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Abstract
For a sample of Exponentially distributed durations we aim at point estimation and
a confidence interval for its parameter. A duration is only observed if it has ended
within a certain time interval, determinedby aUniformdistribution.Hence, the data is a
truncated empirical process that we can approximate by a Poisson process when only a
small portion of the sample is observed, as is the case for our applications.Wederive the
likelihood from standard arguments for point processes, acknowledging the size of the
latent sample as the second parameter, and derive the maximum likelihood estimator
for both. Consistency and asymptotic normality of the estimator for the Exponential
parameter are derived from standard results on M-estimation. We compare the design
with a simple random sample assumption for the observed durations. Theoretically, the
derivative of the log-likelihood is less steep in the truncation-design for small parameter
values, indicating a larger computational effort for root finding and a larger standard
error. In applications from the social and economic sciences and in simulations, we
indeed, find a moderately increased standard error when acknowledging truncation.

Keywords Double-truncation · Exponential distribution · Large sample

1 Introduction

Poor sample selection is a frequent basis for objection to the inferential quality of data.
Hospital controls may be negatively selective, a student sample is a positive selection.
Sampling from soldiers is selective, because a body height threshold truncates smaller
recruits. Inference from the status quo of a loan portfolio can take into account the
fact that earlier loan applications with too small score had been rejected (see Bücker
et al. 2013). Here we study de-selection on the basis of age being either too low or too
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1248 R. Weißbach , D. Wied

Fig. 1 Left: Three cases of the date of 1st event (black bullet) and date of 2nd event (white circle): observed
(solid) and truncated (dashed) durations/ Right: Sets in the co-domain of (Xi , Ti )

′ or (˜X j ,˜Tj )
′ used in

Lemma 1 (and proof): Example x ≥ s. (Explanation of panels and symbols is distributed over larger parts
of text.)

high. An age is the duration between two events, denoted as “birth” and “death”, and
Fig. 1 (left) shows the three possible situations.

We assume an Exponential distribution for the latent duration ˜X j , observed or
truncated, and estimate its parameter θ0. Our three applications will be the lifetime of
a company (in Germany), the duration of a marriage (in the city of Rostock), and the
waiting time, after the 50th birthday, until dementia onset (in Germany).

The parameter of an Exponential distribution is closely linked to the probability of
the second event happening within one time unit, one year in all of our applications.
In essence, one wants to estimate such an event probability by dividing the number of
events (over a certain period) by the number of units at risk (at the beginning of the
period), this being prohibited by the lack of denominator. We circumvent the missing
data with the conditional distribution of the duration.

We distinguish, as three statistical masses, the population as all units with a first
event in a period (of length G), the latent simple random sample and, after truncation,
the observed data.

One can of course ask, in particular whether such simple random latent samples
exist at all in practice. In survival analysis, the assumption of durations as independent
identically distributed random variables can be defended, because independence and
randomness are attributable to an unforeseeable staggered entry (see e.g.Weißbach and
Walter 2010). Even more specifically, in labour economics, it is validated theoretically
that market friction renders the entry into a new occupation for an employee random,
and hence its duration until the new occupation.

Truncation is known to introduce a selection bias, referring to the comparison of two
models, the estimate of the correct model compared to the estimate from erroneously
modelling the observed data as a simple random sample (srs-design). (We will later
distinguish the selection bias from the statistical bias, the later referring to only one
model, namely comparing an estimate with the true parameter.) More important for us
is that truncation is suspected to increase the standard error, as suspected by Adjoudj
and Tatachak (2019) due to dependence in the observed data, and we are interested in
the extent to which the truncation hinders statistical inference in terms of large sample
properties.
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Truncating the exponential with a uniform distribution 1249

As an early reference, Cox and Hinkley (1974) in their Example 2.25 consider the
size of the truncated sample as an ancillary statistic, not acknowledging the size of the
latent sample, n, as a parameter. The size of the truncated sample was subsequently
considered again as random inWoodroofe (1985), and conditioning was used to prove
consistency. Neighbouring contemporaneous work on truncation in survival analysis,
mostly semi- and non-parametrically are (Shen 2010; Moreira and de Uña-Álvarez
2010; Weißbach et al. 2013; Emura et al. 2015, 2017; Frank et al. 2019; Dörre 2020).

Here, we derive the maximum likelihood estimator (MLE) of n and θ0 by repre-
senting the observed data as a truncated empirical process. We derive the likelihood
with standard results for empirical processes (see e.g. Reiss 1993). The size of the data
m will be shown to be such a process, seen as a point measure, evaluated at a certain
set S. To the best of our knowledge the model is the first example of an exponential
family with the space of point measures being the sample space.

2 Model and result

Before presenting the estimator and its asymptotic distribution, the data need to be
described.

2.1 Sample selection

The unit j of the latent sample carries as second measure with its lifetime ˜X j (∈ R
+
0 )

its birthdate (a calendar time). We, equivalently, measure the birthdate backwards
from a specific time point (equal for all units of the latent sample) and denote it as
˜Tj . We use the calendar date when our study period begins as thus time point, so that
˜Tj has the interpretation of being the “age when the study begins”. We consider as
population, units born within a pre-defined timewindow going back G time units from
the study beginning, so that ˜Tj ∈ [0, G] (see Fig. 1 (left)). Define S := R

+
0 × [0, G],

with 0 < G < ∞, the space for one outcome, and let it generate the σ -field B. In
comparison to the example of soldiers whose recruitment truncates all at the same
height, to fit our survival analytic applications, each unit is truncated at a different
age. As illustrated in Fig. 1 (left), all units are truncated at the same time, when the
study begins. Differently for each unit j , the time interval of observation truncates
the sample unit in cases of a too low or too high age. Because ˜Tj is the (shifted)
birth date, assuming as births process a time-homogeneous Poisson process renders
the distribution of ˜Tj to be Uniform (see Dörre 2020, Lemma 2). Let us collect the
following notation and assumptions:

(A1) Let � := [ε, 1/ε] for some “small” ε ∈]0, 1[.
(A2) Let for θ0 being an interior point of�, ˜X j ∼ Exp(θ0), i.e. with density fE (·/θ0)

and CDF FE (·/θ0) of the Exponential distribution. Let ˜Tj ∼ Uni[0, G], with
density f ˜T and CDF F˜T of the Uniform distribution.

(A3) ˜X j and ˜Tj are stochastically independent.
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1250 R. Weißbach , D. Wied

(A4) For known constant s > 0, column vector (X̃ j , T̃ j )
′ is observed if it is in

D := {(x, t)′|0 < t ≤ x ≤ t + s, t ≤ G}.

Assumption (A4) formalises that a sample unit is only observed when its second event
falls into the observation period (of length s). For instance, in one of the applications,
we will know the age-at-insolvency, i.e. the duration until insolvency, only for those
companies that filed for insolvency within the s = 3 years 2014–2016. The parallelo-
gram D is depicted in Fig. 1 (right). Following up on (A4), we denote an observation
by (Xi , Ti )

′, i = 1, . . . , m ≤ n.
The paper assumes a simple random sample for (˜X j ,˜Tj )

′, j = 1, . . . , n, n ∈ N,
i.e. i.i.d. random variables (r.v.) mapping from the probability space (�,A, P) onto
the measurable space (S,B).

Define now for θ ∈ �

αθ := (1 − e−θs)(1 − e−Gθ )

Gθ
(1)

and note that for θ = θ0, by Fig. 1 (right), Fubini’s Lemma and the substitution rule,
it is P{˜Tj ≤ ˜X j ≤ ˜Tj + s}, i.e. the selection probability of the j th individual. The
numerator is, due to θ0, s, G > 0, strictly positive and, as to be expected, with a larger
observation interval, i.e. increasing s, the selection becomes more likely. Additionally,
for larger θ0 (or smaller expected duration) the denominator increases faster than the
numerator does, so that the selection becomes less likely. A shorter duration will not
reach the observation interval. Seen as a function ofG,αθ0 ismonotonously decreasing,
with almost the same interpretation.

The selection probability will occur in the likelihood, so that for maximisation,
its first derivative will be needed. The second derivative of αθ (with now variable θ )
will be needed for proving the asymptotic normality and thus calculating the standard
error. The proof is elementary and omitted here.

Corollary 1 With Assumptions (A1)–(A4) the first and second derivatives of (1) in θ

are:

α̇θ = θse−θs(1 − e−Gθ ) + θ(1 − e−θs) G e−Gθ − (1 − e−θs)(1 − e−Gθ )

Gθ2

α̈θ = e−θs
(

− 2s

Gθ2
− s2

Gθ
− 2

Gθ3

)

+ e−Gθ

(

− 2

θ2
− G

θ
− 2

Gθ3

)

+e−(G+s)θ
(

2s + G

Gθ2
+ (G + s)s

Gθ
+ 1

θ2
+ G + s

θ
+ 2

Gθ3

)

− 2

Gθ3

Obviously, the distribution of (˜X j ,˜Tj )
′, conditional on being observed,will become

important for deriving the likelihood.
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Truncating the exponential with a uniform distribution 1251

Definition 1 Let (X1, T1)′, (X2, T2)′, (X3, T3)′, …, be independent and identically
distributed with CDF

F X ,T (x, t) = P
{

˜X j ≤ x,˜Tj ≤ t |˜Tj ≤ ˜X j ≤ ˜Tj + s
}

.

In more detail, the distributions of (Xi , Ti )
′ and Xi will be needed on the one hand

later to define the precise stochastic description of the data, i.e. of the truncated sample
as a truncated empirical process. On the other hand, we already need the distribution
(and also moments) here to study the consistency and asymptotic normality of the
maximum likelihood estimator. The proofs of Lemma1 andCorollary 2 are elementary
(and omitted), but it is useful to define sets (see Fig. 1 (right)):

E1 := [0, x] × [0, t] ∩ D, E3 := triangle spanned by points (0, 0)′, (0, t)′, (t, t)′,
E2 := triangle spanned by points (s, 0)′, (x, 0)′, (x, x − s)′ (i f x ≥ s, else ∅)

Lemma 1 With Definition 1 and under Assumptions (A1)–(A4) it holds, for (x, t)′ ∈ D,

αθ0 F X ,T (x, t) = (1 − e−θ0x )t/G − R(x, t), with ∂2

∂x∂t R(x, t) = 0.

Corollary 2 With Definition 1 and under Assumptions (A1)–(A4):

(i) For (x, t)′ ∈ D it holds f X ,T (x, t) = θ0
Gαθ0

e−θ0x (outside D it is zero).

(ii) The marginal density of X for x ∈ [0, G + s] is

f X (x) = θ0

Gαθ0

e−θ0x (1[0,s](x)x + 1]s,G](x)s + 1]G,G+s](x)(G − x + s)
)

.

(iii) For the expectation of Xi it holds

αθ0 Eθ0(Xi ) = A(s, G, θ0)e
−θ0s + B(s, G, θ0)e

−θ0G

+C(s, G, θ0)e
−θ0(G+s) + 2

Gθ20
,

with A(s, G, θ0) := − s
Gθ0

− 2
Gθ20

, B(s, G, θ0) := − 1
θ0

− 2
Gθ20

and C(s, G, θ0) :=
G+s
Gθ0

+ 2
Gθ20

.

(iv) For the variance of Xi note that

Eθ0(X2
i ) = Aq(s, G, θ0)e

−θ0s + Bq(s, G, θ0)e
−θ0G

+Cq(s, G, θ0)e
−θ0(G+s) + 1

4θ30

with Aq(s, G, θ0) = −s2
Gθ0

− s
6θ20

− 1
4θ30

, Bq(s, G, θ0) = −G
θ0

− 4
θ20

− 1
4θ30

and

Cq(s, G, θ0) = (G+s)2

Gθ0
+ G+s

6θ2
+ 1

4θ30
.

We are now in the position to formulate the likelihood, maximise it and apply large
sample theory.
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1252 R. Weißbach , D. Wied

2.2 Estimator and confidence interval

Similar to P{A ∩ B} = P{A|B}P{B} and with detailed definitions following, we
decompose the density of the observations and the random sample size, i.e. the
likelihood 	, into the product of the conditional density of the data—conditional
on observation—and the distribution of the observation count. If the observations—
conditional on having been observed—are independent, the first factor of such product,
again, is a product, namely over the conditional densities of each observation.

W.r.t. the second of such factors, note that the size of the observed sample has a
Binomial distribution. We can approximate it by a Poisson distribution, when—as is
usually argued with the probability generating function—the selection probability αθ

for each of the n i.i.d. latent Bernoulli experiments is small. This is the case when the
width of the observation period (of length s) is “short”, relative to population period
(of length G), as will be true for our applications. The description so far motivates

	(m,

m
∑

i=1

xi ; θ, n) ≈ θm exp

(

−θ

m
∑

i=1

xi

)

nm exp(−nαθ ), (2)

wherewe already use the “generic” parameter θ , as will be explained at the end of Sect.
3. The conditionally independent and Exponentially distributed observed durations Xi

cause the first two factors in (2). The last two factors appear in the Poisson distribution
of the observed sample sizewith parameter nαθ . Details for the likelihood construction
will need a formulation of the data as truncated empirical process and will be given in
Sect. 3 (and in Theorem 3). The main topic is that it is not necessary to formulate the
conditional independence as further assumptions, but that it follows from the simple
sample assumption for the (˜X j ,˜Tj )

′ and Assumptions (A1)–(A4). At first reading,
Sect. 3 may be omitted without lack of coherence.

As a side remark, by inspection of (2), and long-known for random left-truncated
durations, the likelihood does not include the (observed) ti , but it does include the
(unobserved) n. Accordingly n, that has not been a parameter in the model (A1)–(A3),
becomes a parameter after adding (A4).

As n is unknown in likelihood (2) (and equally in its rigorous counterpart to follow
in Theorem 3), we obtain the approximate MLE for (n, θ0) and use the θ -coordinate
of the bivariate zero as θ̂ . The logarithm of the likelihood has the derivative

∂

∂θ
log 	

(

m,

m
∑

i=1

xi ; θ, n

)

= m

θ
−

m
∑

i=1

xi − nα̇θ . (3)

Solving the bivariate equation for n ∈ R
+ results in m/αθ . In order to facilitate the

proofs later on, we formulate the estimation as a minimization problem, and in detail
as a minimization of an average. Define
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Truncating the exponential with a uniform distribution 1253

ψθ (x̃ j , t̃ j ) := i j

(

x̃ j − 1

θ
+ α̇θ

αθ

)

= i j

(

x̃ j − 1

θ

+ θse−θs(1 − e−Gθ ) + θ(1 − e−θs) G e−Gθ − (1 − e−θs)(1 − e−Gθ )

θ(1 − e−θs)(1 − e−Gθ )

)

,

(4)

with i j as a realization of I j := 1[T̃ j ,T̃ j +s](X̃ j ).
The derivative of the log-likelihood is now obviously related to (see van der Vaart

1998, Sect. 5)

�n(θ) := 1

n

n
∑

j=1

ψθ(˜X j ,˜Tj ). (5)

The function is not observable, but it becomes observable after multiplication by n
and hence its zero, θ̂ , is observable.

In order to account for boundary maxima, define the MLE θ̂ now as the zero of
�n(θ) if it exists in (the open) �, as ε if �n(θ) > 0, respectively as 1/ε if �n(θ) < 0,
both for all θ ∈ �. The following analytical properties (with proof in Appendix A)
will be needed to prove the consistency and asymptotic normality of θ̂ .

Lemma 2 Under the Assumptions (A1)–(A4) it is

(i) ψθ(x̃ j , t̃ j ) twice continuously differentiable in θ for every (x̃ j , t̃ j )
′,

(ii) for (x̃ j , t̃ j )
′ ∈ D

ψ̇θ (x̃ j , t̃ j ) = i j

(

2

θ2
− s2e−θs

(1 − e−θs)2
− G2e−Gθ

(1 − e−G θ )2

)

> 0, (6)

(iii) Eθ0 [ψθ(˜X j ,˜Tj )] = αθ0 Eθ0(Xi ) − αθ0
θ

+ αθ0 α̇θ

αθ
=: �(θ),

(iv) Eθ0 [ψθ0(
˜X j ,˜Tj )] = �(θ0) = 0 and

(v) �n(θ̂)
p→ 0.

As a comparison,we consider the naïve approach to assume already for the observed

data, X1, . . . , Xm
iid∼ Exp(θ0). This is even more tempting, as the necessity of a

population definition seems to be redundant. Theoretically, under srs-assumption, the
derivative of the log-likelihood—multiplied by minus one—has summands

ψ srs
θ (xi ) = xi − 1

θ
, (7)

being similar to the first two summands of (4) if i j = 1. An interpretation of (ii)
in Lemma 2 is now the srs-design as the limit, in the sense that, if i j = 1, it
is, lims→∞ limG→∞ ψ̇θ (x̃ j , t̃ j ) = ψ̇ srs

θ (xi ). Condition (v) is a tribute to boundary
maxima, �n(θ) has no zero in � in case of a too high or too low “location” of
�n , in combination with a too small amplitude over the parameter space, meaning
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1254 R. Weißbach , D. Wied

�n(1/ε) − �n(ε). As ε can be chosen arbitrarily small, the amplitude depends on
the limiting behaviour of �n towards the boundaries of R

+, on the left for θ � 0 and
on the right for θ → ∞. Towards the left border, consider Taylor expansions for the
numerator and denominator ofψθ(x̃ j , t̃ j )/i j − x̃ j to show that the first two derivatives,
using l’Hôspital’s rule for θ � 0, are zero, but the third is not. The resulting finite limit
is

lim
θ�0

n�n(θ) = M
s + G

2
−

M
∑

i=1

Xi .

Following up, note that

lim
n→∞ lim

θ�0
�n(θ) = αθ0

[

s + G

2
− Eθ0(Xi )

]

(8)

(see Definition 2 and Proof to Lemma 2(iii)). Note further lims�0 αθ0 Eθ0(Xi ) = 0,
from Corollary 2(iii), and lims�0 αθ0 = 0 (see (1)).

Compare with limθ�0 ψ srs
θ (xi ) = −∞, to see that the reduced amplitude implies

less information for truncation, due to the obviously reduced slope also at θ0.
By contrast, on the right border, the limiting behaviour for θ → ∞ is not affected by

the change in design. To see whenψ1/ε(x̃ j , t̃ j ) > 0, note that limθ→∞ ψθ(x̃ j , t̃ j )/i j −
x̃ j = 0, using l’Hôspital’s rule once. For the srs-design, it is the same and finite,
showing that a boundary maximum can occur when the observed durations are small,
i.e. when θ0 is large (compared to n). We will continue the comparison of designs in
Monte Carlo simulation and applications of Sects. 4 and 5.

Theorem 1 Under assumptions (A1)–(A4) and for θ0 ∈]ε, 1/ε[ holds θ̂
p→ θ0.

Proof Apply van der Vaart (1998), Lemma 5.10. ]ε, 1/ε[ is a subset of the real line,�n

is a random function and� a fixed, both in θ . It is�n(θ)
p→ �(θ) for every θ , roughly

speaking due to Lemma 2(iii) and the LLN. Specifically, the Poisson property for M

results in M/n
p→ αθ0 . Furthermore, 1

n

∑n
j=1 I j˜X j = 1

n

∑M
i=1 Xi

p→ αθ0 Eθ0(Xi ) is
a consequence of M ∼ Poi(nαθ0). Together with Eθ0(M) = V arθ0(M) = nαθ0 one
has

V arθ0

(

1

n

M
∑

i=1

Xi

)

= Eθ0

[

V arθ0

(

1

n

M
∑

i=1

Xi |M
)]

+V arθ0

[

Eθ0

(

1

n

M
∑

i=1

Xi |M
)]

= 1

n2 Eθ0 [MV arθ0(Xi )] + 1

n2 V arθ0 [M Eθ0(Xi )]

= 1

n
αθ0V arθ0(Xi ) + 1

n
[Eθ0(Xi )]2αθ0

n→∞−→ 0,
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Truncating the exponential with a uniform distribution 1255

as Eθ0(Xi ) and V arθ0(Xi ) are finite by Corollary 2(iii+iv). Convergence follows in
squared mean, and hence in probability.

For the next condition in Lemma 5.10, we need a short discussion about maxima at
the boundary of � for some—typically small—n. In these situations, there is no zero
to �n(θ). We will demonstrate that, using the boundary in these situations, the MLE
is a “near zero”. That is,�n(θ) is non-decreasing due to Lemma 2(ii) and Lemma 2(v)
holds. Furthermore, �(θ) is obviously differentiable and �̇(θ0) > 0 with the same
argument as for ψ̇θ in Lemma 2(ii) for (x̃ j , t̃ j )

′ ∈ D, such that �(θ0 − η) < 0 <

�(θ0 + η) for every η > 0 when �(θ0) = 0, which holds due to Lemma 2(iv). �

Although being the MLE, we cannot study asymptotic normality with general
results from maximum likelihood theory. This would only be possible if we had con-
sidered an estimator for the pair (n, θ0). Nonetheless, θ̂ is an M-estimator.

The main idea is to use the smoothness of �n(θ) and apply a quadratic Taylor
expansion of �n around θ0 and evaluated at θ̂ , resulting in (see van der Vaart 1998,
Equation (5.18))

√
n(θ̂ − θ0) = −√

n�n(θ0)

�̇n(θ0) + 1
2 (θ̂ − θ0)�̈n(θ̃)

,

with θ̃ between θ̂ and θ0. We will need:

ψ2
θ (x̃ j , t̃ j ) =i j

(

1

θ2
+ x̃2j + α̇2

θ

α2
θ

− 2x̃ j

θ
− 2α̇θ

θαθ

+ 2x̃ j α̇θ

αθ

)

ψ̈θ (x̃ j , t̃ j ) =i j

( ...
αθαθ − α̇θ α̈θ

α2
θ

− 2α̇θ α̈θα
2
θ − 2α̇3

θαθ

α4
θ

− 1

2θ3

) (9)

Lemma 3 It is Eθ0 [ψ2
θ0

(˜X j ,˜Tj )] < ∞ and ψ̈θ (x̃ j , t̃ j ) ≤ ψ̈(x̃ j , t̃ j ) for all θ and the
subsequent bound integrable.

Proof For the first half: It is I j˜X2
j ≤ (G + s)2 ⇒ Eθ0(I j˜X2

j ) ≤ αθ0(G + s)2,

I j˜X j ≥ 0 ⇒ Eθ0(I j˜X j ) ≥ 0 and I j˜X j ≤ (G + s) ⇒ Eθ0(I j˜X j ) ≤ αθ0(G + s), so
that

ψ2
θ0

(˜X j ,˜Tj ) ≤ αθ0

θ0
+ αθ0(G + s)2 + (α̇θ0)

2

αθ0

− 2α̇θ0

θ0
+ 2(G + s)α̇θ0

which is finite due to θ0 ∈ �, the finiteness and positivity of αθ0 from (1) and the
finiteness of α̇θ0 from Corollary 1(i). For the second half: In (9), we can replace the
denominators by their (due to the arguments after (1)) positive minima. Then, all
numerators are continuous functions on compact � hence with finite maxima, that
we may insert. So that ψ̈θ (x̃ j , t̃ j ) ≤ i j C =: ψ̈(x̃ j , t̃ j ) (with C < ∞) having finite
integral Cαθ0 . �
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Theorem 2 Let be θ0 ∈]ε, 1/ε[ then, under assumptions (A1)–(A4), holds
√

n(θ̂ −
θ0)

d→ N (0, σ 2) with σ 2 := Eθ0(ψ
2
θ0

(˜X j ,˜Tj ))/[Eθ0(ψ̇θ0(
˜X j ,˜Tj ))]2 (see definitions

(6) and (9)).

Proof Use the classical assumptions of Fisher (here in the formulation from van der
Vaart 1998, Theorem 5.41). The main assumption of consistency is Theorem 1. Now
ψθ(x̃ j , t̃ j ) is twice continuously differentiable in θ for every (x̃ j , t̃ j ), due to Lemma
2(i). Eθ0 [ψθ0(

˜X j ,˜Tj )] = 0 due to Lemma 2(iv) with Eθ0 [ψ2
θ0

(˜X j ,˜Tj )] < ∞ due to

Lemma 3. The existence of Eθ0 [ψ̇θ0(
˜X j ,˜Tj )] follows from (4) and positivity from

Lemma 2(ii) combined with Eθ0(I j ) = αθ0 > 0. Dominance of the second derivative
by a fixed integrable function around θ0 is due to Lemma 3. �

For the estimation of the standard error (SE) from Theorem 2, we replace expecta-
tions by averages over the latent sample (with θ0 replaced by θ̂),

σ̂√
n

:=
1√
n

√

∑n
j=1 ψ2

θ0
(x̃ j , t̃ j )

√
n

n

∑n
j=1 ψ̇θ0(x̃ j , t̃ j )

, (10)

being observable, because indicators reduce sums up to m.

3 Likelihood approximation

In order to give a precise version and derivation of the likehood (2),we nowdescribe the
truncated sample as stochastic process as inKalbfleisch andLawless (1989), especially
as truncated empirical process, which in turn is approximated by a mixed empirical
process. For the mixed process, deriving the likelihood is relatively simple.

Denote by εa the Dirac measure concentrated at point a ∈ S. Define the point
measure μ := ∑n

j=1 ε(̃x j ,˜t j )
′ , μ : B �→ N̄0, and the space of point measure on B

(with fixed n) by M. By inserting random variables, it becomes an empirical process
Nn := ∑n

j=1 ε(˜X j ,˜Tj )
′(ω) (� �→ M), measurable w.r.t. σ -algebras from A to M, the

σ -algebra for M. The data is now the truncated empirical process (for an illustration,
see Fig. 2 (left))

Nn,D(·) := Nn(· ∩ D) =
n
∑

j=1

ε
(
˜X j
˜T j

)
(· ∩ D) ,

for which we write X1, . . . , Xm in all but this section. The size of the truncated sample
is Nn,D(S), forwhichwewrite M—and realisedm—in all but this section, and is hence
random and dependent on the sample size n.
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Fig. 2 Left: Realisation of Nn,D on sequences of rectangles [0, x] × [0, t], as a function of the upper right
corner (x, t)′. Dots mark (x̃ j , t̃ j )

′. Right (for Sect. 5): Criterion function (5) (times n) for Application
“insolvency”

In order to parametrize the data, i.e. the truncated empirical process, we write its
intensity measure (only needed for sets [0, x] × [0, t]) as

νNn,D ([0, x] × [0, t]) := Eθ0 [Nn,D([0, x] × [0, t])]
= n P{(˜X j ,˜Tj )

′ ∈ [0, x] × [0, t] ∩ D}
= nαθ0 F X ,T (x, t),

(11)

due to Lemma 1. To see that, note that

αθ0 F X ,T (x, t) = L(˜X j ,˜Tj )(E1) = FE (x/θ0)F
˜T (t) − L(˜X j ,˜Tj )(E2 ∪ E3).

Here, and in the following, the measure in the co-domain of a random variable is
denoted L, e.g. L(˜X j ,˜Tj ). Note also that, νNn,D evaluated at S, is nαθ0 . One can show
that Nn,D is equal in distribution to a Binomial-mixing empirical process. However, as
our data in the applications (Sect. 5) will be relatively few, because s is relatively small,
we will see shortly that it is enough to approximate the data with a Poisson-mixing
empirical process.

Definition 2 Assume (A1)–(A4) and let Z be Poisson-distributed with parameter nαθ0

and independent thereof (Xi , Ti )
′ of Definition 1:

N∗
n :=

Z
∑

i=1

ε
(

Xi
Ti
)

Due to νn,D(S) = nαθ0 < ∞ and L[(Xi , Ti )
′] = νn,D/(nαθ0) (by (11)) now N∗

n is a
Poisson process with an intensity measure (see Reiss 1993, Theorem 1.2.1(i))

ν∗
n = νn,D and N∗

n (S) = Z . (12)

The latter is generally true for Poisson processes, (realized or not), so that Z is also
observed.
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The parallelogram D is “small” (in terms of L(˜X j ,˜Tj )) relative to S, as long as
the observation interval width s is relatively small compared to the width G of the
population (and the typically long expected durations). Hence, N∗

n is “close” to Nn,D

in Hellinger distance (see e.g. Reiss 1993, Approximation Theorem 1.4.2). We will
now derive the likelihood for N∗

n .
The likelihood is the density of N∗

n , evaluated at the realisation, denoted as n∗
n , i.e.

with inserted z and (xi , ti )′’s. The density of N∗
n has as its domain, the co-domain of

N∗
n , M, so that the density of N∗

n is a function of the point measure μ. Furthermore,
a Radon–Nikodym density requires a dominating measure and we use the density
of another Poisson process. We chose the 2-dim homogeneous Poisson process on
[0, A]2.
Definition 3 Let A ∈ N be a number larger than the support of Xi or Ti , e.g. the next
natural number larger then G + s (see Definition 1). Let N0 be a Poisson process with
Z0 ∼ Poi A2 and independently thereof (X0

i , T 0
i )′ ∼ Uni([0, A]2) i = 1, 2, 3, . . ..

Note that N0 has a (finite) intensity measure, where λ[0,A]2 denotes the Lebegues
measure restricted to [0, A]2, (see Reiss 1993, Theorem 1.2.1.(i))

ν0 := A2λ[0,A]2 , including ν0(S) = A2 (see (12)). (13)

The latter is different from a geometrically intuitive volume A4.L(N0)will now serve
as the dominating measure in order to derive the Radon–Nikodym density of L(N∗

n ).
But for that we will need the Radon–Nikodym density of νn,D w.r.t. ν0, so that (see
Billingsley 2012, Formula (16.11)) one searches hθ0 : S → R

+
0 with ∀B ∈ B it is

νn,D(B) =
∫

B
hθ0 dν0. (14)

For B = [0, x] × [0, t] and x ≤ A, t ≤ A due to Fubini’s theorem, with λ as the
univariate Lebesgues measure, due to the differentiability,

νn,D([0, x] × [0, t]) = A2
∫ x

0

∫ t

0
hθ0(a1, a2)λ(da2)λ(da1)

⇒ hθ0(x, t) = 1

A2

∂2

∂x∂t
νNn,D ([0, x] × [0, t])

= 1

A2

∂2

∂x∂t
nαθ0 F X ,T (x, t) = nθ0

G A2 e−θ0x , (15)

where (11) is used for the third equality, and Lemma 1 for the forth together with
∂2

∂x∂t R(x, t) = 0 from Lemma 1. Of course, for (x, t)′ /∈ D is hθ0(x, t) = 0.

Theorem 3 For Assumptions (A1)–(A4) and αθ0 from (1), the model N∗
n of Definition

2, has likelihood w.r.t. to L(N0) from Definition 3:

	(n∗
n; θ0, n) = nn∗

n(S)θ
n∗

n(S)

0

Gn∗
n(S) A2n∗

n(S)
exp

⎛

⎝−θ0

n∗
n(S)
∑

i=1

xi

⎞

⎠ exp(A2 − nαθ0) (16)
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Truncating the exponential with a uniform distribution 1259

The proof is in Appendix B. The main idea is to decompose the density of the data,
i.e. of L(N∗

n ), into the product of the density, conditional on N∗
n (S), multiplied by

the probability mass distribution of the Poisson distributed N∗
n (S). The later results

in the very last factor of (16) to include an exponential function in nαθ0 . Note that by

Fisher-Neyman factorization (N∗
n (S),

∑N∗
n (S)

i=1 Xi ) is a sufficient statistic.
We maximise the likelihood as a function in its second argument, the “generic”

parameter θ , being already the notation in (3). For a thorough discussion about the
parameter notation, we refer the reader to the maximum likelihood estimator as poste-
rior mode in a Bayesian analysis with uniform prior (see e.g. Robert 2001, Sect. 2.3).
Finally note that, after taking logarithm, the derivatives w.r.t to θ and n of (16) are
equal to that of its intuitive counterpart (2) with n∗

n(S) replaced by m (see (3)).

4 Monte Carlo simulations

Our aim in this section is twofold, first we illustrate the vanishing bias, i.e. consistency,
stated theoretically by Theorem 1. Second, the notion of a “bias”, referring to one
model so far, can be extended to the “selection bias” comparing two models. We will
assess such design-effect compared to the srs-design as motivated theoretically after
Lemma 2.

We simulate n ∈ {10p, p = 3, . . . , 6} durations ˜X j from Assumption (A2) with
θ0 ∈ {0.005, 0.01, 0.05, 0.1} according to (A1) and further ˜Tj according to (A2) with
G ∈ {24, 48}, and we obey (A3). We then retained m of the x̃ j , that fulfil (A4) with
s ∈ {2, 3, 48}. We calculate for the data set v theMLE θ̂ (v) as zero of (5) bymeans of a
standard algorithm. Boundary maxima do not occur because (8) is markedly negative
for all simulation scenarios.

In order to illustrate, first, consistency, assess the finite sample bias as an average
over the R = 1000 simulated (θ̂ (v) − θ0). Table 1 (1st rows) lists the results, and it
can be seen that the bias decreases to virtually zero. In order to show the decline in the
mean squared error, consider the estimated standard error (10) of θ̂ (v). In Table 1 (2nd

rows) averages over the
(

σ̂ (v)
)2

seem to have a finite limit for increasing n. Hence,
the standard error decreases of order

√
n.

A by-product of the simulations is that they enable confirming the representa-
tion of σ 2 (in Theorem 2). On the one hand, V ar(θ̂) can be approximated by
1
R

∑R
v (θ̂ (v) − θ0)

2, the simulated variance, i.e. σ 2 = V ar(
√

nθ̂ ) = nV ar(θ̂) by
n times the simulated variance (Table 1 (3rd rows)). On the other hand, in a simu-
lation, and not in an application, can σ 2 be estimated as n times the square of (10)
(Table 1 (2rd rows)). Both quantifications become equal for large n.

The relation of the standard error with respect to αθ0 is also interesting. It decreases,
obviously because αθ0 is linearly related to the size of the truncated sample by m =
nαθ0 (see again (11)). The relation of αθ0 to θ0, s and G is already explained after
its definition (1) and its respective sensitivity is presented in Table 1. There is one
exception; although αθ0 is decreasing in G, the simulated σ̂ 2 does not increase, but
instead decreases for a given n (Table 1 (left panels)). The reason can be suspected to
be as in the srs-design, where the estimated standard error (17) is not only increasing
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in m of order 1/2, but also decreases in
∑m

i=1 xi of order 1, the latter being much
larger for a large G (at given m).

Second, for the srs-design, applying (7) results in an MLE θ̂srs = m/
∑m

i=1 xi with
standard error σsrs/

√
m = θ0/

√
n∗(S) (i.e. σ 2

srs := θ20 ). The latter can be estimated
by inserting θ̂srs ,

σ̂srs

m
=

√
m

∑m
i=1 xi

. (17)

The factor for “inflating” the variance from Theorem 2, denoted as Kish’s design
effect, is

V I F := σ 2/n

σ 2
srs/m

. (18)

Illustrating the design effect with the V I F is typical for the field of sampling tech-
niques, especially in survey sampling. (By contrast, in the field of econometrics,
variance inflation typically denotes the fact that standard errors increase for coeffi-
cients in a regression when accepting more covariates.) In the simulations, the V I F
remains overall at a quite moderate size, with a tendency to increase in αθ0 .

We will continue the comparison of designs in the applications of Sect. 5 where we
will see a substantial variance inflation in all three applications.

5 Three empirical applications

5.1 Populations and data

Insolvency of corporates founded 1990–2013 The population of our first application
are German companies founded after the last structural break in Germany, the re-
unification, namely at the beginning of 1990. The first event is the foundation of the
company, and the second considered event is the insolvency. We restrict attention
to the G = 24 years until the end of 2013, after which we started observing. Let
˜X j ∼ Exp(θ0) denote the age-at-insolvency, and by ˜Tj its age at the beginning of
2014. We assume a foundation to have taken place constantly (over those G = 24
years), i.e.˜Tj ∼ Uni[0, 24]. The German federal ministry of finance publishes the age
of each insolvent debtor. We stop observing in 2016, i.e. s = 3, after having collected,
as a truncated sample m = 55, 279 companies.
Divorce of couples married 1993–2017 In our next application, the German bureau
of statistics reports divorces, withmarriage lengths. Ofmarriages sealed between 1993
and 2017 in the German city of Rostock, m = 327 marriages were divorced during
2018. Of these, 82 lasted less than 5 years, 112 lasted 6–10, 67 lasted 11–15, 40 lasted
16–20 and 26 held 21–25 years, i.e. G = 25 and s = 1. This small sample size
example can help to understand dependence of the variance inflation to the data size.
Dementia onset of people born 1900–1954 Our final application is dementia inci-
dence in Germany for the birth cohorts 1900 until 1954. The first event is the 50th
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Table 2 ML estimate θ̂ and estimate of standard error (SE) σ/
√

n (see Theorem 2) for applications, and
comparison with srs-design

Insolvency Divorce Dementia

G/s In years 24/3 25/1 55/9

m 55, 279 327 35, 929
∑m

i=1 xi In mio. years 0.54 0.003 1.1
∑m

i=1 x2i In mio. years2 2.5 0.046 36.3

Truncation design Point estimate (θ̂) 0.08 0.066 0.0055
̂SE : σ̂ /

√
n 0.00067 0.0082 0.0003

srs-design Point estimate (θ̂srs ) 0.103 0.101 0.033
̂SE : σ̂srs/

√
m 0.00044 0.0056 0.00017

birthday of a person, between 1950 and 2004, i.e. we have G = 55 . An insurance
company reported that between 2004 and 2013 (s = 9), m = 35, 929 insurants has
had a dementia incidence (the second event) (for more information about the data see
Weißbach et al. 2021).

5.2 Comparison of estimation results

The zero of (5), i.e. the point estimate θ̂ , is found graphically, for instance for the first
application by Fig. 2 (right). For the estimated standard error see (10). All estimates
are in Table 2, which also contains the estimates under srs-design (17).

It is evident that ignoring truncation overestimates the hazard θ0 by, for example,
29% in the insolvency application, and also causes negative selection of units in the
others.We observe that the standard error is underestimated by about 35% for all appli-
cations (equivalent to an on average V̂ I F = 2, 5, as estimation of (18)), presumably
through ignoring the stochastic dependence between units (and thus measurements)
within the truncated sample. Also variance inflation almost seems not to depend on
the sample size.

6 Discussion

The results are encouraging, as even after truncation, asymptotic normality holds,
and standard errors do not increase too much. The considerable selection bias can be
accounted for easily and identification of the parameters follows from standard results
on the exponential family.

However, it is somewhat unfortunate that standard consistency proofs for the Expo-
nential family fail, because compactness of the parameter space is violated, even when
re-parametrising, due to the growing sample size being a parameter itself. And a temp-
tation to withstand is to misinterpret the data as a simple random sample, only because
statistical units are selected with equal probabilities (see (1)). This is especially tempt-
ing, because if the truncated sample was simple, not knowing n would be similar to
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not knowing the size of the population, requiring “finite-population corrections” only
in the case of relatively many observations.

In practice, the considerable effort to account for truncation can even be circum-
vented in rich data situations by adjusting the population definition to start at the
observation interval, however thereby excluding observable units (see e.g. Weißbach
et al. 2009).

Of course more advanced sampling designs exist, such as endogenous sampling
where units that have had a longer timeframe have a larger selection probability, in
contrast to our model (sse (1)). Also truncation is typically analysed with counting
process theory, focusing more on the role of the filtration as an information model (see
e.g. Andersen et al. 1988). And with respect to robustness, the maximum likelihood
method we use can be inferior to the method of moments (see e.g. Weißbach and
Radloff 2020; Rothe and Wied 2020).

Nonetheless, we believe that our approach still offers some advantages: As we
(i) directly recognize the second measurement, the age when observation starts, as
random, (ii) model the sample size as random and (iii) distinguish explicitly between
indices in observed and unobserved sample.

Two more minor points appear notable. First, the distance from the data to the
mixed empirical process can be reduced to zero by changing from Poisson-mixing to
Binomial-mixing, although little new insight can be expected, other than longer proofs.
The same is true when proving the information equality for the standard error. And
finally, one troublesome aspect should not be concealed. Compare the design effect
with the theory of cluster samples where the V I F increases in the cluster size linearly,
for given intra-cluster correlation.Considering the time as a classifier, truncation seems
to introduce a very small intra-temporal correlation, because the increase in the VIF
is small. However, for very small sample sizes, the V I F should then be even smaller.
Non-linear behaviour of the dependence on the sample size is conceivable.
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org/10.1007/s00362-021-01272-x.
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Appendix A: Proof of Lemma 2

For (i), note first that by (A1), θ0 ∈ �, so is θ : For (x̃ j , t̃ j ) /∈ D, ψθ(x̃ j , t̃ j ) ≡ 0.
Alternatively, due to Corollary 1, first and second derivatives of αθ are continuous,
and therefore, so will be the third. Also αθ , being—along with θ—the only component
of a denominator in the first or second derivative of ψθ , is strictly positive due to the
quotient rule.

For (ii): For the equality, due to Corollary 1, it is

ψ̇θ (x̃ j , t̃ j ) = i j

(

1

θ2
− α̇2

θ

α2
θ

+ α̈θ

αθ

)

= i j

θ2
+ i j

(−s2e−θs(1 − e−θs) − s2e−2θs

(1 − e−θs)2

+−G2e−Gθ (1 − e−G θ ) − G2e−2G θ

(1 − e−G θ )2
+ 1

θ2

)

.

For the positivity, we start to show that for x > 0 or y > 0

xe−x/2 < 1 − e−x ⇔ 2
x

2
e−x/2 < 1 − e−2 x

2

2ye−y < 1 − e−2y ⇔ g(y) := 1 − e−2y − 2ye−y > 0

Study its slope, g′(y) = 2e−2y − (2e−y − 2ye−y) = 2e−2y − 2e−y + 2ye−y , being
equal to zero if and only if

e−2y − e−y + ye−y = 0 ⇔ e−2y = (1 − y)e−y

⇔ −2y = log(1 − y) − y ⇔ e−y = 1 − y.

The latter is only fulfilled for y = 0, due to the known inequality ey > 1 + y for
y �= 0, applied to −y. Now, y = 0 is not in the domain and hence, g does not
change the sign of the slope. It is g(log(2)) = 0.06 and g(1) = 0.13, so that g is
increasing and positive, due to limy→0 g(y) = 0. Now proceed to observe that from
xe−x/2 < 1 − e−x ⇒ x2e−x < (1 − e−x )2 follows

s2e−θs

(1 − e−θs)2
<

1

θ2

and similarly for G instead of s, both for i j = 1.
For (iii):

Eθ0 [ψθ(˜X j ,˜Tj )] = Eθ0 [�n(θ)]

= Eθ0

(

1

n

M
∑

i=1

Xi − M

nθ
+ M

nαθ

α̇θ

)
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= 1

n
Eθ0

[

Eθ0

(

M
∑

i=1

Xi |M
)]

− αθ0

θ
+ αθ0 α̇θ

αθ

For (iv): For the first equality, note that Eθ [ψθ0(
˜X j ,˜Tj )] = �(θ) due to (iii). Further,

because of (1), Corollary 2(iii) and Corollary 1, we have:

θ20
αθ0

θ0
= θ20

(

1

Gθ20
− e−θ0s

Gθ20
− e−θ0 G

Gθ20
+ e−θ0(G+s)

Gθ20

)

= 1

G
− e−θ0s

G
− e−θ0 G

G
+ e−θ0(G+s)

G

−θ20 α̇θ0 = θ20

(

− s

Gθ0
e−θ0s + s

Gθ0
e−(G+s)θ0 − 1

θ0
e−Gθ0 + 1

θ0
e−(G+s)θ0

+ 1

Gθ20
− 1

Gθ20
e−θ0s − 1

Gθ20
e−θ0G + 1

Gθ20
e−(G+s)θ0

)

= − sθ0
G

e−θ0s + sθ0
G

e−(G+s)θ0 − θ0e−Gθ0 + θ0e−(G+s)θ0

+ 1

G
− 1

G
e−θ0s − 1

G
e−θ0G + 1

G
e−(G+s)θ0

=
(

− sθ0
G

− 1

G

)

e−θ0s +
(

−θ0 − 1

G

)

e−θ0G

+
(

sθ0
G

+ θ0 + 1

G

)

e−(G+s)θ0 + 1

G

−θ20αθ0 Eθ0(Xi ) = θ20

[(

s

Gθ0
+ 2

Gθ20

)

e−θ0s −
(

− 1

θ0
− 2

Gθ20

)

e−θ0G

−
(

G + s

Gθ0
+ 2

Gθ20

)

e−θ0(G+s) − 2

Gθ20

]

=
(

sθ0
G

+ 2

G

)

e−θ0s +
(

θ0 + 2

G

)

e−θ0G

+
(

− (G + s)θ0
G

− 2

G

)

e−θ0(G+s) − 2

G

The three terms add up to−θ20�(θ0) of (iii) and adding the coefficients of e−θ0s , e−θ0 G

and e−θ0(s+G) (and the constants), we have θ20�(θ0) = 0. Finally, it is θ0 �= 0.
For (v): The main idea of the proof is that in the event of a boundary minimum, the

distance from �n(θ) to the θ -axis is smaller than to �(θ), and that it will converge to
the latter. Hence, after surpassing the axis, there will be a zero and �n(θ̂) = 0.

We need to show, stressing the dependence of θ̂ on n, that:

P{|�n(θ̂n)| > η} → 0 for η > 0.
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Denote the ’event’ of a boundary minimum on the left side as (recall the monotonicity
of �n(θ) from (ii)), An := {θ̂n = ε} = {�n(ε) > 0}, and on the right as Bn :=
{θ̂n = 1/ε} = {�n(1/ε) < 0}. Again due to the monotonicity of �n(θ), the events
are mutually exclusive, An ∩ Bn = ∅, with the consequence that P(An ∪ Bn) =
P(An) + P(Bn).

Recall that �(θ0) = 0 (from (iv)). Also it is �̇(θ) > 0 with the same calculation
as for ψ̇θ (x̃ j , t̃ j ) in the equality of (6) (for (x̃ j , t̃ j ) ∈ D) in (ii). Hence, for θ0 ∈
]ε, 1/ε[, �(θ) is ’away’ from zero at the boundary, i.e. −�(ε) > 0 and �(1/ε) > 0
Furthermore, in the event of An , the distance from �n(ε) to the θ -axis is smaller than
to (the negative) �(ε):

�n(ε) ≤ |�n(ε) − �(ε)| (19)

Similarly, in the event of Bn , it is

− �n(1/ε) ≤ |�n(1/ε) − �(1/ε)| (20)

We have |�n(θ̂n)| > η ⇔ �n(θ̂n) �= 0 ⇔ θ̂n ∈ {ε, 1/ε} ⇔ An ∪ Bn ⇔ {�n(ε) >

0} ∪ {�n(1/ε) < 0} and hence

P{|�n(θ̂n)| > η} = P{{�n(ε) > 0} ∪ {−�n(1/ε) > 0}}
=P{�n(ε) > 0} + {−�n(1/ε) > 0}
≤P{|�n(ε) − �(ε)| > 0} + P{|�n(1/ε) − �(1/ε)| > 0} → 0,

where the last inequality is due to (19),(20) and that, due the very beginning of the

proof, �n(θ)
p→ �(θ) for θ ∈ �. �

Appendix B: Proof of Theorem 3

First we derive the density of L(N∗
n ) w.r.t. L(N0) to be

g(μ) =
⎛

⎝

μ(S)
∏

i=1

hθ0(xi , ti )

⎞

⎠ exp
(

A2 − nαθ0

)

(21)

and the display (16) results by replacing the true θ0 by the generic θ , inserting hθ from
(15) and evaluating at the argument (μ) as the observation n∗

n .
According to Theorem 3.1.1 in Reiss (1993), it suffices to derive the density only

on Mk := {μ ∈ M : μ(S) = k}.
We obtain by (11) and (12) that L[(Xi , Ti )

′] = ν∗
n/ν∗

n (S), and L[(X0
i , T 0

i )′] =
ν0/ν0(S) by (13). Both are mappings B → R

+
0 related by a density (being a mapping
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S → R
+
0 )

dL[(Xi , Ti )
′]

dL[(X0
i , T 0

i )′] = dν∗
n

dν0

ν0(S)

ν∗
n (S)

= hθ0(xi , ti )
ν0(S)

ν∗
n (S)

= A2

nαθ0

hθ0(xi , ti ) =: h1(xi , ti ).

That ν0(S) and ν∗
n (S) are constants leads to the first equality, the second equality is

due to (14) and the third holds by (11) and (13). The product experimentL[(Xi , Ti )
′]k

has L[(X0
i , T 0

i )′]k-density,

h1,k

[(

x1
t1

)

, . . . ,

(

xk

tk

)]

:=
k
∏

i=1

h1(xi , ti ) = A2k

nkαk
θ0

k
∏

i=1

hθ0(xi , ti ) (22)

Define ιk : Sk → Mk with

ιk

[(

x1
t1

)

, . . . ,

(

xk

tk

)]

:=
k
∑

i=1

ε(xi
ti
),

so that h1,k = fk ◦ ιk with

fk(μ) = h1,k

[(

x1
t1

)

, . . . ,

(

xk

tk

)]

and μ =∑k
i=1 ε(xi ,ti )′ . The seemingly double-used h1,k represents two different map-

pings, due to the different domains (Sk in (22) and Mk later). This means that fk

attributes for point measure μ, build on (x1, t1)′, . . . , (xk, tk)′, the same value as h1,k
does for the vector ((x1, t1)′, . . . , (xk, tk)′). Now note that for M ∈ Mk (with Mk

being the restriction of M to Mk)

ιk

(

[

L
(

Xi

Ti

)]k
)

(M) =
[

L
(

Xi

Ti

)]k

(ι−1
k (M)) = L

(

k
∑

i=1

ε
(

Xi
Ti
)

)

(M).

It is easiest to start reading the line from the centre, where ι−1
k (M) is short for

{ι−1
k (μ), μ ∈ M}. (Notation to be distinguished from sample size.) Similarly,

ιk[L(X0
i , T 0

i )]k = L(
∑k

i=1 ε(X0
i ,T 0

i )′). Hence by Lemma 3.1.1 in Reiss (1993), it

is fk ∈ dL
(

∑k
i=1 ε(Xi ,Ti )

′
)

/dL
(

∑k
i=1 ε(X0

i ,T 0
i )′
)

. For M ∈ Mk ,

P{N∗
n ∈ M} = P

{

k
∑

i=1

ε
(

Xi
Ti
)

∈ M, Z = k

}

= P

{

k
∑

i=1

ε
(

Xi
Ti
)

∈ M

}

P{Z = k}.

In the first equality, the second condition, Z = k, results from the fact that whateverμ,
it must be inMk . For the first condition, the largest index for summation is originally
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Z , but can be replaced by k due to the second condition. (The order of conditions
is irrelevant.) The second equality is due to the independence (see Definitions 2).
Similarly by Definitions 3 for N0:

L (N0) (M) = P{N0 ∈ M} = P

⎧

⎨

⎩

k
∑

i=1

ε
(

X0
i

T 0
i
)

∈ M

⎫

⎬

⎭

P{Z0 = k} (23)

Hence,

P{N∗
n ∈ M} = P{Z = k}

∫

M
dL
(

k
∑

i=1

ε
(

Xi
Ti
)

)

=P{Z = k}
∫

M
fkdL

⎛

⎝

k
∑

i=1

ε
(

X0
i

T 0
i
)

⎞

⎠ = P{Z = k}
P{Z0 = k}

∫

M
fkdL (N0)

(24)

The last equality is due to (23). Now, due to Definitions 2 and 3, (13)(right), (12)(right)
and (11) we have

P{Z = k} = nkαk
θ0

e−nαθ0

k! and P{Z0 = k} = A2ke−A2

k! ,

ν0(S) = E[N0(S)] = E(Z0) = A2 and

νn,D(S) = E[Nn,D(S)] = E(Z) = nαθ0 .

So that

P{Z = k}
P{Z0 = k} = nkαk

θ0
e−nαθ0

A2ke−A2

= nkαk
θ0

A2k
exp

(

A2 − nαθ0

) = nkαk
θ0

A2k
exp[ν0(S) − νn,D(S)].

Hence, by the display (24) of the distribution of L(N∗
n ), its density is, inserting

(22),

fk P{Z = k}
P{Z0 = k} =

(

k
∏

i=1

hθ0(xi , ti )

)

exp[ν0(S) − νn,D(S)] (25)

for μ =∑k
i=1 ε(Xi ,Ti )

′ .
Concluding from k to μ(S) and inserting the above displays, L(N∗

n ) (or more
informally N∗

n ) has L(N0)-density (21) (see Reiss 1993, Theorem 3.1.1 and Example
3.1.1) �
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