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Abstract
In the present contribution, the innovative nonlinear state marginal price vector model
introduced in Toll and Kintzel (CEJOR 27(4):1079–1105, 2019) (plus Errata herein)
is enriched to include budgeting problems under agency conflicts. Under asymmetric
information, a company owner as principal can only rely on information transmitted
to her from her managers as agents. In the related modeling, it is assumed that slack
and capital rationing are optimal. The governing budgeting relations are integrated
into a nonlinear framework furnished by a multi-period newsvendor approach and are
solved numerically by means of a two-step valuation procedure based on two succes-
sive nonlinear convex optimizations. The capital market is assumed to be imperfect.
As case study, the M&A-valuation case of a merger of two IT-service companies
is considered subjected to optimal combined dimensioning of capacities and bud-
gets under stochastic demand. On balance, by addressing agency conflicts within the
well-established nonlinear framework, the practical application field of the valuation
procedure is widened.

Keywords Investment analysis · Company/business valuation · Nonlinear convex
programming · Agency conflicts · Asymmetric information · Multi-period
newsvendor/newsboy model · IT-service companies

1 Introduction

In the framework of M&A’s, acquisitions or sales of whole companies or distinct
business units are in the center of considerations. For this purpose, to value companies
or business units, a reliable and valid valuation procedure is required (Matschke et al.
2010; Brösel et al. 2012; Matschke and Brösel 2013). Broadly speaking, in valuation
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1280 O. Kintzel, C. Toll

theory, it is distinguished between market-oriented and investment-oriented valuation
procedures. In market-oriented approaches, the principle of objectivity is of great
importance relying on common market prices or derived values based on market
prices of other entities traded in a market, which are valid and similar for all market
participants. In contrast, the principle of subjectivity lies at the core of investment-
oriented approaches. Market-oriented models are based on the assumption of freedom
of arbitrage in an ideal market equilibrium and the related rule of value additivity.
Consequently, a more or less subjective value can only be reached by adding a number
of supplementary premiums, which gives a huge leeway for discretion. In contrast,
subjective decision fields and a number of relevant financial and real-economical
interrelationships can be taken into account in investment-oriented models, which
result in valueswhichmay bemore relevant from the perspective of a valuation subject.
Here, the concept of a marginal price is crucial, which can be determined in a state of
indifference between feasible contiguous comparative valuation states.

In the current publication,wemake use of the valuation procedures ofHering (2000)
and Toll (2010). Here, the marginal price is computed by means of two optimization
approaches, the so-called base and valuation approaches, which furnish two viable
comparative valuation states. In a base approach as reference state, a situation is
considered, before a transaction has actually been realized. In a subsequent valuation
approach, the valuation object, which is in the focus of interest, is integrated into the
investment and financing program in return for a certain compensation to be paid,
which may be given as upfront payment paid at the beginning of the planning period,
meaning at the moment of transfer of ownership of the valuation object, or as a certain
structured price stream. Unter the constraint that the target values are comparable,
the marginal price is the critical price for a valuation object in question which gives
the same degree of satisfaction in terms of target values. Thus, by means of two
optimization approaches,without andwith inclusion of a valuation object, themarginal
price can be determined as the critical price at which a certain valuation subject as
valuation addressee becomes indifferent.

The original model of Hering (2000) was invented on the basis of the ideas ofWein-
gartner (1963), Hax (1964), Jaensch (1966), Laux and Franke (1969) and Matschke
(1975). It was formulated as linear programming problem according to Hax andWein-
gartner based on two successive linear optimizations, the above-mentioned base and
valuation approaches. In the primal formulations of both optimization approaches, the
primal variables are determined. In the related dual formulations, the dual variables
are determined like endogenous marginal interest rates or other shadow prices associ-
ated with the primal programming problem. Since both optimization approaches are
solved more or less independently from each other except for some coupling con-
straints (to reach a common target value, for instance), a basis change can occur and,
thus, a restructuring among the investment and financing objects, which may change
the marginal interest rates. What can be said definitely is that the marginal price must
lie within a certain interval bounded by upper and lower bounds reflecting the present
values of earnings of a valuation object discounted by means of marginal discount
factors of the base and valuation program, respectively, particularly in the valuation
case of a purchase and vice versa in the valuation case of a sale. According to Her-
ing (2000), this valuation procedure was called state marginal price model. In Toll
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(2010), a price vector was introduced to yield a marginal price stream as compen-
sation providing the advantage of higher flexibility. In Toll and Kintzel (2019), the
latter model was reformulated and recast in a nonlinear setting. The main motivation
was the consideration of nonlinear synergy effects as suggested by Pfaff et al. (2002).
The main result was a supplementary nonlinear arbitrage value term, which cannot
be described by a mere basis change among investment and financing objects, but
which is the result of arbitrage related to nonlinear convex programming. Finally, the
so-called nonlinear state marginal price vector modelwas applied to the practical case
study of a merger of two IT-service companies, whose capacities were optimized by
employing a newsvendor model.

The approaches of Hering (2000), Toll (2010) as well as Toll and Kintzel (2019)
allow, in contrast to usual market-oriented approaches, the consideration of subjec-
tive decision and action fields, meaning the consideration of a number of diverse
and relevant certain or uncertain, risky or unrisky investment and financing objects
as embedding action space of financial opportunities or liabilities at the disposal of
a valuation subject as valuation addressee, who, in addition, may have individual
targets based on individual consumption spending preferences. The complete model
is eventually solved by means of simultaneous total optimization, which is reliant
on well-posed and proper formulations of base and valuation approaches. Stochastic
effects can be taken into account by applying a simulative risk analysis in a staggered
approach. Concluding, it is possible to take a wide range of diverse model assumptions
into account, which are not prone to the same extent of ambiguities in discretion as
it is usually the case in market-oriented approaches, in which, moreover, decisions
within the investment and financing areas and their related optimal investment and
financing programs are normally treated as independent, which is too restrictive since
in imperfect capital markets the Fisher separation theorem doesn’t hold (Fisher 1930).

The purpose of the present paper is to extend themodel presented in Toll andKintzel
(2019) by agency conflicts based on the publications Mayer et al. (2005), Inwinkl and
Schneider (2008) and Inwinkl et al. (2009), which introduces a further relevant source
of nonlinearity into the model. Agency conflicts can occur if a company owner as
principal cannot verify the truth behind information transmitted to her from her man-
agers as agents. Because of asymmetric information, managers have an information
advantage. Clearly, they know the true costs for an investment project, but are inclined
to overstate costs toward head office to build up slack for themselves, which leads
to increased budgets for cost allocation to be able to receive certain privileges like
expensive or fancy equipment, noble company cars, certain benefits, etc. To face the
problem of asymmetric information on the side of the owner, those additional costs due
to agency conflicts must be considered within the optimization procedure. Thereby, it
is assumed that managers strive to maximize slack for themselves and that a company
owner likes tomaximize company profits on the basis of hurdle rates signaled to her by
her managers under consideration of her favourite consumption spending preferences
like wealth or income maximization, for instance (Fig. 1).

The modeling of agency conflicts is based on the original works of Antle and
Eppen (1985) and Falee et al. (1996). In Antle and Eppen (1985), capital rationing
problems and organizational slack in capital budgeting were discussed. It was found
out that the cut-off or hurdle rate of a project reported by managers under presence
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Fig. 1 Historic timeline of the agency relationship between manager and company owner

of asymmetric information is of higher relevance for decision-making than the mere
market rate of interest. First-best and second-best solutions were analyzed and the
truth-telling condition as constraint was established. In Falee et al. (1996), agency
conflicts were solved analytically for a single investment project in the framework of
a single-period and a two-periodmodel and related optimality conditionswere derived.
It was found out that the first-best solution overestimates utility for a company owner
under presence of asymmetric information. In both works, it was stated that slack
as well as capital rationing are optimal. This proposition is supported by empirical
studies (Cyert and March 1963; Schiff and Lewin 1968; Poterba and Summers 1995).
However, the integration into a multi-period framework or a combined consideration
among other investment projects was not realized, probably owing to the complexity
of the resulting equation system.

In Inwinkl and Schneider (2008) and Inwinkl et al. (2009), the mentioned con-
ceptions were revisited, reformulated and integrated into the linear state marginal
price model of Hering (2000), but only visionary and without concrete application. In
Inwinkl and Schneider (2008), a one-sided agency conflict was addressed, meaning
a single manager is responsible for an investment project and reports to a company
owner, a problemwhich is considered also in the present contribution. In Inwinkl et al.
(2009), amore complex double-sided agency conflict was in the focus of interest based
on the preliminary insights in Mayer et al. (2005), in which the theoretical ground-
work was laid. In a double-sided agency conflict, an investment project is controlled
by two managers who like to maximize slack independently from each other. In both
publications, the equations were solved analytically and were integrated en bloc into
the linear state marginal price model of Hering (2000). However, a clear numerical
strategy for the integration of more general problems under asymmetric information
was still lacking. This shortcoming shall be remedied in the present publication, in
which agency conflicts are considered in a multi-period general format and within a
sound nonlinear framework.

In contrast to the former works, in the present paper, the equations are not integrated
in analytical form into the nonlinear framework, but are solved numerically. For this
purpose, the case study of a merger of two IT-service companies considered in Toll
and Kintzel (2019) is once again taken as prototype example. As budgeting problem,
it is assumed that the budgets B(c) resp. B(c∗) relate to the overstated cost c∗ reported
by a manager. Thereby, we assume that the variable cost term c Q within the profit
term P(Q) of the newsvendor model is subjected to agency conflicts, i.e. P(Q, c∗).
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A multi-period approach is addressed and a numerical solution of the simultaneous
optimization problem of the complete equation system is accomplished. Practically,
the first-best solution corresponds to the approach already presented in Toll andKintzel
(2019). The second-best solution is addressed in the current publication.

The current work is structured as follows: At first, a simple single-period budgeting
problem is explained in the framework of a single-period optimization approach con-
sidered in isolation whereby the simplifying assumption of a single investment project
with earnings e(c) and cost c is made. Subsequently, this model is integrated consis-
tently into a single-period newsvendor approach according to Toll and Kintzel (2019).
Then, we review the fundamentals of the nonlinear state marginal price vector model
briefly. Afterward, we propose a multi-period simultaneous planning approach in the
framework of formulations of base and valuation approaches whereby we make refer-
ence to the exemplary case of a merger of two IT-service companies according to Toll
and Kintzel (2019). With the parameters chosen therein, the multi-period valuation
model is calibrated and solved numerically. The result of the second-best solution is
eventually compared with the first-best solution already addressed in Toll and Kintzel
(2019) and is discussed briefly. As in the first-best solution, we make in the current
enrichedmodel the simplifying assumption of risk-neutrality as well, i.e. wemaximize
wealth resp. end value by assuming a risk-neutral valuation subject. The extension to
a risk-averse attitude of a valuation subject will be the subject of a forthcoming paper.

2 A simple single-period budgeting problem under agency conflicts

As realistic assumption, the goal of managers in budgeting processes of investment
projects is to maximize personal utility and to optimize slack for themselves. If a
company owner does not know the true costs of a project, she can only plan on the
basis of costs reported by her manager. It is assumed that both the company owner and
the manager know the true earnings e(c), which is assumed to be flat, i.e. e(c) = e.
But only the manager knows the true cost c. However, the manager is inclined to report
an overstated cost c∗. As best guess, the company owner must assume in her planning
that the manager strives to maximize slack in the framework of a given decision field.
Thus, on the side of head office the following optimization problem is to be solved for
a single investment project, compare Inwinkl and Schneider (2008):

max
c∗ P = max

c∗

∫ c

c
[e I (c) − B(c)] f (c) dc (1)

subject to

B(c) − c I (c) ≥ B(c′) − c I (c′) ∀ c, c′ (T T )

B(c) ≥ c I (c) ∀ c (RF)

0 ≤ I (c) ≤ 1 ∀ c. (2)
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Hence, the true cost lies somewhere within the interval [c, c] and the costs are
distributed according to a probability distribution function f (c). The truth-telling
constraint (TT), also known as revelation condition, guarantees that the manager likes
to report truthfully, meaning in agreement with true budget conditions and project
specifications. The resource feasibility constraint (RF), also known as participating
condition, tells us that slack must be positive. Hence, the manager only wants to carry
out a project if it guarantees her a certain slack. In a first step, we simplify the model
by assuming the budget to be straightly linear, i.e. B(c) = c∗ I (c) in dependence on
the cost c∗ reported by the manager. Furthermore, to fulfill the constraints in any case,
we define the project indicator function I (c) as follows:

I (c) :=
{
1 for c ≤ c∗,
0 for c > c∗. (3)

In agreement with the latter assumptions, the optimization problem then simplifies to:

max
c∗ P = max

c∗

∫ c∗

c
[e − c∗] f (c) dc (4)

subject to

c∗ ≥ c ∀ c ∈ [c, c∗] , (RF) (5)

which is self-evident. Hence, practically, we receive a simple unconstrained optimiza-
tion problem except for the conditions c∗ ≥ c and c∗ ≤ c, which can be readily
integrated into an overall optimization model. Thereby, the thruth-telling constraint is
binding. Actually, head office maximizes profits under consideration of the reported
cost c∗.

We can recast the optimization problem also as follows:

max
c∗ P = max

c∗

∫ c∗

c
[e − c] f (c) dc − max

c∗ U (6)

whereby U measures the total utility of the manager, which is defined as:

U =
∫ c∗

c
U (c) f (c) dc =

∫ c∗

c
[c∗ − c] f (c) dc. (7)

Hence, the utility of the manager corresponds exactly to her weighted wealth benefit.
Since utility is positive, the related profit for a company owner is smaller in the second-
best situation. To conlude, both like to achieve maximum utility. The manager likes
to maximize slack and the company owner likes to maximize profits. A simple partial
integration then results in:

U = [c∗ − c] F(c)
∣∣∣c

∗

c
+

∫ c∗

c
F(c) dc. (8)
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Because of F(c) = 0, the boundary term vanishes. Even for the assumption of a more
general B(c), we yield in general:

dU (c)

dc
= lim

c′→c

U (c′) −U (c)

c′ − c
= −1 (9)

ifwe assumeEq. (3) and utility to be defined byU (c) = B(c)−c I (c), seeAppendixA,
which is consistent with the former result in Eq. (8) for B(c) = c∗ I (c). However, the
boundary term may change for arbitrary but convex budgets in terms of c∗ as long as
the resource feasibility constraint is fulfilled like B(c) = 1.2 c∗ I (c), for instance.

In the present case, it remains:

U =
∫ c∗

c

F(c)

f (c)
f (c) dc. (10)

The so-calledMills-quotient F(c)
f (c) is positively increasing such that the resulting opti-

mization problem is convex. If we bring both results together, we yield eventually as
optimization problem to be solved:

max
c∗ P = max

c∗

∫ c∗

c

[
e − c − F(c)

f (c)

]
f (c) dc. (11)

We can interpret the problem in agreement with Mayer et al. (2005) by concluding
that profits becomemaximal if the cumulative probability of acception of the marginal
budget F(c∗) is equal to the supplementary marginal surplus of [e−c∗] f (c∗). For the
case of a simple uniform distribution, the model shall now be analyzed analytically.

For a uniform distribution, we find f (c) = 1
c−c und F(c) = ∫ c

c f (c) dc = c−c
c−c . If

we enforce the optimality condition ∂c∗ P = 0, we obtain (Fig. 2):

e − c∗ − F(c∗)
f (c∗)

= 0 ⇔ e − c∗ − (c∗ − c) = 0 ⇔ c∗ = e + c

2
. (12)

We then get for the maximum utility of the manager for the given c∗:

max U = max
c∗

∫ c∗

c

(c∗ − c)

(c − c)
dc = 1

2

(c∗ − c)2

(c − c)
. (13)

As maximum profit of the company owner, we receive:

max P = max
c∗

∫ c∗

c

[e − c∗]
(c − c)

dc =
∫ c∗

c

(c∗ − c)

(c − c)
dc = (c∗ − c)2

(c − c)
. (14)

For the simple exemplary case of c = 1, c = 0, it follows:

max U = c∗ 2

2
= e2

8
, max P = c∗ 2 = e2

4
. (15)
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1286 O. Kintzel, C. Toll

Fig. 2 Probability density, profit (max P = (e − c∗) F(c∗)) and slack (max U = (c∗ − c) F(c∗)
2 ) for a

uniform distribution (according to the intercept theorems we have F(c∗)−F(c)
c∗−c = F(c)−F(c)

c−c or, eventually,

F(c∗) = c∗−c
c−c )

In the extraordinary case that the determined value c∗ surpasses the upper bound c,
we enforce c∗ = c in all equations and perform the integration. Hence, concluding, in
the simple case of a uniform distribution with c = 1 and c = 0, we obtain:

max
c∗ P =

{
e2
4 for e ≤ 2,
e − 1 for e ≥ 2.

(16)

3 The classical newsvendor model under agency conflicts

In Toll andKintzel (2019), IT-service companies were in the focus of interest consider-
ing the business model of call centers as prototype case. For the related dimensioning
of capacities representing required personnel and technical infrastructure, a newsven-
dor model was used. By means of a newsvendor model, a nonlinear profit functional
is optimized under stochastic demand whereby an optimum trade-off between risks
of overstocking and understocking of capacities and their related earnings is pursued.
Clearly, a maximum amount of capacities is achieved, which should meet demand in
an optimal way. Below this limit, hence, if only fewer clients call than expected, costs
from overstocking arise and, if more clients want to be served, costs from understock-
ing arise since the call center can only operate at its capacity limit. In a corresponding
profit maximum, a trade-off is reached which minimizes the risks of over- and under-
stocking of capacities. In the following, we consider the variable cost term c Q, which
represents energy, standby and maintenance costs, to be subjected to agency conflicts.
Accordingly, only a certain portion of the total earnings term pNV per unit of capacity
is under control of the manager.

The classical newsvendor model is usually applied to optimize the supply and
storage of inventory stock. In Höck (2005, 2008), this approach was suggested for
the dimensioning of capacities of IT-service companies, which was adopted in Toll
and Kintzel (2019) to optimize the capacities of call centers in a corresponding case
study. By means of the classical newsvendor model, an optimum trade-off between
underage costs due to shortages and overage costs due to leftover stock is achieved
(Porteus 1990). Concerning IT-service companies, shortages in capacities may lead
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to loss of goodwill while costs due to overcapacities may lead to unnecessary holding
costs. The optimum is achieved in a related profit maximum. The earnings term is
defined by:

E(Q, c∗) =
Q∫

0

p∗
NV x dψ(x) +

∞∫

Q

p∗
NV Q dψ(x) (17)

whereby the earnings p∗
NV per unit of capacity are defined by:

p∗
NV = pNV − e +

∫ c∗

c
e f (c) dc. (18)

Q is themaximum capacity provided and x is the actual amount of clients served. pNV

are the average earnings for each treated client and e are the corresponding earnings
as far as agency conflicts are concerned. For a demand below the capacity limit, i.e.
for x ≤ Q, it is met. For a demand above the capacity limit, i.e. for x > Q, only Q
clients can be served. The earnings are distributed according to a stochastic probability
function ϕ(x) with the related differential dψ(x) = ϕ(x) dx .

The costs term is divided into variable costs c, storage or liquidation costs cH ,
also known as lock-in or holding costs, for x ≤ Q and out-of-stock costs cS for x >

Q. To model the present economic problem of moral hazard caused by asymmetric
information, i.e. an unequal distribution of information among a principal (owner of
a company) and her agent (manager), whereby the latter has usually an information
edge, referring solely to the variable cost term c, we introduce the cost-related agency
terms from Sect. 2.

L(Q, c∗) = Q
∫ c∗

c
(c + F(c)

f (c)
) f (c) dc +

Q∫

0

cH (Q − x) dψ(x)

+
∞∫

Q

cS (x − Q) dψ(x). (19)

Finally, the corresponding profits are defined by P(Q, c∗) = E(Q, c∗)− L(Q, c∗) as
difference beween earnings and costs. In the sequel, we apply a normal distribution

ϕ(x) = 1
σ
√
2π

e− 1
2 (

x−μ
σ

)2 as probability function with mean value μ and standard

deviation σ . The probability density f (c) = 1
c−c is chosen as uniform distribution

throughout this contribution.
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4 The nonlinear state marginal price vector model

For the formulation of the nonlinear statemarginal price vectormodel, we use compact
vector algebra:A vector a ∈ R

k of dimension k represents a tuple (a1, .., ak) of k single
components. Thedot-product of twovectorsa·b = ∑k

i=1 aibi of the samedimension is
defined as component-wise sum of the products of both vectors. Relational operations
like a ≥ b should be understood component-wise, in this case meaning ai ≥ bi ∀ i ∈
[1, k]. H is a linear mapping between vectors, i.e. a = H · b, for instance. h(·) is a
nonlinear mapping between vectors, e.g. a = h(b).

4.1 Formulation of the nonlinear base and valuation approaches

To determine the marginal price resp. marginal price stream for a valuation object, we
formulate two optimization approaches whereby an initial base approach is taken as
reference state for a subsequent valuation approach. As target for the base approach,
we employ maximization of wealth whereby the withdrawals GBa measure annual
monetary surpluses available for consumption spending. Within the target function to
be maximized, the stream of withdrawals is weighted by means of a weighting vector
wBa ≥ 0 to a point quantity whereby in particular the case wBa

n = 1 in combination
withwBa

t = 0 for t ∈ [0, n−1] is of special importance,which leads to amaximum end
value EV as total monetary surplus at the planning horizon. After having solved the
base approach, we obtain maximum utility as target value GWBa , before a transaction
has actually been realized, which means without consideration of the valuation object
in question.

To satisfy the liquidity conditions at the end of each period�tt−1,t , the cash flows of
all active investment or financing objects as well as autonomous payments have to be
equilibrated with the withdrawalsGBa

t . The so-called autonomous payments represent
pre-determined cash flows which include already fixed payments or withdrawals and
are defined by the vector bBa bounding the liquidity conditions. The decision field is
modeled by concave nonlinear functionals hBa(·) (Pfaff et al. 2002) in dependence on
xBa as investment and financing objects. In the latter, financial assets or liabilities as
well as cash holdings or investments in reals assets as well as all other independent
variables to be optimized like c∗ as optimal budgets, for instance, are taken into
consideration. The upper bounds for all objects j ∈ [1,m] are defined by the vector
xmax,Ba
j , which may include the unconstrained case of infinity as special case as well.

For all independent variables, namely the withdrawals GBa
t and the objects x Baj , we

assume non-negative real-valued quantities. Accordingly, the base approach can be
formulated as:

GWBa = max
(GBa ,xBa)

GW; GW = wBa · GBa wBa,GBa ∈ R
+ n+1
0 (20)

subject to

−hBa(xBa) + GBa ≤ bBa bBa,hBa(xBa) ∈ R
n+1

xBa ≤ xmax,Ba xBa, xmax,Ba ∈ R
+m
0

GBa ≥ 0, xBa ≥ 0.
(21)
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The possible situation after realization of the transaction under consideration is mod-
eled in a corresponding valuation approach. Hence, now, the valuation object is
integrated into the valuation approach in return for a price stream as related com-
pensation. The optimal solution (base program) provided the maximum target value
GWBa as point quantity. A transaction is economically advantageous if at least this
target value is reached in the valuation program again. Hence, to enforce the same
degree of target value achievement, we introduce a further coupling constraint in
terms of the corresponding annual withdrawals G which are condensed to a point
quantity by taking the weighting vector w into account. The decision field is mod-
eled by concave nonlinear functionals h(·) (Pfaff et al. 2002) whereby hBa(·) and
h(·) can differ. However, even in the special case of hBa(·) = h(·), the active
investment and financing objects can be different owing to a possible restructuring
among the investment and financing programs if a basis change occurs. By con-
vention, for both approaches, negative-valued entries Ht j of the unique linear cash
flow streams H j , j ∈ [1,m] represent cash outflows while positive-valued entries
represent cash inflows, and similarly for hBa(·) and h(·). Furthermore, to include
all earnings or costs accompanied with a valuation object, we use the so-called
cash flow stream of the valuation object gK := (gK0, . . . , gKn), which contains
all already known financial in- or outflows over the planning period, which result
from ordinary business operations or could be extraordinary by nature. As corre-
sponding compensation, the investor has to pay at utmost p = p z (Toll 2010)
where z is a distribution vector and p is the width of the marginal price stream.
To obtain the maximally affordable monetary compensation, the maximum value
p̄ of the width of the marginal price stream has to be computed. Therefore, a
multi-decision problem must be solved by maximizing the compensation under con-
sideration of a subjective decision field. Thus, the valuation approach eventually
reads as:

p̄ = max
(p,G,x)

p (22)

subject to

−h(x) + G + p z ≤ b + gK b, gK ,h(x), z ∈ R
n+1

x ≤ xmax x, xmax ∈ R
+m
0

w · G ≥ GWBa w,G ∈ R
+ n+1
0

p ≥ 0,G ≥ 0, x ≥ 0.

(23)

It is noted that w = wBa . For the corresponding dual optimization problem and the
supplementary nonlinear arbitrage value term, please see a comprehensive in-depth
discussion in Toll and Kintzel (2019). Here, we consider the valuation case of a
purchase. In the alternative valuation case of a sale, the signs of the earnings of the
valuation object and the marginal price stream are reversed, which means a valuation
subject wants to sell a valuation object and receives a compensation in return from
the buyer. However, both optimization problems are similar except for this important
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difference. Clearly, the width of the marginal price stream must be minimized in the
valuation case of a sale.

For the width of the marginal price stream, we can find an interval, in which the
actual width of the marginal price stream must lie:

(h(x̄) − hBa(x̄Ba) + gK ) · ρ̄

z · ρ̄
≤ p̄ ≤ (h(x̄) − hBa(x̄Ba) + gK ) · ρ̄

Ba

z · ρ̄Ba
(24)

where ρ̄ and ρ̄Ba are the marginal discount factors of the valuation and base program,
respectively. As mentioned above, in the related valuation case of a sale, the signs of
the width of the marginal price stream p and the earnings gK are simply reversed.
After multiplication of this relation with the factor −1, the inequality signs then alter
as well.

The analytical so-called valuation formula can be recast in the nonlinear regime
and for the valuation case of a purchase as:

p̄ = p̄ z = [ 1

z · ρ̄
( b · ρ̄ + h(x̄) · ρ̄ − δ̄GWBa︸ ︷︷ ︸
restructuring between the
base and valuation programs
and nonlinear arbitrage

+gK · ρ̄)
]
z (25)

by setting h(x̄lin) · ρ̄ = ρ̄ ·H · xmax
lin and x̄ = x̄lin ⊕ x̄nonlin . δ̄ is a discounted shadow

price. For more details, please see Toll and Kintzel (2019).

5 Embedding of the newsvendor model into the nonlinear state
marginal price vector model

5.1 Modeling of themulti-period nonlinear optimization approach

The single-period newsvendor model according to Eqs. (17) and (19) is integrated
into a multi-period decision problem (analogously to Angelus and Porteus 2002), for
more details please see Toll and Kintzel (2019). To enforce maximization of profits
within the model, we measure the total monetary surplus at the end of the planning
period by means of the end value EV as proposed in Sect. 4.1. The important task
is to formulate the base and valuation approaches within a simultaneous optimization
approach. Clearly, all what changes is the implementation of the new formulations in
Eqs. (17) to (19) instead of Eqs. (18) and (19) in the original model in Toll and Kintzel
(2019) as well as the integration of c∗ resp. cBa ∗

t and c∗
t for t ∈ [t1, tn+1] as additional

independent variables into the optimization approach.
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5.1.1 Equation system for the base approach

Maximize EVBa subject to

K QBa
0 − CBa

0 + I Ba0 −
mBa∑
j=1

H
Ba
0 j x

Ba
j ≤ bBa0

−PBa
t

(
QBa

t−1, c
Ba ∗
t

)
+ hc

(
QBa

t−1

)βBa

+ cct
(
QBa

t − QBa
t−1

)
−

mBa∑
j=1

H
Ba
t j x Baj

−CBa
t + I Bat + CBa

t−1 qB − I Bat−1 qL ≤ bBat ∀ t ∈ [t1, tn]
ᾱ

(
−PBa

n+1

(
QBa

n , cBa ∗
n+1

)
+ hc

(
QBa

n

)βBa)
− α k QBa

n

−
mBa∑
j=1

H
Ba
n+1 j x

Ba
j + CBa

n qB − I Ban qL + EVBa ≤ b̄Ban+1

x Baj ≤ xmax,Ba
j lin ∀ j ∈ [1,mBa]

CBa
t ≤ Cmax,Ba

t ∀ t ∈ [t0, tn]
QBa

t ≤ QBa ∗
t (cBa ∗

t+1 ) ∀ t ∈ [t1, tn]
c ≤ cBa ∗

t , cBa ∗
t ≤ c ∀ t ∈ [t1, tn+1]

QBa
t ,CBa

t , I Bat ≥ 0 ∀ t ∈ [t0, tn]; x Baj ≥ 0 ∀ j ∈ [1,mBa]; EVBa ≥ 0

The Lagrange function can be established as

φ(v,u) = −EVBa + dBa0

(
K QBa

0 − CBa
0 + I Ba0 −

mBa∑
j=1

H
Ba
0 j x Baj − bBa0

)

+
n∑

t=1
dBat

(
−PBa

t

(
QBa
t−1, c

Ba ∗
t

)
+ hc

(
QBa
t−1

)βBa

+ cct
(
QBa
t − QBa

t−1

)

−
mBa∑
j=1

H
Ba
t j x Baj − CBa

t + I Bat + CBa
t−1 qB − I Bat−1 qL − bBat

)

+dBan+1

(
ᾱ

(
−PBa

n+1

(
QBa
n , cBa ∗

n+1

)
+ hc

(
QBa
n

)βBa)
− α k QBa

n

−
mBa∑
j=1

H
Ba
n+1 j x

Ba
j + CBa

n qB − I Ban qL + EVBa − b̄Ban+1

)

+
mBa∑
j=1

uBaj lin

(
x Baj − xmax,Ba

j lin

)
+

n∑
t=0

wBa
t

(
CBa
t − Cmax,Ba

t

)

+
n∑

t=1
vBat

(
QBa
t − QBa ∗

t

(
cBa ∗
t+1

))
+

n+1∑
t=1

mBa
t

(
c − cBa ∗

t

)
+

n+1∑
t=1

nBat
(
cBa ∗
t − c̄

)
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We are able to derive the following dual optimization problem:

max
u

n∑
t=2

dBat

(
−PBa

t

(
Q̄Ba
t−1, c̄

Ba ∗
t

)
+ Q̄Ba

t−1∂̄QBa
t−1

PBa
t

(
QBa
t−1, c

Ba ∗
t

)

+c̄Ba ∗
t ∂̄cBa ∗

t
P Ba
t

(
QBa
t−1, c

Ba ∗
t

)
+ hc

(
Q̄Ba
t−1

)βBa

(1 − βBa)

)

+dBan+1 ᾱ
(
−PBa

n+1

(
Q̄Ba
n , c̄Ba ∗

n+1

)
+ Q̄Ba

n ∂̄QBa
n

PBa
n+1

(
QBa
n , cBa ∗

n+1

)

+c̄Ba ∗
n+1 ∂̄cBa ∗

n+1
PBa
n+1

(
QBa
n , cBa ∗

n+1

)
+ hc

(
Q̄Ba
n

)βBa

(1 − βBa)

)

−
n∑

t=0
dBat bBat − dBan+1 b̄

Ba
n+1 −

mBa∑
j=1

uBaj lin x
max,Ba
j lin −

n∑
t=0

wBa
t Cmax,Ba

t

−
n∑

t=1
vBat

(
QBa ∗
t

(
c̄Ba ∗
t+1

)
− c̄Ba ∗

t+1 ∂̄cBa ∗
t+1

QBa ∗
t

(
cBa ∗
t+1

))
+

n+1∑
t=1

mBa
t c −

n+1∑
t=1

nBat c̄

−dBa1 PBa
1

(
QBa
0 , c̄Ba ∗

1

)
+ dBa1 hc

(
QBa
0

)βBa

+ dBa1 c̄1
Ba ∗ ∂̄cBa ∗

1
PBa
1

(
QBa
0 , cBa ∗

1

)

+ dBa0 K QBa
0 − dBa1 cc1 Q

Ba
0

subject to

(QBa
t ) : dBa

t+1 (−∂̄QBa
t
P Ba
t+1(Q

Ba
t , cBa ∗

t+1 ) + βBa hc (Q̄Ba
t )β

Ba−1 − cct+1)

+dBa
t cct + vBa

t ≥ 0 ∀ t ∈ [t1, tn−1]
(QBa

n ) : dBa
n+1 (ᾱ (−∂̄QBa

n
PBa
n+1(Q

Ba
n , cBa ∗

n+1 ) + βBa hc (Q̄Ba
n )β

Ba−1) − α k)

+dBa
n ccn + vBa

n ≥ 0

(cBa ∗
1 ) : −dBa

1 ∂̄cBa ∗
1

PBa
1 (QBa

0 , cBa ∗
1 ) − mBa

1 + nBa
1 ≥ 0

(cBa ∗
t ) : −dBa

t ∂̄cBa ∗
t

P Ba
t (QBa

t−1, c
Ba ∗
t ) − vBa

t−1 ∂̄cBa ∗
t

QBa ∗
t−1 (cBa ∗

t )

−mBa
t + nBa

t ≥ 0 ∀ t ∈ [t2, tn]
(cBa ∗

n+1 ) : −dBa
n+1 ᾱ ∂̄cBa ∗

n+1
PBa
n+1(Q

Ba
n , cBa ∗

n+1 ) − vBa
n ∂̄cBa ∗

n+1
QBa ∗

n (cBa ∗
n+1 )

−mBa
n+1 + nBa

n+1 ≥ 0

(x Baj ) : −
n+1∑
t=0

dBa
t H

Ba
t j + uBa

j lin ≥ 0 ∀ j ∈ [1,mBa]
(EVBa) : −1 + dBa

n+1 ≥ 0

(CBa
t ) : −dBa

t + dBa
t+1 qB + wBa

t ≥ 0 ∀ t ∈ [t0, tn]
(I Bat ) : dBa

t − dBa
t+1 qL ≥ 0 ∀ t ∈ [t0, tn]

dBa
t ≥ 0 ∀ t ∈ [t0, tn+1]; uBa

j lin ≥ 0 ∀ j ∈ [1,mBa]
wBa
t ≥ 0 ∀ t ∈ [t0, tn]; vBa

t ≥ 0 ∀ t ∈ [t1, tn]
mBa

t ≥ 0, nBa
t ≥ 0 ∀ t ∈ [t1, tn+1]
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5.1.2 Equation system for the valuation approach

Maximize p subject to

K Q0 − C0 + I0 −
m∑
j=1

H0 j x j + p z0 ≤ b0 + gK0

−Pt
(
Qt−1, c

∗
t

) + hc Q
β
t−1 + cct (Qt − Qt−1) −

m∑
j=1

Ht j x j

−Ct + It + Ct−1 qB − It−1 qL + p zt ≤ bt + gKt ∀ t ∈ [t1, tn]
ᾱ

(−Pn+1
(
Qn, c

∗
n+1

) + hc Q
β
n

) − α k Qn

−
m∑
j=1

Hn+1 j x j + Cn qB − In qL + EV + p zn+1 ≤ b̄n+1 + gKn+1

EVBa ≤ EV

x j ≤ xmax
j lin ∀ j ∈ [1,m]

Ct ≤ Cmax
t ∀ t ∈ [t0, tn]

Qt ≤ Q∗
t

(
c∗
t+1

) ∀ t ∈ [t1, tn]
c ≤ c∗

t , c∗
t ≤ c̄ ∀ t ∈ [t1, tn+1]

Qt ,Ct , It ≥ 0 ∀ t ∈ [t0, tn]; x j ≥ 0 ∀ j ∈ [1,m]; p ≥ 0; EV ≥ 0

The Lagrange function can be established as

φ(v,u) = −p + d0

(
K Q0 − C0 + I0 −

m∑
j=1

H0 j x j + p z0 − b0 − gK0

)

+
n∑

t=1

dt

(
−Pt

(
Qt−1, c

∗
t

) + hcQ
β
t−1 + cct (Qt − Qt−1) −

m∑
j=1

Ht j x j

−Ct + It + Ct−1 qB − It−1 qL + p zt − bt − gKt

)

+dn+1

(
ᾱ

(−Pn+1
(
Qn, c

∗
n+1

) + hc Q
β
n

) − α k Qn −
m∑
j=1

Hn+1 j x j

+Cn qB − In qL + EV + p zn+1 − b̄n+1 − gKn+1

)

+
m∑
j=1

u j lin

(
x j − xmax

j lin

)
+

n∑
t=0

wt (Ct − Cmax
t ) +

n∑
t=1

vt
(
Qt − Q∗

t

(
c∗
t+1

))

+
n+1∑
t=1

mt
(
c − c∗

t

) +
n+1∑
t=1

nt
(
c∗
t − c̄

) + μ
(
EVBa − EV

)
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We are able to derive the following dual optimization problem:

max
u

n∑
t=2

dt
(−Pt

(
Q̄t−1, c̄

∗
t

) + Q̄t−1∂̄Qt−1 Pt
(
Qt−1, c

∗
t

) + c̄∗
t ∂̄c∗

t
Pt

(
Qt−1, c

∗
t

)

+hc Q̄
β
t−1 (1 − β)

)
+ dn+1 ᾱ

(−Pn+1
(
Q̄n, c̄

∗
n+1

)

+Q̄n ∂̄Qn Pn+1
(
Qn, c

∗
n+1

) + c̄∗
n+1∂̄c∗

n+1
Pn+1

(
Qn, c

∗
n+1

) + hc(Q̄n)
β (1 − β)

)

−
n∑

t=0

dt (bt + gKt ) − dn+1 (b̄n+1 + gKn+1) −
m∑
j=1

u j lin x
max
j lin −

n∑
t=0

wt C
max
t

−
n∑

t=1

vt

(
Q∗

t

(
c̄∗
t+1

) − c̄∗
t+1 ∂̄c∗

t+1
Q∗

t

(
c∗
t+1

)) +
n+1∑
t=1

mt c −
n+1∑
t=1

nt c̄ + μEVBa

+d0 K Q0 − d1 cc1 Q0 − d1 P1
(
Q0, c̄

∗
1

) + d1 hc Q
β
0 + d1 c̄

∗
1 ∂̄c∗

1
P1

(
Q0, c

∗
1

)

subject to

(Qt ) : dt+1 (−∂̄Qt Pt+1(Qt , c
∗
t+1) + β hc Q̄

β−1
t − cct+1) + dt cct + vt ≥ 0

∀ t ∈ [t1, tn−1]
(Qn) : dn+1 (ᾱ (−∂̄Qn Pn+1(Qn, c

∗
n+1) + β hc Q̄

β−1
n ) − α k) + dn ccn + vn ≥ 0

(c∗
1) : −d1 ∂̄c∗

1
P1(Q0, c

∗
1) − m1 + n1 ≥ 0

(c∗
t ) : −dt ∂̄c∗

t
Pt (Qt−1, c

∗
t ) − vt−1 ∂̄c∗

t
Q∗

t−1(c
∗
t ) − mt + nt ≥ 0 ∀ t ∈ [t2, tn]

(c∗
n+1) : −dn+1 ᾱ ∂̄c∗

n+1
Pn+1(Qn, c

∗
n+1) − vn ∂̄c∗

n+1
Q∗

n(c
∗
n+1) − mn+1 + nn+1 ≥ 0

(x j ) : −
n+1∑
t=0

dt Ht j + u j lin ≥ 0 ∀ j ∈ [1,m]

(p) : −1 +
n+1∑
t=0

dt zt ≥ 0

(EV) : −μ + dn+1 ≥ 0

(Ct ) : −dt + dt+1 qB + wt ≥ 0 ∀ t ∈ [t0, tn]
(It ) : dt − dt+1 qL ≥ 0 ∀ t ∈ [t0, tn]
dt ≥ 0 ∀ t ∈ [t0, tn+1]; u j lin ≥ 0 ∀ j ∈ [1,m]
wt ≥ 0 ∀ t ∈ [t0, tn]; vt ≥ 0 ∀ t ∈ [t1, tn]
mt ≥ 0, nt ≥ 0 ∀ t ∈ [t1, tn+1]; μ ≥ 0

5.2 Errata for the dual objective functions in Toll and Kintzel (2019)

Unfortunately, the dual objective functions were documented wrongly in Toll and
Kintzel (2019). A good proof for the correctness of the implemented formulas is to test
whether the objective functions coincide numerically with regard to both optimization
problems, namely the primal and dual optimization problems, for both approaches.
In the present case, all computations cited in the article were correct, but since the
pre-determined capacities Q0 and QBa

0 are constant and their derivatives vanish, the
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corresponding expressions concerning the exponents β and βBa , respectively, were
not printed out correctly in this article. Therefore, the correct dual objective functions
are reiterated here.

5.2.1 Errata for the objective function of the dual base approach

max
u

n∑
t=2

dBa
t

(
−PBa

t

(
Q̄Ba

t−1

)
+ Q̄Ba

t−1∂̄QBa
t−1

PBa
t

(
QBa

t−1

)
+ hc

(
Q̄Ba

t−1

)βBa (
1 − βBa

))

+dBa
n+1 ᾱ

(
−PBa

n+1

(
Q̄Ba

n

)
+ Q̄Ba

n ∂̄QBa
n
PBa
n+1

(
QBa

n

)
+ hc

(
Q̄Ba

n

)βBa

(1 − βBa)

)

−
n∑

t=0

dBa
t bBat − dBa

n+1 b̄
Ba
n+1 −

mBa∑
j=1

uBa
j lin x

max,Ba
j lin −

n∑
t=0

wBa
t Cmax,Ba

t −
n∑

t=1

vBa
t QBa ∗

t

+dBa
0 K QBa

0 − dBa
1 cc1 Q

Ba
0 − dBa

1 PBa
1

(
QBa

0

)
+ dBa

1 hc
(
QBa

0

)βBa

5.2.2 Errata for the objective function of the dual valuation approach

max
u

n∑
t=2

dt
(
−Pt

(
Q̄t−1

) + Q̄t−1∂̄Qt−1 Pt (Qt−1) + hc Q̄
β
t−1 (1 − β)

)

+dn+1 ᾱ
(−Pn+1(Q̄n) + Q̄n ∂̄Qn Pn+1(Qn) + hc(Q̄n)

β (1 − β)
)

−
n∑

t=0

dt (bt + gKt ) − dn+1 (b̄n+1 + gKn+1)

−
m∑
j=1

u j lin x
max
j lin −

n∑
t=0

wt C
max
t −

n∑
t=1

vt Q
∗
t + μEVBa

+d0 K Q0 − d1 cc1 Q0 − d1 P1(Q0) + d1 hc Q
β
0

5.3 Validation of the single-period newsvendor model under agency conflicts

To test the correctness of the implementation of the single-period model, we formulate
the following simple optimization problem as shown below.

Maximize EV subject to

−
Q∫

0

⎛
⎜⎝pNV − e +

c∗∫

c

e f (c) dc

⎞
⎟⎠ x dψ(x) −

∞∫

Q

⎛
⎜⎝pNV − e +

c∗∫

c

e f (c) dc

⎞
⎟⎠ Q dψ(x)

+Q

c∗∫

c

(
c + F(c)

f (c)

)
f (c) dc +

Q∫

0

cH (Q − x) dψ(x)

+
∞∫

Q

cS (x − Q) dψ(x) + EV ≤ 0

under the constraints EV ≥ 0, Q ≥ 0, Q ≤ ∞, c ≤ c∗ and c∗ ≤ c.
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(a) (b)

Fig. 3 Plot of (a) �(Q∗) and (b) Q∗ with respect to c∗ for [c, c] = [8, 16], see Eq. (37)

Actually,we arrive at the profitmaximum for the optimal values Q∗ and c∗,meaning
at the vertex of the profit function. Differently to the case without agency conflicts,
the optimal quantity Q∗ is not a variable anymore which is fixed throughout the
computation, but which depends on c∗.

By computing the first derivative of the profit function and equating to zero, we
yield the necessary condition for the profit maximum, see appendix B. To test if the
implementation is correct, we can compare the following definition for e:

e = c∗ + F(c∗)
f (c∗)

1 − (Q∗)
Q∗

. (26)

The plot of the cumulative distribution function�(Q∗)with respect to c∗, see Eq. (37),
is shown in Fig. 3 on the left-hand side. The actual upper bound of capacities Q∗
with respect to c∗ is shown on the right-hand side. For a numerical prove, using the
parameters fromTable 1 and the data ofTable 2 from the not bracketed column�t0,1 for
the sake of exemplification,we getμ = 10.0 andσ = 2.12132035. The optimal results
are computed as Q∗ = 12.2578998 and c∗ = 12.0306491. With (Q∗)

Q∗ = 0.196935,
Eq. (26) is fulfilled. As can be observed, c∗ is only slightly different to the mean value
cmean = c+c

2 = 12.0.
Technically speaking, for integration into the optimization approach, we interpolate

the function for the upper bound of capacities Q∗(c∗) by employing the model of a
polynomial of fifth order as best fit:

Q∗(c∗) = a0 + a1 c
∗ + a2 (c∗)2 + a3 (c∗)3 + a4 (c∗)4 + a5 (c∗)5. (27)

For the current example, we compute Q∗(12.0306491) = 12.2578444, which is left
from the vertex, see the optimum value Q∗ = 12.2578998. Normally, the related
constraint for the upper bound of capacities is never binding.

5.4 Validation of themulti-period optimization approach

By implementing the primal and dual optimization problems of the base and valuation
approaches, we have a proper benchmark to test if the equation system has been
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correctly formulated and implemented. Thatwhat is implicit in the primal optimization
problem is explicit in the dual optimization problem (like optimality conditions as
constraints) and vice versa. The end values should be equal in both programs. Secondly,
we can compute the analytical valuation formula in Eq. (25) to test if both optimization
problems are consistent since the valuation formula is uniquely based on the primal
and dual optimization problems. To test the implementation results for themulti-period
newsvendor model regarding the new expressions concerning c∗

t , we can draw also on
the optimality conditions for c∗

t . Thus, we obtain in a first step, see appendix B:

∂c∗E(Q, c∗) = e

c − c

(
Q −

∫ Q

0
(Q − x) dψ(x)

)

= e

c − c
(Q − (Q)) . (28)

The optimality condition −d̄ ∂̄c∗ P(Q, c∗) − v̄ ∂̄c∗Q∗(c∗) − m̄ + n̄ = 0 reads as:

d̄

c − c

(
Q̄ (−e + 2 c̄∗ − c) + e(Q̄)

) − v̄ ∂̄c∗Q∗(c∗) − m̄ + n̄ = 0 (29)

for a corresponding Q̄. By means of this analytical solution, we can test in hindsight
if the implementation of the novel budgeting condition was correct.

5.5 Calibration of themulti-period nonlinear optimization approach

5.5.1 Practical business model of call centers

As mentioned above, we are concerned with the dimensioning of call centers on the
basis of a newsvendor model presented in Sect. 3, which was applied for the first
time in Toll and Kintzel (2019). Under dimensioning of capacities we understand the
quantitative determination of personnel (administrative, technical and service-related)
and technical infrastructure (computers, mainframes, terminals) whereby demand is
not certain, but stochastic. Clearly, an optimum trade-off is achieved by which means
a call center can optimally react to its clients, i.e. callers by telephone. As far as
call centers are concerned, the capacity Q and the number of clients x in Eqs. (17)
and (19) represent flow-oriented quantities measured per minute, which applies to all
parameters.

5.5.2 Valuation case of a merger of two IT-service companies

In the present example, amerger of two IT-service companies is in the focus of attention
in the framework of a second-best solution, which is based on the example in the
framework of the first-best solution discussed in-depth in Toll and Kintzel (2019). The
problem can be described as follows: The owner of a call center A wants to acquire
another call center B to enlarge its client base and to yield a more advantageous
organizational structure modeled by the parameters βBa and β in the resulting merger
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Table 1 Parameters of the
single- and multi-period
newsvendor (newsboy) model

pNV e c c cS cH hc K k

70.0 20.0 8.0 16.0 6.0 4.0 10.0 40.0 30.0

Table 2 Forecasts Di �t for the demand of clients per minute without (with) the valuation object. Proba-
bilities (pb1 = 0.25), (pb2 = 0.50), (pb3 = 0.25)

Forecasts Di�t �t0,1 �t1,2 �t2,3 �t3,4 �t4,5 �t5,6

1: Optimistic 13.0 (16.5) 15.3 (17.9) 17.8 (19.1) 19.5 (20.9) 21.3 (23.2) 24.1 (26.8)

2: Expected 10.0 (13.0) 13.2 (14.4) 16.3 (18.3) 18.4 (20.3) 19.6 (22.3) 23.3 (25.4)

3: Pessimistic 7.0 (9.0) 10.1 (13.8) 14.5 (15.3) 16.9 (17.5) 18.8 (20.2) 22.5 (24.0)

to a call center A+B. As starting point of our analysis, the economic situation for
call center A is to be evaluated in a corresponding base approach as referential state.
Finally, the end point of our analysis in form of a merger to the call center A+B is
taken into account in a corresponding valuation approach. By measuring all monetary
gains realizable in the final state with respect to the reference state, an investor can
determine her individual ultimate willingness to concede to the transaction agreement,
i.e. her subjective decision value. Thereby, all capacities and budgets in both states
are determined in an optimal manner and the marginal price vector mirrors finally
the critical monetary compensation at which the investor is indifferent between both
scenarios.

5.5.3 Chosen parameters and notations of the model

The parameters pNV , e, c, c, cS , cH , hc, K and k of the multi-period newsvendor
model are fixed throughout the planning period according to Table 1.

The projected planning phase stretches over 6 periods from t0 to t6 whereby at
t6 all capacities are liquidated, i.e. the autonomous payments beyond the planning
horizon are bBa∞ = b∞ = 0 with b̄n+1 = bn+1 and ᾱ = α = 1, accordingly. We
introduce two types of demand functions with mean values μBa

t and μt as well as
standard deviations σ Ba

t and σt in each period referring to the states before and after
the merger, respectively, based on forecasted values as educated guesses in Table 2.

With the given values from Table 2, we compute the means μt = ∑3
i=1 pbi Di �t

and standard deviations σt = (
∑3

i=1 pbi (Di �t − μt )
2)

1
2 for each period �tt−1,t for

six equidistant annual time periods ∀ t ∈ [t1, t6]. The cash flow stream of the valuation
object gK and the autonomous payments b within the planning period are given in
Table 3 whereby we assume bBa = b.

A fixed down payment of 50.0 has to be made upfront at t0. Thereafter, annual cash
inflows are at one‘s disposal at the end of each period. The exponents referring to the
variable cost term hc(·) are set to βBa = 1.04 and β = 1.02. The initial capacities are
specified in advance as QBa

0 = 10.0 and Q0 = 13.0.
As embedding action space of financing objects we consider the cash flow streams

according to Table 4. Thereby, we have introduced single-period financing objects
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Table 3 Cash flow stream of the
valuation object gK and
autonomous payments b

gK0 gK1 gK2 gK3 gK4 gK5 gK6

−50.0 150.0 200.0 220.0 185.0 165.0 130.0

b0 b1 b2 b3 b4 b5 b6

0.0 −50.0 −50.0 −50.0 −50.0 −50.0 −50.0

Table 4 Additional linear investment and financing objects (HBa
t j ,Ht j )

j x1 (x Ba2 ,x2) (CBa
0 ,C0) · · · (CBa

5 ,C5) (I Ba0 ,I0) · · · (I Ba5 ,I5)

t = 0 1.0 1.0 1.0 −1.0

t = 1 −AF(7%; 3) −0.06 −qB qL
t = 2 −AF(7%; 3) −0.06 · · · · · ·
t = 3 −AF(7%; 3) −0.06 · · · · · ·
t = 4 −0.06 · · · · · ·
t = 5 −0.06 1.0 −1.0

t = 6 −1.06 −qB qL
Max 1000.0 1500.0 2000.0 · · · 2000.0 ∞ · · · ∞

Table 5 Computed end values
EV , widths of the marginal
prices p̄ and present values of
the marginal price vectors for a
finite time horizon t∞ = 0 for
different assumptions for z,
qB = 1.10 and qL = 1.04 p.a.

z0 z1 z2 z3 . . . z6 EV t∞=0 p̄t∞=0 PVt∞=0

6 0 0 0 3703.090 203.816 1222.895

3 2 1 0 3703.090 213.595 1235.133

2 2 2 0 3703.090 218.524 1235.133

1 2 3 0 3703.090 223.597 1242.082

0 0 6 0 3703.090 232.749 1242.702

with a lending interest factor qL and a borrowing interest factor qB . Furthermore, we
have introduced an annuity and a coupon rate series. The corresponding upper bounds
(limits) of the financing objects are shown in Table 4 in the last row.

5.6 Simulation with themulti-period nonlinear optimization approach

The results for thewidth of themarginal price stream p̄ for various z-vectors are shown
in Table 5. Compared to the first-best solution in Toll and Kintzel (2019), we can state
that the end value EV second = 3703.0895 is smaller than EV first = 4068.2383 leading
almost to a reduction of 9% in end value. Clearly, also the resulting present values
of the marginal price vectors are smaller compared to the first-best solution. In the
sequel, solely the results for z = {3, 2, 1, 0, . . .} are discussed. Concluding, the dual
factors of the liquidity conditions in Table 8 are the same as in the first-best solution.
The structure of computed credits Ct and investments It in Table 7 is similar, too,
however with different realizations.
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Table 6 Computed capacities and optimal budgets for z = {3, 2, 1, 0, . . .}, t∞=0, qB = 1.10 and qL =
1.04 p.a. (for the optimal single-period quantities (QBa ∗

t , Q∗
t ) please see Eq. (27))

Qt ,c∗t �t0,1 �t1,2 �t2,3 �t3,4 �t4,5 �t5,6

QBa ∗
t 12.014 14.700 17.286 19.127 20.639 23.795

Q∗
t 15.401 16.623 19.073 20.947 22.987 26.273

Q̄Ba
t 10.000 13.519 16.641 18.621 20.139 23.295

Q̄t 13.000 15.626 18.209 20.257 22.416 25.424

c̄Ba ∗
t 13.154 13.216 13.577 13.704 13.731 13.904

c̄∗t 13.136 13.406 13.540 13.596 13.697 13.840

Table 7 Computed values for credits and financial investments for z = {3, 2, 1, 0, . . .}, t∞ = 0, qB = 1.10
and qL = 1.04 p.a.

Ct , It\t t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

C̄ Ba
t 151.935 – – – – –

Ī Bat – – 322.0212 861.627 1536.786 2239.015

C̄t – 188.821 – – – –

Īt – – – 581.921 1444.496 2391.685

Table 8 Dual factors of the liquidity conditions for the base and valuation programs for z = {3, 2, 1, 0, . . .},
t∞ = 0, qB = 1.10 and qL = 1.04 p.a.

d̄ Ba0 d̄ Ba1 d̄ Ba2 d̄ Ba3 d̄ Ba4 d̄ Ba5 d̄ Ba6

1.4014205 1.2740186 1.16985856 1.124864 1.0816 1.04 1.0

d̄0 d̄1 d̄2 d̄3 d̄4 d̄5 d̄6

0.17293271 0.16541314 0.15037558 0.13804136 0.13273207 0.127626995 0.12271826

Concerning the optimal budgets under agency conflicts in Table 6, we can state
that the computed budgets c∗

t differ strongly from the mean value cmean = 12.0
and are considerably larger than in the simple single-period newsvendor model pre-
sented in Sect. 5.3. The optimality conditions in Eq. (29) are completely fulfilled.
For instance, for the first period with μ = 10.0 and σ = 2.12132035, we obtain
(10.0) = 0.84628387 where QBa

0 = 10.0, which fulfills the optimality condition
for the computed c̄Ba ∗

1 = 13.15371613 (Tables 2 and 6).
To add further relevant information, the tranches of the coupon rate series are

x̄ Ba2 = 248.065 and x̄2 = 670.795 as well as x̄1 = 539.990 for the annuity. As the
coupon rate series and the annuity are only partially realized and, hence,marginal, their
corresponding dual factors ū1, ū Ba

2 and ū2 are zero. For μ we find μ̄ = 0.12271826,
the same as in the first-best solution. All other dual variables vanish since the related
upper or lower bounds are not reached.

As final application, a short sensitivity analysis is done. In Fig. 4a, the end value
EV is plotted for distinct e. For rising e, the end value falls until a plateau is reached
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(a) (b)

Fig. 4 Plot of EV for (a) discrete e with [c, c] = [8, 16] and for (b) discrete c with cmean = 12.0

when the optimum value c∗ approaches the upper bound c = 16 for large e. EV must
fall with rising e since a higher portion of income is subjected to agency conflicts.
Finally, in Fig. 4b, the left bound c in the cost interval [c, c] is varied while the right
bound c complies with cmean = 12.0. As can be oberved, we obtain a convex curve
for EV with a minimum roughly around c = 5.0, hence, for [c, c] = [5.0, 19.0]. For
c = 10.0, the related upper bound c = 14.0 is reached also in this case. Normally,
e is known, but if we had no clear knowledge about the actual bounds of the cost
interval for uniformely distributed costs c, it would be wise to use the parameters c
and c holding in the minimum of EV to be on the safe side since, generally, the lower
the end value EV the larger the residual width of the marginal price stream p in the
present valuation case of a purchase. Hence, a brief sensitivity analysis could be done
in advance of any comprehensive company valuation to find out the most appropriate
parameter set for the considered cost interval. To fulfill this task, just the primal base
approach needs to be solved.

6 Conclusion and outlook

In Toll and Kintzel (2019), the linear state marginal price model of Hering (2000)
and the linear state marginal price vector model of Toll (2010), suitable for company
valuations, were extended to the nonlinear case. The so-called nonlinear statemarginal
price vector model was subsequently applied to the practical case study of a merger of
two call centers as certain prototypes of IT-service companies. In the current contribu-
tion, we have enriched the latter model to take asymmetric information into account
based on the publication of Inwinkl and Schneider (2008) where a one-sided agency
conflict between a company owner and her manager was in the focus. Clearly, the
manager of a certain department has an information edge over company management
since she knows all costs actually incurred in her department, but is inclined to over-
state costs to build up slack for herself. In the present case, we have been concerned
with this well-known problem of moral hazard whereby one of the participants has
more information than the other ones and can shield this information advantage. If an
investor had no reasonable clues about such private information, it would be wise to
consider this deficiency of moral hazard within the modeling framework. Clearly, the
present case of moral hazard represents only a first step. Further improvements are
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conceivable, which would end up in more sophisticated modeling frameworks, which,
however, was beyond the scope of the current introductory treatise. For instance, to
take adverse selection into account, the owner or investor could bind her managers by
contract to establish a closer agency relationship to signal a well-behaved demeanor
and to motivate them to disclose some of their private information. All this could
be treated within the framework of the nonlinear state marginal price vector model
by means of suitable equation systems. For this purpose, a scalar composition factor
were conceivable, which would moderate between the extremal states of symmetric
and asymmetric information. The double-sided agency conflict, presented in Inwinkl
et al. (2009), was beyond the scope of the present work as well. In a double-sided
agency conflict, the case is considered that two managers report to head office and
optimize slack independently from each other. The uniform probability density then
turns into a step-wise linear probability density based on a Irwin-Hall distribution.
Clearly, a crucial advantage of our numerical approach is that we can readily apply also
those more complicated probability densities in our model. As outlook, we would like
to remedy a further shortcoming of our model, namely the assumption of a risk-neutral
attitude of a valuation subject. For this purpose, we like to integrate nonlinear concave
time-continuous utility functions into the target function, whose related consumption
preferences can only be formulated by using distinct step-wise weighting parameters
w and wBa by now, which will be the topic of a forthcoming paper.
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A Utility for themanager and the truth-telling constraint

The utility of the manager is defined by:

U (c) = B(c) − c I (c). (30)

If we consider the truth-telling constraint:

B(c) − c I (c) ≥ B(c′) − c I (c′) (31)

where c and c′ can swap places due to our assumption, see Eqs. (2):

B(c′) − c′ I (c′) ≥ B(c) − c′ I (c) , (32)
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we yield:

− I (c) ≤ U (c′) −U (c)

(c′ − c)
≤ −I (c′). (33)

If we assume the project indicator function to be defined by:

I (c) :=
{
1 for c ≤ c∗,
0 for c > c∗, (34)

we finally obtain:

dU (c)

dc
= lim

c′→c

U (c′) −U (c)

c′ − c
= −I (c) = −1 (35)

for c∗ ≥ c and c∗ ≥ c′, compare Inwinkl and Schneider (2008). Thereby, the truth-
telling constraint is binding since B(c) ≥ B(c′) and B(c′) ≥ B(c) are only fulfilled for
B(c) = B(c′). Hence, in reverse, in view of Eq. (30), we can state that the satisfaction
of the truth-telling constraint for arbitrary B(c) rests upon Eqs. (34).

B Profit maximum for the single-period newsvendor model

The profit function P(Q, c∗) reads as

P(Q, c∗) = −cH (Q − μ) − Q
∫ c∗

c

(
c + F(c)

f (c)

)
f (c) dc + μ

(
pNV − e +

∫ c∗

c
e f (c) dc

)

+
∫ ∞

Q

(
pNV − e +

∫ c∗

c
e f (c) dc + cS + cH

)
(Q − x) dψ(x) (36)

where μ is the mean value of the probability function.
By computing the first derivative with respect to Q and equating to zero, we obtain:

�(Q∗) =
pNV − e + cS + ∫ c∗

c

(
e − c − F(c)

f (c)

)
f (c) dc

pNV − e + ∫ c∗
c e f (c) dc + cS + cH

(37)

where �(Q∗) = ψ(x ≤ Q∗) =
Q∗∫
0
dψ(x), see “Appendix B” in Toll and Kintzel

(2019).
By computing the first derivative with respect to c∗ and equating to zero, we obtain:

∂P(Q, c∗)
∂c∗ = e f (c∗) μ − Q

(
c∗ + F(c∗)

f (c∗)

)
f (c∗)
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+
∫ ∞

Q
e f (c∗) (Q − x) dψ(x) = 0. (38)

From this, we receive:

∂P(Q, c∗)
∂c∗ = Q

(
e − c∗ − F(c∗)

f (c∗)

)
f (c∗)

−
∫ Q

0
e f (c∗) (Q − x) dψ(x) = 0. (39)

The right-hand side of the latter term can be transformed to:

∫ Q

0
(Q − x)

dψ(x)

dx
dx = ψ(x) (Q − x)

∣∣∣Q
0

+
∫ Q

0
ψ(x) dx =

∫ Q

0
ψ(x) dx = (Q)

(40)

with the so-called Gamma-function (Q) of the probability function since the
boundary term at the left-hand side vanishes under the assumption that ψ(0) =∫ 0
−∞ dψ(x) ≈ 0.
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