
basis of our measure. From the Orbis data we know the 10,144,089 patents
assigned to our 834 firms. We categorize each of these patents as AI or non-
AI patents following the WIPO (2018, 2019) methodology. For each patent
we check if it meets one of three criteria.

1. The main and/or minor CPC codes are on a list of CPC codes that WIPO
uses to identify specific AI technologies. For example, CPC subclass G10L-
015 is speech recognition.

2. The title and/or abstract contains a phrase that is on a keyword list that
WIPO uses to identify specific AI technologies. The list includes phrases
such as 'machine learning' and 'neural network' along with extensions of
these phrases such as 'neural networks' and 'neural-network'.

3. Some patents are about AI, but not about a specific AI technology. Here
WIPO combines a CPC code with a keyword to identify an AI patent.
For example, GTL-013is speech synthesis (text to speech), which may or
may not involve AI. However, if a patent in CPC subclass GTL-013 has a
title or abstract with keywords such as 'backpropagation' or 'self learning'
then WIPO identifies it as an AI patent.

Table 10.4 gives examples of AI patents identified through each of the previous three
methods. We have duplicated the WIPO methodology with one exception. Their
keyword search is over the English title, English abstract, English claims, and English
object of invention. Our keyword search is over the English title and English abstract.

Our procedure identifies 103,110 patents as AI patents and the remaining
10,038,168 patents as non-AI patents. Column 2 of Table 10.2 displays the
number of AI patents by App group. Among the 834 firms, 309 firms own at
least one AI patent. Finally, our AI patents grow rapidly from 1990 to 2020.

When we speak of a firm's AI patents in year t we will mean its cumulative AI
patent applications from 1990 to year t. That is, our AI patents are a stock of
patent applications. Using applications rather than grants avoids the worst of
the right-truncation problem associated with delays in granting patents.

2.4 AI Deployment in Apps

We require a measure of the AI deployed in each App category. If each firm's
Apps were in a single App category this would be an easy matter of counting
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Table 10.4 Examples for AI Patents

Current
Onwner Patent Number

CPC
Classification
Criterion Specific AI Technology Keywords Portion of Abstract

Method 1: Patent Class
Facebook US20190012697A1 G06Q30/0242 G06Q - Data processing sustems;

30 - Commerce; 0242 -
Determination of
advertisement effectiveness

N/A A client relationship management
(CRM) application can generate a
ranked list of client engagement
tools by computing a rank score
for available client engagement
tools and determining an order
among the available client
engagement tools based on the
rank scores. The CRM application
can use one or more trained
prediction models and business
rules to compute a prediction for
success for client engagement
tools.

Method 2: Keywords
Microsoft EP3424044A1 N/A N/A deep

learning
The technology described herein

uses a modular model to process
speech. A deep learning based
acoustic model comprises a stack
of different types of neural
network layers.

(Continued)
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Table 10.4 (Continued)

Current
Onwner Patent Number

CPC
Classification
Criterion Specific AI Technology Keywords Portion of Abstract

Method 3: Patent Class phis Keywords
Microsoft KR1020130110565A G06Q10/109 G06N - Computer sustems based

on specific computational
models; 10 - Administration;
Management; 109 - Time
management

predictive
models

The present invention relates to a
system and methodology to
facilitate collaboration and
communications between entities
such as between automated
applications, parties to a
communication and/or
combinations thereof. The
systems and methods of the
present invention include a service
that supports collaboration and
communication by learning
predictive models that provide
forecasts of one or more aspects of
a users' presence and availability.
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the AI patents of all firms producing Apps in the category. Unfortunately, a large
number of firms (ultimate owners) have Apps in multiple categories. For
example, the ultimate owner Alphabet controls Google, Nest, YouTube,
Waze, and Fitbit, all of which operate in different App categories. We therefore
purify our measure of the AI deployed in App categories by adapting to our
setting the approach of De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016). In estimating production-function parameters they only include
single-product firms. We define a single-category firm as a firm whose primary
category accounts for over 85% of its total downloads.10 Column 3 of Table
10.2 shows the AI patents owned by single-category firms. There are 28,836
such patents and they account for a substantial 28% of all AI patents in our
sample. There are 549 single-category firms (including some with zero
patents) among the 834 firms in our sample. Together they account for 42%
of all downloads in our sample.

We construct our measure of the AI deployment of an App category only from
the patents of single-category firms. Let Patentcxt and Kcxt be AI patent applica-
tion stocks and total assets summed across all single-category firms in country x
in year t that produce Apps only in category c. AIcxt = Patentcxt/Kcxt will be our
key measure of AI deployment.11

It is of independent interest to know about the AI patents of multi-category
firms. In every specification reported later we have also examined the same speci-
fication but with the addition of a variable that captures the AI deployment of
multi-category firms. To this end, we define multipleAIcxt as the total AI
patent application stocks over total assets for multi-category firms from country
x with Apps in category c in year t.12 To control for the general effects of patent-
ing, we also construct nonAIcxt as the total non-AI patent application stocks over
total assets for all firms in category c, country x and year t. In our regressions,
adding these two variables never affects the magnitude or statistical significance
of the coefficients on our AI deployment variable AIcxt.

2.5 Summary Statistics

Table 10.5 reports summary statistics of our data. Each observation is uniquely
identified by an App category (292), an exporter (53), an importer (84) and a
year (2014–2020). We have 469,879 observations with positive levels of down-
loads. There are several points to note about the sample size. First, we do not
work at the firm level and this requires an explanation. We do not know
whether any given App uses AI so we cannot work at the level of a firm's
Apps. What we do know is the extent to which AI is deployed in an App category
in an exporter country. So we must aggregate up from firms to App-categories
and exporters. Second, we exclude zero downloads, but return to this later
using PPML. Third, Google Play is banned in China, so we only have Apple
App Store data for Chinese downloads. We thus exclude observations for
which China is the importer. Note however that we keep China as an exporter
and that including China as an importer makes no difference to our results.
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Table 10.5 reports the dimensions of each variable. These are App category c,
importer m, exporter x, and year t. We winsorize the top 1% of observations for
the download and patent variables. From the first line of the table, the mean
downloads of a cmxt observation is 633 ( = e6.45), the mean number of Apps
is 2.85 ( = e1.05), and the mean downloads per App is 221 ( = e5.40). The
latter illustrates that when we report results within App category, the analysis
is at a very fine level.

3 AI and Trade: Bilateral Gravity

We estimate the following gravity equation:

ln (ycmxt) = b ln (1+AIcxt) + yXcmxt + αmxt + αcm + εcmxt ; . (1)
In this regression ycmxt is downloads by consumers in country m of Apps in
category c produced by firms headquartered in country x. We are interested in
international trade in this section so we exclude domestic observations, i.e.,
observations for which the importer is the exporter. Including these observations
does not affect our conclusions. Since we only include non-zero trade flows, ycmxt

> 1. Our key independent variable is ln(1+ AIcxt) and our hypothesis is that AI
deployment increases trade (β > 0). Xcmxt is a set of gravity variables. αmxt and αcm
are the fixed effects. The only other fixed effect that we can add while still iden-
tifying β is αcx. Adding these weakens our results because ln(1+ AIcxt) has rela-
tively limited variation across time. Aside from this, our results are not at all
sensitive to the choice of fixed effects.

Table 10.6 reports the OLS results. In column 1, we examine whether stan-
dard gravity covariates from CEPII behave the same way for App trade as they
do for goods trade.13 To this end we consider the full sample, that is, before
restricting it by linking to Orbis data. (See Section 2.2.) We include an importer
fixed effect, an exporter fixed effect, a year fixed effect and a category fixed effect.
Log distance between m and x matters but is much smaller than the median

Table 10.5 Summary Statistics

N Mean sd

App Downloads:
Total downloads: ln(ycmxt) 469,879 6.45 3.95
Number of Apps: ln(Ncmxt) 469,879 1.05 1.19
Average downloads: ln(-y-cmxt) 469,879 5.40
Patent Variables:
AI Patents: ln(1+ AIcxt) 469,879 0.13 0.60
AI Multiple: ln(1+ multipleAIcxt) 469,879 0.60 0.90
Non-AI patents: ln(1+ nonAIcxt) 469,879 2.96 2.78

Notes: The table presents summary statistics of variables used in the gravity equations of Section
3. Each of the 469,879 observations is uniquely identified by an App category c, a downloading
user country or importer m, a producing country or exporter x, and a year t = 2014,...,2020. To
be included, the cmxt observation must have strictly positive downloads.
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Table 10.6 Gravity Equation: Independent Variable is ln(ycmxt)

OLS

(1) (2) (3) (4) (5) (6) (7)

ln(1 + AIcxt) 1.21*** 1.33*** 1.20*** 1.13*** 1.04*** 1.04***
(0.194) (0.225) (0.203) (0.210) (0.200) (0.197)

ln(1 + multipleAIcxt) 1.02*** 0.80*** 0.80***
(0.239) (0.252) (0.246)

ln(1 + nonAIcxt) 0.14*** 0.14***
(0.042) (0.041)

ln(Distancemx) −0.39*** −0.37*** −0.23***
(0.036) (0.058) (0.038)

Contiguousmx 0.38*** 0.35*** 0.31***
(0.073) (0.105) (0.106)

Common Languagemx 0.76*** 0.53*** 0.39***
(0.106) (0.097) (0.105)

Colonial Dependencemx 0.08 0.39*** 0.31***
(0.138) (0.122) (0.115)

Regional Trade Agreementmxt 0.11** 0.03 −0.10
(0.054) (0.067) (0.066)

ln(GDPxt) 0.04 0.18 −0.01
(0.336) (0.335) (0.302)

ln(GDPmt) −0.11 −0.01 −0.06
(0.630) (0.321) (0.340)

Social Connectedness Indexmx 0.18***
(0.055)

Constant 12.43 5.53 8.29 6.29*** 5.69*** 5.42*** 5.43***
(13.964) (9.253) (9.021) (0.022) (0.144) (0.168) (0.168)

Observations 774,414 468,679 399,873 465,955 465,955 465,955 464,567
Fixed effects t, m, x, c t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

(Continued)
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Table 10.6 (Continued)

OLS

(1) (2) (3) (4) (5) (6) (7)

R2 0.559 0.386 0.396 0.429 0.448 0.451 0.486
Within R2 0.033 0.040 0.044 0.027 0.059 0.063 0.065

Notes: Each observation is an App category (c), a downloading country or importer (m), an App producing country or exporter (x) and a year (t = 2014, . . .,
2020). The dependent variable is the log of the number of downloads, ln(ycmxt). In column 1 we use the full sample covering all Apps (we do not restrict the
sample to firms that can be linked to Orbis). In columns 2–7, we use our subsample of 834 firms to construct a panel of 292 App categories, 53 exporters, 84
importers, and 7 years. In the fixed effect rows, t-m-x and m-c refer to year-importer-exporter and importer-category fixed effects, respectively. The number of
observations is degrees-of-freedom corrected as calculated by Stata's reghdfe command and so declines as more fixed effects are added. Standard errors are
based on two-way clustering by importer and by exporter. ***, **, and * indicate statistical significance at the 1%, 5% and 10% levels, respectively.
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estimate of -0.85 reported in Head and Mayer's (2014) meta-analysis of gravity
studies. That distance plays less of a role in digital trade will come as no surprise.
The coefficient on contiguity is a little smaller than in Head, and the coefficient
on common language is just a little larger. We also include dummies for whether
m and x were ever in a colonial relationship and whether they are in the same
regional trade agreement. These covariates are less significant and much
smaller than in Head and Mayer. The importer GDP and exporter GDP coeffi-
cients are very small, but this is not surprising given that they do not vary much
over our period 2014–2020 and so are largely soaked up by the fixed effects. We
do not include the populations of either m or x because these are also largely
soaked up by fixed effects.

In column 2, we use our subsample matched with patent and financial data to
estimate equation 1. The coefficients on the gravity covariates do not change,
which provides evidence that our sample is representative in dimensions familiar
to trade economists. Crucially, the estimate of β is positive and significant. In
OLS, AI deployment is correlated with downloading.

In column 3 we include the Bailey et al. (2020) index of pairwise social con-
nectedness. Their index is based on an anonymized snapshot of all friendship
links on Facebook. It is the log of the relative probability of a friendship link
between a Facebook user in m and a Facebook user in x. The coefficient on
social connectedness of 0.18 is significant at the 1% level though smaller than
in Bailey et al.. However, when we use the full sample of column 1 the coefficient
rises to 0.25, which is close to what they report. More importantly, the introduc-
tion of social connectedness does not affect the estimated coefficient on our key
AIcxt variable and indicates that what we are finding is very different from the
channel identified by Bailey et al.14

In column 4, we introduce year-importer-exporter and category fixed effects.
It makes little difference to our estimates of the coefficient on ln(1+ AIcxt).

In columns 5–7 of Table 10.6 we add two additional covariates, ln(1+ multi-
pleAIcxt) and ln(1+ nonAIcxt). In column 5, AI deployment for multiple category
firms is significant. More importantly, its inclusion does not affect the coefficient
on our key AI variable ln(1+ AIcxt). In column 6, non-AI patents ln(1+ nonAIcxt)
is significant, but as we shall see its economic magnitude is half that of ln(1+
AIcxt). If these patents are correlated with AI patents then it is possible that
our AI results are just proxying for the effects of patenting in general;
however, inclusion of ln(1+ nonAIcxt) has little effect on the coefficient on our
key AI deployment variable.

In column 7, we introduce importer-category fixed effects. The coefficient on
ln(1+ AIcxt) does not change.

3.1 IV

Our OLS results potentially suffer from the endogeneity of AI deployment.
There are two obvious sources of bias. The first is reverse causality and/or
omitted variables: firms with high levels of downloads may have other
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characteristics such as size that justify investing in AI. See Lileeva and Trefler
(2010) for a discussion. In this case we expect IV to be smaller than OLS.
The second is heterogeneous impacts of the type addressed by Imbens and
Angrist's (1994) LATE estimator. We expect that the returns to AI are higher
for firms that invest then for firms that do not. If so, IV will overestimate the
mean impact of AI deployment (Card, 2001, eq. 1) and, by implication, IV
may be larger than OLS.

An ideal instrument is an exogenous cost shock to the deployment of AI, i.e., a
shock that exogenously drives AI deployment. The comparative advantage logic
of Heckscher-Ohlin (HO) provides such a shock. The cost of AI deployment by
producers of product c in country x is low if (1) the country is abundant in AI and
(2) the product is AI intensive. We measure a country's AI abundance using the
number of AI conference papers presented by scholars from exporter country x in
year t. Denote this by ConfPaperxt. This is a commonly used measure of a coun-
try's AI capacity. See for example Goldfarb and Trefler (2019a). Data are from
Zhang et al. (2021). We measure the AI intensity of a product or App category
as the sum of all single-category-firm AI patents for firms in category c divided by
the sum of all single-category-firm assets for firms in category c. This is calculated
at the global level, meaning we sum across firms in all countries. Further, it is
calculated separately for each year. Denote this by AIct, and note that as in the
HO literature, it is a global variable rather than an exporter-level variable. Our
instrument for ln(1+ AIcxt) is then ln(1+ AIct).(ConfPaperxt). Note the interac-
tion of country (x) and product (c) characteristics, which is the fundamental
core of all comparative advantage theories. More specifically, our first stage
will look a lot like the test of HO comparative advantage in Romalis (2004).

Table 10.7 reports our IV estimates. Panel B reports the first-stage, that is, a
regression of our endogenous variable ln(1+ AIcxt) on our instrument ln(1+
AIct).ln(ConfPaperxt). Only the coefficients on the instrument are reported.
These coefficients are all positive and statistically significant. Further, the Kleiber-
gen-Paap weak-instruments F-statistic hovers around the Stock-Yogo signifi-
cance threshold of 20.

The IV estimates of the coefficient on AI deployment appear in Panel A of Table
10.7. Columns 1–6 correspond to columns 2–7 of table 6, respectively. The
remaining regressors are included but not reported. The IV results are somewhat
bigger than the OLS results, which suggests that heterogenous impacts are more
important than reverse causality and/or omitted variables. While the IV results are
larger than OLS, the difference is small relative to the IV standard error.

3.2 Economic Magnitudes when Patents are Right-Skewed

In this section we explore an alternative specification that makes it easier to
interpret the size of the impact of AI deployment on exports of Apps. The spe-
cification also addresses a major concern that arises in the patent literature. A
small number of firms hold a large fraction of all patents and of all patent cita-
tions, leading to a concern that the impacts of AI deployment are significant
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Table 10.7 Gravity Equation: Instrumental Variables

Panel A. IV

(1) (2) (3) (4) (5) (6)

1.75*** 1.47*** 1.70*** 1.46*** 1.54*** 1.56***
(0.415) (0.332) (0.427) (0.433) (0.460) (0.474)

ln(1 + multipleAlcxt) 1.01*** 0.82*** 0.82***
(0.244) (0.235) (0.230)

ln(1 + nonAIcxt) 0.11*** 0.11***
(0.040) (0.040)

Observations 468,679 399,873 465,955 465,955 465,955 464,567
Gravity covariates yes yes no no no no
Social Connectedness no yes no no no no
Fixed effects t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Panel B. First Stage

(1) (2) (3) (4) (5) (6)

Instrument 0.613*** 0.720*** 0.602*** 0.598*** 0.622*** 0.612***
(0.138) (0.0835) (0.143) (0.142) (0.135) (0.133)

K-P F-value 19.78 74.45 17.65 17.71 21.16 21.33
Fixed effects t, m, x, c t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Notes: This table reports the IV counterparts to the OLS results of Table 10.6. Columns 1–6 correspond respectively to columns 2–7 of Table 10.6. We
suppress the estimates of the gravity and social connectedness coefficients. Panel A displays the IV estimates and panel B displays the first stage. In the
first stage the dependent variable is ln(1 + AIcxt) and the independent variable is the Heckscher-Ohlin instrument ln(1 + AIct) . ConfPaperxt. All other
first-stage coefficients are suppressed. Standard errors are based on two-way clustering by importer and by exporter. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively. See the notes to Table 10.6 for details.
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only for a small number of large firms and insignificant for all other firms. See
Aghion, Bergeaud, Lequien, and Melitz (2018) for a discussion. In this section
we investigate an alternative specification that is more robust to the right skew
of the patent distribution and that yields easily interpreted coefficient
magnitudes.

We divide AIcxt into four groups. The first is all observations with AIcxt = 0.
We then take the remaining observations and divide them into terciles of the dis-
tribution of strictly positive AIcxt. Table 10.8 reports the results. Consider
column 1 of Panel A which reports our OLS results for each of the three
tercile dummies of AIcxt. The omitted category is observations with AIcxt = 0.
There is no evidence that impacts vary across terciles: The F-statistic for the
test of equality of the three tercile coefficients is tiny across all specifications (F
~ 1.2, p ~ 0.30). This is useful because it shows that our results are not
driven by the upper end of the distribution of patents; rather, our estimates
are homogeneous across the distribution of patents.

Turning to coefficient magnitudes, consider two exporters of category-c Apps,
one exporter having AIcxt = 0 and the other having AIcxt in the first tercile. From
column 1, the latter has downloads that are 2.12 log points higher or 8.3 times
higher (8.3 = e2.12).

Adding additional covariates, as in columns 3–5, does not alter this conclu-
sion. In columns 3–4 we add terciles of multiple-category AI and non-AI
patents. For non-AI patents we see that the results are driven entirely by the
high-patenting observations, as we have come to expect from the patent litera-
ture. It is reassuring to see this for non-AI patents where we expect them, but
not for our AI deployment measure. Also note that the three non-AI tercile coef-
ficients are jointly insignificant at the 1% level in columns 4–5 (F ~ 4, p ~ 0.012).
In columns 2 and 5 we add finer fixed effects and this has no impact.

IV results appear in panel B of Table 10.8. There are now three endogenous
variables (the terciles of ln(1+ AIcxt) so that we must be very cautious in lending
too much weight to the results. We create three instruments by interacting our
single instrument ln(1+ AIct).ConfPaperxt with tercile dummies. The first-stage
results are reported in table A1 and are very strong. This is apparent from the
K-P weak instruments F-statistic of approximately 40 reported at the bottom
of panel B. It is well above the threshold of 20. What is remarkable about the
IV results is that they are almost identical to the OLS results. This raises our con-
fidence in the causal interpretation of our results.

Looking at the IV coefficients on the tercile dummies for ln(1+ AIcxt), the
smallest value is 1.71. We use this as a conservative guide to our headline
number: AI deployment leads to a sixfold increase in downloads (5.52 = e1.71).
This is a very large effect.

4 Product Variety: The Extensive Margin of Trade

We now examine the number of varieties traded in a bilateral relationship. This is
called the extensive margin of trade. Let Ncmxt be the number of category-c Apps
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Table 10.8 Gravity Equation: Non-parametrics and Magnitudes

Panel A. OLS

(1) (2) (3) (4) (5)

ln(1 + AIcxt)
First positive tercile 2.12*** 2.14*** 2.14*** 1.98*** 1.97***

(0.289) (0.299) (0.306) (0.271) (0.275)
Second positive tercile 1.81*** 1.81*** 1.94*** 1.69*** 1.67***

(0.237) (0.237) (0.255) (0.259) (0.253)
Third positive tercile 1.63*** 1.61*** 1.70*** 1.37*** 1.37***

(0.335) (0.346) (0.301) (0.304) (0.303)
ln(1 + multipleAIcxt)

First positive tercile 0.37 0.19 0.20
(0.331) (0.345) (0.334)

Second positive tercile 0.97*** 0.62** 0.63**
(0.296) (0.301) (0.288)

Third positive tercile 1.99*** 1.39*** 1.40***
(0.436) (0.457) (0.441)

ln(1 + nonAIcxt)
First positive tercile −0.14 −0.14

(0.309) (0.310)
Second positive tercile 0.16 0.15

(0.212) (0.218)
Third positive tercile 0.84*** 0.83***

(0.288) (0.283)
Observations 468,679 465,955 465,955 465,955 464,567
Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c
R2 0.384 0.428 0.442 0.446 0.482
Within R2 0.037 0.025 0.048 0.054 0.057

Panel B. IV

(1) (2) (3) (4) (5)

ln(1 + AIcxt)
First positive tercile 2.13*** 2.09*** 1.97*** 1.86*** 1.87***

(0.301) (0.312) (0.299) (0.267) (0.274)
Second positive tercile 2.27*** 2.21*** 2.15*** 2.05*** 2.08***

(0.352) (0.350) (0.374) (0.357) (0.362)
Third positive tercile 1.91*** 1.84*** 1.87*** 1.71*** 1.75***

(0.197) (0.198) (0.185) (0.162) (0.171)
K-P F -value 40.91 39.20 39.57 42.49 40.99

Notes: The dependent variable is the log number of downloads (ln(ycmxt)). An observation is
uniquely identified by the App category (c), the exporter (x), the importer (m), and the year
(t). We break AI deployment AIcxt into four dummies. The omitted dummy is for
observations with AIcxt = 0. The remaining three dummies are for the terciles of the
distribution of AIcxt conditional on AIcxt > 0. Likewise for ln(1 + multipleAIcxt) and ln(1 +
nonAIcxt). Note that the specification in column 1 includes all the same gravity equation
regressors as appear in column 1 of table 6, but these are not reported. The first-stage results
appear in table A1. See the notes to Table 10.6 for details.
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from country x available to consumers in country m in year t. We view each App
within an App category as a variety. For example, Chrome (Google), Baidu
(Baidu), Internet Explorer (Microsoft), and Safari (Apple) are varieties of brows-
ers. Following Eaton, Kortum, and Kramarz (2011) we decompose total
downloads into average downloads per App times the number of Apps. Mathe-
matically,

ln ycmxt = ln y-cmxt + lnNcmxtwhere; y-cmxt = ycmxt/Ncmxt . (2)
lny-cmxt corresponds to the intensive margin and lnNcmxt corresponds to the exten-
sive margin or number of varieties. We estimate

ln (Ncmxt) = b ln (1+AIcxt) + αmxt + αcm + εcmxt .

That is, we estimate the same equations as before, but with a different dependent
variable.

Table 10.9 reports the results. From panel A, AI deployment is associated with
greater numbers of bilaterally traded Apps and this result is robust across speci-
fications. The coefficient is about half the size of the coefficient when then
dependent variable is total downloads. Panel B reports IV results. These are
larger than the OLS results, but not statistically so.

When looking at the extensive margin, the issue of zero trade flows looms
large. To investigate, instead of omitting observations with zero downloads,
we change the dependent variable from lnNcmxt to Ncmxt and keep zero-
download observations (Ncmxt = 0). This doubles the number of observa-
tions. We then use PPML estimation. The results appear in panel C of
table 9 and are very similar to the OLS results, indeed identical in columns
4–5.

To get a clearer sense of magnitudes and to ensure that our specifications
are robust to firms with very large numbers of patents, we return to our anal-
ysis of terciles. In Table 10.10 we repeat 1 with just a single change: the
dependent variable is now the log of the number of varieties lnNcmxt.
There is evidence of modest coefficient heterogeneity across terciles, but oth-
erwise the conclusions here about the impact of AI deployment on varieties
are very similar to those about impacts on downloads. Since the IV and
OLS results are very similar, we do not report the former. Averaging across
the tercile coefficients in column 5 we get 0.81, which drives our head-
line number that AI deployment doubles the number of imported varieties
(2.25 = e0.81).15

5 Creative Destruction

We start by reviewing the literature on estimating the welfare gains from new
products and product churning. This will motivate the empirics. We then turn
to a brief review of the literature on creative destruction.
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Table 10.9 Product Variety and the Extensive Margin

Panel A. OLS ln(Ncmxt)

(1) (2) (3) (4) (5)

ln(1 + AIcxt) 0.49*** 0.50*** 0.47*** 0.47*** 0.47***
(0.064) (0.065) (0.067) (0.069) (0.069)

ln(1 + multipleAIcxt) 0.37*** 0.35*** 0.35***
(0.090) (0.098) (0.097)

ln(1 + nonAIcxt) 0.01 0.01
(0.019) (0.019)

Observations 468,679 465,955 465,955 465,955 464,567
Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c
R2 0.461 0.478 0.504 0.504 0.525
Within R2 0.056 0.053 0.100 0.100 0.103

Panel B. IV ln(Ncmxt)

(1) (3) (4) (5) (6)

ln(1 + AIcxt) 0.69*** 0.70*** 0.62*** 0.62*** 0.63***
(0.108) (0.119) (0.111) (0.108) (0.113)

ln(1 + multipleAIcxt) 0.36*** 0.35*** 0.36***
(0.089) (0.093) (0.091)

ln(1 + nonAIcxt) 0.00 0.00
(0.018) (0.018)

Observations 468,679 465,955 465,955 465,955 464,567
Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Panel C. PPML Ncmxt

(1) (2) (3) (4) (5)

ln(1 + AIcxt) 0.53*** 0.55*** 0.51*** 0.47*** 0.47***
(0.132) (0.137) (0.103) (0.095) (0.095)

ln(1 + multipleAIcxt) 0.77*** 0.59*** 0.59***
(0.173) (0.173) (0.173)

ln(1 + nonAIcxt) 0.13* 0.13*
(0.070) (0.069)

Observations 958,974 944,599 944,599 944,599 914,186
Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c

Notes: Each observation is an App category (c), a downloading country or importer (m), an
App-producing country or exporter (x) and a year (t = 2014, . . . , 2020). We use a panel of
292 App categories, 53 exporters, 84 importers, and 7 years. The dependent variable is the
number of imported Apps in category c: ln(Ncmxt) in panel A (OLS), ln(Ncmxt) in panel B
(IV), and Ncmxt in panel C (PPML). For PPML we keep observations with Ncmxt = 0. For
IV, the first stage already appears in panel B of Table 10.7 and so is not repeated here. The
specification in column 1 includes the same gravity regressors as in column 1 of Table 10.6,
but these are not reported. In the fixed-effect rows, t-m-x and m-c refer to year-importer-
exporter and importer-category fixed effects, respectively. Standard errors are based on two-
way clustering by importer and by exporter. ***, **, and * indicates statistical significance at
the 1%, 5%, and 10% levels, respectively.
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5.1 The Welfare Gains from New Products

Feenstra (1994) considers a consumer having CES preferences with an elasticity
of substitution σ. He explains how to construct expenditure functions and how
to do welfare analysis in the presence of a changing set of varieties induced by an
arbitrary shock such as the introduction of AI or a trade-liberalizing event. Let
Et−1 and Et be the expenditure functions pre- and post-shock. His now-famous
formulation is that the impact of changing sets of varieties on welfare is captured
by an extra multiplicative term in the expression for Et/Et−1. This extra term is
constructed as follows. Define

lt = 1- year t expenditures on new varieties (varieties available in t but not t - 1)
year t expenditures on all varieties that are available in t

. (3)

Table 10.10 Extensive Margin ln(Ncmxt): Non-parametric and Magnitudes

OLS

(1) (2) (3) (4) (5)

ln(1 + AIcxt)
First positive tercile 0.95*** 0.96*** 0.95*** 0.91*** 0.91***

(0.082) (0.081) (0.073) (0.074) (0.074)
Second positive tercile 0.94*** 0.95*** 1.00*** 0.95*** 0.95***

(0.129) (0.131) (0.142) (0.151) (0.149)
Third positive tercile 0.60*** 0.61*** 0.64*** 0.56*** 0.58***

(0.116) (0.122) (0.109) (0.123) (0.121)
ln(l + multipleAIcxt)
First positive tercile 0.10 0.06 0.07

(0.115) (0.128) (0.126)
Second positive tercile 0.31*** 0.23** 0.24**

(0.099) (0.107) (0.104)
Third positive tercile 0.81*** 0.67*** 0.68***

(0.151) (0.169) (0.163)
ln(1 + nonAIcxt)
First positive tercile 0.02 0.02

(0.118) (0.121)
Second positive tercile 0.04 0.03

(0.116) (0.118)
Third positive tercile 0.22* 0.22*

(0.124) (0.124)
Observations 468,679 465,955 465,955 465,955 464,567
Fixed effects t, m, x, c t-m-x, c t-m-x, c t-m-x, c t-m-x, m-c
R2 0.465 0.482 0.508 0.510 0.531
Within R2 0.063 0.061 0.107 0.111 0.115

Notes: This table is identical to Panel A of Table 10.9. The only difference is in the treatment of
the patent variables. We break AIcxt into four dummies. The omitted dummy is for observations
with AIcxt = 0. The remaining three dummies are for the terciles of the distribution of AIcxt
conditional on AIcxt > 0. Likewise for the multi-category patents and the non-AI patents.
The specification in column 1 includes all the same gravity equation regressors as in column
1 of Table 10.6, but these are not reported. See the notes to Table 10.6 for details.
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Then the extra multiplicative term is

lt
lt-1

( )-1/(s-1)
. (4)

Feenstra (2010, ch. 2) offers a nice review of this result.
In this formula one can also interpret λt and λt−1 as actual data and counterfac-

tual data, respectively. For example, equation (4) can be related to a familiar
result in Arkolakis, Costinot, and Rodriguez-Clare (2012). Reinterpreting new
varieties as imported goods, λt is the share of expenditures on domestic varieties
using actual data. Letting λt−1 = 1 be expenditure shares on domestic data in the
counterfactual of autarky, equation (4) reduces to (λt)−1/(σ−1). This is the familiar
Arkolakis et al. (2012) formula for the gains from trade when moving from
autarky to the existing level of period-t trade restrictions. In similar fashion,
we will interpret λt as actual data in a world with AI and λt−1 as a counterfactual
in a world in which there is no AI.

Broda and Weinstein (2006) is an important empirical application of equation
(4) to international trade. They find that the number of new varieties made avail-
able to US consumers through imports tripled between 1972 and 2001 and this
resulted in welfare gains valued at 2.6% of GDP. Feenstra (2010, Table 2.1) finds
that if all countries in the world moved from autarky to their 1996 levels of trade,
welfare gains would be valued at 12.5% of world GDP. See Melitz and Trefler
(2012) for further discussion. The Melitz (2003) model adds firm-level selection
to the discussion of why varieties are created and destroyed by international
trade. Trade reduces the number of domestic varieties and increases the
number of foreign varieties. The net effect is ambiguous. Hsieh et al. (2020)
revisits the Broda and Weinstein (2006) analysis and the Trefler (2004) analysis
of the Canada-US Free Trade Agreement and shows that the net effect of
changes in varieties was negative.

5.2 The Welfare Gains from Creative Destruction

The previous subsection dealt with CES-based models. Because CES goods are
complements, more varieties are preferred to fewer varieties. An alternative
approach emphasizes vertically differentiated goods, that is, goods differentiated
by quality. Vertical differentiation underpins models of growth through creative
destruction. By innovating, a firm can generate a profit by displacing an existing
lower-quality good with its own higher-quality good. This process has come to
be known as creative destruction. See Aghion and Howitt (1992) and Akcigit and
Kerr (2018) for closed-economy models and Grossman and Helpman (1991a,b)
for both closed- and open-economy models. Aghion, Bergeaud, Boppart,
Klenow, and Li (2019) explore the role of creative destruction for measuring
US growth. While their primarily empirical paper treats innovation as exogenous,
they provide formulas related to equation (4). We now turn to estimating the
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impact of AI on creative destruction and plug the estimates into equation (4) to
generate welfare calculations.

5.3 AI and Creative Destruction in the Global Economy: A First Look

In this subsection we look at the raw data on AI and creative destruction, that is,
on how the download shares of new and exiting Apps are impacted by AI. Con-
sider an App in App category c that is downloaded by country m. The App is
'new' in year t if it was downloaded in t, but not t − 1. The App is 'exiting' in
year t if it was downloaded in t − 1 and t, but not t + 1. The App is 'continuing'
in year t if it was downloaded in t − 1, t and t + 1. For each cmt triplet, let On

cmt ,
Oe

cmt , and Oc
cmt be the sets of new, exiting and continuuing Apps, respectively.

Let ω index Apps and let ycmt(ω) be downloads of App ω in category c by
country m in year t. For each cmt triplet let ykcmt =

E
oEOk

m
ycmt(o) be type-k down-

loads where k indexes new Apps (k = n), exiting Apps (k = e), or continuing Apps
(k = c). All Apps fall into one and only one of these three types. The share of type-
k App downloads is

ykcmt =
ykcmtE
k' yk

'
cmt

= country m's downloads of type-k Apps in category c and year t
country m's downloads of all Apps in category c and year t

. (5)

The denominator is total downloads for cmt (including downloads of domestically
produced Apps). Since these shares are calculated using data for t − 1 and/or t + 1
we drop the yk

cmt for the first and last years and work with t = 2015, . . . , 2019.
We are interested in how AI impacts the entry of Apps (yncmt) and the exit of

Apps (ye
cmt). While our interest is in what is consumed at the cmt level, our AI

deployment measure is about what is produced at the cxt level. Therefore, for
each importer m and App category c we take the average of the AIcxt across
exporters x that export to m. We use a weighted average with weights propor-
tional to importer m's downloads of c. As is common in international trade
regressions we will be exploiting how the composition of exporters of c Apps
varies across importers m e.g., Vietnam imports social networking from China
(WeChat) while Canada imports it from the US (Facebook). Mathematically,
let wcmxt = ycmxt/∑x'ycmx't be the share of m's downloads originating from pro-
ducer country x. (Again, we include domestic downloads m = x.) Then our
key importer-level independent variable is

AIcmt = E
xwcmxt .AIcxt . (6)

Table 10.11 reports some basic sample statistics on creative destruction. There
are 78,741 category-importer-year (cmt) observations in our data, which
includes zero-download observations. The left panel of Table 10.11 reports
cross-tabulations for whether there was entry (yn

cmt > 0) and whether there was
AI deployment (AIcmt > 0). Among observations with positive AI deployment,
91% have some entry. In contrast, among observations with no AI deployment,
only 66% have some entry. Thus, AI is (non-causally) correlated with the entry of
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new varieties. The right panel of Table 10.11 repeats the exercise using exits.
Among observations with positive AI deployment, 83% have some exit. In con-
trast, among observations with no AI deployment, only 49% have some exit. AI is
correlated with the exit of varieties. Taken together, these two results point to the
role of AI deployment for entry and exit i.e., for creative destruction.

5.4 The Welfare Gains from AI: New Empirics

We saw in equation (4) that the welfare gains from AI deployment can be
expressed as

DWt = (lt/lno AI
t )-1/(s-1)

where λt equals one minus the share of new Apps in total downloads and lno AI
t is

its counterfactual value in a world with no AI deployment. Before explaining
how we estimates ΔWt we make two observations. The first is the major caveat
that we are using download data whereas the welfare calculation should be
based on expenditure data. Second, this is a welfare calculation for the mobile
App category. It ignores all other goods.

To estimate ΔWt, we first need an empirical counterpart to λt. From equations
(3) and (5), it is natural to equate λt with 1- yn

cmt , that is, with one minus the
new downloads share for category-c Apps downloaded by users in country m
in year t. Since we do not want to get bogged down in reporting welfare for
each App category and importer, we take λt to be the download-weighted
average of the 1- yncmt .

16 This is the obvious empirical counterpart to λt.
Our next challenge is to calculate the counterfactual lno AI

t . To this end, we
regress 1- yn

cmt on AI deployment ln(1+ AIcmt). We interact this with year
dummies so that we can do counterfactuals separately by year. yn

cmt is not
defined for 2014 so we omit the year. Table 10.12 reports the regressions.
The first three columns are OLS. The negative coefficients mean that high AI
deployment is associated with low 1- yn

cmt and hence with high new-App

Table 10.11 Creative Destruction

Number of Category-Importer-Year Pairs by AI-Deployment Status and

ENTRY Status EXIT Status

AI Deploy > 0 AI Deploy = 0 AI Deploy > 0 AI Deploy = 0

No entry 1,644 20,467 No exit 3,072 30,887
(9%) (34%) (17%) (51%)

Entry 16,973 39,657 Exit 15,545 29,237
(91%) (66%) (83%) (49%)

Notes: Each observation is an App category (c), a downloading country or importer (m), and a
year (t = 2015, . . . , 2019). We use a panel of 292 App categories, 84 importers, and 5 years and
have 78,741 observations. The numbers are counts of observations. Numbers in parentheses are
counts as a percentage of the total observations in the table (78,741).
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Table 10.12 (1 – New Product Share) Regressed on AI Deployment

OLS IV

(1) (2) (3) (4) (5) (6)

ln(1 + AIcmt) . Year 2020 −2.56*** −2.53*** −2.51*** −2 91*** −2.88*** −2.89***
(0.115) (0.111) (0.111) (0.191) (0.187) (0.188)

ln( + AIcmt) . Year 2019 −1.76*** −1.78*** −1.72*** −2.03*** −2.06*** −2.04***
(0.097) (0.096) (0.095) (0.182) (0.181) (0.182)

ln(1 + AIcmt) . Year 2018 −1.60*** −1.54*** −1.48*** −1.88*** −1.83*** −1.81***
(0.105) (0.106) (0.105) (0.177) (0.177) (0.177)

ln(1 + AIcmt) . Year 2017 −0.83*** −0.77*** −0.70*** −0.94*** −0.88*** −0.83***
(0.109) (0.101) (0.099) (0.179) (0.167) (0.167)

ln(1 + AIcmt) . Year 2016 0.17 0.09 0.17 −0.04 −0.11 −0.05
(0.121) (0.120) (0.119) (0.201) (0.197) (0.197)

ln(1 + AIcmt) . Year 2015 0.88*** 0.87*** 0.95*** −0.95*** −0.93*** −0.90***
(0.135) (0.133) (0.133) (0.309) (0.302) (0.302)

ln(1 + Multiple AIcmt) −1.00* −0.17 −0.97* −0.15
(0.581) (0.448) (0.577) (0.445)

ln(1 + nonAIcmt) −51.43*** −51.29***
(14.812) (14.783)

Observations 78,614 74,606 74,606 78,614 74,606 74,606
Fixed effects t-m, c t-m, c t-m, c t-m, c t-m, c t-m, c
K-P F-value 215.1 214.9 214.4
R2 0.335 0.333 0.333

Notes: The dependent variable is (1- yncmt ) . 100. Each observation is indexed by an App category c, a downloading country or importerm, and a year t. We use
a panel of 292 App categories, 84 importers, and 6 years. The independent variable is ln(1 + AIcmt) where AIcmt is defined in equation (6). Columns 1–3 are
OLS and columns 4–6 are IV. The first-stage results appear in Table 10.A2 in the appendix. 'K-P' F-value is the Kleibergen-Paap weak-instruments test
statistic. We include fixed effects for year-importer and for App category. Standard errors are clustered by importer. ***, **, and * indicates statistical
significance at the 1%, 5%, and 10% levels, respectively.
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download shares. This is sensible and expected. Also as expected, the AI deploy-
ment coefficient becomes more negative with time: As AI has become more
sophisticated, its positive impact on new-App downloads has grown.

In columns 2 and 3 we add our covariates for non-AI patents and multiple-
category AI patents.17 Adding them does not alter the coefficients on our AI-
deployment variables.

IV estimates are reported in columns 4–6. We use the same instrument as
before, but with one alteration. That instrument was at the cxt level: ln(1+
AIct).(ConfPaperxt). As in equation (6), we aggregate this to the cmt level
using importer download weights, that is, ∑xwcmxt.ln(1+ AIct).(ConfPaperxt).
We then interact this with year dummies to create six instruments for our six
endogenous variables. The first stages appear in Appendix Table 10.A2 where
it is shown that the instruments are highly significant and the first-stage coeffi-
cients are sensible. With five instruments we must be especially mindful of the
weak-instruments problem; however, our Kleibergen-Paap F-statistics of over
200 are well above the Stock-Yogo threshold of 20. See the second-to-last
row of Table 10.12. With instruments in place, columns 4–6 show that the IV
estimates are similar to OLS, are statistically significant, are negative in 2020,
and decline over time. The exception is 2015.

We can now quantify how AI has influenced the welfare gains from creative
destruction. We are interested in DWt = (lt/l

no AI
t )-1/(s-1). We set σ to 5.03,

which is the Head and Mayer (2014) median estimate of σ from their meta-
study. However, it seems reasonable given network effects that the elasticity rel-
evant to Apps is closer to unity. If this is the case, we are understating the welfare
gains. Table 10.13 reports calculations of ΔWt for 2020 and 2015. Consider the
first column of numbers. From row 1, one minus the new-App share is 0.878 in
2020. From row 2, we estimate that AI induces λt to change by 0.082. This is
calculated as follows. From column 1 of Table 10.12, the impact of AI deploy-
ment on λ2020 is −2.56/100. (We divide by 100 because the dependent variable
in the table was multiplied by 100.) The weighted average of ln(1+ AIcm, 2020)

Table 10.13 Quantifying Welfare Gains from AI's Creative Destruction

2020 2015

OLS IV OLS IV

1. λt 0.878 0.878 0.867 0.867
2. Δλt 0.082 0.093 -0.023 0.025
3. lno AI

t = lt + Dlt 0.960 0.971 0.844 0.892
4. Gains from AI (σ = 5.03) 1.022 1.025 0.993 1.007
5. Percentage Gains from AI (σ = 5.03) 2.2% 2.5% -0.7% 0.7%
6. Gains from AI (σ = 2.00) 1.093 1.106 0.973 1.029
7. Percentage Gains from AI (σ = 2.00) 9.3% 10.6% -2.7% -2.9%

Notes: Row 1 uses observed data. Row 2 is based on estimates from Table 10.12. See the text
for an explanation. Row 3 is the sum of rows 1 plus 2. Row 4 is DWt = (lt/lno AI

t )-1/(5.03-1). Row
5 is 100.(ΔWt−1). Row 6 is DWt = (lt/lno AI

t )-1/(2.00-1). Row 7 is 100.(ΔWt−1).
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conditional on AIcm, 2020 > 0 is 3.19. Hence the estimated change in λ2020 from
shutting down AI is Δλt = (-2.56/100) . (-3.19) = 0.082. We compute the coun-
terfactual λt as lno AI

t = lt + Dlt , and this appears in row 3. Row 4 reports
DWt = (lt/l

no AI
t )-1/(5.03-1). Row 5 expresses this as the percent 100.(ΔWt−1).

Using OLS, we estimate that AI led to welfare gains of 2.2% in 2020. Our head-
line number, based on IV, is that AI led to welfare gains of 2.5%. There is limited
evidence on elasticities of substitution between Apps. We therefore also consider
a common alternative estimate of σ, namely, σ = 2. From rows 6–7, this implies
that AI led to welfare gains of 10.6%, a very large number.

The commercialization of AI is usually dated to 2012 (Agrawal et al., 2018)
so that in 2015, the use of AI in mobile Apps was in its early days. We should
therefore expect smaller welfare benefits of AI in 2015. This is a bit like a
placebo test. In Table 10.13 we repeat the analysis for 2015. The calculations
are similar except that now we use the 2015 coefficients from Table 10.12
(0.88 for OLS and -0.95 for IV) and we use the weighted average of ln(1+
AIcm, 2015) conditional on AIcm, 2015 > 0, which is 2.64. From Table 10.13
(IV), in 2015 AI led to welfare gains of 0.7%. This is for σ = 5.03. It is 2.9%
for σ = 2.00. As expected, these are much smaller than the corresponding
gains in 2020.

Summarizing, in 2020, AI deployment raised welfare from creative destruction
by between 2.5% and 10.6%. Further, in 2015, when AI deployment in mobile Apps
was still in its infancy, AI deployment raised welfare from creative destruction by
only between 0.7% and 2.9%.

6 Conclusions

Artificial Intelligence is a powerful new technology, yet almost nothing is known
empirically about this process, partly because impacts on goods trade have likely
been minimal and partly because researchers have failed to look where the action
is most obvious — in the palms of our hands. We observed that mobile Apps
provide a large and growing collection of services that billions of people use daily
and whose international dimension is captured by mobile App downloads. We devel-
oped a new database of App downloads and the AI deployed in those Apps. Using
an IV strategy to estimate the impacts of AI deployment we presented three results:

1. Bilateral Trade: AI deployment increased App downloads by a factor of six.
This is the first systematic evidence of the impact of AI on trade.

2. Variety Effects: AI deployment doubled the number of bilaterally traded App
varieties.

3. Entry, Exit, and Creative Destruction: AI deployment caused high levels of
entry into and exit out of Apps/varieties available in the importer country.
This has important welfare implications. Comparing the actual evolution of
mobile App downloads to a counterfactual world in which no AI is deployed,
AI deployment in 2020 raised welfare from App downloads by between 2.5%
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(when Apps are highly substitutable) and 10.6% (when Apps are less
substitutable).18

With regards to international App markets, AI deployment has already had
tangible impacts on trade, product variety, creative destruction, and welfare.

Notes
We thank SensorTower for their help and encouragement in facilitating this project.
Keith Head graciously helped interpret the PPML estimates and Mert Demirer
answered tough AI questions. We benefited from early conversations with Avi Gold-
farb. Shurui Liu provided research assistance. This project was generously supported
by the Social Sciences and Humanities Research Council of Canada (SSHRC Grant
#43520210149)

1 AI is part of a larger process of automation and is thus part of a larger literature
on the impact of trade and technology on employment, wages, and inequality. A
recent contribution to this literature with an international dimension is Stapleton
and Webb (2020) who consider the impact of robots on Spanish multinationals
during 1990–2016.

2 More specifically, AI intensity is measured as total global AI patents associated
with the App category. AI expertise is measured as the number of papers presented
at AI conferences by researchers affiliated with the country's universities and other
research institutions. Data on AI expertise are from Zhang, Mishra, Brynjolfsson,
Etchemendy, Ganguli, Grosz, Lyons, Manyika, Niebles, Sellitto et al. (2021).

3 https://www.statista.com/statistics/617136/digital-population-worldwide.
4 https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-

forecast.
5 This database does not cover downloads from the remaining application market-

places. The largest of these are Huawei App Gallery, Xiaomi App Store, Amazon
App Store, and Samsung Galaxy Store. Nor do we track downloads done directly
from web pages.

6 The two marketplaces define groups slightly differently, but it is easy to convert
the Google Play groups into Apple Store groups.

7 Some of the 19 × 19 potential App categories have no Apps, leaving us with 292
App categories.

8 We initially used the Python-based FuzzyWuzzy matching algorithm. However,
even after extensive pre-cleaning of firm names, a visual inspection of the match-
ing results showed that it was of insufficient accuracy for our comfort. We there-
fore verify each match by hand. This verification is what constrains us to working
with 834 ultimate owners.

9 Apps that have zero downloads are excluded from this table and from all of our
analysis. We re-introduce zeros whenever we do PPML.

10 Using 95%, 90%, or 80% as the threshold does not affect our main results.
11 We are grateful to an anonymous referee for suggesting that we scale patents to

control for the size of firms in the cxt bin. We choose assets because, relative to
other variables in Orbis that we could use for scaling such as employment, assets
have few missing values. An earlier version of this chapter that did not scale
reported similar results.

12 In constructing multipleAIcxt, a multi-category firm's AI patents are given to
each of its categories, e.g., if a firm has 10 patents and operates in two categories
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we do not know which patent applies to which category (indeed, some AI patents
may apply to both) so we assume that the firm has 10 patents in each category.

13 See Head and Mayer (2014) and Head, Mayer, and Ries (2010). Since the CEPII
data end in 2019 we linearly extrapolate the time-varying variables by one year to
2020.

14 The coefficient is 1.21 in column 2 and 1.33 in column 3. However, this differ-
ence is entirely due to the difference in samples rather than to the inclusion of
social connectedness. If we redo column 2 with the smaller sample of column
3, the coefficient in column 2 rises to exactly 1.33.

15 For the intensive margin (ln-ycmxt), these results are very similar to the results for ln
(Ncmt) that we reported in Table 10.9. Restated, the intensive-margin effects are
very significant and half the size of the total effects. This is true for OLS, IV and
PPML. We do not report these results.

16 For each t, the cm download weights are the denominator of yncmt , that is, the
downloads of all varieties of category-c Apps available to users in country m in
year t.

17 These are the download-weighted average of non-AI patents and the download-
weighted average of the AI patents of multi-category firms. See equation (6) for
weights.

18 An important caveat is that our welfare calculations use download shares rather
than expenditure shares.
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APPENDIX TABLES

Table 10.A1 First Stage for Table 10.8

ln(1 + AIcxt) ln(1 + AIcxt) ln(1 + AIcxt)
. First Positive

Tercile
. Second Positive

Tercile
. Third Positive

Tercile

Instrument . First
positive tercile

0.810*** −0.036*** −0.023***
(0.0506) (0.00964) (0.00624)

Instrument . Second
positive tercile

−0.053*** 0.911*** −0.030***
(0.0155) (0.101) (0.00426)

Instrument . Third
positive tercile

−0.067*** −0.049*** 0.898***
(0.0249) (0.0175) (0.0466)

F-value 807 385 596
Fixed effects t-m-x, c t-m-x, c t-m-x, c

Notes: This table displays the first stage for our preferred specification in Table 10.8 (column 2).
The dependent variable in the first stage is ln(1 + AIcxt). Its instrument is ln(1 + AIct) . (Conf
Paperxt). Both are interacted with terciles dummies of the distribution of AIcxt conditional on
AIcxt > 0. There are thus three independent variables and hence three first stages or columns.
We include fixed effects for year-importer-exporter and category. Standard errors are
clustered by importer. ***, **, and * indicates statistical significance at the 1%, 5% and 10%
levels, respectively.



Table 10.A2 First Stage for Table 10.12

ln(1 + AIcmt) ln(1 + AIcmt) ln(1 + AIcmt) ln(1 + AIcmt) ln(1 + AIcmt) ln(1 + AIcmt)
. Year 2020 . Year 2019 . Year 2018 . Year 2017 . Year 2016 . Year 2015

Instrument . Year 2020 10.25*** −1.040*** −0.818*** −1.066*** −1.162*** −1.468***
(0.289) (0.0561) (0.0477) (0.0344) (0.0399) (0.0593)

Instrument . Year 2019 −1.461*** 10.37*** −0.700*** −0.993*** −0.990*** −1.296***
(0.0666) (0.312) (0.0471) (0.0360) (0.0416) (0.0495)

Instrument . Year 2018 −2.204*** −1.417*** 14.93*** −1.431*** −1.424*** −1.905***
(0.0896) (0.0776) (0.351) (0.0510) (0.0581) (0.0608)

Instrument . Year 2017 −2.207*** −1.468*** −1.082*** 16.39*** −1.670*** −2.048***
(0.0955) (0.0846) (0.0741) (0.377) (0.0652) (0.0729)

Instrument . Year 2016 −2.634*** −1.550*** −1.111*** −1.737*** 15.80*** −2.451***
(0.120) (0.0919) (0.0869) (0.0681) (0.543) (0.106)

Instrument . Year 2015 −3.136*** −1.785*** −1.642*** −2.831*** −2.831*** 19.95***
(0.154) (0.103) (0.101) (0.140) (0.159) (0.778)

F-value 403 387 783 785 630 535
Fixed effects t-m, c t-m, c t-m, c t-m, c t-m, c t-m, c

Notes: This table displays the first stages for our preferred specification in Table 10.12 (column 4). The dependent variable in the first stage is ln(1 + AIcmt)
defined in equation (6). Its instrument is ∑xwcmxt . ln(1 + AIct) . (Conf Paperxt). Both are interacted with year dummies. With six years there are six dependent
variables and hence six first stages or columns. We include fixed effects for year-importer and category. Standard errors are clustered by importer. ***, **, and *
indicates statistical significance at the 1%, 5%, and 10% levels, respectively.
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