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Abstract
Socioeconomic indicators play a crucial role in monitoring political actions over 
time and across regions. Income-based indicators such as the median income of 
sub-populations can provide information on the impact of measures, e.g., on pov-
erty reduction. Regional information is usually published on an aggregated level. 
Due to small sample sizes, these regional aggregates are often associated with large 
standard errors or are missing if the region is unsampled or the estimate is simply 
not published. For example, if the median income of Hispanic or Latino Americans 
from the American Community Survey is of interest, some county-year combina-
tions are not available. Therefore, a comparison of different counties or time-points 
is partly not possible. We propose a new predictor based on small area estimation 
techniques for aggregated data and bivariate modeling. This predictor provides 
empirical best predictions for the partially unavailable county-year combinations. 
We provide an analytical approximation to the mean squared error. The theoretical 
findings are backed up by a large-scale simulation study. Finally, we return to the 
problem of estimating the county-year estimates for the median income of Hispanic 
or Latino Americans and externally validate the estimates.

Keywords  Bivariate model · Fay–Herriot model · Median income · Monte Carlo 
simulation · Non-sampled domains · Small area estimation
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1  Introduction

Socioeconomic indicators, such as the median income of sub-populations, are key 
both for policy recommendations and policy evaluation. Regional indicators of 
income, poverty, employment, or well-being are omnipresent in current projects 
and research. To better reflect regional heterogeneity, their focus has shifted to 
deeper regional levels.

Regional information is normally published on an aggregated level. The esti-
mation of these aggregates is usually based on survey data. Although the demand 
for more detailed regional social indicators has increased, the underlying surveys 
tend to focus on higher regional or national level so that the survey costs do not 
become too high. Even though survey data provide reliable direct estimates at 
these levels, for more detailed regional levels they usually do not. At a regionally 
lower level, direct estimates are usually associated with high standard errors or 
unavailable. Estimates can be unavailable if the region is unsampled and thus no 
direct estimate could be given. In addition, the publication of regional estimates 
can be suppressed when the associated standard errors are high. For the inves-
tigation of regional indicators a researcher is therefore usually confronted with 
regional aggregates which are associated with high standard errors and contain a 
non-negligible proportion of unpublished data.

Small area estimation (SAE) methods are increasingly used to deal with highly 
volatile direct estimates on regional level. For a comprehensive overview, see Rao 
and Molina (2015). The key idea behind SAE techniques is to borrow strength by 
combining regional indicators in a common model framework. Within this model, 
additional related information, such as registration data, can be exploited.

The model-based approach allows the introduction of best predictors (BP) 
that minimize the mean square errors (MSE) in the class of unbiased predictors. 
Since the BPs depend on the model parameters, substituting them for appropri-
ate estimators gives the empirical BPs (EBP) that stabilize the estimates in small 
domains.

For aggregated univariate target data, the most prominent model is the 
Fay–Herriot (FH) model by Fay and Herriot (1979). Many extensions were made 
to the FH predictor to meet different practical problems. Inter alia, Prasad and 
Rao (1990) and Datta and Lahiri (2000) propose MSE estimators for the FH 
predictor, Li and Lahiri (2010) and Yoshimori and Lahiri (2014) introduce new 
adjusted maximum likelihood fitting methods, Jiang and Tang (2011) study the 
influence of the fitting algorithm in the empirical best prediction, Molina et  al. 
(2015) derive preliminary testing predictors, Moura et  al. (2017) modified the 
basic model to analyze skewed business survey data, Ybarra and Lohr (2008), 
Bell et al. (2019), Burgard et al. (2019) and Burgard et al. (2019) study the effect 
of measurement errors in the covariates, Pratesi and Salvati (2008), Gonzáalez-
Manteiga et  al. (2010), Articus and Burgard (2014), and Morales et  al. (2015) 
allow for a heterogeneous dependency structure in the FH model, Esteban et al. 
(2012) and Marhuenda et  al. (2013) estimate small area poverty proportions 
under temporal and spatiotemporal Fay–Herriot models, respectively.
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For aggregated multivariate target data, a widely employed model is the mul-
tivariate FH model. Fay (1987) and Datta et  al. (1991) investigated the gain of 
precision achieved by the multivariate modeling. Datta et  al. (1996) employed 
a multivariate FH model for obtaining hierarchical Bayes predictors. González-
Manteiga et  al. (2008) considered a multivariate FH model with a common 
domain random effect for the target vector, Arima et al. (2017) and Burgard et al. 
(2020) study multivariate measurement errors FH models, Porter et  al. (2015), 
Benavent and Morales (2016), Ubaidillah et al. (2019), Esteban et al. (2019) and 
Benavent and Morales (2021) investigate and give further applications of multi-
variate FH models. Many other authors have studied further variants of the FH 
model and the multivariate FH model adapted to different setups.

In the context of survey sampling, there are two main types of missing data. 
First, missingness due to non-response refers to situations where data were 
planned to be collected by the nature of the sampling design, but failed to be col-
lected due to some kind of response mechanism. This may occur because individ-
uals in the sample refuse or fail to respond, or because of processing issues. The 
response mechanisms are of special concern in voluntary surveys where ignor-
ing the response mechanism could lead to biased direct estimates. The treatment 
of this kind of missing data is therefore of great interest for applied statisticians 
as shown by Matei and Ranalli (2015) and Nguyen and Zhang (2020) in their 
recent studies on latent modeling approaches and reweighting methods for non-
response. More generally, the book of Longford (2005) gives an introduction to 
missing data modeling and imputation methods. In the present study, we do not 
consider any kind of non-response, but deal solely with aggregate information 
such as domain-specific direct estimates which might have been adjusted to non-
response by the statistical agencies.

Second, missing data can occur from the sampling design, if the design does not 
allocate samples to domains of interest. These domains could, for example, be a 
cross-combination of small geographic units and demographic characteristics such 
as age classes. In this case, the domain-specific sample sizes are random and can 
be zero or so small that corresponding direct estimates are not published due to 
the estimated variances being too high. This is the kind of missing information we 
are considering in this paper. The problem of estimating small area indicators with 
missing data, i.e., with unsampled domains or simply with unavailable data, has 
been scarcely treated in the literature. For unit-level data, Longford (2004) did some 
contributions related to multivariate shrinkage estimators, where the estimation is 
integrated with a multiple imputation procedure. For area-level small area models, 
to our knowledge, the existing SAE approaches using the FH model give empirical 
best predictors (EBP) only for domains with observed direct estimates. For unavail-
able direct estimates, the existing variants of the FH model only provide synthetic 
estimates with vague mean squared error approximations.

As an example, we can take a look at Articus et al. (2020) where the FH model 
is applied to local-level rental markets based on direct estimates from the German 
Microcensus. We can see that in the application of FH models missing direct esti-
mates either appear as blank spots on a map (Articus et al. 2020, Figure 6) or are 
filled by synthetic predictions (Articus et al. 2020, Figure 7).
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We attempt to fill this research gap with the introduction of a new model 
based on the FH model and bivariate modeling, called MBFH. It is an exten-
sion of the bivariate FH model, see, e.g., Rao and Molina (2015), Section 4.4.1, 
that allows for partially missing direct estimates. On the basis of this model, we 
derive the corresponding empirical best predictor under missing values (MBFH-
EBP). In contrast to the FH or bivariate FH model, the MBFH model provides 
best predictors for both missing and observed values. We furthermore provide 
analytical mean squared error approximations of the MBFH-EBPs.

This best predictor is applicable to any indicator that is predictable by the 
Fay–Herriot model. For example, the dependent variables may consist of direct 
estimators labor market indicators (total of employed and unemployed people 
and unemployment rates), living conditions indicators (head count ratio, poverty 
gap, poverty housing, average per capita income), family budget indicators (per 
capita expenditure in food or housing), and others. In addition, the new predictor 
is applicable to setting where the target variable has missings, but a second cor-
related variable is observed in all domains.

The choice of auxiliary data can be made for each variable separately. We 
illustrate the use of the proposed method with an application to US ACS data at 
the county level, where direct estimates of median income for Hispanics or Latin 
Americans are partially missing.

The manuscript is structured as follows: Sect.  2 describes the problem of 
interest and the data which we use for an illustration. Section  3 provides the 
methodological foundation. Section  3.1 introduces the bivariate Fay–Herriot 
model, which is the basis for the development of the EBP theory under partially 
missing target estimates, the proposed MBFH predictor. Section  3.2 divides 
the set of domains in three groups depending on the missing structure of the 
direct estimates and gives the corresponding MBFH-EBPs. Section  3.3 gives 
an approximation to the MSE of the MBFH-EBP and proposes an explicit-for-
mula estimator. With a model-based simulation, Sect.  4 validates the theoreti-
cal results and empirically investigates the introduced MBFH-EBPs and MSE 
estimators in different settings. Section 5 applies the new MBFH predictor to the 
publicly available US county-level ACS data on median income of Hispanic or 
Latino Americans. Section 6 presents a short summary and outlook. This contri-
bution is the extension of a related working paper Burgard et al. (2019). Finally, 
the manuscript has four appendixes in the supplementary material. Section  1 
gives algorithms for calculating the maximum likelihood and residual maximum 
likelihood estimators of the model parameters. Section 2 contains proofs of the 
derivation of best predictions under the new model. Section 3 contains the math-
ematical derivations for approximating the MSE of the MBFH-EBP. Section 4 
presents a parametric bootstrap procedure for estimating the mean squared error 
of the MBFH-EBPs. Section 5 shows the MSE of the synthetic Fay–Herriot pre-
dictor for missing direct estimates.

Section 6 contains additional results from the model-based simulation study 
with 5% and 10% missing direct estimates.
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2 � The problem of interest

2.1 � Aim

To illustrate the new MBFH predictor, we take a look at the publicly available 
county-level US ACS estimates of the median income of Hispanic or Latino Ameri-
cans. Income is strongly related to the concepts of poverty and well-being and 
thereby has an essential impact on the regional distribution of resources. The US 
Office of Management and Budget (OMB) requires federal agencies to use at least 
two ethnicities in data collection and reporting: ’Hispanic or Latino’ and ’not His-
panic or Latino’. Most official US survey publications, including those on income 
and poverty, pay extra attention to people who consider themselves as Hispanic 
or Latino Americans, see, e.g., Guzman (2019) and Semega et  al. (2019). There-
fore, we consider regional estimates of the median income of Hispanic or Latino 
Americans.

The ACS estimates on county-level for the years 2010 and 2011 are partly esti-
mated with high standard errors or are not published for certain counties and years. 
We can use additional publicly available data from the US Census Bureau to con-
struct bivariate FH models based on these estimates. The statistical issue is that we 
cannot apply the statistical methodology based on the multivariate FH model to the 
domains with missing direct estimates. This paper introduces a new model-based 
approach to address this problem. The approach makes use of the fact that some 
regional estimates missing in 2010 are available in 2011 and the other way around. 
Intuitively, the random effect correlation of the median income between two years 
is expected to be highly positive. As the simulation study in Sect. 4 shows, in such 
a situation an application of the introduced MBFH predictor is profitable for sta-
bilizing volatile estimates and predicting missing estimates. In the following, we 
describe the county-level US ACS data and the collection and choice of publicly 
available auxiliary data.

2.2 � Data description

We use the freely available US American Community Survey (ACS) data. Detailed 
information about the ACS is given in US Census Bureau (2014). The US Census 
Bureau provides aggregated county-level data of ACS 1-year estimates with asso-
ciated margins of error. We take the median annual income (dollars) Hispanic or 
Latino origin (of any race) (HC02_EST_VC12) in 2010 and 2011 as variables of 
interest.1 This is the target vector of the statistical study.

1  The ACS 1-year direct estimates are available at the US Census Bureau website https://​data.​census.​
gov/​cedsci/, TableID: S1903.

https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
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We partition our finite population, the USA, into D = 3141 ( d = 1,… ,D ) US 
counties, our domains of interest. There are publicly available county-level data 
from the US Census Bureau which can be used as auxiliary data.2

As 2010 and 2011 are temporary close, we choose the same auxiliary data for 
both variables, HC02_EST_VC12 in 2010 and 2011. Among the available auxiliary 
data, we chose the final model considering correlation patterns to the variables of 
interest, resulting coefficients, and model diagnostics. The chosen auxiliary vari-
ables are: Intercept, death rate in period 7/1/2010 to 6/30/2011 (RDEATH2011), and 
civilian labor force unemployment rate 2010 RTE (CLF040210D).

The ACS 1-year estimates are published only for certain counties in certain years 
to ensure disclosure control (U.S. Census Bureau 2016). For the variable of inter-
est, there are direct estimates available for 704 counties in 2010 and 684 counties 
in 2011, after excluding counties where auxiliary data were missing. Of these, there 
are 626 counties with both variables observed, 58 counties with missing estimates 
in 2010 which are available in 2011 and 78 counties with missing estimates in 2011 
which are available in 2010. Thereby, for the application D = 762 counties remain 
as domains of interest, where D1 = 78 , D2 = 58 , and D3 = 626 . Due to this missing 
pattern, the use of the new MBFH-EBP is recommended.

To validate the results of the MBFH-EBP, especially the prediction of missing 
direct domain estimates, we need comparable county-level data. From the ACS also 
5-year direct estimates are available for the variable of interest (HC02_EST_VC12).3 
ACS 5-year estimates pool data from the last 5 years, such that direct estimates in 
2012 refer to ACS data from 2008-2012 and are available for more counties than the 
1-year estimates. It is not recommended to directly compare overlapping ACS data-
sets such as ACS 1- and 5-year data. As we, however, want to evaluate whether the 
MBFH-EBPs of missing ACS 1-year estimates are realistic, the ACS 5-year direct 
estimates are chosen as benchmarks. They are available for many counties where 
ACS 1-year direct estimates are missing, but MBFH-EBPs can be computed.

Although ACS 5-year estimates of HC02_EST_VC12 are available for some 
counties where 1-year estimates are missing, they do not cover all areas either. We 
therefore use an additional dataset for validation, the Census-ACS 2010 estimates. 
Census estimates for variable HC02_EST_VC12 are not available. We therefore 
choose Census estimates of variable median household income in the past 12 month 
(in 2009 inflation-adjusted dollars) in 2005–2009 (INC110209D) for validation. 
INC110209D is close to the variable of interest HC02_EST_VC12, and its estimates 
in 2005–2009 are available for all counties.4 For this comparison, one should keep 
in mind that these variables can only be used as proxies, as their definitions differ.

3  The ACS 5-year direct estimates are available at the US Census Bureau website https://​data.​census.​
gov/​cedsci/, TableID: S1903.
4  The Census-ACS estimates are available at the US Census Bureau website https://​www.​census.​gov/​
libra​ry/​publi​catio​ns/​2011/​compe​ndia/​usa-​count​ies-​2011.​html.

2  The auxiliary data used are available at https://​www.​census.​gov/.
  We chose among the following:
  USA county data files on https://​www.​census.​gov/​libra​ry/​publi​catio​ns/​2011/​compe​ndia/​usa-​count​ies-​
2011.​html, and county population totals and components of change on https://​www.​census.​gov/​data/​
tables/​time-​series/​demo/​popest/​2010s-​count​ies-​total.​html.

https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html
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3 � Best prediction under the missing data bivariate Fay–Herriot 
model

3.1 � The bivariate Fay–Herriot model

Let U be a finite population partitioned into D domains U1,… ,UD . Let 
�d =

(
�d1,�d2

)� be a vector of characteristics of interest in domain d and let 
yd =

(
yd1, yd2

)� be a vector of direct estimates of �d calculated by using the data 
of the target survey sample.

The bivariate Fay–Herriot model is defined in two stages. The first stage indi-
cates that direct estimators yd, ∀d ∈ {1,…D} , are unbiased and follow the sam-
pling model

where the vectors ed = (ed1, ed2)
� ∼ N2

(
0,Ved

)
 are independent and the 2 × 2 covar-

iance matrices Ved are known. In most cases, Ved is taken to be the design-based 
covariance matrix of direct estimators yd , ∀d ∈ {1,… ,D} . The covariance matrices 
Ved are

In the second stage, the true domain characteristic �dk is assumed to be linearly 
related to pk explanatory variables, k = 1, 2 , d ∈ {1,… ,D} . Let x�

dk
= (xdk1,… , xdkpk ) 

be a row vector containing the true aggregated (population) values of pk explanatory 
variables for �dk and let Xd = diag (x�

d1
, x�

d2
) be a 2 × p block-diagonal matrix with 

p = p1 + p2 . Let �k = (�k1,… , �kpk )
� be a column vector of size pk containing the 

regression parameters �kj for �dk and let � =
(
��
1
, ��

2

)�
p×1

 . The linking model is

where the vectors ud ’s are independent of the vectors ed’s. The 2 × 2 covariance 
matrix Vud depends on three unknown parameters, �1 = �2

u1
 , �2 = �2

u2
 and �3 = � , i.e.,

The bivariate Fay–Herriot (BFH) model can be expressed as a single model in the 
form

or in the matrix form

with

(3.1)yd = �d + ed, ∀d ∈ {1,… ,D},

Ved =

(
�2
ed1

�ed12
�ed12 �2

ed2

)
, �ed12 = �ed12�ed1�ed2, ∀d ∈ {1,… ,D}.

(3.2)�d = Xd� + ud, ud = (ud1, ud2)
� ∼ N2(0,Vud), ∀d ∈ {1,… ,D},

Vud =

(
�2
u1

��u1�u2
��u1�u2 �2

u2

)
, ∀d ∈ {1,… ,D}.

(3.3)yd = Xd� + ud + ed, ∀d ∈ {1,… ,D},

y = X� + u + e,
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where “col” is the matrix operator stacking by columns. We finally assume that ud , 
ed , d ∈ {1,… ,D} , are independent. The BFH model (3.3) is a reparametrization of 
Model 3 introduced by Benavent and Morales (2016).

Let us define Vd = Vud + Ved , ∀d ∈ {1,… ,D} . Under model (3.3), it holds that

3.2 � Prediction with missing target values

Let us assume that some of the ydk are missing and partition the domains into three 
groups:

𝔻1 = {d ∈ ℕ ∶ 1 ≤ d ≤ D1} contains the D1 domains where only yd1 is observed.
𝔻2 = {d ∈ ℕ ∶ D1 + 1 ≤ d ≤ D1 + D2} contains the D2 domains where only yd2 
is observed.
𝔻3 = {d ∈ ℕ ∶ D1 + D2 + 1 ≤ d ≤ D} contains the remaining domains where 
yd = (yd1, yd2)

� is fully observed.

If the BFH model (3.3) holds for d ∈ {1,… ,D} and the missing data obey scheme 
{1,… ,D} = �1 ∪ �2 ∪ �3 , we say that target vectors yd obey a missing data BFH 
(MBFH) model. If the MBFH model holds, then 

1.	 yd1 ∼ N1

(
x�
d1
�1, �

2
u1
+ �2

ed1

)
 and yd1|ud ∼ N1

(
x�
d1
�1 + ud1, �

2
ed1

)
 if d ∈ �1,

2.	 yd2 ∼ N1

(
x�
d2
�2, �

2
u2
+ �2

ed2

)
 and yd2|ud ∼ N1

(
x�
d2
�2 + ud2, �

2
ed2

)
 if d ∈ �2 , and

3.	 yd ∼ N2

(
Xd�,Vud + Ved

)
 and yd|ud ∼ N2

(
Xd� + ud,Ved

)
 if d ∈ �3.

The supplementary material gives fitting algorithms to calculate the maximum like-
lihood (ML) and residual maximum likelihood (REML) estimators of the MBFH 
model parameters.

In a real situation where the target data follow a MBFH model, the BFH model 
is strictly applicable to �3 , but not to �1 or �2 . For example, under the BFH model 
we can only calculate EBLUPs of �d or ud for d ∈ �3 . However, in what follows we 
show that it is possible to calculate EBPs for d ∈ �1 ∪ �2 under the MBFH model. 
We have the following three results. For the corresponding proofs, see the supple-
mentary material.

R1. If d ∈ �1 , then the BP of ud under the MBFH model is

where yd̄1 = (yd1, 0)
�.

R2. If d ∈ �2 , then the BP of ud under the MBFH model is

y = col
1≤d≤D

(yd), u = col
1≤d≤D

(ud), e = col
1≤d≤D

(ed), X = col
1≤d≤D

(Xd),

E(y) = X� and V = var (y) = Vu + Ve = Vu + Ve = diag
1≤d≤D

(Vd).

û
bp

d
= E[ud|yd1] = Φd1

(
𝜎−2
ed1

0

0 0

)
(yd̄1 − Xd𝛽), Φd1 =

[(
𝜎−2
ed1

0

0 0

)
+ V−1

ud

]−1
,
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where yd̄2 = (0, yd2)
�.

R3. If d ∈ �3 , then BP of ud under the MBFH model is

As a consequence of R1-R3, the BP of �d , d = 1,… ,D , under the MBFH model is

The EBP of �d , d = 1,… ,D , under the MBFH model (MBFH-EBP) is obtained 
from formula (3.4) by plugging estimators 𝛽  , 𝜎̂2

u1
 , 𝜎̂2

u2
 and 𝜌̂ in the places of � , �2

u1
 , 

�2
u2

 and � , respectively, i.e.,

3.3 � Analytic approximation of the mean squared error of the MBFH predictor

This section gives an analytical approximation of the MSE of the MBFH-EBP for each 
of the three considered groups of domains. The corresponding mathematical deriva-
tions are presented in the supplementary material. Alternatively, the supplementary 
material also introduces a parametric bootstrap procedure for estimating the MSE of 
the MBFH-EBPs.

3.3.1 � Empirical best predictors in domains of groups �
1
 and �

2

As the estimators for groups �1 and �2 are somehow symmetric, we only present those 
corresponding to group �1:

where

The derivatives of matrix Φd1(�) with respect to �
�
 , � = 1, 2, 3 , are

The derivatives of hd(�, �) with respect to �kj and �
�
 , k = 1, 2 , j = 1,… , pk , 

� = 1, 2, 3 , are

û
bp

d
= E[ud|yd2] = Φd2

(
0 0

0 𝜎−2
ed2

)
(yd̄2 − Xd𝛽), Φd2 =

((
0 0

0 𝜎−2
ed2

)
+ V−1

ud

)−1

,

û
bp

d
= E[ud|yd] = ΦdV

−1
ed
(yd − Xd𝛽), Φd =

(
V−1
ed

+ V−1
ud

)−1
.

(3.4)𝜇̂
bp

d
= Xd𝛽 + û

bp

d
.

(3.5)𝜇̂
ebp

d
= Xd𝛽 + û

ebp

d
.

hd(𝛽, 𝜃̂) ≜ 𝜇̂
ebp

d
= Xd𝛽 + Φ̂d1Ad1(yd̄1 − Xd𝛽) =

(
x�
d1
𝛽1

xd2𝛽2

)
+

yd1 − x�
d1
𝛽1

𝜎2
ed1

(
𝜙̂d1,11

𝜙̂d1,12

)
,

Φ̂d1 = Φd1(𝜃̂) =
(
Ad1 + V̂−1

ud

)−1
, V̂ud = Vud(𝜃̂) =

(
𝜎̂2
u1

𝜌̂𝜎̂u1𝜎̂u2
𝜌̂𝜎̂u1𝜎̂u2 𝜎̂2

u2

)
, Ad1 =

(
𝜎−2
ed1

0

0 0

)
.

�Φd1

��
�

=
(
Ad1 + V−1

ud

)−1
V−1
ud
Vud�V

−1
ud

(
Ad1 + V−1

ud

)−1
=

(
�d1�,11 �d1�,12

�d1�,12 �d1�,22

)
.
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The pk × 1 vectors containing the derivatives with respect to �k , k = 1, 2 , are

and the corresponding pk1 × pk2 matrices are Hd�k1
�k2

,ab = hd�k1 ,a
h�
d�k2

,b
 , 

k1, k2, a, b = 1, 2.
The 3 × 1 vectors containing the derivatives with respect to � are

and the corresponding 3 × 3 matrices are Gd��,ab = gd�,ag
�
d�,b

 , a, b = 1, 2.
For d ∈ �1 , we have the following approximation to MSE(𝜇̂

ebp

d
).

where Gd2(�) = Gd2,11(�) + Gd2,22(�) + Gd2,12(�) + G�
d2,12

(�) and

Similarly as Prasad and Rao (1990), Datta and Lahiri (2000), and Das et al. (2004), 
we estimate MSE(𝜇̂

ebp

d
) with

Note that when using ML instead of REML estimation an additional bias correction 
term has to be considered, see Datta and Lahiri (2000) for further details.

3.3.2 � Empirical best predictors in domains of group �
3

Let us consider the group �3 . We write

where

𝜕hd

𝜕𝛽1j
=

(
xd1j
0

)
−

xd1j

𝜎2
ed1

(
𝜙d1,11

𝜙d1,12

)
≜

(
hd𝛽1j,1

hd𝛽1j,2

)
,

𝜕hd

𝜕𝛽2j
=

(
0

xd2j

)
≜

(
hd𝛽2j,1

hd𝛽2j,2

)

𝜕hd

𝜕𝜃
�

=
𝜕Φd1

𝜕𝜃
�

Ad1(yd̄1 − Xd𝛽) =
yd1 − x�

d1
𝛽1

𝜎2
ed1

(
𝜙d1�,11

𝜙d1�,12

)
≜

yd1 − x�
d1
𝛽1

𝜎2
ed1

(
gd𝜃

�
,1

gd𝜃
�
,2

)
.

hd�k ,1 = col
1≤j≤pk

(
hd�kj,1

)
, hd�k ,2 = col

1≤j≤pk

(
hd�kj,2

)
.

gd�,1 = col
1≤�≤3

(
gd�

�
,1

)
, gd�,2 = col

1≤�≤3

(
gd�

�
,2

)

MSE(𝜇̂
ebp

d
) = Gd1(𝜃) + Gd2(𝜃) + Gd3(𝜃) + O2×2(D

−1),

Gd1(𝜃) = Φd1(𝜃)Ad1(𝜃)(Vud(𝜃) + Ved(𝜃))Ad1(𝜃)Φd1(𝜃) + Vud(𝜃) − 2Φd1(𝜃)Ad1(𝜃)Vud(𝜃),

Gd2,ab(𝜃) =

(
tr {Hd𝛽b𝛽a,11

(𝜃) cov (𝛽a, 𝛽b)} tr {Hd𝛽b𝛽a,21
(𝜃) cov (𝛽a, 𝛽b)}

tr {Hd𝛽b𝛽a,12
(𝜃) cov (𝛽a, 𝛽b)} tr {Hd𝛽b𝛽a,22

(𝜃) cov (𝛽a, 𝛽b)}

)
, a, b = 1, 2,

Gd3(𝜃) =
𝜎2

ud1
+ 𝜎2

ed1

𝜎4

ed1

(
tr {Gd𝜃𝜃,11(𝜃) var (𝜃̂)} tr {Gd𝜃𝜃,21(𝜃) var (𝜃̂)}

tr {Gd𝜃𝜃,12(𝜃) var (𝜃̂)} tr {Gd𝜃𝜃,22(𝜃) var (𝜃̂)}

)
.

mse(𝜇̂
ebp

d
) = Gd1(𝜃̂) + Gd2(𝜃̂) + 2Gd3(𝜃̂).

hd(𝛽, 𝜃̂) ≜ 𝜇̂
ebp

d
= Xd𝛽 + Φ̂dV

−1
ed
(yd − Xd𝛽),
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The derivatives of matrix Φd(�) with respect to �
�
 , � = 1, 2, 3 , are

The derivatives of hd(�, �) with respect to �kj and �
�
 , k = 1, 2 , j = 1,… , pk , 

� = 1, 2, 3 , are

For k, k1, k2 = 1, 2 , the pk × 1 vectors containing the derivatives with respect to �k 
and the corresponding pk1 × pk2 matrices are

The 3 × 1 vectors containing the derivatives with respect to � are

and the corresponding 3 × 3 matrices are

Φ̂d = Φd(𝜃̂) =
(
V−1
ed

+ V̂−1
ud

)−1
, V̂ud = Vud(𝜃̂) =

(
𝜎̂2
u1

𝜌̂𝜎̂u1𝜎̂u2
𝜌̂𝜎̂u1𝜎̂u2 𝜎̂2

u2

)
.

�Φd

��
�

=
(
V−1
ed

+ V−1
ud

)−1
V−1
ud
Vud�V

−1
ud

(
V−1
ed

+ V−1
ud

)−1
=

(
�d�,11 �d�,12

�d�,12 �d�,22

)
.

�hd

��1j
=

(
xd1j
0

)
− ΦdV

−1
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(
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0

)
=
(
I − ΦdV

−1
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)( xd1j
0
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≜

(
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)
,
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=

(
0
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(
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=
(
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(
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)
,

�hd

��
�

=
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�
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(
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)
.
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(
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, hd�k ,2 = col
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(
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)
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,b
, a, b = 1, 2.
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For D1 + D2 + 1 ≤ d ≤ D , we have the following approximation to MSE(𝜇̂
ebp

d
).

where Gd2(�) = Gd2,11(�) + Gd2,22(�) + Gd2,12(�) + G�
d2,12

(�) and

Similarly as Prasad and Rao (1990), Datta and Lahiri (2000), and Das et al. (2004), 
we estimate MSE(𝜇̂

ebp

d
) with

Note that when using ML instead of REML estimation an additional biascorrection 
term has to be considered, see Datta and Lahiri (2000) for further details.

4 � Simulation

A model-based Monte Carlo simulation study is conducted to validate the theoreti-
cal derivations and reveal the performance of the MBFH predictor under various 
correlation settings. The simulation aims to empirically investigate the effect that the 
correlation parameters and the percentage of unobserved data have on the behavior 
of the predictors and estimators of MSEs. The values of the variance parameters are 
chosen all equal in order to have a neutral setting. The results can help researchers in 
the selection of dependent variables for the proposed MBFH predictor. Per variable 
5%, 10%, and 20% of direct estimates are considered missing to reveal how well 
the MBFH-EBP can predict the missing values and how accurate the correspond-
ing MSE estimates are. Often, the univariate FH estimator is used to stabilize vola-
tile regional estimates. Therefore, we compare the MBFH EBP and MSE estimates 
to the EBLUP and MSE estimates of the corresponding univariate FH estimator. 
The FH estimator leads to an empirical best linear unbiased predictors (FH-EBLUP) 

Hd��,12 = H�
d��,21

= hd�,1h
�
d�,2

=
(yd1 − x�

d1
�1)

2

�4

ed1

gd�,11g
�
d�,12

+
(yd2 − x�

d2
�2)

2

�4

ed2

gd�,12g
�
d�,22

+
(yd1 − x�

d1
�1)(yd2 − x�

d2
�2)

�2

ed1
�2

ed2

(
gd�,11g

�
d�,22

+ gd�,12g
�
d�,12

)
,

Hd��,22 = hd�,2h
�
d�,2

=
(yd1 − x�

d1
�1)

2

�4

ed1

gd�,12g
�
d�,12

+
(yd2 − x�

d2
�2)

2

�4

ed2

gd�,22g
�
d�,22

+
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d1
�1)(yd2 − x�
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�2)

�2
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�2

ed2

(
gd�,12g
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d�,22

+ gd�,22g
�
d�,12

)
.

MSE(𝜇̂
ebp

d
) = Gd1(𝜃) + Gd2(𝜃) + Gd3(𝜃) + O2×2(D

−1),

Gd1(𝜃) = Φd(𝜃)V
−1
ed
(𝜃)(Vud(𝜃) + Ved(𝜃))V

−1
ed
(𝜃)Φd(𝜃) + Vud(𝜃) − 2Φd(𝜃)V

−1
ed
(𝜃)Vud(𝜃),

Gd2,ab(𝜃) =

(
tr {Hd𝛽b𝛽a,11

(𝜃) cov (𝛽a, 𝛽b)} tr {Hd𝛽b𝛽a,21
(𝜃) cov (𝛽a, 𝛽b)}

tr {Hd𝛽b𝛽a,12
(𝜃) cov (𝛽a, 𝛽b)} tr {Hd𝛽b𝛽a,22

(𝜃) cov (𝛽a, 𝛽b)}

)
, a, b = 1, 2,

Gd3(𝜃) =

(
tr {Hd𝜃𝜃,11(𝜃) var (𝜃̂)} tr {Hd𝜃𝜃,21(𝜃) var (𝜃̂)}

tr {Hd𝜃𝜃,12(𝜃) var (𝜃̂)} tr {Hd𝜃𝜃,22(𝜃) var (𝜃̂)}

)
.

mse(𝜇̂
ebp

d
) = Gd1(𝜃̂) + Gd2(𝜃̂) + 2Gd3(𝜃̂).
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only for observed direct estimates. For missing direct estimates, the FH provides 
synthetic predictors (FH-SYN) only. Let us write the model (3.3) in the form

with D = 600 domains. Take p1 = p2 = 3 , p = 6 , � = (��
1
, ��

2
)� and 

�1 = (�11, �12, �13)
� = �2 = (�21, �22, �23)

� = (2, 3, 4)� . For k = 1, 2 , d ∈ 1,… ,D , generate 
Xd = diag (xd1, xd2)2×6 , with components xd1 = (xd11, xd12, xd13) = xd2 = (xd21, xd22, xd23) , 
xd11 = xd21 = 1 , xd12 = xd22 = Ud2 , xd13 = xd23 = Ud3 , where Ud2 ∼ Uniform(10, 20) 
and Ud3 ∼ Uniform(20, 40) , d = 1,… ,D are all independent. The matrix of auxil-
iary variables is fixed for all simulation runs. Take �2

u1
= �2

u2
= �2

ed1
= �2

ed2
= 2 and 

simulate ud ∼ N2(0,Vud) , ed ∼ N2(0,Ved) ∀d ∈ {1,… ,D} , where

We consider different combinations of random effect correlation 
� ∈ {−0.9,−0.6,−0.3, 0, 0.3, 0.6, 0.9} and sampling error correlation 
�ed12 ∈ {−0.3, 0, 0.6} . From experience, the chosen sampling correlations reflect 
common sampling scenarios. In the simulation, we estimate the model parameters 
via REML.

The steps of the simulation are 

1.	 For all scenarios repeat I = 2000 times ( i = 1,… , 2000 ) 

(a)	 G e n e r a t e  u
(i)

d
∼ N2(0,Vud)  ,  e

(i)

d
∼ N2(0,Ved)  ∀d ∈ {1,… ,D}  , 

y
(i)

d1
= x�

d1
�1 + u

(i)

d1
+ e

(i)

d1
 ∀d ∈ �1 , y

(i)

d2
= x�

d2
�2 + u

(i)

d2
+ e

(i)

d2
 ∀d ∈ �2 and 

y
(i)

d
= Xd� + u

(i)

d
+ e

(i)

d
 ∀d ∈ �3 , where D1 = 100 and D2 = 100.

(b)	 Calculate the true means �(i)

d
= Xd� + u

(i)

d
 ∀d ∈ {1,… ,D}.

(c)	 Calculation of the MBFH-EBP of �d . 

	 i.	 Fit model (4.1) to the simulated data: (y(i)
d1
,Xd) ∀d ∈ �1 , (y

(i)

d2
,Xd) 

∀d ∈ �2 , (y
(i)

d
,Xd) ∀d ∈ �3.

	 ii.	 Calculate the MBFH-EBPs 𝜇̂mbfh.ebp(i)

d
 under the fitted model (4.1).

	 iii.	 Calculate the MSE predictor 

with the formulas of Gd1,d,Gd2,d and Gd3,d depending on the group 
affiliation of the respective domain.

(d)	 Calculation of the FH-EBLUPs and FH-SYNs of �d1 and �d2 . 

	 i.	 Fit the corresponding univariate FH models of model (4.1) to the 
simulated data: (y(i)

d1
,Xd) ∀d ∈ �1 ∪ �3 , (y

(i)

d2
,Xd) ∀d ∈ �2 ∪ �3.

	 ii.	 Calculate the FH-EBLUPs 𝜇̂fh.eblup(i)

d
 for variable 1 ∀d ∈ �1 ∪ �3 

and variable 2 ∀d ∈ �2 ∪ �3.

(4.1)yd = Xd� + ud + ed, ∀d ∈ {1,… ,D}

Vud =

�
2 �

√
2
√
2

�
√
2
√
2 2

�
, Ved =

�
2 �ed12

√
2
√
2

�ed12

√
2
√
2 2

�
.

mse
(i)

d
= Gd1,d(𝜃̂

(i)) + Gd2,d(𝜃̂
(i)) + 2Gd3,d(𝜃̂

(i)),
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	 iii.	 Calculate the univariate synthetic estimates FH-SYN 
𝜇̂
fh.syn(i)

d1
= x�

d1
𝛽
fh(i)

1
 for variable 1 ∀d ∈ �2 and 𝜇̂fh.syn(i)

d2
= x�

d2
𝛽
fh(i)

2
 

for variable 2 ∀d ∈ �1.
	 iv.	 Calculate the MSE predictor for FH-EBLUP (cf. Prasad and Rao 

1990; Datta and Lahiri 2000).
	 v.	 Calculate the MSE predictor for FH-SYN using the derivations in 

Appendix C. For variable 1 D0 = �1 ∪ �3 , D1 = �2 . For variable 
2 D0 = �2 ∪ �3 , D1 = �1.

2.	 For 𝜇̂∗ ∈ {𝜇̂mbfh.ebp, 𝜇̂fh.eblup, 𝜇̂fh.syn} and mse∗ ∈ {msembfh.ebp,msefh.eblup,msefh.syn} , 
calculate 

The simulation population can be split in three domain groups, �1 , �2 , and �3 . For 
�3 direct estimates are observed for both variables of interest. For �1 direct estimates 
are observed for variable one, but missing for variable two. For �2 direct estimates 
are observed for variable two, but missing for variable one. The MBFH-EBP can 
be calculated for all domain-variable combinations. The FH-EBLUP, on the other 
hand, can be calculated only for domain-variable combinations with available direct 
estimates. When there are no direct estimates of a variable available, the FH model 
only provides the synthetic predictors FH-SYN.

The simulation results are presented in Figs. 1, 2, 3, and 4. We show the results 
for 20% missing values in both variables of interest. The same plots with 5% and 
10% missings look very similar and are displayed in Sect. 6 of the supplementary 
material. The figures differ with respect to the performance measure shown and their 
underlying sampling error correlation. They show the performance of the predictors 
MBFH-EBP, FH-EBLUP, and FH-SYN and their corresponding MSE estimates. 
The ML and REML methods are standard estimation methods in linear mixed mod-
els. However, REML estimators of the variance component parameters tend to have 
a lower bias and have a lower computational cost. This is why we obtain model 
parameters using the REML Fisher-scoring algorithm. The results under ML are 
similar and therefore not shown.

The performance measures are depicted separately for the three domain groups, 
�1 , �2 , and �3 , and the two variables of interest, resulting in six panels. The gray-
shaded panels indicate domain-variable combinations where direct estimates are 
missing. Each panel presents the results for different underlying correlations of ran-
dom effects � . This way the interplay of the estimators efficiency with the correla-
tion of sampling errors and random effects can be retrieved. In each panel, a boxplot 
of the RRMSE or RBias over the corresponding domains is drawn for the differ-
ent random effect correlations. In panels with observed direct estimates, the box-
plots are shown for FH-EBLUP and MBFH-EBP, whereas in panels with missing 

RBIAS(𝜇̂∗
d
) =
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d
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1

I

I�

i=1

(𝜇̂
∗(i)

d
− 𝜇
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direct estimates, i.e., in gray-shaded panels, the boxplots are shown for FH-SYN and 
MBFH-EBP. For facilitating the comparison, in our application in Sect. 5 we have 
D = 762 , D1 = 78 , D2 = 58 , D3 = 626 such that about 10% of the first and 7.6% 
of the second variable of interest are missing. Furthermore, in the application the 
sampling error correlation is �ed12 = 0 , and the correlation of random effects � is 
estimated at 0.97.

Fig. 1   RRMSE of point estimates, 20% missing domains, �
ed12 = 0.6

Fig. 2   RRMSE of point estimates, 20% missing domains, �
ed12 = −0.3
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We first evaluate the performance of the predictors MBFH-EBP, FH-EBP, and 
FH-SYN via their RRMSE. Figures 1, 2, and 3 show the corresponding RRMSE 
for different underlying sampling error correlation �ed12 ∈ {0.6,−0.3, 0} . The 
nonzero sampling error correlations in Figs.  1 and 2 correspond to situations 
where both variables stem from the same survey. A zero sampling error cor-
relation as in Fig. 3 applies if both variables stem from independent surveys. It 

Fig. 3   RRMSE of point estimates, 20% missing domains, �
ed12 = 0

Fig. 4   RBias of MSE estimates, 20% missing domains, �
ed12 = −0.3
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is visible for all three Figs. 1, 2, and 3 that in terms of RRMSE the introduced 
MBFH-EBP is at least as efficient as the respective FH-EBLUP or FH-SYN. 
This observation holds for positively, negatively, and uncorrelated sampling 
errors. Thus, the application of the MBFH instead of the FH estimator is profit-
able for various combinations of sampling error and random effect correlations.

The prediction of missing values is visible in the gray-shaded panels. There, 
the efficiency gain of the MBFH-EBP over the FH-SYN in terms of RRMSE 
is especially high for high random effect correlation, positive or negative. This 
finding applies to all sampling error correlations, i.e., Figs.  1, 2, and 3 with 
�ed12 ∈ {0.6,−0.3, 0} . Thus, for the prediction of missing values the application 
of MBFH instead of FH is profitable as long as the absolute value of the under-
lying random effect correlation gets away from zero.

The performance of the MBFH-EBP for domains with no missing values is 
visible in the panels of group �3 . For these, in Figs. 1, 2, and 3, the efficiency 
gain of MBFH-EBP over FH-EBLUP is especially high when the correlation of 
random effects and sampling errors is of opposite sign and high magnitude. This 
coincides with the findings in Datta et al. (1999) for unit-level multivariate small 
area models without missing values.

Next, we take a look at the corresponding MSE estimates. Figure 4 presents 
the simulation results of the relative Bias (RBias) of the different MSE estima-
tors under REML and sampling correlation �ed12 = −0.3 for varying random 
effect correlations � . The MSE estimates of MBFH-EBP lead good results for 
both missing and observed domains. The MSE estimates of FH-SYN, which der-
ivation is shown in Appendix C, also lead good results. The relative bias of the 
MBFH-EBP MSE is around zero in most panels and for all random effect cor-
relations. We can see that in group �3 there is a slight positive bias in the mse 
estimate for � = 0.9 with �ed12 = −0.3 . This bias is not visible when �ed12 = 0 as 
in the application.

The MBFH-EBP is best for both observed and missing estimates when (1) 
there are many domains with both variables observed while in case a variable is 
missing the other variable is observed and (2) the correlation of random effects 
and sampling errors is of opposite sign and high magnitude. One would, for 
example, expect the random effects of a variable in two consecutive years to 
be highly positively correlated, e.g., in the application in Sect.  5, we focus on 
the median income of Hispanic or Latino Americans in two consecutive years). 
On the other hand, random effects of variables like employment and unemploy-
ment would be expected to be highly negatively correlated. The correlation of 
sampling errors is determined by the sampling design. As we see from the MSE 
estimation in Fig. 4 in case a researcher is unsure whether applying the MBFH 
instead of the FH estimator is improving the predictions, a comparison of the 
MBFH and FH MSE estimates is recommended. For the selection of variables 
of interest, we would therefore advise researchers to pay special attention to the 
missing patterns of the two variables before considering the correlation patterns.
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5 � Estimating county‑level median income of Hispanic or Latino 
Americans

5.1 � Model results

Let yd =
(
yd1, yd2

)� be the vector of direct estimates of the US county-level median 
annual incomes of Hispanic or Latino origin people in 2010 and 2011. We assume 
that yd follows model (3.3)

where ud = (ud1, ud2)
� ∼ N2(0,Vud) , ed = (ed1, ed2)

� ∼ N2

(
0,Ved

)
 are independ-

ent of each other. The number of considered US counties (domains of interest) is 
D = 3, 141 . Let � = (��

1
,��

2
)� be the vector of characteristics of interest HC02_EST_

VC12 in 2010 and 2011 for the D domains. The vector of direct estimates y of � 
is given by the ACS 1-year direct estimates. We take the estimated variances of 
the ACS 1-year direct estimates as input for the covariance matrices Ved . The ACS 
1-year direct estimates are provided with margin of error = 1.645 ∗

√
variance 

(U.S. Census Bureau 2014, Chapter 12.3). Assuming the sampling errors between 
two years to be independent the covariance matrices Ved are defined by

where �2
ed1

 and �2
ed2

 are given by the respective (margin of error∕1.645)2 . The off-
diagonal elements of Ved are zero as the covariances of the sampling errors of the 
direct estimates between 2010 and 2011 are expected to be zero.

We fit the MBFH model to the data of
D = 762 counties ( D1 = 78 , D2 = 58 , D3 = 626 ), the description of the data 

and auxiliary information is given in Sect.  2.2. The dependent variables y are 
ACS 1-year direct estimates of the median income (dollars) Hispanic or Latino 
origin (of any race) (HC02_EST_VC12) in 2010 and 2011. Tables 1 and 2 present 
the REML estimates of the regression parameters of the selected MBFH model. 

(5.1)yd = Xd� + ud + ed, ∀d ∈ {1,… ,D},

Ved =

(
�2
ed1

0

0 �2
ed2

)
, ∀d ∈ 1,… ,D,

Table 1   Regression parameters 
for variable HC02_EST_VC12 
in 2010

Beta SE t-value p-value

(Intercept) 61629.73 2151.51 28.64 0.00
RDEATH2011 −1757.83 214.65 −8.19 0.00
CLF040210D −806.16 163.11 −4.94 0.00

Table 2   Regression parameters 
for variable HC02_EST_VC12 
in 2011

Beta SE t-value p-value

(Intercept) 61122.45 2076.02 29.44 0.00
RDEATH2011 −1722.71 205.66 −8.38 0.00
CLF040210D −824.08 158.03 −5.21 0.00
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Columns with labels beta, std.error, t-value, and p-value, respectively, contain the 
values of the regression parameter estimator, the standard error, the t-statistic and 
the p-value, respectively. The estimated coefficients are very similar for HC02_
EST_VC12 in 2010 and 2011 and highly significant. They furthermore seem plau-
sible considering that counties with higher death rate and higher civilian labor 
force unemployment rate tend to have lower values of HC02_EST_VC12. Any 
thematic conclusions from the few freely available auxiliary data are, however, 
limited, e.g., due to high correlations among variables.

The 2 × 2 covariance matrix Vud depends on three unknown parameters, 
�1 = �2

u1
 , �2 = �2

u2
 , and �3 = � , i.e.,

As we consider the same variable in two consecutive years, we expect the correla-
tion of random effects to be highly positive. Table 3 contains the estimates of the 
variance component parameters and the corresponding asymptotic 95% confidence 
intervals. The estimated random error correlation is highly positive.

Figure 5 plots the MBFH-EBPs versus the corresponding standardized model 
residuals in 2010 and 2011. The raw residuals are rebp

dk
= ydk − 𝜇̂

ebp

dk
 , d = 1,… ,D . 

The standardized residuals of component k, k = 1, 2 , are calculated from the raw 
residuals after subtracting the mean and dividing by the standard deviation of 
{r

ebp

dk
∶ d = 1,… ,D} . Figure 6 plots the histograms of the standardized residuals. 

From the model, the residuals are expected to be normally distributed with mean 
zero and both figures show that the mass of the residuals is distributed near and 
around zero. At the same time, we detect some major outliers. In 2010 and 2011, 
about 2% of the standardized residuals have an absolute value greater 3. A further 
treatment of these outliers is necessary, but beyond the scope of this paper where 
we use the data for an illustration of the presented MBFH model. Unfortunately, 
we do not have access to new auxiliary variables that could explain the behavior 
of the target variables in the few domains where the model performs poorly. For 
further studies, an investigation of the outliers and of a robust version of the pro-
posed model would be interesting. We refer to Sinha and Rao (2009) for general 
information on robust SAE, Schmid and Münnich (2014) for robust SAE includ-
ing spatial effects, and Baldermann et al. (2018) for the additional consideration 
of spatial non-stationarity. For an implementation of robust FH models in R, see 
package rsae (Schoch 2014).

Vud =

(
�2
u1

��u1�u2
��u1�u2 �2

u2

)
, ∀d ∈ {1,… ,D}.

Table 3   Variance component 
parameters and corresponding 
asymptotic 95% confidence 
intervals

� Lower limit Upper limit

�2

u1
98348356.75 98348356.75 98348356.75

�2

u2
92409378.55 92409378.55 92409378.55

� 0.97 0.95 0.98
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5.2 � Validating predictions of observed direct estimates

We compare the resulting MBFH-EBPs to the ACS 1-year direct estimates of the 
variable of interest, the median income (dollars) Hispanic or Latino origin (of any 
race) (HC02_EST_VC12) in 2010 and 2011. For the comparison we only include 

Fig. 5   MBFH-EBPs versus corresponding standardized model residuals of HC02_EST_VC12 in 2010 
and 2011

Fig. 6   Histograms of standardized residuals of MBFH-EBPs in 2010 and 2011
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counties in which ACS 1-year direct estimates are available. Figure  7 plots the 
standard error of ACS 1-year direct estimates versus the difference between the 
direct estimates and MBFH-EBPs of HC02_EST_VC12 in 2010 and 2011. As 
the FH estimator is a shrinkage estimator, it is expected that the more reliable the 
direct estimates, and thereby the lower the ACS 1-year standard error, the closer are 
MBFH-EBPs and direct estimates. This shrinkage property is visible in Fig. 7 for 
the MBFH.

Due to the shrinkage property of the MBFH, the root MSE of the MBFH-EBPs 
is expected to be close to the ACS standard errors for reliable direct estimates. For 
highly volatile direct estimates, on the other hand, it is expected to be much lower. 
The total number of persons HIS010210D5 in a county is expected to be an indica-
tor of the reliability of the direct estimates, the more persons in a county, the more 
reliable the resulting estimate. Figure 8 plots log HIS010210D versus the ratio of the 
ACS 1-year direct estimate standard errors to estimated MBFH root MSE in 2010 
and 2011. For counties with high total number of persons MBFH root MSE and 
ACS standard errors are close as the corresponding point estimates are close. For 
counties with lower total number of persons MBFH root MSE estimates are substan-
tially lower than ACS 1-year standard errors as the estimator is more shrunk to the 
model-part than to the volatile direct estimate.
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Fig. 7   Difference between ACS 1-year direct estimates and MBFH-EBPs versus standard error of ACS 
1-year direct estimates of HC02_EST_VC12 in 2010 and 2011

5  The data is available on https://​www.​census.​gov/​libra​ry/​publi​catio​ns/​2011/​compe​ndia/​usa-​count​ies-​
2011.​html.

https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html
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5.3 � Validating predictions of missing direct estimates

To validate the MBFH-EBPs also for missing direct estimates, ACS 5-year esti-
mates of the variable of interest and Census 2010 estimates of a similar variable are 
used. Table 4 shows the quantiles of the relative difference (in %) of the ACS 1-year 
direct estimates and the MBFH-EBPs to the ACS 5-year direct estimates of HC02_
EST_VC12. We compare 1-year direct estimates and EBPs in 2010 and 2011 to ACS 
5-year direct estimates in 2008-2012 and 2009-2013, respectively. The results for 
the MBFH-EBPs are shown both for domains with available direct estimates and 
those without direct estimates, but were MBFH-EBPs could be computed. Due to 
their larger sample sizes the ACS 5-year estimates are less volatile than the ACS 

Fig. 8   Ratio of root MSEs of ACS 1-year direct estimates to root MSEs of MBFH-EBPs of HC02_EST_
VC12 in 2010 and 2011 versus log of total persons in 2010 (HIS010210D)

Table 4   Quantiles of the relative difference of estimates in 2010 and 2011 to ACS 5-year estimates in 
2008–2012 and 2009–2013 of variable HC02_EST_VC12 (in %)

Estimates Year Observations Quantiles

5% 25% 50% 75% 95%

ACS 1-year direct estimates 2010 704 −32.85 −13.00 −4.00 5.00 47.00
MBFH-EBPs of available domains 2010 704 −28.00 −13.00 −6.00 −0.00 21.85
MBFH-EBPs of missing domains 2010 58 −42.05 −23.75 −10.50 3.75 48.45
ACS 1-year direct estimates 2011 684 −34.85 −16.00 −6.00 4.00 44.85
MBFH-EBPs of available domains 2011 684 −27.85 −14.00 −7.00 −1.00 15.00
MBFH-EBPs of missing domains 2011 78 −38.00 −21.75 −8.50 5.75 49.15
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1-year estimates and available for more counties (Table 4). Even though differently 
aggregated ACS estimates are not directly comparable, a comparison between ACS 
1-year direct estimates and MBFH-EBPs to the ACS 5-year estimates should give a 
suitable image of the reliability of the MBFH-EBPs. As can be seen in Table 4, for 
domains with given direct estimate the quantiles of the relative differences of the 
MBFH-EBPs are smaller than those of the ACS 1-year direct estimates. Further-
more, the quantiles of the relative difference of the MBFH-EBPs of domains with 
no available direct estimate are close to those of the ACS 1-year direct estimates. 
The proximity of quantiles is more visible in 2011 than in 2010. This indicates that 
for both domains with available and missing ACS 1-year direct estimate, the MBFH 
predictor accomplishes more realistic predictions in 2011 than in 2010.

Figure 9 shows the different estimates exemplary for the states Indiana and Ohio 
in 2010 (left plots) and 2011 (right plots). In rows one, two and three are the ACS 
1-year direct estimates, the ACS 5-year direct estimates, and the MBFH-EBPs, 
respectively. In both years, many ACS 1-year and some ACS 5-year direct estimates 
are missing, indicated by the white-shaded domains. Framed counties indicate those 
with ACS 1-year direct estimates missing in one year, but available in the other. 
For these counties the MBFH model provides EBPs in contrast to the commonly 
used univariate FH model. Therefore, in row three the framed counties are filled 
by MBFH-EBPs. The plot confirms the results from Table 4 that MBFH-EBPs are 
relatively close to the ACS 5-year, especially when considering counties, where the 
direct estimate is missing in one year, but available in the other. This indicates that 
the predictions of the missing values by the MBFH model are realistic.

For further validation of the MBFH-EBPs, similar to Table  4, we display the 
quantiles of the relative difference (in %) to the Census-ACS 2005–2009 estimates 
of the median household income in the past 12 month (in 2009 inflation-adjusted 
dollars) in 2005–2009 (INC110209D) in Table  5. The Census-ACS estimates of 
INC110209D are available for all counties, and variables HC02_EST_VC12 and 
INC110209D are expected to be close. Similar to Table 4, we see that especially for 
2011 the MBFH-EBPs are close to the Census estimates. This finding further sup-
ports the validity of the predicted missing values by the MBFH model.

For the analysis of the county-level median income of Hispanic or Latino Ameri-
cans, the MBFH estimator shows promising results. The validation indicates that the 
MBFH-EBPs are realistic for both observed and missing direct estimates. It should 
be noted that this result is already achieved under the rather small number of freely 
available auxiliary data. Even better results are to be expected when more detailed 
auxiliary data are considered. With the use of the MBFH estimator, researchers 
are able to improve inter-regional and temporal comparisons of subgroup-specific 
indicators.

6 � Summary and outlook

Socioeconomic indicators, such as the median income of sub-populations, are key 
to both policy recommendations and evaluation. Taking the freely available US 
ACS data on county-level median income of Hispanic or Latino Americans as an 
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example, many county-specific direct estimates for 2010 and 2011 are associated 
with high standard errors or unpublished. Thereby, a comparison of different coun-
ties or time-points is partly not possible.

We present a new estimator based on small area estimation techniques and bivar-
iate modeling, the MBFH predictor. It provides best predictors for many missing 

Fig. 9   ACS 1-year direct estimates and MBFH-EBPs of 2010 and 2011 and ACS 5-year direct estimates 
of 2008–2012 and 2009–2013 of HC02_EST_VC12 shown for the counties in Indiana and Ohio
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direct estimates, is easily applicable, allows for variable-specific choices of auxil-
iary data, and is flexible with respect to the correlation patterns and choice of the 
variables of interest. The MBFH predictor is a generalization of the bivariate FH 
model. That means in all situations where a bivariate FH model can be applied, the 
MBFH predictor can be applied as well, with the difference that the MBFH pre-
dictor also includes information of domains for which only one direct estimate is 
available. We furthermore derive an MSE estimator for the MBFH predictor and 
the synthetic FH predictor for observed and missing domains. Both are comparable 
in their relative bias. They therefore allow for a comparison of the MBFH and FH 
predictor for observed and missing values. The MSE estimator is convenient from a 
computational point of view because no resampling methods are needed to specify 
the uncertainty of the MBFH predictor.

A large-scale model-based Monte Carlo simulation study reveals the advantages 
of the MBFH predictor over the corresponding univariate FH models. For that, we 
consider the effects separately for the groups of domains with complete information 
and those where one direct estimate is missing. First, for domains with complete 
information the predictor can be advantageous over the FH-EBP when the varia-
ble random effects are highly correlated, positively or negatively. Thereby, it pre-
serves the good qualities of the bivariate FH model but includes also information 
of domains with partially missing information in the parameter estimation. Second, 
for domains with one missing direct estimate we have to distinguish between the 
performance of the EBP for the variable with an observed and that with a missing 
direct estimate. For the variable with an observed direct estimate, the MBFH predic-
tor does not give any performance gains over the corresponding FH model. On the 
other hand, there is also no performance loss visible in the simulation studies. For 
the variable with a missing direct estimate, the MBFH predictor gives significant 
performance gains over the corresponding FH synthetic predictor when the variable 
random effects are highly correlated. These are precisely the cases for which the 
MBFH predictor is designed and where we see the main contribution of the pro-
posed approach.

We emphasize that we do not use imputation methods in the common way, as our 
goal is not to do analysis on the imputed data set. Our goal is to get best predictions 

Table 5   Quantiles of the relative difference of estimates in 2010 and 2011 to Census-ACS 2005–2009 
estimates of variable INC110209D (in %)

Estimates Year Observations Quantiles

5% 25% 50% 75% 95%

ACS 1-year direct estimates 2010 704 −51.00 −35.00 −24.00 −9.75 32.85
MBFH-EBPs of available domains 2010 704 −46.00 −33.00 −25.00 −16.00 2.00
MBFH-EBPs of missing domains 2010 58 −54.00 −37.50 −24.50 −13.25 8.25
ACS 1-year direct estimates 2011 684 −52.00 −36.00 −25.00 −12.00 27.85
MBFH-EBPs of available domains 2011 684 −45.00 −34.00 −26.00 −17.00 −0.00
MBFH-EBPs of missing domains 2011 78 −48.30 −32.75 −22.50 −9.00 6.30
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of socioeconomic indicators for the domains. Hence, our method does not stand 
in concurrence against imputation, as these two methods have different goals. We 
do not have any information on the units in the domains with missing direct esti-
mates. Hence, the only possibility is to assume that this area follows the selected 
model. We do not work with missing data in the sense of non-response. We deal 
with unpublished direct estimates in some domains, where the sample size is typi-
cally null or too small. A basic imputation method under a selected model would be 
using a synthetic estimator. Instead, we propose an EBP based on the MBFH model.

For an illustration, we applied the MBFH predictor to the median income of His-
panic or Latino Americans in 2010 and 2011 where publicly available direct esti-
mates are volatile and partially missing. The validation with external data shows 
that the MBFH-EBP provides realistic results in practice. We therefore recommend 
the use of the MBFH-EBP for the estimation of regional indicators, especially in the 
context of unavailable direct domain estimates and unsampled domains. In the appli-
cation, we detected some heavy outliers, and an investigation of a robust version of 
the proposed MBFH model therefore represents an interesting further area of study. 
In the future, we plan to publish the presented algorithm in an R package. In any 
case, the current R codes are available on request.
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