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Abstract
Judging by its significant potential to affect the outcome of a game in one single 
action, the penalty kick is arguably the most important set piece in football. Scien-
tific studies on how the ability to convert a penalty kick is distributed among profes-
sional football players are scarce. In this paper, we consider how to rank penalty 
takers in the German Bundesliga based on historical data from 1963 to 2021. We 
use Bayesian models that improve inference on ability measures of individual play-
ers by imposing structural assumptions on an associated high-dimensional param-
eter space. These methods prove useful for our application, coping with the inherent 
difficulty that many players only take few penalties, making purely frequentist infer-
ence rather unreliable.

Keywords  Hierarchical Bayes · Shrinkage · Football · Penalties

JEL Classification  C11 · C53 · Z20

1  Introduction

Publications from many disciplines deal with the analysis of the world’s most popu-
lar sport, football. Particular attention is paid to the study of set pieces, especially 
those that offer imminent opportunity for scoring a goal. For example, Baranda and 
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Lopez-Riquelme (2012) and Strafford et al. (2019) study how corner kicks are car-
ried out depending on the current score and examine their relevance for the match 
outcome. Penalty kicks have also been investigated. Kuhn (1988), Loy (1998), 
Kamp (2006), and Noël et al. (2014) examine penalty shootouts from psychological 
and cognitive perspectives based on field experiments and devise strategies for pen-
alty takers. This interest is hardly surprising: for instance, since 1978 about every 
fifth knockout game at the FIFA World Cup has been decided by penalty shootouts. 
This results in an estimated chance of 67% that a future world champion must suc-
cessfully complete at least one penalty shootout on his way to the title (Memmert 
and Noël 2020).

Penalty kicks in German leagues have been investigated by, e.g. Bornkamp et al. 
(2009) who use a nonparametric Bayesian approach to rank Bundesliga keepers by 
penalty saving abilities based on historical data. They find little support for signifi-
cant differences between goalkeepers, but motivate an investigation of penalty taker 
ability. Using logistic regression, Kuss et al. (2007) refute the widespread myth that 
a fouled player should not take the penalty kick because of the alleged greater risk 
of failure. They argue that this may be due to a selection process that results in pen-
alty shooters being largely homogeneous with respect to their resilience in stress 
situations. Furthermore, coaches presumably select penalty takers already before the 
game due to knowledge of such special characteristics and skill.

Historical data such as the ranking of Bundesliga penalty shooters published by 
the German football magazine Kicker (2021) suggest the existence of significant 
differences in players’ ability to score penalties. However, such rankings are often 
based on the absolute number of penalties converted and thus fail to capture how 
efficient players are in exploiting chances. Even rankings based on relative frequen-
cies are questionable: for players frequently nominated as penalty takers, the relative 
frequency may be a viable estimate. However, for players with small ni , the actual 
conversion probability is likely to be estimated imprecisely.

In this paper, we discuss shrinkage estimates from Bayesian beta-binomial mod-
els for ranking penalty takers in the German Bundesliga. This approach offers sta-
tistical power in estimating the skill of players with little information in borrowing 
information from players who have taken many penalties. We analyse historical data 
on 993 players who took a total of 4955 penalties in first division matches from 
season 1963/64, when the Bundesliga was founded, to 2020/21. We have compiled 
the necessary dataset from German websites kicker.de and transfermarkt.de. Sec-
tion 2 examines empirical Bayes estimates from beta-binomial models. We discuss 
moment matching estimates and estimates based on informative priors obtained 
from frequentist regression. Section  3 presents more flexible fully Bayesian hier-
archical models and compares findings with the results of Sect. 2 using a Bayesian 
information criterion and out of sample analysis. Based on the outcomes, we com-
pile rankings for active players in the German Bundesliga.1 Section 4 concludes.

1  For all models considered in Sects. 2 and 3, we use data up to and including season 2019/20. Penalties 
taken in season 2020/21 serve as a test dataset for model comparison.
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2 � Empirical Bayes estimates of penalty conversion ability

The empirical distribution of penalties taken is shown in the left panel of Fig. 1. It 
is evident that the distribution is right skewed with mode at 1. The empirical dis-
tribution of estimated success rates �̂i ∶= yi∕ni , shown in the right panel of Fig. 1, 
illustrates why rankings based on such a measure are problematic: we find a mul-
timodal distribution with much probability mass near 0 and 1. This is due to many 
players with few (often a single) attempts who have successfully converted all kicks 
or, at the other extreme, did not score at all. Owing to insufficient information, the 
skill of these players is thus likely to be estimated imprecisely by purely frequentist 
methods.

A preliminary approach for obtaining more reliable estimates of penalty conver-
sion abilities �i ∈ [0, 1] for a set of players indexed by i = 1,… ,N is to use a shrink-
age estimator in a compound model

where �i are latent realisations from the ability distribution �(�) . For modelling suc-
cess rates in sports, this concept was introduced by Efron and Morris (1972, 1977) 
who analysed baseball hit ratios using the James–Stein estimator which they moti-
vate as a Bayesian point estimator assuming Gaussian �(⋅).

Particularly, for samples with many small ni it seems more adequate to assume a 
beta-binomial model, where

i.e. a player’s score yi in ni attempts is generated from a binomial distribution with 
success rate �i . We model �i via a reparameterised beta prior with expectation 
� ∶=

�

�+�
 and precision measure � ∶= � + � . We thus have

where �(yi|�i) is the usual binomial likelihood and �(�i|�, �) denotes the prior. By 
conjugacy, the posterior �(�i|yi) is Beta(yi + ��, ni − yi + �(1 − �)) . An empiri-
cal Bayes (EB) approach to conduct inference via (4) specifies an informative prior 
from point estimates for � and �.

2.1 � Empirical Bayes estimates using moment matching

An instructive approach discussed by, e.g. Carlin and Louis (2000) uses moment 
matching (MM) to estimate the hyperparameters. When the ni are equal across 
samples, MM estimators are directly derived from the expected value and variance 

(1)yi ∼ �(yi|�i), �i ∼ �(�),

(2)
yi ∼ Bin(�i, ni),

�i|�, � ∼ iid Beta (�, �),

(3)�(�i|yi) ∝ �(yi|�i)�(�i|�, �)

(4)∝ �
yi+��−1

i
(1 − �i)

ni−yi+�(1−�)−1,
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formulae for a marginal distribution of binomial proportions with success prob-
ability �i ∼ Beta(��, �(1 − �)) . The case of unequal ni is more complicated, as in 
the compound model (2) the �̂i are independently distributed with E(�̂

i
) = � , but 

Var(�̂i) = �(1 − �)n−1
i

+ (� + 1)−1�(1 − �)(1 − n−1
i
) is a function of ni . This makes 

it preferable to give different weight to the �̂i . For known variances, Kleinman 
(1973) suggests to estimate � by the (best linear unbiased) estimator

with inverse variance weights wi . The precision � is then estimated by

which obtains from matching �̂2 ∶=
∑N

i=1
wi(�̂i − �̂)2 with the variance of a 

Beta(��, �(1 − �)) random variable.2 If wi are unknown, �̂  and �̂  can be com-
puted iteratively using (5) and (6) with initial values wi = ni and updates 
wi = ni∕[1 + (𝜈̃ + 1)−1(ni − 1)] , where 𝜈̃ is the current value of �̂ .

Using (4) and estimates �̂  and �̂  , frequentist conversion probability estimates 
�̂i ∶= yi∕ni are then updated by computing posterior means

where Ŝi is the shrinkage factor towards the beta prior for player i. It is evident from 
(7) that more information on individual ability (that is, large ni ) lessens the effect 
of the prior on 𝜃̆i , i.e. information from the population of penalty takers has less 
weight for individual estimates. At the other extreme, the prior information domi-
nates estimates of conversion probabilities when ni is small, resulting in an adjust-
ment towards the overall mean.

Applied to our data, we obtain hyperparameter estimates �̂ = .6788 , and 
�̂ = 1.3405 , resulting in a Beta(.9099,  .4306) prior. The corresponding bimodal 
density is shown in red in Fig. 1. Posterior quantities are presented in Fig. 2. The 
left panel of Fig. 2 compares relative frequencies against MM estimates from the 
corresponding posterior distribution. It can be seen that including prior infor-
mation has a plausible effect: shrinkage is low for observations where the data 
provides much information whereas point estimates for small ni are markedly 
adjusted. This is especially relevant for observations with �̂i ∈ {0, 1} and small 
ni where estimates are most strongly corrected towards �̂  . This is sensible as 

(5)�̂ ∶=

∑N

i=1
wi�̂i

w
, w ∶=

N�

i=1

wi

(6)�̂ ∶=
�̂(1 − �̂)

�∑N

i=1
wi

�
1 −

wi

w

�
−
∑N

i=1

wi

ni

�
1 −

wi

w

��

�̂2 − �̂(1 − �̂)
�∑N

i=1

wi

ni

�
1 −

wi

w

�� − 1,

(7)𝜃̆i ∶= �Si�𝜇 + (1 − �Si)�𝜃i, �Si ∶=
�𝜈

�𝜈 + ni

2  Note that our parameterisation differs from Kleinman (1973) who uses � ∶= �∕(� + �) and 
r ∶= (� + � + 1)−1 , i.e. � ∼ Beta((r−1 − 1)�, (r−1 − 1)(1 − �)).
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accurate estimates are possible for players with many penalties whereas players 
with only a few penalties are shrunken towards the mean.

Furthermore, the posterior distributions shown in the right panel of Fig.  2 
show that for players with a small ni , dominance of the prior over the likelihood 
leads to greater uncertainty of the estimated conversion probability. The effect 
of shrinkage can also be judged from the dashed black line which shows a ker-
nel density estimate (KDE) of the distribution of posterior means. The shape of 
the KDE indicates that MM gives more realistic estimates of expected scoring 

Table 1   Score-based all-time top and bottom penalty takers in Bundesliga

Data for seasons 1963/64–2020/21 from Kicker (2021). RK is the score-based rank. Due to equal scores, 
the lower ranks are regularly shared by many players which we do not list completely for brevity. y

i
 is the 

number of scores. n
i
 denotes the number of penalties taken. �̂

i
∶= y

i
∕n

i

RK Player y
i

n
i �̂

i
RK Player y

i
n
i �̂

i

1 Manfred Kaltz 53 60 .883 ⋮ ⋮ ⋮ ⋮ ⋮
2 Gerd Müller 51 63 .810 804 Volker Graul 0 1 0
3 Michael Zorc 49 57 .860 804 Volker Ohling 0 1 0
4 Horst-Dieter Höttges 40 48 .833 804 Waldemar Steubing 0 1 0
5 Robert Lewandowski 35 39 .897 804 Wilfried Kohlars 0 1 0
6 Wilfried Hannes 31 38 .816 804 Wilfried Trenkel 0 1 0
6 Paul Breitner 31 37 .838 804 Willibald Weiss 0 1 0
6 Georg Volkert 31 35 .886 804 Wulf-Ingo Usbeck 0 1 0
9 Lothar Matthäus 30 33 .909 804 Yildiray Bastürk 0 1 0
10 Günter Netzer 29 35 .829 804 Zoran Mamic 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮ 804 Zvonimir Soldo 0 1 0

0

100
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20 40 60
ni
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t

0.0
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de
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fB eta(x|.9099, .4306)

Fig. 1   Historic distribution of penalties taken and penalty conversion rates. Notes: Data from Kicker 
(2021). Left: absolute frequencies of penalties taken in seasons 1963/64–2019/20. Right: distribution of 
penalty conversion rates along with the corresponding MM-based beta prior density (red line) (colour 
figure online)
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probabilities than the pure frequentist estimates. This is especially evident for the 
tails of the distribution which have substantially less probability mass compared 
to the density of the �̂i in Fig. 1.

Table 2 lists the top and bottom 10 historical ranks of Bundesliga penalty kickers 
based on MM estimates along with 95% credible intervals (CIs). Interestingly, com-
pared to the score-based ranking in Table 1 we find that none of the top listed play-
ers made it into the best 10, which are now led by Hans-Joachim Abel with 100% 
scoring frequency in 16 trials. However, the other top players also converted all their 
penalties, i.e. the correction due to the prior distribution is small and score probabil-
ity estimates and CIs are consistently close to 1. For the last 10 ranks, we find that 
shrinkage leads to somewhat stronger adjustments of the �̂i . Tim Borowski, a former 
German international, for example, is attested a posterior mean scoring probability 
of 21% despite 3 failed penalties out of 3 attempts. However, this estimate is also 
subject to considerable uncertainty as his 95% CI is [.005, .643].

2.2 � Empirical Bayes estimates from informative beta priors

Several points should be emphasised when interpreting the estimates from the 
MM approach in Sect. 2.1. First, the prior has most probability mass at extreme 
abilities and high variance, i.e. MM causes the prior weight to be strongly shaped 
by players for whom frequentist ability estimates �̂i are most unreliable. There-
fore, few penalties are needed for the data to dominate the prior. However, ade-
quacy of the implied shrinkage is an empirical issue and relates to how fast the �̂i 

0

.25

.5

.75
µ̂

1

0 .25 .5 .75 1
0

5

10

15

0 .25 .5 .75 1
θi

π
(θ

i|y
i,
n
i,
µ̂
,ν̂

)
0 15 30 45 60ni

Fig. 2   Empirical Bayes—shrinkage towards a beta prior from moment matching. Notes: Penalties 
taken in seasons 1963/64–2019/20. Left: relative frequencies �̂i and posterior means 𝜃̆i with horizontal 
U(−.005, .005) jitter. The solid red line marks the set of equal estimates. The dashed red line shows the 
prior mean estimate �̂ = .67 . Grey bars show 95% credible intervals. Right: Beta posterior distributions. 
The dashed black line shows a kernel density estimate of the distribution of posterior means (colour fig-
ure online)
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converge towards the true abilities as players progressively take penalties. To get 
an impression of the convergence speed Fig. 3 visualises trajectories of the �̂i over 
time for a sub-sample of the players: as ability estimates inherently stabilise later 
in the career, we consider players with ni ≥ 10 . Even for players with ni ≈ 20 , we 
observe enough time-variability in scoring rates for shrinkage towards the prior 
to be attractive. Notably, given the MM estimate �̂ = 1.3405 it can be computed 
from (7) that the shrinkage factor Ŝi decays quickly with ni and is already at .4 for 
only ni = 2 attempts, which seems rather fast.

Figure 3 also shows evidence of the selection process outlined in Sect. 1: we do not 
observe players who repeatedly fail to score and yet continue taking penalties: play-
ers in the sub-sample who start off with a failed attempt usually have a scoring streak 
afterwards and thus keep getting nominated. This selection might result in overestima-
tion of abilities for players who have performed poorly and only had a few attempts.

We next consider EB estimates based on informative beta priors

For this, we estimate prior hyperparameters incorporating player performance data 
xi by maximising the frequentist regression beta-binomial likelihood

with Γ(⋅) the Gamma function. Prior mean �s
i
∶= �s

i
∕�s and precision �s ∶= �s

i
+ �s

i
 

have logit and log links in linear predictors,

(8)�i|�̂s
i
, �̂s ∼ Beta(�̂s�̂s

i
, �̂s(1 − �̂s

i
)).

(9)L(�, �0|�) =
N∏

i=1

f (yi|�, �0),

(10)f (yi|�, �0) =
(
ni
yi

)
Γ(yi + �s

i
)Γ(ni − yi + �s

i
)Γ(�s

i
+ �s

i
)

Γ(ni + �s
i
+ �s

i
)Γ(�s

i
)Γ(�s

i
)

,

0

.25

.5

.75

1

0 .25 .5 .75 1
rij

p
ij

0 15 30 45 60ni

Fig. 3   Convergence of relative frequencies. Note: Trajectories of relative frequency estimates for ni ≥ 10 . 
rij ∶= (j − 1)∕(ni − 1), pij ∶=

∑j

l=1
yil∕j, j ∈ {1,… , ni} with yil ∈ {0, 1} the outcome of penalty l for 

player i. Spline fits are shown for better readability
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To get a notion of the selection effect and the impact of likelihood-based prior 
parameter estimates, we compare posterior means from two preliminary models 
first: one where the �s

i
 are assumed constant across players and one where �s

i
 depend 

on ni . Note that players who are known as good penalty kickers will take penalties 
more often, making ni a natural predictor of the scoring ability.

For the baseline model, we obtain hyperparameter estimates �̂s = .74 and 
�̂s = 41.04 . The latter can be interpreted as the prior sample size and gives the 
threshold beyond which the data dominates the prior in contributing to posterior 
means, see (7). This suggests that the impact of the prior is significantly stronger 
than for MM estimates, cf. Fig.  2. Figure  4 shows posterior distributions and 
means for both preliminary models and provides evidence of stronger shrinkage. 
This is particularly noticeable for players with extreme scoring ratios and few 
attempts, although players with large ni are now also subject to stronger adjust-
ment towards the prior. The red dots above the 45 deg-line show that players 
with few attempts tend to be rated worse in the model adjusted for ni than in the 
baseline model with only a constant. Consequently, frequently nominated players 
tend to be better rated once we accommodate for the effect of selection: the col-
our transition in posterior means indicates that penalty takers are systematically 
better rated from approximately 20 penalties onwards as priors become more 

(11)�s
i
∶= logit−1

(
x
�
i
�
)
, �s ∶= exp(�0)

−1.

.5

.75

1

.5 .75 1
θ̃si,xi=(1,ni)′

θ̃s i,
x

i
=
1

0 15 30 45 60ni

Fig. 4   Likelihood-based empirical Bayes–comparison of posterior quantities. Note: Dots show posterior 
means based on priors obtained from beta-binomial regression on xi , with horizontal U(−.005, .005) jit-
ter. Beta posterior distributions are displayed at the margins. The dashed black lines show kernel density 
estimates of posterior means
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informative. This is also reflected in estimation uncertainty displayed by poste-
rior distributions where the variance is generally lower for the adjusted model 
and decreases markedly with ni , cf. the densities shown above the square. We 
discuss ability point estimates, the implied shrinkage, and resulting rank reversals 
with respect to results from MM in more detail for fully Bayesian estimation in 
Sect. 3.1.

We also consider priors that additionally depend on miss, the number of missed 
penalties, i.e. penalty kicks that did not require activity by the goalkeeper because 
the ball went past the goal, hit the crossbar or one of the posts, see Table 3 for 
summary statistics on the regressors. The rationale behind this is as follows: play-
ers whose penalties are often harmless for the keeper are presumably bad can-
didates and are also less likely to be nominated again. Our dataset contains 265 
players with at least one penalty that did not require intervention by the goal-
keeper. In total, 54 of these players were not nominated again after missing their 
first and only penalty. Including miss as a predictor for the scoring probability 
in x′

i
� should attenuate the correction towards the population average for these 

players and also allow better discrimination between players with similar �̂i but 
different failure rate. Frequentist coefficient estimates �̂  are given in Table 8 in 
[Appendix]. We find evidence for the expected effects, i.e. significant positive 
(negative) estimates for n (miss).

Posterior distributions and their means for informative priors are shown in 
Fig. 5. As anticipated from the results for the basic models in Fig. 3, the shrink-
age in the extended model is significantly stronger than for MM. The KDE for 
the posterior means indicates that point estimates are significantly concentrated 
here as well and only occasionally fall below 50% (the median is .6978). Never-
theless, our prior choice yields substantial differences to relative frequency esti-
mates in some cases. For example, former HSV player Sergej Barbarez with four 
missed penalties in nine attempts is now the worst rated player with a posterior 
mean of .426 (cf. Table 4 and the leftmost orange-coloured posterior distribution 
in Fig. 4). Though below the average posterior mean of 69.7%, Tim Borowski (2 
saves and 1 miss in 3 attempts) is rated much better now with a posterior scor-
ing probability of 60.7% (and 95% CI [.503, .706]). At the other extreme, prior 
information yields more optimistic and less uncertain estimates for frequently 
nominated and thus potentially better players. The ranking is led by Michael Zorc 
whose posterior mean of 92% exceeds his score ratio of 86%, cf. Table 1.

Table 3   Summary statistics of Bundesliga penalty takers

Penalties taken in seasons 1963/64–2019/20. Q25 to Q75 denote quartiles of the empirical distribution

Description Min Q25 Q50 Q75 Max Mean SD

n Penalty attempts 1 1 2 6 63 4.96 6.51
y Successes 0 1 2 4.25 53 3.71 5.50
saved Saved penalties 0 0 1 1 12 .91 1.18
miss Missed penalties 0 0 0 1 5 .34 .63
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3 � Fully Bayesian analysis of penalty conversion probabilities

A potential drawback of the methods discussed in Sect.  2 is the choice of prior: 
we obtain inference on the �i using individual as well as prior information which 
depends on aggregate information from all observations through hyperparameter 
point estimates. However, using plug-in estimators for � and � (or � and � ) implies 
using an estimated posterior distribution. Doing so bears the risk of overfitting and 
being overly optimistic about the precision of the results. This is especially prob-
lematic for players with small ni . A refined approach hence is to assume a joint 
probability model for all parameters: instead of letting prior information reflect a 
(conditional) population average, we allow information on the individual conver-
sion abilities to contribute probabilistically to the posterior of the hyperparameters, 
which then shapes posteriors of the �i . This is achieved in fully Bayesian hierarchi-
cal models where we put priors (hyperpriors) on the model hyperparameters.

3.1 � A fully Bayesian beta‑binomial hierarchical model

For the baseline hierarchical model (HB) we retain model distributions as in (2) but 
obtain the joint posterior �(�, �, �|y) from a fully Bayesian approach that assumes 
an exchangeable beta prior, that is, �(���, �) =

∏N

i=1
�(�i��, �) . Together with the 

binomial likelihood �(y|�, �, �) and a hyperprior �(�, �) we thus have

(12)�(�, �, �|y) ∝�(y|�, �, �)�(�|�, �)�(�, �)

0

.25

.5

µ̂
.75

1

0 .25 .5 .75 1

θ̃s i,
x

i

0

5
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15

0 .25 .5 .75 1
θi

π
(θ

i|y
i,
x
i)

0 15 30 45 60ni

Fig. 5   Empirical Bayes estimates from informative beta priors–posterior quantities. Notes: 
xi = (1, ni,missi)

� . Left: the solid red line marks the set of equal relative frequencies �̂i and posterior 
means 𝜃s

i,xi
 . The dashed red line shows the prior mean estimate �̂ = .7033 . Grey bars show 95% credible 

intervals. Right: beta posterior distributions. The dashed black line shows a kernel density estimate of the 
distribution of posterior means (colour figure online)
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By standard results, the marginal posterior of (�, �) follows as

Regarding the choice of an “objective” hyperprior we follow Gelman et al. (2013) 
and use the Pareto kernel

which obtains by placing a uniform density on �(�, �) ∶= (�, �−1∕2) and using the 
Jacobian of � to transform back to the original scale.3 Showing that using (15) as 
a prior for (�, �) in (14) yields a proper marginal posterior if 0 < yi < ni for at least 
one i follows from standard arguments.4

Contours of �(�, �|y) based on a numeric evaluation of the functional in (14) with 
�(�, �) as in (15) are shown in the left panel of Fig. 6. The marginal posterior den-
sity has a mode at (23.42, 8.87) and mean at (33.01, 11.83) which, chosen as hyper-
parameters in a beta prior, roughly agrees with expected value and prior sample size 

(13)∝

N∏

i=1

�
yi
i
(1 − �i)

ni−yi

N∏

i=1

Γ(� + �)

Γ(�)Γ(�)
��−1
i

(1 − �i)
�−1�(�, �).

(14)�(�, �|y) ∝
N∏

i=1

Γ(� + �)

Γ(�)Γ(�)

Γ(� + yi)Γ(� + ni − yi)

Γ(� + � + ni)
�(�, �).

(15)�(�, �) ∝ (� + �)−5∕2,

5
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20
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θi
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,β

,y
)
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Fig. 6   Fully Bayesian hierarchical model–simulated posterior distributions. Note: Left: unnormal-
ised marginal posterior �(�, �|y) computed over (�, �) ∈ [0, 80] × [0, 30] . Contour lines indicate 
5%, 15%,… , 85%, 95% of the density at the mode (23.42, 8.87). Right: Kernel estimates of posterior den-
sities �(�i|�, �, y)

3  Being a precision measure of the beta prior, � inversely affects the variance of the scoring probabilities. 
Placing a uniform prior on �−1∕2 is thus approximately equivalent to placing a diffuse prior on the stand-
ard deviation of �.
4  See Gelman et al. (2013) for further discussion of prior choice.
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of the beta prior in the baseline likelihood-based EB model of Sect. 2.5 This seems 
reasonable since both models rely on the full likelihood but �(�, �) in HB intro-
duces additional uncertainty. We thus expect that shrinkage towards the prior will be 
stronger than for MM.

The left panel of Fig. 6 reveals two marked features of �(�, �|y) . First, the con-
tours indicate that regions with � + � ≤ 2 have virtually zero density. Second, the 
correlation between � and � is strongly positive. By properties of the beta distribu-
tion, the marginal posterior thus places nearly all probability mass on hyperparame-
ter combinations (�, �) that yield unimodal beta priors with similar central tendency. 
This is markedly different from the bimodal prior obtained from MM in Sect. 2.1 
which has most probability mass in the tails, giving substantial weight to extreme 
outcomes. Furthermore, the additional uncertainty from imposing the hyperprior 
(15) on (�, �) implies higher uncertainty in outcomes from the (conditional) pos-
terior distribution in the hierarchical model. Consequently, we expect estimates of 
posterior quantities to have higher variance than MM estimates. We will address 
these aspects in more detail in Sect. 3.2.

Although the �(�i|�, �, y) are beta distributions, uncertainty in (�, �) in HB 
does not allow direct simulation from the conditional posteriors as for the empiri-
cal Bayes models where using a standard routine for generating beta variates with 
fixed hyperparameters suffices. Instead, a procedure that incorporates variability in 
the hyperparameters due to the hyperprior (15) is needed. The idea is to first gen-
erate samples from the marginal posterior �(�, �|y) which are then used to draw 
from �(�|�, �, y) . We use the following easily implemented discrete-grid sampling 
scheme suggested in Gelman et al. (2013) to generate random variates from the joint 
posterior �(�, �, �|y).

Sampling from the joint posterior �(�, �, �|y) . 

1.	 Simulate from �(�, �|y) . Draw (�
�
, �

�
) , � = 1,… , L for sufficiently large L using 

the following discrete-grid sampling procedure: 

1.1	Compute the (unnormalised) marginal posterior �(�, �|y) with hyperprior 
(15) over a sufficiently large grid. Normalise by approximating the density 
as a step function with unit integral over the grid.

1.2	Obtain �(�|y) by discrete summation.

	    For � = 1,… , L : 

1.3	Draw �
�
 from �(�|y) and draw �

�
 from �(�|�, y) given �

�
 using the discrete 

inverse CDF method.
1.4	Add a uniform zero-mean jitter to �

�
 and �

�
 to get continuously distributed 

samples.

5  We have also considered alternative weakly informative prior specifications for � and � , e.g. independ-
ent uniform and gamma. However, this led to virtually the same results which we omit for brevity.



191

1 3

Hierarchical Bayes modelling of penalty conversion rates…

2.	 Simulate from  �(�|�, �, y) . For each i = 1,… ,N  , use the (�
�
, �

�
) 

to obtain L draws of �i from the conditional posterior distribution 
�i|�, �, y ∼ Beta(� + yi, � + ni − yi).

3.1.1 � Results

Posterior quantities are approximated using L = 50000 draws generated with the 
above sampling scheme. The right panel of Fig. 6 shows KDEs of the posterior dis-
tributions of the �i|�, �, y . We find that modelling uncertainty in the hyperparameters 
by the joint probability model results in the �(�i|�, �, y) being significantly shrunk 
towards each other. As for the EB models, this correction is most pronounced for 
penalty takers with little information since the beta prior in the hierarchical model is 
shaped significantly by players with many attempts—a sub-sample whose informa-
tion is more relevant for inference on players where data is scarce. Comparing the 
kernel density estimate for the distribution of posterior means to the distribution of 
MM posterior means in Fig. 2 further illustrates this feature.

Figure 7 compares posterior means and relative frequencies �̂i to examine shrink-
age of frequentist estimates implied by the fully Bayesian approach somewhat more 
closely. Consistent with the discussion of implications of the hyperprior in the pre-
vious section we find more pronounced shrinkage on the estimated penalty kicking 
ability of the players. It is noticeable that modelling the hyperparameters via the 
joint probability distribution results in a pronounced correction of scoring probabili-
ties towards the posterior population average for players with an intermediate num-
ber of attempts and �̂i ∈ (0.5, 1) —a sub-sample for which MM estimates often differ 
only marginally from �̂i . Two further features distinguish the results from those of 
the MM approach. First, failed penalties are more influential in HB than for MM, i.e. 

.5

.75

0 .25 .5 .75 1

θ̃ i
|α
,β

,y

0 15 30 45 60ni

Fig. 7   Fully Bayesian hierarchical model–conditional posterior means. Note: the solid red line marks the 
set of equal relative frequencies �̂i and posterior mean estimates 𝜃i|𝛼, 𝛽, y . The dashed red line shows the 
average posterior mean. The �̂i are jittered to reduce overplotting. Grey bars show 95% credible intervals 
(colour figure online)
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the posterior is adjusted towards lower scoring probabilities if a player demonstrates 
lack of skill in several attempts. Consequently, we expect order reversals in the out-
comes relative to MM. Furthermore, for �̂i close to unity the uncertainty as visual-
ised by vertical grey bars in Fig. 7 is larger than for MM where the precision of the 
results seems to be exaggerated, cf. Fig. 2.

Table 5 shows the top and bottom 10 ranks for posterior mean estimates in the 
fully Bayesian hierarchical model along with 95% CIs. Overall, we find that the pos-
terior means are corrected more strongly compared to MM. Lower bounds of the 
95% CIs for top players fall in a more realistic range near the average posterior scor-
ing probability. We find that the all-time ranking in the hierarchical model is led 
by Manfred Kaltz, now with Lothar Matthäus in second place. Hans-Joachim Abel 
holds the third place but is closely followed by several renowned players, amongst 
them Michael Zorc and the presumably best active penalty taker in first-tier Bundes-
liga, Bayern Munich’s Robert Lewandowski, see also Table 7.6

As expected, the upward correction for players in the lower tail of the ability dis-
tribution is more pronounced in the hierarchical model. Again, the 95% CIs appear 
more reasonable, the more so as upper bounds overlap with the intervals of upper-
ranking players. This appears natural: given pressure through the public, trainers 
tend to waive assigning players to further penalties once they have failed some, espe-
cially when further candidates are on the team. Yet, these players—being trained 
professionals—of course would be able to perform with a substantially higher suc-
cess rate than observed so far if they were assigned to further penalties.

For the bottom ranks, we observe more order reversals which, as explained 
above, result from higher failure weighting implied by the prior. Tim Borowski, for 
instance, is again ranked amongst the worst penalty takers in Bundesliga history 
but ranks slightly better than Bruno Labbadia with only one goal in five attempts 
and posterior mean conversion probability of about 67.5%.7 Interestingly, Borowski 
ranks almost as high as Klaas-Jan Huntelaar who failed in 7 out of 16 attempts.

In view of these results, it is worth discussing how appropriate the implied 
shrinkage is. Mean and mode as well as the highest density region in the conditional 
posterior distribution for ( �, � ) in Fig.  6 suggests that about 30–40 penalties are 
needed for the data to dominate the prior. This finding fits well with the maximum 
likelihood estimate �̂ ≈ 41 for the baseline model in Sect. 2.2. However, consider-
ing the convergence of relative frequencies reported in Fig. 3 this value may seem 
too high. That said, model adequacy should not be assessed entirely by discrepan-
cies between Bayesian and frequentist estimates. For a more informed evaluation of 
model fits Sect. 3.2 compares models using Bayesian information criteria and a test 
sample covering penalties in season 2020/21.

7  Note that discrepancies in �̂i and CIs for players with equal performance are an artefact from approxi-
mating posterior distributions by simulation.

6  We recommend googling Michael Kutzop for the remarkable story of his single missed penalty.



193

1 3

Hierarchical Bayes modelling of penalty conversion rates…

Ta
bl

e 
5  

F
ul

ly
 B

ay
es

ia
n 

hi
er

ar
ch

ic
al

 m
od

el
—

to
p 

an
d 

bo
tto

m
 1

0 
pe

na
lty

 ta
ke

rs

Pe
na

lti
es

 ta
ke

n 
in

 s
ea

so
ns

 1
96

3/
64

–2
01

9/
20

. R
K

 is
 th

e 
sc

or
e-

ba
se

d 
ra

nk
. 𝜃

i a
nd

 9
5%

 C
I d

en
ot

e 
th

e 
es

tim
at

ed
 m

ea
n 

an
d 

th
e 

95
%

 c
re

di
bl

e 
in

te
rv

al
 o

f t
he

 re
sp

ec
tiv

e 
co

nd
i-

tio
na

l p
os

te
rio

r d
ist

rib
ut

io
n 
�
(�

i
|�
,
�
,
y
)

R
K

Pl
ay

er
y
i

n
i

𝜃
i

95
%

 C
I

R
K

Pl
ay

er
y
i

n
i

𝜃
i

95
%

 C
I

1
M

an
fr

ed
 K

al
tz

53
60

.8
23

[.7
42

, .
89

5]
⋮

⋮
⋮

⋮
⋮

⋮
8

Lo
th

ar
 M

at
th

äu
s

30
33

.8
13

[.7
17

, .
89

9]
97

K
la

as
-J

an
 H

un
te

la
ar

9
16

.6
86

[.5
49

, .
79

8]
32

H
an

s-
Jo

ac
hi

m
 A

be
l

16
16

.8
10

[.6
99

, .
91

0]
79

1
D

ie
te

r K
ra

fc
zy

k
0

3
.6

83
[.5

19
, .

81
1]

15
R

ai
ne

r B
on

ho
f

20
21

.8
09

[.7
03

, .
90

4]
39

7
H

ar
ry

 D
ec

he
iv

er
2

6
.6

83
[.5

27
, .

80
6]

37
Lu

dw
ig

 N
ol

de
n

15
15

.8
07

[.6
94

, .
90

8]
79

1
Ti

m
 B

or
ow

sk
i

0
3

.6
83

[.5
20

, .
81

1]
3

M
ic

ha
el

 Z
or

c
49

57
.8

07
[.7

23
, .

88
2]

39
7

D
ie

te
r E

ck
ste

in
2

6
.6

82
[.5

26
, .

80
6]

12
Ro

be
rt 

Le
w

an
do

w
sk

i
27

30
.8

05
[.7

06
, .

89
4]

39
7

M
ar

co
 W

ei
ßh

au
pt

2
6

.6
82

[.5
27

, .
80

7]
5

G
eo

rg
 V

ol
ke

rt
31

35
.8

04
[.7

09
, .

89
0]

52
3

M
ar

ko
 P

an
te

lic
1

5
.6

75
[.5

14
, .

80
1]

43
M

ax
 K

ru
se

14
14

.8
04

[.6
90

, .
90

6]
30

5
M

an
fr

ed
 P

oh
ls

ch
m

id
t

3
8

.6
75

[.5
22

, .
79

8]
27

M
ic

ha
el

 K
ut

zo
p

17
18

.7
99

[.6
88

, .
89

9]
52

3
B

ru
no

 L
ab

ba
di

a
1

5
.6

75
[.5

14
, .

80
3]

⋮
⋮

⋮
⋮

⋮
⋮

30
5

G
ün

te
r H

er
rm

an
n

3
8

.6
75

[.5
20

, .
79

7]



194	 C. Hanck, M. C. Arnold 

1 3

3.2 � Additional Markov chain Monte Carlo estimates and model comparison

It seems worthwhile—e.g. for predictive purposes—to know which active first divi-
sion players are the most likely to convert future penalties. To this end, we first 
assess adequacy of the discussed models. We also consider further models that sat-
isfy the Bayesian paradigm and incorporate uncertainty in hyperparameters. Here, 
we use the same regressor sets as for the EB models and fit fully Bayesian beta-
binomial regressions (BBBR) with logit and identity links for � and � , setting vague 
Gaussian and gamma priors. Posterior quantities for these models are obtained from 
Markov Chain Monte Carlo (MCMC) sampling.8

For Bayesian applications, metrics based on an estimate of the (expected log) 
predictive density (ELPD) have been suggested for evaluating out-of-sample predic-
tive performance. For comparison of the Bayesian models, we use the leave-one-
out cross-validation criterion (LOOIC) proposed by Vehtari et  al. (2017) which 
approximates the LOOCV estimate of ELPD by regularised importance sampling. 
Results are given in Table 6. Generally, the EB models with informative priors and 
their MCMC counterparts perform very similarly, yet MCMC fits are reported to 
be slightly inferior in each case, which is likely due to prior induced uncertainty 
in parameters. The MM approach is clearly dominated by the other models. As 
expected, the beta-binomial regression models with constant linear predictor from 
Sect. 2.2 perform very similarly as HB with Pareto prior for ( �, �).9 LOOIC indicates 

Table 6   Comparison of Bayesian beta-binomial models

ELPD
LOO

 is the LOO estimate of the expected log pointwise predictive density. ΔELPD
LOO

 is the differ-
ence in ELPD relative to the best model. SEΔ the standard error of component-wise differences in ELPD. 
LOOIC = −2 ⋅ ELPD

LOO

 with standard error SE
LOOIC

 . ll is the binary cross-entropy for season 2020/21 
predictions. Bayesian models are fitted with the NUTS of Stan (Carpenter et al. 2017) via the brms R 
package (Bürkner 2017). Posterior quantities are obtained based on 50000 samples generated from four 
independent Markov chains

model ELPD
LOO

ΔELPD
LOO

SEΔ LOOIC SE
LOOIC

ll

EB x
i
= (1, n

i
,miss

i
)� − 1121.31 0.00 0.00 2242.63 39.81 0.47

BBBR x
i
= (1, n

i
,miss

i
)� − 1125.64 − 4.33 0.65 2251.28 39.87 0.47

EB x
i
= (1, n

i
)� − 1159.14 − 37.83 8 2318.28 38.71 0.48

BBBR x
i
= (1, n

i
)� − 1162.82 − 41.51 7.46 2325.65 37.98 0.49

EB x
i
= 1 − 1201.69 − 80.37 11.01 2403.38 41.90 0.48

BBBR x
i
= 1 − 1203.19 − 81.88 11.10 2406.38 42.14 0.48

HB − 1203.58 − 82.27 10.92 2407.16 41.79 0.48
EB (moment matching, MM) − 1415.17 − 293.86 17.67 2830.35 50.76 0.52
frequentist 1.34

8  In BBBR models, we use N(0, 1.5) priors for the �i and set a Gamma(4.5, 0.1) prior for � which, simi-
larly as for the fully Bayesian hierarchical model, has expectation 45 but roughly 95% probability mass 
on [1, 85].
9  Note that the HB model can be cast as a BBBR with linear predictor � = �

0

∼ U[0, 1] and 
� = �

0

∼ Pareto(�,−1.5) with reasonably small lower bound 𝜂 > 0.
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that the most complex beta-binomial regression model performs best among the 
fully Bayesian models.10

For a comparison with the naïve frequentist strategy of using independent bino-
mial proportions �̂i as ability estimates, we compute binary cross-entropy loss using 
predicted scoring probabilities for 94 penalties kicked in the 2020/21 season by 
players with ni ≥ 1.11 As is seen from the ll column in Table 6, log loss for the test 
dataset also indicates that MM performs worst among the Bayesian models, while 
full BBBR does best. Clearly, the frequentist approach performs worst.

We now discuss the results for the BBBR model with xi = (1, ni,missi)
� in more 

detail and examine ability estimates of top and bottom active Bundesliga players.12 
The results are shown in Table 7.13 The ranking is topped by Robert Lewandowski 
with a posterior scoring probability of 88.4%, closely followed by Max Kruse and 
Andrej Kramaric.14 At the bottom of the first division ranking, we find Borussia 
Mönchengladbach’s Breel Embolo and Sebastian Rudy of TSG Hoffenheim who 
both missed their only Bundesliga penalties to date. Again, we conclude that rank 
reversals from the BBBR model with xi = (1, ni,missi)

� can be insightful. For exam-
ple, Erling Haaland (one save and one miss in four attempts) with all-time score-
based rank 406 is rated almost as Thorgan Hazard (2 saves and 2 misses out of 12 
attempts) and all-time rank 119.

4 � Discussion and outlook

This article conducts an analysis of the penalty-kicking abilities of Bundesliga play-
ers for a historical sample covering seasons 1963/64 to 2020/21. An inherent prob-
lem in estimating scoring probabilities and establishing a ranking is that the data are 
imbalanced among players. From a statistical perspective, sparsity in observations 
resulting from many penalty takers having only taken a few penalties is challenging. 
Purely likelihood-based estimation where players are treated as independent then 
yields imprecise results.

We have shown that a ranking based on hierarchical Bayesian models in which 
the accuracy of all players is modelled by a joint probability distribution have advan-
tages over a purely frequentist approach. In comparison to common rankings based 
on the relative scoring frequency or even the absolute number of goals, such as that 
of Kicker (2021), we find some notable rank reversals using posterior estimates from 

11  For ll to be defined under the frequentist paradigm, we let �̂i = 1 − 10

−5 to handle cases where yi = ni.
12  Posterior quantities for model parameters are shown in Table 9 in [Appendix].
13  Complete results for active first division players are given in Table 10 of [Appendix], which also gives 
player performance data at the end of season 2020/21. We have also estimated conversion probabilities 
for historical data on 2nd tier Bundesliga. See Table 12 of [Appendix] for the emerging ranking of active 
players.
14  Estimates based on a dataset that also includes DFB Cup penalties put Union Berlin’s Max Kruse 
ahead of Robert Lewandowski. However, credible intervals have considerable overlap, see Table 11 in 
[Appendix].

10  Following a suggestion of an anonymous referee, it would also be interesting to jointly model the 
(categorical) probability distribution of the triplet ( y , miss , save ) instead of using counts of misses as a 
predictor for the scoring probability in BBBR, in order to account for differing rates instead of counts of 
misses. We however leave this idea for future research for brevity here.
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hierarchical models. This predominantly concerns lower quantiles of the distribution 
where the shrinkage is greatest. Changes in the top ranks are usually small. This is 
as expected, as players in the top ranks include those that tend to convert many pen-
alties. Hence, they get assigned to further penalties, resulting in many data points for 
those players. Thus, purely likelihood-based inference already is fairly informative.

Although the Bayesian results may be statistically more convincing than a com-
parison of plain scoring frequencies, the posterior mean results should be inter-
preted with consideration of the associated uncertainty. While differences in pos-
terior means are not negligible—suggesting that there are indeed players who are 
significantly more accurate on penalties than others—credible intervals tend to over-
lap considerably. This pattern is evident both for the historical overall ranking and 
also for separate rankings of active players in the first and second Bundesliga.

For further research, it might be interesting to use a dataset that provides more 
detailed information on the individual penalty kicks for each player to develop a model 
that can be used for predicting outcomes of penalties in future Bundesliga games.

Appendix: Additional results

See Tables 8, 9, 10, 11, 12.  

Table 8   Frequentist beta-
binomial regression estimates

Data covering seasons 1963/64–2019/20 from Kicker (2021)

Estimate SD t value Pr(>|t|)

�̂

 Intercept .77 .05 14.45 < 0.001
n .05 .00 12.49 < 0.001
miss − .39 .04 − 9.12 < 0.001
�̂
0

 Intercept − 4.44 .28 − 16.03 < 0.001

Table 9   Bayesian beta-binomial 
regression: posterior quantities

Data covering seasons 1963/64–2020/21 from Kicker (2021). Post. 
SE is the estimated standard deviation of the posterior distribution. 
l-95% CI and u-95% CI are lower and upper bounds of the 95% cred-
ible interval. R̂ is the Gelman–Rubin statistic

Estimate Post. SE l-95% CI u-95% CI R̂

�

  Intercept .76 .06 .65 .87 1
n .05 .01 .04 .06 1
miss − .40 .05 − .49 − .31 1
�

  Intercept 67.78 18 39.90 109.22 1
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Table 10   Bayesian beta-binomial regression estimates—active tier 1 Bundesliga players

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

5 Robert Lewandowski 39 35 2 2 .897 .884 [.812, .941]
18 Max Kruse 20 19 1 0 .950 .878 [.800, .942]
15 Andrej Kramaric 22 20 1 1 .909 .839 [.754, .912]
72 Nils Petersen 14 11 3 0 .786 .808 [.712, .890]
34 Daniel Caligiuri 19 16 2 1 .842 .803 [.710, .883]
119 Vincenzo Grifo 8 8 0 0 1 .790 [.689, .879]
119 André Silva 8 8 0 0 1 .789 [.689, .879]
119 Daniel Brosinski 8 8 0 0 1 .789 [.688, .879]
45 Thomas Müller 16 14 1 1 .875 .787 [.691, .872]
119 Nabil Bentaleb 9 8 1 0 .889 .786 [.685, .874]
155 Eric Maxim Choupo-Moting 9 7 2 0 .778 .772 [.669, .862]
52 Marco Reus 17 13 3 1 .765 .771 [.673, .857]
174 Niclas Füllkrug 7 6 1 0 .857 .763 [.658, .856]
208 Vladimir Darida 6 5 1 0 .833 .752 [.643, .847]
208 Jonas Hofmann 6 5 1 0 .833 .751 [.642, .847]
88 Wout Weghorst 11 10 0 1 .909 .744 [.642, .839]
251 Marcel Sabitzer 4 4 0 0 1 .740 [.629, .840]
251 Lucas Alario 5 4 1 0 .80 .739 [.628, .838]
251 Milot Rashica 5 4 1 0 .80 .738 [.628, .835]
98 Emil Forsberg 11 9 1 1 .818 .731 [.625, .827]
311 Marcel Halstenberg 3 3 0 0 1 .726 [.612, .828]
311 Silas Katompa Mvumpa 3 3 0 0 1 .726 [.612, .829]
311 Ramy Bensebaini 3 3 0 0 1 .726 [.611, .829]
311 Nicolàs Gonzàlez 4 3 1 0 .750 .725 [.612, .826]
98 Klaas-Jan Huntelaar 17 9 7 1 .529 .722 [.615, .815]
406 Daniel Ginczek 2 2 0 0 1 .712 [.594, .818]
406 Daniel Didavi 2 2 0 0 1 .712 [.595, .817]
406 Michael Gregoritsch 2 2 0 0 1 .712 [.594, .817]
406 Amine Harit 2 2 0 0 1 .712 [.596, .816]
406 Davie Selke 2 2 0 0 1 .712 [.595, .817]
406 Robin Quaison 2 2 0 0 1 .711 [.594, .817]
406 Krzysztof Piatek 3 2 1 0 .667 .711 [.594, .815]
406 Sebastian Andersson 3 2 1 0 .667 .711 [.594, .815]
406 Matheus Cunha 3 2 1 0 .667 .711 [.594, .814]
535 Leon Goretzka 1 1 0 0 1 .697 [.577, .804]
535 Steven Zuber 2 1 1 0 .50 .697 [.577, .803]
535 Ihlas Bebou 1 1 0 0 1 .697 [.578, .806]
535 Serge Gnabry 2 1 1 0 .50 .697 [.578, .804]
535 Jadon Sancho 1 1 0 0 1 .697 [.575, .805]
535 Roland Sallai 1 1 0 0 1 .697 [.576, .804]
535 Luka Jovic 1 1 0 0 1 .697 [.577, .805]
535 Dani Olmo 1 1 0 0 1 .697 [.576, .804]
535 Leonardo Bittencourt 1 1 0 0 1 .697 [.577, .805]
535 Florian Kainz 1 1 0 0 1 .697 [.575, .805]
535 Makoto Hasebe 2 1 1 0 .50 .697 [.577, .803]
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Table 10   (continued)

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

535 Gonzalo Castro 1 1 0 0 1 .697 [.577, .805]
535 Lars Bender 1 1 0 0 1 .697 [.577, .805]
535 Mark Uth 3 1 2 0 .333 .697 [.577, .801]
535 Kerem Demirbay 1 1 0 0 1 .696 [.576, .805]
535 Christian Gentner 2 1 1 0 .50 .696 [.577, .803]
535 Moussa Niakhaté 1 1 0 0 1 .696 [.576, .804]
535 Gonçalo Paciência 1 1 0 0 1 .696 [.577, .804]
535 Marcus Ingvartsen 2 1 1 0 .50 .696 [.577, .803]
535 Fabian Klos 2 1 1 0 .50 .696 [.576, .801]
535 Filip Kostic 3 1 2 0 .333 .696 [.576, .800]
535 André Hahn 3 1 2 0 .333 .696 [.577, .802]
804 Munas Dabbur 1 0 1 0 0 .682 [.558, .791]
804 Lucas Höler 1 0 1 0 0 .681 [.558, .790]
804 Jonathan Schmid 1 0 1 0 0 .681 [.558, .790]
804 Anthony Ujah 1 0 1 0 0 .681 [.558, .791]
804 Ömer Toprak 1 0 1 0 0 .681 [.557, .790]
804 Christian Günter 1 0 1 0 0 .681 [.558, .789]
804 Philipp Förster 1 0 1 0 0 .681 [.559, .791]
804 Steven Skrzybski 1 0 1 0 0 .681 [.559, .791]
804 Maximilian Philipp 1 0 1 0 0 .681 [.558, .790]
804 Ermin Bicakcic 1 0 1 0 0 .681 [.558, .790]
804 Alassane Plea 1 0 1 0 0 .681 [.559, .789]
804 Alexander Sörloth 1 0 1 0 0 .681 [.558, .789]
804 Maximilian Arnold 1 0 1 0 0 .681 [.557, .790]
804 Mathew Leckie 1 0 1 0 0 .681 [.558, .789]
251 Florian Niederlechner 6 4 1 1 .667 .662 [.546, .769]
98 Lars Stindl 12 9 1 2 .750 .658 [.546, .764]
98 Alfred Finnbogason 11 9 0 2 .818 .657 [.544, .764]
311 David Alaba 5 3 1 1 .60 .646 [.527, .755]
311 Wendell 5 3 1 1 .60 .646 [.526, .755]
119 Thorgan Hazard 12 8 2 2 .667 .645 [.531, .751]
311 Ondrej Duda 4 3 0 1 .750 .644 [.523, .756]
406 Erling Haaland 4 2 1 1 .50 .630 [.507, .742]
535 Janik Haberer 2 1 0 1 .50 .611 [.484, .727]
535 Charles Arànguiz 2 1 0 1 .50 .611 [.485, .726]
535 Admir Mehmedi 2 1 0 1 .50 .610 [.484, .727]
535 Àdàm Szalai 2 1 0 1 .50 .610 [.484, .726]
174 Dodi Lukebakio 8 6 0 2 .750 .610 [.491, .724]
804 Breel Embolo 1 0 0 1 0 .593 [.464, .711]
804 Sebastian Rudy 1 0 0 1 0 .592 [.464, .711]

Historic Bundesliga data from Kicker (2021). RK is the score-based all-time rank in tier 1 Bundesliga
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Table 11   Bayesian beta-binomial regression estimates—active tier 1 Bundesliga players (extended data-
set)

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

18 Max Kruse 24 23 1 0 .950 .892 [.821, .950]
5 Robert Lewandowski 42 37 3 2 .897 .880 [.811, .935]
15 Andrej Kramaric 23 21 1 1 .909 .840 [.758, .910]
72 Nils Petersen 17 14 3 0 .786 .828 [.740, .901]
34 Daniel Caligiuri 21 18 2 1 .842 .814 [.728, .889]
119 André Silva 10 10 0 0 1 .807 [.713, .890]
119 Nabil Bentaleb 11 10 1 0 .889 .803 [.710, .885]
119 Vincenzo Grifo 9 9 0 0 1 .797 [.702, .882]
119 Daniel Brosinski 9 9 0 0 1 .797 [.702, .882]
45 Thomas Müller 24 20 2 2 .875 .781 [.691, .862]
52 Marco Reus 18 14 3 1 .765 .778 [.685, .860]
174 Niclas Füllkrug 8 7 1 0 .857 .774 [.674, .862]
155 Eric Maxim Choupo-Moting 9 7 2 0 .778 .771 [.670, .859]
251 Marcel Sabitzer 5 5 0 0 1 .755 [.649, .849]
208 Jonas Hofmann 6 5 1 0 .833 .753 [.647, .846]
251 Lucas Alario 6 5 1 0 .80 .753 [.648, .845]
208 Vladimir Darida 7 5 2 0 .833 .751 [.647, .842]
98 Emil Forsberg 12 10 1 1 .818 .743 [.643, .834]
311 Marcel Halstenberg 4 4 0 0 1 .743 [.633, .838]
251 Milot Rashica 5 4 1 0 .80 .741 [.635, .836]
311 Nicolàs Gonzàlez 5 4 1 0 .750 .741 [.634, .836]
406 Daniel Ginczek 3 3 0 0 1 .731 [.621, .829]
311 Ramy Bensebaini 3 3 0 0 1 .731 [.621, .827]
311 Silas Katompa Mvumpa 3 3 0 0 1 .730 [.622, .829]
98 Klaas-Jan Huntelaar 17 9 7 1 .529 .723 [.619, .812]
406 Amine Harit 2 2 0 0 1 .718 [.605, .819]
406 Davie Selke 2 2 0 0 1 .718 [.607, .818]
535 Jadon Sancho 2 2 0 0 1 .717 [.607, .817]
406 Daniel Didavi 2 2 0 0 1 .717 [.605, .818]
406 Robin Quaison 2 2 0 0 1 .717 [.605, .819]
406 Michael Gregoritsch 2 2 0 0 1 .717 [.604, .819]
535 Lars Bender 2 2 0 0 1 .717 [.606, .818]
406 Matheus Cunha 3 2 1 0 .667 .717 [.605, .816]
406 Krzysztof Piatek 3 2 1 0 .667 .717 [.605, .816]
406 Sebastian Andersson 3 2 1 0 .667 .716 [.604, .815]
535 André Hahn 4 2 2 0 .333 .715 [.603, .812]
535 Florian Kainz 1 1 0 0 1 .704 [.590, .806]
535 Gonçalo Paciência 1 1 0 0 1 .704 [.590, .807]
535 Dani Olmo 1 1 0 0 1 .704 [.589, .807]
535 Moussa Niakhaté 1 1 0 0 1 .704 [.589, .807]
535 Leonardo Bittencourt 1 1 0 0 1 .704 [.589, .806]
535 Roland Sallai 1 1 0 0 1 .704 [.589, .808]
535 Leon Goretzka 1 1 0 0 1 .704 [.590, .807]
535 Luka Jovic 1 1 0 0 1 .704 [.588, .807]
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Table 11   (continued)

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

535 Gonzalo Castro 1 1 0 0 1 .704 [.589, .807]
535 Kerem Demirbay 1 1 0 0 1 .704 [.588, .808]
535 Ihlas Bebou 1 1 0 0 1 .704 [.588, .808]
535 Steven Zuber 2 1 1 0 .50 .704 [.590, .805]
535 Fabian Klos 2 1 1 0 .50 .703 [.590, .804]
535 Marcus Ingvartsen 2 1 1 0 .50 .703 [.590, .805]
804 Philipp Förster 2 1 1 0 0 .703 [.588, .806]
535 Serge Gnabry 2 1 1 0 .50 .703 [.589, .805]
535 Makoto Hasebe 2 1 1 0 .50 .703 [.589, .806]
535 Filip Kostic 3 1 2 0 .333 .703 [.588, .803]
535 Christian Gentner 3 1 2 0 .50 .702 [.588, .803]
535 Mark Uth 4 1 3 0 .333 .701 [.587, .801]
119 Thorgan Hazard 15 11 2 2 .667 .690 [.583, .785]
804 Munas Dabbur 1 0 1 0 0 .690 [.572, .794]
804 Maximilian Arnold 1 0 1 0 0 .690 [.572, .793]
804 Alassane Plea 1 0 1 0 0 .690 [.573, .794]
804 Christian Günter 1 0 1 0 0 .690 [.572, .794]
804 Lucas Höler 1 0 1 0 0 .690 [.571, .794]
804 Ermin Bicakcic 1 0 1 0 0 .690 [.571, .793]
804 Maximilian Philipp 1 0 1 0 0 .690 [.573, .794]
804 Ömer Toprak 1 0 1 0 0 .690 [.572, .793]
804 Steven Skrzybski 1 0 1 0 0 .689 [.572, .794]
804 Mathew Leckie 1 0 1 0 0 .689 [.572, .793]
804 Anthony Ujah 1 0 1 0 0 .689 [.571, .793]
804 Jonathan Schmid 1 0 1 0 0 .689 [.572, .794]
804 Alexander Sörloth 1 0 1 0 0 .689 [.573, .793]
98 Lars Stindl 13 10 1 2 .750 .677 [.570, .776]
88 Wout Weghorst 13 10 1 2 .909 .677 [.571, .777]
98 Alfred Finnbogason 12 10 0 2 .818 .677 [.570, .778]
311 Wendell 6 4 1 1 .60 .670 [.557, .772]
251 Florian Niederlechner 6 4 1 1 .667 .670 [.557, .773]
311 Ondrej Duda 5 4 0 1 .750 .670 [.555, .774]
311 David Alaba 5 3 1 1 .60 .656 [.540, .760]
406 Erling Haaland 4 2 1 1 .50 .641 [.523, .749]
535 Admir Mehmedi 2 1 0 1 .50 .625 [.504, .736]
535 Àdàm Szalai 2 1 0 1 .50 .625 [.504, .736]
535 Charles Arànguiz 2 1 0 1 .50 .624 [.504, .736]
535 Janik Haberer 2 1 0 1 .50 .624 [.504, .735]
174 Dodi Lukebakio 8 6 0 2 .750 .621 [.508, .730]
804 Breel Embolo 1 0 0 1 0 .608 [.486, .722]
804 Sebastian Rudy 1 0 0 1 0 .608 [.484, .722]

Historic Bundesliga and DFB Cup data from Kicker (2021). RK is the score-based all-time rank in tier 1 
Bundesliga
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Table 12   Bayesian beta-binomial regression estimates—active tier 2 Bundesliga players

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

8 Dimitrij Nazarov 21 20 1 0 .952 .976 [.927, .998]
44 Alexander Mühling 14 14 0 0 1 .972 [.920, .998]
74 Rouwen Hennings 11 10 1 0 .909 .939 [.866, .985]
110 Kevin Wolze 9 8 1 0 .889 .924 [.841, .978]
89 Kevin Behrens 11 9 2 0 .818 .923 [.840, .976]
147 Kingsley Schindler 7 7 0 0 1 .922 [.839, .978]
110 Marvin Ducksch 10 8 2 0 .80 .915 [.829, .972]
21 Tobias Kempe 20 17 2 1 .850 .912 [.831, .967]
25 Marc Schnatterer 18 16 1 1 .889 .911 [.830, .968]
16 Simon Terodde 25 18 7 0 .720 .90 [.808, .960]
181 Dennis Srbeny 8 6 2 0 .750 .897 [.802, .961]
234 Danny Blum 5 5 0 0 1 .897 [.803, .964]
234 Marvin Knoll 5 5 0 0 1 .897 [.804, .964]
234 Branimir Hrgota 6 5 1 0 .833 .892 [.796, .960]
234 Silvere Ganvoula 6 5 1 0 .833 .892 [.797, .959]
234 Nick Proschwitz 6 5 1 0 .833 .892 [.796, .959]
234 Aaron Hunt 6 5 1 0 .833 .892 [.796, .959]
288 Pascal Testroet 4 4 0 0 1 .881 [.782, .956]
288 Christoph Moritz 4 4 0 0 1 .881 [.782, .955]
288 Max Besuschkow 6 4 2 0 .667 .873 [.768, .947]
376 Dominik Kaiser 3 3 0 0 1 .864 [.759, .945]
376 Dawid Kownacki 3 3 0 0 1 .864 [.758, .945]
376 Johannes Geis 3 3 0 0 1 .864 [.757, .945]
376 Andreas Albers 3 3 0 0 1 .864 [.758, .944]
376 Manuel Schäffler 4 3 1 0 .750 .863 [.757, .941]
376 Julian Green 4 3 1 0 .750 .862 [.756, .941]
376 Marvin Wanitzek 4 3 1 0 .750 .862 [.755, .941]
288 Philipp Hofmann 8 4 4 0 .50 .862 [.751, .939]
376 Sebastian Kerk 5 3 2 0 .60 .860 [.751, .938]
512 Tim Kleindienst 2 2 0 0 1 .845 [.732, .932]
512 Sonny Kittel 2 2 0 0 1 .845 [.731, .932]
512 Rodrigo Zalazar 3 2 1 0 .667 .845 [.732, .930]
512 Stefan Maierhofer 2 2 0 0 1 .844 [.733, .932]
512 Janni Serra 3 2 1 0 .667 .844 [.731, .930]
512 Marvin Pieringer 2 2 0 0 1 .844 [.732, .932]
512 Guido Burgstaller 3 2 1 0 .667 .844 [.731, .929]
512 Daniel Keita-Ruel 4 2 2 0 .50 .844 [.730, .928]
700 Sebastian Stolze 2 1 1 0 .50 .825 [.706, .916]
700 Denis Thomalla 2 1 1 0 .50 .824 [.705, .917]
700 Jann George 2 1 1 0 .50 .824 [.705, .917]
700 Leart Paqarada 2 1 1 0 .50 .824 [.704, .916]
700 Patrick Schmidt 2 1 1 0 .50 .824 [.705, .917]
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Table 12   (continued)

RK Player n
i

y
i

saved miss �̂
i

𝜃
i

95% CI

700 Paul Seguin 2 1 1 0 .50 .824 [.705, .916]
700 Christian Kühlwetter 2 1 1 0 .50 .824 [.704, .916]
700 Chris Führich 1 1 0 0 1 .823 [.704, .917]
700 Tobias Mohr 1 1 0 0 1 .823 [.704, .917]
700 Dominic Baumann 1 1 0 0 1 .822 [.703, .918]
700 David Pisot 1 1 0 0 1 .822 [.703, .918]
700 Martin Kobylanski 1 1 0 0 1 .822 [.702, .917]
700 Niklas Schmidt 1 1 0 0 1 .822 [.702, .918]
700 Fabian Holland 1 1 0 0 1 .822 [.704, .917]
700 Christian Santos 1 1 0 0 1 .822 [.702, .917]
700 Alexander Esswein 1 1 0 0 1 .822 [.703, .918]
700 Mitja Lotric 1 1 0 0 1 .822 [.701, .917]
700 Oliver Hein 1 1 0 0 1 .822 [.702, .917]
700 Omar Marmoush 1 1 0 0 1 .822 [.703, .918]
700 Genki Haraguchi 1 1 0 0 1 .822 [.701, .917]
700 Ken Reichel 1 1 0 0 1 .822 [.702, .918]
700 Lukas Gugganig 1 1 0 0 1 .822 [.703, .917]
700 Benjamin Kessel 1 1 0 0 1 .822 [.703, .917]
700 Hanno Behrens 1 1 0 0 1 .822 [.704, .916]
700 Arne Feick 1 1 0 0 1 .822 [.702, .917]
1129 Andreas Geipl 2 0 2 0 0 .804 [.679, .901]
1129 Robert Herrmann 2 0 2 0 0 .804 [.677, .901]
1129 Manuel Riemann 1 0 1 0 0 .802 [.677, .900]
1129 Tim Kister 1 0 1 0 0 .802 [.676, .901]
1129 Dong-Won Ji 1 0 1 0 0 .802 [.674, .900]
1129 Marc Lorenz 1 0 1 0 0 .802 [.674, .901]
1129 Sebastian Schonlau 1 0 1 0 0 .801 [.676, .900]
1129 Christian Strohdiek 1 0 1 0 0 .801 [.674, .900]
1129 Felix Lohkemper 1 0 1 0 0 .801 [.674, .900]
1129 Jan Hochscheidt 1 0 1 0 0 .801 [.673, .901]
234 Serdar Dursun 6 5 0 1 .833 .707 [.577, .823]
288 Robert Zulj 5 4 0 1 .80 .675 [.541, .797]
512 Enrico Valentini 4 2 1 1 .50 .621 [.479, .749]
512 Robert Leipertz 3 2 0 1 .667 .602 [.460, .736]
1129 Felix Platte 1 0 0 1 0 .520 [.370, .665]

Historic tier 2 Bundesliga from Kicker (2021). RK is the score-based all-time rank in tier 2 Bundesliga
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