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Abstract 
 
We conduct an incentivized experiment on a nationally representative US sample (N=708) to test 
whether people prefer to avoid ambiguity even when it means choosing dominated options. In 
contrast to the literature, we find that 55% of subjects prefer a risky act to an ambiguous act that 
always provides a larger probability of winning. Our experimental design shows that such a 
preference is not mainly due to a lack of understanding. We conclude that subjects avoid 
ambiguity per se rather than avoiding ambiguity because it may yield a worse outcome. Such 
behavior cannot be reconciled with existing models of ambiguity aversion in a straightforward 
manner. 
Keywords: uncertainty, complexity, ambiguity, decision-making. 
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1 Introduction
Are people willing to give up potential gains to avoid ambiguous situations, even when
ambiguity can only benefit them? Since Ellsberg’s famous paradox (Ellsberg (1961)),
experiments have shown that people often exhibit ambiguity aversion because they fear
that ambiguous situations may yield worse outcomes. In other words, people avoid situa-
tions where they cannot assign exact probabilities to possible outcomes, even if it means
possibly giving up higher payoffs for fear of uncertainty resolving in a worse outcome.
Scholars have developed models to accommodate such behavior. Such models include,
among others, Choquet expected utility from Schmeidler (1989), Maximin expected util-
ity from Gilboa and Schmeidler (1989), alpha-maximin expected utility from Ghirardato
et al. (2004), as well as other proposals by Klibanoff et al. (2005), Maccheroni et al. (2006),
and Strzalecki (2011).

By contrast with these previous works, this paper shows, in a simple incentivized
experiment, that people frequently avoid ambiguity even when it can only result in better
outcomes. Its design allows concluding that such behavior is neither entirely due to
misunderstanding nor holding incorrect beliefs about the ambiguous situation. This result
suggests that subjects have an inherent dislike for ambiguity, which is inconsistent with
these models.

At the heart of our experiment is a “Two-Ball” gamble from Jabarian (2019): we have
two urns, each containing red and blue balls. One is a risky urn with 50 red and 50 blue
balls; the other is an ambiguous urn with unknown proportions of red and blue balls, as
in Ellsberg’s original thought experiment. The difference is that now, subjects draw two
balls with replacement from one of these urns. Subjects win $3 if the two balls have the
same color. Would you rather play this gamble with the risky or ambiguous urn?

Independently of the color chosen, drawing from the risky urn gives a 50% chance
of winning, while drawing from the ambiguous urn guarantees at least a 50% chance
of winning, regardless of the proportions of red and blue balls. For example, if the
ambiguous urn contains 60 red and 40 blue balls, its win probability is .62 + .42 = .52.
This characteristic of the gamble entails that nearly all existing models require a decision-
maker to choose the ambiguous urn over the risky urn. Despite this, 45% of the subjects
in our experiment prefer the risky urn. Subjects were willing to pay 8.5% more for the
risky gamble than the ambiguous one. We call this result the Two-Ball Ellsberg Paradox.

Unless subjects have beliefs over the two draws that are not consistent with the infor-
mation given to them (say, subjects somehow believe the draws are not independent), the
choice of RR over AA cannot be reconciled with existing models of ambiguity aversion
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straightforwardly. For instance, in the Maxmin Expected utility model of Gilboa and
Schmeidler (1989), if subjects entertained the entire simplex over {R, B} for the composi-
tion of an urn U and form beliefs over the two draws by composing each prior with itself,
this would lead to indifference between gambles RR and AA. As in Gajdos et al. (2008),
Dominance implies that RR cannot be strictly preferred to AA. If one assumes that the
set of priors is a subset of {q ∈ ∆({R, B}2)|q = p × p; p ∈ ∆({R, B})}, then the choice
RR over AA is incompatible with α-maxmin expected utility for any α. This choice is
also incompatible with Savage (1954)’s Subjective Expected Utility model if beliefs are a
product measure of the type p × p.

In exposing the paradox, it is expedient to illustrate it as a choice between two distinct
gambles. Nonetheless, we ascertain each gamble’s certainty equivalent (CE) within our
experimental setting by employing a multiple price list (MPL). We subsequently make
a comparative analysis to discern whether subjects exhibit paradoxical behavior. This
methodological decision is underpinned by several reasons. The survey by Jabarian (2021),
conducted on a representative sample from the U.S., utilized a choice setup, offering
an initial empirical indication supporting the paradox. The primary objective of this
paper is to rely on experimental methods to explore and contextualize this phenomenon,
ensuring greater data quality through different techniques requiring incentivized elicitation
mechanisms and CE. Naturally, eliciting CE enables us to gauge the extent of the paradox.
Besides, presenting the gambles individually ensures superior comprehension, considering
the inherent complexity of such gambles. Aiming to address potential concerns related
to comprehension issues and measurement error, we undertake the elicitation of the CE
for each gamble twice, which allows us to rectify the measurement error via the ORIV
technique (Gillen et al. (2019)).

Several factors might drive the Two-Ball Ellsberg Paradox, and our experimental de-
sign allows us to investigate the essential factors. One hypothesis is that subjects mistak-
enly think the probability of winning decreases as the ratio of red to blue balls becomes
more uneven. However, our experiment shows that when subjects choose between two
urns with ambiguous compositions but one more unevenly distributed one, they prefer
the more unevenly distributed one. This result suggests that subjects didn’t “learn” to
choose the ambiguous urn even after being exposed to scenarios requiring reasoning about
the ratio of red to blue balls. The preference for the risky urn is a deliberate decision to
avoid ambiguity, even at a lower win probability.

Building on previous studies questioning existing models and proposing other para-
doxical behaviors, we examine the relationship between the Two-Ball Ellsberg Paradox
and simple behavioral mechanisms. Specifically, we explore complexity aversion by repli-
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cating Halevy’s experiment, which elicits preferences between a simple lottery with a 50%
win probability and a more complex compound lottery with the same probability. We
also examine the relationship with classical ambiguity aversion by replicating Ellsberg’s
original experiment. Our results suggest a strong correlation between classical ambiguity
aversion and complexity aversion.

Ambiguity and ambiguity aversion are relevant to policymakers since, in most real-
world situations, agents cannot attach precise probabilities to the possible outcomes.
Relying on the standard models cited above, researchers have explored the important
implications of ambiguity in diverse economic fields. In environmental economics, Mill-
ner et al. (2013) demonstrate the effects of ambiguity on the social cost of carbon by
integrating ambiguity within Nordhaus’ famous integrated assessment model of climate
economy. Lange and Treich (2008) investigate the learning effects of climate policy under
ambiguity. In health economics, Treich (2010) shows under which conditions ambiguity
aversion increases the value of a statistical life. In macro-finance, Ju and Miao (2012)
show how ambiguity aversion can account for the equity premium puzzle. Such policy
recommendations might need revisions based on updated models that accommodate our
findings.

Although several experiments contain scenarios comparable to our Two-Ball gamble or
draw similar conclusions to those we draw, our experiment sets itself apart by introducing
a new class of Two-Ball drawings. These drawings feature ambiguity but guarantee a
minimum win probability at least as large as a related non-ambiguous gamble. This design
feature allows us to test whether subjects avoid ambiguity per se or avoid ambiguity due
to potentially worse outcomes.

Firstly, Epstein and Halevy (2019) use a Two-Ball gamble in a supplemental treatment
from a 2014 experiment. However, the authors don’t elicit subjects’ Certainty Equivalents
for this gamble and don’t observe the choice over a risky bet. Although not directly
comparable, their results show that 21.6% prefer the 1-Ball ambiguous gamble over the 2-
Ball ambiguous gamble among subjects with monotone and transitive choices – consistent
with our findings when considering possible preference for a 50-50 risky gamble over a
1-Ball ambiguous gamble.

Fleurbaey (2017) creates a thought experiment with a risky urn (R) and an ambiguous
urn (A). The decision-maker draws two balls sequentially from a combination of these urns
and wins if the balls have the same color. Our paper’s central Two-Ball gamble compares
two draws from urn A to two from R; we do not let subjects switch urn after the first
draw. While both papers explore situations where individuals may pay to avoid ambiguity,
only our Two-Ball Ellsberg Paradox shows that individuals choose a dominated gamble to
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escape ambiguity. Moreover, Yang and Yao (2017) designed an experiment where two balls
were drawn from a single urn containing red and white balls, with the payoff determined
by the balls’ colors. They find that up to 45% of risk-averse subjects choose urn A over
urn R, violating theories that include a monotonicity axiom. These results resemble our
findings, except that our central Two-Ball gamble’s payoff has a mean that increases with
the dispersion of the urn’s contents, making urn A attractive to both risk-averse and
risk-seeking individuals.

Finally, very recently, Kuzmics et al. (2020) also examined an incentivized experiment
where subjects choose between a risky urn R with a known win probability of 49% and
an ambiguous urn A with green and yellow balls. They find that 48.1% of subjects bet
on urn R after seeing certain informational draws, which is a dominant decision strategy.
However, unlike our learning treatment, they observe that “paradoxical” choices decrease
in frequency after subjects are shown explanatory videos.

Our paper unfolds as follows. Section 2 outlines the experimental design and method-
ology employed. Section 3 shares the findings from our core gambles, spotlighting the
Two-Ball Ellsberg Paradox. Section 4 delves into different hypotheses aiming to test
whether participants truly understand the gambles. Section 5 explores different channels
that might explain the Two-Ball Ellsberg Paradox, ranging from complexity aversion and
other “paradoxical” preferences to the impact of the number or proportion of draws from
ambiguous urns on participants’ aversion to ambiguity, even when it can only boost their
win probability. Section 6 offers concluding discussions and directions for future research
to identify further channels to such a paradox.

2 Design, Data Collection and Setting
Our experiment was designed to answer two primary questions. First, to what extent
do subjects prefer urn R over urn A in our Two-Ball gamble? Second, what possible
explanations of this “paradoxical” preference can be falsified? Answering the first question
only requires asking subjects about a few different gambles. However, since many possible
explanations exist for a preference for urn R over urn A, our experiment includes many
gambles designed to address the second question.

We used Prolific, an online survey platform, to run our experiment and collect our data.
Due to its participant pool’s quality, Prolific is increasingly used in economics to conduct
surveys and incentivized experiments. Our sample comprised 880 participants, selected
to be nationally representative in age and gender. Of these initial 880 participants, 708
passed the basic attention-screening questions and criteria described at the end of this
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section.
Due to the constraints on subjects’ time and attention inherent in an online experi-

ment, our various gambles were divided across four treatments, with each subject complet-
ing exactly one treatment. All treatments ask subjects about our central two-ball gamble
(playing with the ambiguous run versus risky). All treatments elicit subjects’ ambiguous
attitudes via the classic two-urns Ellsberg paradox. Beyond this, each treatment contains
some gambles specific to that treatment. Gambles similar to each other were grouped
into blocks, and gambles within a block were presented in random order.1

In each gamble, the subject can either “win” (gain $3) or “lose” (gain nothing). After
viewing instructions explaining the conditions under which the current gamble will win
or lose, the subject must report her certainty equivalent (CE) for that gamble from a
multiple price list (MPL) containing dollar amounts between $0 and $3 in increments of
10 cents. Compared to eliciting choices, the MPL allows us to measure the intensity of
subjects’ preferences.

Laboratory and online experiments eliciting subjects’ CEs for gambles are often prone
to significant measurement error. To correct this, we rely on the Obviously Related In-
strumental Variables (ORIV) method of Gillen et al. (2019). Compared to other methods
to correct measurement errors, such as using the first elicitation as an instrument for the
second, the ORIV approach generally results in lower standard errors. We, therefore,
elicit subjects’ CEs twice for most of our gambles.

Including all duplicate questions, each treatment contains 11 or 12 gambles in total.
In each treatment, three2 of these gambles were selected at random for incentivization: if
a gamble was selected, then a random row of the MPL for that gamble was chosen, and
subjects were given what they reported they preferred from that row.3 Subjects received
an average payment of $3.50 from the incentivized questions, plus a fixed $2 payment for
completing the experiment.

Since the monetary stakes of the experiment were not very high, there is a reason
for concern that subjects may answer at random to finish the experiment quickly. We
employed three screening criteria to address this concern: (1) After the experiment in-

1The order of the blocks was also randomized; we detail the particular randomization for each treat-
ment in Sections 4.1, 4.2, 4.3 and 5.1.

2Although incentivizing only one gamble would allow us to raise the monetary stakes of each question,
doing so would create too large a variance in different subjects’ payoffs, which was undesirable for this
online experiment.

3For example, if Gamble X was selected for incentivization, and then the row “$1.20” was selected at
random for this gamble, the following happens. (A) If the subject reported she preferred a fixed $1.20
payment to play Gamble X, then she received $1.20. (B) If the subject reported she preferred playing
Gamble X to receiving $1.20, then we simulated Gamble X and gave her $3 if it won and $0 if it lost.
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structions, but before the gambles, subjects were given a 3-question basic comprehension
quiz about the instructions. Any subject who failed at least one of these questions was
given a small payment and forced to leave the experiment. (2) Subjects were given a
standard attention-screening question between each of the experiment’s major sections.
Subjects failing at least one such question were removed from our analysis. (3) If, across
our two elicitations of a subject’s CE for the same gamble, the subject reported two CEs
that differed by more than $1 (that is, one-third the size of the $3 MPL table), that
subject was removed from our analysis.4 Out of an initial pool of 880 subjects, 172 were
removed due to violating at least one of the criteria (1)-(3).

In more detail, subjects were randomly assigned to one of the following four treatments
– learning, robustness, order and complexity – that we present now.

In treatment learning, subjects complete the blocks BoundedA, Ellsberg and 2Ball
as well as the duplicate blocks EllsbergD and 2BallD. The order in which these blocks
were presented was determined at random, independently for each subject assigned to
this treatment, according to Figure 1.

BoundedA

Ellsberg, 2Ball

Ellsberg, 2Ball EllsbergD, 2BallD

BoundedAEllsbergD, 2BallD

learning

Figure 1: Structure of Treatment learning

In this figure, the initial split between line 1 (with BoundedA at the beginning) and
line 2 (with BoundedA at the end) indicates that subjects were randomized uniformly
between doing block BoundedA either before or after all the other blocks in the treat-
ment. Furthermore, the fact that the boxes containing “Ellsberg, 2Ball” and “EllsbergD,
2BallD” are adjacent and shaded in the same way indicates that, within each of these two
randomized groups, there is further randomization as to whether the blocks Ellsberg and
2Ball are both completed before blocks EllsbergD and 2BallD or are both completed after
these two blocks. Finally, in any box containing multiple block names, those blocks were
completed in a random order (e.g., block Ellsberg is either completed before or after block
2Ball). Hence, Figure 1 indicates 16 possible orders in which subjects could complete the
blocks in treatment learning.

4Other reasonable thresholds for exclusion, such as “differed by more than $1.50,” yield qualitatively
similar results in our analysis as detailed in the Appendix.
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In treatment robustness, subjects complete the blocks Independent, 3Ball, Ellsberg
and 2Ball as well as the duplicate blocks EllsbergD and 2BallD. The order in which these
blocks were presented was determined at random, independently for each subject assigned
to this treatment, according to Figure 2. Its interpretation is analogous to that of Figure
1; there are 48 different orders in which the six blocks comprising Treatment robustness
could be completed.

Ellsberg, 2Ball EllsbergD, 2BallD 3Ball, Independantrobustness

Figure 2: structure of treatment robustness

In treatment order, subjects complete the blocks 2BallMixed and Ellsberg as well as
the duplicate blocks 2BallMixedD and EllsbergD. The order in which these blocks were
presented was determined at random, independently for each subject assigned to this
treatment, according to Figure 3. Its interpretation is analogous to that of Figure 1;
there are 8 different orders in which the 4 blocks comprising Treatment order could be
completed.

Ellsberg, 2BallMixed EllsbergD, 2BallMixedDorder

Figure 3: structure of treatment order

In treatment complexity, subjects complete the blocks Compound, Ellsberg and 2Ball
as well as the duplicate blocks CompoundD, EllsbergD and 2BallD. The order in which
these blocks were presented was determined at random, independently for each subject
assigned to this treatment, according to Figure 4. Its interpretation is analogous to that
of Figure 1; there are 12 different orders in which the six blocks comprising Treatment
complexity could be completed. Table 6 in Appendix A.2 contains summary statistics for
each elicitation of CEs for gambles C and CC.

Ellsberg, 2Ball, Compound EllsbergD, 2BallD, CompoundDcomplexity

Figure 4: structure of treatment complexity
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3 Participants Exhibit the Two-Ball Ellsberg Paradox
The block 2Ball contains this experiment’s central gambles and is present in all four of
our treatments. It contains two gambles, named RR and AA:

RR: Draw 2 balls with replacement from urn R = [50 red, 50 blue]; win if the two
balls have the same color.

AA: Draw 2 balls with replacement from urn A = [Unknown red, Unknown blue];
win if the two balls have the same color.

The block Ellsberg replicates the classic Ellsberg paradox to elicit subjects’ attitudes
towards risk and ambiguity and is also present in all four of our treatments; it contains
two gambles named R and A:

R: Choose a color. Draw a ball from urn R = [50 red, 50 blue]; win if the drawn
ball has the color you chose.

A : Choose a color. Draw a ball from urn A = [Unknown red, Unknown blue]; win
if the drawn ball has the color you chose.

The blocks 2BallD and EllsbergD contain duplicate gambles of those in blocks 2Ball
and Ellsberg. When double-eliciting CEs, the standard practice requires the two “du-
plicate” gambles measuring the same CE to have slightly different wordings so that two
constitute two independent measurements of that CE. To accomplish this, whenever we
duplicate a block of gambles, we slightly change the specified total number of balls in a
given urn without changing the proportion of balls of each color. For example, in block
2BallD, urn R contains 40 red and 40 blue balls rather than 50 red and 50 blue.

For each gamble X that is double-elicited, we use the notation X j
i to represent the j-th

elicitation of subject i’s CE for gamble X, and we use the notation

Xi =
X1

i + X2
i

2

to denote the average CE of subject i for gamble X. So, for example, RR2
36 represents the

2nd elicitation of subject 36’s CE for gamble RR, and A15 denotes subject 15’s average
CE for gamble A. Figure 5 shows the CDFs of the empirical distributions of the CEs
for RR, AA, R, and A; Table 6 in Appendix A.2 contains summary statistics for each
elicitation of these CEs.
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Figure 5: Cumulative Distribution of CEs for R, A, RR, AA

Other than at a few extreme CE values that were reported by a total of less than
10% of subjects, these empirical CDFs lie in the same vertical order everywhere. This
suggests that on average, subjects prefer the gambles in the order R ≻ RR ≻ A ≻ AA.
Nearly all widely-used models of decision making under risk and ambiguity cannot explain
a preference for R over AA or a preference for RR over AA, since gamble AA has a win
probability of at least 50% while gambles R and RR have a win probability of exactly
50%.

Throughout this paper, we use the variable R − AA to measure the extent to which
individuals exhibit the “Two-Ball Ellsberg Paradox.” Both R− AA and RR− AA are po-
tentially useful measures of the extent to which subjects exhibit aversion to our ambiguous
Two-Ball gamble AA. Indeed, R − AA measures this aversion as compared to a simple
50-50 lottery, and RR − AA measures this aversion as compared to a Two-Ball 50-50 lot-
tery. Although gamble RR is mechanically more similar to AA than gamble R is, we use
gamble R since it provides a more standard baseline and allows for natural comparisons
with other types of aversion identified in the experimental literature. In the literature it
is common to measure a subject’s aversion to a newly identified phenomenon by creating
some new gamble, eliciting the subject’s CE X for that new gamble, and then comparing
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X to that subject’s CE for a simple 50-50 gamble; that is, aversion is measured with the
number R − X. For example, when replicating Ellsberg (1961)’s experiment, classical
ambiguity aversion is usually measured with R − A; and in Halevy (2007)’s experiment,
aversion to a compound 50-50 lottery C can be measured with R − C.5 Measures like
R − A and R − C are much more naturally compared to R − AA than to RR − AA;
for a natural comparison with RR − AA, one would need to use strange measures like
RR − A and RR − C, which cannot even be determined from experiments where the CE
for gamble RR was not measured.

Although our primary measure of the Two-Ball Ellsberg Paradox is R − A, our results
remain qualitatively unchanged if one substitutes RR − AA for R − AA. For example,
we find that both of these variables take on a statistically significant positive value - and
all the same standard models of decision making are falsified by a statistically significant
positive value of R − AA as would be falsified by a statistically significant positive value
of RR − AA. With this in mind, figure 6 shows the distribution of individuals’ reported
CE differences Rj − AAj in each of the two elicitations j.

5Although C is not the notation used by Halevy (2007), we use this notation here since it is consistent
with the notation introduced in Section 5.1 below.
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Figure 6: Histogram of R − AA, by elicitation

Averaging across both elicitations, a majority (54.9%) of subjects exhibited 2-Ball
Ellsberg Paradox preferences by reporting a value R− AA greater than zero. The average
CE for gamble R is 118.13 cents, while the average CE for gamble AA is only 101.03 cents.
The 17.1 cent difference between these averages is statistically significant (t = 11.7);
individuals are willing to pay about 17% more for gamble R than they are for the higher-
win-probability gamble AA.

Similarly, 44.6% of subjects prefer gamble RR over gamble AA. The average CE
for RR is 109.60 cents, or 8.5% larger than AA. Its difference from AA is statistically
significant (t = 7.4).

The next three sections explore whether these Two-Ball Ellsberg Paradox preferences
are explainable solely in terms of subjects misunderstanding the gambles or otherwise
maintaining false beliefs about the nature of these gambles. Sections 4.1, 4.2 and 4.3
respectively test whether subjects maintain the false beliefs Uneven is Bad, Independent
Recomposition, or Dependent Recomposition mentioned in the Introduction.
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4 Do Subjects Understand The Two-Ball Gamble?
There are different ways to define the notion of “comprehension” in our experimental set-
ting. We explored three core interpretations that we report in this section. In Section 4.1,
we determine whether subjects understand that the more the ambiguous urn is unevenly
composed the better it is for them in terms of win probability. In Section 4.2, we check
whether subjects believe that the urn contents are independently redetermined between
draws or not. In the same vein, in Section 4.3, we also check whether subjects believe
that the urn contents are dependently redetermined between draws or not.

4.1 Do Subjects Understand that Unevenness is Better?

Treatment learning was designed to test whether subjects behave as if they believe Uneven
is Bad. The gambles unique to treatment learning are those in block BoundedA. In this
block, subjects play a 2-Ball gamble: two balls are drawn from an urn A containing 100
balls, all red or blue, but whose exact contents are unknown. The subject wins $3 if
the two balls have the same color. In each gamble in block BoundedA, some further
information is given about the contents of urn A, as described below.

BB40−60: Urn A is known to contain between 40 and 60 red balls.

BB60−100: Urn A is known to contain between 60 and 100 red balls.

BB95−100: Urn A is known to contain between 95 and 100 red balls.

In treatment learning, subjects complete the blocks BoundedA, Ellsberg and 2Ball as
well as the duplicate blocks EllsbergD and 2BallD. The order in which these blocks were
presented was determined randomly and independently for each subject assigned to this
treatment. They either faced first BoundedA and then randomly the Ellsberg Paradox
and the Two-Ball Ellsberg Paradox (and their duplicate), or they started with the latter
two blocks (and their duplicate) in random order and then faced BoundedA.

If subjects always believe Uneven is Bad, then we should certainly not find either of
the preferences BB95−100 ≻ BB60−100 or BB60−100 ≻ BB40−60. Subjects exhibiting such
preferences is evidence that we should reject the hypothesis that subjects always believe
Uneven is Bad.

A subtler hypothesis to explain a preference for R over AA is that subjects believe
Uneven is Bad until they are confronted with examples that demonstrate that Uneven is
Good - i.e. that a more uneven urn yields a higher win probability in a 2-Ball gamble.
For example, subjects may believe Uneven is Bad when asked “out of the blue” about

12



gamble AA, but may come to believe Uneven is Good only after considering e.g. gamble
BB95−100 and realizing that an urn containing at least 95% red balls is very likely to lead
to a win. We call this the Learning Hypothesis, as it entails that subjects are “nudged”
into believing that Uneven is Good when exposed to certain suggestive 2-Ball gambles.

A preference BB95−100 ≻ BB60−100 ≻ BB40−60 is consistent with the Learning Hy-
pothesis since subjects may be “nudged” into the belief Uneven is Good as early as the
beginning of block BoundedA. However, if the Learning Hypothesis is true, then subjects
in treatment learning should report a smaller average value of R− AA than those in other
treatments - since only those subjects in treatment learning had any exposure to block
BoundedA.

Figure 7 shows the CDFs of the empirical distributions of the CEs from treatment
learning for gambles BB40−60, BB60−100 and BB95−100. It also shows the combined CDF
(from all 4 treatments) of CEs for gamble AA. Table 1 gives summary statistics of
BB40−60, BB60−100 and BB95−100 as well as for AA using only those subjects in treatment
learning.

Figure 7: Cumulative Distribution of CEs for BB40−60, BB60−100, BB95−100, AA.
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BB40−60 BB60−100 BB95−100 AA

Mean 98.603 132.235 207.654 97.179
SD (52.113) (63.887) (90.784) (55.634)

N 179 179 179 179

Table 1: CEs for Subjects in Treatment learning

Table 1 suggests that subjects do not always believe Uneven is Bad. Although there is
no statistically significant difference between the average CE for AA and that of BB40−60,
subjects prefer BB60−100 to BB40−60 by an average of 33.6 cents (t > 9). Similarly, they
prefer BB95−100 to BB60−100 by an average of 75.4 cents (t > 13). Of the 179 subjects in
treatment learning, 147 reported the “correct” ranking BB95−100 ≿ BB60−100 ≿ BB40−60.
Only 22 of the 179 subjects reported a larger CE for BB40−60 than BB60−100; and even
among those 22 subjects, the average CE for BB95−100 was massively larger than the
average CE for BB60−100 (mean of difference = 68.64, t = 3.36). These data suggest we
must reject the hypothesis “Subjects always believe Uneven is Bad” as an explanation for
subjects’ behavior.

Now consider the Learning Hypothesis. If this latter is true, then we should find that
the CE difference R − AA is significantly smaller (or, more negative) among subjects
who completed block BoundedA before completing blocks 2Ball and 2BallD than it is
among subjects who did not complete BoundedA before 2Ball and 2BallD. Completing
block BoundedA should “nudge” subjects into being less susceptible to the 2-ball Ellsberg
paradox.

Half of the 179 subjects randomly assigned to treatment learning completed BoundedA
before the blocks 2Ball and 2BallD, whereas none of the subjects randomly assigned to
other treatments did so. So if the Learning Hypothesis is true, we should find a statistically
significant (negative) difference between the R − AA values in the treatment learning
versus those in the other treatments.

If we let ITN be the indicator variable for assignment to Treatment learning, then in
a regression of Z := R − AA on ITN, the slope coefficient represents the causal effect of
being in treatment learning on the preference for R over AA. A statistically significant
negative slope coefficient would be evidence that the Learning Hypothesis is true.
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Z1 Z2 Zavg

ITN 2.615 -0.418 1.098
(3.659) (3.917) (3.366)

Const. 16.994 16.786 16.890
(1.840) (1.969) (1.692)

N 708 708 708

Table 2: learning Effects

Table 2 shows the results of such a regression, first using individual elicitations and
then the averages across elicitations. As shown, the slope coefficient is not statistically
significant, and it is positive in the case using averages. Thus, we fail to reject the null
hypothesis (p = .63) and hence have no evidence of the Learning Hypothesis. The results
of Treatment learning therefore provide strong evidence that a belief in Uneven is Bad -
even a belief in Uneven is Bad that could be eliminated by “learning” - does not drive the
Two-Ball Ellsberg Paradox.

4.2 Do Subjects Believe Urn Contents are Independently Redetermined
Between Draws?

The gambles unique to treatment robustness are those in blocks Independent and 3Ball.
Block Independent from treatment robustness was designed to test whether subjects be-
have as if they believe Independent Recomposition is true. Meanwhile, block 3Ball con-
tains gambles designed to explore how the “amount” of ambiguity present in a gamble
affects subjects’ preferences; it is discussed in Section 5.2 below.

In block Independent, there is only one gamble, IA, where subjects draw a ball from
each of two ambiguous urns (containing only red and blue balls) whose contents were
determined independently; they win $3 if the two balls have the same color.

In block 3Ball, subjects draw 3 balls in total, with replacement, from some combination
of a single ambiguous urn A and a single risky urn R, in a certain order. They win $3 if
all three balls have the same color. We summarize the gambles below:

RRR: 1st ball from urn R; 2nd ball from urn R; 3rd ball from urn R.

AAA: 1st ball from urn A; 2nd ball from urn A; 3rd ball from urn A.
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RAA: 1st ball from urn R; 2nd ball from urn A; 3rd ball from urn A.

In treatment robustness, subjects complete the blocks Independent, 3Ball, Ellsberg
and 2Ball as well as the duplicate blocks EllsbergD and 2BallD. The order in which
these blocks were presented was determined randomly and independently for each subject
assigned to this treatment.6

If subjects believe in Independent Recomposition, then gamble AA should (according
to them) be identical to gamble IA. We should therefore find no difference between their
average CEs for gambles AA and IA. In reality, for any procedure generating the contents
of ambiguous urns, gamble AA must have at least as large of a win probability as gamble
IA, and AA must have a larger win probability than IA if the procedure is nondegenerate
(i.e., assigns a nonzero probability to at least two different possible urn compositions).7

Finding a preference IA ≻ AA would therefore be evidence in favor of the hypothesis
that subjects believe in Dependent Recomposition; specifically, it is consistent with them
believing that ambiguous urns’ contents are recomposed adversarially between draws (i.e.,
the contents of ambiguous urns are chosen based on the results of draws so far and in
such a way as to lower subjects’ chances of winning). Conversely, finding a preference
AA ≻ IA would be evidence consistent with subjects correctly believing that the win
probability of AA is larger than that of IA and/or believing in beneficial Dependent
Recomposition.

Figure 9 shows the CDF of the empirical distribution of CEs from gamble IA - the
only gamble in block Independent. For comparison, it also shows the combined CDF
(from all 4 treatments) of CEs for gamble AA.

The mean CE for gamble IA was 107.839, and the standard deviation of these CEs
was 68.733. On average, the 192 subjects in treatment robustness slightly preferred AA
to IA, but the difference is not statistically significant (mean = 1.73, t = .60).

We therefore have insufficient evidence to reject the hypothesis that subjects believe
in Independent Recomposition. A future experiment that replicates block Independent
with a larger sample size or larger payments may be able to reject this hypothesis; see

6This section explores the results from block Independent. We discuss block 3Ball in Section 5.2 since
this block was designed to address very different hypotheses from those currently being discussed.Block
3Ball was included in treatment robustness due to the time constraints of our online experiment.

7If the procedure is symmetrical, i.e. for any x ∈ [0, .5] it is just as likely to have exactly a .5 + x
proportion of red balls as it is to have a .5 − x proportion of red balls, then clearly gamble IA has a
win probability of exactly 50% while gamble AA has a win probability of 50% only if the procedure is
degenerate (and otherwise has a larger win probability). If the procedure is not symmetrical then gamble
IA will have a win probability larger than 50%, but that of AA will be larger still. For example, if the
procedure is “with probability .5 we make the ambiguous urn contain 50% red balls, and with probability
.5 we make it contain 100% red balls,” then gamble IA has win probability .625. In contrast, gamble AA
has a win probability .75.
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also Section 6 for discussion of a variation on block BoundedA that may be able to reject
this hypothesis in a future experiment.

Figure 8: Cumulative Distribution of CEs for AA, IA

Since the average CE for gamble AA was slightly larger than that of gamble IA,
treatment robustness provides no evidence that subjects believe in adversarial Dependent
Recomposition. Treatment order was designed to more generally test whether subjects
believe in Dependent Recomposition in any form, either adversarial or beneficial; as we will
see in Section 4.3, our findings there similarly provide no evidence of belief in Dependent
Recomposition.

This means that subjects’ preference for gamble R over gamble AA is unlikely to be
due to a false belief that gamble AA has lower win probability because urn A’s contents
are adversarially redetermined between draws.
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4.3 Do Subjects Believe Urn Contents are Dependently Redetermined
Between Draws?

Treatment order was designed to test whether subjects behave as if they believe Depen-
dent Recomposition is true. The gambles unique to treatment order are found in block
2BallMixed - an expanded version of block 2Ball that contains gambles not only RR and
AA as before but also gambles AR and RA. In each gamble, subjects draw two balls -
either from the same urn and with replacement or from distinct urns - in a certain order,
and they win $3 if the two balls have the same color. We summarize these gambles below:

RR: 1st ball from urn R; 2nd ball from urn R.

AA: 1st ball from urn A; 2nd ball from urn A.

AR: 1st ball from urn A; 2nd ball from urn R.

RA: 1st ball from urn R; 2nd ball from urn A.

Block 2BallMixedD contains duplicate questions of those in block 2BallMixed. In
treatment order, subjects complete the blocks 2BallMixed and Ellsberg as well as the du-
plicate blocks 2BallMixedD and EllsbergD. The order in which these blocks were presented
was determined randomly and independently for each subject assigned to this treatment.

If subjects believe in Dependent Recomposition, then they should report different
average CEs for gamble RA than they report for gamble AR. Indeed, whether subjects
believe the recomposition of urn A’s contents is done adversarially or beneficially, gamble
AR must have a win probability of exactly 50% since, whatever ball was drawn from
the first urn, there is a 50% chance of drawing a ball of that color from urn R in the
second draw. Meanwhile, if adversarial (beneficial) Dependent Recomposition is true,
then gamble RA has a win probability that is smaller (greater) than 50%.

Conversely, if Dependent Recomposition does not hold, then gambles AR and RA
both have a win probability of 50%. Finding that AR ∼ RA is therefore evidence that
subjects do not believe in Dependent Recomposition.

In reality, gambles RA and AR both have a win probability of exactly 50%, while
gamble AA must have a win probability of at least 50%. Subjects exhibiting preferences
AA ≻ AR ∼ RA ∼ RR would be consistent with them fully understanding these win
probabilities and basing their preferences on nothing but these win probabilities.

A preference RR ≻ AA would suggest that, if subjects understand the win probabil-
ities of these gambles, then they must harbor a distaste for either the mere presence of
ambiguity in a gamble or for the amount of ambiguity present in a gamble (as measured
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by the number or proportion of draws that come from ambiguous urns). Our results
from Section 4.1 strongly suggest that subjects understand that gamble AA has a win
probability that is larger than 50% (and hence larger than the win probability of RR),
but they do not directly imply that subjects understand the win probabilities of gambles
AR and RA to be exactly 50%.

Assuming subjects understand the win probabilities of these gambles, preferences
RR ≻ AA ≻ AR ∼ RA are consistent with subjects harboring a distaste for either
the mere presence or the amount of ambiguity in a gamble, but preferences RR ≻ AA ∼
AR ∼ RA are consistent only with subjects harboring additional distaste based on the
amount of ambiguity in a gamble. Indeed, both gambles AA and RA have ambiguity
present, but gamble AA has a larger win probability; hence an indifference between them
implies that an additional distaste for the second ambiguous draw must be offsetting the
increased win probability of gamble AA.

Figure 9: Cumulative Distribution of CEs for AA, RA, AR, RR

Figure 9 shows the CDFs of the empirical distributions of the CEs from treatment

19



order for gambles AR and RA. For comparison, it also shows the combined CDFs (from
all 4 treatments) of the CEs for gambles AA and RR.

Table 6 in Appendix A.2 contains summary statistics for each elicitation of CEs for
gambles RR, AA, AR, and RA. Table 7 in Appendix A.3 contains summary statistics
for each elicitation of the differences between the CEs RR, AA, AR, and RA.

The average CEs for the four gambles in block 2BallMixed are ranked in the order

RR > AA > AR > RA,

but the only statistically significant differences between these variables are those between
RR and each of the other three. Hence, we writing an indifference wherever we cannot
rule one out, subjects’ preferences are of the form

RR ≻ AA ∼ AR ∼ RA. (i)

Since AR ∼ RA, we fail to reject the null hypothesis and hence we have no evidence
that subjects believe in Dependent Recomposition.

Since RR ≻ AA, we cannot conclude that subjects base their preferences entirely on
the (true) win probabilities and nothing else. This finding is consistent with the preference
R ≻ AA observed across all treatments.

The indifference AA ∼ AR may be due to a false belief in Independent Recomposi-
tion. As discussed in Section 4.2, we lack sufficient evidence to rule out this hypothesis.
However, our results from Section 4.1 suggest that subjects largely understand the win
probabilities of 2-Ball gambles, making this Independent Recomposition hypothesis less
likely.

Assuming subjects understand the win probabilities of 2-Ball gambles, the indiffer-
ence AA ∼ AR suggests that subjects harbor an additional distaste for each additional
draw that comes from an ambiguous urn, rather than a constant level of distaste once
ambiguity is involved at all. We designed Block 3Ball from Treatment robustness, dis-
cussed in Section 5.2 below, to further assist us in determining whether additional draws
from ambiguous urns (even when they only improve win probabilities) make gambles less
preferable.

Overall, what can explain the preference for gamble R over gamble AA? The results of
treatment order provide no evidence that subjects believe in Dependent Recomposition,
and even if subjects fully believe in Independent Recomposition, such a belief is not
itself sufficient to produce a preference for gamble R over gamble AA. We conclude
that subjects harbor a distaste for the mere presence of ambiguity, or more likely for the
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amount of ambiguity present, in a gamble. Section 5.1 explores whether such a distaste
for ambiguity is equivalent to a distaste for complexity.

5 How Can We Explain The Two-Ball Ellsberg Paradox?
Having established that the Two-Ball Ellsberg Paradox is not entirely due to misunder-
standing, this result leaves open how to explain it. We believe that there may be several
channels that might explain it and our experimental design allowed us to several of them.
In Section 5.1, we investigate the extent to which ambiguity aversion can be considered
a form of complexity aversion. In Section 5.2, we explored whether we could define “an
amount” of ambiguity by designing a “Three-Ball Ellsberg” gamble and whether such an
’amount’ matters to explain the Two-Ball Ellsberg Paradox.

5.1 Ambiguity Aversion as a Form of Complexity

One might argue that the preference for gamble R over gamble AA is not due to an
aversion to the ambiguity present in gamble AA but instead to the complexity present in
gamble AA. “Complexity” is a concept difficult to define precisely, and it is not the aim
of this paper to do so. However, experiments like Halevy (2007)’s have established the
potential relevance of specific types of complexity, such as the compoundness of lotteries.
With this in mind, we test whether the preferences for gamble R over gamble AA is
indistinguishable from the preference for a simple 50-50 gamble like R over a compound
50-50 gamble, call it C as described in Table ??. We designed Treatment complexity to
test whether these specific types of complexity may be the primary factors generating the
Two-Ball Ellsberg paradox.

The gambles unique to treatment complexity are those in block Compound. In this
block, subjects play two gambles involving an urn C containing 100 balls, all red or
blue. Subjects are informed that before each gamble begins, the contents of urn C are
determined uniformly at random (i.e., each of its 101 possible balls compositions is equally
likely to be realized). We summarize these gambles below.

C: Choose a color. Draw one ball from urn C; win if it’s the color you chose.

CC: Draw two balls with replacement from urn C; win if they’re the same color.

In other words, block Compound consists of two gambles: a compound lottery C and
a “Two-Ball Compound” gamble CC. Gamble CC is the same as the ambiguous gamble
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AA, except its urn’s contents are determined by a known lottery rather than an unknown,
ambiguous procedure.

Block CompoundD contains duplicate questions of those in block Compound. In
treatment complexity, subjects complete the blocks Compound, Ellsberg and 2Ball as
well as the duplicate blocks CompoundD, EllsbergD and 2BallD. The order in which
these blocks were presented was determined randomly and independently for each subject
assigned to this treatment.8

Figure 10 shows the CDFs of the empirical distributions of the CEs from treatment
complexity for gambles C and CC. For comparison, it also shows the combined CDFs
(from all 4 treatments) of the CEs for gambles AA, R, and RR.

Figure 10: Cumulative Distribution of CEs for C, CC, R, RR, AA

The variable R− A measures subjects’ ambiguity aversion in the classic Ellsberg para-
dox, while R − RR measures their preference for a one-ball 50-50 gamble to a Two-Ball

8Table 6 in Appendix A.2 contains summary statistics for each elicitation of CEs for gambles C and
CC.
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50-50 gamble. R − C measures subjects’ preference for a one-ball 50-50 gamble over a
Compound 50-50 gamble, and R−CC measures their preference for a one-ball 50-50 gam-
ble over a Two-Ball Compound 50-50 gamble. Table 7 in Appendix A.3 contains summary
statistics for each elicitation of these CE differences.

Table 3 computes the ORIV-adjusted correlations9 between our central variable R −
AA and these other variables.

Dependent Variable: R − AA

Indep. Variable: R − A R − RR R − C R − CC

ORIV ρ 0.892 0.952 0.954 0.917
(0.017) (0.012) (0.024) (0.032)

N 708 708 158 158

Table 3: relationships between ce differences

As the table shows, the preference for R over AA is extremely tightly correlated with
each of the preferences mentioned in the previous paragraph. Thus, from the analyst’s
point of view, a subject exhibiting one of these “paradoxical” preferences to a certain
degree of strength (as measured by standard deviations above the population mean) makes
it exceedingly likely that she will exhibit these other “paradoxical” preferences to a similar
degree of strength. In particular, this finding replicates Halevy (2007)’s and Gillen et al.
(2019)’s conclusions that ambiguity aversion in the classic Ellsberg paradox is tightly
linked to failure to reduce compound lotteries.

Besides correlations, it is worthwhile to examine the differences between the variables
in the table above. R − AA is larger than all of R − A, R − RR, and R − C (t > 4 in all
cases) and is larger than R − CC by a statistically insignificant amount (t = 1.05). This
suggests that, according to most subjects, gamble AA is likely the “worst” of gambles
AA, A, RR, C, and CC - perhaps because gamble AA combines ambiguity and Two-Ball
complexity. The only possible competitor for being the “worst” is gamble CC, which is
identical to gamble AA except that its urn’s contents are determined randomly rather
than in an ambiguous manner.

9ORIV corrects for measurement error. If one does not do so, computed correlations are biased
towards 0. Hence, these ORIV-corrected correlations may appear larger than correlations typically com-
puted in other studies.
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5.2 The “Amount” of Ambiguity Matters

Block 3Ball, a part of treatment robustness, was designed to test whether subjects exhibit
a constant distaste for the mere presence of ambiguity in a gamble versus whether subjects
exhibit an additional distaste for larger amounts of ambiguity in a gamble (as measured
by the number or proportion of draws that come from ambiguous urns). The gambles in
block 3Ball were summarized above in Table ??.

If (as suggested by our results from Section 4.1), subjects understand the win proba-
bilities of the gambles, then a preference RAA ≻ AAA or RAA ∼ AAA indicates that
the additional amount of ambiguity present in gamble AAA makes it less preferable and
offsets its increased win probability, such that gamble RAA becomes at least as desirable
as AAA.

Lastly, block 3Ball allows us to compare RRR − RAA to RR − AA to see whether
it is the total number of draws that are from ambiguous urns or instead the proportion
of draws that are from ambiguous urns is key to subjects’ distaste for ambiguous draws.
Indeed, both gambles RAA and AA feature exactly two draws from ambiguous urns,
but gamble AA has all its draws from ambiguous urns while gamble RAA merely has
two-thirds of its draws from ambiguous urns. 3-Ball gambles have lower win probabilities
than 2-Ball gambles; for example, gamble RRR has half the win probability of gamble
RR. Nonetheless, subjects’ CEs for gamble RRR need not be precisely half the size of
their CEs for gamble RR. Thus, to compare subject i’s CE from a 2-Ball gambles to her
CE from an analogous 3-Ball gamble, we first must multiply her 2-Ball CE by the factor
RRRi/RRi. With this in mind, if we let

Xi =
RRRi

RRi
· (RRi − AAi)− (RRRi − RAAi)

then observing a statistically significant positive average value of X indicates that a larger
proportion of ambiguous draws is distasteful (holding constant the number of ambiguous
draws).

Figure 11 shows the CDFs of the empirical distributions of the CEs for gambles RRR,
AAA, and RAA from treatment robustness. Table 4 presents summary statistics of these
CEs.
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Figure 11: Cumulative Distribution of CEs for RRR, AAA, RAA

RRR AAA RAA

Mean 97.708 91.120 92.552
SD (67.310) (69.264) (68.172)

N 192 192 192

Table 4: CEs for 3-Ball gambles

Several striking features are apparent in these data. First, these reported CEs are
too large for a classical risk-averse agent who correctly calculates the probabilities of
winning.10 Notice that gamble RRR has a win probability of exactly 1

4 , but subjects
report an average CE of 97.7 cents for it - a value significantly larger than the risk-
neutral CE of 75 cents (t = 4.67). Similarly, subjects on average value gamble RAA

10Our results from the simple 50-50 gamble in block Ellsberg suggest that subjects are on average
slightly risk averse.
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at significantly more than half as much as gamble AA (difference of means = 37.77,
t = 11.03). Thus, subjects seemingly overweight the win probabilities of 3-Ball gambles.

Next, despite the general overweighting of win probabilities, comparisons between CEs
for these 3-Ball gambles remain qualitatively similar to the comparisons between the CEs
for Two-Ball gambles. Similarly to how subjects on average preferred RR to AA, we find
that subjects on average prefer RRR to AAA (mean = 6.59, t = 2.16), even though AAA
must have at least as large of a win probability as RRR.

On average, subjects reported a slight preference for gamble RAA over gamble AAA;
however, this difference was not statistically significant (mean = 1.43, t = .56). As
indicated above, this is consistent with a distaste for additional amounts of ambiguity
in a gamble, as measured by either the number or proportion of draws that come from
ambiguous urns.

The average value of the variable X defined above was negative and not statistically
significant (t = −.76).11 This indicates that, in terms of subjects’ distaste for the presence
of ambiguity, the proportion of draws that come from ambiguous urns is less relevant than
the total number of draws that come from ambiguous urns.

6 Concluding Remarks
Two-Ball gambles are a rich class of decision problems. Because they can involve ambiguity
but guarantee a minimum win probability that is at least as large as that of some other
gamble, they allow us to test whether subjects avoid ambiguity per se as opposed to
avoiding ambiguity because it may yield a worse outcome.

The most striking case of preferring a gamble with lower win probability is that sub-
jects preferred the 50-50 gamble R to the Two-Ball ambiguous gamble AA. This pref-
erence is closely correlated with the traditional Ellsberg preference for R over a 1-Ball
ambiguous gamble A, and also with the preference for R over the compound 50-50 gam-
ble C, as well as the preference for R over the Two-Ball 50-50 gamble RR. These close
relationships suggest that it may be difficult to separate an aversion to ambiguity per se
from an aversion to complexity.

It is implausible that subjects prefer R to AA simply due to a poor understanding of
Two-Ball gambles. In the block BoundedA, subjects correctly and strongly identified that
more unevenly distributed urns are more likely to win. Moreover, the lack of a “learning”

11Constructing the variables Xi required us to drop those 4 subjects who, in both elicitations, reported
a CE for gamble RR equal to 0. Leaving these subjects in the data set would lead to division by 0. Hence,
this t-test was run with n = 188 rather than n = 192.
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effect from being in the treatment containing block BoundedA suggests that even without
any additional examples or explanations, subjects understand 2-Ball gambles enough to
make reasonably accurate comparisons of their win probabilities.

Subjects exhibit a preference to avoid the mere presence of ambiguity in a gamble.
Using the number of balls drawn from ambiguous urns as a coarse measure of the “amount”
of ambiguity in a gamble, subjects seem to exhibit a stronger distaste for gambles with
larger amounts of ambiguity. Further models and experiments are needed to determine
the manner in which people react to situations involving various types of ambiguity.

In exploring what can explain the Two-Ball Ellsberg Paradox, treatments learning
and order show that there is no evidence of subjects holding false beliefs Uneven is Bad
or Dependent Recomposition. However, in block Independent from treatment robust-
ness, we failed to find sufficient evidence to reject the hypothesis that subjects wrongly
believe in Independent Recomposition. Later in this section, we discuss how a future
experiment might more easily falsify the hypothesis that subjects believe in Independent
Recomposition.

Even if subjects maintain some belief in Independent Recomposition, such a belief
alone is not sufficient to generate a preference for gamble R over gamble AA. Indeed,
even under Independent Recomposition, gamble AA must still have a win probability of
at least 50%. This preference suggests that individuals harbor a distaste for the mere
presence of ambiguity in a gamble.

In exploring whether the Two-Ball Ellsberg relates more to an aversion to complexity
or to ambiguity and whether such a distinction, in treatment complexity, we found that
the “Two-Ball Ellsberg Paradox” preference for gamble R over gamble AA was tightly cor-
related with other “paradoxical” preferences such as aversion to the complexity present in
compound lotteries. Although the magnitude of R − AA was larger than the magnitudes
of nearly all of these other preferences, one might nonetheless argue that the preference
for R over AA is due to a distaste for complexity rather than ambiguity.

Even in this case, we have identified the mere presence of ambiguity as a driver of
change in people’s behavior, perhaps through the complexity it introduces or perhaps
through other means. Whether explained as an instance of complexity or not, people
harboring a distaste for the mere presence of ambiguity has potentially widespread impli-
cations for economics. Subjects may prefer to gamble R to A in the classic Ellsberg para-
dox primarily because they dislike the mere presence of ambiguity and not, for instance,
entirely because they hold concern for worst-case scenarios, as Gilboa and Schmeidler
(1989) and many other models would suggest. Models ignoring a distaste for ambiguity
per se would incorrectly predict individuals’ behavior in a variety of situations. Hence,

27



new models may be required.
Besides, unlike in the original Ellsberg paradox, a subject cannot eliminate the am-

biguity present in gamble AA by introducing randomization in her choice of color (as in
Raiffa (1961)). Indeed, gamble AA does not ask subjects to choose a color. Even if we
presented subjects with a modified version of gamble AA wherein they choose either red
or blue and win if and only if both balls drawn were of the chosen color (and compared
this to a similarly modified version of gamble RR), it is still the case that randomizing
one’s color choice does not eliminate the ambiguity in the payoff of gamble AA. If p is
the (ambiguous) proportion of red balls in urn A, then this modified version of gamble
AA has win probability p2 when you bet on red and win probability (1 − p)2 when you
bet on blue.

Randomizing your choice of color 50-50 would thus mean that the gamble’s win prob-
ability is .5p2 + .5(1 − p)2 ≥ .25. In contrast, the modified version of gamble RR has
a .25 probability of winning, regardless of the color on which you bet (or whether you
randomized your choice of color). It is still the case that gamble AA has an ambiguous
win probability and that it is at least as large as (and in all but one case, strictly larger
than) that of RR.

Finally, we might imagine a further experiment to reject the independent recomposi-
tion hypothesis. Recall the Independent Recomposition hypothesis mentioned in Section
4.2: Do subjects imagine that our “two draws with replacement from the same ambiguous
urn” are actually “two draws from two ambiguous urns whose contents were determined
independently”? Our experiment can’t rule out a belief in Independent Recomposition
as a partial driver of the 2-Ball Ellsberg paradox, but here we suggest how a further
experiment might do so.

A variation on block BoundedA may be sufficient to show that subjects do not believe
in Independent Recomposition. Consider a version of gamble BB95−100 wherein instead
of the gamble specifying that the urn contains between 95 and 100 red balls, it merely
specifies that at least 95 of the 100 balls in the urn are of the same color. Suppose subjects
imagined the two draws from the specified urn as “one draw from each of two distinct
urns, whose contents were each determined in the specified manner but were determined
independently.” Then we should not find a strong preference for this version of gamble
BB95−100 over gamble AA.

Indeed, suppose subjects believe in Independent Recomposition. In that case, they
might easily imagine this new version of gamble BB95−100 to have a win probability close
to 50%. For although it is possible in their minds that “both urns” contain at least 95
red balls (or that both contain at least 95 blue balls), it is equally possible to them that
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“one urn contains at least 95 red balls while the other contains at least 95 blue balls.”
In other words, their CEs for this version of gamble BB95−100 should certainly not be
radically larger than their CEs for gamble AA. If such a radical difference in CEs as we
found between the original version of gamble BB95−100 and gamble AA were still found
under this modified version of BB95−100, this would suggest that a belief in Independent
Recomposition is not a factor generating our results.
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Appendix

A Main Tables

A.1 Raw Variable Names

Name Description Win Probability

Rj jth elicitation of CE for 50-50 urn of Ellsberg .5

Aj jth elicitation of CE for ambiguous urn of Ellsberg x

RRj jth elicitation of CE for 50-50 urn in 2BallMixed .5

AAj jth elicitation of CE for ambiguous urn in 2BallMixed x2 + (1 − x)2 ≥ .5

ARj jth elicitation of CE for “1st urn=A, 2nd=R” gamble of 2BallMixed .5

RAj jth elicitation of CE for “1st urn=R, 2nd=A” gamble of 2BallMixed .5

R3 CE for 3Ball with all three urns = R .25

A3 CE for 3Ball with all three urns = A x3 + (1 − x)3 ≥ .25

RAA CE for 3Ball with 1st urn = R, latter two urns = A .5[x2 + (1 − x)2] ≥ .25

IA CE for Independent (Two-Ball gamble with independent ambiguous urns) x1x2 + (1 − x1)(1 − x2)†

Cj jth elicitation of CE for single-urn gamble of Compound p
CCj jth elicitation of CE for Two-Ball gamble of Compound p2 + (1 − p)2 ≥ .5

BB40−60 CE for BoundedA with ambiguous urn containing 40-60 red balls x2 + (1 − x)2 ∈ [.5, .52]

BB60−100 CE for BoundedA with ambiguous urn containing 60-100 red balls x2 + (1 − x)2 ≥ .52

BB95−100 CE for BoundedA with ambiguous urn containing 95-100 red balls x2 + (1 − x)2 ≥ .905

Table 5: raw variable names
In the final column, x denotes a number between 0 and 1 that is determined by an
ambiguous procedure that is not known by subjects. In reality, x was determined to be
one of 0, .01, .02, · · · , .99, 1 uniformly at random. x1 and x2 denote numbers between 0
and 1 that were determined ambiguously but using the same procedure as each other.
Lastly, p is a number between 0 and 1 that subjects know will be determined uniformly
at random among 0, .01, .02, · · · , .99, 1.
† Note that the win probability for gamble IA will equal .5 if the procedure determining
x1 and x2 is symmetrical about .5 - that is, if the urns are just as likely to contain a
certain number of red balls as that to contain that same number of blue balls. Otherwise
this win probability will be greater than .5. See the footnote in Section ??.
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A.2 Summary Statistics for Raw Variables
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A.3 Summary Statistics for Derived Variables
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B Which Savage models are refuted by our results?
Our main paper shows how our experimental results falsify any model of decision-making
that uses the framework of Anscombe and Aumann (1963) and contains a monotonicity
axiom. However, some models of decision-making instead use the framework of Savage
(1954), wherein no such concept as “objective probability” exists. Indeed, in the Sav-
age framework, each “state” must encompass how all uncertainty will be resolved. If a
decision-maker’s preferences over acts satisfy certain properties, the Savage model then
defines subjective probabilities that represent that decision-maker’s “beliefs” about how
likely are the various states - whether or not those subjective probabilities match some
“objective” probabilities that one could calculate for those states.

If we allow arbitrary subjective probabilities - i.e. subjective probabilities that have
no relationship with the facts of the experiment that are described to the decision-maker
(DM) - then there is nothing stopping the DM from believing things such as “A draw
from urn R will always be Black, and two consecutive draws from urn A will always be of
opposite colors.” Such beliefs would be consistent with the axioms of probability theory
(and they would induce a preference for gamble R over gamble AA) but they would in
no way reflect the realities of the experiment.

Thus, our experimental results are certainly consistent with Savage’s theory if we do
not introduce any further axioms constraining the DM’s preferences over acts to be con-
sistent with the realities of the gambles presented to her. Therefore, we will demonstrate
that if we introduce some axioms to minimally constrain the DM’s preferences to be con-
sistent with the realities of our gambles, then the preferences exhibited by individuals in
our experiment are not consistent with Savage’s theory.

Below, we use the colors White (W) and Black (B) for balls in urns, and the letters R
and A respectively denote the “risky” (50 White balls, 50 Black balls) and “ambiguous”
(unknown proportions of White and Black balls) urns from our experiment.12

Our framework is as follows. A state is a tuple (n, r, a1, a2) where n ∈ {0, 1, · · · , 100}
and r, a1, a2 ∈ {W, B}. n represents the number of White balls in urn A, while r repre-
sents the color of ball (Black or White) that would be drawn from urn R and a1 and a2

respectively represent the 1st and 2nd balls that would be drawn from urn A. We let Ω
denote the set of all such states.

We wish to prove that if a DM’s preferences satisfy Savage’s axioms along with a few
axioms that express the fact that “the DM’s preferences have to be consistent with the

12In our experiment, balls are Red or Black. However, since the letter R denotes the “risky” urn, to
avoid confusion about whether and “R” means a color of a ball or a type of urn, here we speak of the
color White instead of Red.
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information we’ve given her about our gambles,” then she cannot strictly prefer gamble
R to gamble AA.

Let “1” denote winning the monetary prize ($3 in our experiment) and “0” denote not
winning the monetary prize. Let ≿ be the DM’s preferences. As in Savage’s framework,
let 1E0 denote the act that pays out the monetary prize in states in the event E and pays
out nothing otherwise. We assume the following axioms:

A0. ≿ satisfies Savage’s axioms, and also 1 ≻ 0 (i.e., the constant act paying out the
monetary prize is preferred to the constant act paying out nothing).

By Savage’s Theorem, we know that A0 implies that the DM has a subjective proba-
bility measure P on states and a utility function U : {0, 1} → R such that U(1) > U(0).
In our case where there are only the two prizes 1 and 0, we know by Savage’s axiom P4
that for any two events A and B,

P[A] ≥ P[B] ⇐⇒ 1A0 ≿ 1B0. (1)

Thus, to show that our DM’s preferences must satisfy AA ≿ R, it suffices to show that

P
[
{(n, r, a1, a2) ∈ Ω : act AA wins}

]
≥ P

[
{(n, r, a1, a2) ∈ Ω : act R wins}

]
. (2)

To show this, we need to introduce some axioms that specify that the DM’s preferences
must reflect the information given to her about the gambles.

A1. Let [R = W] denote the event that we draw a White ball from urn R, i.e. [R =

W] = {(n, r, a1, a2) ∈ Ω : r = W}. Similarly, let [R = B] = {(n, r, a1, a2) ∈ Ω : r = B}
be the event that we draw a Black ball from urn R. Then

1[R=W]0 ∼ 1[R=B]0.

By (1), A1 implies that P[R = W] = P[R = B], which means that

P
[
{(n, r, a1, a2) ∈ Ω : act R wins}

]
= .5.

Thus, to prove (2) and be finished, it suffices to show that

P
[
{(n, r, a1, a2) ∈ Ω : act AA wins}

]
≥ .5. (3)

This will follow from our last axiom:
A2. (Some axiom that implies that conditional on the ambiguous urn’s number of

white balls N, the two draws A1 and A2 from urn A are independent of each other and
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are identically distributed.)
(In fact, these draws are also independent of the draw from urn R, but we don’t need

this to complete our proof.)
For any i ∈ {0, 1, · · · , 100}, let [N = i] denote the event that urn A contains exactly

i white balls, i.e.
[N = i] = {(n, r, a1, a2) ∈ Ω : n = i}.

Similarly, for any x ∈ {W, B}, let [A1 = x] denote the event that the first ball drawn
from urn A will have color x, and let [A2 = x] be the event that the second ball drawn
from urn A has color x.

Given A2, we can argue the following:

P
[
{(n, r, a1, a2) ∈ Ω : act AA wins}

]

= P
[
{(n, r, a1, a2) : (a1, a2) = (W, W) or (a1, a2) = (B, B)}

]

= P
[(
[A1 = W] ∩ [A2 = W]

)
∪
(
[A1 = B] ∩ [A2 = B]

)]

= P
(
[A1 = W] ∩ [A2 = W]

)
+ P

(
[A1 = B] ∩ [A2 = B]

)
(since these events are disjoint, and P must satisfy the axioms of probability)

=
100

∑
i=0

[
P
(
[A1 = W]∩ [A2 = W]

∣∣ N = i
)
+P

(
[A1 = B]∩ [A2 = B]

∣∣ N = i
)]

·P[N = i].

In this last line, we do not worry about the fact that these conditional probabilities are not
defined if the individual’s subjective probability P[N = i] is 0. Indeed, in this case, the
term in large brackets (that contains all the conditional probabilities) will be multiplied
by P[N = i] = 0 and hence will not contribute anything to the sum. Thus, interpreting
the expression in this way, this last line is a legitimate application of the Law of Total
Probability.

To proceed from here, we just notice that A2 grants independence between the two
draws from urn A once we know condition on the composition of urn A. Thus, we can
factor the probabilities:

=
100

∑
i=0

[
P(A1 = W|N = i) ·P(A2 = W|N = i)+P(A1 = B|N = i) ·P(A2 = B|N = i)

]
·P[N = i].
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Using the fact from A2 that the draws from urn A are conditionally identically distributed,
this equals

=
100

∑
i=0

[
P(A1 = W|N = i)2 + P(A1 = B|N = i)2

]
· P[N = i].

Finally, using the fact that P must satisfy the axioms of probability and that the events
[A1 = W] and [A1 = B] are mutually exclusive and exhaustive, this equals

=
100

∑
i=0

[
P(A1 = W|N = i)2 +

(
1 − P(A1 = W|N = i)

)2
]
· P[N = i].

Since the inequality p2 + (1− p)2 ≥ .5 holds for any p ∈ [0, 1], this implies the inequality

≥
100

∑
i=0

.5 · P[N = i] = .5,

where the last equality follows since the events [N = 0], [N = 1], · · · , [N = 100] are
mutually exclusive and exhaustive. Thus, we have show that (3) holds, as desired.
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C Future Research: Is it really a distaste for the mere presence
of ambiguity?

C.1 New Experiment 1

Description of Gamble. “Urn R has 50 red and 50 blue; urn A has 100 balls in total, all
red or blue, with at least 50 of them red. You win if you draw a red ball. Do you prefer
to play this gamble with urn R or urn A?” Or, perhaps we guarantee instead that “Urn
A contains between 50 and 60 red balls; the rest of its 100 balls are blue.”

Expected finding. People prefer urn A since it has at least as high of a chance of winning
as urn R does.

Possible Critique from this finding. People don’t exhibit any distaste for the mere pres-
ence of ambiguity; they merely fail to calculate odds correctly when you make things
opaque/complicated enough. All of our 2Ellsberg findings are an artifact of the fact that
we’ve framed the gambles one way rather than a more straightforward way.

Responses to these critiques. Notice that people do “correctly” identify that BB95−100 ≻
BB60−100 ≻ BB40−60. Furthermore, their preference for RR over AA is robust to being
“nudged” by the BoundedA block. This all suggests that the original preference for RR
over AA cannot entirely be due to “a lack of understanding that more unequal urns are
better in a 2-ball gamble.”

But what, then, could explain why our results show a distaste for ’ambiguity that can
only help you’ while New Experiment 1 shows the opposite? Perhaps the key difference is
that New Experiment 1 frames things in a way that immediately suggests a probabilistic
dominance of urn A over urn R, while our AA vs. RR question does not. Indeed, perhaps
most people do not employ probabilistic thinking in pretty much any scenarios - they
only use probabilities when “forced” to do so by the odds of winning being given to them
(nearly) explicitly. A comparison between urns A and R in New Experiment 1 forces
the observation that “the minimum win probability in urn A is at least as high as the
win probability in urn R,” but in 2Ellsberg it does not suggest this observation since the
conditional win probabilities (for each ball composition of urn A) are ’hidden’.
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C.2 New Experiment 2

Description of Gamble. Elicit CEs for an AA gamble but this time specify that urn A
has one of the following three ball compositions:

• 50 red balls and 50 blue balls.

• 75 red balls and 25 blue balls.

• 25 blue balls and 75 red balls.

Also, elicit people’s CEs for 2-ball gambles from risky urns (call them urns R, S, and T)
that are 50-50, 75-25 and 25-75 in composition. Randomize the order of whether you ask
about gambles RR, SS and TT before or after gambles AA and RR.

In each of the 75-25 cases, urn A has a .625 probability of winning. It would be
interesting (and a counterexample to Savage, etc.) if people prefer the 75-25 risky urns
to the 50-50 risky urn but prefer the 50-50 risky urn A above.

This experiment has the advantage of being simpler than our current experiment - it
only has 3 possibilities instead of 101.

We could try also running the same experiment but with e.g. 60-40 and 40-60 in place
of 75-25 and 25-75 above. Try also e.g. 90-10 and 10-90. See how extreme you have to
make the asymmetry before people exhibit a preference for RR over AA.

C.3 Can People be “Nudged” into Avoiding Dominated Options?

In treatment learning, we exposed subjects to gambles that could help them understand
that more uneven urns have higher win probabilities in two-ball gambles (if they did not
already understand this). Exposure to these gambles constitutes a very indirect form of
learning - subjects were never told that more uneven urns are better; instead they were
given a chance to figure this out for themselves if they had not done so already. We
found that this indirect learning did not at all reduce subjects’ “paradoxical” choice of
the dominated gamble R over the ambiguous gamble AA. We therefore concluded that
subjects’ choice to avoid AA is not due to a lack of understanding but instead due to a
distaste for the presence of ambiguity.

In contrast, Kuzmics et al. (2020) found that subjects’ paradoxical choice for avoid-
ing draws from ambiguous urns - even at the cost of choosing a dominated option - can
be reduced by providing information that clarifies how a certain option, potentially in-
volving ambiguous draws, yields a larger win probability than the unambiguous option.
Specifically, in two of their experimental treatments they show subjects two videos, both
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containing factually correct information, prior to eliciting subjects’ choices. One video,
“V1,” argues why a Raiffa (1961)-style choice to bet on a single draw from an ambiguous
urn, choosing the color on which to bet based on the result of a coin flip, will increase the
probability of winning relative to an unambiguous 49% win probability gamble. Mean-
while, the other video “V2” merely argues that, given that the subject has already bet on
a particular color in an ambiguous urn, no conclusion can be reached about the subject’s
probability of winning. V1 is meant to provide information that might encourage a choice
of a “better” option (the Raiffa-style one that involves drawing from an ambiguous urn),
while V2 is meant to provide information that might encourage avoiding options involving
ambiguous draws.

The authors include these videos in parts of two treatments. In their “coin” treatment
the authors allow subjects to commit to placing a bet on the ambiguous urn based on
the result of a coin flip carried out for them automatically, while in their “no coin”
treatment they do not offer this option but merely suggest that subjects could imagine
flipping a coin for themselves. In parts of both treatments they show subjects videos V1
and V2 before eliciting choices; in some other parts they do not show these videos. In
the “coin” treatment they find that exposure to V1 and V2 decreases the proportion of
subjects who choose a dominated option (that involves no ambiguity), while in the “no
coin” treatment they find that such exposure increases it. The authors therefore argue
that subjects’ choices to avoid options involving ambiguity - even if it means choosing
dominated options - is not due to a deliberate preference but instead due to a lack of
understand of the options before them.

What might explain the difference in results between our experiment and that of these
authors? One possible explanation is that subjects do (at least mostly) understand the
options before them in both experiments and that videos V1 and V2 mostly create an
“experimenter demand” rather than additional understanding - with the experimenter
demand for the Raiffa option in V1 being stronger than the experimenter demand for
the unambiguous option in V2. Indeed, in the “coin” treatment subjects can explicitly
demonstrate compliance with the experimenters’ suggestions by having their choice to bet
using the Raiffa coin toss be recorded as such, while in the “no coin” treatment they have
no such option and instead opt to record themselves satisfying the (weaker) suggestion
of V2 to avoid ambiguous draws. In contrast, our experiment does not make any explicit
arguments suggesting why subjects might want to choose one option or another; it merely
presents them with choice problems that can help create understanding if it does not exist
already. Such learning induces no change in behavior since it does not create experimenter
demand.
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It is also possible that this disparity between our results and these authors’ results is
simply due to a difference in the nature of the experiments: perhaps subjects generally
understand the gambles in our experiment without the need of any explanation, while
the same is not true of Kuzmics et al. (2020)’s experiment. In this case, further research
is warranted to determine the difference between those circumstances in which subjects
can be “nudeged” into choosing dominant-but-ambiguous options and those in which they
cannot.
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D Variable Names

Name Definition Description

Ej K j − U j CE difference in j-th elicitation of Ellsberg
Zj K j − UU j CE difference in j-th elicitation of 2Stage
H j K j − Cj CE difference in j-th elicitation of 50-50 vs. Halevy compound 50-50
Lj K j − CCj CE difference in j-th elicitation of 2-Stage simple 50-50 vs. compound 50-50

IE
1{E1 + E2 > 0} Indicator for falling for classic Ellsberg paradox

IT
1{T1 + T2 > 0} Indicator for falling for 2-Stage Ellsberg paradox

IH
1{H1 + H2 > 0} Indicator for falling for Halevy paradox

IL
1{L1 + L2 > 0} Indicator for falling for unambiguous 2-Stage paradox

F0−2 .5(UU1/KK1) + .5(UU2/KK2) Ratio of certainty equivalents for UU and KK (averaged across 2 elicitations)
F0−3 UUU/3K Ratio of certainty equivalents for UUU and KKK
F1−3 KUU/3K Ratio of certainty equivalents for KUU and KKK

IB Treatment = C & did “Bounded U” first Indicator variable for having the “learning” section first
IR R2 = 1 and R3 = 0 Indicator variable for choosing the correct color in both practice questions
IA all Aj = 1 Indicator variable for get all 3 attention screeners correct

Table 8: Contingent Variable Names

T1 T2 E1 E2 H1 H2 L1 L2

Mean 9.92 6.90 13.49 10.79 1.21 6.74 11.31 3.13
95% Conf. Interval [ 6.39 , 13.44 ] [ 3.43 , 10.38 ] [ 9.99 , 17.00 ] [ 7.22 , 14.36 ] [ -7.10 , 9.52 ] [ -1.28 , 14.76 ] [ 2.73 , 19.89 ] [ -5.37 , 11.64 ]

ρ 0.152 0.287 0.134 0.221
1 − ρ 0.848 0.713 0.866 0.779
se 1 − ρ 0.033 0.032 0.067 0.066

N 880 880 220 220

Table 9: Decomposed Summary Statistics
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E Experimental Design Details

E.1 Treatments Blocks and Gambles

Our experiment contains four treatments, each comprising a specific number of blocks
of gambles. A block contains either one or several similar gambles. Before each block,
subjects view the relevant instructions. Each elicitation within a given block contains (1)
a reiteration of the block’s instructions, (2) the new details of that particular elicitation,
highlighted in yellow, and (3) a report of the subjects’ CE for that elicitation.13 Subjects
must report their CE before moving on to the next elicitation screen. Elicitations are
uniformly, independently, and randomly ordered between the subjects within a given
block. Each treatment may only contain 11 or 12 elicitations to accommodate online
cognitive fatigue and prevent attention deficits.

Each treatment is divided into blocks consisting of one or multiple questions about a
gamble for which the subjects must report their CEs.

In each question, “winning” the gamble means a payoff of 300 tokens (=$3), and
“losing” means a payoff of 0 tokens. The notation “[x red, y blue]” means an urn that
contains exactly x red balls, y blue balls, and no other balls. Similarly, “[Unknown red,
Unknown blue]” means the urn contains an unknown number of red and blue balls and
no other balls. For notational convenience, = [50 red, 50 blue] and A= [Unknown red,
Unknown blue].

Subjects were informed that the contents of urn A would vary from question14 to
question (i.e., the contents of ambiguous urns are re-determined between questions). In
practice, the contents of each urn A were determined by drawing an integer X uniformly
at random between 0 and 100. A virtual urn containing X red balls and 100 − X blue
balls was created. Subjects were not informed of this procedure to determine the contents
of ambiguous urns.

To perform ORIV, we double-elicit subjects’ CEs for all gambles of central importance
to our analysis; however, due to time constraints and concerns that subjects may “zone
out” and provide especially noisy answers if asked too many repeated similar questions,
we could not double-elicit CEs for all gambles. We focused on double eliciting the most
relevant gambles to our paper. We will attach the symbol D to the name of an elicitation
when we refer to a duplicate of this later.

Table 10 summarizes the structure of each treatment. Each item in bold is one of
13Certain elicitations require the subject to choose a color (i.e., red or blue) to place a bet. For these

elicitations, the subject must select a color before they can report their CE, which appears on the screen.
14In the remaining of our paper, we will use the words “elicitations” and “questions” as synonyms.
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the blocks described in Section E.1. Multiple items within parenthesis ( ) mean that the
order of these items is determined uniformly at random, independently for each subject.
Items within brackets [ ] are not randomized; they always appear in the order listed within
them.

In each treatment, we double-elicit subjects’ CEs for the two classic Ellsberg gambles
as well as the two Two-Ball gambles in the 2Ball block (which also appear within its
longer version 2BallMixed). Thus, using data from all four treatments, we can robustly
determine if subjects prefer RR (or R) over AA, even though the latter is more likely to
win. Furthermore, by comparing a subject’s responses to these Two-Ball gambles with
their responses to the classic Ellsberg gambles, we can determine the relationship between
ambiguity aversion, risk aversion, and “falling for” the Two-Ball Ellsberg paradox.

Treatment Contents of Treatment

paradoxes
[
(Ellsberg, 2BallMixed),

(EllsbergD, 2BallMixedD)
]

complexity
[
(Ellsberg, 2Ball, Compound),

(EllsbergD, 2BallD, CompoundD)
]

nudging
(

BoundedA,[
(Ellsberg, 2Ball), (EllsbergD, 2BallD)

] )
robustness

(
(Ellsberg, 2Ball),

(3Ball, Independent),
(EllsbergD, 2BallD)

)
Table 10: treatments

E.2 Elicitation Protocol: Multiple Price List

As mentioned in the introduction, we elicit the subjects’ CEs using MPLs to determine
their preferences over various acts. Each question introduces a gamble, as detailed above.
When agents do not make choices that correspond to the expected utility theory pre-
dictions, using the MPL mechanism may be problematic. For example, Karni and Safra
(1987) demonstrated that incentive-compatible mechanisms could not elicit CEs if the
independence axiom does not hold. Despite this concern, the MPL mechanism has been
used extensively in experiments where agents face risk or ambiguity when making choices,
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many of which included the possibility of their choices over lotteries not satisfying the
predictions of expected utility theory. This is perhaps because the MPL offers several
advantages over other mechanisms. Andreoni and Kuhn (2019) argue that the MPL mech-
anism is extremely easy for subjects to understand and yields more consistent choices than
other standard mechanisms for eliciting risk preferences. Furthermore, it provides exter-
nally valid predictions once adjusted for measurement error.

Our experiment’s MPL table contains 31 rows corresponding to fixed prize values
between 0 and 300 tokens in increments of 10 tokens. There are 32 possible locations
where a subject can place their “cutoff” (below which they prefer the gamble and after
which they prefer the fixed prize). If a value x ∈ {0, 10, . . . , 290} exists such that the
subject prefers the gamble to receive x tokens but prefers receiving x + 10 tokens to the
gamble, then this was recorded numerically as “the subject’s CE is x + 5.” If the subject
preferred 0 tokens to the gamble, the CE was 0. Finally, if the subject preferred the
gamble to 300 tokens, the CE was 300.

In each row, subjects select either the left column (“Receive fixed payment”) or the
right column (“Play the gamble”). To make the process less time-consuming and enforce
the consistency of choices, the subject’s selection in each row is automatically completed
based on a limited number of clicks. For example, suppose a subject clicks to indicate a
preference for 150 tokens instead of the gamble. In that case, the JavaScript algorithm au-
tomatically completes rows 160 through 300 to indicate that the subject prefers receiving
tokens to the gamble. Similarly, if the subject prefers the gamble instead of receiving 140
tokens, the software automatically completes rows 0 through 130 to indicate a preference
for playing the gamble over receiving tokens. Subjects can revise their choices (consistent
with the autocompletion rules above) before moving on to the next question.

Each question contains, at most, one row in which the subject’s preference switches
from preferring the gamble to preferring a specific amount of tokens. The subject’s CE
for the gamble must lie between the token amounts in this row and the previous row. We
then record the subject’s CE as the midpoint between the two rows, i.e., a number ending
in 5. If the subject prefers the gamble over 300 tokens or 0 tokens to the gamble, then no
such “switching” row exists. Nonetheless, if the subject prefers the gamble over a fixed
payment of 300 tokens, their CE may be 300 tokens, as the gamble cannot pay more than
300 tokens. Similarly, if the subject prefers 0 tokens to the gamble, their CE is 0. We
record the subject’s CE as 300 or 0 in these cases.
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E.3 Payment Method: Fixed Sum and Incentive Mechanism

Fourteen questions are selected uniformly at random for payment from among all the
questions in a given treatment to make this mechanism incentive compatible. Some
experiments eliciting risk attitudes select only a single question for payment, avoiding
the possibility of subjects using their choices in different questions to hedge their payoffs;
however, doing so creates a significant variance in the monetary payments that different
subjects receive, which was undesirable for this experiment. If a question is selected for
payment, then one row of that question’s MPL table is selected randomly, and the subject
is given whatever their preference is in that row. For example, if row 120 was selected
and the subject preferred the gamble to 120 tokens, then the gamble is simulated, and
the subject wins the prize (usually 300 tokens) or receives 0 tokens if they lose. If the
subject preferred 120 tokens to the gamble, they would receive 120 tokens.

To eliminate the possibility of wealth effects and ensure that subjects did not “learn”
the distribution used to resolve ambiguity, the payoffs for each question (as well as which
questions were selected for payment) were not determined until after the subject com-
pleted the entire experiment. Subjects were invited to practice with the MPL mechanism
(before the experiment) and observe a summary of the results; they were informed that
these practice questions would not be selected for payment. Furthermore, none of these
questions involved ambiguity; hence, none presented an opportunity to learn how this
experiment resolved ambiguity.

At the end of the experiment, subjects were presented with a table summarizing the
questions selected for payment, the row selected in that question’s MPL, the subject
preference in that row, and (if they preferred the gamble) whether they won the gamble.
Moreover, the subject’s total payment was $1 for every 100 tokens earned, in addition to
a fixed payment of $2 for participation.

E.4 Double Elicitations, Measurement Error, and Attention Screeners

As mentioned in the introduction, laboratory experiments eliciting subjects’ CEs for gam-
bles are often subject to significant measurement errors. Such errors can create significant
bias in estimated correlations and regression coefficients if not considered. Methods to
correct for such measurement error involve eliciting subjects’ CEs twice for each gamble
of interest.

Although many techniques can then be used to eliminate the bias in estimating coeffi-
cients and correlations; the ORIV proposed in Gillen et al. (2019) generally estimates these
parameters with lower standard errors. Hence, we rely on the latter. Essentially, this esti-

49



mation entails using multiple instrumentation strategies simultaneously, then combining
the results.

Due to the complex nature of some of the questions, it is concerning that some sub-
jects may not comprehend the questions or may give random responses to complete the
experiment quickly. Although most of the financial reward comes from incentivized MPL
questions, there is a small fixed reward for merely completing the experiment. To avoid
this concern, subjects were screened based on three criteria:

(1) After receiving general instructions concerning the experiment, subjects were given a
basic comprehension quiz with three questions regarding those instructions. Subjects
unable to correctly answer the three questions were removed from the experiment.
They received a small fixed amount for their two-minute participation and were made
aware of this scenario when they offered their consent.

(2) Between each of the experiment’s major sections, subjects were given a standard
attention-screening question.

(3) If, in the course of our double elicitation of a subject’s preferences, two reported CEs
for the same question differed by more than 100 tokens—that is, one-third the size of
the 300-token table—then the subject was deemed to be paying insufficient attention
to the experiment.15

Subjects failing criterion (1) were immediately removed from the experiment and received
a minimum payment.16 Subjects failing at least one of the attention-screening questions
in (2) were subsequently removed. Finally, subjects deemed to be paying insufficient
attention were removed according to (3). As a result, out of an initial 880 subjects, 172
were excluded from our data set.

F Prolific Data Collection Details

F.1 Fair Attention Check

We used attention checks. This has been developing these last few years. However, amid
those attention checks, some are valid and others are not. Those not valid are..;Those
valid, called “fair attention checks” are…We used these latter ones, following Prolific stan-
dards.

15Other thresholds for exclusion, such as “differed by more than 150 tokens,” yield qualitatively similar
results to those below. See Appendix.

16See section ?? for details.
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F.2 Preventing Duplicates

Submissions to studies on Prolific are guaranteed to be unique by the firm17. Our system
is set up such that each participant can have only one submission per study on Prolific.
Each participant will be listed in your dashboard only once, and can only be paid once.
On our side, we also prevent participants from taking up our experiment several times in
two steps. First, we enable the functionality “Prevent Ballot Box Stuffing,” which permits
to…Second, we check the participant ID and delete the second submission from the data
set of the same ID if we find any.

Drop-out Rates. Here, put the drop out (or in the main text).

F.3 High vs. Low-quality Submissions

Participants joining the Prolific pool receive a rate based on the quality of their engage-
ment with the studies. If they are rejected from a study, then they receive a malus. If
they receive too much malus, then they are removed by the pool from the company18.
Based on this long term contract, participants are incentivized to pay attention and follow
the expectations of each study. Hence, a good research behavior has emerged on Prolific
according to which participants themselves can vol voluntarily withdraw their submis-
sions if they feel they did a mistake such as rushing too much, letting the survey open for
a long period without engaging with it, and so on19. According to these standards, we
kept submissions rejections as low as possible, following standard in online experimental
economics. Participants who fail at least one fair attention check are rejected and not
paid. Following Prolific standards, participants who are statistical outliers (3 standard
deviations below the mean) are excluded from the good complete data set.

F.4 Payments And Communication

We make sure to review participants’ submissions within 24-48 hours after they have
completed the study. If we accept their submission, they receive their fixed and bonus
payment within this time frame. Otherwise, we reject their submissions and send them
a personalized e-mail(20), detailing the reason for the rejection, leaving participants the

17See Prolific unique submission guarantee policy here.
18See Prolific pool removal Policy here.
19See Prolific update regarding this behavior here.
20Partially-anonymized through Prolific messaging app which puts the researcher’s name visible to

the participants and only the participants visible to the researcher.
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opportunity to contact us afterward if they firmly believe the decision to be unfair (mo-
tivate their perspective). Participants can also contact us at any time if they encounter
problems with our study or have questions about it.
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G Variables Dictionary

G.1 Independent Variables

Stata/Paper Data File Elicitation Description

K1 Balc1a 1st elicitation of risk preferences in one-stage Ellsberg
K2 Final1a 2nd elicitation of risk preferences in one-stage Ellsberg
U1 Balc1d 1st elicitation of ambiguous preferences in one-stage Ellsberg
U2 Final1c 2nd elicitation of ambiguous preferences in one-stage Ellsberg
KK1 Balu1a 1st elicitation of risk preferences in two-stage Ellsberg
KK2 Matu1a 2nd elicitation of risk preferences in two-stage Ellsberg
UU1 Balu1b 1st elicitation of ambiguous preferences in two-stage Ellsberg
UU2 Matu1b 2nd elicitation of ambiguous preferences in two-stage Ellsberg
UK1 Balu1c
UK2 Matu1c
KU1 Balu1d
KU2 Matu1d
KKK Balu2a elicitation of risk preferences in 3-stage Ellsberg
UUU Balu2b elicitation of ambiguous preferences in 3-stage Ellsberg
KUU Balu2c
I I Balu4 2-Stage gamble with indepedent ambiguous urns

C1 Lotte1 1st Halevy compound 50-50 lottery
C2 Final2a

CC1 Lotte2 1st 2-stage Halevy
CC2 Final2b

BB40−60 Cmu1b 2-stage Ellsberg with bounded U (40 ≤ R ≤ 60)
BB60−100 Cmu2b 2-stage Ellsberg with bounded U (60 ≤ R ≤ 100)
BB95−100 Cmu4b 2-stage Ellsberg with bounded U (95 ≤ R ≤ 100)
R1 Answered “red” on Mp1
R2 Answered “red” on Mp2 Picked the CORRECT color in practice question 2
R3 Answered “red” on Mp3 Picked the WRONG color in practice question 3
P1 Q78 Indicator variable for get P1 = 1, i.e., correct := “32 Blue balls and 95 Red balls”
P2 Q1777 Indicator variable for get P2 = 1, i.e., correct := “2”
P3 Q80 Indicator variable for get P3 = 1, i.e., correct := “$1”
A1 Q13 Indicator variable for get A1 = 1, i.e., correct := “orange”
A2 Q22 Indicator variable for get A2 = 1, i.e., correct := “11”
A3 Q30 Indicator variable for get A3 = 1, i.e., correct := “blue”

independent variable names

G.2 Dependent Variables

Note on the naming convention for first few items: E=Ellsberg, T=Two-stage, H=Halevy,
L = compound Lottery
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Stata/Paper Definition Description

Ej K j − U j Certain equivalent difference in j-th elicitation of 1-stage Ellsberg
T j KK j − UU j Certain equivalent difference in j-th elicitation of 2-stage Ellsberg
H j K j − Cj Certain equivalent difference in j-th elicitation of 50-50 vs. Halevy compound 50-50
Lj KK j − CCj Certain equivalent difference in j-th elicitation of KK vs. CC

F0−2 .5(UU1/KK1) + .5(UU2/KK2) Ratio of certainty equivalents for UU and KK (averaged across 2 elicitations)
F0−3 UUU/KKK Ratio of certainty equivalents for UUU and KKK
F1−3 KUU/KKK Ratio of certainty equivalents for KUU and KKK

IE E1 + E2 > 0 Indicator variable for having a larger Certain equivalent for K than U
IT T1 + T2 > 0 Indicator variable for having a larger Certain equivalent for KK than UU
IH H1 + H2 > 0 Indicator variable for having a larger Certain equivalent for K than C
IL L1 + L2 > 0 Indicator variable for having a larger Certain equivalent for KK than CC
IB Treatment = C & did “Bounded U” first Indicator variable for having the “learning” section first
IR R2 = 1 and R3 = 0 Indicator variable for choosing the correct color in both practice questions
IA all Aj = 1 Indicator variable for get all 3 attention screeners correct

dependent variable names
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MPL Example
Complete experimental instructions available online
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