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Abstract 
 
We study the interaction between algorithmic advice and human decisions using high-resolution 
hotel-room pricing data. We document that price setting frictions, arising from adjustment costs 
of human decision makers, induce a conflict of interest with the algorithmic advisor. A model of 
advice with costly price adjustments shows that, in equilibrium, algorithmic price 
recommendations are strategically biased and lead to suboptimal pricing by human decision 
makers. We quantify the losses from the strategic bias in recommendations using as structural 
model and estimate the potential benefits that would result from a shift to fully automated 
algorithmic pricing. 
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1 Introduction

Organizations increasingly rely on prediction algorithms for decision making, with applica-

tions ranging from hiring policies at tech firms (Hoffman et al., 2018), bail decisions by judges

(Berk, 2017; Kleinberg et al., 2018; Ludwig and Mullainathan, 2021), to pricing (Chen et al.,

2016b; Miklós-Thal and Tucker, 2019; Calvano et al., 2020; Garcia et al., 2022; Hansen et al.,

2021; Harrington Jr, 2022; Brown and MacKay, 2023; Abada and Lambin, 2023; Assad et al.,

forthcoming). In many of these applications, machines augment human decisions by acting

as advisors to human managers who retain the final decision right. It is well understood that

advice can be successful only to the extent that incentives of the human decision maker and

the advisor are sufficiently aligned.1 Although recent theoretical work has considered the

effects of misaligned incentives in human-algorithm interactions on communication (Cowgill

and Stevenson, 2020) and delegation decisions (Athey et al., 2020), empirical evidence on how

algorithmic advice and human decision making work together in strategic situations remains

scarce at best.

In this paper, we study the interaction between algorithmic price recommendations from

an independent advisor and actual price setting behavior by human managers in a hotel-

room pricing context. We develop a parsimonious model of advice that allows us to identify

a novel source of conflict between the algorithmic advisor and the human decision maker

originating from price-adjustment costs humans face. This strategic conflict of interest can

lead to substantially distorted recommendations by the algorithm and suboptimal pricing

decisions by human managers. We believe this is the first paper to model and estimate a

conflict of interest in communication arising from differences in adjustment costs. This conflict

of interest is likely to be ubiquitous, especially in algorithmic recommendation systems where

the ‘human in the loop’ has access to an easily implementable default option (see section 8

for examples).

For our empirical analysis, we leverage a dataset containing millions of algorithmic price

recommendations of an independent revenue management company (the algorithm’s de-

signer), prices set by hotel managers (human manager), and the corresponding bookings

from nine different hotels. Using this data, we estimate a structural model of advice and

quantify the resulting losses from mispricing. Our main counterfactual experiment shows

that full delegation to the recommendation algorithm significantly outperforms the current
1 See Sobel (2013) for an excellent summary of the literature on advice with an informed sender and

uninformed receivers. We discuss the contributions of our study to this literature in section 2.
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organizational setting in which human managers set prices. The status quo setting reduces

the expected loss from mispricing by 1 to 2 percent compared to not changing prices at all,

while delegation to the algorithm would reduce the expected loss across hotels by 4 to 36

percent.

In our setting, both the revenue management company and the hotel manager benefit

from maximizing the hotel’s profits.2 The primary source of conflict we consider is not due

to ex-ante misaligned objectives between the two agents, but stems from the fact that the

recommendation algorithm faces no adjustment costs when changing prices, whereas the hotel

manager does. The algorithm would therefore like to implement price updates more frequently

than what is privately optimal for the hotel manager.3 The algorithm’s designer has an

incentive to offer recommendations that exaggerate the change in the optimal price to induce

the human manager to update prices faster, because larger deviations from the optimal price

result in larger expected revenue losses. This strategic bias, in turn, has two effects. On the

one hand, both agents incur a welfare loss whenever a more biased recommendation is accepted

by the manager. On the other hand, the designer of the algorithm benefits (more than the

manager) whenever exaggerated recommendations prompt more frequent price updates from

the manager.

We build a stylized model of advice that captures the key features of the price-setting

interaction of the algorithmic advisor and the manager observed in the data. In the model, we

assume that human managers incur price-adjustment costs. The manager costlessly observes

the price and the algorithmic recommendation of a given product, defined as a specific room-

arrival-date combination. She then decides whether to keep the current price at no additional

cost or allocate costly attention to the pricing task. If she chooses the latter, she receives an

informative signal about the optimal price and then decides whether to copy the recommended

price. If she does not copy the recommendation, she learns additional information by incurring

cognitive ‘thinking’ costs and then gets to update prices freely.4 The assumed timing and cost

structure for adjusting prices is also reflected by the pricing interface managers use: accepting
2 This shared objective is motivated by the fact that the revenue management firm compares their cus-

tomers’ revenues before and after they started using the recommendation algorithm, and is heavily marketing
these benchmarks to new and existing customers. Consequently, higher induced revenues help the revenue
management firm to attract new customers and retain existing ones.

3 The difference in how these two experience adjustment costs is evident from our descriptive analysis in
section 3, showing that human managers update prices much less frequently than recommended by the pricing
algorithm.

4 Our price-adjustment model is consistent with different interpretations, including menu costs and man-
agerial information-processing costs, as we discuss in section 5. There is also a substantial macroeconomic
literature studying adjustment and information processing costs in price setting, see e.g., Alvarez et al. (2011).
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a set of price recommendations is relatively easy and requires only a single click whereas

adjusting prices freely entails accessing different screens and imputing prices manually.

Our model of strategic advice with costly price adjustments successfully matches the key

empirical relationships between algorithmic recommendations and realized prices summarized

in section 4. First, managers’ price updates are much less frequent than updates in price

recommendations. Over the booking horizon, human managers update prices for a particular

product about once a month whereas algorithmic recommendations are updated four times

more often. This difference in updating frequencies, together with rarely observed small price

changes by managers, indicate that they are facing considerable price-adjustment costs.

Second, our model shows that, for each realization of the price recommendation, there

exists a cutoff value such that the manager devotes attention to pricing only if her adjustment

cost shock is below the cutoff. This cutoff is increasing in the size of the recommendation

change. The monotonicity induces a positive correlation between adjustment costs and the

magnitude of the recommendation change, conditional on the manager changing the price.

It follows directly that, in case of updating prices, the manager is more likely to face higher

adjustment costs the larger the change in the recommendation. If the two adjustment costs

are correlated, she is more likely to copy the recommended price rather than adjusting prices

manually.5 This is consistent with the empirical observation that, conditional on changing

prices, copying the recommendation becomes more likely than manual adjustments the larger

the change in the recommendation.6 This pattern is otherwise hard to reconcile with standard

models of advice as we discuss in section 4 (see also footnote 16 and appendix H).

Our third, and most salient reduced-form observation is that managers only partially in-

corporate the information contained in the recommendation. When the manager updates

prices manually, a one-percent change in either direction in the recommended prices leads, on

average, to a 0.72 percent change in the same direction in the realized price. In line with this

empirical finding, the pass-through of recommendations into actual prices is imperfect in our

model because the human manager expects a biased price recommendation. The strategically

biased recommendation makes it more profitable for the manager to manually update prices

whenever the direction of the price change suggested by her private information contradicts

the one recommended by the algorithm. This negative selection of hotel manager’s private
5 Correlation between the two adjustment costs is highly plausible because both represent an opportunity

cost of the manager’s time or cognitive resources.
6 For example, the average probability of copying the recommendation conditional on a price change is

84% and increases to 95% once the change in the recommendation exceeds 10% of the current price.
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information in case of manual price updates further decreases the empirically observed pass-

through rate of recommended prices.7 The reason is that manual price changes are more

profitable in situations in which the manager’s information strongly contradicts the algorith-

mic advisor’s signal. Taken together, the assumed timing and the two adjustment costs are

required for a model rich enough to generate the counterintuitive empirical pattern of (i) a

high rate of copying recommendations as well as (ii) a considerably dampened pass-through

of algorithmic recommendations in case the manager decides to adjust prices manually.

Two key ingredients of our model presented in section 5 are the biased recommendations

of the algorithm and how they are perceived by managers. We posit that the algorithm aims

to induce revenue-maximizing decisions and holds correct expectations about the manager’s

response to different recommendations. The algorithm’s designer chooses a reporting strategy

that, for tractability, we assume to be a linear factor, multiplying the change in the privately

observed component of the optimal price. If this factor exceeds one, the algorithm exaggerates

its private information. In equilibrium, the hotel manager is assumed to have correct beliefs

about the bias factor, and therefore forms accurate expectations about the information held

by the algorithm.

In section 6, we estimate the model parameters using a minimum distance estimator while

requiring that there are no beneficial deviations for the algorithm’s designer from the chosen

bias factor. For the complete sample of hotels in our data, the bias factor we identify is 1.2.

The bias in recommendations is significantly larger than 1 but lower than the naive estimate

of 1.39 necessary to explain the low pass-through of 0.72% in a model without selection.

Estimating the model at the hotel level, we observe a considerable degree of heterogeneity

across hotels, with estimates of the bias ranging from 1.05 to 1.5. In addition, we find that

hotel managers have access to potentially very precise information but only rarely make use of

it, implying that they must be facing substantial adjustment costs. This leads to inaccurate

decisions exemplified by the fact that the standard deviation of the actual prices is smaller

than the standard deviation of the difference between the estimated optimal and actual prices.

In other words, most of the variation in the optimal price is not captured by the price updates

implemented by the manager.

We then take our estimated model to study whether full delegation to the algorithm would

lead to better pricing decisions in section 7. Delegation has obvious benefits as it brings about

instantaneous and costless decision making and aligns preferences of the algorithmic advisor
7 In other words, our model predicts that the actual bias in recommendations is smaller than the gap

between recommended changes and manual price changes.
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and the human manager. However, the hotel manager’s private information is ignored as

an input for decision making when decisions are delegated. Our counterfactual experiments

show that the status quo of no delegation is only slightly better than complete inaction (no

price change at all), while delegating pricing to the algorithm would reduce expected losses

by up to 36 percent in the sample. There is clear value in delegating to the algorithm, as it

provides a cheap way of adjusting prices more frequently and incorporating additional price

information. Decomposing these gains shows that the majority of gains from delegation to the

algorithm stems from increased flexibility due to more frequent pricing decisions (80%). The

remaining gains come from de-biasing recommendations (10%) as well as costless information

processing (10%). Finally, we also vary the relative price information held by the algorithm

and the manager. The counterfactual analysis reveals that the manager becomes better off in

the status quo when the algorithm’s relative share of information increases. But delegation

would still be optimal for almost all levels of relative information held by the algorithm due

to the large costs managers face for adjusting prices.

The paper proceeds as follows. Section 2 relates our contribution to the existent theo-

retical and empirical literature on (algorithmic) advice in strategic settings. In section 3, we

provide important details of our pricing data as well as background information about the

decision making environment, before presenting key empirical facts about algorithmic price

recommendations and actual prices chosen by human managers in section 4. Section 5 de-

velops a model of information processing consistent with the main stylized facts. Estimation

results of the model are presented in section 6. Section 7 provides results of counterfactual

experiments when pricing it delegated fully to the recommendation algorithm. Section 8 con-

cludes with a discussion of our main findings and comments on the general difficulty of solving

frictions that arise in strategic interactions between a (third-party) algorithmic advisor and

a human decision maker.

2 Related Literature

This paper adds to a thriving literature studying the interaction between algorithmic advice

and human decisions in an economically important application of managerial pricing. We

develop and empirically estimate a model of strategic communication between an algorithmic

advisor and a human decision maker. More generally, the present paper is one of the only

empirical papers estimating a cheap-talk model with observational data.

There exists a large theoretical literature on strategic advice in organizations (e.g. Ka-
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menica and Gentzkow, 2011; Sobel, 2013; Kamenica, 2019).8 In the canonical setup (see

Crawford and Sobel, 1982) an informed agent communicates with an uninformed principal

who has to make a decision that affects both the agent and the principal’s payoffs. The agent

and the principal have only partially aligned interests because they disagree on the (ex-post)

optimal action. Instead, we focus on the principal’s adjustment cost as the source of disagree-

ment. We believe this is a relevant consideration in many organizations, whereby generalist

managers rely on information from several experts. In the context of the interaction between

human decision makers and machine advisors, this is almost always guaranteed to occur, as

adjustments costs of machines are infinitesimal compared with those of humans. In the spirit

of Aghion and Tirole (1997), machines hold real authority because the information-processing

costs of the human decision maker vastly exceed those of the algorithmic advisor. A similar

tension arises in the cheap talk model of Kartik et al. (2007), in which a fraction of the

audience is naive and takes the message at face value. In equilibrium, senders exaggerate

their claims so that the marginal incentive to misrepresent their information to sophisticated

receivers equals the cost they bear on the naive ones. In our setting, all receivers are sophis-

ticated but behave naively to economize adjustment costs.

To the best of our knowledge, there exist only two papers that explicitly incorporate inat-

tentive decision makers in a model of advice. Agrawal et al. (2019) studies the impact of

artificial intelligence on human decision making. In their setting, a principal has to choose

whether to implement a new project with uncertain costs and benefits and has access to

truthful information provided by a machine (à la Aghion and Tirole, 1997). In the presence

of a large number of different projects, the human decision maker tends to focus her attention

on high-stake projects and fully delegates decision making to the machine in those with low

stakes. In our setting, we observe hotel managers choosing a price which exactly matches the

recommendation (akin to delegation, or rubber-stamping) more often, whenever the recom-

mended price is further from the current price. The crucial insight is that rubber-stamping

also requires, in contrast to fully automated decision making, at least some attention from

the human principal.9

Bloedel and Segal (2020) study a persuasion model where the principal is subject to
8 Sobel (2013) provides a survey of cheap talk communication and Kamenica (2019) gives an overview of

recent advances in Bayesian persuasion and information design, where the sender can commit in advance to an
information structure. Our model lies somewhere in-between, as the agent chooses a linear reporting strategy
but can secretly deviate from it.

9 In the algorithmic pricing industry, some companies offer an arrangement similar to the one suggested
in Agrawal et al. (2019); that is, the algorithm directly implements changes if they fall within a given (target)
price range, while human approval is needed if the suggested price falls outside the defined range.
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rational inattention.10 As in our setting, inattention induces a moral hazard problem that

leads the advisor to distort her messages to motivate the principal to pay attention. They

show that full disclosure is optimal only if stakes are low, and instead pool medium and

high stakes. In the present study, we consider only linear reporting strategies and leave the

full-fledged analysis of the sender for future work. In any case, we do not observe pooling or

bunching. On average, prices set manually by the hotel manager increase continuously in the

recommendation in our data.

More broadly, we contribute to the empirical literature on strategic communication in

organizations.11 We are aware of two papers that use equilibrium analysis to identify strategic

communication behavior. Backus et al. (2019) provide evidence of strategic communication in

bargaining in a large online marketplace in which impatient sellers use round numbers in their

posted price as a signaling device. Camara and Dupuis (2014) study movie reviews through

the lens of a reputational cheap-talk model, uncovering a significant conservative bias. Our

setting has several advantages. First, both the sender and the receiver are professionals and

face serious financial consequences from their actions. Second, there is an obvious mapping

between messages and recommended actions in our data. Third, the action space is sufficiently

rich to directly identify the posterior beliefs of the receiver whenever she chooses a price that

departs from the recommendation.

Finally, we also contribute to the literature on algorithmic bias and human decision mak-

ing. Most of these papers consider algorithmic predictions as potential substitutes of human

experts, assessing their potential advantages (accuracy, speed) and disadvantages (algorith-

mic bias or negative perception of third-parties).12 Two notable exceptions are Bundorf et

al. (2019) and Caro and Sáez de Tejada Cuenca (2023). The first paper studies the impact of

algorithmic recommendations on the purchasing decision of health insurance plans among the

elderly. As in our setup, they find human inertia to be a major concern, but their algorithmic

recommendation is assumed to be non-strategic. The second paper provides reduced-form

evidence about the way sales managers at a large fashion retailer react to algorithmic price

recommendations during sales campaigns. They show that cognitive workload related to the
10 There is a large literature on rational inattention, with some important applications to organizations (see

Maćkowiak et al., 2023, section 3.3).
11 There is a growing literature that empirically studies persuasion, from advertising to mass media, see

DellaVigna and Gentzkow (2010) for an excellent summary. Most of these papers focus on identifying the
persuasion effect (or lift ratios). Instead, we attempt to uncover the economic incentives underlying persuasion
and explore counterfactual arrangements that may improve decision making.

12 Prominent examples in this stream of literature are Hoffman et al. (2018), Kleinberg et al. (2018), Ribers
and Ullrich (2023), Chan et al. (2022) and Currie and MacLeod (2017).
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complexity of the task (the number of prices to be set) is a key driver of adherence to algo-

rithmic recommendations, much like what we see in our data. Furthermore, similar to the

first paper, they do not consider any strategic interaction between the algorithm’s designer

and the manager. Our study strongly suggests that assuming truthful recommendations as a

counterfactual scenario may be neither optimal nor realistic.

3 Data and Setting

The data for our analysis contains almost 6 million observations of hotel-room pricing infor-

mation, including algorithmic recommendations, actual prices set by human decision makers

and the corresponding universe of about 60 thousand bookings, all aggregated at the daily

level. This high-resolution, proprietary data is provided by an anonymous corporate sponsor,

who is based in Europe and provides revenue management services to hundreds of indepen-

dent hotels. The pricing and booking data come from 9 different hotels, eight of which are

located at resort destinations (hotels A to H) and one in an urban area (the hotel I). These

hotels were selected because (i) they have substantial experience with the recommendation

system and (ii) they are not located next to another hotel who is a client of the revenue

management company, reducing concerns about algorithmic collusion. Our booking and pric-

ing data spans for each hotel over a period of about 14 months. We observe for each room

and each possible arrival day the flow of bookings, the recommended price by the revenue

management service and the actual price charged by the hotel. The actual price is an index

price which determines, together with possibly channel-specific discounts or surcharges, the

final price of a room. The revenue management system’s algorithm and the hotel manager

rely on this price as the main instrument for price optimization. See Garcia et al. (2022) for

more details on the data and institutional background.

A key input for our analysis is the algorithmic price recommendation. The recommen-

dation algorithm is provided by the revenue management service and aims at maximizing

hotel revenue through optimized pricing. The hotels pay the revenue manager a fixed fee but

the revenue management firm heavily uses its success in increasing its customers’ revenues

when it markets its services to both new and existing customers. Hence, the firm is highly

motivated to increase its customers’ revenues. The algorithm uses all booking information

and collects additional demand-related information including, among others, local variation

in weather conditions, events, public holidays, hotel reputation, and competitor prices. In

addition, the revenue management service and the hotel manager exchange information about

9



local demand conditions regularly. The algorithm processes all available information and then

generates a price recommendation for each product, i.e. room-arrival-date combination.13

The hotel manager decides every day whether to use the revenue management system to

update prices. If she logs into the system, the dashboard displays for each room the current

recommended price and the actual price. She then decides which price to update and by

how much. Although the hotels in our data are representative of their respective regions,

with about 50 rooms each, they are relatively small by international standards. According to

private communication with the revenue management service, hotels are family-run and thus

managing prices takes only a small fraction of a hotel manager’s weekly workload. One of the

main selling points of the recommendation service is to simplify and reduce this workload.

Appendix C reproduces some of the evidence from Garcia et al. (2022) on the opportunity

cost of adjusting prices faced by the hotel managers and on how accepting recommendations

consumes less time than adjusting prices manually.14

Our analysis relies on recommendation and price changes as the main variables, see Table 1

for descriptive statistics. From the panel of daily prices, we construct the first differences in the

log price and define an update whenever this difference is non-zero. We define the change in the

recommended price as the change in the logarithm of the algorithmic price recommendation

since the last price update. We restrict the full sample to include only observations for which

the initial price matched the recommended price for our analysis (“Main Sample” in Table 1).

This selection allows us to interpret differences between the price and the recommendation as

differences in the current information processing and removes any feedback effects from past

prices into future price recommendations. The resulting main sample includes approximately

34% of observations and 58% of the price updates of the full sample.15

4 Stylized Facts: Recommendations and Prices

In this section, we present key empirical facts about the relationship between price recom-

mendations by the algorithm and price updates by the human manager. These observations
13 Although we do not have access to the proprietary pricing algorithm, it is sufficient for our empirical

analysis that the recommended price of the algorithm contains some relevant information for the hotel manager.
14 Similarly, Huang (2022) argues that Airbnb hosts face significant adjustment costs when adjusting their

prices. Although our family hotel managers are perhaps more professional and have access to slightly better
sources of price information, their task is also more complex because a hotel typically has multiple different
room types. Still, we think that the two settings are fairly comparable in terms of price-adjustment costs.

15 We also provide evidence that the qualitative features of the pass-through rate in the main sample shown
in Table 4 also hold for the full sample in appendix A. If anything, the magnitude of the implied strategic bias
in recommendations would be larger in the unrestricted sample.
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Table 1: Price Updates and Recommendations

Main Sample Full Sample
Min Mean Max Min Mean Max

Update Rate 0.012 0.038 0.045 0.005 0.022 0.048
Update Rate | Rec No Change 0.001 0.006 0.009 0.004 0.016 0.025
Update Rate | Large Rec 0.018 0.143 0.658 0.006 0.046 0.676
Update Copy Rec 0.757 0.840 0.894 0.497 0.665 0.925
Update Copy Rec | Large Rec 0.869 0.950 1.000 0.431 0.860 0.931
Update Size 0.033 0.048 0.066 0.035 0.055 0.228
Update Size | Copy Rec 0.029 0.044 0.061 0.060 0.143 0.208

N 2,017,932 2,017,932 2,017,932 5,916,580 5,916,580 5,916,580

Notes: For all statistics we report the maximum, minimum and average value across hotels for the main

sample and the full sample. Update Rate is the proportion of products in which we observe a price update

on a given day. We report in rows 1 to 3 the update rate unconditionally, conditional on the recommendation

not having changed (Rec No Change) and conditional on the recommendation having changed by at least

10% (Large Rec). Update Copy Rec rate is the proportion of updates in which the updated price matches the

recommendation exactly. We report in rows 4 to 5 the Update Copy Rec unconditionally and conditional on

an absolute change in the recommendation of at least 10% (Large Rec). The Update Size is the average log

change in the realized price following an update. We report in rows 6 to 7 the Update Size unconditionally

and conditional on matching the recommendation exactly (Copy Rec).

inform the choice of our model of price adjustments we present in section 5. For the following

descriptive analysis, we pool observations across all hotels in our sample, but the findings also

hold qualitatively for each hotel individually.

Observation 1. Price updates are much less frequent than updates in price recommendations.

Managers adjust prices only infrequently, on average, once every 35 days, with considerable

heterogeneity across hotels as shown in Table 1. Because algorithmic price recommendations

change much more frequently, once every seven days, the difference in updating frequencies

leads inevitably to a divergence between recommendations and actual prices over time. The

inertia in updating prices is also reflected in the distribution of price changes, shown in Figure

1, and exhibits little mass around 0. This pattern is a first indication that price-setting human

managers face considerable adjustment costs (Nakamura and Steinsson, 2008).

Observation 2. The frequency of a price update is positively related to the size of the

recommended price change.
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Figure 1: Distribution of price updates (in log changes)

Notes: The black line plots the empirical cdf of price changes. The blue line depicts the empirical cdf of manual

price changes. The red line plots a normal cdf with the same standard deviation as the black distribution.

Larger changes in the recommendation are associated with a higher likelihood of a price

update, as shown in Figure 2. For instance, if the recommended price has remained unchanged

since the last price update of the hotel manager, the probability of a price update today is

less than 1%. However, if the current recommendation is outside a ten-percent band of

the original recommendation, the probability of a price update exceeds 11%. This positive

correlation is also confirmed by fixed-effects regressions in Table 2 which account for variation

across different products of the same room type (e.g. standard room), hotel, and arrival-month

for a given date.

Observation 3. The probability that a price update copies the recommended price is increasing

in the size of the recommended price change.

Conditional on observing a price update, hotel managers are very likely to update the

price to exactly match the price recommendation. On average, around 85% of the price up-
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Table 2: Price Update Probability

Update Probability

Rec Change 0.033∗∗∗ 0.105∗∗∗ 0.109∗∗∗ 0.108∗∗∗

(0.004) (0.003) (0.003) (0.003)

Rec Update 0.110∗∗∗ 0.123∗∗∗ 0.128∗∗∗ 0.128∗∗∗

(0.000) (0.000) (0.000) (0.000)

Hotel × Date FE No Yes No No

Room × Date FE No No Yes No

Room × Date × Month FE No No No Yes

N 2,017,929 2,017,929 2,017,929 2,017,929

Notes: Fixed-effects regressions. The dependent variable is the instantaneous probability

of a price update. Rec Change is the cumulative (log) change in the recommendation

since the last price update. Rec Update is a dummy which takes the value one if the

recommendation has changed since the last price update. Room is the room type, Date

is the booking date and Month refers to the arrival month. Significance levels: ∗∗∗

p < 0.001

dates copy the currently recommended price perfectly; with some heterogeneity across hotels.

The probability of copying the recommended price is even higher if one conditions on a large

change in the recommended price as can be seen in Figure 3. In particular, if the recom-

mendation change exceeds 10%, the hotel manager chooses a price that exactly matches the

recommendation with 95% probability. Table 3 shows that this positive correlation also re-

mains in a fixed-effects regression that exploits only variation across neighboring arrival dates

for the same booking date. Importantly, the updating pattern of hotel managers, summarized

in Observation 2 and 3, is inconsistent with standard models of advice in which the influence

of the (algorithmic) advisor decreases when making more extreme recommendations.16 To-

gether with the other empirical facts, we will account for this distinctive updating behavior
16 The feature of decreasing effectiveness of more extreme advice comes in various forms in the literature.

In cheap-talk games, it results in less precise communication. The same comparative static holds in games
that introduce reputational, moral, or strategic concerns of lying (Kartik et al., 2007). Similarly, the principal
rubber-stamps decisions in Aghion and Tirole (1997) under contingent delegation that involve low stakes but
assumes control when stakes are high, thus reducing the influence of the agent. Finally a robust finding in the
newsvendor literature is that decision makers under-react to large shocks (pull-to-center effect) when choosing
capacity (Schweitzer and Cachon, 2000; Bolton and Katok, 2008; Bolton et al., 2012). In summary, all of these
models are inconsistent with our observation that managers are more likely to copy price recommendations
the more recommendations deviate from the current price.
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Figure 2: Update Rate

Notes: Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the recommen-

dation. The vertical axis contains the average probability for that bin.

of managers in our model in section 5.

Observation 4. There is only a partial pass-through of the change in the recommendation

into actual prices.

If the interests of the hotel manager and the recommendation algorithm were perfectly

aligned and the manager’s arrival of private information would be uncorrelated with the

direction of her private information, one would expect that, on average, a one Euro increase

(decrease) in the recommendation would bring about a one Euro increase (decrease) in the

price. The observed difference between the recommendation and the actual price could then

be attributed to the additional, idiosyncratic information held by the manager. Instead, we

observe as shown in Table 4 a much lower pass-through rate of 72.5%. In other words, when

hotel managers manually update their prices, the average price change only partially reacts to

the change in the recommended price. Including various controls, such as room type-arrival

week fixed effects and a polynomial of the days before arrival, leads only to a modest increase

in the estimated coefficient (73%). It follows that hotel managers must believe that the pricing

algorithm exaggerates the optimal price change on average.
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Figure 3: Matching the Recommendation

Notes: Each point represents a 0.001-sized bin. The horizontal axis captures the log change in the recommen-

dation. The vertical axis represents the proportion of updates that exactly match the recommendation.

Interestingly, the unconditional relation between recommended prices and actual prices is

continuous and almost linear, see Figure 5. This fact is inconsistent with equilibria in standard

cheap-talk models, which display discontinuities (bunching) to ensure incentive compatibility.

It is also at odds with multi-dimensional models of communication in which the size of the

recommendation change signals the quality (precision) of the information held by the advisor,

thus inducing a higher likelihood of copying when the recommendation is further from the

current price. As the size of the recommendation change increases, the marginal impact on

the posterior belief of the manager should increase, regardless of whether the manager copies

it.

5 Model

In this section we introduce a model of price adjustments with algorithmic recommendations

and costly information acquisition of the hotel manager. The price-adjustment model ra-

tionalizes the empirical facts about the relationship between recommendations and pricing

decisions presented in the section 4. To ease the mapping of the model to the data, we
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Table 3: Price Update Copy Rates

Copying Probability
Rec Change 0.133∗∗∗ 0.141∗∗∗ 0.151∗∗∗ 0.151∗∗∗

(0.012) (0.011) (0.011) (0.011)

Hotel × Date FE No Yes No No
Room × Date FE No No Yes No
Room × Date × Month FE No No No Yes
N 76,090 76,090 76,090 76,090

Notes: Fixed-effects regressions. The dependent variable is the probability of copy-

ing the recommended price. Data is restricted to neighboring arrival dates for a

given booking day. Rec Change is the cumulative (log) change in the recommen-

dation since the last update. Room is the room type, Date is the booking date

and Month refers to the arrival month. Significance levels: ∗∗∗ p < 0.001

normalize all variables to refer to percentage changes since the last update.

5.1 Model Description

We begin by introducing the main elements of the model. A hotel managers intends to

maximize profits, defined as Π = Π0 − η(p − p∗)2, where p is the current price, p∗ is the

optimal price given demand and cost conditions, and η > 0 is a parameter.17 The optimal

price is determined by p∗ = x+y+ z. Random variables x, y, and z are drawn independently

from a symmetric distribution with zero mean and variance σ2
i , for i = x, y, z.18 The model

assumes normal distributions for x, y, and z, although the main argument does not depend

on the distributional assumption.

Figure 4 illustrates the hotel manager’s sequential information-acquisition process and

pricing decision in the task. Once the manager accesses the pricing interface, she learns the

current price, normalized to p = 0, the recommendation r and the realized costs c1 and c2 for

learning information y and z. Information x is the algorithm’s private information regarding

the optimal price and is not known to the hotel manager. The manager only learns about x

17 This profit function can be micro-founded assuming a log-linear demand and semi-elasticity η. However,
the model is more general than this, as we remain agnostic on whether this price maximizes revenue, profits,
reputation or even some dynamic aggregate of the three.

18 To see that independence is not a severe restriction, suppose that the manager observes y = αx+(1−α)ỹ
so corr(y, x) = α. Because the manager observes r, she can infer x, and therefore can easily extract ỹ which
is now, by definition, independent of x.
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Table 4: Pass-Through Rates of Recommendation

Change in actual price
All Manually Updated

Rec Change 0.974∗∗∗ 0.725∗∗∗ 0.733∗∗∗ 0.738∗∗∗

(0.002) (0.005) (0.006) (0.006)

Days ahead Polynomial No No Yes Yes
Room × Month FE No No No Yes
N 76,090 76,090 76,090 76,090

Notes: Linear regression model. The dependent variable is the cumulative

change in the actual price since the last price update. Recommendation

is the cumulative (log) change in the recommendation since the last price

update. All regressions include all updates. Coefficients for Manually Updated

correspond to the interaction term of recommendation × manual. Room is

the room type and Month refers to the arrival month. Significance levels: ∗∗∗

p < 0.001

by observing the algorithm’s price recommendation r(x).

The manager then decides whether to allocate attention to adjusting prices. In case

she does not, the current price, p = 0, is maintained and the manager incurs no cost. In

case she allocates attention to the pricing task, she learns information y for the attention

cost c1. We think of y as information about a particular product which directly springs

to the manager’s mind, e.g. the hotel’s chef is on a leave of absence. After the manager

learned y, she can either choose to update the price by copying the recommendation resulting

in p = r, or to acquire additional information z for the cognitive thinking cost c2. Only

in the case of learning z for cost c2, the manager can update the price freely, such that,

p = E(p∗ | r, y, z) = E(x | r) + y + z.19

For parsimony, we assume that costs c1 and c2 are determined by a common cost shock

c, drawn from a distribution F (c). In particular, we assume that ci = bic, with bi > 0.
19 Although the model seems rather intricate, it allows two simpler special cases. First, if σy = 0, the

hotel manager has access to only a single costly signal. The manager has to decide upon observing the
recommendation whether to do nothing, copy it at cost c1 or incur both c1 and c2 to obtain further information
and change the price manually. Second, if c1 > 0 but c2 = 0, the manager incurs only an attention cost and
always acquires all the available information. In this case the manager would never copy the recommendation
but would either stay inactive or manually adjust the price. However, these two hypotheses are rejected in our
empirical results and hence we conclude that these simpler alternatives are unlikely to represent accurately
the hotel managers’ pricing problem. For a discussion of other alternative modelling assumptions, see section
H in the appendix.
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Figure 4: Information acquisition and pricing of manager

We think of c as cognitive costs with bi measuring the difficulty of the task. Although the

interpretation of the two adjustment costs, attention cost and thinking costs, is intuitively

appealing we remain agnostic about the exact psychological nature of the two costs because

our data does not allow to discriminate between different interpretations. An alternative

interpretation of the cost structure would be to understand parameter c as the opportunity

cost of a unit of time for the manager and bi as the time required to learn the information.20

Under both interpretations, it seems easier for a manager to decide whether the recom-

mendation is satisfactory than to fully determine the optimal price manually.21 This structure

is reinforced by the pricing interface, which allows accepting recommendations with a single

click, while freely adjusting prices requires the manager to access an additional screen and

enter each price manually. Neither our theoretical nor empirical model imposes however an

assumption on which of the two adjustment cost is higher. Note also that the assumed se-

quential structure of the adjustment cost model with two signals and costs respectively is

required for matching the empirically observed price updating pattern presented in section 4.

We show in appendix D that a one-step structure of adjustment costs, e.g. without attention

cost c1, would be inconsistent with the observed price updating pattern in the data.

Another key ingredient of the model is the algorithmic price recommendation. As dis-

cussed earlier, we assume that the algorithm’s designer cares about the hotel’s profits directly,
20 Another interpretation of the adjustment costs is that they may originate from the belief that consumers

may react negatively to price variation, see Rotemberg (2005). If this was indeed the origin of adjustment
costs, they should be directly incorporated into profits and the sluggishness of price adjustments may be
profit-maximizing. Consumers, however, do not know whether price changes are the result of a change in the
recommendation (c1) or a manual adjustment (c2). Thus, if the estimated cost component of the manual price
adjustment (b2) is significantly larger than that of copying (b1), it is reasonable to conclude that the bulk of
costs is due to cognitive thinking costs of managers –rather than an attempt to please consumers.

21 This is also consistent with decision models under limited attention (e.g. Dean et al., 2017), showing that
status quo bias is more likely in larger choice sets (in our case if the manager can choose between copying the
recommendation and manually setting a price p).
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Π = Π0 − η(p − p∗)2. The crucial difference between the algorithm’s designer and the hotel

manager is that the algorithm does not face any adjustment costs because recommendations

are fully automatized. This difference creates a strategic conflict of interest between the

designer and the manager: the designer would like the hotel manager to update more fre-

quently than what is optimal to the manager. The hotel manager’s update frequency can be

influenced by strategically choosing recommendations r(x). We analyze the perfect Bayesian

equilibria of this game, restricting the algorithm’s message space to linear functions of its

posterior belief about the optimal price, r = 1
λx with the bias factor of the recommendation

λ > 0.22

Although the hotel manager does not directly observe λ, in any perfect Bayesian equi-

librium she will form correct expectations about it. Notice that a further exaggeration from

any given λ has two effects. First, given the hotel manager’s (equilibrium) beliefs, she will

incorrectly think that the optimal price has changed more than it really has, which induces

a higher probability of the hotel manager changing the price manually. For small deviations

this benefits the algorithm’s designer. However, the hotel manager may also copy the recom-

mended price. The larger is the total exaggeration, the larger is the hotel manager’s pricing

mistake in this case. In equilibrium, λ exactly equates this trade-off between more frequent

updates and larger mistakes when copying recommendations at the margin.

We decided not to include additional biases in the objective function of the algorithm.

The reasons for this are twofold. First, we want to focus the analysis on adjustment costs as

they are the main novelty of the present study. Second, we do not find any tendency of the

algorithmic recommendations to be biased either upwards or downwards which could point

at misaligned objectives between the algorithmic advisor and the hotel manager: recommen-

dations are, on average, approximately equal to the realized prices.23 If the algorithm cared

about revenue rather than profits, as in the example of pricing by Airbnb, see Huang (2022),

we would see a tendency to recommend lower price levels. If, instead, the algorithm wanted

to induce the manager to collude with other hotels as in, for example, Calvano et al. (2020)

and Miklós-Thal and Tucker (2019), we would observe higher price recommendations by the
22 This restriction on the algorithm’s strategy space makes both the theoretical model and the empirical

model more tractable. Furthermore, we illustrate in appendix E that the loss from restricting oneself to a
linear reporting strategy is negligible for the algorithm’s designer.

23 In appendix G we present two pieces of evidence to support this claim. First, both increases and decreases
in the recommendation induce managers to update, and they do so in a similar manner. Second, the elasticities
of manual price updates to both increases and decreases in the recommendation are similar. Moreover, we
also find that, conditional on a price update, the manager copies the recommendation with a probability of
0.941 following an increase in the recommendation and with a probability of 0.944 following a decrease in the
recommendation.
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algorithm.24 Finally, we discuss in appendix H other alternative models and demonstrate

that they fail to account for the empirical patterns we observe in the data.

5.2 Analysis

We will next describe a set of theoretical results from the model which will then be matched

with the stylized facts from the data. All proofs are relegated to appendix B. We begin our

analysis with the problem of the hotel manager. Upon observing (r, c), she decides whether to

initiate the information-acquisition process or maintain the current price. In the latter case,

she expects a loss of (x̃(r))2 + σ2
y + σ2

z , where x̃(r) is her belief about x given the observed

recommendation r. In case she decides to continue her information acquisition, she expects

a loss l(r, c).

To characterize the expected loss l(r, c), we need to calculate the hotel manager’s payoff

once she acquires information y. In this case, she will choose to copy the recommendation as

along as (r − x̃(r) − y)2 + σ2
z < c2. Let Y0(r, c) denote the set of values of y for which this

inequality holds. Notice also that Y0(r, c) is an interval centered at r − x̃(r). The expected

loss is then,

l(r, c) = c1 +

∫
y∈Y0(r,c)

(
(r − x̃(r)− y)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

c2dΨy(y),

where Ψy is the cumulative distribution function of a mean-zero normal distribution with

variance σ2
y . The first lemma shows that larger costs and changes in the recommendation

increase the hotel manager’s expected loss when continuing the information acquisition past

the status quo.

Lemma 1. The continuation loss function l(r, c) satisfies l(r, c) = l(−r, c), increasing in c

and non-decreasing in |r|. Furthermore,

0 ≤ lr(r, c) ≤ 2r(1− λ̃)2
∫
y∈Y0(r,c)

dΨy(y) for all r > 0.

If σy > 0 and λ̃ < 1, the loss function is strictly increasing in |r| and both inequalities are

strict.
24 There is a rapidly growing literature on platform pricing when sellers use pricing algorithms (Huang,

2022; Johnson et al., forthcoming) and on collusion using AI pricing algorithms (Calvano et al., 2020; Asker
et al., 2023). The collusion literature includes studies on how outsourcing pricing algorithms to a third party
(Harrington Jr, 2022), or increased algorithmic forecasting accuracy (Miklós-Thal and Tucker, 2019), affects
competition. Leisten (2022) investigates the effect of algorithmic pricing on competition when there is human
override.
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Because l(r, c) is continuous and increasing in c, for every r there exists cost realization

c(r) such that a hotel manager continues to acquire information for costs lower than c(r)

and prefers to keep the current price for costs larger than c(r). Notice that c(r) is an even

function. Conversely, for a given cost, the set of recommendations such that an update occurs

can be written as the union of two intervals (−∞,−r̄(c)) and (r̄(c),∞), for some function

r̄(c). The following lemma provides a condition such that that both r̄(c) and c(r) are strictly

increasing functions.

Lemma 2. Suppose that 1
2 ≤ λ̃ < 1 and σy > 0. Then r̄(c) is strictly increasing.

The lemma says that higher cost realizations require larger deviations in the recommen-

dation before the hotel manager considers re-evaluating the current price. Notice then that

the probability of choosing a price that exactly matches the recommendation depends on the

combination of two forces. First, the mass at Y0(r, c) is decreasing in |r|. This shows that,

conditional on an update of the price, the probability of departing from the recommendation

is higher at lower values of |r|, contradicting the empirical observations described above. Im-

portantly, however, the probability of a price update is increasing in |r|. This implies that

larger changes in the recommendation are associated with a higher chance that the hotel

manager considers copying the recommendation in the first place. The resulting relationship

between the size of the recommendation change and the probability of copying depends on

the relative strength of these two forces. Let µ(r) denote the likelihood of matching the rec-

ommendation conditional on an update. The following proposition characterizes these effects

formally.

Proposition 1. If b2σ2
y < b1σ

2
z , then µ(r) = 0 for all r. Else, µ(0) > 0, limr→0 µ(r) = 0, and

there exists some r∗ > 0 such that µr(r) ≥ 0 for all r ∈ (0, r∗). In addition, µ(r) is (weakly)

increasing if λ̃ = 1 and (weakly) decreasing if F (c(0)) = 1.

The two special cases highlighted in the proposition are instructive. First, if λ = 1, higher

values of r induce hotel managers with higher opportunity costs of time to put attention to the

price. This translates into a higher likelihood of copying the recommendation since there is

no additional selection. In other words, a model with unbiased advice the hotel manager will

be more likely to copy the recommendation, the bigger is the change in the recommendation.

Second, if the hotel manager updates prices in every period (i.e. if F (c(0)) = 1), there is no

inertia and higher r makes copying the recommendation less appealing because it is associated

with a higher loss. This type of comparative static holds in models of strategic delegation
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where the hotel manager, the principal, is more likely to rubber-stamp low recommendations

from the agent (Aghion and Tirole, 1997).

We now focus on the distribution of prices conditional on a departure from the recom-

mendation. The expectation of such a price can be written as

E(p | r, y /∈ Y0(r, c)) = x̃(r) + E(y | r, y /∈ Y0(r, c)). (1)

Since, Y0(r, c) is centered at r − x̃(r), E(y | r, y /∈ Y0(r, c)) depends on λ̃. If λ̃ = 1, then

r − x̃ = 0, Y0(r, c) is centered at the origin and hence E(p | r, y /∈ Y0(r, c)) = x̃(r) = r.

Instead, if λ̃ ∈ (0.5, 1), then the conditional covariance of (x̃, y) given that y /∈ Y0(r, c) is

negative, resulting in a dampening of the pass-through rate below λ̃.

Proposition 2. The expected price conditional on the price departing from the recommenda-

tion satisfies

E(p | r, y /∈ Y0(r, c)) ≤ λ̃r, for all r > 0

and

E(p | r, y /∈ Y0(r, c)) ≥ λ̃r, for all r < 0

with strict inequalities whenever σ2
y > 0 and 0.5 < λ̃ < 1.

The proposition implies that there is negative selection in unobservables and we cannot

directly identify λ̃ from the pass-through rate.

Corollary 1. Conditional on the hotel manager not copying the recommendation but updating

the price, her private information is negatively correlated with the recommendation, i.e.

Cov(y, r | y /∈ Y0(r, c)) ≤ 0.

We finally address the problem of the algorithm. The algorithm chooses λ to maximize

expected profits but this ‘bias factor’ is not directly observed by the hotel manager. An

equilibrium is a triple (λ, c(r), Y0(c, r)) such that λ maximizes profits given (c(r), Y0(c, r))

and (c(r), Y0(c, r)) are optimal given x̃ = λr. In general, a marginal increase in λ brings

about three changes in the distribution of prices. First, it leads to a reduction in the variance

in the distribution of recommendations, which necessarily induces the hotel manager to change

prices less frequently. Second, it has an ambiguous impact on the probability that the hotel

manager chooses a price that exactly matches the recommendation, because the function

µ(r) is non-monotone. Third, it reduces the distance between the recommendation and the

optimal price which translates directly into increased profits.

22



6 Estimation and Results

For the empirical implementation of the price-setting model in section 5, we assume that

the information-acquisition cost c of the hotel manager follows a lognormal distribution with

parameters (0, σc). We have 6 structural parameters of which three govern the informational

environment (σx, σy, σz) and the other three capture the distribution of shocks (σc, b1, b2).

Additionally, we need to infer the reduced-form parameter λ̃ which measures the equilibrium

bias in the algorithmic recommendation.25 To estimate these parameters, we use a method

of simulated moments (SMM), minimum distance estimator with seven target moments that

additionally imposes the restriction that there is no (secret) profitable deviation from the

recommendation for the algorithm.26 Four of these target moments depend directly on the

joint distribution of recommendation and price updates, see rows 1 to 4 in Table 5. In

addition, we use the likelihood of the updated price matching the recommendation exactly,

both unconditionally and conditionally on the recommendation change exceeding 10% as well

as the average price update rate, see rows 5 to 7 in Table 5.

Our estimation algorithm is implemented as follows. We first fix a level of the recommen-

dation bias λ̃ and simulate the model to find structural parameter values that minimize the

distance between the simulated moments and their observed targets. We then check whether

a local deviation from λ̃ increases the revenue management company’s payoff. If such a prof-

itable deviation λ̃′ exists, we pick it as the new starting value and re-estimate the structural

parameters. We repeat this process until we find a λ̃ and a set of distance minimizing parame-

ters such that no profitable local deviations exist. We also try multiple starting values. In the

case the algorithm finds two different equilibria with different parameter configurations, we

choose the one with the smallest distance between simulated moments and target moments.

The model is estimated both for the pooled data and for each hotel individually.27

To discuss identification, it is instructive to consider a special case of the model in which

σy = 0.28 Because there is no selection into updating based on payoff-relevant information,
25 To identify λ̃ for a hotel, we assume that a given hotel always plays the same equilibrium with the

recommendation algorithm, but allow for potentially different equilibria across hotels.
26 The objective function depends on second moments and may not be quasiconcave. To search for a global

optimum, we initiate the search procedure at multiple starting values, corresponding to the initial estimates
we obtained for each hotel from a common initial guess. As a further robustness, we compare the results from
the baseline estimation to that of the SMM estimation (with the same starting values) where we treat λ as an
additional parameter to be estimated but do not impose any equilibrium conditions: they both yield similar
values for the bias; see Figure 6, and Tables 7 and 12.

27 A more detailed description of the estimation algorithm can be found in appendix I.
28 A proof of identification for this case, as well as a discussion of why this particular assumption is unlikely

to hold, is provided in appendix D.
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Table 5: Targets for Pooled Data

Moment Data Model√
V ar(p|Update) 0.074 0.074√
V ar(r|Update) 0.068 0.067√
V ar(p− r|Update) 0.035 0.035√
E(p · r|Update) 0.068 0.066

Pr(Copy Rec|Update) 0.840 0.842

Pr(Copy Rec|Update,Large Rec) 0.947 0.951

Pr(Update Rate) 0.038 0.040

Notes: The first two rows report the standard deviation of

the price (p) and the recommendation (r), both conditional

on an Update. The third row reports the standard devia-

tion of the difference between the price and the recommen-

dation and the fourth reports the square root of the covari-

ance (both variables have zero mean), all conditional on an

update. Rows five and six report the rate of copying rec-

ommendations, both unconditionally and conditional on the

recommendation change exceeding 10% (Large Rec). The

last row reports the unconditional update rate.

the difference between the price and the recommendation directly determines the standard

deviation of z, the covariance between r and p directly pins down λ, and the standard deviation

of r determines the standard deviation of x for a given λ. Likewise, the ratio of the copy rate

for large changes in the recommendation over the average copy rate determines the standard

deviation of the cost distribution. The two remaining parameters can be directly obtained

by matching the update rate and the average copy rate. While things are more complicated

when σy 6= 0, each of these parameters is closely linked to the corresponding moment, with

the standard deviation of price changes now helping to determine the non-zero σy.

The first row of Table 6 presents the results of the estimation routine on the pooled

dataset, along with the bootstrapped standard errors. We find that the private information

of the algorithm accounts for less than 20% of the total variance of the optimal price. This

means that hotel managers’ private information is at least five times as valuable as that of
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Table 6: Parameter Estimates of Model

Hotel σx σy σz σc b1 b2 λ

Pooled 0.038 0.053 0.019 2.28 0.090 0.897 0.830
(0.001) (0.001) (0.003) (0.03) (0.015) (0.029)

A 0.032 0.092 0.126 1.35 0.021 0.802 0.865
(0.002) (0.005) (0.011) (0.03) (0.012) (0.024)

B 0.023 0.056 0.024 2.06 0.032 0.644 0.840
(0.001) (0.002) (0.008) (0.05) (0.011) (0.028)

C 0.026 0.034 0.026 2.25 0.039 0.383 0.835
(0.001) (0.001) (0.001) (0.02) (0.006) (0.017)

D 0.017 0.037 0.014 2.64 0.035 0.676 0.690
(0.001) (0.001) (0.003) (0.06) (0.012) (0.027)

E 0.028 0.032 0.040 1.79 0.016 0.273 0.740
(0.001) (0.001) (0.002) (0.02) (0.002) (0.009)

F 0.019 0.036 0.001 1.84 0.027 0.397 0.660
(0.001) (0.001) (0.005) (0.04) (0.007) (0.025)

G 0.032 0.026 0.035 2.54 0.078 0.809 0.715
(0.001) (0.001) (0.002) (0.03) (0.008) (0.025)

H 0.036 0.064 0.092 1.43 0.010 0.681 0.600
(0.002) (0.006) (0.007) (0.03) (0.005) (0.032)

I 0.034 0.083 0.08 1.54 0.034 0.644 0.930
(0.002) (0.003) (0.005) (0.03) (0.011) (0.024)

Notes: Estimated parameter values for each hotel, A to I, and pooled across ho-

tels. Given our parametrization, the mean of the distribution is exp(ln b1 + σ2
c/2).

Bootstrapped standard errors in parenthesis. The reported λ is the computed loss-

minimizing recommendation bias satisfying the equilibrium condition.

the algorithm. However, accessing this information requires substantial effort by the man-

ager. Figure 15 in the appendix shows the distribution of the costs associated with copying

recommendations and manually setting prices. These cost differences imply a considerable

dispersion between actual prices and counterfactual optimal prices. This disparity also im-

plies that adjustment costs do rather reflect costly managerial attention than fear of consumer

backlash (Rotemberg, 2005).

Our results suggest a significant bias in recommendations with λ = 0.83 when pooling

over all hotels. Because most price updates match the recommendation exactly, this bias

implies biased (sub-optimal) prices. Nevertheless, the welfare impact of the recommenda-
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Figure 5: Model Fit: Recommendations and Prices

Notes: Each point represents a price update that does not match the recommendation. The horizontal axis is

the log change in the recommendation and vertical axis is the log change in the price. The blue line shows a

linear fit of the data with a 95% confidence interval, the purple line shows a linear fit to simulated data with

our estimated parameters and the dashed red line plots the 45-degree line.

tion bias is ameliorated by the fact that the manager selects into the decision to match the

recommendation, see Proposition 2.

Table 5 also shows that the model is able to fit the target moments well. It also does a

reasonably good job at replicating the empirical facts regarding the relationship between price

updates and recommendations described in section 4. For instance, it predicts an update rate

of about 15% when the recommendation exceeds 5%, which is slightly higher, but reasonably

close to the data. It also generates a relation between recommendations and prices, conditional

on observing a price update, that it is consistent with the data, see Figure 5.

We further evaluate the fit of the model by performing an alternative estimation procedure

in which we take λ as a primitive of the data and minimize the same distance estimator with

seven targets and seven moments. The estimated parameters are similar and, in particular,

the estimated λ across different hotels, while somewhat larger, is highly correlated with the

one obtained from the baseline estimation as shown in Figure 6.

We then run our estimation routine separately for each hotel and report the hotel-level
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Figure 6: Bias Parameter Validation

Notes: Each point represents a hotel. The horizontal axis gives the bias parameter identified using the

optimality condition for the algorithm and the vertical axis gives the bias parameter using only the hotel

manager’s information.

results. Most hotels are accurately represented by the pooled data as shown in Table 6.

The variance of the recommendation’s information, σx, accounts for around 20-30% of the

total variance for all hotels. There is, however, considerable heterogeneity in the precision

of the freely available information (measured by σy) relative to the total information that is

potentially available to the manager (σy + σz). The strategic bias in the recommendations

varies across hotels between 0.60 (hotel H) and 0.93 (hotel I). The differences are driven by

the information held by the algorithm and by heterogeneity in the level of managers’ inertia,

with higher inertia implying larger gains from delegation.

7 Counterfactuals

We are now in a position to investigate whether hotels would gain from delegating pricing de-

cision to the algorithm. Delegation to a fully automated algorithm offers several advantages.
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Table 7: Counterfactuals

Hotel Benchmark Profit Loss Delegation Biased No Rec

A 0.998 0.991 0.961 0.961 0.999

B 0.990 0.977 0.875 0.879 0.998

C 0.984 0.967 0.727 0.734 0.998

D 0.984 0.970 0.835 0.851 0.996

E 0.986 0.970 0.761 0.779 0.999

F 0.996 0.990 0.774 0.800 1.000

G 0.984 0.968 0.643 0.673 0.999

H 0.998 0.991 0.909 0.924 0.999

I 0.994 0.983 0.920 0.921 0.998

Notes: The value in the first column (Benchmark) corresponds to the welfare

loss in the status quo relative to the welfare loss under complete inaction.

The value in the second column (Profit Loss) is the implied accounting profit

loss, disregarding adjustment costs, relative to inaction. The third column

(Delegation) represents the welfare loss in the counterfactual exercise of full

delegation to the algorithm, again relative to inaction. The fourth column

(Biased) describes the expected welfare loss from a counterfactual where the

decision is delegated to the algorithm which continues to produce biased

recommendations relative to complete inaction. The last column (No Rec)

shows the expected welfare loss if the hotel manager has no access to the

recommendation or copying it, again relative to inaction.

It eliminates adjustment costs for hotel managers and thereby also delays in decision-making.

Delegation also leads to truthful recommendations by the algorithm as it eliminates the strate-

gic conflict between the algorithm and the manager caused by the latter’s inertia. A potential

downside of full delegation is that the algorithm does not have access to the manager’s infor-

mative signals y and z, which are even more valuable than the algorithm’s signal x according

to our data. The main insight, however, is that the managerial inertia reveals that these

informative signals come with a significant cost for the manager, greatly reducing their value

for human decision making.

To conceptualize our counterfactual experiments, we first compute the expected loss in

profit for each hotel under the status quo setting, in which the manager sets prices given the
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algorithmic recommendations, relative to the profit loss they would experience if they would

never update their prices (complete inaction). This metric is independent of parameter η and

takes into consideration that some hotels experience a more volatile environment than others.

Formally, this loss in profit is given by

wi =
1

σ2
x + σ2

y + σ2
z

∫ (∫ c
(
x
λ

)
0

l
(x
λ
, c
)
dF (c) +

∫ ∞

c
(
x
λ

)(x2 + σ2
y + σ2

z)

)
dΨ(x). (2)

The denominator here is simply the maximum utility loss from inaction. The first term in the

numerator is the expected loss (including adjustment costs) when the hotel manager either

copies the recommendation or adjusts manually.29 The second term is the expected loss in

case of optimal inaction, given the realization of the recommendation and the adjustment

costs. Notice that lower values correspond to more efficient outcomes, with wi = 0 being the

first-best outcome. The estimate of equation (2) for each hotel in our sample is reported in

the Benchmark column in Table 7.

We can also directly compute the residual losses under delegation based on the parameter

estimates in section 6. We consider two extreme scenarios. First, assume that the algorithm

lacks any incentives to distort its recommendations and consequently its pricing decision under

full delegation (Delegation). We then have p = x, which yields a loss in profit of

wi =
σ2
y + σ2

z

σ2
x + σ2

y + σ2
z

.

Alternatively, assume that the algorithm does not fully re-optimize its recommendations but

instead continues to misrepresent its information (Biased). In this scenario, we have p = x/λ

and a profit loss of

wi =
(1− λ)2

λ2

σ2
x

σ2
x + σ2

y + σ2
z

.

Our counterfactual estimation results for the different scenarios are summarized in Table

7. The results illustrate that the status quo (Benchmark column in Table 7) is only slightly

better than complete inaction while delegating pricing to the algorithm (Delegation column)

would do much better even if the algorithm’s prices were biased as in the status quo (Biased

column). More specifically, we find that the status quo can mitigate only 1− 3% of the profit

loss from complete inaction across all hotels (Profit Loss). These gains are even smaller if the

adjustment and information acquisition costs of managers to achieve these gains are taken

into account (Benchmark). These findings align with the empirical observation that managers
29 The function l(·) is formally defined in section 5.2.
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infrequently adjust prices. And when they do, they update prices with delay and usually just

copy the recommendation.

Delegating pricing to the algorithm is likely to improve outcomes considerably, see Table

7 (Delegation column). Results show that a hotel that fully delegates pricing to an unbiased

algorithm would see a reduction of 4 to 36 percent in losses accrued from mispricing rela-

tive to inaction. From column Biased in the table it can be seen that the welfare loss for

each hotel is only slightly larger when the algorithm uses biased recommendations instead

of the unbiased ones under full delegation.30 Taken together, about 80% of the gains from

delegation come from the algorithm adjusting prices much more frequently, 10% depends on

the algorithm reporting truthfully, and the remaining 10% result from costless information

processing. Moreover, the potential improvements from delegation to the algorithm varies

strongly across hotels as shown in Table 7. For hotels A, H and I, for example, delegating

pricing to the algorithm would leave significant surplus on the table because our estimates

suggest that most of the variation in optimal pricing can only be discovered by the local hotel

manager.31

Lastly, the profit loss hotel managers would accrue if they were not able to access the

algorithm’s recommendation at all is reported in column No Rec in Table 7. For all hotels,

the resulting payoff losses are nearly identical to the baseline of complete inaction, again

highlighting how infrequent the manual updates are relative to copying recommendations

and periods of inaction. In other words, the adjustment costs are typically so high that even

when the hotel manager manually updates the price, updating costs eat up a lion’s share of

the accrued benefit. The algorithm hence provides clear value by offering a cheap way of

adjusting prices more frequently and by incorporating additional price information.

As AI technologies and data availability advance, it is likely that the recommendation al-

gorithm’s share of the totally available price information will continue to grow. Alternatively,

hotel managers could respond by investing in their own market analysis to increase their share

of the total information. It is therefore natural to ask how a hotel manager’s payoff varies

with her share of the totally available price information. Figure 7 plots the hotel manager’s

payoff in the pooled sample from the current interaction with the recommendation algorithm

as well as from delegation to the algorithm, both as a function of the share of information
30 We report appendix I in the results for an alternative estimation method. Overall, results are similar

with gains ranging from 5 to 40%.
31 Note that the above results are likely a lower bound on the total increase in profits from delegation, as it

may induce “coordinated effects” on rival firms who benefit from the increased sensitivity of prices to market
conditions (see, Harrington Jr, 2022).

30



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recommender share of information

Lo
ss

 r
ea

lti
ve

 to
 in

ac
tio

n

Counterfactual

Delegation

No delegation

Figure 7: Counterfactual Information Shares and Hotel Manager Payoffs

Notes: The figure shows how the hotel manager’s payoff changes when the recommendation algorithm’s share

of the total information changes for the pooled sample. We plot the payoff losses relative to complete inaction

for both the current environment and a counterfactual where pricing is delegated to the recommendation

algorithm. The dashed vertical line shows the status quo. The model parameters are the ones estimated in the

first row of Table 6. We re-estimate a new equilibrium bias for each new division of information, see Figure 9

in appendix F.

held by the recommendation algorithm.

We re-estimate the hotel manager’s payoff in these two scenarios for different values of

σx(α)
2 = α(σ2

x+σ2
y +σ2

z) by varying the algorithm’s share of the information, α ∈ (0, 1), and

holding the variance of optimal prices, σx(α)2+σy(α)
2+σz(α)

2, and the relative importance

of y and z, σy(α)2

σz(α)2
, constant at the levels estimated on the first row of Table 6. We also re-

estimate the equilibrium bias of the recommendation algorithm, for each possible share of the

totally available price information, and report it in Figure 9 in appendix F. The remaining

parameters are taken as in the first row of Table 6. The dashed vertical line in Figure 7 plots

the share of information held by the recommendation algorithm we estimated for the status

quo setup (α = σ2
x

σ2
x+σ2

y+σ2
z
).

We find that when the algorithm’s relative share of information increases, the hotel man-

ager becomes better off in the current ‘status quo’ setting because expensive manual adjust-

ments are less necessary and copying recommendations leads to more accurate and profitable
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pricing. Even if the algorithm would get much better, the hotel manager’s adjustment costs

still prevent her from realizing a large part of the potential gains under the status quo (see No

Delegation in Figure 7). In addition to the adjustment cost of the manager, we also consider

how the algorithm’s biased recommendations influence the expected loss under the status

quo in equilibrium. Figure 9 in appendix F illustrates that the payoff increases resulting from

the larger information share of the algorithm are initially tempered by increases in the algo-

rithm’s equilibrium bias. When the algorithm holds next to no information, exaggerating its

signals has a negligible impact on the hotel manager’s update frequency. The impact of the

biased exaggeration, however, increases in the algorithm’s information and seems to plateau,

or even decrease, when the algorithm holds most of the available information. This pattern

is intuitive, as now, hotel managers copy recommendations most of the time and hence the

cost of biasing those recommendations becomes higher. What is also striking about Figure 9

is that the current setup outperforms delegation only if the recommendation algorithm holds

almost no pricing information. Again, a result of the relatively rare manual updates which

implies that adjustment costs are very often prohibitively high.

Finally, our model also permits parameter configurations in which delegation is clearly

inferior compared to the current setup. Figure 10 in appendix F illustrates the effects of an

increase of σc, the standard deviation of the normal distribution that underlies the log-normal

determining adjustment costs, on the benefits of delegation. The figure clearly shows that, if

the hotel manager possesses enough information and her adjustment costs are low enough to

permit for manual adjustments, delegation is clearly inferior to the current setting in which

algorithmic recommendations are used to augment hotel managers’ pricing decisions.

8 Conclusion

Algorithmic recommendations are used extensively to support decision making in organi-

zations. In this paper, we provide a framework for understanding the strategic interaction

between algorithmic recommendations and human decisions. The crucial friction in our model

originates in managerial inattention, leading to biased communication and pricing decisions.

Applying our model of information processing to a dataset containing millions of hotel-room

price recommendations, we demonstrate that full delegation to the algorithm is likely to be

welfare-improving, even if it forgoes the potential benefits of richer information.

Our findings point to a novel element in the intricate relationship between algorithmic

advisors and human decision makers. Previous work has studied the impact of heterogeneous
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preferences and skills, as well as potential bias in the processing of algorithmic advice by

humans. We show that humans may become a bottleneck in the decision making process as

they struggle to keep up with the arrival of frequently changing information, thereby severely

limiting the benefits of advice. In particular, we argue that when a human decision maker

has access to an easy default or status quo option (e.g. ‘keep current price’) and deviating

from that option (e.g. ‘update price’) incurs adjustment costs, this can lead to severe con-

flict of interest between the decision maker and the algorithm’s designer who does not incur

such costs. Examples of such settings include diagnosis recommendations for doctors, rec-

ommendations systems for parole decision (Berk, 2017), monitoring adherence to government

regulation (Glaeser et al., 2021) and restocking inventory (Shang et al., 2008).3233

In general, an algorithmic recommendation has three potential benefits: it provides ad-

ditional information, it simplifies the decision maker’s task by offering an easily selectable

alternative and it may also redirect the attention of the decision maker to carefully think

about other alternatives, leading to better decisions as a consequence. These changes typi-

cally further benefit the algorithm’s designer and hence the slow pace at which the decision

maker takes actions becomes even less optimal for the algorithm’s designer and may therefore

incentivize even more biased recommendations.

Ludwig and Mullainathan (2021) argue that even best-practice algorithmic design has

been unable to efficiently incorporate both preferences and information of human decision

makers into recommendation algorithms (also known as the override problem). Our work

demonstrates that the problem can be further complicated by strategic considerations. In

our setting, human actors who perceive recommendations as distorted, strategically counter-

balance those distortions. Responding strategically to algorithmic recommendations can be

especially important for human decision makers in judicial decisions (Kleinberg et al., 2018)

or hiring decisions (Hoffman et al., 2018) where the designer of the algorithm would like to

correct for underlying human biases, while the biased decision maker may have incentives to

strategically ‘correct’ the recommendation given that she understands that the algorithmic

recommendation is attempting to de-bias her decisions.
32 A doctor, for instance, can easily default to the most common cause of prominent symptoms when making

a diagnosis, government officials can choose to not check adherence to regulation, parole boards can keep an
inmate locked in, and a store manager can decline to restock their inventory.

33 Even though hotel pricing decisions may seem to have lower stakes relative to decisions made by judges
and doctors, a growing literature, especially from courts, suggests that these high-stake decisions are affected
by arguably much more irrelevant outside factors than effort costs. Examples include the fate of the presiding
judge’s hometown football team (Eren and Mocan, 2018), temperature outside the courtroom (Heyes and
Saberian, 2019) or unrelated previous judicial decisions (Chen et al., 2016a).
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There are many potential avenues for future research. An obvious extension of the present

paper would involve an explicit, fully dynamic model of price adjustment. The challenge here

is to handle strategic communication when managers may be tempted to wait for further

information before acting. Another question that we have not attempted to answer is why

recommendation systems are not substituted with delegation to the algorithmic advisor, even

when this would potentially benefit both economic agents. The answer may have to do with

the perception that algorithmic systems are biased, as in our case, and that they are likely

to make costly mistakes. For example, Dietvorst et al. (2015) argues that human decision

makers have a low tolerance for machine errors, and would rather rely on less precise human

advice. Relatedly, in a recommendation system the responsibility for mistakes typically rests

with the final decision maker while the designer of the algorithm largely escapes liability

for poor advice. This is likely to be a significant reason for using recommendation systems,

especially in revenue management and other economic consulting where disentangling the

effect of poor pricing advice from poor general management can be difficult. Finally, it would

be interesting to study strategic communication in environments in which the decision problem

is better described as a prediction problem and the researcher has access to the ex-post optimal

choice. This would allow to directly measure the degree of bias in communication, rather than

relying on the equilibrium response of the decision maker, thereby enabling model validation.
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A Full Sample Pass-Through Rates

In addition to the pass-through regressions in Table 4, which are based on the main sample,

we report for robustness the corresponding results for the full sample in Table 8. For the

definition of the main sample and the full sample, as well as their summary statistics, see

section 3 and Table 1 for details. The pass-through regressions for the full sample in Table 8

show an attenuation bias in actual price changes because of the measurement error introduced

by recommendation-price histories which we exclude in the main sample. This implies that

the strategic bias in recommendations estimated from the main sample would be even larger

using the full sample.

Table 8: Pass-Through Rates of Recommendation (Full Sample)

Change in actual price

All Manually Updated

Rec Change 0.781∗∗∗ 0.539∗∗∗ 0.535∗∗∗ 0.420∗∗∗

(0.005) (0.013) (0.013) (0.028)

Days ahead Polynomial No No Yes Yes

Room × Month FE No No No Yes

N 130,669 130,669 130,669 130,669

Notes: Linear regression model using the full sample. The dependent variable

is the cumulative change in the actual rate since the last price update. Rec-

ommendation is the cumulative (log) change in the recommendation since

the last price update. All regressions include all updates. Coefficients for

Manually Updated correspond to the interaction term of recommendation ×

manual. Room is the room type and Month refers to the arrival month. Sig-

nificance levels: ∗∗∗ p < 0.001
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B Proofs

Proof. Proof of Lemma 1. We first establish that 0 ≤ lr(r, c) ≤ 2(1 − λ̃)2
∫
y∈Y0(r,c)

dΨy(y)r,

for r > 0 (and vice versa). Since the integrand of the first element is exactly equal to c2 at

the boundaries, only the derivative of the integrand matters. Hence,

lr(r, c) = 2(1− λ̃)

∫
y∈Y0(r,c)

(r − x̃(r)− y)dΨy(y). (3)

Consider any r > 0. Since x̃ = λ̃r and Y0(r, c) is an interval centered at r − x̃(r), then the

symmetry of the normal distribution about zero implies that 0 ≤
∫
y∈Y0(r,c)

ydΨy(y) ≤ (1−λ̃)r.

The inequalities are strict if σy > 0 and λ̃ < 1. Substituting the end points of this interval

into (3) yields both, that l is increasing in r for r > 0, and the first claimed inequality in the

lemma. When r < 0, an analogous argument shows that (1 − λ̃)r ≤
∫
y∈Y0(r,c)

ydΨy(y) ≤ 0

and hence the inequalities are reversed, which proves the second inequality in the lemma and

that l is increasing in |r|.

Taking a derivative with respect to c we have simply lc(r, c) = b2
∫
y/∈Y0(r,c)

dΨy(y) > 0.

Proof. Proof of Lemma 2. The set of values of r and c for which the hotel manager is

indifferent between keeping the old price and gathering gathering additional information is

implicitly defined by the identity

(λ̃r)2 + σ2
y + σ2

z ≡ l(r, c)

An application of the implicit function theorem to the positive root of this identity then

implies that

r̄c(c) =
l2(r̄, c)

2λ̃2r̄ − l1(r̄, c)
,

This is positive, since the numerator is positive and, when r̄ > 0, the denominator satisfies

2λ̃2r̄ − lr(r̄, c) > 2λ̃2r̄ − 2r̄(1− λ̃)2
∫
y∈Y0(r̄,c)

dΨy(y)

≥ 2λ̃2r̄ − 2(1− λ̃)2r̄ ≥ 0,

where the first inequality follows from the previous lemma, the last inequality from the as-

sumption of λ̃ ≥ 1
2 .

Proof. Proof of Proposition 1. Notice first that

(r − x̃(r)− y)2 + σ2
z < b2c

⇔ x− r −
√

b2c− σ2
z < y < x− r +

√
b2c− σ2

z .
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Denote d(c) :=
√
max{b2c− σ2

z , 0}. Then we can write

µ(r) =

∫ c(r)
0 (Ψy(r − x̃(r) + d(c))−Ψy(r − x̃− d(c))) dF (c)

F (c(r))
.

If b2σ2
y < b1σ

2
z , then b2c(0) < σ2

z , d(c(0)) = 0, and, therefore, the hotel manager will acquire

signal z even if r = 0 and y = 0. Hence, µ(r) = 0 for all r. Instead if b2σ
2
y > b1σ

2
z ,

d(c(0)) > 0, and hence µ(0) > 0. In addition, as r → ∞, the integrand vanishes, while the

denominator converges to 1. Hence, limr→∞ µ(r) = 0. Finally, to see that µ(r) is increasing

in a neighborhood of r = 0 observe that

µr(r) =
1

F (c(r))

(
F ′(c(r))c′(r)η(r − x̃, d(c(r))) + 2

∫ c(r)

0
η1(r − x̃, d(c))(1− λ̃)dF (c)

)

− 1

F (c(r))2
F ′(c(r))c′(r)

∫ c(r)

0
η(r − x̃, d(c(r)))dF (c)

=
F ′(c(r))c′(r)

F (c(r))2

∫ c(r)

0

(
η(r − x̃, d(c(r)))− η(r − x̃, d(c))

)
dF (c)

+
2(1− λ̃)

F (c(r))

∫ c(r)

0
η1(r − x̃, d(c))dF (c),

with η(a, b) = Ψy(a+b)−Ψy(a−b) is decreasing in a and increasing in b. Hence, the first term

in the last step are weakly positive and the second is weakly negative. Since c′(0) = 0, both

terms are zero at r = 0 and the sign of µ(r) depends on the second derivative. Disregarding

terms that vanish at r = 0, we have

µrr(0) =
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

0

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c)

=
F ′(c(0))c′′(0)

F (c(0))2

∫ c(0)

σ2
z

b2

(
η(0, d(c(0)))− η(0, d(c))

)
dF (c) > 0,

by the assumption above. For λ = 1, the second term is zero and the first term is weakly

positive so µ(r) is weakly increasing. If F (c(0)) = 1, the first term is always zero and hence

µ(r) is weakly decreasing.

Proof. Proof of Proposition 2. Assume first that r > 0. By (1), it is sufficient to establish

that x̃(r) + E(y | r, y /∈ Y0(r, c)) ≤ x̃, i.e. that E(y | r, y /∈ Y0(r, c)) ≤ 0. Now,

E(y | r, y /∈ Y0(r, c)) =
1

A

∫ c(r)

0

∫
y/∈Y0(c,r)

ydΨy(y)dF (c)

=
1

A

∫ c(r)

0

(∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞

r−x̃(r)+d(c)
ydΨy(y)

)
dF (c), (4)
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where

A =

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c) > 0.

Notice then that,∫ r−x̃(r)−d(c)

−∞
ydΨy(y) +

∫ ∞

r−x̃(r)+d(c)
ydΨy(y)

=

∫ −(r−x̃(r))−d(c)

−∞
ydΨy(y) +

∫ (r−x̃(r))−d(c)

−(r−x̃(r))−d(c)
rydΨy(y) +

∫ ∞

r−x̃(r)+d(c)
ydΨy(y)

=

∫ r−x̃(r)−d(c)

−(r−x̃(r))−d(c)
ydΨy(y) ≤ 0 (5)

where the inequality follows, since r− x̃(r) = ( 1λ−1)r > 0 by assumption, d(c) > 0, and hence

the interval of integration is centered on a negative number while the normal distribution is

symmetric about zero. Furthermore, the inequality is strict whenever σ2
y > 0 and 0.5 < λ̃ < 1.

Consequently, the whole integral in (4) must be negative. When r < 0 the inequality in (5)

is simply reversed proving the proposition.

Proof. Proof of Corollary 1. It is enough to show that

1

A′

∫ ∞

−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

r(x)ydΨy(y)dF (c)dΨx(x) ≤ 0, (6)

where

A′ =

∫ ∞

−∞

∫ c(r)

0

∫
y/∈Y0(c,r)

dΨy(y)dF (c)dΨx(x) > 0

and Ψx is the cumulative distribution function of a zero-mean standard normal distribution

with variance equal to σ2
x. It can be verified that multiplying the integrand in the proof of

the previous proposition by r does not change inequality (5) when r is positive and reverses

it when r is negative. Consequently, the inner double integral in (6) is always less than zero

proving the corollary.

Lemma 3. r(x) is weakly increasing.

Proof. Proof. Let π(r, x) denote the interim expected profits of the algorithm given a signal

x and a report r. Recall that

π(r, x) =

∫
c(r)

(∫
y∈Y0(r,c)

(
(x+ y − r)2 + σ2

z

)
dΨy(y) +

∫
y/∈Y0(r,c)

(x̃(r)− x)2dΨy(y)

)
dG(c)

+(1−G(c(r)))x2
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Rewritting we have

π(r, x) =

∫
c(r)

(∫
y∈Y0

(
(y − r)2 + σ2

z + 2(y − r)x
)
dΨy(y) +

∫
y/∈Y0

(
x̃(r)2 − 2xx̃(r)

)
dΨy(y)

)
dG(c)

+x2

= A(r)−B(r)x+ x2,

for some non-negative functions A(r) and B(r). It follows that for every pair r, r′, the set

X(r) := {x ≥ 0 : π(r, x) ≥ π(r′, x)} is convex (and analogous for x < 0). This rules out the

existence of a triple x0 < x1 < x2 with r(x0) = r(x2) 6= r(x1). Hence, we can assume that for

any x belonging to a decreasing segment of r(x), (x0, x1), x̃(r(x0)) = x. Hence,

B(r) =

∫
c(r)

(∫
y∈Y0

2(r − y)dΨy(y) +

∫
y/∈Y0

2r−1(x)dΨy(y)

)
> 0.

C Evidence on Adjustment Costs

Here we reproduce for ease of access some of the evidence already shown in Garcia et al.

(2022) arguing that the hotel managers’ behavior is consistent with them facing adjustment

costs when changing prices. The hotels in that paper are the same as in our sample, we only

changed their labels to retain the hotels’ anonymity.

First, Figure 8 plots the relative frequency of price changes and recommendation changes

for the two biggest hotels in the sample. The main takeaway from this figure is that the man-

agers seem to have clear workday patterns that are not mirrored in the frequency with which

the recommendations change. For example, the manager at Hotel 6 seems to concentrate on

other tasks than pricing on Thursdays and Sundays, and does a lion’s share of her pricing

decisions on Tuesdays and Saturdays. This pattern suggests that the opportunity cost of time

used on pricing is significant and varying over time. The pattern is consistent across all hotels

in the sample as is evident from Table 9 which shows the share of all price updates done on

each weekday for each hotel. As can be seen from the table, most hotels have at least one

day on which they update next to no prices and often another day on which they do a large

share of their updates.

Furthermore, Garcia et al. (2022) argue that Figure 12 strongly suggests that copying

prices is less costly for the hotel manager than manually adjusting them. In that figure we

see the distribution of the logarithm of total number of price updates separately for days
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Figure 8: Frequency of Updates in Prices and Recommended Rates Across Weekdays for

Hotel 6 and 175. Source: Garcia et al. (2022).

when the manager copies the recommendation for at least a full arrival week for at least one

room type and for days when this does not happen. We see that on days when the manager

copies recommendations she adjusts considerably more prices. This suggests that manually

adjusting prices takes significantly more of the manager’s time and effort. More evidence on

the adjustment costs are provided in Garcia et al. (2022).

D Identification

In this section we show that a restricted version of the model is directly identified. In partic-

ular, we assume here that σy = 0. Because the manager obtains no information additional to

r prior to paying c2, Corr(p, r | p 6= r) = λ and

E
(
(p− E(p | r, p 6= r))2 | r, p 6= r

)
= σ2

z .

Similarly, λ2σ2
x = V ar(r). We need only show that with this information we can now identify

the parameters of the cost functions. First, let q1 denote the unconditional probability of a

manual price adjustment. It follows that∫
G

((
1− λ

λ

)2

x2 + σ2
z

)
dΨx(x) = q1,
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Table 9: Distribution of Actual Rate Updates

Hotel ID Monday Tuesday Wednesday Thursday Friday Saturday Sunday

6 0.19 0.25 0.11 0.04 0.12 0.22 0.04
10 0.19 0.06 0.27 0.09 0.07 0.16 0.17
11 0.17 0.47 0.02 0.04 0.18 0.12 0.00
23 0.14 0.14 0.19 0.12 0.24 0.10 0.08
30 0.22 0.10 0.17 0.25 0.16 0.06 0.03
131 0.14 0.15 0.16 0.07 0.16 0.17 0.16
175 0.22 0.16 0.12 0.19 0.19 0.08 0.04
192 0.12 0.16 0.30 0.04 0.14 0.11 0.13
208 0.07 0.31 0.07 0.08 0.36 0.03 0.06

Notes: Numbers in bold indicate the day with maximal or minimal density of actual rate updates

for each hotel. Rate updates for each hotel sum to 1, rounding errors may apply. Data includes only

products for which we observe T ≥ 100 days before arrival. Source: Garcia et al. (2022).

where G(x) is the distribution of c2. Similarly, let q2 denote the probability conditional on

the recommendation exceeding some value r0 = λx0. It follows that,

1

1−Ψx(λx0)

∫
λx0

G

((
1− λ

λ

)2

x2 + σ2
z

)
dΨx(x) = q2.

Since G(·) is a two-parameter distribution (b2, σc) these two moments pin it down. Finally,

recall that c(λx) is the maximum cost such that a manager who observes a recommendation

r = λx adjusts the price. The function c(r) can now be computed in closed-form using the

estimated parameters. In particular,

c(r) =
(1− λ)2r2 + σ2

z

b1 + b2
1r<r0 +

(1− (1− λ)2)r2

b1
1r>r0 ,

with r0 such that
(1− λ)2r20 + σ2

z

b1 + b2
=

(1− (1− λ)2)r20
b1

It follows that ∫
G

(
b1c
(
x
λ

)
b2

)
dΨx(x) = q0,

where q0 is the unconditional probability of a price change and we use the fact that b1 and

b2 are the respective scalers of the distribution.

Introducing σy > 0 represents a substantial increase in complexity but it is necessary to

reconcile the model with the observed pricing behavior in the data. First, for some hotels
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Table 10: Percentage changes in actions and losses relative to best reponse

Percentile of Fx

0.50 0.55 0.60 0.65 0.70 0.75 0.8 0.85 0.90 0.95 0.99

∆ r 100% 1.0% 3.3% -15.4% 2.5% -2.6% -4.9% -0.8% -14.0% -16.4% -19.1%

∆ loss -0.00% -0.00% -0.02% -0.01% -0.00% -0.00% -0.00% -0.02% -0.01% -0.19% -0.52%

Notes: The table compares the algorithmic advisor’s best responses and payoffs relative to actions and

payoffs implied by the linear strategy. If r∗(x;λ) is the best response given signal x and the hotel manager’s

actions, the first row reports 100%× r∗(x;λ)− x
λ

r∗(x;λ) where λ is the bias estimated in the main section. Because

the linear recommendation is always zero at the 50th percentile (0/λ = 0), the percentage change when

deviating to the best response will mechanically be +/−100%. Similarly, if p(r∗(x)) is the random variable

that represents the price realization given the hotel manager’s strategy from the baseline model and the

algorithmic advisor best responding to it, and if p(x/λ) is the implemented price without a deviation, then

the second row reports the reduction in expected losses for the algorithm’s designer from best responding,

i.e. 100%×
E
[
(p(r∗(x))−p∗)2

]
−E

[
(p(x/λ)−p∗)2

]
E
[
(p(r∗(x))−p∗)2

] .

the implied bias is larger than 1/2, meaning that, conditional on r, p = 0 is closer to the

ideal price than p = r. This would then be inconsistent with a substantial fraction of prices

that match the recommendation. Second, the empirical distribution of p − E(p | p 6= r) is

double-peaked and has a valley around zero. This suggests that managers are less likely to

change the price manually whenever some privately observed shock is small in magnitude,

which is precisely what we capture with the variable Y .

E Gains from Best Responding

To gauge the restrictiveness of limiting the algorithm’s strategy space to linear strategies we

simulate the loss for the algorithm’s designer, were she to privately deviate to her non-linear

best response, assuming that the hotel manager still believes that the algorithm is using

its linear strategy. We then compare this to the loss from the linear strategy. The expected

payoffs are calculated as averages of payoff realizations over 10000 draws from the distribution

of signals which we estimated for the pooled sample in the main text (see the first row in

Table 6). We consider best responses to revenue manger’s signal realizations for 10 evenly

split percentiles starting from the 50th percentile. The results are reported in Table 10.

Notice that due to symmetric signal distributions the payoff losses for percentiles below
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the 50th percentile will be symmetric to the ones presented here. The results are calculated

as a percentage of the best response outcome. We also estimate the results for the 99th

percentile because high signal realizations are the ones where the algorithm already has a

very high chance of inducing the hotel manager to revise her price even without exaggerating

its recommendation.

For most signal realizations the difference in the advisor’s payoff when best responding

compared to when playing the linear strategy is negligible, see first row in Table 10. For all

but the two highest percentiles of signals in the table, best responding reduces the advisor’s

losses by at most 0.02%. As mentioned above, for the higher signal realizations the advisor

would like to reduce her lying by a significant margin but even this reduction will increase her

payoff by only 0.19% at the 95th percentile of signals and by 0.52% in the 99th percentile. We

conclude that the restriction to linear strategies does not seem to generate significant deviation

incentives and hence is likely to have a negligible quantitative impact on the results.

F Additional Results for Counterfactuals

In the following, we provide some additional information on our counterfactuals. Figure 9

shows the estimated equilibrium bias when we vary the recommendation algorithm’s share

of the policy-relevant information similar to Figure 7 in the main text. Specifically, Figure

9 shows an initial increase in the recommendation bias followed by a leveling out and even

a slight decrease in the bias when the recommendation algorithm holds most of the price

information.

In Figure 10 we compare delegation against the current setup if we square the standard

deviation of the normal distribution of manager’s adjustment costs, σc.34 The figure illustrates

how the current environment can be superior to delegation when the hotel manager holds

enough information and her price-adjustment costs are often sufficiently low to allow for

manual adjustments.

G Asymmetry of Price Responses

In this section we present evidence that prices respond relatively symmetrically to both in-

creases and decreases in the algorithmic recommendation. As a first piece of evidence, we

show estimates from a Cox proportional hazards regression where the “failure” event is a
34 This is practically the same as doubling the standard deviation, since σc = 2.28 and hence σ2

c = 5.20.
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Figure 9: Estimated equilibrium bias as a function of the share of information held by the

recommendation algorithm.

change in the price and we allow the probability of a price change to depend differently on

positive and negative changes in the recommendation. We estimate the model allowing for

different baseline hazard rates for different hotel-room type-arrival month combinations. More

precisely, let Thrka be the random next update time since the (k− 1)th previous update time

at which the price for the room type r in hotel h is being changed for arrival date a in month

m. We estimate the model

P(Thrka ≥ t) = exp

(
−
∫ t

0
λhrm(t) exp

(
β1∆

r
hrkat+ ∗ 100 + β2∆

r
hrkat− ∗ 100 + β3Days aheadhrkat

)
dt

)
,

where λhrm is an arbitrary measurable baseline hazard rate that is allowed to be different

for different combinations of h, r and m, the variable ∆r
hrkat+ is the absolute change in the

logarithm of recommendations since the last price update if the recommendation increased

and zero otherwise, ∆r
hrkat− is the same when the change in the recommendation was nega-

tive and Days aheadhrkat counts how many days before the arrival date a the tth day after

the kth update was.35 We multiply all of the recommendation changes by 100, as typical

recommendation changes are about 5% The β1, β2 and β3 are regression parameters. We run

this model excluding 0.5% of the largest changes in recommendations, as these changes never

induce a price change, typically are followed by a reverse correction in the recommendation
35 The results are quantitatively very similar if we include a third order polynomial of Days ahead or exclude

it completely.
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Figure 10: Counterfactual Information Shares and Hotel Manager Payoffs with Doubled Vari-

ance of Adjustment Costs

and hence seem to be considered as mistakes by both the revenue manager and the hotel

manager.36 Table 11 reports hazard ratios implied by a unit change in a covariate (which in

the Cox model reduce to exp(βi) for covariate i) and their 95% confidence intervals for the

different changes in recommendation holding the other covariates constant.

As can be seen from the table, positive and negative price changes in the recommended

price have a remarkably similar and fairly large impact on the probability of updating. A way

to interpret the estimates is that a 1% increase or decrease in the price results in approximately

a 16% increase in the hazard rate of a price update by the hotel. Similarly, an extra day ahead

of arrival reduces the hazard rate of a price update by approximately 1%. In other words,

both recommendation increases and decreases induce the hotel manager to update their prices

and do so in a remarkably similar fashion.

As a second piece of evidence, figure 11 shows the relationship between log changes in

the recommendation and log changes in the price conditional on a manual price change by

the manager. The Figure shows also a linear fit of the data that allows for a discontinuity at

zero and a different slope for positive and negative recommendation changes. As can be seen

from the figure, there is next to no discontinuity and the slopes for increases and decreases

are remarkably similar.
36 Despite being only about 9000 of the total 2 million prices, as extreme observations, they have a large

impact on the Cox estimates and including them would lead us to conclude that large changes in the magnitude
of the recommendation reduce rather than increase the probability of a price update.
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Table 11: Hazard ratios from Cox proportional

hazards model for the probability of a price

change as a function of the magnitude of the

change in the recommendation

∆r
hrkt+ ∗ 100 ∆r

hrkt− ∗ 100 Days ahead

1.165 1.161 0.989

[1.163, 1.1676] [1.158, 1.1644] [0.989, 0.9894]

Notes: The first row reports hazard ratios and the sec-

ond row reports 95% confidence intervals for those haz-

ard ratios. The estimation sample excludes recommen-

dation changes that are higher than 0.25 logpoints in

absolute value, this corresponds to approximately 0.5%

of the total price observations. N=2,008,202.
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Figure 11: Model Fit: Recommendations and Prices

Notes: Each point represents a price update that does not match the recommendation. The horizontal axis is

the log change in the recommendation and vertical axis is the log change in the price. The blue line shows a

linear fit of the data with a 95% confidence interval allowing for a discontinuity at zero and a different slope

on both sides of the origin.
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H Alternative Price-Adjustment Models

In the following, we discuss alternatives to the price-updating model presented in the main

text. We define a recommendation r(x) to be unbiased if E[p∗ | x] = r.

• Suppose that p∗ is normally distributed with mean zero and standard deviation σ. Fur-

thermore, assume that the manager observes signal y and the algorithmic advisor ob-

serves signal x, which conditional on p∗, are independent and both normally distributed

with mean p∗ and standard deviation σi, i ∈ {x, y}. The unbiased recommendation is

r(x) = E[p∗] = σ2

σ2+σ2
x
x and p∗ conditional on r(x) is distributed normally with mean

equal to r(x). That is, an unbiased algorithmic advisor does not “naively” report x but

instead deflates her signal. Notice that “naively” sending one’s signal without deflating

it is highly costly in our setting because the hotel manager often copies the recom-

mendation. If the advisor truly shows a low level of sophistication and passes on its

signal the model would correspond to the alternative specification in section 6 where λ

is a primitive of the data and not a choice parameter. The counterfactual results for

this model remain qualitatively similar to the original ones due to the high correlation

between the bias estimated in the baseline model and the bias that would result from

this low level of sophistication (see Figure 6).

• Consider the model above but assume that the hotel manager’s signal is fully informative

and she copies the recommendation when the difference between the recommendation

and the truth does not warrant a manual adjustment cost and otherwise sets the price

optimally. In other words, assume that p = r if p∗ ∈ (r − c, r + c) for some c > 0 and

p = p∗ otherwise. Under the hypothesis that the recommendation is unbiased

E[p∗ | p 6= r, r] = E[p∗ | p = r, r] := r.

In our data E[p∗ | p 6= r] = γr for some γ < 1 which contradicts the equality above.

• Truth-noise model: Suppose that the information held by the algorithm is strictly worse

than that of the manager. In particular, x = y = p∗ with probability q and otherwise x

is an imperfect predictor of y = p∗. In particular, assume that, E[p∗ | x, x 6= p∗] = γx.

In this case, we have that the recommendation is unbiased only if r = (q + (1 − q)γ)x

in which case

E[p∗ | p 6= r] =
q(1− γ)

q + (1− q)γ
r.
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A prediction of this model is that, immediately upon observing p 6= r, the algorithm’s

recommendation should change to r′ = p. In the data, we observe the algorithm up-

dating immediately after a price change that does not match the recommendation with

83% probability, see Figure 13, but only 13% of these updates result in r′ = p and

E(r′ | p, p < r) > p, i.e. the recommendation does not fully react to the change in price

as shown in Figure 14. Together these suggest that there is persistent ”disagreement”

between the algorithm’s designer and the hotel manager.

• Intrinsic Attention: Our model assumes that recommendations drive attention alloca-

tion. An alternative hypothesis is that the manager devotes attention to those products

she obtained some information about and uses the recommendation as a confirma-

tion/shortcut. That is, the manager first observes y and decides whether to pay atten-

tion and if so then observes r, choosing whether to accept or reject the recommendation.

We contend that this model is implausible for a number of reasons. First, if the man-

ager only puts attention when observing extreme values of y (because of attention and

adjustment costs), then the expectation of the difference between the recommendation

and y conditional on the manager putting attention to a price would be large (even

if we allow for x to be correlated with y) resulting in a low likelihood of copying the

recommendation. To match this moment, it then should be the case that r is very close

to y almost always, rendering the information held by the manager useless. Instead,

our timing assumes the manager devotes attention when r draws an extreme value and

the manager accepts if y is relatively small which occurs much more often. Second, we

observe hotel managers accepting hundreds of recommendations in one day while not

changing a single price manually, see Figure 12.

• Revenue vs. profits: Since the revenue management company is benchmarked on rev-

enue but the hotel manager should care about profits, there could be a directional

disagreement between them based on this difference in payoffs. Indeed, theoretically,

the revenue-maximizing price is always lower than the profit-maximizing price. Huang

(2022) shows that Airbnb’s recommendations to hosts are downward biased, consistent

with the platform’s preference for revenue-maximization. By contrast, we do not observe

a significant directional bias in our data: the recommendation algorithm exaggerates

both price hikes and drops by approximately the same amount. This is illustrated in

Figure 11 which shows the dependence of manual updates on the recommendation. The

figure also plots a linear fit of the data which allows for a discontinuity at zero and dif-
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Figure 12: Number of Rate Updates (in Log) Conditional on Copying and Not Copying

Recommended Rates. Source: Garcia et al. (2022).

ferent slopes on both sides of the origin. As can be seen from the figure, there is only a

marginal discontinuity at zero and the slopes on both sides of the origin are remarkably

similar.

I Details on Estimation and Robustness

Our main estimation routine proceeds as follows:

1. Fix a starting λ and minimize the quadratic distance of the model implied moments to

the empirical moments standardized by the empirical moment.37

2. Check if local deviations in λ at the found parameter values are beneficial. If yes,

update λ to the direction of the beneficial deviation and return to step 1. If not, end
37 I.e. If the model implied moments for a parameter vector θ are µ(θ) and the empirical moments are

given by a vector m, we solve minθ {µ(θ)′Im−1µ(θ)}, where Im−1 is a diagonal matrix where the ith diagonal
element is 1

mi
.
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Figure 13: Probability of the recommendation changing after the price manually changed to

not equal the recommendation. Ticks represent the 95% confidence intervals.

the routine.

Because this routine is quite sensitive to the intial values of λ, the current starting values are

the ones generating the lowest quadratic scaled distance above that we have been able to find

after starting the routine from dozens of different values for the bias.38 However, irrespective

of the estimation procedure, the counterfactuals remain very stable. To illustrate this we

report in Table 12 the results of the counterfactuals if we treat λ as a parameter and estimate

it simply using SMM like the other parameters in the first step of our baseline routine but

do not require it to imply a perfect Bayesian equilibrium. The resulting counterfactual losses

are remarkably close to the ones estimated with the original estimation routine.

38 Due to computational load we have not been able to implement of proper grid search for the loss
minimizing set of parameter values.
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Figure 14: Probability of the algorithm copying the current price after the price manually

changed to not equal the recommendation. Ticks represent the 95% confidence intervals.
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Figure 15: Cumulative distribution functions of cost c1 for copying recommendations (in blue)

and cost c2 for manual price adjustments (in yellow).

55



Table 12: Counterfactuals from Full SMM

Hotel Benchmark Profit Loss Delegation Biased

A 0.996 0.992 0.975 0.982

B 0.985 0.971 0.820 0.822

C 0.982 0.966 0.726 0.735

D 0.992 0.985 0.934 0.950

E 0.983 0.967 0.756 0.773

F 0.992 0.986 0.710 0.712

G 0.980 0.966 0.639 0.667

H 0.990 0.978 0.844 0.864

I 0.987 0.973 0.817 0.823

Notes: The value in the first column (Benchmark) corresponds to

the welfare loss in the status quo relative to the welfare loss under

complete inaction. The value in the second column (Profit Loss)

is the implied accounting profit loss, disregarding adjustment

costs, relative to inaction. The third column (Delegation) rep-

resents the welfare loss in the counterfactual exercise of full del-

egation to the algorithm, again relative to inaction. The fourth

column (Biased) describes the expected welfare loss from a coun-

terfactual where the decision is delegated to the algorithm which

continues to produce biased recommendations relative to com-

plete inaction. The last column (No Rec) shows the expected

welfare loss relative to inaction if the hotel manager has no ac-

cess to the recommendation or copying it.
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