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1 Introduction

Volatility forecasting is of crucial importance for financial practitioners and academics. Accurate

forecasts of volatility allow analysts to build appropriate models for risk management such as

portfolio allocation, Value-at-Risk, option and futures pricing, etc. For these reasons, scholars

have devoted a great deal of attention to developing parametric as well as non-parametric

models to forecast future volatility (cf. Andersen et al. (2005a) for a recent review on volatility

modeling and Poon and Granger (2003) for a review on volatility forecasting).

In this paper, we are interested in the performance of a new type of volatility model, the so-

called Markov-Switching Multifractal Model (MSM) vis-à-vis its more time honored competitors

from the (Generalized) Autoregressive Conditional Heteroskedasticity (GARCH) family. The

former model is a causal analog of the earlier non-causal Multifractal Model of Asset Returns

(MMAR) due originally to Calvet et al. (1997).

In contrast to mainstream volatility models, the MSM model can accommodate, by its very

construction, the feature of multifractality via its hierarchical, multiplicative structure with

heterogeneous components. Multifractality refers to the variations in the scaling behavior of

various moments or to different degrees of long-term dependence of various moments. Long-

term dependence in various moments of (mainly financial) data have been reported in various

studies by economists and physicists so that this feature now counts as a well established stylized

fact (cf. Ding et al. (1993), Lux (1996), Mills (1997), Lobato and Savin (1998), Schmitt et al.

(1999), Vassilicos et al. (2004)). Empirical research in finance also provides us with more direct

evidence in favor of the hierarchical structure of multifractal cascade models (cf. Muller (1997)).

It seems plausible that the higher degree of flexibility of MSM models in capturing different

degrees of temporal dependence of various moments could also facilitate volatility forecasting.

Indeed, recent studies have shown that the MSM models can forecast future volatility more accu-

rately than traditional long memory and regime-switching models of the (G)ARCH family such

as Fractionally Integrated GARCH (FIGARCH) and Markov-Switching GARCH (MSGARCH)

(cf. Calvet and Fisher (2004), Lux and Kaizoji (2007), Lux (2008)).

It is also worthwhile to emphasize the intermediate nature of MSM models between “true”

long-memory and regime-switching. It has been pointed out that it is hard to distinguish
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empirically between both types of structures and that even single regime-switching models

could easily give rise to apparent long memory (cf. Granger and Terasvirta (1999)). MSM

models generate what has been called “long-memory over a finite interval” and in certain limits

converges to a process with “true” long-term dependence.1 The MSM model combines features

of both types of generating mechanisms in a very parsimonious way. The flexible regime-

switching nature of the MSM model might also allow to integrate seemingly unusual time

periods such as the Japanese bubble of the 1980s in a very convenient manner without resorting

to dummies or specifically designed regimes (cf. Lux and Kaizoji (2007)). Nevertheless, the

finance literature has only scarcely exploited MSM models so far. Most efforts with respect to

volatility modeling have been directed towards refinements of GARCH-type models, stochastic

volatility models and more recently realized volatility models (cf. Andersen and Bollerslev

(1998), Andersen et al. (2003), Andersen et al. (2005b), Abraham et al. (2007)).

Up until now, the scarce literature on MSM models of volatility has only considered the

Gaussian distribution for return innovations. However, recent studies have shown that out-

of-sample forecasts of volatility models with Student-t innovations might improve upon those

resulting from volatility models with Gaussian innovations (cf. Rossi and Gallo (2006), Chuang

et al. (2007), Wu and Shieh (2007)). In addition, there could also be an interaction between the

modeling of fat tails and dependency in volatility: if more extreme realisations are covered by

a fat-tailed distribution, the estimates of the parameters measuring serial dependence of higher

moments might change which also alters the forecasting capabilities of an estimated model.

In this article we examine the performance of various volatility models from the MSM and

GARCH families along with two competing distributional assumptions of the error component,

i.e. Normal vs Student-t. Our precise contribution is twofold. First, we introduce a new model

to the family of MSM models, the Markov-Switching Multifractal model of asset returns with

Student-t innovations (MSM-t). This model is an extension of the MSM model with Normal

innovations which can be estimated via Maximum Likelihood (ML) or Generalized Method of

Moments (GMM) (cf. Calvet and Fisher (2004), Lux (2008)). Forecasting can be performed via
1In contrast to the combinatorial MMAR of Calvet et al. (1997), the MSM model has no asymptotic power-law

behavior of its autocorrelation function. However, depending on the number of volatility components, a pre-
asymptotic hyperbolic decay of the autocorrelation might be so pronounced as to be practically indistinguishable
from “true” long memory (cf. Liu et al. (2007)).
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Bayesian updating (ML) or best linear forecasts together with the generalized Levinson-Durbin

algorithm (GMM). We investigate the in-sample and out-of-sample performance of the MSM-t

model via Monte Carlo simulations.

Second, we perform a forecasting analysis of MSM vs (FI)GARCH models with Normal and

Student-t innovations. By contrasting both sets of models we are able to empirically evaluate

the performance of models which incorporate different characterizations of the latent volatility

process: the MSM models which take account of multifractality, Markov-switching and (appar-

ent) long memory against more traditional models of the GARCH legacy (GARCH, GARCH-t,

FIGARCH and FIGARCH-t) which take account of short/long memory and autoregressive

components. Furthermore, the wide variety of models considered here provides an interest-

ing platform to study empirical out-of-sample complementarities between models via forecast

combinations.

Given the recently witnessed international financial turmoil, it seems important to uncover

the performance of various volatility models in international financial markets. Thus, the cross-

sections chosen for our empirical analysis consist of all-share equity indices, bond indices and real

estate security indices at the country level. We believe that the use of panel data is promising in

two main aspects. First, in order not to generalize its usefulness, an interesting volatility model

should perform adequately for a cross-section of markets and different asset classes. Second,

testing volatility models for a cross-section of markets comes along with an augmentation of

sample information and thus provides more power to statistical tests.

To preview some of our results, we confirm that ML and GMM estimation are both suitable

for MSM-t models. We also find that using GMM plus linear forecasts leads to minor losses in

efficiency compared to optimal Bayesian forecasts based on ML estimates. This justifies using

the former approach in our empirical exercise which reduces computational costs significantly.

Moreover, empirical panel forecasts of MSM-t models show an improvement over the alternative

MSM models with Normal innovations in terms of mean absolute forecast errors while they seem

to deteriorate for (FI)GARCH models with Student-t innovations in relation to their Gaussian

counterparts. In terms of mean absolute errors, the MSM-t dominates all other models at

long forecasting horizons for all asset classes. Lastly, forecast combinations obtained from the
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different MSM and (FI)GARCH models considered provide a clear improvement upon forecasts

from single models.

The paper is organized as follows. The next section introduces the general framework of

volatility modeling. Section three and four provide a short review of the MSM and (FI)GARCH

volatility models. Section five presents the Monte Carlo experiments performed with respect

to the MSM-t models. Section six addresses the results of our comprehensive panel empirical

analysis of the different volatility models under inspection. The last section concludes. To save

on space, technical details not discussed in the article can be provided upon request.

2 Theoretical framework of volatility

The following specification of financial returns is considered,

∆pt = υt + σtut, (1)

where ∆pt = lnPt−lnPt−1, lnPt is the log asset price and υt = Et−1∆pt is the conditional mean

of the return series. A simple parametric model to describe the conditional mean is, for instance,

a first order autoregressive model of the form υt = µ + ρ∆pt−1. Different assumptions can be

used for the distribution of ut. For example, we may assume a Normal distribution, Student-t

distribution, Logistic distribution, mixed diffusion, etc (cf. Chuang et al. (2007)). For the

purpose of this article we consider two competing types of distributions for the innovations

ut, namely, a Normal distribution and a Student-t distribution. Defining xt = ∆pt − υt, the

“centered” returns are modelled as,

xt = σtut. (2)

From the above general framework of volatility different parametric and non-parametric repre-

sentations can be assumed for the latent volatility process σt. In what follows, we describe the

new family of Markov-Switching Multifractal volatility models as well as the more time-honored
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GARCH-type volatility models for the characterization of σt. Since the former models are a

very recent addition to the family of volatility models, we devote most of the next sections to

describing them and keep the explanation on the alternative volatility models short to save on

space.

3 Markov-Switching Multifractal models

3.1 Volatility specifications

Instantaneous volatility σt in the MSM framework is determined by the product of k volatility

components or multipliers M (1)
t ,M

(2)
t , . . . ,M

(k)
t and a scale factor σ:

σ2
t = σ2

k∏
i=1

M
(i)
t . (3)

Following the basic hierarchical principle of the multifractal approach, each volatility component

will be renewed at time t with a probability γi depending on its rank within the hierarchy of

multipliers and remains unchanged with probability 1 − γi. Calvet and Fisher (2001) propose

to formalize transition probabilities according to:

γi = 1− (1− γk)(b
i−k), (4)

which guarantees convergence of the discrete-time version of the MSM to a Poissonian

continuous-time limit. In principle, γk and b are parameters to be estimated. Note that (4)

or its restricted versions imply that different multipliers M (i)
t of the product (3) have different

mean life times. However, previous applications have often used pre-specified parameters γk

and b in equation (4) in order to restrict the number of parameters (cf. Lux (2008)). The MSM

model is fully specified once we have determined the number k of volatility components and

their distribution.

In the small body of available literature, the multipliers M (i)
t have been assumed to follow

either a Binomial or a Lognormal distribution. Since one could normalize the distribution so
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that E[M (i)
t ] = 1, only one parameter has to be estimated for the distribution of volatility

components. In this paper we explore the Binomial and Lognormal specifications for the dis-

tribution of multipliers. Following Calvet and Fisher (2004), the Binomial MSM (BMSM) is

characterized by Binomial random draws taking the values m0 and 2−m0 (1 ≤ m0 < 2) with

equal probability (thus, guaranteeing an expectation of unity for all M (i)
t ). The model, then, is

a Markov switching process with 2k states. In the Lognormal MSM (LMSM) model, multipliers

are determined by random draws from a Lognormal distribution with parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (5)

Normalisation via E[M (i)
t ] = 1 leads to

exp(−λ+ 0.5s2) = 1, (6)

from which a restriction on the shape parameter can be inferred: s =
√

2λ. Hence, the distribu-

tion of volatility components is parameterized by a one-parameter family of Lognormals with the

normalization restricting the choice of the shape parameter. It is noteworthy that the dynamic

structure imposed by (3) and (4) provides for a rich set of different regimes with an extremely

parsimonious parameterization. For increasing k there is, indeed, no limit to the number of

regimes considered without any increase in the number of parameters to be estimated.

3.2 Estimation and forecasting

In a seminal study by Calvet and Fisher (2004), an ML estimation approach was proposed for

the BMSM model. The log likelihood function in its most general form may be expressed as,

L(x1, ..., xT ;ϕ) =
T∑

t=1

ln g(xt|x1, ..., xt−1), (7)

where g(xt|x1, ..., xt−1) is the likelihood function of the MSM model with various distributional

assumptions. The parameter vector of the BMSM with Gaussian innovations is given by ϕ =

(m0, σ)′. On the other hand, the parameter vector of the BMSM with Student-t innovations is
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given by ϕ = (m0, σ, ν)′ where ν (2 < ν <∞) is the distributional parameter accounting for the

degrees of freedom in the density function of the Student-t distribution. When ν approaches

infinity, we obtain a Normal distribution. Thus, the lower ν, the “fatter” the tail.

The greatest advantage of the ML procedure is that, as a by-product, it allows one to

obtain optimal forecasts via Bayesian updating of the conditional probabilities Ωt = P(Mt =

mi|x1, ..., xt) for the unobserved volatility states mi, i = 1, ..., 2k. Although the ML algorithm

was a huge step forward for the analysis of MSM models, it is restrictive in the sense that

it works only for discrete distributions of the multipliers and is not applicable for, e.g., the

alternative proposal of a Lognormal distribution. Due to the potentially large state space (we

have to take into account transitions between 2k distinct states), ML estimation also encounters

bounds of computational feasibility for specifications with more than about k = 10 volatility

components in the Binomial case.

To overcome the lack of practicability of ML estimation, Lux (2008) introduced a GMM

estimator that is universally applicable to all possible specifications of MSM processes. In

particular, it can be used in all those cases where ML is not applicable or computationally

unfeasible. In the GMM framework for MSM models, the vector of BMSM parameters ϕ is

obtained by minimizing the distance of empirical moments from their theoretical counterparts,

i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (8)

with Φ the parameter space, fT (ϕ) the vector of differences between sample moments and ana-

lytical moments, and AT a positive definite and possibly random weighting matrix. Moreover,

ϕ̂T is consistent and asymptotically Normal if suitable “regularity conditions” are fulfilled (cf.

Harris and Matyas (1999)). Within this GMM framework it becomes also possible to esti-

mate the LMSM model. In the case of the LMSM model, the parameter vector ϑ = (λ, σ)′

(ϑ = (λ, σ, ν)′) replaces ϕ in (8) when Normal (Student-t) innovations are assumed.

In order to account for the proximity to long memory characterizing MSM models, Lux

(2008) proposed to use log differences of absolute returns together with the pertinent analytical

moment conditions, i.e.

ξt,T = ln |xt| − ln |xt−T |. (9)
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The above variable only has nonzero autocovariances over a limited number of lags. To exploit

the temporal scaling properties of the MSM model, covariances of various moments over different

time horizons are chosen as moment conditions, i.e.

Mom (T, q) = E
[
ξq
t+T,T · ξ

q
t,T

]
, (10)

for q = 1, 2 and T = 1, 5, 10, 20 together with E
[
x2

t

]
= σ2 for identification of σ in the MSM

model with Normal innovations. In the case of the MSM-t model, two sets of moment conditions

are utilized in addition to (10), namely, one that considers E [|xt|] (GMM1) and the other one

that considers E [|xt|], E
[
x2

t

]
and E

[
|x3

t |
]

(GMM2).

We follow most of the literature by using the inverse of the Newey-West estimator of the

variance-covariance matrix as the weighting matrix for GMM1. We also adopt an iterative

GMM scheme updating the weighting matrix until convergence of both the parameter estimates

and the variance-covariance matrix of moment conditions is obtained. However, we note that

including the third moment (E
[
|x3

t |
]
) for data generated from a Student-t distribution would not

guarantee convergence of the sequence of weighting matrices under our choice of the inverse of

the Newey-West (or any other) estimate of the variance-covariance matrix. Therefore, estimates

based on the usual choice of the weighting matrix would not be consistent. Thus we simply

resort to using the identity matrix for GMM2 which guarantees consistency as all the regularity

conditions required for GMM are met.

Since GMM does not provide us with information on conditional state probabilities, we

cannot use Bayesian updating and have to supplement it with a different forecasting algorithm.

To this end, we use best linear forecasts (cf. Brockwell and Davis (1991), c.5) together with the

generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004). We first

have to consider the zero-mean time series,

Xt = x2
t − E[x2

t ] = x2
t − σ̂2, (11)

where σ̂ is the estimate of the scale factor σ. Assuming that the data of interest follow a
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stationary process {Xt} with mean zero, the best linear h-step forecasts are obtained as

X̂n+h =
n∑

i=1

φ
(h)
ni Xn+1−i = φ(h)

n Xn, (12)

where the vectors of weights φ
(h)
n = (φ(h)

n1 , φ
(h)
n2 , ..., φ

(h)
nn )′ can be obtained from the analyt-

ical auto-covariances of Xt at lags h and beyond. More precisely, φ
(h)
n are any solution

of Ψnφ
(h)
n = κ

(h)
n where κ

(h)
n = (κ(h)

n1 , κ
(h)
n2 , ..., κ

(h)
nn )′ denote the autocovariance of Xt and

Ψn = [κ(i− j)]i,j=1,...,n is the variance-covariance matrix.

4 Generalized Autoregressive Conditional Heteroskedasticity

models

4.1 Volatility specifications

We shortly turn to the “competing” GARCH type volatility models to describe σt. The most

common GARCH(1,1) model assumes that the volatility dynamics is governed by,

σ2
t = ω + αx2

t−1 + βσ2
t−1, (13)

where the unconditional variance is given by σ2 = ω(1 − α − β)−1 and the restrictions on the

parameters are ω > 0, α, β ≥ 0 and α+ β < 1. Various extensions to (13) have been considered

in the financial econometrics literature. One of the major additions to the GARCH family are

models that allow for long-memory in the specification of volatility dynamics. The FIGARCH

model introduced by Baillie et al. (1996) expands the variance equation of the GARCH model

by considering fractional differences. As in the case of (13) we restrict our attention to one lag

in both the autoregressive term and in the moving average term. The FIGARCH(1,d,1) is given

by,

σ2
t = ω +

[
1− βL− (1− δL)(1− L)d

]
x2

t + βσ2
t−1, (14)
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where L is a lag operator, d is the parameter of fractional differentiation and the restrictions

on the parameters are β − d ≤ δ ≤ (2− d)3−1 and d(δ− 2−1(1− d)) ≤ β(d− β + δ). The major

advantage of model (14) is that the Binomial expansion of the fractional difference operator

introduces an infinite number of past lags with hyperbolically decaying coefficients for 0 <

d < 1. For d = 0, the FIGARCH model reduces to the standard GARCH(1,1) model while

for d = 1 the model reduces to an IGARCH(1,1) model. Note that in contrast to the MSM

model, both GARCH and FIGARCH are unifractal models. While GARCH exhibits only

short-term dependence (i.e. exponential decay of autocorrelations of moments) FIGARCH has

homogeneous hyperbolic decay of the autocorrelation of its moments characterized uniquely by

the parameter d.

4.2 Estimation and forecasting

The GARCH and FIGARCH models can be estimated via standard (Quasi) ML procedures as

in (7). In the case of the GARCH(1,1) the parameter vector, say θ, replaces ϕ in (7), where

θ = (ω, α, β)′ (θ = (ω, α, β, ν)′) is the vector of parameters if Normal (Student-t) innovations

are assumed. The h-step ahead forecast representation of the GARCH(1,1) is given by,

σ̂2
t+h = σ̂2 + (α̂+ β̂)h−1

[
σ̂2

t+1 − σ̂2
]
, (15)

where σ̂2 = ω̂(1 − α̂ − β̂)−1. In the case of the FIGARCH(1,d,1) the parameter vector, say

ψ, replaces ϕ (7), where ψ = (ω, α, δ, d)′ (ψ = (ω, α, δ, d, ν)′) is the vector of parameters if

Normal (Student-t) innovations are assumed. Note that in practice, the infinite number of lags

with hyperbolically decaying coefficients introduced by the Binomial expansion of the fractional

difference operator (1 − L)d must be truncated. We employ a lag truncation at 1000 steps as

in Lux and Kaizoji (2007). The h-period ahead forecasts of the FIGARCH(1,d,1) model can be

obtained most easily by recursive substitution, i.e.

σ̂2
t+h = ω̂(1− β̂)−1 + η(L)σ̂2

t+h−1, (16)
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where η(L) = 1−(1−β̂L)−1(1− δ̂L)(1−L)d̂ can be calculated from the recursions η1 = δ̂−β̂+d̂,

ηj = β̂ηj + [(j − 1 − d̂)j−1 − δ̂]πj−1 where πj ≡ πj−1(j − 1 − d̂)j−1 are the coefficients in the

MacLaurin series expansion of the fractional differencing operator (1− L)d.

5 Monte Carlo analysis

Monte Carlo studies with the MSM-t were performed along the lines of Calvet and Fisher (2004)

and Lux (2008) in order to shed light on parameter estimation and out-of-sample forecasting

via the MSM-t vis-à-vis the MSM model with Normal innovations. Monte Carlo experiments

are reported in Tables 1 through 3.

insert Tables 1 and 2 around here

5.1 In-sample analysis

Table 1 shows the result of the Monte Carlo simulations of the BMSM-t via ML estimation and

the two sets of moment conditions for GMM estimation (GMM1, GMM2) with a relatively small

number of multipliers k = 8 for which ML is still feasible. The Binomial parameters are set to

m0 = 1.3, 1.4, 1.5 and the sample sizes are given by T1 = 2, 500, T2 = 5, 000 and T3 = 10, 000.

As mentioned previously the admissible parameter range for m0 is m0 ∈ [1, 2] and the volatility

process collapses to a constant if the latter parameter hits its lower boundary 1. The parameter

corresponding to the Student-t distribution is set to ν = 5 and ν = 6. As in the case of Lux

(2008), the main difference in our simulation set up to the one proposed in Calvet and Fisher

(2004) is that we fix the parameters of the transition probabilities in (4) to b = 2 and γk = 0.5

which reduces the number of parameters for estimation to only three.

The simulation results show (as expected) that GMM estimates of m0 are in general less

efficient in comparison to ML estimates. The finite sample standard error (FSSE) and root mean

squared error (RMSE) of the GMM estimates with ν = 5 show that the estimated parameters

for m0 are more variable with lower T and smaller “true” values of m0. As in the case of the

MSM model with Normal innovations, biases and MSEs of the ML estimates for m0 are found
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to be essentially independent of the true parameter values m0 = 1.3, 1.4, 1.5. With respect to

GMM estimates with the two different sets of moment conditions (GMM1, GMM2), both the

bias and the MSEs decrease as we increase m0 from 1.3 to 1.5. Interestingly, when the degrees

of freedom are increased from ν = 5 to ν = 6 we find an overall increase in the bias and MSEs

of m0 via GMM1 while the bias and MSEs of m0 via GMM2 decrease.

ML estimates of the distributional parameter ν show a relatively small bias although it

seems to slightly increase for larger m0 at T = 2, 500. The variability of ν via ML is also found

to be more pronounced than the variability of the Binomial parameter m0. GMM estimates

of ν have a larger bias and MSEs in comparison to ML estimates. As we move from ν = 5 to

ν = 6, we find that the bias and MSEs of the parameter ν estimated via GMM1 and GMM2

become larger.

The quality of the estimates of the scale parameter σ at ν = 5 is very similar under ML

and GMM1 particularly when the sample size is increased. With respect to estimates of σ via

GMM2, we find that the bias is somewhat larger in comparison to ML and GMM1. As in the

case of the MSM model with Normal innovations, we find that the MSEs of σ increase for higher

m0 while they are more or less unchanged as we move from ν = 5 to ν = 6.

Table 2 displays the results of the Monte Carlo analysis of the MSM-t model with a setting

that makes ML estimation computationally infeasible, that is, the BMSM-t and LMSM-t models

with k = 10.2 As in the previous experiments, the simulations are performed with m0 =

1.3, 1.4, 1.5, ν = 5, 6 and the same logic is applied to the LMSM model for which the location

parameter of the continuous distribution is set to λ = 0.05, 0.1, 0.15. Note that the admissible

space for λ is λ ∈ [0,∞). As in the case of the Binomial parameter m0, when the Lognormal

parameter hits its lower boundary at 0, the volatility process collapses to a constant. To save

on space, the simulations are only presented with T = 5, 000.

The results of the simulations indicate that the Binomial parameterm0 estimated via GMM1

or GMM2 are practically invariant to higher number of components k, both in terms of bias and

MSEs for the parameter values m0 = 1.3, 1.4, 1.5 and ν = 5. The bias and MSEs of m0 usually

increase in GMM1 as we increase the degrees of freedom from ν = 5 to ν = 6. As in the BMSM
2Simulation results for k = 15, 20 are qualitatively similar and can be provided upon request.
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model with Normal innovations, the bias and the variability of σ increase with k as it becomes

hard to discriminate between very long-lived volatility components and the constant scale factor

(cf. Lux (2008)). The distributional parameter ν is found to be relatively invariant for GMM1

and GMM2 when k = 10 in relation to k = 8. Bias and MSEs of the distributional parameter

ν increase for GMM1 and GMM2 as we move from ν = 5 to ν = 6. In the LMSM-t model, we

find that biases and MSEs for λ at ν = 5 are somewhat larger for GMM1 than GMM2. As for

the BMSM-t, bias and MSEs of λ are relatively invariant for larger k buy they usually increase

as we move from ν = 5 to ν = 6.

Summing up, we find that the Monte Carlo simulations for the in-sample performance of

the Binomial and Lognormal MSM models with Student-t innovations “point” into the same

direction as those of Lux (2008) for the MSM model with Gaussian innovations: while GMM

is less efficient than ML, it comes with moderate biases and moderate standard errors. The

efficiency of both GMM algorithms also appear quite insensitive with respect to the number of

multipliers.

insert Table 3 around here

5.2 Out-of-sample analysis

Table 3 shows the forecasting results from optimal forecasts (ML) and best linear forecasts

(GMM) of the BMSM-t model. The out-of-sample MC analysis is performed within the same

framework as the in-sample analysis when comparing ML and GMM procedures. That is, we set

k = 8 and evaluate the forecasts for the BMSM-tmodel with parametersm0 = 1.3, 1.4, 1.5, σ = 1

and ν = 5, 6. In our Monte Carlo experiments, we also imposed a lower boundary ν = 4.05 as a

constraint in the GMM estimates as otherwise forecasting with the Levinson-Durbin algorithm

would have been impossible.

In the forecasting simulations we set T = 10, 000 and use T = 5, 000 for in-sample estimation

and T = 5, 000 for out-of-sample forecasting in order compare them with the results of the

Gaussian MSM models in Lux (2008). The forecasting performance of the models is evaluated

with respect to their mean squared errors (MSE) and mean absolute errors (MAE) standardized

relative to the in-sample variance which implies that values below 1 indicate improvement
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against a constant volatility model. Relative MSE and MAE are averages over 400 simulation

runs.

The results basically show that, similarly as for the Gaussian MSM models, the loss in fore-

casting accuracy when employing GMM as opposed to ML is small particularly when compared

against GMM2. Thus, the lower efficiency of GMM does not impede its forecasting capability

in connection with the Levinson-Durbin algorithm. Both MSE and MAE measures show im-

provement when the parameter m0 increases from 1.3 to 1.5 while they seem to deteriorate for

longer horizons although only marginally. Interestingly, we find that GMM2 based forecasts

even improve in terms of MAEs relative to ML based forecasts for h ≥ 5 so that it appears

entirely justified to resort to the computationally parsimonious GMM2 estimation and linear

forecasts in our subsequent empirical part.3

6 Empirical analysis

insert Table 4 around here

In this section we turn to the results of our empirical application to compare the in-sample

and out-of-sample performance of the different volatility models discussed previously. We follow

a similar approach to the panel empirical analysis of volatility forecasting performed for the

Tokyo Stock Exchange in Lux and Kaizoji (2007). However, here we concentrate on three

new different cross-sections of asset markets, namely, all-share stock indices (N = 25), 10-year

government bond market indices (N = 11), and real estate security indices (N = 12) at the

cross-country level. The sample runs from 01/1990 to 01/2008 at the daily frequency which

leads to 4697 observation from which 2,500 are used for in-sample estimation and the remaining

observations for out-of-sample forecasting. The data is obtained from Datastream and the

countries were chosen upon data availability for the sample period covered. Specific countries

for each of the three asset markets are presented in Table 4. In the following discussions we

refer to statistical significance at the 5% level throughout.
3Out-of-sample forecasts of the lognormal MSM-t models behave very similar, but they are not displayed here

because of the lack of a ML benchmark.
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insert Tables 5 and 6 around here

6.1 In-sample analysis

For our in-sample analysis we account for a constant and an AR(1) term in the conditional mean

of the return data as in (2). Results of the Mean Group (MG) estimates of the parameters of

the (FI)GARCH and MSM models explained in previous sections are reported in Table 5 and

Table 6, respectively. Mean Group estimates are obtained by averaging individual market

estimates. We also report minimum and maximum values of the estimates obtained to have an

idea about the distribution of the parameters across the countries under inspection.

We find in the case of the GARCH model that there is on average a statistically significant

effect of past volatility on current volatility (β̄) and of past squared innovations on current

volatility (ᾱ) in all three markets at the 5% significance level (Table 5). The results are qual-

itatively the same with respect to the estimates β̄ and ᾱ in the case of the GARCH-t. The

distributional parameter (ν̄) is on average greater than 4 in all three markets and statistically

significant.

Taking into account long memory and Student-t innovations via the FIGARCH specification

we find that there is a statistically significant average effect of past volatility (β̄) and past squared

innovations (δ̄) on current volatility in all three markets. FIGARCH also provides evidence for

the presence of long memory as given by the MG estimate of the differencing parameter d̄ in the

three cross-sections (Table 5). When we consider the FIGARCH-t we find the same qualitative

results for the average impact of the parameters β̄, δ̄ and d̄ as in the FIGARCH and the same

qualitative results of the distributional parameter ν̄ as with the GARCH-t model.

In-sample estimation of the BMSM and LMSM models with Normal and Student-t innova-

tions is restricted to GMM since ML estimation with panel data requires a tremendous amount

of time for k > 8. The estimation procedure for the MSM models consists in estimating the

models for each country in each of the stock, bond and real estate markets for a cascade level

of k = 10. The choice of the number of cascade levels is motivated by previous findings of very

similar parameter estimates for all k above this benchmark (Liu et al. (2007), Lux (2008)). Note,

however, that forecasting performance might nevertheless improve for k > 10 and proximity to
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temporal scaling of empirical data might be closer. Our choice of the specification k = 10 is,

therefore, a relatively conservative one.4

For space considerations we only present the results of the MSM-t models estimated with

the second set of moment conditions (GMM2) given that we found that this set of moment

conditions produced more accurate forecasts in the Monte Carlo Simulations. We have also

restricted the parameter ν by using 4.05 as a lower bound in order to employ best linear

forecasts. Nevertheless, we found very few cases where ν < 4 in both (FI)GARCH and MSM

models.

With respect to the BMSM model, the mean Binomial parameter m̄0 is statistically different

from the benchmark case m̄0 = 1 in all three markets (Table 6). In the LMSM model, we find

that the mean Lognormal parameter λ̄ has a value which is statistically different from zero in all

three asset markets. In the case of the BMSM-t, the mean distributional parameter ν̄ obtains

a value that is statistically significant in all the three markets. Considering the LMSM-t we

obtain similar qualitative results as for the BMSM-t in terms of the average parameters σ̄ and

ν̄.

Summarizing the in-sample results at the aggregate level, we find that there is (on average)

a statistically significant effect of past volatility and long-memory on current volatility as well

as evidence of multifractality and fat tails in return innovations. It is also noteworthy, that in

many cases, the mean multifractal parameters m̄0 and λ̄ turn out to be different for the models

with Student-t innovations from those with Normal innovations. Since higher m0 and λ lead

to more heterogeneity and, therefore, more extreme observations, we see a trade-off between

parameters for the fat-tailed innovations and those governing temporal dependence of volatility.

What differences these variations in multifractal parameters make for forecasting, is investigated

below.

insert Tables 7 and 8 around here
4In our case, results for k = 15 and k = 20 are practically the same as with k = 10. Details are available upon

request.
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6.2 Out-of-sample analysis

In this section we turn to the discussion of the out-of-sample results. Forecasting horizons are set

to 1, 5, 20, 50 and 100 days ahead. We have used only one set of in-sample parameter estimates

and have not re-estimated the models via rolling window schemes because of the computational

burden that one encounters with respect to ML estimation of the FIGARCH models. We have

also experimented with different subsamples but we have found no qualitative difference with

respect to the current in-sample and out-of-sample window split which is roughly about half for

in-sample estimation and half for out-of-sample forecasting.

In order to compare the forecasts across models we use the principle of relative MSE and

MAE as previously mentioned. That is, the MSE and MAE corresponding to a particular model

are given in percentage of a naive predictor using historical volatility (i.e. the sample mean of

squared returns of the in-sample period). We also report the number of statistically significant

improvements of a particular model against a benchmark specification via the Diebold and

Mariano (1995) test. The latter test allows us to test the null hypothesis that two competing

models have statistically equal forecasting performance.5

6.2.1 Single models

Results of the average relative MSE and MAE and corresponding standard errors of the out-

of-sample forecasts from the different models are reported in Table 7. We find that at short

horizons, h = 1, GARCH and FIGARCH models obtain lower average MSE and MAE than the

BMSM and LMSM models in all three markets. However, the variability of the MSE and MAE

in the MSM models are in general lower than those of the (FI)GARCH models. At horizons

over 20 days, GARCH models (with Normal or Student-t innovations) show a deterioration in

MSE and MAE measures hinting at their inability to accurately forecast volatility at higher

horizons. In contrast, MSE and MAE resulting from the FIGARCH models (with Normal or

Student-t innovations) are in general lower and more stable across horizons.

With respect to the MSM models (with Normal or Student-t innovations) we find that they

produce MSEs and MAEs which are lower than one in stock and real estate markets. We also
5Details about the computation of MSEs and MAEs with panel data and corresponding standard errors and

the count test based on the Diebold and Mariano (1995) statistics can be provided upon request.

18



find that the forecasts from the MSM models are much more homogeneous and less variable

across horizons than those of the (FI)GARCH models whose forecasts usually deteriorate as the

horizon is increased beyond h = 20. Comparing forecasts of the BMSM versus LMSM we find

that the models produce qualitatively similar forecasts in terms of MSEs and MAEs.

Diagnosing forecasts from the models with Normal vs. Student-t innovations, we find that

neither GARCH nor FIGARCH models produce lower MSEs and MAEs on average over the

three markets when Student-t innovations are employed. Results are different in MSM models

for which we find Student-t innovations to improve forecasting precision over all three markets

in particular at horizons h ≥ 20. In fact, Table 8 shows that, in terms of MAEs, there is

a larger number of statistically significant improvements against historical volatility with the

BMSM-t and LMSM-t models in comparison to their Gaussian and (FI)GARCH counterparts.

Interestingly, the LMSM-t outperforms all other models in all markets in terms of MAEs when

h ≥ 50 and seems to provide for a sizable gain in forecasting accuracy at long horizons.

Note that the MSM models also showed some sensitivity of parameter estimates on the

distributional assumptions (Normal vs. Student-t). As it seems, the volatility models react

quite differently to different distributions of innovations ut: on the one hand, the transition

to Student-t was not reflected in remarkable changes of estimated parameters for (FI)GARCH

models and their forecasting performance, if anything, slightly deteriorates under fat-tailed

innovations. On the other hand, the effect of distributional assumptions on MSM parameters

was more pronounced and their forecasting performance appears to be superior under Student-t

innovations throughout our samples. Taken together, we see different patterns of interaction of

conditional and unconditional distributional properties. This indicates that alternative models

may capture different facets of the dependency in second moments so that there would be a

potential gain from combining forecasts (a topic explored below).

insert Tables 9 and 10 around here

6.2.2 Combined forecasts

A particular insight from the methodological literature on forecasting is that it is often preferable

to combine alternative forecasts in a linear fashion and thereby obtain a new predictor (cf.
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Granger (1989), Aiolfi and Timmermann (2006)). We analyze forecast complementarities of

(FI)GARCH and MSM models by addressing the performance of combined forecasts. The

forecast combinations are computed by assigning each single forecast a weight equal to a model’s

empirical frequency of minimizing the absolute or squared forecast error over realized past

forecasts. To take account of structural variation we update the weighting scheme over the

20 most recent forecast errors so that despite linear combinations of forecasts, the influence of

various components is allowed to change over time via flexible weights.6

Tables 9 and 10 report the results of the forecasting combination exercise. Our forecast

combination strategy consists in considering whether forecast combinations of (FI)GARCH

models, MSM models or both families of models lead to an improvement upon forecasts from

single models. Our results put forward that they generally do. This is in line with the empirical

result of Lux and Kaizoji (2007) that the rank correlations of forecasts obtained from certain

volatility models are quite low, hinting at room for improvement upon forecasts from single

models with forecast combinations.

We start by considering the results of the forecast combinations of the (FI)GARCH models

(Tables 9 and 10). Three different combination strategies are presented denoted CO1, CO2

and CO3. The first combination strategy (CO1) is given by the (weighted) linear combina-

tion between FIGARCH and FIGARCH-t forecasts. The latter combination gives an idea how

FIGARCH forecasts can be complemented by considering a fat tailed distribution. We find

an improvement in terms of MSEs from CO1 over single forecasts of the FIGARCH and the

FIGARCH-t models at horizons h = 20, h = 50 and h = 100 in the different asset mar-

kets under inspection. The same result applies when we consider the forecast combinations

GARCH+FIGARCH+FIGARCH-t (CO2) and GARCH+GARCH-t+FIGARCH+FIGARCH-t

(CO3) although only for stock and real estate markets at higher horizons. CO2 and CO3 hint

at how forecast could be improved when considering short memory along with long memory

and fat tails. In terms of MAEs, CO1 can improve upon forecasts of the single (FI)GARCH

specifications at all horizons in all markets. The forecast combinations CO2 and CO3 can also

improve upon forecasts of the single (FI)GARCH models in terms of MAEs at all horizons in
6Technical details on the algorithm for forecast combinations can be provided upon request.
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stock markets and real estate markets.

The second set of forecasts combinations considered are those resulting from the MSM

models. The forecast combinations are given by BMSM+LMSM-t (CO4), BMSM+BMSM-

t+LMSM-t (CO5) and BMSM+BMSM-t+LMSM+LMSM-t (CO6) to analyze the complemen-

tarities that arise when one combines models with different assumptions regarding the distribu-

tion of the multifractal parameter as well as the tails of the innovations. The results indicate

that there is an improvement upon forecasts of single models in all three markets particularly

against those obtained from the MSM models with Normal innovations both in terms of MSEs

and MAEs. The improvement obtained from forecasts combinations is immediately evident in

the case of bond markets where the MSEs and MAEs become less than one. We also find that

the combination of forecasts in the MSM models does not translate into more variable MSEs or

MAEs, a feature that speaks in favor of optimally combining single models’ ingredients.

The last set of forecasts combinations examined are those resulting from MSM models and

FIGARCH models. The combinatorial strategies are given by FIGARCH+LMSM-t (CO7),

BMSM-t+LMSM-t+FIGARCH (CO8), BMSM-t+LMSM-t+FIGARCH+FIGARCH-t (CO9).

The latter forecast combinations allow us to analyze the complementarities of two families of

volatility models which assume two distinct distributions of the innovations along with dif-

ferent characteristics for the latent volatility process: (FI)GARCH models which account for

short/long memory and autoregressive components and MSM models which account for mul-

tifractality, regime-switching and apparent long memory. Interestingly, the improvement upon

forecasts of single models from the MSM-FIGARCH strategy is somewhat more evident than

in the previous strategies. In terms of MSEs, for instance, we generally find a statistically

significant improvement over historical volatility more frequently in stock, bond and real estate

markets when comparing CO7, CO8, CO9 against single models (Tables 8 and 10). We also

find that the variability of the combinations of MSM and FIGARCH models does not change

too much with respect to single models.

Summing up, we find that the forecast combinations between FIGARCH, MSM or both

types of models lead to improvements in forecasting accuracy upon forecasts of single models.

In particular, we find that the forecasting strategy FIGARCH-MSM seems to be the most
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successful one in relation to single models or the other combination strategies - a feature that

could be exploited in real time for risk management strategies. The particular usefulness of

this combination strategy appears plausible given the flexibility of the MSM model in capturing

varying degrees of long-term dependence and the added flexibility of FIGARCH for short horizon

dependencies via its AR and MA parameters which are not accounted for in MSM models.

7 Conclusion

In this paper we examined the in-sample and out-of-sample performance of volatility models that

incorporate different features characterizing the latent volatility process (long vs. short memory,

regime-switching and multifractality) as well as distributional regularities of returns (fat tails).

More precisely, we consider two major sets of “competitors”, namely, volatility specifications

from the new MSM models and the popular (FI)GARCH models along with Normal or Student-

t innovations. We introduce a new member to the family of MSM models that accounts for

Student-t innovations. This new model allows us to study whether there is an improvement

in forecasting accuracy vis-à-vis the existing MSM model with Normal innovations and the

(FI)GARCH models with Normal or Student-t innovations. The MSM-t model can be estimated

either via ML or GMM. The suitability of ML and GMM estimation for MSM models with

Student-t innovations is analyzed via Monte Carlo simulations. We conduct a comprehensive

empirical study using country data on all-share equity indices, 10-year government bond indices

and real estate security indices. In addition, we explore whether we may improve forecasting

accuracy by constructing forecast combinations of the various models under inspection.

In-sample Monte Carlo experiments of the MSM-t model behave similarly like the MSM

model with Normal innovations indicating that ML and GMM estimation are both suitable for

estimating the new Binomial (ML and GMM) and Lognormal (GMM) MSM-t models. The

out-of-sample Monte Carlo analysis shows that best linear forecasts are qualitatively similar

to optimal forecasts so that the computationally advantageous strategy of GMM estimation of

parameters plus linear forecasts can be adapted without much loss of efficiency. The in-sample

empirical analysis shows that there is strong evidence of long memory and multifractality in
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international equity markets, bond markets and real estate markets as well as evidence of fat

tails. The out-of-sample empirical analysis puts forward that GARCH models are less precise

in accurately forecasting volatility for horizons greater than 20 days. This problem is not

encountered once long-memory is incorporated via the FIGARCH model which produces MSEs

and MAEs that are generally less than one.

The recently introduced MSM models with Normal innovations produce forecasts that im-

prove upon historical volatility, but are in some cases inferior to FIGARCH with Normal in-

novations. However, two additional observations shed more positive light on the capabilities of

MSM models for forecasting volatility. First, adding fat tails typically improves forecasts from

MSM models while the same change of specification has, if anything, a negative effect for the

(FI)GARCH models. While MSM-t is somewhat inferior to FIGARCH under the MSE crite-

rion, it is superior under the MAE criterion at long horizons across all markets. Second, our

forecasting combination exercise showed particularly sizable gains from combining FIGARCH

and MSM in various ways. Therefore, both models appear to capture somewhat different facets

of the latent volatility and can be sensibly used in tandem to improve upon forecasts of single

models.
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ν = 5 ν = 6
ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2

m0 = 1.3 m0 = 1.4 m0 = 1.5 m0 = 1.3 m0 = 1.4 m0 = 1.5

T=2,500

m̄0 1.294 1.215 1.344 1.395 1.348 1.434 1.496 1.469 1.527 1.295 1.166 1.338 1.395 1.314 1.428 1.496 1.449 1.520
FSSE 0.024 0.123 0.141 0.024 0.092 0.109 0.023 0.056 0.071 0.024 0.127 0.135 0.024 0.103 0.102 0.023 0.060 0.072
RMSE 0.025 0.149 0.148 0.024 0.105 0.114 0.024 0.064 0.076 0.024 0.184 0.140 0.024 0.134 0.105 0.024 0.079 0.075

ν̄ 4.997 4.903 4.826 5.030 4.914 4.824 5.089 4.939 4.844 6.033 4.904 4.970 6.104 4.903 4.966 6.337 4.927 4.984
FSSE 0.675 0.771 0.922 0.806 0.784 0.929 1.028 0.802 0.961 1.022 0.730 0.997 1.285 0.746 1.009 3.133 0.764 1.024
RMSE 0.674 0.776 0.937 0.805 0.788 0.945 1.031 0.803 0.972 1.021 1.317 1.433 1.288 1.326 1.444 3.147 1.317 1.441

σ̄ 0.997 0.967 0.902 0.999 0.965 0.898 1.003 0.968 0.888 0.997 0.918 0.852 0.999 0.913 0.849 1.004 0.916 0.842
FSSE 0.093 0.104 0.173 0.125 0.133 0.195 0.162 0.165 0.222 0.092 0.095 0.153 0.125 0.125 0.172 0.163 0.156 0.199
RMSE 0.093 0.109 0.198 0.125 0.137 0.219 0.162 0.168 0.248 0.092 0.125 0.213 0.124 0.152 0.229 0.163 0.177 0.254

T=5,000

m̄0 1.298 1.222 1.332 1.399 1.357 1.427 1.499 1.471 1.518 1.299 1.171 1.327 1.399 1.327 1.419 1.499 1.453 1.512
FSSE 0.016 0.102 0.115 0.016 0.058 0.076 0.016 0.040 0.056 0.016 0.109 0.105 0.016 0.066 0.075 0.016 0.042 0.055
RMSE 0.016 0.129 0.119 0.016 0.072 0.080 0.016 0.049 0.059 0.016 0.169 0.108 0.016 0.098 0.077 0.016 0.063 0.057

ν̄ 5.090 4.691 4.684 5.108 4.692 4.689 5.136 4.701 4.696 6.146 4.714 4.842 6.184 4.708 4.839 6.244 4.723 4.847
FSSE 0.520 0.578 0.777 0.591 0.590 0.790 0.691 0.603 0.801 0.772 0.533 0.837 0.902 0.546 0.844 1.104 0.563 0.854
RMSE 0.527 0.655 0.838 0.600 0.665 0.848 0.703 0.672 0.856 0.784 1.392 1.429 0.919 1.402 1.435 1.129 1.395 1.434

σ̄ 1.002 0.954 0.902 1.003 0.954 0.900 1.005 0.957 0.896 1.002 0.907 0.854 1.003 0.905 0.854 1.005 0.908 0.852
FSSE 0.066 0.076 0.144 0.088 0.095 0.156 0.113 0.117 0.172 0.065 0.069 0.124 0.088 0.089 0.135 0.113 0.110 0.153
RMSE 0.065 0.088 0.174 0.088 0.105 0.185 0.113 0.125 0.201 0.065 0.116 0.191 0.088 0.130 0.199 0.113 0.143 0.212

T=10,000

m̄0 1.298 1.239 1.330 1.399 1.364 1.422 1.499 1.476 1.515 1.299 1.188 1.321 1.399 1.338 1.414 1.499 1.459 1.509
FSSE 0.012 0.067 0.078 0.012 0.039 0.053 0.012 0.028 0.039 0.012 0.083 0.075 0.012 0.042 0.053 0.012 0.029 0.038
RMSE 0.012 0.091 0.084 0.012 0.053 0.058 0.012 0.036 0.042 0.012 0.140 0.078 0.012 0.075 0.055 0.012 0.050 0.039

ν̄ 4.993 4.500 4.491 4.996 4.504 4.496 5.005 4.510 4.505 5.997 4.556 4.655 6.007 4.556 4.655 6.027 4.563 4.664
FSSE 0.345 0.427 0.572 0.402 0.433 0.578 0.475 0.442 0.587 0.512 0.385 0.619 0.609 0.392 0.630 0.733 0.399 0.642
RMSE 0.345 0.657 0.765 0.402 0.658 0.766 0.475 0.659 0.768 0.511 1.494 1.480 0.608 1.497 1.485 0.732 1.492 1.482

σ̄ 0.996 0.946 0.894 0.995 0.947 0.892 0.994 0.948 0.888 0.996 0.900 0.849 0.995 0.900 0.848 0.994 0.902 0.845
FSSE 0.048 0.059 0.112 0.065 0.071 0.122 0.082 0.086 0.137 0.048 0.053 0.097 0.064 0.066 0.106 0.082 0.081 0.119
RMSE 0.048 0.079 0.154 0.065 0.089 0.163 0.083 0.101 0.177 0.048 0.113 0.179 0.065 0.119 0.185 0.082 0.127 0.195

Table 1: Monte Carlo ML and GMM estimation of the Binomial MSM-t model with k = 8, σ = 1, ν = 5, 6 and m0 = 1.3, 1.4, 1.5. FSSE:
finite sample standard error (e.g. FSSE= [

∑S
s=1(m0,s − m̄0)2/S]1/2), RMSE: root mean squared error (e.g. RMSE= [

∑S
s=1(m0,s −

m0)2/S]1/2). The entries m̄0, σ̄ and ν̄ denote the mean of the estimated parameters over S=400 Monte Carlo runs.
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ν = 5 ν = 6
GMM1 GMM2 GMM1 GMM2 GMM1 GMM2 GMM1 GMM2 GMM1 GMM2 GMM1 GMM2

m0 = 1.3 m0 = 1.4 m0 = 1.5 m0 = 1.3 m0 = 1.4 m0 = 1.5

BMSM

m̄0 1.226 1.333 1.360 1.427 1.475 1.519 1.175 1.325 1.330 1.419 1.456 1.513
FSSE 0.103 0.117 0.058 0.080 0.040 0.057 0.110 0.111 0.067 0.079 0.043 0.056
RMSE 0.127 0.122 0.071 0.084 0.048 0.060 0.166 0.113 0.097 0.081 0.062 0.057

ν̄ 4.705 4.627 4.711 4.628 4.726 4.642 4.732 4.776 4.727 4.777 4.743 4.794
FSSE 0.591 0.705 0.602 0.710 0.610 0.721 0.546 0.761 0.560 0.770 0.572 0.783
RMSE 0.660 0.797 0.667 0.801 0.668 0.804 1.380 1.440 1.390 1.445 1.381 1.438

σ̄ 0.951 0.884 0.951 0.874 0.954 0.857 0.899 0.839 0.897 0.831 0.902 0.816
FSSE 0.116 0.172 0.150 0.198 0.189 0.231 0.107 0.157 0.141 0.180 0.178 0.212
RMSE 0.126 0.208 0.158 0.234 0.194 0.272 0.147 0.224 0.174 0.247 0.203 0.280

λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.05 λ = 0.10 λ = 0.15

LMSM

λ̄ 0.030 0.064 0.079 0.113 0.129 0.163 0.023 0.067 0.069 0.116 0.119 0.165
FSSE 0.022 0.047 0.027 0.048 0.028 0.049 0.019 0.045 0.025 0.047 0.027 0.050
RMSE 0.030 0.049 0.034 0.050 0.035 0.051 0.033 0.048 0.040 0.049 0.041 0.052

ν̄ 4.540 4.539 4.601 4.563 4.629 4.574 4.730 4.840 4.684 4.868 4.693 4.891
FSSE 0.799 0.911 0.775 0.905 0.773 0.900 0.700 0.894 0.680 0.910 0.672 0.904
RMSE 0.921 1.020 0.871 1.004 0.856 0.995 1.449 1.464 1.481 1.452 1.469 1.430

σ̄ 0.922 0.844 0.921 0.821 0.920 0.780 0.886 0.822 0.875 0.799 0.873 0.765
FSSE 0.119 0.224 0.159 0.258 0.192 0.281 0.105 0.184 0.148 0.222 0.179 0.253
RMSE 0.142 0.273 0.178 0.314 0.207 0.356 0.155 0.256 0.194 0.299 0.219 0.344

Table 2: Monte Carlo GMM estimation of the Binomial and Lognormal MSM-t models with T = 5, 000, k = 10, σ = 1, ν = 5, 6,
m0 = 1.3, 1.4, 1.5 and λ = 0.05, 0.10, 0.15. FSSE: finite sample standard error (e.g. FSSE= [

∑S
s=1(m0,s − m̄0)2/S]1/2), RMSE: root

mean squared error (e.g. RMSE= [
∑S

s=1(m0,s −m0)2/S]1/2). The entries m̄0, σ̄ and ν̄ denote the mean of the estimated parameters
over S=400 Monte Carlo runs.
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ν = 5 ν = 6
ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2 ML GMM1 GMM2

h m0 = 1.3 m0 = 1.4 m0 = 1.5 m0 = 1.3 m0 = 1.4 m0 = 1.5

MSE

1 0.971 0.988 0.990 0.957 0.978 0.983 0.947 0.974 0.979 0.964 0.987 0.985 0.947 0.972 0.975 0.937 0.966 0.971
(0.012) (0.011) (0.013) (0.019) (0.016) (0.018) (0.025) (0.021) (0.022) (0.013) (0.013) (0.016) (0.020) (0.017) (0.021) (0.025) (0.022) (0.025)

5 0.981 0.992 0.994 0.974 0.986 0.989 0.971 0.985 0.988 0.976 0.991 0.990 0.969 0.982 0.985 0.966 0.981 0.983
(0.009) (0.008) (0.011) (0.013) (0.012) (0.013) (0.016) (0.014) (0.015) (0.010) (0.010) (0.013) (0.014) (0.013) (0.015) (0.017) (0.015) (0.017)

10 0.986 0.994 0.996 0.981 0.990 0.992 0.980 0.989 0.992 0.983 0.993 0.993 0.978 0.987 0.989 0.977 0.987 0.989
(0.008) (0.007) (0.009) (0.011) (0.010) (0.011) (0.013) (0.012) (0.013) (0.009) (0.008) (0.011) (0.012) (0.011) (0.013) (0.014) (0.013) (0.014)

20 0.991 0.996 0.998 0.988 0.993 0.995 0.987 0.993 0.995 0.988 0.995 0.996 0.985 0.991 0.993 0.985 0.991 0.993
(0.006) (0.006) (0.009) (0.009) (0.008) (0.010) (0.011) (0.010) (0.011) (0.007) (0.007) (0.010) (0.010) (0.009) (0.011) (0.012) (0.011) (0.012)

MAE

1 0.955 0.972 0.938 0.923 0.960 0.923 0.892 0.952 0.909 0.952 0.971 0.931 0.918 0.954 0.913 0.885 0.944 0.898
(0.061) (0.047) (0.064) (0.084) (0.065) (0.072) (0.108) (0.082) (0.082) (0.059) (0.042) (0.059) (0.083) (0.062) (0.068) (0.106) (0.079) (0.078)

5 0.969 0.977 0.942 0.951 0.971 0.931 0.935 0.968 0.922 0.967 0.975 0.936 0.947 0.966 0.923 0.930 0.963 0.914
(0.056) (0.046) (0.064) (0.079) (0.061) (0.072) (0.102) (0.076) (0.081) (0.055) (0.041) (0.059) (0.077) (0.059) (0.068) (0.101) (0.074) (0.077)

10 0.977 0.980 0.944 0.964 0.976 0.935 0.954 0.976 0.928 0.975 0.978 0.938 0.961 0.972 0.928 0.951 0.972 0.921
(0.053) (0.045) (0.065) (0.074) (0.059) (0.072) (0.096) (0.072) (0.081) (0.051) (0.040) (0.058) (0.073) (0.057) (0.067) (0.095) (0.070) (0.076)

20 0.984 0.982 0.946 0.976 0.982 0.939 0.972 0.983 0.933 0.983 0.981 0.940 0.975 0.978 0.932 0.969 0.979 0.926
(0.048) (0.044) (0.065) (0.067) (0.055) (0.072) (0.087) (0.068) (0.081) (0.046) (0.040) (0.058) (0.066) (0.053) (0.066) (0.086) (0.066) (0.075)

Table 3: Monte Carlo Assessment of Bayesian vs. Best Linear Forecasts, Binomial MSM Specification for k = 8, ν = 5, 6 and
m0 = 1.3, 1.4, 1.5. MSE: mean square errors and MAE: mean absolute errors. MSEs and MAEs are given in percentage of the MSEs
and MAEs of a naive forecast using the in-sample variance. All entries are averages over 400 Monte Carlo runs (with standard errors
given in parentheses). In each run, an overall sample of 10,000 entries has been split into an in-sample period of 5,000 entries for
parameter estimation and an out-of-sample period of 5,000 entries for evaluation of forecasting performance. ML stands for parameter
estimation based on the maximum likelihood procedure and pertinent inference on the probability of the 2k states of the model. GMM1
uses parameters estimated by GMM with moment set 1, while GMM2 implements parameters estimated via GMM with moment set 2.
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Equity Markets Bond Markets Real Estate Markets

Austria Italy Australia Austria
Argentina Norway Belgium Canada
Belgium Mexico Canada France
Canada New Zealand Denmark Germany
Chile Japan France Italy
Denmark South Africa Germany Japan
Finland Spain Ireland New Zealand
France Sweden Netherlands Spain
Germany Thailand Sweden Sweden
Greece Turkey United Kingdom United Kingdom
Hong Kong United Kingdom United States United States
India United States South Africa
Ireland

Table 4: Equity, Bond and Real Estate markets for the empirical analysis. Countries were
chosen upon data availability for the sample period 01/1990 to 01/2008. We employ Datastream
calculated (total market) stock indices, 10-year benchmark government bond indices and real
estate security indices.
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GARCH FIGARCH

Normal innovations Student-t innovations Normal innovations Student-t innovations

Mkt. ω̄ β̄ ᾱ ω̄ β̄ ᾱ ν̄ ω̄ β̄ δ̄ d̄ ω̄ β̄ δ̄ d̄ ν̄

ST

MG 0.081 0.844 0.112 0.061 0.855 0.122 5.800 0.164 0.271 0.065 0.334 0.101 0.497 0.222 0.428 5.783
(0.022) (0.014) (0.007) (0.017) (0.013) (0.013) (0.297) (0.033) (0.079) (0.068) (0.029) (0.026) (0.037) (0.038) (0.028) (0.296)

Min 0.006 0.587 0.054 0.003 0.626 0.040 3.183 0.027 -0.938 -0.915 0.001 0.009 0.039 -0.111 0.286 3.282
Max 0.491 0.939 0.175 0.425 0.957 0.373 9.387 0.683 0.851 0.762 0.832 0.591 0.873 0.905 0.933 9.608

BO

MG 0.005 0.903 0.075 0.004 0.907 0.078 4.760 0.014 0.558 0.216 0.422 0.009 0.614 0.253 0.443 4.824
(0.002) (0.014) (0.010) (0.001) (0.011) (0.011) (0.244) (0.008) (0.084) (0.064) (0.044) (0.002) (0.029) (0.021) (0.029) (0.227)

Min 0.012 0.777 0.031 0.001 0.814 0.028 3.013 0.002 -0.208 -0.378 0.200 0.002 0.437 0.168 0.282 3.533
Max 0.021 0.946 0.154 0.012 0.951 0.159 6.364 0.095 0.786 0.388 0.685 0.028 0.739 0.344 0.577 6.383

RE

MG 0.064 0.877 0.084 0.064 0.782 0.111 4.512 0.132 0.434 0.332 0.229 0.132 0.308 0.104 0.367 4.831
(0.013) (0.019) (0.011) (0.018) (0.074) (0.011) (0.324) (0.031) (0.154) (0.159) (0.037) (0.035) (0.149) (0.115) (0.069) (0.255)

Min 0.004 0.716 0.023 0.002 0.014 0.043 2.000 0.027 -0.598 -0.720 0.029 0.017 -0.506 -0.577 0.044 3.295
Max 0.137 0.969 0.143 0.192 0.956 0.176 6.256 0.364 0.923 0.968 0.425 0.364 0.926 0.599 0.999 6.529

Table 5: GARCH and FIGARCH in-sample estimates. MG: mean group parameter estimates (with standard errors in parentheses) of
GARCH, GARCH-t, FIGARCH and FIGARCH-t models for N = 25 international stock market indices (ST), N = 11 international
10-year government bond indices (BO), N = 12 international real estate security indices (RE). Min: minimum estimated parameter
value in the cross-section. Max: maximum estimated parameter value in the cross-section.
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BMSM LMSM

Normal innovations Student-t innovations Normal innovations Student-t innovations

Mkt. m̄0 σ̄ m̄0 σ̄ ν̄ λ̄ σ̄ λ̄ σ̄ ν̄

ST

MG 1.435 1.273 1.388 0.808 4.821 0.118 1.273 0.107 0.794 4.921
(0.019) (0.113) (0.033) (0.080) (0.192) (0.012) (0.113) (0.017) (0.087) (0.190)

Min 1.264 0.681 1.033 0.449 4.050 0.036 0.681 0.001 0.331 4.050
Max 1.619 2.932 1.681 2.257 6.779 0.261 2.932 0.341 2.217 6.752

BO

MG 1.487 0.418 1.435 0.252 4.580 0.159 0.418 0.140 0.245 4.588
(0.037) (0.029) (0.053) (0.027) (0.291) (0.025) (0.029) (0.034) (0.028) (0.289)

Min 1.234 0.293 1.123 0.160 4.050 0.032 0.293 0.008 0.135 4.050
Max 1.642 0.601 1.693 0.485 7.089 0.289 0.601 0.362 0.482 7.084

RE

MG 1.594 1.376 1.646 0.765 4.900 0.307 1.374 0.268 0.692 5.192
(0.041) (0.143) (0.063) (0.094) (0.128) (0.085) (0.143) (0.056) (0.109) (0.127)

Min 1.393 0.682 1.430 0.487 4.365 0.086 0.682 0.137 0.158 4.574
Max 1.912 2.287 1.945 1.503 5.555 1.137 2.282 0.741 1.416 6.067

Table 6: Binomial and Lognormal MSM in-sample estimates. MG: mean group parameter estimates (with standard errors in parentheses)
of the BMSM, BMSM-t, LMSM and LMSM-t models for N = 25 international stock market indices (ST), N = 11 international 10-year
government bond indices (BO), N = 12 international real estate security indices (RE). Min: minimum estimated parameter value in
the cross-section. Max: maximum estimated parameter value in the cross-section.
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MSE MAE
Normal innovations Student-t innovations Normal innovations Student-t innovations

Mkt. h GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM

ST

1 0.873 0.863 0.948 0.944 0.883 0.870 0.947 0.948 0.796 0.797 0.940 0.935 0.803 0.797 0.825 0.819
(0.018) (0.019) (0.007) (0.008) (0.022) (0.024) (0.008) (0.008) (0.004) (0.004) (0.001) (0.001) (0.005) (0.005) (0.003) (0.003)

5 0.919 0.903 0.972 0.971 0.962 0.923 0.949 0.953 0.825 0.824 0.962 0.962 0.850 0.837 0.826 0.822
(0.012) (0.012) (0.004) (0.004) (0.014) (0.012) (0.008) (0.008) (0.004) (0.004) (0.001) (0.001) (0.005) (0.004) (0.003) (0.003)

20 0.928 0.906 0.972 0.972 0.981 0.912 0.949 0.954 0.867 0.859 0.964 0.964 0.944 0.890 0.826 0.822
(0.010) (0.012) (0.004) (0.004) (0.013) (0.011) (0.008) (0.008) (0.003) (0.003) (0.001) (0.001) (0.004) (0.004) (0.003) (0.003)

50 0.945 0.917 0.973 0.973 1.039 0.918 0.950 0.954 0.911 0.892 0.964 0.964 1.089 0.944 0.827 0.823
(0.008) (0.011) (0.004) (0.004) (0.015) (0.010) (0.008) (0.008) (0.003) (0.003) (0.001) (0.001) (0.004) (0.003) (0.003) (0.003)

100 0.958 0.934 0.973 0.973 1.181 0.940 0.950 0.954 0.943 0.926 0.964 0.964 1.283 1.000 0.827 0.822
(0.007) (0.009) (0.004) (0.004) (0.032) (0.008) (0.008) (0.008) (0.002) (0.002) (0.001) (0.001) (0.006) (0.003) (0.003) (0.003)

BO

1 0.838 0.830 1.023 1.018 0.840 0.832 0.981 0.975 0.791 0.764 1.011 1.006 0.793 0.768 0.843 0.825
(0.008) (0.009) (0.002) (0.002) (0.008) (0.009) (0.005) (0.006) (0.003) (0.003) (0.001) (0.001) (0.003) (0.003) (0.003) (0.003)

5 0.856 0.833 1.047 1.047 0.856 0.837 0.984 0.979 0.818 0.776 1.032 1.032 0.822 0.781 0.845 0.827
(0.007) (0.008) (0.003) (0.003) (0.007) (0.008) (0.005) (0.006) (0.003) (0.003) (0.001) (0.001) (0.003) (0.003) (0.003) (0.003)

20 0.910 0.846 1.049 1.049 0.922 0.852 0.983 0.977 0.894 0.809 1.034 1.034 0.923 0.825 0.844 0.826
(0.005) (0.008) (0.003) (0.003) (0.004) (0.007) (0.005) (0.006) (0.002) (0.003) (0.001) (0.001) (0.002) (0.003) (0.003) (0.003)

50 0.975 0.870 1.050 1.050 1.072 0.884 0.980 0.975 0.974 0.853 1.034 1.034 1.079 0.882 0.842 0.824
(0.002) (0.007) (0.003) (0.003) (0.005) (0.006) (0.006) (0.006) (0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

100 1.031 0.906 1.051 1.051 1.267 0.932 0.977 0.971 1.042 0.907 1.034 1.035 1.245 0.950 0.839 0.820
(0.002) (0.005) (0.003) (0.003) (0.013) (0.004) (0.006) (0.006) (0.001) (0.002) (0.001) (0.001) (0.003) (0.002) (0.003) (0.003)

RE

1 0.827 0.821 0.929 0.921 0.839 0.832 0.911 0.910 0.706 0.685 0.897 0.886 0.675 0.654 0.691 0.680
(0.026) (0.027) (0.011) (0.013) (0.025) (0.027) (0.016) (0.017) (0.005) (0.005) (0.002) (0.002) (0.005) (0.005) (0.004) (0.005)

5 0.858 0.850 0.964 0.963 0.880 0.860 0.920 0.925 0.736 0.708 0.932 0.930 0.713 0.681 0.697 0.687
(0.021) (0.022) (0.006) (0.006) (0.019) (0.021) (0.015) (0.015) (0.004) (0.005) (0.001) (0.001) (0.005) (0.005) (0.004) (0.005)

20 0.879 0.863 0.966 0.965 0.911 0.876 0.921 0.925 0.800 0.746 0.934 0.932 0.801 0.727 0.697 0.687
(0.018) (0.020) (0.006) (0.006) (0.014) (0.018) (0.015) (0.015) (0.004) (0.004) (0.001) (0.001) (0.004) (0.005) (0.004) (0.005)

50 0.897 0.869 0.966 0.966 0.944 0.890 0.921 0.926 0.865 0.775 0.934 0.932 0.896 0.780 0.696 0.687
(0.014) (0.018) (0.006) (0.006) (0.008) (0.015) (0.015) (0.015) (0.003) (0.004) (0.001) (0.001) (0.004) (0.004) (0.004) (0.005)

100 0.926 0.875 0.965 0.964 0.999 0.925 0.914 0.919 0.932 0.799 0.933 0.932 0.992 0.856 0.694 0.684
(0.008) (0.018) (0.006) (0.006) (0.007) (0.010) (0.016) (0.016) (0.002) (0.004) (0.001) (0.001) (0.004) (0.004) (0.004) (0.005)

Table 7: Forecasting results of MSM and (FI)GARCH models. The table shows panel MSE and MAE (with standard errors in
parentheses) relative to naive forecasts of historical volatility for N = 25 international stock market indices (ST), N = 11 international
10-year government bond indices (BO), N = 12 international real estate security indices (RE) at horizons h = 1, 5, 20, 50, 100. Entries
in bold denote the model with the lowest MSE or MAE at each horizon h.
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MSE MAE
Normal innovations Student-t innovations Normal innovations Student-t innovations

Mkt. h GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM GARCH FIGA BMSM LMSM

ST

1 20 23 22 22 21 21 11 10 17 15 22 22 16 14 25 25
5 18 20 14 15 18 19 9 8 15 13 14 14 13 11 25 25
20 17 19 10 10 15 17 9 8 14 11 14 14 9 10 25 25
50 11 18 10 10 13 13 9 8 10 10 14 14 6 9 25 25
100 7 17 10 10 9 11 9 7 8 9 14 14 4 5 25 25

BO

1 10 9 9 9 8 8 6 6 9 9 9 9 8 9 10 10
5 9 9 5 5 8 8 6 6 9 9 7 7 8 9 10 10
20 9 9 4 4 7 8 6 6 9 9 6 6 7 8 10 10
50 6 8 4 4 3 7 6 6 5 7 6 6 2 7 10 10
100 1 5 4 4 0 4 6 6 3 5 6 6 0 5 10 10

RE

1 10 9 10 10 9 9 7 7 9 10 11 11 9 10 12 11
5 9 9 10 10 7 9 6 6 7 9 9 9 7 9 12 11
20 7 9 9 9 4 8 6 5 8 9 9 9 5 9 12 11
50 5 10 9 9 5 9 6 5 5 9 9 9 2 9 12 11
100 4 9 8 8 2 7 6 5 3 9 9 9 2 8 12 11

Table 8: Average forecasting accuracy of alternative volatility models. The table shows the number of improvements for single
models against historical volatility via the Diebold and Mariano (1995) test for N = 25 international stock market indices (ST),
N = 11 international 10-year government bond indices (BO), N = 12 international real estate security indices (RE) at horizons
h = 1, 5, 20, 50, 100.
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MSE MAE
(FI)GARCH MSM (FI)GARCH-MSM (FI)GARCH MSM (FI)GARCH-MSM

h CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9

ST

1 0.864 0.868 0.869 0.936 0.932 0.931 0.877 0.878 0.872 0.792 0.785 0.786 0.830 0.818 0.817 0.750 0.751 0.746
(0.021) (0.020) (0.020) (0.009) (0.010) (0.010) (0.017) (0.017) (0.018) (0.005) (0.005) (0.005) (0.002) (0.003) (0.003) (0.004) (0.004) (0.004)

5 0.909 0.913 0.919 0.946 0.942 0.941 0.906 0.905 0.905 0.822 0.810 0.814 0.835 0.821 0.821 0.764 0.764 0.764
(0.012) (0.012) (0.012) (0.008) (0.009) (0.009) (0.013) (0.013) (0.013) (0.004) (0.004) (0.004) (0.002) (0.003) (0.003) (0.004) (0.004) (0.004)

20 0.905 0.910 0.921 0.947 0.942 0.942 0.913 0.913 0.910 0.859 0.836 0.845 0.836 0.822 0.822 0.781 0.780 0.783
(0.012) (0.012) (0.011) (0.008) (0.009) (0.009) (0.012) (0.012) (0.012) (0.003) (0.003) (0.004) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

50 0.912 0.914 0.915 0.947 0.943 0.943 0.921 0.920 0.915 0.892 0.857 0.866 0.836 0.822 0.822 0.800 0.798 0.801
(0.011) (0.011) (0.011) (0.008) (0.009) (0.009) (0.011) (0.011) (0.012) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

100 0.926 0.924 0.924 0.948 0.943 0.943 0.931 0.928 0.922 0.922 0.878 0.887 0.835 0.821 0.821 0.820 0.811 0.815
(0.010) (0.011) (0.011) (0.008) (0.009) (0.009) (0.011) (0.011) (0.012) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

BO

1 0.829 0.829 0.830 0.947 0.949 0.949 0.842 0.845 0.844 0.763 0.766 0.768 0.851 0.850 0.850 0.721 0.720 0.721
(0.009) (0.009) (0.009) (0.005) (0.005) (0.005) (0.010) (0.010) (0.010) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.004) (0.004) (0.004)

5 0.833 0.834 0.835 0.951 0.953 0.953 0.845 0.847 0.847 0.774 0.778 0.780 0.854 0.853 0.853 0.727 0.726 0.727
(0.008) (0.008) (0.008) (0.005) (0.005) (0.005) (0.010) (0.010) (0.010) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

20 0.844 0.846 0.848 0.951 0.953 0.953 0.852 0.854 0.852 0.808 0.812 0.816 0.853 0.852 0.852 0.741 0.740 0.742
(0.008) (0.008) (0.007) (0.005) (0.005) (0.005) (0.009) (0.009) (0.009) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

50 0.867 0.870 0.874 0.948 0.951 0.951 0.858 0.861 0.858 0.851 0.855 0.863 0.851 0.850 0.850 0.758 0.757 0.759
(0.007) (0.006) (0.006) (0.005) (0.005) (0.005) (0.009) (0.009) (0.009) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

100 0.899 0.901 0.907 0.945 0.948 0.948 0.866 0.869 0.866 0.901 0.902 0.915 0.848 0.847 0.847 0.773 0.772 0.776
(0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.009) (0.009) (0.009) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

RE

1 0.823 0.823 0.823 0.881 0.880 0.879 0.828 0.829 0.828 0.653 0.655 0.654 0.696 0.686 0.687 0.596 0.594 0.590
(0.027) (0.027) (0.027) (0.020) (0.020) (0.020) (0.027) (0.027) (0.027) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

5 0.850 0.851 0.854 0.896 0.895 0.895 0.850 0.849 0.849 0.674 0.676 0.675 0.702 0.691 0.692 0.606 0.602 0.599
(0.023) (0.023) (0.022) (0.018) (0.018) (0.018) (0.024) (0.024) (0.024) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

20 0.860 0.860 0.863 0.897 0.895 0.895 0.858 0.857 0.857 0.703 0.705 0.706 0.702 0.692 0.692 0.613 0.606 0.605
(0.021) (0.021) (0.021) (0.018) (0.018) (0.018) (0.023) (0.023) (0.023) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

50 0.864 0.863 0.865 0.897 0.896 0.896 0.859 0.857 0.856 0.727 0.728 0.731 0.701 0.691 0.691 0.614 0.607 0.607
(0.019) (0.020) (0.019) (0.018) (0.018) (0.018) (0.023) (0.023) (0.023) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

100 0.868 0.867 0.868 0.890 0.888 0.888 0.851 0.850 0.849 0.750 0.752 0.756 0.699 0.689 0.689 0.614 0.606 0.606
(0.019) (0.019) (0.019) (0.020) (0.020) (0.020) (0.025) (0.025) (0.025) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

Table 9: Results of forecast combinations from MSM and (FI)GARCH models. The table shows panel MSE and MAE (with standard
errors in parentheses) relative to naive forecasts for N = 25 international stock market indices (ST), N = 11 international 10-year
government bond indices (BO), N = 12 international real estate security indices (RE) at horizons h = 1, 5, 20, 50, 100. Entries in bold
denote the model with the lowest MSE or MAE at each horizon h. The combination models are CO1: FIGARCH+FIGARCH-t, CO2:
GARCH+FIGARCH+FIGARCH-t, CO3: GARCH+GARCH-t+FIGARCH+FIGARCH-t, CO4: BMSM+LMSM-t, CO5: BMSM-
t+BMSM+LMSM-t, CO6: BMSM-t+BMSM+LMSM-t+LMSM, CO7: FIGARCH+LMSM-t, CO8: BMSM-t+LMSM-t+FIGARCH,
CO9: BMSM-t+LMSM-t+FIGARCH+FIGARCH-t.
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MSE MAE
(FI)GARCH MSM (FI)GARCH-MSM (FI)GARCH MSM (FI)GARCH-MSM

h CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9

ST

1 23 23 23 20 20 20 23 23 23 15 16 16 25 25 25 24 24 24
5 19 18 18 11 11 11 22 22 22 14 16 15 25 25 25 24 24 24
20 19 20 19 10 10 10 20 20 20 12 14 14 25 25 25 23 23 24
50 19 21 21 10 10 10 19 19 20 9 15 15 25 25 25 24 24 24
100 19 22 21 10 10 10 18 18 20 9 14 14 25 25 25 24 24 24

BO

1 9 10 10 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11
5 9 9 9 6 6 6 8 8 9 9 9 9 10 10 10 11 11 11
20 9 9 9 6 6 6 7 7 9 9 9 8 10 10 10 11 11 11
50 8 9 8 6 6 6 7 7 8 7 7 7 10 10 10 11 11 11
100 5 6 6 6 6 6 7 7 8 6 5 5 10 10 10 11 11 10

RE

1 9 9 9 9 9 9 9 9 9 10 10 9 12 12 12 12 12 12
5 9 9 8 8 6 6 10 10 10 9 9 9 12 12 12 12 12 12
20 9 9 9 8 6 6 8 8 8 9 9 9 12 12 12 12 12 12
50 9 10 10 8 6 6 8 8 9 9 10 9 12 12 12 12 12 12
100 9 10 9 8 6 6 7 6 7 9 10 8 12 12 12 12 12 12

Table 10: Average forecasting accuracy of combination models. The table shows the number of improvements for combination models
against historical volatility via the Diebold and Mariano (1995) test for N = 25 international stock market indices (ST), N = 11 inter-
national 10-year government bond indices (BO), N = 12 international real estate security indices (RE) at horizons h = 1, 5, 20, 50, 100.
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