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1 Introduction

Recently, a number of macroeconometric studies emphasized the role of anticipated shocks

as sources of macroeconomic fluctuations. Beaudry and Portier (2006) find that more than

one-half of business cycle fluctuations are caused by news concerning future technological

opportunities. Davis (2007) and Fujiwara, Hirose, and Shintani (2008) analyze the impor-

tance of anticipated shocks in medium-scale New Keynesian DSGE models and find that

these disturbances are important components of aggregate fluctuations. Schmitt-Grohé

and Uribe (2008) conduct a Bayesian estimation of a real-business cycle model and find

that anticipated shocks are the most important source of aggregate fluctuations. In partic-

ular, they show that anticipated shocks explain two thirds of the volatility in consumption,

output, investment, and employment.

In light of these findings, we attempt to investigate, whether the anticipation of future

cost-push shocks has a stabilizing and therefore welfare-enhancing effect when compared

to unanticipated shocks. In order to conduct an analysis of the (welfare) effects of antic-

ipated shocks, this paper presents a general solution method for linear dynamic rational

expectations models with anticipated shocks and optimal policy. Our method extends the

work of Söderlind (1999), who uses the generalized Schur decomposition method, advo-

cated by Klein (2000), to solve linear rational expectations models with optimal policy.

However, Söderlind (1999) only considers stochastic models with white noise shocks which

are, by definition, unpredictable. In the case of anticipated shocks, the occurrence of all

future shocks is known exactly at the time when the solution of the model is computed.

Our method also contains unanticipated shocks as a limiting case.

As an economic example, we lay out a calibrated New Keynesian model for a closed

and cashless economy with internal habit formation in consumption preferences, a variant

of Calvo price staggering with partial indexation to past inflation and a time-varying wage

mark-up which represents a typical cost-push shock. We compare the effects of mark-up

shocks under optimal monetary policy for different lengths of the anticipation period. Our

main finding is that anticipated cost shocks entail higher welfare losses than unanticipated

cost disturbances of equal magnitude.
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The paper is organized as follows. Section 2 discusses optimal policies in RE models

with anticipated temporary shocks. We first determine the optimal unrestricted policy

under precommitment and calculate the minimum value of the intertemporal loss function.

We then consider (optimal) simple rules and demonstrate how the Schur decomposition

can be used to solve the model under these conditions. Section 3 derives the hybrid New

Keynesian model, presents the welfare-theoretic loss function and discusses the effects of

anticipated and unanticipated cost-push shocks. Finally, Section 4 provides concluding

remarks.

2 The Model

In this paper we discuss the following linear expectational difference equations

A




wt+1

Et vt+1


 = B




wt

vt


+ Cut + Dνt+1 , (1)

where wt is an n1 × 1 vector of predetermined variables, assuming w0 given, vt an n2 × 1

vector of non-predetermined variables, ut an m× 1 vector of policy instruments, and νt+1

an r×1 vector of exogenous shocks. The matrices A and B are n×n (where n = n1 +n2),

while the matrices C and D are n × m and n × r respectively. We allow matrix A to

be singular which is the case if static (intratemporal) equations are included within the

dynamic relationships. The vector w, composed of backward-looking variables, can include

exogenous variables, following autoregressive processes. Et vt+1 denotes model consistent

(rational) expectations of vt+1 formed at time t. We assume that the shocks are anticipated

by the public in advance and take the following form

νt =





ν for t = τ > 0

0 for t 6= τ ,

(2)

where ν = (ν1, . . . , νr)
′ is a constant non-zero r × 1 vector. It is assumed that at time

t = 0 the public anticipates a shock of the form outlined in (2) to take place at some
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future date τ > 0. Note that τ also defines the lengths of the anticipation period. Since

shocks are anticipated by the public we have Et νt+1 = νt+1. For notational convenience,

we define the n × 1 vector kt = (w′

t, v
′

t)
′. Assume that the policy maker´s welfare loss at

time t is given by

Jt =
1

2
Et

∞∑

i=0

λi{k′

t+iW̃kt+i + 2k′

t+iPut+i + u′

t+iRut+i} , (3)

where W̃ and R are symmetric and non-negative definite and P is n × m.

2.1 Optimal Policy with Precommitment

We are now going to develop the policy maker´s optimal policy rule at time t = 0. It is

assumed that the policy maker is able to commit to such a rule. From the Lagrangian

L0 =
1

2
E0

∞∑

t=0

λt{k′

tW̃kt + 2k′

tPut + u′

tRut + 2ρ′t+1[Bkt + Cut + Dνt+1 − Akt+1]} (4)

with the n × 1 multiplier ρt+1, we get the first-order conditions with respect to ρt+1, kt,

and ut:




A 0n×m 0n×n

0n×n 0n×m λB′

0m×n 0m×m −C ′







kt+1

ut+1

ρt+1




=




B C 0n×n

−λW̃ −λP A′

P ′ R 0m×n







kt

ut

ρt




+




D

0n×r

0m×r




νt+1 . (5)

To solve the system of equations in (5), expand the state and costate vector kt and ρt

as (w′

t, v
′

t)
′ and (ρ′wt, ρ

′

vt)
′ respectively and rearrange the rows of the (2n + m) × 1 vector

(k′

t, u
′

t, ρ
′

t)
′ by placing the predetermined vector ρvt after wt. Since vt is forward-looking

with an arbitrarily chosen initial value v0, the corresponding Lagrange multiplier ρvt is

predetermined with an initial value ρv0 = 0. Rearrange the columns of the (2n + m) ×
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(2n+m) matrices in (5) according to the re-ordering of (k′

t, u
′

t, ρt)
′ and write the result as

F




w̃t+1

ṽt+1


 = G




w̃t

ṽt


+




D

0n×r

0m×r




νt+1 , (6)

where w̃t = (w′

t, ρ
′

vt)
′ and ṽt = (v′t, u

′

t, ρ
′

wt)
′. The n × 1 vector w̃t contains the ’backward-

looking’ variables of (5) while the (n + m) × 1 vector ṽt contains the ’forward-looking’

variables.

Equation (5) implies that the (2n+m)×(2n+m) matrix F is singular. To solve equation

(6) we apply the generalized Schur decomposition method (Söderlind, 1999; Klein, 2000).

The decomposition of the square matrices F and G is given by F = Q
′

SZ
′

, G = Q
′

TZ
′

or

equivalently QFZ = S, QGZ = T , where Q, Z, S, and T are square matrices of complex

numbers, S and T are upper triangular and Q and Z are unitary, i.e. Q · Q
′

= Q
′

· Q =

I(2n+m)×(2n+m) = Z ·Z
′

= Z
′

·Z, where the non-singular matrix Q
′

is the transpose of Q,

which denotes the complex conjugate of Q. Z
′

is the transpose of the complex conjugate

of Z. The matrices S and T can be arranged in such a way that the block with the stable

generalized eigenvalues (the ith diagonal element of T divided by the ith diagonal element

of S) comes first. Premultiply both sides of equation (6) with Q and define auxiliary

variables z̃t and x̃t so that




z̃t

x̃t


 = Z

′




w̃t

ṽt


 . (7)

Partitioning the triangular matrices S and T in order to conform with z̃ and x̃. Then set

Q




D

0n×r

0m×r




=




Q1

Q2


 , (8)
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where Q1 is n × r and Q2 is (n + m) × r. We then obtain the equivalent system




S11 S12

0(n+m)×n S22







z̃t+1

x̃t+1


 =




T11 T12

0(n+m)×n T22







z̃t

x̃t


+




Q1

Q2


 νt+1 , (9)

where the n×n matrix S11 and the (n + m)× (n + m) matrix T22 are invertible while S22

is singular. The square matrix T11 may also be singular. The lower block of equation (9)

contains the unstable generalized eigenvalues and must be solved forward. Since

x̃t+s = M2x̃t+s+1 − T−1
22 Q2νt+s+1 (s = 0, 1, 2, . . .) , (10)

where M2 = T−1
22 S22, the unique stable solution for x̃t is given by

x̃t = −
∞∑

s=0

M s
2T−1

22 Q2 Et νt+s+1 =





−M τ−1−t
2 T−1

22 Q2ν for 0 ≤ t < τ

0 for t ≥ τ .

(11)

The upper block of (9) contains the stable generalized eigenvalues and can be solved

backward. Since

z̃t+1 = M1z̃t + S−1
11 (T12x̃t − S12x̃t+1) + S−1

11 Q1νt+1 , (12)

where M1 = S−1
11 T11 (which in general is not invertible), the general solution is given by

z̃t = M t
1K +

t−1∑

s=0

M t−s−1
1 S−1

11 (T12x̃s − S12x̃s+1 + Q1νs+1)

=





M t
1K +

∑t−1
s=0 M t−s−1

1 S−1
11 (T12x̃s − S12x̃s+1) for 0 ≤ t < τ

M t
1K +

∑τ−1
s=0 M t−s−1

1 S−1
11 (T12x̃s − S12x̃s+1)

+M t−τ
1 S−1

11 Q1ν for t ≥ τ ,

(13)

where x̃s is defined in (11).
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We can rewrite (13) as follows:

z̃t = M t−τ
1 K̃ for t ≥ τ , (14)

where

K̃ = M τ
1 K + S−1

11 Q1ν +

τ−1∑

s=0

M τ−s−1
1 S−1

11 (T12x̃s − S12x̃s+1) . (15)

Since

x̃s =





−M τ−1−s
2 T−1

22 Q2ν for 0 ≤ s < τ

0 for s ≥ τ ,

(16)

we can write K̃ as

K̃ = M τ
1 K + S−1

11 Q1ν + [−W̃1 + M1W̃2]T
−1
22 Q2ν , (17)

where

W̃1 =
τ−1∑

s=0

M τ−s−1
1 S−1

11 T12M
τ−s−1
2 =

τ−1∑

k=0

Mk
1 S−1

11 T12M
k
2 (18)

and

W̃2 =
τ−2∑

s=0

M τ−s−2
1 S−1

11 S12M
τ−s−2
2 =

τ−2∑

k=0

Mk
1 S−1

11 S12M
k
2 . (19)

W̃1 as well as W̃2 is a finite geometric sum of matrices and can be written as

W̃1 = S−1
11 T12 − M τ

1 S−1
11 T12M

τ
2 + M1W̃1M2 (20)
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and

W̃2 = S−1
11 S12 − M τ−1

1 S−1
11 S12M

τ−1
2 + M1W̃2M2 . (21)

To solve for both, W̃1 and W̃2, we use the matrix identities (Rudebusch and Svensson,

1999; Klein, 2000) vec (A + B) = vec (A) + vec (B) and vec (ABC) = [C ′ ⊗ A] vec (B)

where vec (A) denotes the vector of stacked column vectors of the matrix A and ⊗ denotes

the Kronecker product of matrices.

We then obtain from (20) and (21)

vec W̃1 − [M ′

2 ⊗ M1] vec W̃1 = vec [S−1
11 T12 − M τ

1 S−1
11 T12M

τ
2 ] (22)

and

vec W̃2 − [M ′

2 ⊗ M1] vec W̃2 = vec [S−1
11 S12 − M τ−1

1 S−1
11 S12M

τ−1
2 ] (23)

with the solution

vec W̃1 = [I − M ′

2 ⊗ M1]
−1 · vec [S−1

11 T12 − M τ
1 S−1

11 T12M
τ
2 ] (24)

vec W̃2 = [I − M ′

2 ⊗ M1]
−1 · vec [S−1

11 S12 − M τ−1
1 S−1

11 S12M
τ−1
2 ] . (25)

According to (13) and (16), the solution of z̃t over the anticipation interval 0 < t < τ

can be rewritten as

z̃t = M t
1K + [−W ∗

1t + W ∗

2t] T
−1
22 Q2ν for 0 ≤ t < τ (26)

with

W ∗

1t =
t−1∑

s=0

M t−s−1
1 S−1

11 T12M
τ−s−1
2 =

t−1∑

k=0

Mk
1 S−1

11 T12M
τ−t+k
2 (27)
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and

W ∗

2t =

t∑

s=1

M t−s
1 S−1

11 S12M
τ−s−1
2 =

t−1∑

k=0

Mk
1 S−1

11 S12M
τ−1−t+k
2 . (28)

W ∗

1t satisfies the matrix equation1

W ∗

1t = S−1
11 T12M

τ−t
2 − M t

1S
−1
11 T12M

τ
2 + M1W

∗

1tM2 (0 ≤ t < τ) (29)

with the solution

vec W ∗

1t = [I − M ′

2 ⊗ M1]
−1 · vec (S−1

11 T12M
τ−t
2 − M t

1S
−1
11 T12M

τ
2 ) . (30)

The matrix W ∗

2t satisfies the equation2

W ∗

2t = S−1
11 S12M

τ−1−t
2 − M t

1S
−1
11 S12M

τ−1
2 + M1W

∗

2tM2 (0 ≤ t < τ) (31)

with the solution

vec W ∗

2t = [I − M ′

2 ⊗ M1]
−1 · vec (S−1

11 S12M
τ−1−t
2 − M t

1S
−1
11 S12M

τ−1
2 ) . (32)

The constant K can be determined using the initial value of the predetermined vector

w̃. By premultiplying equation (7) with Z and by partitioning the matrix Z to conform

with the dimension of z̃ and x̃, we obtain




w̃t

ṽt


 =




Z11 Z12

Z21 Z22







z̃t

x̃t


 (33)

and therefore w̃0 = Z11z̃0+Z12x̃0 with w̃0 = (w′

0, 0
′

n2×1)
′, z̃0 = K, and x̃0 = −M τ−1

2 T−1
22 Q2ν,

1Note that equation (29) is also well-defined for t = τ . In this case it is equivalent to (20) implying
W ∗

1τ = W̃1.
2For t = τ − 1 equation (31) is equivalent to (21) so that W ∗

2τ−1 = W̃2. Then, according to (17), K̃ = z̃τ =
Mτ

1 K + S−1
11 Q1ν + [−W ∗

1τ + M1W
∗

2τ−1]T
−1
22 Q2ν.
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where it is assumed that τ > 0.3 The constant K is then given by

K = Z−1
11 w̃0 − Z−1

11 Z12x̃0 , (34)

provided the inverse Z−1
11 exists. A necessary condition is that the dynamic system (6) has

the saddle path property, i.e., that the number of backward-looking variables (n1+n2 = n)

coincides with the number of stable generalized eigenvalues (Söderlind, 1999; Klein, 2000).

In the case τ > 0 we can assume w0 = 0 so that the constant K can be written as

K = Z−1
11 Z12M

τ−1
2 T−1

22 Q2ν . (35)

The solution to the state vector (z̃t, x̃t)
′ for 0 ≤ t < τ now reads as follows




z̃t

x̃t


 = ΞtT

−1
22 Q2ν for 0 ≤ t < τ , (36)

where

Ξt =

(
M t

1Z
−1
11 Z12M

τ−1
2 − W ∗

1t + W ∗

2t

−M τ−1−t
2

)
(0 ≤ t < τ) . (37)

If Z11 is invertible, equation (33) implies

ṽt = Z21z̃t + Z22x̃t = Z21(Z
−1
11 w̃t − Z−1

11 Z12x̃t) + Z22x̃t = Nw̃t + Ẑx̃t , (38)

where N = Z21Z
−1
11 and Ẑ = Z22 − Z21Z

−1
11 Z12. Write equation (38) as




vt

ut

ρw t




=




N11 N12

N21 N22

N31 N32







wt

ρv t


+




Ẑ1

Ẑ2

Ẑ3




x̃t (39)

3In the special case τ = 0 (unanticipated shocks) we have x̃0 = 0 and z̃t = (S−1
11 T11)

tK +(S−1
11 T11)

tS−1
11 Q1ν

implying z̃0 = K + S−1
11 Q1ν and K = Z−1

11 w̃0 −S−1
11 Q1ν with w0 6= 0. By contrast, the initial value w0 can

be normalized to zero if τ > 0.
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and assume the n2×n2 matrix N12 is invertible. The optimal policy rule under commitment

can then be written as

ut = N21wt + N22ρv t + Ẑ2x̃t = N21wt + N22N
−1
12 (vt − N11wt − Ẑ1x̃t) + Ẑ2x̃t

= N22N
−1
12 vt + (N21 − N22N

−1
12 N11)wt + (Ẑ2 − N22N

−1
12 Ẑ1)x̃t , (40)

where x̃t is given by (11). For t < τ , ut depends on the auxiliary variable x̃t, while for

t ≥ τ , ut is only a linear function of the predetermined state variables wt and ρvt, where

ρvt can be substituted by the original state variables vt and wt.

Minimum Value of the Loss Function

To determine the minimum value of the loss function Jt at time t = 0, we express Jt as

function of w̃ and ṽ. The loss function (3) can be written as

Jt =
1

2

∞∑

i=0

λi(k′

t+i, u
′

t+i)H




kt+i

ut+i


 =

1

2

∞∑

i=0

λi(w′

t+i, v
′

t+i, u
′

t+i)H




wt+i

vt+i

ut+i




, (41)

where the (n + m) × (n + m) matrix H is given by

H =




W̃ P

P ′ R


 (42)

with H = H ′. Define the n1 × n matrix D̃1 and the (n2 + m) × (n + m) matrix D̃2

by D̃1 = (In1×n1 , 0n1×n2) and D̃2 = (I(n2+m)×(n2+m), 0(n2+m)×n1
), respectively. Then

w = D̃1(w
′, ρ′v)

′ = D̃1w̃
′, (v′, u′)′ = D̃2(v

′, u′, ρ′w)′ = D̃2ṽ
′, (w′, v′, u′)′ = D̃(w̃′, ṽ′)′ with

D̃=




D̃1 0n1×(n+m)

0(n2+m)×n D̃2


=




In1×n1 0n1×n2 0n1×(n2+m) 0n1×n1

0(n2+m)×n1
0(n+m)×n2

I(n2+m)×(n2+m) 0(n2+m)×n1


 ,

(43)

10



which is a (n + m) × (2n + m) matrix. The loss function Jt can now be rewritten as

Jt =
1

2

∞∑

i=0

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃




w̃t+i

ṽt+i


 = J

(1)
t + J

(2)
t , (44)

where

J
(1)
t =

1

2

τ−1∑

i=0

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃




w̃t+i

ṽt+i


 (45)

and

J
(2)
t =

1

2

∞∑

i=τ

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃




w̃t+i

ṽt+i


 . (46)

First, we calculate J
(2)
t . For t ≥ τ , we have ṽt = Nw̃t and w̃t = Z11z̃t, where N =

Z21Z
−1
11 . We then obtain (w̃′

t, ṽ
′

t)
′ = Ñw̃t = ÑZ11z̃t, where Ñ = (In×n, N ′)′ is a (2n+m)×n

matrix. J
(2)
t can then be rewritten as

J
(2)
t =

1

2

∞∑

i=τ

λiZ ′

11z̃
′

t+iÑ
′D̃′HD̃ÑZ11z̃t+i =

1

2

∞∑

i=τ

λiZ ′

11z̃
′

t+iH
∗Z11z̃t+i (47)

with H∗ = Ñ ′D̃′HD̃Ñ is a symmetric n × n matrix. Inserting the solution formula (14)

for z̃t in (47) we obtain

J
(2)
t =

1

2
(M t

1K̃)′λτ

(
∞∑

i=τ

λi−τ (Z11M
i−τ
1 )′H∗(Z11M

i−τ
1 )

)
M t

1K̃ (48)

=
1

2
λτϕ′

tV
∗ϕt =

1

2
λτ trace(V ∗ϕtϕ

′

t) ,

where ϕt = M t
1K̃ and V ∗ is the convergent geometric sum of matrices

V ∗ =
∞∑

i=τ

λi−τ (Z11M
i−τ
1 )′H∗(Z11M

i−τ
1 ) , (49)
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which is of dimension n × n and satisfies the matrix equation

V ∗ = Z ′

11H
∗Z11 + λM ′

1V
∗M1 (50)

with the solution

vec (V ∗) = [I − λM ′

1 ⊗ M1]
−1 vec (Z ′

11H
∗Z11) . (51)

For t = 0 we obtain from (48)

J
(2)
0 =

1

2
λτ trace(V ∗ϕ0ϕ

′

0) =
1

2
λτ trace(V ∗K̃K̃ ′) (52)

with K̃ given by (17).

The next step is the calculation of the finite sum J
(1)
t as defined in (45). Because

(w̃′

t, ṽ
′

t)
′ = Z(z̃′t, x̃

′

t)
′, we can write J

(1)
0 as

J
(1)
0 =

1

2

τ−1∑

i=0

λi(z̃′i, x̃
′

i)Z
′D̃′HD̃Z

(
z̃i

x̃i

)
=

1

2

τ−1∑

t=0

λt(z̃′t, x̃
′

t)H̃

(
z̃t

x̃t

)
, (53)

where H̃ = Z ′D̃′HD̃Z.

Inserting the solution formula (36) for (z̃′t, x̃
′

t)
′ in (53), we obtain the expression

J
(1)
0 =

1

2
(T−1

22 Q2ν)′

[
τ−1∑

t=0

λtΞ′

tH̃Ξt

]
(T−1

22 Q2ν) =
1

2
µ′W ∗µ =

1

2
trace

(
W ∗µµ′

)
, (54)

where µ = T−1
22 Q2ν and W ∗ =

∑τ−1
t=0 λtΞ′

tH̃Ξt.

The total loss under the optimal unrestricted policy under commitment is now given

by

J0 = J
(1)
0 + J

(2)
0 =

1

2
trace(W ∗µµ′) +

1

2
λτ trace(V ∗K̃K̃ ′) . (55)

Obviously, the value of J0 depends on the size of the lead time τ . In New Keynesian

models we often have a hump-shaped pattern for the function J0 = J0(τ) where J0 is

12



increasing in τ for small values of τ (see Section 3).

In the limiting case of unanticipated shocks (τ = 0), the total loss is given by

J0 = J
(2)
0 =

1

2
K̃ ′V ∗K̃ , (56)

where

K̃ = K
∣∣∣
τ=0

+ S−1
11 Q1ν = Z−1

11 w̃0 − S−1
11 Q1ν + S−1

11 Q1ν = Z−1
11 w̃0 . (57)

Then

J0 =
1

2
w̃′

0Z
−1′

11 V ∗Z−1
11 w̃0 =

1

2
w̃′

0V w̃′

0 =
1

2
trace(V w̃0w̃

′

0) , (58)

where

w̃0w̃
′

0 =




w0

ρv 0


 (w′

0, ρ
′

v 0) =




w0w
′

0 0n1×n2

0n2×n2 0n2×n2


 (59)

and V = Z−1′

11 V ∗Z−1
11 satisfies the matrix equation

V = Z−1′

11 V ∗Z−1
11 = H∗ + λZ−1′

11 M ′

1V
∗M1Z

−1
11

= H∗ + λZ−1′

11 M ′

1Z
′

11Z
′
−1

11 V ∗Z−1
11 Z11M1Z

−1
11 = H∗ + λΓ′V Γ (60)

with Γ = Z11M1Z
−1
11 .

2.2 (Optimal) Simple Rules

The policy maker could alternatively commit to a suboptimal simple rule of the form

ut = Λkt + Ψ Et kt+1 , (61)

where the constant matrices Λ and Ψ are m × n. Assuming rational expectations and

exogenous shocks of the form (2) which are anticipated in t = 0, we obtain the dynamic
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system




A 0n×m

Ψ 0m×m







kt+1

ut+1


 =




B C

−Λ Im×m







kt

ut


+




D

0m×r


 νt+1 . (62)

The generalized Schur decomposition yields the system of equations

F




w̃t+1

ṽt+1


 = G




w̃t

ṽt


+




D

0m×r


 νt+1 , (63)

where w̃ = w is an n1 × 1 vector, ṽ = (v′, u′)′ is an (n2 + m) × 1 vector and where the

square matrices F and G are (n + m) × (n + m) with the decomposition QFZ = S and

QGZ = T , where Q, Z, S, and T are (n + m) × (n + m) matrices. Since




w̃

ṽ


 =




Z11 Z12

Z21 Z22







z̃

x̃


 , (64)

the matrices Z11, Z12, Z21, and Z22 are now n1 × n1, n1 × (n2 + m), (n2 + m) × n1, and

(n2 + m) × (n2 + m) respectively. The auxiliary variables z̃ and x̃ satisfy the following

system of equations




S11 S12

0(n2+m)×n1
S22







z̃t+1

x̃t+1


 =




T11 T12

0(n+m)×n1
T22







z̃t

x̃t


+




Q1

Q2


 νt+1 , (65)

where S11 and T11 are n1 ×n1 matrices, S22 and T22 are (n2 + m)× (n2 + m) and S12 and

T12 are n1 × (n2 + m). The matrices Q1 and Q2 are n1 × r and (n2 + m) × r respectively

with




Q1

Q2


 = Q




D

0m×r


 . (66)

The solution of (65) is given by (11) and (13). For t ≥ τ , we obtain ṽt = Nw̃t = Nwt,

where N = Z21Z
−1
11 is now an (n2 + m) × n1 matrix.
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The loss function (44) simplifies to

Jt =
1

2

∞∑

i=0

λi(w′

t+i, ṽ
′

t+i)H




wt+i

ṽt+i


 (67)

since D̃1 = In1×n1 , D̃2 = I(n2+m)×(n2+m) and therefore D̃ = I(n+m)×(n+m) (cf. (43)).

Jt can be partitioned using (44). J
(2)
t can be written as (47) with H∗ = Ñ ′HÑ and

Ñ = (In1×n1 , N
′)′. The value of the loss function J0 for given matrices Λ and Ψ is given

by J0 = J
(1)
0 + J

(2)
0 , where J

(1)
0 and J

(2)
0 are defined in (52) and (54) respectively.

The minimization of J0 with respect to the coefficients of the matrices Λ and Ψ yields

an optimal simple rule of the form (61).

3 Example: A Hybrid New Keynesian Model

The model is a standard New Keynesian model for a closed and cashless economy with the

additional features of internal habit formation in consumption preferences and a variant

of the Calvo (1983) mechanism with partial indexation of non-optimized prices to past

inflation.4 The economy consists of final goods producers, labor bundlers, households,

and intermediate goods producers.

Final goods producers use a continuum of intermediate goods Yt(i) to produce the

homogenous final good Yt in a perfectly competitive market. A final goods producer

maximizes his profits PtYt −
∫ 1
0 Pt(i)Yt(i)di, subjected to the following CES production

function

Yt =

(∫ 1

0
Yt(i)

1
1+λp di

)1+λp

, (68)

where Pt is the price of the final good, Pt(i) is the price of the intermediate good i, and

(1 + λp) is the mark-up in the intermediate goods market.

The first-order condition for profit maximization yields the demand function for an

4Similar models are used by Smets and Wouters (2003), Giannoni and Woodford (2004), or Casares (2006).
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intermediate good i which is given by

Yt(i) =

(
Pt(i)

Pt

)
−

(1+λp)

λp

Yt (69)

and the equation for the marginal costs

Pt =

(∫ 1

0
Pt(i)

−
1

λp di

)−λp

. (70)

Analogously to final goods producers, labor bundlers buy differentiated labor types

Nt(j), aggregate them to Nt and sell it to the intermediate goods producers under per-

fectly competitive conditions. A bundler maximizes his profits WtNt −
∫ 1
0 Wt(j)Nt(j)dj,

subjected to the following CES aggregation function

Nt =

(∫ 1

0
Nt(j)

1
1+λw,t dj

)1+λw,t

. (71)

Wt is the price of the labor bundle Nt, Wt(j) denotes the price of labor type j and (1+λw,t)

is the time-varying wage mark-up.

The first-order condition for profit maximization yields the demand function for the

labor type j

Nt(j) =

(
Wt(j)

Wt

)
−

(1+λw,t)

λw,t

Nt (72)

and the wage index equation

Wt =

(∫ 1

0
Wt(j)

−
1

λw,t dj

)−λw,t

. (73)

The economy is made up by a continuum of households, indexed by j ∈ [0, 1]. Each

household j is a monopolistic supplier of labor type Nt(j). The household determines the

amount of the final good Ct(j) for consumption, its one-period nominal bond holdings

Bt(j), and chooses the wage for its labor type Wt(j) in order to maximize its lifetime
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utility given by

Et

∞∑

k=0

βk

(
1

1 − σ

(
Ct(j) − hCt−1(j)

)1−σ
−

1

1 + η
Nt(j)

1+η

)
, (74)

where β is the discount factor, σ > 0 is the inverse of the intertemporal elasticity of

substitution in consumption, and η > 0 is the inverse of the labor supply elasticity. Ct−1(j)

is the consumption of the jth household in period t−1 and Nt(j) are the total hours worked.

We assume h ≥ 0 to allow for internal habit formation in consumption. Maximization of

(74) is subjected to the labor demand function (72) and the households’ period-by-period

budget constraint which is given by

Ct(j) +
Bt(j)

Pt
=

Wt(j)

Pt
Nt(j) +

Rt−1Bt−1(j)

Pt
+ Dr

t (j) , (75)

where Rt is the one-period gross nominal interest rate on households’ jth nominal bond

holdings Bt(j) and Dr
t (j) are dividends, expressed in real terms.

The first-order conditions for this maximization problem are given by

βRt Et π−1
t+1 = Et

[
(Ct − hCt−1)

−σ − hβ(Ct+1 − hCt)
−σ

(Ct+1 − hCt)−σ − hβ(Ct+2 − hCt+1)−σ

]
, (76)

Wt

Pt
= (1 + λw,t) Et

[
Nη

t

(Ct − hCt−1)−σ − hβ(Ct+1 − hCt)−σ

]
, (77)

where πt = Pt/Pt−1 is the gross rate of price inflation. We make use of the fact that

all households are faced with the same optimization problem and hence, choose the same

amount of consumption Ct(j) = Ct, the same nominal wage Wt(j) = Wt, and supply the

same amount of labor Nt(j) = Nt.

Each intermediate goods producer is a monopolistic supplier of the intermediate good

i ∈ [0, 1]. Firm i uses the amount Nt(i) of homogenous labor and the constant returns

to scale technology Yt(i) = Nt(i), to produce his intermediate good Yt(i). Real marginal

costs are the same for all firms and is given by MCt(i) = Wt/Pt.
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The price-setting decision for profit-maximization is constrained by a standard Calvo

mechanism. In each period, the intermediate goods producer faces the constant probability

1− θ of being allowed to re-optimize his price Pt(i). We follow Smets and Wouters (2003)

by assuming that a firm which cannot re-optimize its price, resets the price according to

Pt(i) = Pt−1(i)π
γ
t−1, where γ is the degree of price indexation. The firm chooses Pt(i) in

order to maximize

Et

∞∑

k=0

θk∆t,t+k

(
Pt(i)Πt,t+k−1

Pt+k
Yt+k(i) − MCt+kYt+k(i)

)
, (78)

subjected to the sequence of demand functions

Yt+k(i) =

(
Pt(i)Πt,t+k−1

Pt+k

)
−

(1+λp)

λp

Yt+k for k = 0, 1, 2, . . . , (79)

where ∆t,t+k denotes the stochastic discount factor for real payoffs and

Πt,t+k−1 = πγ
t πγ

t+1 . . . πγ
t+k−1 = (Pt+k−1/Pt−1)

γ . (80)

The first-order condition for the price-setting problem yields

P ∗

t (i) = (1 + λp)
Et
∑

∞

k=0 θk∆t,t+kMCt+k(Pt+k/Πt,t+k−1)
(1+λp)/λpYt+k

Et
∑

∞

k=0 θk∆t,t+k(Pt+k/Πt,t+k−1)−1/λpYt+k
. (81)

Dividing equation (81) by Pt yields

P ∗

t (i)

Pt
= µp

Et
∑

∞

k=0 θk∆t,t+kMCt+k

(
Pt+k

Pt

) 1+λp

λp

(
Pt+k−1

Pt−1

)
−

γ(1+λp)

λp Yt+k

Et
∑

∞

k=0 θk∆t,t+k

(
Pt+k

Pt

) 1
λp

(
Pt+k−1

Pt−1

)
−

γ

λp Yt+k

, (82)

where µp = 1 + λp.

Since all firms which are allowed to re-optimize their price will choose the same price

P ∗

t (i) = P ∗

t , the price index (70) can be rewritten as

1 = θ

(
πγ

t−1

πt

)−λp

+ (1 − θ)

(
P ∗

t

Pt

)
−λp

. (83)
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Log-linearizing equation (83) yields

P̂ ∗

t − P̂t =
θ

1 − θ
(π̂t − γπ̂t−1) . (84)

We use the convention that a hat above a variable denotes the percentage deviation from

its steady-state value.

By combining the latter equation with the log-linearized price-setting condition (82),

we finally obtain

π̂t =
γ

1 + βγ
π̂t−1 +

β

1 + βγ
Et π̂t+1 + ΘM̂Ct , (85)

where Θ = (1−βθ)(1−θ)
θ(1+βγ) . By log-linearizing the optimality condition (77), using the log-

linearized overall resource constraint Ŷt = Ĉt and using the fact that Ŵt/Pt = M̂Ct and

Ŷt = N̂t, we obtain

M̂Ct = λ̂w,t + (η + δ1)Ŷt − δ2Ŷt−1 − βδ2 Et Ŷt+1 , (86)

where δ1 = σ(1+βh2)
(1−h)(1−βh) , δ2 = hσ

(1−h)(1−βh) . The log-linearized mark-up λ̂w,t is described by

the AR(1) process

λ̂w,t = ξwλ̂w,t−1 + et . (87)

By inserting the latter equation into equation (85), we obtain a hybrid Phillips curve that

follows

π̂t = ω1 Et π̂t+1 + ω2π̂t−1 + ω3Ŷt − ω4Ŷt−1 − βω4 Et Ŷt+1 + Θλ̂w,t , (88)

where ω1 = β
1+βγ , ω2 = γ

1+βγ ω3 = Θ(η + δ1), and ω4 = Θδ2.

Note that in our model the level of output in the absence of nominal rigidities (the

natural level) Y n
t is constant. Thus, the linearized output Ŷt coincides with the linearized

output gap Ŷ g
t = Ŷt − Ŷ n

t , where Ŷ n
t = 0. Further note that for γ = 0, equation (88)
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collapses into the purely forward-looking New Keynesian Phillips curve.

By log-linearizing the optimality condition (76) and using Ŷt = Ĉt, we obtain

Ŷt = κ1Ŷt−1 + κ2 Et Ŷt+1 − κ3 Et Ŷt+2 − κ4(R̂t − Et π̂t+1) , (89)

where κ1 = h
1+h+βh2 , κ2 = 1+βh+βh2

1+h+βh2 , κ3 = βh
1+h+βh2 , and κ4 = (1−h)(1−βh)

σ(1+h+βh2)
. Note that for

h = 0, we obtain the purely forward-looking New Keynesian IS curve.

Following Woodford (2003, Ch. 6) and Giannoni and Woodford (2004), a second-order

approximation to the households’ utility yields a loss function of the form

J0 = E0

∞∑

t=0

βt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2

)
, (90)

where αY =
Θhσλp

(1+λp)δ(1−βh)(1−h) and δ is the smaller root of the quadratic equation

hσ

(1 − βh)(1 − h)
(1 + βδ2) =

(
η +

σ

(1 − βh)(1 − h)
(1 + βh2)

)
δ . (91)

We follow Giannoni and Woodford (2004) and Casares (2006) by assuming that the

monetary authority is concerned about the volatility of the nominal interest rate. There-

fore, we augment the welfare-theoretic loss function by the additional term αRR̂2
t , where

αR measures the weight on interest rate stabilization.5

The monetary authority then seeks to minimize the loss function

J0 = E0

∞∑

t=0

βt

(
(π̂t − γπ̂t−1)

2 + αY (Ŷt − δŶt−1)
2 + αRR̂2

t

)
, (92)

subjected to the equations (87), (88), and (89). Note that in our model, the discount

factor for the policy-maker, λ, is equal to the household’s discount factor β.

In order to solve the model by using the methods outlined in Section 2, we define the

policy objective parameters Ŷ o
t = Ŷt − δŶt−1 and π̂o

t = π̂t −γπ̂t−1. Furthermore, we define

the auxiliary variables π̃t = π̂t−1, Ỹt = Ŷt−1, and st = Et π̂t+1. If we add the definition of

5Note that our results are not changed if we assume αR = 0. We set αR > 0 mainly because we want to
demonstrate our solution method which allows the consideration of the volatility of policy instruments in
the policy-maker’s objective function.

20



the real interest rate r̂t = R̂t−Et π̂t+1, we finally obtain a 3×1 vector wt of predetermined

variables given by wt = (λ̂w,t, π̃t, Ỹt)
′, a 6×1 vector vt of non-predetermined variables given

by vt = (π̂t, Ŷt, st, r̂t, π̂
o
t , Ŷ

o
t )′, the vector of policy instruments ut which is simply the scalar

ut = R̂t, and the 1 × 1 shock vector νt = et. The 9 × 9 matrices A and B are given by

A =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 β
1+βγ −βω4 0 0 0 0

0 0 0 κ4 κ2 −κ3 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




,

B =




ξw 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

−Θ − γ
1+βγ ω4 1 −ω3 0 0 0 0

0 0 −κ1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 γ 0 −1 0 0 0 1 0

0 0 δ 0 −1 0 0 0 1




,

while the 9 × 1 matrices C and D are

C =

(
0 0 0 0 κ4 0 1 0 0

)
′

,

D =

(
1 0 0 0 0 0 0 0 0

)
′

.
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Finally, the matrices W̃ , P , and R are given by P = 09×9, R = αR, and

W̃ =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 αY




.

We complete the description of the model by presenting the calibration. The time unit

is one quarter. The discount rate is equal to β = 0.99, implying a quarterly steady-state

real interest rate of approximately one percent. The intertemporal elasticity of substitution

is assumed to be σ = 2. We follow Casares (2006) and set the habit formation parameter

to h = 0.85 implying that the weight on lagged output in the IS equation is 1/3. The

calibrated η = 3 implies a labor supply elasticity with respect to the real wage of 1/3. λp

is set to 8/7 which implies a steady-state mark-up in the goods market of approximately

14 percent. We assume the linearized wage mark-up λ̂w,t to be persistent and choose ξw

equal to 0.8. In our baseline scenario, the Calvo parameter θ is set to 0.75 implying an

average duration of price contracts of one year. In order to check whether our welfare

results will also hold in the case of flexible price adjustment, we set θ = 0.05. The price

indexation parameter γ is set to 0.45 which is roughly equal to the value reported by Smets

and Wouters (2003). This implies that the weight on lagged inflation in the Phillips curve

equation is 0.31.

The parameter values chosen for our model imply a weight on output in the policy-

makers’ objective function of approximately αY = 0.69. Following Casares (2006), we set

αR = 0.0088 implying a small preference for interest rate smoothing.

For the analysis concerning anticipated and unanticipated shocks, we assume that

22



the economy is in a deterministic steady-state until period t = 0. In the case of an

unanticipated shock, the mark-up λ̂w,t jumps by one percent in period t = 0 and begins

to fall thereafter. In the case of an anticipated shock, the agents anticipate in period

t = 0 that a one percent increase in the mark-up will take place at some future date τ > 0.

They also know that the mark-up will subsequently decline according to the autoregressive

process (87), where now et = 1 for t = τ and et = 0 for t 6= τ . Note that τ also defines

the length of the anticipation period or the time interval between t = 0 and t = τ . In

order to obtain impulse response functions and welfare results, we simulate the dynamic

adjustment paths and the welfare loss function by using the methods outlined in Section

2.6

Figure 1 depicts the impulse response functions of inflation, output, nominal, and

real interest rates under the unrestricted optimal monetary policy and under the baseline

calibration. The solid lines with circles represent the responses to an unforeseen cost-push

shock that emerged in period t = 0. The solid lines with squares, triangles, and stars

represent responses to a cost-push shock whose realization in period τ = 1, τ = 2, or

τ = 3 is anticipated in period t = 0.

An unanticipated rise in the wage mark-up puts upward pressure on the prices of

intermediate goods and hence on inflation. Despite the instantaneous jump in inflation,

the real interest rate rises due to the sharp increase in the nominal interest rate. The

increase in the real interest rate induces households to postpone consumption implying

an abrupt drop in output. Subsequently, the nominal interest rate continues to rise. This

leads – in conjunction with the decline in inflation – to hump-shaped response functions

of the real interest rate and output.

In the case of anticipated shocks, the optimal policy calls for a decline in nominal and

real interest rates in response to the anticipation of a future rise in marginal costs. At

the latest with the occurrence of the anticipated shock in period τ , the nominal and real

interest rates start to rise and display a hump-shaped development. Inflation declines in

response to the anticipation of the future rise in marginal costs. After this initial decline,

6Matlab codes can be downloaded from the author’s webpage at http://www.wiso.uni-
kiel.de/vwlinstitute/Wohltmann/REAS solution.zip.
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Figure 1: Impulse response functions under unrestricted optimal monetary policy.

Notes: Solid lines with circles denote responses to an unanticipated cost-push
shock, solid lines with squares, triangles, and stars denote responses to an anticipated
cost-push shock taking place in period τ = 1, τ = 2, and τ = 3.

inflation starts to rise and peaks in the period when the anticipated shock materializes.

Output displays a hump-shaped downturn, starting at the point of anticipation, t = 0.

The drop in output is thereby amplified by the lengths of the anticipation period τ .

Notably, the anticipation of future shocks leads to an increase in the persistence of

inflation, output as well as nominal and real interest rates which is increasing with the

lead time τ . Thereby, we depart from the usual approach of measuring persistence by

the speed of dying out. Instead – and in the spirit of the measure of quantitative inertia

proposed by Merkl and Snower (2009) – we measure persistence as the total variation

of a variable over time, i.e. by its intertemporal deviation from its initial steady-state.

However, the impact or anticipation effect is inversely related to the time span between

the anticipation and the realization of the cost-push shock. It measures the initial jump

of a variable taking place at the time of anticipation.
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Figure 2: Welfare loss for different lengths of the anticipation period under unrestricted
optimal monetary policy

The opposing effects of anticipations are shown in Figure 2 which displays the welfare

loss as a function of the time span between the anticipation and the occurrence of the

cost-push shock (a) in the case of highly flexible prices and (b) in the baseline case of

sticky prices.

The welfare function exhibits – independent of the degree of price flexibility – a hump-

shaped pattern implying that for a realistic time span between the anticipation and the

realization of cost-push shocks, anticipated disturbances entail higher welfare losses than

unanticipated disturbances of equal size. The rationale is that the anticipation effect is

dominated by the persistence effect. A welfare gain from anticipating can only be achieved

for very large (and unrealistic) values of τ . Besides the anticipation effect, this can also

be explained by discounting the realization impacts from period τ to period t = 0.

The results we obtained from our simulations show that – irrespective of the degree

of price rigidity – the welfare loss of anticipated cost-shocks exceeds the welfare loss of

an unanticipated cost-shock of equal magnitude for plausible lengths of the anticipation

period. In a purely forward-looking version of our model, Wohltmann and Winkler (2009)

show analytically that anticipated cost shocks do lead to higher welfare losses when com-

pared to unanticipated shocks of equal magnitude only for a sufficiently high degree of

nominal rigidity. In this study however, we show that the features of habit formation and

partial indexation – which generate a strong internal propagation mechanism – give rise
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to a welfare-reducing effect of anticipations even in the case of a low degree of nominal

rigidity.

4 Conclusion

In this paper, we presented a method to solve linear dynamic rational expectations models

with anticipated shocks and optimal policy by using the generalized Schur decomposition

method. Furthermore, we determine the optimal unrestricted and restricted policy re-

sponses to anticipated shocks. Our approach also allows for the evaluation of the widely

discussed case of unpredictable shocks and can therefore be seen as a generalization of

the methods summarized by Söderlind (1999). We demonstrated our method by means

of a calibrated New Keynesian model with internal habit formation in consumption pref-

erences, a variant of Calvo price staggering with partial indexation to past inflation, a

time-varying wage mark-up which represents a typical cost-push shock, and a utility-

based loss function. We simulated the model economy’s responses to unanticipated and

anticipated cost-push shocks under the unrestricted optimal monetary policy. We showed

that anticipated shocks amplify both, the stagflationary effects of cost-push shocks and

the overall welfare loss.
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