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Abstract

Among the approaches to multi-criteria decision making, Pareto navigation is a pow-

erful, interactive tool that has been successfully applied to a variety of real-world

problems with continuous decision variables, including chemical process design, drug

manufacturing, logistical vehicle routing problems, and radiotherapy treatment plan-

ning. However, many real-life problems are formulated using both continuous and

binary decision variables. In this work, we introduce patch navigation as an algorith-

mic concept that extends Pareto navigation to this type of problem where the num-

ber of binary variables is relatively small. The underlying idea is the navigation across

a finite set of individual, convex fronts each associated with a specific configuration

of the binary variables (patches). We show how the user interactions employed in

current Pareto front navigation, namely selection and restriction, can be adopted to

handle multiple patches. These routines enable the decision maker (DM) to change

the solution in small increments while controlling the related trade-offs. We also

describe additional, patch-specific routines that enable the DM to consider only an

individually chosen subset of patches in the navigation. To illustrate patch navigation,

and to demonstrate its usefulness for real-life problems, we present numerical exam-

ples of patch navigation along with an application motivated by radiotherapy

planning.

K E YWORD S

decision support, multi-criteria decision making, navigation

1 | INTRODUCTION

Problems within operations research often require the consideration

of multiple conflicting criteria. In real-life problems there usually exist

multiple solutions exhibiting different trade-offs between the criteria.

Multi-criteria decision making (MCDM) provides methods for a deci-

sion maker (DM) to find the solution within a set of alternatives that

best matches the preferences of the DM. Some approaches in litera-

ture attempt to formalise a DM's preference structure first and then

determine the ideal solution within a set of alternatives. In contrast,

interactive and a posteriori approaches allow the DM to explore dif-

ferent solutions without explicit definition of their preferences

(Miettinen, 1999 and references therein).

Pareto navigation is a powerful, interactive approach to MCDM.

A variety of navigation approaches have been developed (Eskelinen

et al., 2010; Hartikainen et al., 2019; Korhonen & Wallenius, 1988;

Miettinen et al., 2010; Monz, 2006). While each approach is distinc-

tively different, all allow a DM to traverse a set of points within the

Received: 6 July 2021 Accepted: 18 August 2021

DOI: 10.1002/mcda.1768

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Journal of Multi-Criteria Decision Analysis published by John Wiley & Sons Ltd.

J Multi-Crit Decis Anal. 2021;28:311–321. wileyonlinelibrary.com/journal/mcda 311

https://orcid.org/0000-0002-2293-407X
mailto:cristina.collicott@itwm.fraunhofer.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/mcda


objective space with the goal of finding the DMâ€s preferred solution

within the Pareto front. As the DM navigates, they gain insight into

the characteristics of the underlying optimisation problem, and

through navigation can establish their preferences. Pareto navigation

has been successfully applied to many real-world problems, including

chemical process design (Bortz et al., 2014; Burger et al., 2014), drug

discovery and manufacturing (Farid, 2007), logistical vehicle routing

problems (Geiger & Wenger, 2007), and radiotherapy treatment plan-

ning (Monz et al., 2008). For a thorough review of navigation in multi-

objective optimisation, see Allmendinger et al., 2017, and for a thor-

ough review of the desirable properties of navigation methods – espe-

cially for computationally expensive problems – see Hartikainen

et al., 2019.

Many real-life problems are formulated using continuous vari-

ables for configuring a solution as well as binary variables to model

on/off-type selections the DM has to make. In treatment planning, for

example, a particular therapy variant (photon radiation vs. proton radi-

ation) could be modeled this way. In chemical mixture problems, the

DM might have to select one or several type of binders to include or

exclude from the mix, to cite another example. Fixing a choice for all

involved binary variables, the remaining continuous variables induce

one Pareto front (defined in Section 2) for that particular choice. Con-

sequently, the combinatorial set of all possible selections result in sev-

eral Pareto fronts.

Within this work, we describe an extension to Pareto navigation

as outlined by Monz, 2006 to allow for the navigation across a finite,

not too large (≤ 50) set of convex Pareto fronts. With the exception

of Craft & Monz, 2010 and Hartikainen et al., 2019, navigation

approaches in literature have traditionally focused on navigation of a

single Pareto front. The approach in Craft & Monz, 2010 is similar to

ours, yet we propose in this work a more streamlined approach to

handle situations where navigation takes the DM across multiple

Pareto fronts. Moreover, we introduce a new way to compare solu-

tions across different fronts. The work of Hartikainen et al., 2019

focused on the navigation of non-convex Pareto fronts and intro-

duced the ability to navigate disconnected fronts by essentially

extrapolating Pareto fronts using “e-cones”. While this extrapolation

approach does not likely lead the DM to navigate to infeasible solu-

tions during the exploration of the Pareto front, it is not strictly for-

bidden and a final projection step, post navigation, is included in the

work of Hartikainen et al., 2019 to ensure that a final solution pres-

ented to the DM is feasible.

As in Monz, 2006 and Hartikainen et al., 2019, we solve reference

point problems to determine solutions on the approximations of the

Pareto fronts. Where our method differs crucially from Hartikainen

et al., 2019 is that we allow precise control over one of the chosen

objectives (similar to Monz, 2006): instead of general aspiration levels

for all objectives which are not guaranteed to be reached in

Hartikainen et al., 2019, we allow the DM to choose one objective,

enforce this aspiration level exactly [the equality constraint in (11)],

and produce the best approximation to the aspiration levels in the

remaining dimensions. For fronts where the equality cannot be

achieved, we propose a second method to determine a solution. This

way we are able to directly compare solutions from different Pareto

fronts, allowing the DM to judge the merit of the fronts for exactly

the aspiration levels they asked for. Figure 1 highlights this crucial dif-

ference for a simple example.

Our method lets the user ad hoc include or exclude different

Pareto fronts in the navigation – this is of particular interest in cases

F IGURE 1 Comparison of navigation solutions between the
approach introduced in [?] and here. Given three fronts Z1,Z2 and Z3 and
a reference point R, the max-norm approximations to R represent the
solutions in (1). In the work presented here, the decision maker also
specifies one dimension (in this case f1) to be achieved exactly. Our
solutions z*,1 and z*,2 in 2 can be directly compared in the remaining
dimensions because they share the same f1 value while comparing the

solutions in 1 is only based on their distance to R. z*,3 in 2 is the point
on Z3 that comes closest to the required f1 value (see (12) below) and
is, therefore, also comparable to the other front solutions
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where the Pareto fronts have a real-world quality relevant to decision

making. It also gives the DM more control on the navigation process

in cases where one or more fronts are partially or fully dominated by

another: the distance from the global solution to each feasible solu-

tion is communicated to the DM and can be considered in the

decision-making process. While the global solution is optimal based

on the dimensions of the Pareto front, in cases where the different

fronts result from a change in a decision relevant parameter, nearby

feasible solutions could still be of interest; this is especially true in

cases where a DM may have a slight preference for a specific Pareto

front but not want to restrict the navigation to only that front. Fur-

thermore, in cases where a DM requests a desired value for one

objective and no feasible solution exists on any patch, this is commu-

nicated directly to the DM. This ensures no false promises are made

to the DM during the navigation process.

We define this approach here as patch navigation. We outline the

preliminaries (Section 2) before discussing patch navigation in detail

(Section 3). We present numerical examples of patch navigation

(Section 4) along with a real world application motivated by radiother-

apy planning (Section 4.2).

2 | PRELIMINARIES

Definition 2.1. (Multicriteria optimisation problem). We consider a

multi-criteria optimisation problem

min
x ∈ X

F xð Þ ð1Þ

where x is the vector of decision variables, X is the feasible set, and F

is a vector-valued function composed of real-valued objec-

tives f1, ::, fn.

Definition 2.2. (Pareto efficiency). A feasible solution

x∈X to the multi-criteria optimisation problem 2.1 is

called Pareto efficient, if there is no x̂∈X with fi x̂ð Þ≤ fi xð Þ
for all i∈ 1, ::,nf g and fj x̂ð Þ< fj xð Þ for some j∈ 1, ::,nf g.
We denote by X* the set of Pareto efficient solutions.

Definition 2.3. (Pareto front). The set F X*� �
we call the

Pareto front, and its elements we call non-dominated.

For a continuous MCO problem, the set X* is generally infinite

and cannot be calculated entirely. For our a posteriori approach to be

applicable, a finite set of representative solutions XR ⊆X must be cal-

culated first. A number of algorithms have been devised for this task,

either employing specific scalarisation methods or evolutionary

approaches, see Ruzika & Wiecek, 2005 for an overview.

If additionally the MCO problem is convex, the lower boundary of

the convex hull of the representation points Z¼ F XR� �
can serve as an

approximation of the Pareto front (see Figure 2). Assuming the accu-

racy of the approximation is ensured by an appropriate algorithm such

as sandwiching (Bokrantz & Forsgren, 2012; Ehrgott et al., 2011;

Löhne et al., 2014; Rennen et al., 2010; Serna, 2008), those additional,

linearly interpolated objective space points can be included in the

point set presented to the DM. In anticipation of the following, we call

this the navigation set.

The augmentation of the navigation set for a convex continuous

MCO problem discussed in the last paragraph is justified in the follow-

ing sense. By way of the unique mixing coefficients λj associated with

a chosen interpolated objective space point F* ¼PλjF xj
� �

, a solution

x* ¼Pλixj is defined by the corresponding mixing of the representa-

tive solutions XR ¼ x1, ::,xm
� �

. Convexity ensures that F x*ð Þ≤ F*,
meaning that the quality of the implicitly chosen solution x* meets or

even exceeds those of the DM's explicitly chosen point F*.

This paper presents algorithms that allow the navigation of a pat-

ched Pareto front. For the term navigation we adopt the definition

from Allmendinger et al., 2017. Definition 2.5 introduces a patched

Pareto front as a potentially non-convex front that is composed of a

finite number of convex parts (see Figure 3).

Definition 2.4. (Navigation by Allmendinger et al., 2017).

Navigation is the interactive procedure of traversing

through a set of points (the navigation set) in the

objective space guided by a DM. The ultimate goal of

F IGURE 2 For a convex continuous MCO problem, the lower
bound of the convex hull of the representation points Z (dashed line)
is an attainable approximation of the Pareto front

F IGURE 3 A patched Pareto front. The actual front (orange) is
non-convex, but composed of convex parts originating from three
individual convex fronts (green, red, blue)
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this procedure is to identify the single most preferred

Pareto optimal solution.

Definition 2.5. (Patched Pareto front). We call a Pareto

front patched if it is the union of the non-dominated

parts of finitely many individual convex Pareto fronts,

which we call patches.

3 | PATCH NAVIGATION

3.1 | Features

Patch navigation is an algorithmic concept that extends the concept

introduced by Monz, 2006 for navigating a single convex Pareto front

to navigating a patched Pareto front (Definition 2.5). It does so by

augmenting the underlying calculation routines, making them applica-

ble for a patched Pareto front. Moreover, patch navigation provides

additional routines that are specific for the handling of patches.

Patch navigation provides all functionality of the navigation by

Monz, 2006. Namely, the DM can change the solution in small incre-

ments while observing the related trade-offs (selection), and they can

set bounds to individual objectives (restriction) while monitoring the

influence of these bounds on the obtainable ranges in other objectives.

Beyond that, in patch navigation the DM can activate and deacti-

vate individual patches. Activating or deactivating a patch may also

change the obtainable ranges, or prompt a change of the current solu-

tion. Also, the DM can observe the distance of his chosen solution to

the closest solutions on the other patches. This shows if a patch is

indispensable for meeting a specific preference, or if a similar solution

can also be found on a different patch.

3.2 | Foundations

In the following, we outline the mathematical foundations of the

patch navigation routines, starting with some definitions.

3.2.1 | Convex hull approximation, restrictions and
implicit bounds

For a patch Pk and representation points z1,…,zm ∈ Pk , we define the

convex hull approximation of Pk as

Zk≔ z¼
Xm
j¼1

λjz
j j

Xm
j¼1

λj ¼1

( )
: ð2Þ

The restrictions are lower and upper bounds in the objective space

that we denote by rl and ru, respectively. For each patch, the restric-

tions define a feasible part of the convex hull approximation Zk :

Zfeas
k ≔ z∈ Zk j rl ≤ z≤ ru

� �
: ð3Þ

For each objective space dimension i and patch k, we define the

corresponding obtainable range as the interval spanned by the lower

implicit bound bl,ki and the upper implicit bound bu,ki as given by

bl,ki ≔ min
z ∈ Zfeas

k

zi ð4Þ

and

bu,ki ≔ max
z ∈ Zfeas

k

zi: ð5Þ

Note that the obtainable range depends on the imposed restric-

tions rl and ru. We denote the vectors of lower and upper implicit

bounds over all objective space dimensions i¼1, ::,n by bl,k and bu,k ,

respectively, and collectively refer to them as the implicit bounds. The

above Definitions (4) and (5) constitute linear programmes, allowing

efficient recomputation of the obtainable ranges whenever the

restrictions change.

3.2.2 | Merit function and preference relation

As a basis for determining the patch solutions and the global solution

(which we will define later) as results of a navigation interaction, we

utilise the merit function ϕ. This function is parametrised by a point

r ∈Rn which we call the reference point, and an objective space dimen-

sion index i∈ 1, ::,nf g. These parameters reflect the current state of

the navigation, as detailed in the algorithms in Section 3.3. The merit

function ϕ is defined as follows:

ϕ r, i½ � :Rn ! True, Falsef g�R ð6Þ

ϕ r, i½ � zð Þ≔ σ¼ σ ri½ � zð Þ,d¼ d r, i,σ½ � zð Þ½ � ð7Þ

where

σ ri½ � zð Þ≔ True if zi ≤ ri
False if zi > ri

�
ð8Þ

and

d r, i,σ½ � zð Þ≔
max
j≠ i

zj� rj
� �

if σ

zi� ri if ¬σ:

 
ð9Þ

Based on the components σ and d of the merit function ϕ defined

above, we introduce the following preference relation between points

v,w∈Rn (where v≻w means that v is preferred to w):

v≻w :, σ vð Þ^ ¬σ wð Þð Þ_ d vð Þ< d wð Þð Þ: ð10Þ
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The preference relation expresses that the DM always prefers a

solution that fulfils the request zi ≤ ri over one that does not (this

request is, for example, directly communicated via the selection mech-

anism). If both solutions fulfil the request, the one with the smallest

maximal deviation from the reference point in the n�1 other dimen-

sions is preferred (in selection, this corresponds to the maximal trade-

off.) If both solutions do not fulfil the request, the one that comes

closer is preferred.

Given the above preference relation, we define the patch solution

z*,k for patch k as the most preferable feasible point of the convex

hull approximation Zk , and we define the global solution z* to

be the most preferable point among the patch solutions

z*,k j 1 ≤ k ≤N, Zfeas
k ≠ ;

n o
: In practice, the patch solutions can be cal-

culated by solving linear programmes, as will be detailed next.

3.2.3 | Linear programmes to compute the patch
solutions

The task to determine the patch solutions as defined above can be

accomplished by solving two linear programmes (11) and (12).

The first programme (11) returns a feasible solution if and only if

there is a z∈ Zfeas
k for which σ ri½ � holds. Moreover, if (11) is feasible,

the returned optimal solution fulfils σ ri½ � and minimises d r, i,True½ �, that
is, it is indeed the patch solution z*,k .

Whenever (11) does not have a feasible solution, implying that

there is no z∈ Zfeas
k for which σ ri½ � holds, a second linear programme

(12) is solved. If (12) has a non-empty feasible set, it returns a solution

that minimises d r, i,False½ �, thus constituting the patch solution under

these circumstances. If on the other hand (12) is also infeasible, then

Zfeas
k is empty, and there is no patch solution defined for this patch.

Within (11), we denote by e¬i the n-dimensional vector with

entries e¬ij ¼1 for j≠ i and e¬ii ¼0.

min
α,z,s

α

α,z,sð Þ∈R�Zk�Rn
þ

rþαe¬i ¼ zþ s

rl ≤ z≤ ru

ð11Þ

min
z

zi� ri

z∈ Zk

rl ≤ z≤ ru
ð12Þ

Note that in the second linear programme, the minimisation

objective could equivalently be replaced by min
z

zi. A comparison

with the Definition (4) of the lower implicit bound shows that for a

solution z*,k of the second linear programme, we have z*,ki ¼ bl,ki .

It is easy to augment (11) by further linear constraints in the objec-

tive space that might be relevant for the problem at hand. Constraints

in the decision space X can also be included by adding the solutions xj

to (11) as well and then imposing linear constraints on their convex

combinations. Imposing upper or lower limits on input variables in X,

for example, is an important feature in some applications.

3.3 | Detailed algorithms

In this section, we provide the pseudo-code algorithms for the

actions the DM can perform in patch navigation. Namely, those

actions are:

• Selection: The DM communicates a desired value for one of the

objectives. As a result, they obtain a new global solution.

• Restriction: The DM changes the acceptable range for one of

the objectives. As a result, the implicit bounds in the other

objectives change as well.

• Patch (de)activation: The DM includes or excludes one of the

patches from contributing. This potentially changes the global

solution and the implicit bounds, and affects further selection

and restriction.

For all algorithms, we assume that the patch navigation is in a valid

state, as given by a consistent assignment of the following set of

variables:

• the current global solution z*

• the current index i*

• the current lower and upper restrictions rl and ru

• the current patch solution z*,k for all patches with Zfeas
k ≠ ;

• the current patch specific implicit lower and upper bounds bl,k

and bu,k for all patches Pk

• whether the patch is currently active ak for all patches Pk

• the pairwise distances between patch solutions dk,k
0
according

to some distance measure d

3.4 | UI

Concluding Section 3, we now give a user-centred overview of our

User interface (UI) components, which implement the concepts

described previously. A screenshot of our UI illustrating the compo-

nents is given in Figure 4.

3.4.1 | Selection and restriction

As in current tools for navigation on a single Pareto front, a slider

panel is employed to handle selection (Algorithm 1) and restriction

(Algorithm 2). The panel comprises one slider for each objective fi.

Each slider has three moveable elements: a selector (handle), a lower

and an upper restrictor (green triangular shapes).

To select a solution the DM drags the selector corresponding to

an objective fi to the desired position, which yields the desired value t

in Algorithm 1. We employ the convention that in order to improve

the value of a specific objective function in the global solution, the

corresponding selector needs to be moved to the left.

Posing a restriction on an objective fi is done by pulling the

corresponding lower or upper restrictor to the desired position, which

yields the desired value t for Algorithm 2. By restricting an objective

fi , the DM excludes some parts of the Pareto front. Apart from the

explicitly excluded values for fi, the obtainable ranges for the other
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objective functions may also change (as dictated by the implicit bou-

nds). Unobtainable ranges on the sliders are grayed out.

3.4.2 | Objective space viewer

In addition to the slider panel, we offer a configurable visualisation of

the representation points in the objective space. We depict both

restrictions and implicit bounds in that view as light (implicit bounds)

and dark (restrictions) grayed out areas. For objective spaces with

more than three dimensions, the DM can configure the objective

space viewer by choosing three objectives as axes for the plot. While

limited to a maximum of three-dimensions at a time, the DM may also

F IGURE 4 Patch navigation UI for example bi-objective problem with five patches. The global solution is highlighted as the navigated point.
The UI includes control elements for selection and restriction (sliders, top left) and patch (de)activation (checkboxes, bottom left). Non-control
elements include the objective space viewer (top right), along with the distance to other patches (bottom right)

Algorithm 1

Selection

Input: objective index i and desired value t

Start

Calculate reference point r by rj ¼ z*j j≠ ið Þ, ri ¼ t.

for k∈f1, ::,N j Zfeas
k ≠ ;} do

Calculate patch solution z*,k based on ϕ r, i½ �.
end for

Set z* to the most preferable patch solution among the

active patches.

Set i* to i.

End

Output: updated global solution z* and distances dk,k
0
.

Algorithm 2

Restriction

Input: label type∈ lower,upperf g, objective index i and

value t

Start

Update restrictions by rli ¼ t or rui ¼ t depending on type.

for k∈ 1, ::,Nf g do

Calculate the implicit bounds bl,k and bu,k .

end for

Calculate the global implicit bounds: bl ¼ inf
kwithak

bl, k,

bu ¼ sup
kwithak

bu,k .

for k∈f1, ::,N j Zfeas
k ≠ ;} do

Calculate patch solution z*,k based on ϕ z*, i*
� �

.

end for

Set z* to the most preferable patch solution among the

active patches.

End

Output: updated global implicit bounds bl and bu, potentially

updated global solution z* and distances dk,k
0
.
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reconfigure the axes of the viewer during the navigation process to

better understand the behaviour of the different patches. In practice,

the objective space viewer can be a significant UI element in under-

standing lower-dimensional problems, but may lose value as the num-

ber of dimensions increases.

During the navigation process, the patch containing the

current global solution may change. In those situations, it is possible

that a jump in the selector positions occurs. By marking both the global

solution and the individual patch solutions in the objective space

viewer, the user can use the objective viewer to gain a better under-

standing of when and why patch changes or jumps in the selector posi-

tions do happen, even in high-dimensional problems.

3.4.3 | Patch (de)activation

Another new feature specific to patch navigation is the (de)activation

of a patch (Algorithm 3). In the patch activation component, the DM

can exclude individual patches or groups of them from the navigation,

or reactivate previously excluded patches. This mechanism is particu-

larly useful in applications where the patches have a real world mean-

ing, for example, correspond to a certain machine, technique or

modality. It enables the user to answer questions of the kind “What

would I have to pay (measured in terms of objective functions) if I limit

myself to using either machine A or B, but do not consider machines C

and D?”. Activating or deactivating a patch can cause a change in the

obtainable ranges as well as the global solution.

3.4.4 | Distance to other patches

Individual patch solutions introduce the concept of distances between

patches in a natural way. Given a metric d, the distance from a patch

Pk to some other patch Pk0 can be defined as dk,k
0
≔d z*,k ,z*,k

0	 

.

According to this definition, our patch distance component depicts

the distances from the patch containing the current global solution z*

to all other patches.

Algorithm 3

Activation and deactivation of patches

Input: bool a and patch index k

Start

Set ak to a.

Set z* to the most preferable patch solution among the

active patches.

Calculate the global implicit bounds: bl ¼ inf bl,k ,

bu ¼ sup
kwithak

bu,k .

for k∈f1, ::,N j Zfeas
k ≠ ;} do

Calculate patch solution z*,k based on ϕ z*, i*
� �

.

end for

End

Output: Potentially updated global implicit bounds bl and

bu, global solution z* and distances dk,k
0
.

F IGURE 5 Navigation session for tri-objective example problem
(13). Here, the patch solutions z*,k are shown in the UI (colored
crosses), along with the global solution z*. Two user interactions and
their impact are demonstrated. The decision maker (DM) begins with
the initial session (5a) and improves f3 resulting in a navigation from
patch 1 to patch 2 (5b). The DM then deactivates Patch 2, which
contains their current global solution, causing the it to jump from
Patch 2 to the nearest solution on any active patch (5c), which is in
this case on Patch 3
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When a patch solution z*,k
0
exists that is close to the current

global solution z* ¼ z*,k , this distance information can aid the user in

assessing the benefit of keeping Pk activated. Again, this concept

makes particular sense when the patches have inherent meaning,

such as them corresponding to a certain machine, technique or

modality.

4 | EXAMPLES

In this section, we demonstrate the use of patch navigation for a basic

numerical example, along with more complex examples from the field

of radiotherapy cancer treatment planning.

4.1 | Tri-objective mixed integer numerical
example

We begin with a mixed integer numerical example problem from De

Santis et al., 2019:

min
x

f1 ¼ x1þx4

f2 ¼ x2�x4,

f3 ¼ x3þx24,

s:t:

P3
i¼1

x2i ≤1

xi ∈ �2,2½ � for all i¼1, � � �,4
x4 ∈Z

ð13Þ

For this problem, each of the five feasible assignments of x4 cor-

responds to a patch. For each patch, a set of representation points is

determined via a sandwiching algorithm (Serna, 2008). In Figure 5, a

navigation session is shown for this problem. Each objective function

fi with i∈ 1,2,3f g has an associated slider for selection and restriction.

As the DM navigates, the global solution is updated based upon the

selection algorithm (Algorithm 1), and the patch distances are updated

as well. In the objective space viewer, the patch solutions z*,k are

depicted at each step in addition to the current global solution z*. In

Figure 5c, the effect of deactivating the patch containing the current

global solution is shown. It results in a jump of z* according to

Algorithm 3.

F IGURE 6 Navigation session for the
radiotherapy prostate example. The
process of improving the body objective is
demonstrated. (a) Shows a navigation
session with the photon patch activated
and a set of selection and restrictions
applied to the session. Following this, the
decision maker (DM) improves the body
objective (b) resulting in a navigation to a

dominated region of the photon patch. The
DM then activates the carbon patch (c),
resulting in a jump of the global solution to
the best available solution which is a non-
dominated point on the carbon patch
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4.2 | Multiple modality example for radiotherapy

As discussed in Section 1, radiotherapy treatment planning is naturally

well suited to be handled as a multi-criteria optimisation problem.

Navigation on a single Pareto front has been successfully applied to

this field (Hong et al., 2008; Teichert et al., 2017), enabling even less

experienced planners to create high-quality treatment plans efficiently

(Kierkels et al., 2015). Here, we motivate the use of patch navigation

within radiotherapy treatment planning through the exploration of

multiple treatment modalities. An example planning problem for a

prostate tumor was constructed within the open-source treatment

planning system matRad (Wieser et al., 2017). A patch representation

was generated for three treatment modalities: carbon ion, proton, and

photon. In the case of both proton and carbon plans, a single external

beam (angle 180 ∘ ) was applied. Treatment plans for photons were

produced with five equally distributed beams (angles 0 ∘ , 72 ∘ , 144 ∘ ,

216 ∘ , 288 ∘ ). In all cases, a couch angle of 0 ∘ was applied. A com-

mon set of five objective functions was defined for all treatment

modalities. Two objectives – PTV68 and PTV56 – correspond to two

volume segments of the tumor which should receive a dose of 68 and

56Gy, respectively, where the squared deviation from the expected

dose is minimised. The remaining three objectives correspond to

organs at risk (OARs) – rectum, bladder and body – where the squared

overdose to each organ should be minimised below a reference dose

specific to each organ at risk. Within this work, rectum and bladder

dose above 30Gy, and body dose above 0 Gy, were considered an

overdose. When two volumes overlapped, the overlapping voxels

were assigned to volumes based upon an overlap priority. Overlap pri-

orities – in decreasing order of priority – were set as follows:

(1) PTV68, (2) PTV56, (3) rectum and bladder and (4) body.

Figure 6 demonstrates the usefulness of patch navigation for this

radiotherapy example. The patch approximations generated for each

treatment modality are available for navigation, allowing the DM to

explore their options across all modalities in parallel. The example nav-

igation session shows the process of improving/reducing the dose to

the body OAR. In Figure 6a, navigation is restricted to the photon

patch, and the current global solution is on the Pareto front. Although

the carbon and proton patches are deactivated, the patch solutions

z*,k are still computed for all patches, but these solutions do not domi-

nate the position on the photon patch. In Figure 6b, the DM improves

the body objective (leftward slider motion), updating the solutions

according to Algorithm 1. The solution on the photon patch is now

dominated by the parallel solution on the carbon patch. In Figure 6c,

the DM activates the carbon patch. As a result, the global solution

jumps to the solution on the carbon patch, and the global solution is

again Pareto optimal.

When one compares the objective values, indicated by the slider

positions, in Figure 6a,c, the objective for the body has significantly

improved, along with the other OARs. A small improvement is also

seen in the target objective PTV56. However, the target objective

PTV68 has significantly worsened.

A dose-volume histogram (DVH) is a standard tool in radiotherapy

to visualise the radiation dose to a structure of interest, showing the

percentage of the volume of a structure receiving a dose greater than

F IGURE 7 Dose-volume histograms are shown for target and OAR structures for the navigation session outlined in Figure 6a (solid) and
Figure 6c (dashed). The solid and dashed lines correspond to a photon and carbon ion treatment plan respectively. During the navigation session,
the DM improves the body objective and the resulting DVH for the body shows a significant dose reduction for the carbon ion plan. DM, decision
maker; DVH, dose-volume histogram; OAR, organs at risk
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or equal to a specific dose. In Figure 7, the resulting DVHs are shown

for the initial (Figure 6a) and final (Figure 6c) solutions of the example

navigation session. Recalling that the DM's goal was to reduce the

dose to the body OAR, one can see that the DVH for the body shows

a significant improvement. As would be expected based on the objec-

tives, similar improvements can be seen for the other OARs. In the

case of the target objectives, PTV68 and PTV56, the objectives are a

measure of the dose deviation from 68 and 56 Gy, respectively.

PTV56 shows an improvement in the DVH, with a more uniform dose

to the structure around 56 Gy. However, the DVH for the PTV68

shows a significant reduction in the dose and thus a significant devia-

tion of the dose from 68 Gy.

5 | CONCLUSIONS

In this paper, we introduce patch navigation as a new method to facili-

tate navigation on a patched Pareto front. The method is suitable for

multi-criteria problems involving binary variables, which model on-/

off-type selections. These problems naturally occur in practical appli-

cations, where different techniques, modalities, machines or similar

can be chosen out of a finite set.

Patch navigation comprises three algorithms – selection, restric-

tion and activation of patches – which we describe in detail. We apply

the method to one numerical example and one real-world application

from radiotherapy planning.

Depending on the method used to solve the linear programmes,

the algorithms presented in this paper can be implemented such that

they are polynomial in both the dimension and the number of patches.

For all algorithms, two linear programmes per patch are solved at most

to update the patch solutions. For the restriction algorithm, another

two linear programmes are solved per patch to update the implicit

bounds. Finding the global solution among the patch solutions is linear

in the dimension and quadratic in the number of patches.

As a prerequisite for patch navigation, the patches must be

approximated by a finite set of points to a reasonable accuracy. In

general, obtaining such an approximation gets exponentially costlier

with increased dimension. For convex fronts, dimensions up to 15 are

feasible (Bokrantz & Forsgren, 2012). For a realistic application sce-

nario with dimension ≤15 and a number of patches ≤50, patch navi-

gation can be expected to be close to real-time, thus facilitating its

use for interactive navigation.

In this paper, we require that the patches are convex – otherwise,

the patch solutions and implicit bounds cannot be calculated by solv-

ing the linear programmes as described. However, presuming an

appropriate method existed to calculate the patch solutions and

implicit bounds for (certain types of) non-convex patches also, the

algorithms for selection, restriction and patch activation given in

pseudo-code would be immediately applicable.

One practical concern of patch navigation is that, unlike in the

case of a single convex front, jumps of one or more selectors during

navigation can occur. If such a jump occurs unexpectedly, the DM

may feel out of control, or may be unable to judge the involved

trade-off. The problem is ameliorated to some extend if the jump is

foreseeable in the objective space viewer. However, this

workaround does not translate well to higher dimensions. It would

be worthwhile to investigate additional mechanisms that could be

applied in such an instance, for example, a preview of possible

selector positions.

Another concern is that the patches are only approximated up to

a certain accuracy, and that the remaining inaccuracy may in some

instances produce navigation behaviour that is hard to comprehend

for the user. One idea to address this in the UI would be to optically

“blur” both the distance display and the actual navigation point

choice. In this way, when multiple patches are equal up to differences

that can be attributed to approximation inaccuracy only, the user can

clearly see this in the UI.
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