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Abstract
We study the expression rates of deep neural networks (DNNs for short) for option
prices written on baskets of d risky assets whose log-returns are modelled by a mul-
tivariate Lévy process with general correlation structure of jumps. We establish suffi-
cient conditions on the characteristic triplet of the Lévy process X that ensure ε error
of DNN expressed option prices with DNNs of size that grows polynomially with
respect to O(ε−1), and with constants implied in O( · ) which grow polynomially in
d , thereby overcoming the curse of dimensionality (CoD) and justifying the use of
DNNs in financial modelling of large baskets in markets with jumps.

In addition, we exploit parabolic smoothing of Kolmogorov partial integro-differ-
ential equations for certain multivariate Lévy processes to present alternative archi-
tectures of ReLU (“rectified linear unit”) DNNs that provide ε expression error in
DNN size O(| log(ε)|a) with exponent a proportional to d , but with constants im-
plied in O( · ) growing exponentially with respect to d . Under stronger, dimension-
uniform non-degeneracy conditions on the Lévy symbol, we obtain algebraic expres-
sion rates of option prices in exponential Lévy models which are free from the curse
of dimensionality. In this case, the ReLU DNN expression rates of prices depend
on certain sparsity conditions on the characteristic Lévy triplet. We indicate several
consequences and possible extensions of the presented results.
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1 Introduction

Recent years have seen a dynamic development in applications of deep neural net-
works (DNNs for short) in expressing high-dimensional input–output relations. This
development was driven mainly by the need for quantitative modelling of input–
output relationships subject to large sets of observation data. Rather naturally, there-
fore, DNNs have found a large number of applications in computational finance and
financial engineering. We refer to the survey by Ruf and Wang [47] and the references
there. Without going into details, we only state that the majority of activity addresses
techniques to employ DNNs in demanding tasks in computational finance. The often
striking efficient computational performance of DNN-based algorithms raises natu-
rally the question for theoretical, in particular mathematical, underpinning of success-
ful algorithms. Recent years have seen progress, in particular in the context of option
pricing for Black–Scholes-type models, for DNN-based numerical approximation of
diffusion models on possibly large baskets (see e.g. Berner et al. [9], Elbrächter et
al. [22] and Ito et al. [34], Reisinger and Zhang [45] for game-type options). These
references prove that DNN-based approximations of option prices on possibly large
baskets of risky assets can overcome the so-called curse of dimensionality in the
context of affine diffusion models for the dynamics of the (log-)prices of the under-
lying risky assets. These results could be viewed also as particular instances of DNN
expression rates of certain PDEs on high-dimensional state spaces, and indeed cor-
responding DNN expressive power results have been shown for their solution sets in
Grohs et al. [29], Gonon et al. [27] and the references there.

Since the turn of the century, models beyond the classical diffusion setting have
been employed increasingly in financial engineering. In particular, Lévy processes
and their non-stationary generalisations such as Feller–Lévy processes (see e.g.
Böttcher et al. [11, Chap. 2] and the references there) have received wide attention.
This can in part be explained by their ability to account for heavy tails of financial
data and by Lévy-based models constituting hierarchies of models, comprising in
particular classical diffusion (“Black–Scholes”) models with constant volatility that
are still widely used in computational finance as a benchmark. Therefore, all results
for geometric Lévy processes in the present paper apply in particular to the Black–
Scholes model.

The “Feynman–Kac correspondence” which relates conditional expectations of
sufficiently regular functionals over diffusions to (viscosity) solutions of correspond-
ing Kolmogorov PDEs extends to multivariate Lévy processes. We mention only Nu-
alart and Schoutens [41], Cont and Tankov [16, Sect. 12.2], Cont and Voltchkova [18],
Glau [26], Eberlein and Kallsen [21, Chap. 5.4] and the references there. The Kol-
mogorov PDE (“Black–Scholes equation”) in the diffusion case is then replaced by
a so-called partial integro-differential equation (PIDE) where the fractional integro-
differential operator accounting for the jumps is related in a one-to-one fashion with
the Lévy measure νd of the R

d -valued Lévy process Xd . In particular, Lévy-type
models for (log-)returns of risky assets result in nonlocal partial integro-differential
equations for the option price which generalise the linear parabolic differential equa-
tions which arise in classical diffusion models. We refer to Bertoin [10, Chap. 1],
Sato [48, Chaps. 1–5] for fundamentals on Lévy processes and to Böttcher et al.
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[11, Chap. 2] for extensions to certain non-stationary settings. For the use of Lévy
processes in financial modelling, we refer to Cont and Tankov [16, Chap. 11], Eber-
lein and Kallsen [21, Sect. 8.1] and the references there. We refer to Cont and
Voltchkova [18, 17], Matache et al. [40], Hilber et al. [32, Chap. 14] for a presen-
tation and for numerical methods for option pricing in Lévy models.

The results on DNNs in the context of option pricing mentioned above are exclu-
sively concerned with models with continuous price processes. This naturally raises
the question whether DNN-based approximations are still capable of overcoming the
curse of dimensionality in high-dimensional financial models with jumps which have
a much richer mathematical structure. This question is precisely the subject of this ar-
ticle. We study the expression rates of DNNs for prices of options (and the associated
PIDEs) written on possibly large baskets of risky assets whose log-returns are mod-
elled by a multivariate Lévy process with general correlation structure of jumps. In
particular, we establish sufficient conditions on the characteristic triplet of the Lévy
process Xd that ensure ε error of DNN expressed option prices with DNNs of size
O(ε−2), and with constants implied in O( · ) which grow polynomially with respect
to d . This shows that DNNs are capable of overcoming the curse of dimensionality
also for general exponential Lévy models.

Let us outline the scope of our results. The DNN expression rate results proved
here give a theoretical justification for neural-network-based non-parametric option
pricing methods. These have become very popular recently; see for instance the re-
cent survey by Ruf and Wang [47]. Our results show that if option prices result from
an exponential Lévy model, as described e.g. in Eberlein and Kallsen [21, Chap. 3.7],
these prices can under mild conditions on the Lévy triplets be expressed efficiently
by (ReLU) neural networks, also for high dimensions. The result covers in particular
rather general, multivariate correlation structure in the jump part of the Lévy process,
for example parametrised by a so-called Lévy copula; see Kallsen and Tankov [36],
Farkas et al. [24], Eberlein and Kallsen [21, Chap. 8.1] and the references there. This
extends, at least to some extent, the theoretical foundation to the widely used neural-
network-based non-parametric option pricing methodologies to market models with
jumps.

We prove two types of results on DNN expression rate bounds for European op-
tions in exponential Lévy models, with one probabilistic and one “deterministic”
proof. The former is based on concepts from statistical learning theory and pro-
vides for relevant payoffs (baskets, call on max, . . . ) an expression error O(ε) with
DNN sizes of O(ε−2) and with constants implied in O( · ) which grow polynomially
in d , thereby overcoming the curse of dimensionality. The latter bound is based on
parabolic smoothing of the Kolmogorov equation and allows us to prove exponential
expressivity of prices for positive maturities, i.e., an expression error O(ε) with DNN
sizes of O(| log ε|a) for some a > 0, albeit with constants implied in O( · ) possibly
growing exponentially in d .

For the latter approach, a certain non-degeneracy is required for the symbol of the
underlying Lévy process. The probabilistic proof of the DNN approximation rate re-
sults, on the other hand, does not require any such assumptions. It only relies on the
additive structure of the semigroup associated to the Lévy process and on existence
of moments. Thus the results proved here are specifically tailored to the class of op-
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tion pricing functions (or more generally expectations of exponential Lévy processes)
under European-style, plain vanilla payoffs.

The structure of this paper is as follows. In Sect. 2, we review terminology, ba-
sic results and financial modelling with exponential Lévy processes. In particular,
we also recapitulate the corresponding fractional, partial integro-differential Kol-
mogorov equations which generalise the classical Black–Scholes equations to Lévy
models. Section 3 recapitulates notation and basic terminology for deep neural net-
works to the extent required in the ensuing expression rate analysis. We focus mainly
on so-called ReLU DNNs, but add that corresponding definitions and also results
hold for more general activation functions. In Sect. 4, we present a first set of DNN
expression rate results, still in the univariate case. This is, on the one hand, for pre-
sentation purposes, as this setting allows lighter notation, and for introducing mathe-
matical concepts which will be used subsequently also for contracts on possibly large
basket of Lévy-driven risky assets. We also present an application of the results to
neural-network-based call option pricing. Section 5 then has the main results of the
present paper: expression rate bounds for ReLU DNNs for multivariate, exponential
Lévy models. We identify sufficient conditions to obtain expression rates which are
free from the curse of dimensionality via mathematical tools from statistical learn-
ing theory. We also develop a second argument based on parabolic Gevrey-regularity
with quantified derivative bounds, which even yield exponential expressivity of ReLU
DNNs, albeit with constants that generally depend on the basket size in a possibly ex-
ponential way. Finally, we develop an argument based on quantified sparsity in poly-
nomial chaos expansions and corresponding ReLU expression rates from Schwab and
Zech [49] to prove high algebraic expression rates for ReLU DNNs with constants
that are independent of the basket size. We also provide a brief discussion of recent,
related results. We conclude in Sect. 6 and indicate several possible generalisations
of the present results.

2 Exponential Lévy models and PIDEs

2.1 Lévy processes

Fix a complete probability space (�,F ,P) on which all random elements are defined.
We start with the univariate case. We recall that an R-valued continuous-time pro-

cess (Xt )t≥0 is called a Lévy process if it is stochastically continuous, has almost
surely RCLL sample paths, satisfies X0 = 0 almost surely and has stationary and in-
dependent increments. See e.g. Bertoin [10, Sect. I.1], Sato [48, Definition 1.6] for
discussion and for detailed statements of definitions.

It is shown in these references that a Lévy process (LP for short) X is characterised
by its so-called Lévy triplet (σ 2, γ, ν), where σ ≥ 0, γ ∈ R and ν is a measure on
(R,B(R)) with ν({0}) = 0, the so-called jump measure or Lévy measure of the LP X

which satisfies
∫
R
(x2 ∧ 1) ν(dx) < ∞. For more details on both univariate LPs and

the multivariate situation, we refer to [48, Chap. 2].
As in the univariate case, multivariate (Rd -valued) LPs Xd are completely de-

scribed by their characteristic triplet (Ad, γ d, νd), where γ d ∈ R
d is a drift vector,



DNN expression rates for high-dimensional exp-Lévy models 619

Ad ∈ R
d×d is a symmetric, nonnegative definite matrix denoting the covariance ma-

trix of the Brownian motion part of Xd and νd is the Lévy measure describing the
jump structure of Xd .

To characterise the dependence structure of a Lévy process, the drift parameter γ d

does not play a role. The dependence structure of the diffusion part of Xd is charac-
terised by Ad . Since the continuous part and the jump part of Xd are stochastically
independent, the dependence structure of the jump part of Xd is characterised by the
Lévy measure νd .

In Kallsen and Tankov [36], a characterisation of admissible jump measures νd for
R

d -valued LPs Xd has been obtained as superposition of marginal, univariate Lévy
measures with a so-called Lévy copula function.

2.2 Exponential Lévy models

In this article, we are interested in estimating expression rates of deep neural net-
works for approximating the function s �→ E[ϕ(sST )], where S is an exponential of
a d-dimensional Lévy process and ϕ : Rd →R an appropriate function. The key mo-
tivation for studying such expectations comes from the context of option valuation.
Thus, we now outline this relation and always use the language of option pricing,
i.e., we refer to these expectations as option prices and to ϕ as the payoff. This inter-
pretation is justified if S is a martingale, and we state below conditions on the Lévy
process that guarantee this.

Let the R-valued stochastic process (St )t∈[0,T ] model the price of one risky finan-
cial asset. Here T ∈ (0,∞) is a fixed, finite time horizon. An exponential Lévy model
assumes that St = S0e

rt+Xt , t ∈ [0, T ], where r ∈ R denotes the (constant) interest
rate. The model could be specified either under a real-world measure or directly under
a risk-neutral measure (constructed using the general change of measure result in Sato
[48, Theorems 33.1 and 33.2] of which the Esscher transform in Gerber and Shiu [25]
is a particular case, or by minimising certain functionals over the family of equivalent
martingale measures; see for instance Jeanblanc et al. [35], Esche and Schweizer [23]
and the references therein). The latter situation means that (St e

−rt )t∈[0,T ] is a mar-
tingale, which is equivalent to the condition on the Lévy triplet of X (see e.g. Hilber
et al. [32, Lemma 10.1.5]) that

γ = −σ 2

2
−
∫

R

(ey − 1 − y 1{|y|≤1})ν(dy),

∫

{|y|>1}
eyν(dy) < ∞. (2.1)

For a d-dimensional Lévy process Xd , [48, Theorem 25.17] shows that the multivari-

ate geometric Lévy process (e
Xd

t,1, . . . , e
Xd

t,d )t≥0 is a martingale if and only if
∫

{|y|>1}
eyi νd(dy) < ∞ for i = 1, . . . , d,

γ d
i = −Ad

ii

2
−
∫

Rd

(eyi − 1 − yi1{|y|≤1})νd(dy) for i = 1, . . . , d.

(2.2)

This condition ensures that the functions defined in (2.3) and (5.1) below represent
option prices. However, the condition is not needed for the proof of the results later,
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and so we do not need to impose (2.1) or (2.2) in any of the results proved in the
article. We shall, however, impose certain moment or regularity conditions.

For more details on exponential Lévy models, with particular attention to their use
in financial modelling, we refer to Cont and Tankov [16, Chap. 11], Lamberton and
Mikou [38] and Eberlein and Kallsen [21, Sect. 8.1] and the references there.

2.3 PIDEs for option prices

Let us first discuss the case of a univariate exponential Lévy model. For the multi-
variate case, we refer to Sect. 5 (cf. (5.1) and (5.14) below).

Consider a European-style option with payoff function ϕ : (0,∞) → [0,∞) and
at most polynomial (pth order) growth at infinity. Assume for this subsection that
(2.1) is satisfied.

The value of the option (under the chosen risk-neutral measure) at time t ∈ [0, T ]
is given as the conditional expectation Ct = E[e−r(T −t)ϕ(ST )|Ft ] with the σ -field
Ft = σ(Sv : v ∈ [0, t]). By the Markov property, Ct = C(t, St ) and so, switching to
time-to-maturity τ = T − t , u(τ, s) = C(T − τ, s), we can rewrite the option price as

u(τ, s) = E[e−rτ ϕ(ST )|St = s] = E
[
e−rτ ϕ

(
s exp(rτ + Xτ )

)]
(2.3)

for τ ∈ [0, T ], s ∈ (0,∞), where the second step uses that XT − Xt is independent
of Xt and has the same distribution as XT −t . If the payoff function ϕ is Lipschitz-
continuous on R and the Lévy process fulfils either σ > 0 or a certain non-degeneracy
condition on ν, then u is continuous on [0, T )× (0,∞), C1,2 on (0, T )× (0,∞) and
satisfies the linear, parabolic partial integro-differential equation (PIDE for short)

∂u

∂τ
(τ, s) − rs

∂u

∂s
(τ, s) − σ 2s2

2

∂2u

∂s2
(τ, s) − ru(τ, s)

−
∫

R

(

u(τ, sey) − u(τ, s) − s(ey − 1)
∂u

∂s
(τ, s)

)

ν(dy) = 0 (2.4)

on [0, T ) × (0,∞) with initial condition u(0, · ) = ϕ; see for instance Cont and
Voltchkova [18, Proposition 2]. If the non-degeneracy condition on ν is dropped,
one can still characterise u (transformed to log-price variables) as the unique viscos-
ity solution to the PIDE above. This is established e.g. in [18] (see also Cont and
Voltchkova [17, Proposition 3.3]). For our purposes, the representation (2.3) is more
suitable. However, by using this characterisation (also called Feynman–Kac represen-
tation for viscosity solutions of PIDEs; see Barles et al. [2]), the results formulated
below also provide DNN approximations for PIDEs. Finally, note that the interest
rate r may also be directly modelled as a part of X by modifying γ . To simplify the
notation, we set r = 0 in what follows. We also remark that all expression rate results
hold verbatim for assets with a constant dividend payment (see e.g. Lamberton and
Mikou [38, Eq. (3.1)] for the functional form of the exponential Lévy model in that
case).
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3 Deep neural networks (DNNs)

This article is concerned with establishing expression rate bounds of deep neural net-
works (DNNs) for prices of options (and the associated PIDEs) written on possibly
large baskets of risky assets whose log-returns are modelled by a multivariate Lévy
process with general correlation structure of jumps. The term “expression rate” de-
notes the rate of convergence to 0 of the error between the option price and its DNN
approximation. This rate can be directly translated to quantify the DNN size required
to achieve a given approximation accuracy. For instance, in Theorem 5.1 below, an
expression rate of q−1 is established and one may even choose q = 2 in many relevant
cases. We now give a brief introduction to DNNs.

Roughly speaking, a deep neural network (DNN for short) is a function built by
multiple concatenations of affine transformations with a (typically nonlinear) acti-
vation function. This gives rise to a parametrised family of nonlinear maps; see for
example Petersen and Voigtlaender [44] or Buehler et al. [14, Sect. 4.1] and the ref-
erences there.

Here we follow current practice and refer to the collection of parameters 
 as
“the neural network” and denote by R(
) its realisation, that is, the function defined
by these parameters. More specifically, we use the following terminology (see for
example Opschoor et al. [42, Sect. 2]). We first fix a function � : R → R (referred to
as the activation function) which is applied componentwise to vector-valued inputs.

Definition 3.1 Let d,L ∈ N. A neural network (with L layers and d-dimensional
input) is a collection


 = ((A1, b1), . . . , (AL,bL)
)
,

where N0 = d , Ni ∈ N, Ai ∈ R
Ni×Ni−1 , bi ∈ R

Ni for i = 1, . . . ,L and (Ai, bi) are
referred to as the weights of the ith layer of the NN. The associated realisation of 


is the mapping

R(
) : Rd → R
NL

, x �→ R(
)(x) = ALxL−1 + bL,

where xL−1 is given as

x0 = x, x� = �(A�x�−1 + b�) for � = 1, . . . ,L − 1.

We call Mj(
) = ‖Aj‖0 + ‖bj‖0, with ‖ · ‖0 being the number of non-zero entries
in ·, the number of (non-zero) weights in the j th layer and M(
) =∑L

j=1 Mj(
)

the number of weights of the neural network 
. We also refer to M(
) as the size
of the neural network, write L(
) = L for the number of layers of 
 and refer to
No(
) = NL as the output dimension.

We refer to Opschoor et al. [42, Sect. 2] for further details.
The following lemma shows that concatenating n affine transformations with dis-

tinct neural networks and taking their weighted average can itself be represented as
a neural network. The number of non-zero weights in the resulting neural network
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can be controlled by the number of non-zero weights in the original neural networks.
The proof of the lemma is based on a simple extension of the full parallelisation op-
eration for neural networks (see [42, Proposition 2.5]) and refines Grohs et al. [29,
Lemma 3.8].

Lemma 3.2 Let d,L,n ∈ N and let 
1, . . . ,
n be neural networks with L layers,
d-dimensional input and equal output dimensions. Let D1, . . . ,Dn be d ×d-matrices,
c1, . . . , cn ∈ R

d and w1, . . . ,wn ∈ R. Then there exists a neural network ψ such that

R(ψ)(x) =
n∑

i=1

wiR(
i)(Dix + ci) for all x ∈ R
d (3.1)

and Mj(ψ) ≤∑n
i=1 Mj(


i) for j = 2, . . . ,L. If in addition D1, . . . ,Dn are diago-
nal matrices and c1 = · · · = cn = 0, then M(ψ) ≤∑n

i=1 M(
i).

Proof Write for i = 1, . . . , n


i = ((Ai
1, b

i
1), . . . , (A

i
L, bi

L)
)

and define the block matrices

An+1
1 =

⎛

⎜
⎝

A1
1D1
...

An
1Dn

⎞

⎟
⎠ , bn+1

1 =
⎛

⎜
⎝

A1
1c1 + b1

1
...

An
1cn + bn

1

⎞

⎟
⎠ ,

An+1
j =

⎛

⎜
⎝

A1
j 0

. . .

0 An
j

⎞

⎟
⎠ , bn+1

j =
⎛

⎜
⎝

b1
j

...

bn
j

⎞

⎟
⎠ for j = 2, . . . ,L − 1,

An+1
L = (w1A

1
L · · · wnA

n
L

)
, bn+1

L = w1b
1
L + · · · + wnb

n
L.

Set ψ = ((An+1
1 , bn+1

1 ), . . . , (An+1
L ,bn+1

L )). Then for � ∈ {1, . . . ,L − 1} and x ∈ R
d ,

it is straightforward to verify that x� has a block structure (with subscripts indicating
the layers and superscripts indicating the blocks)

x� =
⎛

⎜
⎝

x1
�
...

xn
�

⎞

⎟
⎠ ,

with xi
1 = �(Ai

1(Dix + ci) + bi
1), xi

� = �(Ai
�x

i
�−1 + bi

�) for � = 2, . . . ,L − 1 and

R(ψ)(x) = An+1
L xL−1 + bn+1

L =
n∑

i=1

wi(A
i
Lxi

L−1 + bi
L).
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Hence (3.1) is satisfied and

Mj(ψ) = Mj(

1) + · · · + Mj(


n) for j = 2, . . . ,L − 1,

ML(ψ) ≤ ML(
1)1{w1 
=0} + · · · + ML(
n)1{wn 
=0}.

If in addition D1, . . . ,Dn are diagonal matrices and c1 = · · · = cn = 0, then
‖Ai

1Di‖0 = ‖Ai
1‖0 and therefore M1(ψ) = M1(


1) + · · · + M1(

n). Thus in

this situation, M(ψ) = ∑L
j=1 Mj(ψ) ≤ ∑L

j=1
∑n

i=1 Mj(

i) = ∑n

i=1 M(
i), as
claimed. �

4 DNN approximations for univariate Lévy models

We study DNN expression rates for option prices under (geometric) Lévy models
for asset prices, initially here in one spatial dimension. We present two expression
rate estimates for ReLU DNNs, which are based on distinct mathematical arguments;
the first, probabilistic argument builds on ideas used in recent works by Gonon et al.
[27], Beck et al. [7] and the references there. However, for the key step of the proof,
a different technique is used, which is based on the Ledoux–Talagrand contraction
principle (see Ledoux and Talagrand [39, Theorem 4.12]) and statistical learning.
This new approach is not only technically less involved (in comparison to e.g. the
techniques used in [27]), but also allows for weaker assumptions on the activation
function; see Proposition 4.1 below. Alternatively, under stronger hypotheses on the
activation function, one can also rely on [27, Lemma 2.16]; see Proposition 4.4 be-
low. The probabilistic arguments result in, essentially, an expression error O(ε) with
DNN sizes of O(ε−2). The second argument draws on parabolic (analytic) regularity
furnished by the corresponding Kolmogorov equations and results in far stronger, ex-
ponential expression rates, i.e., with an expression error O(ε) with DNN sizes which
are polylogarithmic with respect to 0 < ε < 1. As we shall see in the next section,
however, the latter argument is in general subject to the curse of dimensionality.

4.1 DNN expression rates: probabilistic argument

We fix 0 < a < b < ∞ and measure the approximation error in the uniform norm
on [a, b]. Recall that M(
) denotes the number of (non-zero) weights of a neural
network 
 and R(
) is the realisation of 
. Consider the following exponential
integrability condition on the Lévy measure ν: for some p ≥ 2,

∫

{|y|>1}
epyν(dy) < ∞. (4.1)

Furthermore, for any function g, we denote by Lip(g) the best Lipschitz constant
for g.

Proposition 4.1 Suppose the moment condition (4.1) holds. Suppose further the pay-
off ϕ can be approximated by neural networks, i.e., given a payoff function s �→ ϕ(s),
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there exist constants c > 0, q ≥ 0 such that for any ε ∈ (0,1], there exists a neural
network φε with

|ϕ(s) − R(φε)(s)| ≤ εc(1 + |s|), s ∈ (0,∞), (4.2)

M(φε) ≤ cε−q, (4.3)

Lip
(
R(φε)

)≤ c. (4.4)

Then there exist κ ∈ [c,∞) (depending on the interval [a, b]) and neural networks
ψε , ε ∈ (0,1], such that for any target accuracy ε ∈ (0,1], the number of weights
is bounded by M(ψε) ≤ κε−2−q and the approximation error between the neural
network ψε and the option price u from (2.3) is at most ε, that is,

sup
s∈[a,b]

|u(T , s) − R(ψε)(s)| ≤ ε.

Remark 4.2 In relevant examples such as e.g. plain vanilla European options, the pay-
off can be represented exactly as a neural network φ. Then one can choose φε = φ for
all ε ∈ (0,1] and so (4.2)–(4.4) are satisfied with q = 0, c = max{M(φ),Lip(R(φ))}.
Examples include call options, straddles and butterfly payoff functions (when � is the
ReLU activation function given by x �→ max{x,0}).
Remark 4.3 In Proposition 4.1, the time horizon T > 0 is finite and fixed. As is evi-
dent from the proof, the constant κ depends on T .

Proof of Proposition 4.1 Let ε ∈ (0,1] be the given target accuracy and fix ε̄ ∈ (0,1]
(to be specified later). Denote φ = φε̄ . First, (4.2) and (4.4) show for any s ∈ (0,∞)

that

|ϕ(s)| ≤ |ϕ(s) − R(φ)(s)| + |R(φ)(s) − R(φ)(0)| + |R(φ)(0)|
≤ ε̄c(1 + |s|) + c|s| + |R(φ)(0)|.

Thus ϕ is at most linearly growing at ∞. Hence we obtain E[ϕ(seXT )] < ∞ since
even the second exponential moment is finite, i.e.,

E[e2XT ] < ∞, (4.5)

due to the assumed integrability (4.1) of ν and Sato [48, Theorem 25.17].
Now recall that

u(T , s) = E[ϕ(seXT )].
Combining this with assumption (4.2) yields for all s ∈ [a, b] that

|u(T , s) −E[R(φ)(seXT )]| ≤ E[|ϕ(seXT ) − R(φ)(seXT )|]
≤ ε̄c(1 + |s|E[eXT ]) ≤ ε̄c1 (4.6)

with the constant c1 = c(1 + bE[eXT ]) being finite due to (4.5).
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In the second step, let X1, . . . ,Xn denote n i.i.d. copies of X and introduce an
independent collection of Rademacher random variables ε1, . . . , εn. This means that
ε1, . . . , εn are i.i.d., take the values ±1 with probabilities 1

2 each and are independent
of all other random variables introduced before. Write f (s) = R(φ)(s) − R(φ)(0) for
s ∈ (0,∞). Note that the mapping R

n ×R
n � (x, y) �→ sups∈[a,b] |

∑n
k=1 ykf (sexk )|

is Borel-measurable, because the supremum over s ∈ [a, b] equals the supremum
over s ∈ [a, b] ∩Q due to continuity of f . The same reasoning guarantees that the
suprema over s ∈ [a, b] in (4.7) and (4.8) below are indeed random variables.

Using independence and a standard symmetrisation argument (see for example
Boucheron et al. [12, Lemma 11.4]), we obtain

E

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣

]

≤ 2E

[

sup
s∈[a,b]

∣
∣
∣
∣
1

n

n∑

k=1

εkf (seXk
T )

∣
∣
∣
∣

]

. (4.7)

Elementary properties of conditional expectations in the first step and Ledoux and
Talagrand [39, Theorem 4.12], with T in that result chosen as

Tx1,...,xn = {t ∈ R
n : t1 = sex1 , . . . , tn = sexn for some s ∈ [a, b]},

in the second step show that

2E

[

sup
s∈[a,b]

∣
∣
∣
∣
1

n

n∑

k=1

εkf (seXk
T )

∣
∣
∣
∣

]

= 2

n
E

[

E

[
sup

t∈Tx1,...,xn

∣
∣
∣

n∑

k=1

εkf (tk)

∣
∣
∣
]∣∣
∣
∣
x1=X1

T ,...,xn=Xn
T

]

≤ 4

n
Lip
(
R(φ)

)
E

[

E

[
sup

t∈Tx1,...,xn

∣
∣
∣

n∑

k=1

εktk

∣
∣
∣
]∣∣
∣
∣
x1=X1

T ,...,xn=Xn
T

]

= 4

n
Lip
(
R(φ)

)
E

[

sup
s∈[a,b]

∣
∣
∣
∣

n∑

k=1

εkse
Xk

T

∣
∣
∣
∣

]

≤ 4b

n
Lip
(
R(φ)

)
E

[∣∣
∣
∣

n∑

k=1

εke
Xk

T

∣
∣
∣
∣

]

. (4.8)

On the other hand, using Jensen’s inequality, independence and E[εkε�] = δk,� yields

E

[∣
∣
∣
∣

n∑

k=1

εke
Xk

T

∣
∣
∣
∣

]

≤ E

[∣
∣
∣
∣

n∑

k=1

εke
Xk

T

∣
∣
∣
∣

2]1/2

=
( n∑

k=1

E[e2Xk
T ]
)1/2

= √
nE[e2XT ]1/2.
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Combining this with (4.7), (4.8) and (4.4), we obtain that

E

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣

]

≤ c2√
n

(4.9)

with c2 = 4bcE[e2XT ]1/2, which is finite again due to (4.5).
In a third step, we now apply Markov’s inequality and then insert (4.9) to estimate

P

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣≥

3c2

2
√

n

]

≤ 2
√

n

3c2
E

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣

]

≤ 2

3
. (4.10)

This proves in particular that

P

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣≤

2c2√
n

]

> 0.

Therefore there exists ω ∈ � with

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T (ω))

∣
∣
∣
∣≤

2c2√
n
. (4.11)

Lemma 3.2 proves that s �→ 1
n

∑n
k=1 R(φ)(seXk

T (ω)) is itself the realisation of a neural
network ψ̃ with M(ψ̃) ≤ nM(φ), and hence we have proved the existence of a neural
network ψ̃ with

sup
s∈[a,b]

|E[R(φ)(seXT )] − R(ψ̃)(s)| ≤ 2c2√
n
. (4.12)

The final step consists in selecting ε̄ = ε(c1 + 1)−1, choosing n = �(2c2ε̄
−1)2�, set-

ting ψε = ψ̃ , noting (with κ = c(1 + 4c2
2)(c1 + 1)2+q ) that

M(ψε) = M(ψ̃) ≤ nM(φ) ≤ (1 + (2c2ε̄
−1)2)cε̄−q ≤ c(1 + 4c2

2)ε̄
−2−q = κε−2−q

and combining (4.12) with (4.6) to estimate

sup
s∈[a,b]

|u(T , s) − R(ψε)(s)|

≤ sup
s∈[a,b]

|u(T , s) −E[R(φ)(seXT )]| + sup
s∈[a,b]

|E[R(φ)(seXT )] − R(ψ̃)(s)|

≤ ε̄(c1 + 1) = ε. �
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Proposition 4.4 Consider the setting of Proposition 4.1, but instead of (4.4) assume
that R(φε) is C1 and there is a constant c > 0 such that for every s ∈ (0,∞), we have

|R(φε)
′(s)| ≤ c. (4.13)

Then the assertion of Proposition 4.1 remains valid.

Proof We present two different approaches to prove Proposition 4.4. The first com-
bines (4.13) with the mean value theorem to obtain that (4.4) is satisfied. Hence,
Proposition 4.1 can be applied. The second approach is based on a different tech-
nique to obtain (4.9). First, let us verify that (4.13) and (4.2) yield a linear growth
condition for R(φε). Indeed, we may use the triangle inequality to estimate for any
ε ∈ (0,1], s ∈ (0,∞) that

|R(φε)(s)| ≤ |R(φε)(s) − R(φε)(0)| + |R(φε)(0) − ϕ(0)| + |ϕ(0)|
≤ max{c, |ϕ(0)|}(1 + |s|). (4.14)

Now the same proof as for Proposition 4.1 applies; only the second step needs to be
adapted. In other words, we prove the estimate (4.9) with a different constant c2 by
using a different technique.

To do this, we again let X1, . . . ,Xn denote n i.i.d. copies of X. Applying Gonon
et al. [27, Lemma 2.16] (with random fields ξk(s,ω) = R(φ)(seXk

T (ω)), k = 1, . . . , n,
which satisfy the hypotheses of [27, Lemma 2.16] thanks to (4.5) and (4.13)) in the
first inequality and using (4.13) and (4.14) for the second inequality then proves that

E

[

sup
s∈[a,b]

∣
∣
∣
∣E[R(φ)(seXT )] − 1

n

n∑

k=1

R(φ)(seXk
T )

∣
∣
∣
∣

]

≤ 32
√

e√
n

sup
s∈[a,b]

(
E[|R(φ)(seXT )|2]1/2 + (b − a)E[|R(φ)′(seXT )eXT |2]1/2)

≤ 32 max{c, |ϕ(0)|}√e√
n

(
1 + bE[e2XT ]1/2 + (b − a)E[e2XT ]1/2),

which is a bound as in (4.9) with constant

c2 = 32 max{c, |ϕ(0)|}√e
(
1 + bE[e2XT ]1/2 + (b − a)E[e2XT ]1/2). �

Remark 4.5 The architecture of the neural network approximations constructed using
probabilistic arguments in Proposition 4.1, Proposition 4.4 and also Theorem 5.1
below differ from architectures obtained by analytic arguments; see Proposition 4.8
and Theorem 5.4 below. While the neural networks in the latter results are deep in
any situation, the architecture of the neural networks in the former situation depends
heavily on the architecture of the neural network φε used to approximate the payoff
function ϕ. Therefore, in certain simple situations, the approximating neural network
ψε may be a shallow neural network, that is, a neural network with only L = 2 layers.
For example, by (4.6) or (2.3), the function ϕ is specified in the variable s > 0 and
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not in the log-return variable x. This implies e.g. for a plain vanilla European call
that ϕ(s) = (s −K)+ must be emulated by a ReLU NN, which can be done using the
simple 2-layer neural network φ0 = ((1,−K), (1,0)), that is, R(φ0) = ϕ.

4.2 DNN expression of European calls

In this section, we illustrate how the results of Proposition 4.1 can be used to bound
DNN expression rates of call options on exponential Lévy models.

Suppose we observe call option prices for a fixed maturity T and N different
strikes K1, . . . ,KN > 0. Denote these prices by Ĉ(T ,K1), . . . , Ĉ(T ,KN). A task
frequently encountered in practice is to extrapolate from these prices to prices corre-
sponding to unobserved maturities or to learn a non-parametric option pricing func-
tion. A widely used approach is to solve

min
φ∈H

1

N

N∑

i=1

(
Ĉ(T ,Ki)

Ki

− φ(S0/Ki)

)2

. (4.15)

Here H is a suitable collection of (realisations of) neural networks, for example all
networks with an a-priori fixed architecture. In fact, many of the papers listed in the
recent review by Ruf and Wang [47] use this approach or a variation of it, where for
example an absolute value is inserted instead of a square or Ĉ(T ,Ki)/Ki is replaced
by Ĉ(T ,Ki) and S/Ki by Ki .

In this section, we assume that the observed call prices are generated from an (as-
sumed unknown) exponential Lévy model and H consists of ReLU networks. Then
we show that the error in (4.15) can be controlled and that we can give bounds on
the number of non-zero parameters of the minimising neural network. The following
result is a direct consequence of Proposition 4.1. It shows that O(ε−1) weights suffice
to achieve an error of at most ε in (4.15).

Proposition 4.6 Assume that

Ĉ(T ,Ki) = E[(ST − Ki)
+] for i = 1, . . . ,N,

with ST = S0 exp(XT ) and X an (unknown) Lévy process satisfying (4.1). For any
κ > 0, ε ∈ (0,1], we let Hκ,ε denote the set of all (realisations of) neural networks
with at most κε−1 non-zero weights and choose �(x) = max{x,0} as activation func-
tion. Then there exists κ ∈ (0,∞) such that for all ε ∈ (0,1],

min
φ∈Hκ,ε

1

N

N∑

i=1

(
Ĉ(T ,Ki)

Ki

− φ(S0/Ki)

)2

≤ ε.

Proof First, choose the interval [a, b] by setting a = min{S0/K1, . . . , S0/KN } and
b = max{S0/K1, . . . , S0/KN }. We note that the function ϕ(s) = (s − 1)+ can be
represented by the 2-layer neural network φ0 = ((1,−1), (1,0)), that is, R(φ0) = ϕ.
Thus Proposition 4.1 can be applied (with φε = φ0 for all ε ∈ (0,1] and q = 0,
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c = 3) and there exist κ ∈ [3,∞) and neural networks ψδ , δ ∈ (0,1], such that for
any δ ∈ (0,1], we have M(ψδ) ≤ κδ−2 and

sup
s∈[a,b]

|u(T , s) − R(ψδ)(s)| ≤ δ

with u(T , s) = E[(seXT − 1)+]. Therefore,

1

N

N∑

i=1

(
Ĉ(T ,Ki)

Ki

− R(ψδ)(S0/Ki)

)2

= 1

N

N∑

i=1

(
u(T ,S0/Ki) − R(ψδ)(S0/Ki)

)2 ≤ δ2.

Setting ε = δ2 and noting R(ψδ) ∈ Hκ,ε then finishes the proof. �

Remark 4.7 The proof shows that κ is independent of N . This can also be seen by
observing that the result directly generalises to an infinite number of call options
with strikes in a compact interval K = [K,K] with K > 0, K < ∞. Indeed, let μ

be a probability measure on (K,B(K)). Then choosing ψδ , δ = ε2 as in the proof of
Proposition 4.6 and a = S0/K , b = S0/K yields R(ψδ) ∈Hκ,ε and

∫

K

(
Ĉ(T ,K)

K
− R(ψδ)(S0/K)

)2

μ(dK)

=
∫

K

(
u(T ,S0/K) − R(ψδ)(S0/K)

)2
μ(dK) ≤ ε.

4.3 ReLU DNN exponential expressivity

We now develop a second argument for bounding the expressivity of ReLU DNNs
for the option price u(τ, s) solving (2.4) with initial condition u(0, s) = ϕ(s). In
particular, in this subsection, we choose �(x) = max{x,0} as activation function.

As in the preceding first, probabilistic argument, we consider the DNN expression
error in a bounded interval [a, b] with 0 < a < s < b < ∞. The second argument is
based on parabolic smoothing of the linear parabolic PIDE (2.4). This in turn ensures
smoothness of s �→ u(τ, s) at positive times τ > 0, i.e., smoothness in the “spatial”
variable s ∈ [a, b] resp. in the log-return variable x = log s ∈ [loga, logb], even for
non-smooth payoff functions ϕ (so in particular, binary options with discontinuous
payoffs ϕ are admissible, albeit at the cost of non-uniformity of derivative bounds at
τ ↓ 0). It is a classical result that this implies spectral, possibly exponential conver-
gence of polynomial approximations of u(τ, · )|[a,b] in L∞([a, b]). As observed in
Opschoor et al. [43, Sect. 3.2], this exponential polynomial convergence rate implies
also exponential expressivity of ReLU DNNs of u(τ, · )|[a,b] in L∞([a, b]) for any
τ > 0.

To ensure smoothing properties of the solution operator of the PIDE, we require
additional assumptions (see (4.17) below) on the Lévy triplet (σ 2, γ, ν). To formulate
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these, we recall the Lévy symbol ψ of the R-valued LP X as

ψ(ξ) = σ 2

2
ξ2 − iγ ξ −

∫

R

(eiξx − 1 − iξx1{|x|≤1})ν(dx), ξ ∈ R. (4.16)

Proposition 4.8 Suppose that the symbol ψ of the LP X is such that there exist
ρ ∈ (0,1] and constants Ci > 0, i = 1,2,3, such that for all ξ ∈R, we have

Reψ(ξ) ≥ C1|ξ |2ρ, |ψ(ξ)| ≤ C2|ξ |2ρ + C3. (4.17)

Then for every v0 such that v0 = ϕ ◦ exp ∈ L2(R), every 0 < τ ≤ T < ∞, every
0 < a < b < ∞ and every 0 < ε < 1/2, there exist neural networks ψu

ε which express
the solution u(τ, · )|[a,b] to accuracy ε, i.e.,

sup
s∈[a,b]

|u(τ, s) − R(ψu
ε )(s)| ≤ ε.

Furthermore, there exists a constant C′ > 0 such that with δ = 1
min{1,2ρ} ≥ 1, we have

M(ψu
ε ) ≤ C′| log ε|2δ, L(ψu

ε ) ≤ C′| log ε|δ| log(| log ε|)|.

Remark 4.9 A sufficient condition on the Lévy triplet which ensures (4.17) is as fol-
lows. Let X be a Lévy process with characteristic triplet (σ 2, γ, ν) and Lévy density
k(z), where ν(dz) = k(z)dz satisfies the following:

1) There are constants β− > 0, β+ > 1 and C > 0 such that

k(z) ≤ C

{
e−β−|z|, z < −1,

e−β+z, z > 1.

2) Furthermore, there exist constants 0 < α < 2 and C+ > 0 such that

k(z) ≤ C+
1

|z|1+α
, 0 < |z| < 1.

3) If σ = 0, we assume additionally that there is a C− > 0 such that

1

2

(
k(z) + k(−z)

)≥ C−
1

|z|1+α
, 0 < |z| < 1.

Then (4.17) is satisfied (see Hilber et al. [32, Lemma 10.4.2]). Here, ρ = 1 if σ > 0
and otherwise ρ = α/2.

Proof of Proposition 4.8 The proof proceeds in several steps. First, we apply the
change of variables x = log s ∈ R in order to leverage the stationarity of the LP
X for obtaining a constant coefficient Kolmogorov PIDE. Assumption (4.17) then
ensures well-posedness of the PIDE in a suitable variational framework. We then ex-
ploit that stationarity of the LP X facilitates the use of Fourier transformation; the
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lower bound on ψ in (4.17) will allow deriving sharp, explicit bounds on high spa-
tial derivatives of (variational) solutions of the PIDE which imply Gevrey-regularity
of these solutions on bounded intervals [a, b] ⊆ (0,∞). Gevrey-regularity in turn
implies exponential rates of convergence of polynomial and deep ReLU NN approx-
imations of s �→ u(τ, s) for τ > 0, whence we obtain the assertion of the theorem.
We recall that for δ ≥ 1, a smooth function x �→ f (x) is Gevrey-δ-regular in an open
subset D ⊆ R

d if f ∈ C∞(D) and for every compact set κ ⊆ D, there exists Cκ > 0
such that for all α ∈ N

d
0 and every x ∈ κ , we have |Dα

x f (x)| ≤ C
|α|+1
κ (α!)δ . Note

that δ = 1 implies that f is real analytic in κ . We refer to Rodino [46, Sect. 1.4] for
details, examples and further references.

We change coordinates to x = log s ∈ (−∞,∞) so that v(τ, x) = u(τ, ex). Then
the PIDE (2.4) takes the form (see e.g. Matache et al. [40, Sect. 3], Lamberton and
Mikou [38, Sect. 3.1])

∂v

∂τ
− σ 2

2

∂2v

∂x2
− (γ + r)

∂v

∂x
+ A[v] + rv = 0 in (0, T ) ×R, (4.18)

where A denotes the integro-differential operator

A[v](τ, x) = −
∫

R

(

v(τ, x + y) − v(τ, x) − y
∂v

∂x
(τ, x)1{|y|≤1}

)

ν(dy),

together with the initial condition

v(0, x) = ϕ(ex) = (ϕ ◦ exp)(x). (4.19)

Then C(t, s) = v(T − t, log s) satisfies

C(t, St ) = E[er(t−T )ϕ(ST )|Ft ]. (4.20)

Conversely, if C(t, s) in (4.20) is sufficiently regular, then v(τ, x) = C(T − τ, ex) is
a solution of (4.18), (4.19) (recall that we assume r = 0 for notational simplicity).

The Lévy–Khintchine formula describes the R-valued LP X by the log-character-
istic function ψ of the random variable X1. From the time-homogeneity of the LP X,

E[eiξXt ] = e−tψ(ξ), ∀t > 0. (4.21)

The Lévy exponent ψ of the LP X admits the explicit representation (4.16).
The Lévy exponent ψ is the symbol of the pseudo-differential operator −L, where

L is the infinitesimal generator of the semi-group of the LP X. Here A = −L is the
spatial operator in (4.18) given by

A[f ](x) = −σ 2

2

d2f

dx2
(x) − γ

df

dx
(x) + A[f ](x). (4.22)

For f,g ∈ C∞
0 (R), we associate with the operator A the bilinear form

a(f,g) =
∫

R

A[f ](x)g(x)dx.
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The translation invariance of A (implied by stationarity of the LP X) in (4.22) and
Parseval’s equality (see Hilber et al. [32, Remark 10.4.1]) imply that ψ is the symbol
of A, i.e.,

a(f,g) =
∫

R

ψ(ξ)f̂ (ξ)ĝ(ξ)dξ, ∀f,g ∈ C∞
0 (R).

Here f̂ (ξ) = (2π)− 1
2
∫
R

e−ixξ f (x)dx, ξ ∈ R, denotes the Fourier transform of f .
The assumption (4.17) on ψ implies continuity and coercivity of the bilinear form
a( · , · ) on Hρ/2(R) × Hρ/2(R) so that for v0 ∈ L2(R), there exists a unique vari-
ational solution v ∈ C([0, T ];L2(R)) ∩ L2(0, T ;Hρ/2(R)) of the PIDE (4.18) with
initial condition (4.19); see e.g. Eberlein and Glau [20].

Fix 0 < τ ≤ T < ∞ and x ∈R. The variational solution v of (4.18), (4.19) satisfies

v(τ, x) = 1√
2π

∫

R

exp(ixξ)v̂(τ, ξ)dξ

= 1√
2π

∫

R

exp(ixξ) exp
(− τψ(ξ)

)
ϕ̂ ◦ exp(ξ)dξ.

For every k ∈ N0, Parseval’s equality implies with the lower bound in (4.17) that

∫

R

|(Dk
xv)(τ, x)|2dx =

∫

R

|ξ |2k
∣
∣ exp

(− 2τψ(ξ)
)∣∣|ϕ̂ ◦ exp(ξ)|2dξ

≤
∫

R

|ξ |2k exp(−2τC1|ξ |2ρ)|ϕ̂ ◦ exp(ξ)|2dξ.

An elementary calculation shows that for any m,κ,μ > 0, we have

max
η>0

(
ηm exp(−κημ)

)=
(

m

κμe

)m/μ

. (4.23)

We use (4.23) with m = 2k, κ = 2τC1, μ = 2ρ and η = |ξ | to obtain

‖(Dk
xv)(τ, · )‖2

L2(R)
≤
(

k

2τC1ρe

)k/ρ

‖v0‖2
L2(R)

.

Taking square roots and using the (rough) Stirling bound kk ≤ k! ek valid for all k ∈N,
we obtain

‖(Dk
xv)(τ, · )‖L2(R) ≤

(
( 1

2τC1ρ

) 1
2ρ

)k

(k!) 1
2ρ ‖v0‖L2(R), ∀τ > 0,∀k ∈ N.

(4.24)
This implies with the Sobolev embedding theorem that for any bounded interval
I = [x−, x+] ⊆ R, −∞ < x− < x+ < ∞, and for every fixed τ > 0, there exist con-
stants C = C(x+, x−) > 0 and A(τ,ρ) > 0 such that
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sup
x∈I

|(Dk
xv)(τ, x)| ≤ C

(
A(τ,ρ)

)k
(k!)1/min{1,2ρ}, ∀k ∈ N.

This means that v(τ, · )|I is Gevrey-δ-regular with δ = 1/min{1,2ρ}.
To construct the DNNs ψu

ε in the claim, we proceed in several steps. We first use a
(analytic, in the bounded interval I = [x−, x+] ⊆ R) change of variables s = exp(x)

and the fact that Gevrey-regularity is preserved under analytic changes of variables
to infer Gevrey-δ-regularity in [a, b] ⊆ R++ of s �→ u(τ, s), for every fixed τ > 0.
This in turn implies the existence of a sequence (up(s))p≥1 of polynomials of degree
p ∈N in [a, b] converging in W 1,∞([a, b]) to u(τ, · ) for τ > 0 at rate exp(−b′p1/δ)

for some constant b′ > 0 depending on a, b and on δ ≥ 1, but independent of p.
The asserted DNNs are then obtained by approximately expressing the up through
ReLU DNNs, again at exponential rates, via Opschoor et al. [43]. The details are as
follows.

The interval s ∈ [a, b] in the assertion of the proposition corresponds to the in-
terval x ∈ [loga, logb] under the analytic (in the bounded interval [a, b]) change of
variables x = log s. As Gevrey-regularity is known to be preserved under analytic
changes of variables (see e.g. Rodino [46, Proposition 1.4.6]), also u(τ, s)|s∈[a,b] is
Gevrey-δ-regular, with the same index δ = 1/min{1,2ρ} ≥ 1 and with constants in
the derivative bounds which depend on 0 < a < b < ∞, ρ ∈ (0,1], τ > 0. In partic-
ular, for ρ ≥ 1/2, u(τ, s)|s∈[a,b] is real analytic in [a, b].

With Gevrey-δ-regularity of s �→ u(τ, s) for s ∈ [a, b] established, we may invoke
expression rate bounds for deep ReLU NNs for such functions. In Opschoor et al.
[43, Proposition 4.1], it was shown that for such functions in space dimension d = 1,
there exist constants C′ > 0, β ′ > 0 such that for every N ∈ N, there exists a deep
ReLU NN ũN with

M(ũN ) ≤ N , L(ũN ) ≤ C′Nmin{ 1
2 , 1

d+1/δ
} logN ,

‖u − R(ũN )‖W 1,∞([−1,1]d ) ≤ C′ exp
(− β ′Nmin{ 1

2δ
, 1
dδ+1 }).

This implies that for every 0 < ε < 1/2, a pointwise error of O(ε) in [a, b] can
be achieved by some ReLU NN ψu

ε of depth O(| log ε|δ| log(| log ε|)|) and of size
O(| log ε|2δ). This completes the proof. �

4.4 Summary and discussion

For prices of derivative contracts on one risky asset whose log-returns are modelled
by an LP X, we have analysed the expression rate of deep ReLU NNs. We have pro-
vided two mathematically distinct approaches to the analysis of the expressive power
of deep ReLU NNs. The first, probabilistic approach furnishes algebraic expression
rates, i.e., pointwise accuracy ε > 0 on a bounded interval [a, b] is furnished with
DNNs of size O(ε−q) with suitable q ≥ 0. The argument is based on approximating
the option price by Monte Carlo sampling, estimating the uniform error on [a, b] and
then emulating the resulting average by a DNN. The second, “analytic” approach,
leverages regularity of (variational) solutions of the corresponding Kolmogorov par-
tial integro-differential equations and furnishes exponential DNN expression rates.
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That is, an expression error ε > 0 is achieved with DNNs of size O(| log ε|a) for suit-
able a > 0. Key in the second approach were stronger conditions (4.17) on the charac-
teristic exponent of the LP X, which imply, as we showed, Gevrey-δ-regularity of the
map s �→ u(τ, s) for suitable τ > 0. This regularity implies in turn exponential rates
of polynomial approximation (in the uniform norm on [a, b]) of s �→ u(τ, s), which
is a result of independent interest, and subsequently, by emulation of polynomials
with deep ReLU NNs, the corresponding exponential rates.

We remark that in the particular case δ = 1, the derivative bounds (4.24) imply
analyticity of the map s �→ u(τ, s) for s ∈ [a, b] which implies the assertion also with
the exponential expression rate bound for analytic functions in Opschoor et al. [43].

We also remark that the smoothing of the solution operator in Proposition 4.8
accommodates payoff functions which belong merely to L2, as they arise e.g. in
particular binary contracts. This is a consequence of the assumption (4.17), which on
the other hand excludes Lévy processes with one-sided jumps. Such processes are
covered by Proposition 4.1.

5 DNN approximation rates for multivariate Lévy models

We now turn to DNN expression rates for multivariate geometric Lévy models. This
is a typical situation when option prices on baskets of d risky assets are of inter-
est, whose log-returns are modelled by multivariate Lévy processes. We admit rather
general jump measures, in particular with fully correlated jumps in the marginals, as
provided for example by so-called Lévy copula constructions in Kallsen and Tankov
[36].

As in the univariate case, we prove two results on ReLU DNN expression rates
of option prices for European-style contracts. The first argument is developed in
Sect. 5.1 below and overcomes in particular the curse of dimensionality. Its proof is
again based on probabilistic arguments from statistical learning theory. As exponen-
tial LPs Xd generalise geometric Brownian motions, Theorem 5.1 generalises several
results from the classical Black–Scholes setting, and we comment on the relation of
Theorem 5.1 to these recent results in Sect. 5.2. Owing to the method of proof, the
DNN expression rate in Theorem 5.1 delivers an ε-complexity of O(ε−2), achieved
with potentially shallow DNNs; see Remark 4.5.

The second argument is based on parabolic regularity of the deterministic Kol-
mogorov PIDE associated to the LP Xd . We show in Theorem 5.4 that polylogarith-
mic in ε expression rate bounds can be achieved by allowing DNN depth to increase
essentially as O(| log ε|). The result in Theorem 5.4 is, however, prone to the curse
of dimensionality: the constants implied in the O( · ) bounds may (and in general
will) depend exponentially on d . We also show that under a hypothesis of sufficiently
large time t > 0, parabolic smoothing allows overcoming the curse of dimensional-
ity, with dimension-independent expression rates which are possibly larger than the
rate furnished by the probabilistic argument (which is, however, valid uniformly for
all t > 0).
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5.1 DNN expression rate bounds via probabilistic arguments

We start by remarking that in this subsection, there is no need to assume ReLU
activation.

The following result proves that neural networks are capable of approximating
option prices in multivariate exponential Lévy models without the curse of dimen-
sionality if the corresponding Lévy triplets (Ad, γ d, νd) are bounded uniformly with
respect to the dimension d .

For any dimension d ∈ N, we assume given a payoff ϕd : Rd → R and a d-variate
LP Xd , and we denote the option price in time-to-maturity by

ud(τ, s) = E
[
ϕd

(
s1 exp(Xd

τ,1), . . . , sd exp(Xd
τ,d )
)]

, τ ∈ [0, T ], s ∈ (0,∞)d .

(5.1)
We refer to Sato [48, Chap. 2] for more details on multivariate Lévy processes and to
Cont and Tankov [16, Chap. 11], Eberlein and Kallsen [21, Sect. 8.1] for more details
on multivariate geometric Lévy models in finance.

The next theorem is a main result of the present paper. It states that DNNs can
efficiently express prices on possibly large baskets of risky assets whose dynamics are
driven by multivariate Lévy processes with general jump correlation structure. The
expression rate bounds are polynomial in the number d of assets and therefore not
prone to the curse of dimensionality. This result partially generalises earlier work on
DNN expression rates for diffusion models in Elbrächter et al. [22], Grohs et al. [29].

Theorem 5.1 Assume that for any d ∈ N, the payoff ϕd : Rd → R can be approxi-
mated well by neural networks, that is, there exist constants c > 0, p ≥ 2, q̃, q ≥ 0
and for all ε ∈ (0,1], d ∈N, there exists a neural network φε,d with

|ϕd(s) − R(φε,d )(s)| ≤ εcdq̃(1 + |s|p) for all s ∈ (0,∞)d , (5.2)

M(φε,d) ≤ cdq̃ε−q, (5.3)

Lip
(
R(φε,d )

)≤ cdq̃ . (5.4)

In addition, assume that the Lévy triplets (Ad, γ d, νd) of Xd are bounded in the di-
mension, that is, there exists a constant B > 0 such that for each d ∈N, i,j = 1, . . . , d ,

max

{

Ad
ij , γ

d
i ,

∫

{|y|>1}
epyi νd(dy),

∫

{|y|≤1}
y2
i νd(dy)

}

≤ B. (5.5)

Then there exist constants κ,p,q ∈ [0,∞) and neural networks ψε,d , ε ∈ (0,1],
d ∈ N, such that for any target accuracy ε ∈ (0,1] and for any d ∈ N, the number
of weights grows only polynomially, i.e., M(ψε,d) ≤ κdpε−q, and the approximation
error between the neural network ψε,d and the option price is at most ε, that is,

sup
s∈[a,b]d

|ud(T , s) − R(ψε,d)(s)| ≤ ε.

Remark 5.2 The statement of Theorem 5.1 is still valid if we admit logarithmic
growth of B with d in (5.5).
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Remark 5.3 As in the univariate case (cf. Remark 4.2), in relevant examples of options
written on d > 1 underlyings (such as basket options, call on max/min options, put on
max/min options, . . . ), the payoff can be represented exactly as a ReLU DNN. Thus
we may choose q = 0 in (5.3) and obtain q = 2 in Theorem 5.1 (cf. (5.12) below).

Proof of Theorem 5.1 Let ε ∈ (0,1] be the given target accuracy and consider
ε̄ ∈ (0,1] (to be selected later). To simplify notation, we write for s ∈ [a, b]d

seXd
T = (s1 exp(Xd

T,1), . . . , sd exp(Xd
T,d)
)
.

The proof consists of four steps:
– Step 1 bounds the error that arises when the payoff ϕd is replaced by the neural

network approximation φε̄,d . As a part of Step 1, we also prove that the pth exponen-
tial moments of the components Xd

T,i of the Lévy process are bounded uniformly in
the dimension d .

– Step 2 is a technical step that is required for Step 3; it bounds the error that
arises when the Lévy process is capped at a threshold D > 0. If we were to assume in
addition that the output of the neural network φε̄,d were bounded (this is for example
the case if the activation function � is bounded), then Step 2 could be omitted.

– Step 3 is the key step in the proof. We introduce n i.i.d. copies of (the capped
version of) Xd

T and use statistical learning techniques (symmetrisation, Gaussian and
Rademacher complexities) to estimate the expected maximum difference between the
option price (with neural network payoff) and its sample average. This is then used
to construct the approximating neural networks.

– Step 4 combines the estimates from Steps 1–3 and concludes the proof.
Step 1: Assumption (5.2) and Hölder’s inequality yield for all s ∈ [a, b]d that

|ud(T , s) −E[R(φε̄,d )(seXd
T )]| ≤ E[|ϕd(seXd

T ) − R(φε̄,d )(seXd
T )|]

≤ ε̄cdq̃(1 +E[|seXd
T |p])

= ε̄cdq̃

(

1 +E

[( d∑

i=1

s2
i e

2Xd
T,i

)p/2
])

≤ ε̄cdq̃

(

1 + bp
E

[

d(p−1)/2
( d∑

i=1

e
2pXd

T,i

)1/2
])

≤ ε̄c1d
q̃+ 1

2 p+ 1
2 (5.6)

with the constant c1 = c max{1, bp}(1 + supd,i E[epXd
T,i ]) and we used | · | ≤ | · |1

in the last step. To see that c1 is indeed finite, note that (5.5) and Sato [48, The-
orem 25.17] (with the vector w ∈ R

d in that result being pei ) imply that for any
d ∈N, i = 1, . . . , d , the exponential moment can be bounded as
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E[epXd
T,i ] = exp

(

T
(p2

2
Ad

ii +
∫

Rd

(epyi − 1 − pyi1{|y|≤1})νd(dy) + pγ d
i

))

≤ exp

(

T
(3p2

2
B +

∫

{|y|≤1}
(epyi − 1 − pyi)ν

d(dy)

+
∫

{|y|>1}
(epyi − 1)νd(dy)

)
)

≤ exp

(

T
(5p2

2
B + p2ep

∫

{|y|≤1}
y2
i νd(dy)

))

≤ exp

(

T
(5p2

2
B + p2epB

))

, (5.7)

where the second inequality uses that |ez − 1 − z| ≤ z2ep for all z ∈ [−p,p], which
can be seen e.g. from the (mean value form of the) Taylor remainder formula.

Step 2: Before proceeding with the key step of the proof, we need to introduce
a cut-off in order to ensure that the neural network output is bounded. Let D > 0
and consider the random variable X

d,D
T = min(Xd

T ,D), where the minimum is un-
derstood componentwise. Then the Lipschitz property (5.4) implies that

|E[R(φε̄,d )(seXd
T )] −E[R(φε̄,d )(seX

d,D
T )]| ≤ cdq̃

E[|seXd
T − seX

d,D
T |]

≤ bcdq̃
E

[ d∑

i=1

|eXd
T,i − e

X
d,D
T,i |
]

≤ bcdq̃
d∑

i=1

E[2e
Xd

T,i1{Xd
T,i>D}]

≤ 2bcdq̃

d∑

i=1

E[e2Xd
T,i ]1/2

P[Xd
T,i >D]1/2

≤ 2e−Dbcdq̃
d∑

i=1

E[e2Xd
T,i ]

≤ c̃1e
−Ddq̃+1, (5.8)

where c̃1 = 2bc exp(5TpB + 2T eppB) and we used | · | ≤ | · |1, Hölder’s inequality,
Chernoff’s bound and finally again Hölder’s inequality and (5.7).

Step 3: Let X1, . . . ,Xn denote n i.i.d. copies of the random vector X
d,D
T and

Z1, . . . ,Zn i.i.d. standard normal variables, independent of X1, . . . ,Xn. For any sep-
arable class of functions H ⊆ C(Rd ;R), define the random variable (the so-called
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empirical Gaussian complexity)

Ĝn(H) = E

[

sup
f ∈H

∣
∣
∣
2

n

n∑

k=1

Zkf (Xk)

∣
∣
∣

∣
∣
∣
∣X1, . . . ,Xn

]

.

Consider now for i = 1, . . . , d the function classes

Hi = {(−∞,D]d � x �→ s exp(xi) : s ∈ [a, b]}
and, with the notation s exp(x) = (s1 exp(x1), . . . , sd exp(xd)), the class

H = {(−∞,D]d � x �→ R(φε̄,d )
(
s exp(x)

)− R(φε̄,d )(0) : s ∈ [a, b]d}.

Denoting by H̃ ⊆ C((−∞,D]d ;Rd) the direct sum of H1, . . . ,Hd , we have that

H = φ(H̃),

where φ = R(φε̄,d )( · ) − R(φε̄,d )(0) is a Lipschitz function with Lipschitz con-
stant cdq̃ (due to the hypothesis on the Lipschitz constant of the neural network
(5.4)), satisfies φ(0) = 0 and is bounded on the range of H̃ (which is contained in
[0, b exp(D)]d ). Consequently, Bartlett and Mendelson [6, Theorem 14] implies that

Ĝn(H) ≤ 2cdq̃
d∑

i=1

Ĝn(Hi ). (5.9)

Let ε1, . . . , εn be an independent collection of Rademacher random variables. We
then estimate

E

[

sup
s∈[a,b]d

∣
∣
∣
∣E
[
R(φε̄,d )(seX

d,D
T )
]− 1

n

n∑

k=1

R(φε̄,d )(seXk )

∣
∣
∣
∣

]

≤ 2E

[

sup
s∈[a,b]d

∣
∣
∣
∣
1

n

n∑

k=1

εkφ(seXk )

∣
∣
∣
∣

]

≤ c̃2E

[

sup
s∈[a,b]d

∣
∣
∣
∣
2

n

n∑

k=1

Zkφ(seXk )

∣
∣
∣
∣

]

= c̃2E

[

sup
f ∈H

∣
∣
∣
∣
2

n

n∑

k=1

Zkf (Xk)

∣
∣
∣
∣

]

≤ 2c̃2cd
q̃

d∑

i=1

E[Ĝn(Hi )]

≤ 4c̃2cd
q̃b

n

d∑

i=1

E

[∣∣
∣
∣

n∑

k=1

Zke
Xk,i

∣
∣
∣
∣

]

. (5.10)
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Here, the first inequality follows by symmetrisation (see for example Boucheron et al.
[12, Lemma 11.4]), the second follows from the comparison results on Gaussian and
Rademacher complexities (see for instance Bartlett and Mendelson [6, Lemma 4])
with some absolute constant c̃2 and the third uses (5.9).

We note that the constant c̃2 in (5.10) may be chosen as c̃2 = 1/E[|Z1|] = √
π/2.

Indeed, setting G = σ(ε1, . . . , εn,X1, . . . ,Xn) and using independence yields

E[|Z1|]E
[

sup
s∈[a,b]d

∣
∣
∣
∣
1

n

n∑

k=1

εkφ(seXk )

∣
∣
∣
∣

]

= E

[

sup
s∈[a,b]d

∣
∣
∣
∣
1

n

n∑

k=1

E[|Zk||G]εkφ(seXk )

∣
∣
∣
∣

]

= E

[

sup
s∈[a,b]d

∣
∣
∣
∣E
[1

n

n∑

k=1

|Zk|εkφ(seXk )

∣
∣
∣G
]∣∣
∣
∣

]

≤ E

[

E

[
sup

s∈[a,b]d

∣
∣
∣
1

n

n∑

k=1

|Zk|εkφ(seXk )|
∣
∣
∣G
]]

= E

[

sup
s∈[a,b]d

∣
∣
∣
∣
1

n

n∑

k=1

Zkφ(seXk )

∣
∣
∣
∣

]

.

To further simplify (5.10), we now apply Jensen’s inequality and use independence
and E[ZkZ�] = δk,� to derive for i = 1, . . . , d that

E

[∣
∣
∣
∣

n∑

k=1

Zke
Xk,i

∣
∣
∣
∣

]

≤ E

[∣
∣
∣
∣

n∑

k=1

Zke
Xk,i

∣
∣
∣
∣

2]1/2

=
( n∑

k=1

E[e2Xk,i ]
)1/2

≤ √
nE[e2Xd

T,i ]1/2 ≤ √
nE[epXd

T,i ]1/p.

Combining this with (5.10) and (5.7), we obtain that

E

[

sup
s∈[a,b]d

∣
∣
∣
∣E
[
R(φε̄,d )(seX

d,D
T )
]− 1

n

n∑

k=1

R(φε̄,d )(seXk )

∣
∣
∣
∣

]

≤ c2d
q̃+1

√
n

with c2 = 4
√

π/2cb exp(5BTp/2 + BTpep). By applying Markov’s inequality (see
(4.10) and (4.11)), this proves that there exists ω ∈ � with

sup
s∈[a,b]d

∣
∣
∣
∣E
[
R(φε̄,d )(seX

d,D
T )
]− 1

n

n∑

k=1

R(φε̄,d )(seXk(ω))

∣
∣
∣
∣≤

2c2d
q̃+1

√
n

.

Now we observe that s �→ 1
n

∑n
k=1 R(φε̄,d )(seXk(ω)) is the realisation of a neural

network ψ̃ε̄,d with M(ψ̃ε̄,d ) ≤ nM(φε̄,d ) (see Lemma 3.2). We have therefore proved
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that for arbitrary n ∈N, there exists a neural network ψ̃ε̄,d with

sup
s∈[a,b]d

∣
∣E
[
R(φε̄,d )(seX

d,D
T )
]− R(ψ̃ε̄,d )(s)

∣
∣≤ 2c2d

q̃+1

√
n

. (5.11)

Step 4: In the final step, we now provide appropriate choices of the hyper-

parameters. We select ε̄ = ε(c1d
q̃+ 1

2 p+ 1
2 + 2)−1, choose n = �(2c2d

q̃+1ε̄−1)2�,
D = log(ε̄−1dq̃+1c̃1) and set ψε,d = ψ̃ε̄,d . Then the total number of parameters of
the approximating neural network can be estimated, using assumption (5.3), as

M(ψε,d) = M(ψ̃ε̄,d)

≤ nM(φε̄,d)

≤ (1 + (2c2d
q̃+1ε̄−1)2)cdq̃ ε̄−q

≤ (1 + 4c2
2)cd

3q̃+2ε̄−2−q

≤ ((1 + 4c2
2)c(c1 + 2)2+q

)
d(q̃+ 1

2 p+ 1
2 )(2+q)+3q̃+2ε−2−q . (5.12)

Thus the number of weights is bounded polynomially in d and ε−1, as claimed. Fi-
nally, we combine (5.6), (5.8) and (5.11) to estimate the approximation error as

sup
s∈[a,b]d

|ud(T , s) − R(ψε,d)(s)|

≤ sup
s∈[a,b]d

(∣
∣ud(T , s) −E

[
R(φε̄,d )(seXd

T )
]∣
∣

+ ∣∣E[R(φε̄,d )(seXd
T )
]−E

[
R(φε̄,d )(seX

d,D
T )
]∣
∣

+ ∣∣E[R(φε̄,d )(seX
d,D
T )
]− R(ψ̃ε̄,d )(s)

∣
∣
)

≤ ε̄c1d
q̃+ 1

2 p+ 1
2 + c̃1e

−Ddq̃+1 + 2c2d
q̃+1

√
n

≤ ε̄(c1d
q̃+ 1

2 p+ 1
2 + 2) = ε,

as claimed. �

The proof of Theorem 5.1 is very similar to the proof of Proposition 4.1. Steps 1
and 4 in the proof of Theorem 5.1 are essentially identical in both proofs. The key
difference is in Step 3: in the d-dimensional case we cannot use the comparison
theorem for Rademacher complexities in Ledoux and Talagrand [39, Theorem 4.12],
but instead need to use a comparison result for Gaussian complexities from Bartlett
and Mendelson [6, Theorem 14]. In the d-dimensional case, the truncation with D in
Step 2 is needed to guarantee that the hypotheses of [6, Theorem 14] are satisfied; in
the 1-dimensional case, this is not required for [39, Theorem 4.12].
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5.2 Discussion of related results

As recently there have been several results on DNN expression rates in high-dimen-
sional diffusion models, a discussion on the relation of the multivariate DNN ex-
pression rate result in Theorem 5.1 to other recent mathematical results on DNN
expression rate bounds is in order. Given that geometric diffusion models are partic-
ular cases of the presently considered models (corresponding to νd = 0 in the Lévy
triplet), it is of interest to consider to which extent the DNN expression error bound
in Theorem 5.1 relates to these results.

Firstly, we note that with the exception of Gonon et al. [27] and Elbrächter et
al. [22], previous results in the literature which are concerned with DNN approxi-
mation rates for Kolmogorov equations for diffusion processes (see e.g. Grohs et al.
[30], Berner et al. [9], Grohs et al. [29], Reisinger and Zhang [45] and the refer-
ences therein) study approximation with respect to the Lp-norm (p < ∞), whereas
in Theorem 5.1 we study approximation with respect to the L∞-norm, which requires
entirely different techniques. While the results in [22] rely on a specific structure of
the payoff, the proof of the expression rates in [27] has some similarities with the
proof of Theorem 5.1. However, the novelty in the proof of Theorem 5.1 is the use
of statistical learning techniques (symmetrisation, Gaussian and Rademacher com-
plexities) which allow weaker assumptions on the activation function than in [27]. In
addition, the class of PDEs considered in [27] (heat equation and related) is different
from the one considered in Theorem 5.1 (Black–Scholes PDE and Lévy PIDE).

Secondly, Theorem 5.1 is the first result on ReLU DNN expression rates for option
prices in models with jumps or, equivalently, for partial integro-differential equations
in non-divergence form

∂tvd(τ, x) = 1

2
Trace

(
AdD2

xvd(τ, x)
)+ Dxvd(τ, x)γ d

+
∫

Rd

(
vd(τ, x + y) − vd(τ, x) − Dxvd(τ, x)y1{|y|≤1}

)
νd(dy),

vd(0, x) = (ϕd ◦ exp)(x) (5.13)

for x ∈ R
d , τ > 0, or, when transformed from log-price variables xi to actual

price variables si via (s1, . . . , sd) = (exp(x1), . . . , exp(xd)) (and with the convention
sey = (s1e

y1 , . . . , sdeyd )),

∂tud(τ, s) = 1

2

d∑

i,j=1

Ad
i,j sisj ∂si ∂sj ud(τ, s) +

d∑

i=1

si γ̃
d
i ∂si ud(τ, s)

+
∫

Rd

(

ud(τ, sey) − ud(τ, s) −
d∑

i=1

si(e
yi − 1)∂si ud(τ, s)

)

νd(dy),

ud(0, s) = ϕd(s) (5.14)

for s ∈ (0,∞)d , τ > 0 and with γ̃ d
i = γ d

i + Ad
i,i

2 + ∫
Rd (e

yi − 1 − yi1{|y|≤1})νd(dy)

(see for instance Hilber et al. [31, Theorem 4.1]). As in our assumptions also Ad = 0
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is admissible under suitable conditions on νd , the present ReLU DNN expression
rates are not mere generalisations of the diffusion case, but cover indeed the case
of arbitrary pure jump models for both finite and infinite activity Lévy processes
satisfying (5.5).

In the case of X being a diffusion with drift, i.e., for νd = 0, the Lévy PIDE
reduces to a Black–Scholes PDE. In this particular case, we may compare the re-
sult in Theorem 5.1 to the recent results e.g. in Grohs et al. [29]. The results in
the latter article are specialised to the Black–Scholes case in [29, Sect. 4], where
Setting 4.1 specifies the coefficients Ad

i,j (in our notation) as βd
i βd

j (Bd(Bd)�)i,j

for some βd ∈ R
d , Bd ∈ R

d×d satisfying (Bd(Bd)�)k,k = 1 for all d ∈ N,
i, j, k = 1, . . . , d and supd,i |βd

i | < ∞. The coefficient γ d is chosen as αd satisfy-
ing supd,i |αd

i | < ∞. Using that � = Bd(Bd)� is symmetric and positive definite,
we obtain �i,j ≤√�i,i�j,j = 1 and hence these assumptions imply that (5.5) is
satisfied. Therefore, the DNN expression rate results from [29, Sect. 4] can also be
deduced from our Theorem 5.1 in the case when the probability measure used to
quantify the Lp-error in [29] is compactly supported, as in that case the L∞-bounds
proved here imply the Lp-bounds proved in [29].

5.3 Exponential ReLU DNN expression rates via PIDEs

We now extend the univariate case discussed in Sect. 4.3, and prove an exponential
expression rate bound similar to Proposition 4.8 for baskets of d ≥ 2 Lévy-driven as-
sets. In this subsection, we assume the ReLU activation function �(x) = max{x,0}.
As in Sect. 5.1, we admit a general correlation structure for the marginal pro-
cesses’ jumps. To prove DNN expression rate bounds, we exploit once more the
fact that the stationarity and homogeneity of the R

d -valued LP Xd imply that the
Kolmogorov equation (5.13) has constant coefficients. Under the provision that
vd(0, · ) ∈ L2(Rd) holds in (5.13), this allows writing for every τ > 0 the Fourier
transform Fx→ξ vd(τ, · ) = v̂d (τ, ξ) as

v̂d (τ, ξ) = exp
(− τψ(ξ)

)
v̂d (0, ξ), ξ ∈R

d . (5.15)

Here, for ξ ∈ R
d , the symbol is given by ψ(ξ) = exp(−ix�ξ)A(∂x) exp(ix�ξ) with

A(∂x) denoting the constant coefficient spatial integro-differential operator in (5.13)
by Courrège’s second theorem (see e.g. Applebaum [1, Theorem 3.5.5]), and (4.21)
becomes

E[exp(iξ�Xd
τ )] = exp

(− τψ(ξ)
)
, ξ ∈ R

d . (5.16)

In fact, ψ can be expressed in terms of the characteristic triplet (Ad, γ d, νd) of the
LP Xd as

ψ(ξ) = 1

2
ξ�Adξ − iξ�γ d −

∫

Rd

(eiξ�y − 1 − iξ�y1{|y|≤1})νd(dy), ξ ∈R
d .

(5.17)
We impose again the strong ellipticity assumption (4.17), but now with |ξ | understood
as |ξ |2 = ξ�ξ for ξ ∈R

d . Then, reasoning exactly as in the proof of Proposition 4.8,
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we obtain with C1 > 0 as in (4.17) for every τ > 0 for the variational solution vd of
(5.13) the bound

‖(Dk
xvd)(τ, · )‖2

L2(Rd )
≤
(

k

2τC1ρe

)k/ρ

‖vd(0, · )‖2
L2(Rd )

, ∀k ∈N0. (5.18)

Here, Dk
x denotes any weak derivative of total order k ∈ N0 with respect to x ∈ R

d .
With the Sobolev embedding theorem, we again obtain for any bounded cube

I d = [x−, x+]d ⊆ R
d with −∞ < x− < x+ < ∞ and for every fixed τ > 0 that there

exist constants C(d) > 0 and A(τ,ρ) > 0 such that

sup
x∈Id

|(Dk
xvd)(τ, x)| ≤ C(d)

(
A(τ,ρ)

)k
(k!)1/min{1,2ρ}, ∀k ∈ N. (5.19)

In (5.19), the constant C(d) is independent of x−, x+, but depends in general ex-
ponentially on the basket size (respectively the dimension) d ≥ 2, and the constant
A(τ,ρ) = (2τC1ρ)−1/(2ρ) denotes the constant from (5.18) and Stirling’s bound. If
ρ = 1 (which corresponds to the case of a non-degenerate diffusion part) and if τ > 0
is sufficiently large (so that (2τC1)

1/(2ρ) ≥ 1), the constant is bounded uniformly
with respect to the dimension d . The derivative bound (5.19) implies that vd(τ, · )|Id

is Gevrey-δ-regular with δ = 1/min{1,2ρ}.
In particular, for δ = 1, i.e., when ρ ≥ 1/2, for every fixed τ > 0, the function

x �→ vd(τ, x) is real analytic in I d , which is the case we consider first. In this case,
we perform an affine change of coordinates to transform vd(τ, · ) to the real ana-
lytic function [−1,1]d � x̂ �→ vc(τ, x̂). This function admits a holomorphic extension
to some open set O ⊆ C

d containing [−1,1]d . By choosing �̄ > 1 (the “semiaxis
sums”) sufficiently close to 1, we obtain that E�̄ ⊆ O , i.e., vc(τ, · ) admits a holo-
morphic extension to E�̄ , where the Bernstein polyellipse E�̄ ⊆ C

d is defined as the
d-fold Cartesian product of the Bernstein ellipse {(z + z−1)/2 : z ∈ C,1 ≤ |z| < �̄}.
More precisely, x �→ vd(τ, x) admits, with respect to each co-ordinate xi ∈ [x−, x+]
of x, a holomorphic extension to an open neighborhood of [x−, x+] in C (see e.g.
Krantz and Parks [37, Sect. 1.2]). By Hartogs’ theorem (see e.g. Hörmander [33,
Theorem 2.2.8]), for every fixed τ > 0, the function x �→ vd(τ, x) admits a holomor-
phic extension to a polyellipse in C

d with foci at x−, x+ or, in normalised coordinates

x̂i = (T −1(x)
)
i
= 2[xi − (x− + x+)/2]/(x+ − x−), i = 1, . . . , d, (5.20)

the map [−1,1]d � x̂ �→ vd(τ, T (x̂)) = vc(τ, x̂) admits a holomorphic extension
to a Bernstein polyellipse E�̄ ⊆ C

d with foci at x̂i = ±1 and semiaxis sums
1 < �̄ = O(A(τ,ρ)−1). As τ �→ A(τ,ρ)−1 is increasing for every fixed value of ρ,
parabolic smoothing increases for ρ ≥ 1/2 the domain of holomorphy with τ .

In the general case δ = 1/min{1,2ρ} with ρ > 0 as in (4.17), ReLU DNN
expression rates of multivariate holomorphic (if ρ ≥ 1/2) and Gevrey-regular (if
0 < ρ < 1/2) functions such as x̂ �→ vc(τ, x̂) have been studied in Opschoor et
al. [43]. The holomorphy or Gevrey-δ-regularity of the map x̂ �→ vc(τ, x̂) implies
with [43, Theorem 3.6, Proposition 4.1] that there exist constants β ′ = β ′(�̄, d) > 0
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and C = C(ud, �̄, d) > 0 and for every N ∈ N a ReLU DNN ũN : [−1,1]d → R

such that

M(ũN ) ≤ N , L(ũN ) ≤ CNmin{ 1
2 , 1

d+1/δ
} logN (5.21)

and such that the error bound

‖vc(τ, · ) − ũN ( · )‖W 1,∞([−1,1]d ) ≤ C exp(−β ′Nmin{ 1
2δ

, 1
δd+1 }) (5.22)

holds. Reversing the affine change of variables (5.20) in the input layer, we obtain
the following result on the ε-complexity of the ReLU DNN expression error for
x �→ vd(τ, x) at fixed 0 < τ ≤ T .

Theorem 5.4 Assume that the symbol ψ of the R
d -valued LP Xd satisfies (4.17) with

|ξ |2 = ξ�ξ and some ρ ∈ (0,1]. For every ϕd with vd(0, · ) = ϕd ◦ exp ∈ L2(Rd), for
every τ > 0, on every closed, bounded hypercube I d = [x−, x+]d ⊆ R

d and, respec-
tively, J d = [s−, s+]d ⊆ (0,∞)d with s± = exp(x±), the variational solutions vd of
the Kolmogorov PIDE (5.13) at τ and ud(τ, s) = vd(τ, log s) can then be expressed
on I d , J d by ReLU DNNs ṽd,ε , ũd,ε at exponential rate. Specifically, there exists a
constant C = C(x−, x+, δ, d, τ ) > 0 such that with δ = 1/min{1,2ρ} ≥ 1, for every
0 < ε ≤ 1/2, there exist ReLU DNNs ṽd,ε , ũd,ε for which we have

sup
x∈Id

|vd(τ, x) − R(ṽd,ε)(x)|, sup
s∈J d

|ud(τ, s) − R(ũd,ε)(s)| ≤ ε

and

M(ṽd,ε) + M(ũd,ε) ≤ C| log ε|max{2δ,δd+1},

L(ṽd,ε) + L(ũd,ε) ≤ C| log ε|δ| log(| log ε|)|.
Here, the constants C = C(δ, d, τ ) > 0 depend on I and J and, in general, exponen-
tially on the basket size d .

Proof The asserted bounds for R(ṽd,ε) follow by elementary manipulations from in-
sisting that the expression error bound (5.22) must equal ε ∈ (0,1/2] and subse-
quently inserting the resulting expression N � | log ε|max{2δ,δd+1} into the bounds
(5.21) for the DNN size and depth.

The bounds for R(ũd,ε) are then deduced from those for R(ṽd,ε) and the fact
that the transformation log : J d → I d (understood componentwise) is real analytic.
Hence it admits a holomorphic extension to an open neighbourhood of J d in C

d .
Then Opschoor et al. [43, Theorem 3.6], combined with the affine transformation
T : [−1,1]d → J d , implies that there are constants C,β ′ > 0 such that for every
N ∈ N, there exists a ReLU DNN l̃ogN such that we have

M(l̃ogN ) ≤ N , L(l̃ogN ) ≤ CN
1

d+1 log2(N )

and the error bound

‖ log◦T − R(l̃ogN ) ◦ T ‖W 1,∞([−1,1]d ) ≤ C exp(−β ′N
1

d+1 ). (5.23)
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For every N ∈ N, the set Ĩ d = R(l̃ogN )(J d) ∪ log(J d) ⊆ (−∞,∞)d is compact
due to (5.23). For given ε ∈ (0,1/2], we choose N ∈ N as before. Using that

Nmin{ 1
2δ

, 1
δd+1 } ≤ N

1
d+1 , this choice guarantees that C exp(−β ′N

1
d+1 ) ≤ ε in (5.23).

Then we define ũd (τ, · ) = R(ṽd,ε)( · ) ◦ R(l̃ogN )( · ) and estimate

sup
s∈J d

|ud(τ, s) − ũd (τ, s)| = sup
s∈J d

|vd(τ, · ) ◦ log s − ũd (τ, s)|

≤ sup
s∈J d

|vd(τ, · ) ◦ log s − vd(τ, · ) ◦ R(l̃ogN )(s)|

+ sup
s∈J d

|vd(τ, · ) ◦ R(l̃ogN )(s)

− R(ṽd,ε)( · ) ◦ R(l̃ogN )(s)|
≤ ‖vd(τ, · )‖

W 1,∞(Ĩ d )
sup
s∈J d

| log s − R(l̃ogN )(s)|

+ sup
x∈Ĩ d

|vd(τ, x) − R(ṽd,ε)(x)|

≤ Cε.

Since the DNN size and depth are additive under composition of ReLU DNNs, the
assertion for ũd,ε follows (possibly adjusting the value of the constant C). �

Remark 5.5 Some sufficient conditions on the characteristic triplet (Ad, γ d, νd) that
ensure (4.17) in the multivariate setting are as follows. Consider first the case when
the diffusion component is non-degenerate, i.e., Ad is positive definite. Then

Reψ(ξ) = 1

2
ξ�Adξ −

∫

Rd

(
cos(ξ�y) − 1

)
νd(dy) ≥ C1|ξ |2,

|ψ(ξ)| ≤ 1

2
|ξ�Adξ | + |ξ�γ d | +

∫

{|y|≤1}
|eiξ�y − 1 − iξ�y|νd(dy)

+ 2
∫

{|y|>1}
νd(dy)

≤ C2|ξ |2 + C3

for suitable choices of C1,C2,C3 > 0. In the case when Ad is not positive defi-
nite, we refer for instance to Eberlein and Glau [20, Sect. 7] and Hilber et al. [32,
Lemma 14.5.1] for sufficient conditions.

5.4 Breaking the curse of dimensionality

The result in Theorem 5.1 gives an ε expression error for DNNs whose depth and
size are bounded polynomially in terms of ε−1d , for European-style options in mul-
tivariate exponential Lévy models. In particular, in Theorem 5.1, the curse of dimen-
sionality is proved to be overcome for a market model with jumps: a DNN expression



646 L. Gonon, C. Schwab

rate is shown which is algebraic in terms of the target accuracy ε > 0 with constants
that depend polynomially on the dimension d . The rates p,q ∈ [0,∞) can be read
off from the proof of Theorem 5.1; however, these constants could be large, thereby
affording only low DNN expression rates.

Theorem 5.4, on the other hand, states exponential expressivity of deep ReLU
NNs, i.e., a maximum expression error at time τ > 0 with accuracy ε > 0 can be
attained by a deep ReLU NN of size and depth which grow polylogarithmically with
respect to | log ε|. This exponential expression rate bound is, however, still prone to
the curse of dimensionality (CoD).

In the present section, we further address alternative mathematical arguments on
how DNNs can overcome the CoD in the presently considered Lévy models. Specif-
ically, two mathematical arguments in addition to the probabilistic arguments in
Sect. 5.1 are presented. Both exploit stationarity of the LP Xd which implies (5.15),
(5.16), to obtain DNN expression rates free from the curse of dimensionality.

5.4.1 Barron space analysis

The first alternative approach to Theorem 5.1 is based on verifying, using (5.15),
(5.16), regularity of option prices in the so-called Barron space introduced in the
fundamental work of Barron [5]. It provides DNN expression error bounds with ex-
plicit values for p and q, however, in [5] only for DNNs with sigmoidal activation
functions �; similar results for ReLU activations are asserted in E and Wojtowytsch
[19]. For simplicity, we consider here a subset B of the Barron space. An integrable
function f :Rd →R belongs to B if

‖f ‖B =
∫

Rd

|ξ ||f̂ (ξ)|dξ < ∞. (5.24)

Recall that f̂ denotes the Fourier transform of f . The explicit appearance of f̂

renders the norm ‖ · ‖B in (5.24) particularly suitable for our purposes due to
(5.15)–(5.17). As was pointed out in [5, 19], the relevance of the Barron norm ‖ · ‖B
stems from it being sufficient for dimension-robust DNN approximation rates. For
m ∈N, consider the two-layer neural networks fm given by

fm :Rd → R, x �→ 1

m

m∑

i=1

ai�(w�
i x + bi) (5.25)

with parameters (ai,wi, bi) ∈ R × R
d × R. Their relevance stems from the fol-

lowing result: If � is sigmoidal, i.e., bounded, measurable and �(z) → 1 as
z → ∞, �(z) → 0 as z → −∞, then for f ∈ B and for every R > 0, every probabil-
ity measure π on [−R,R]d and every m ∈N, there exist parameters {(ai,wi, bi)}mi=1
such that for the corresponding DNN fm in (5.25), we have

‖f − fm‖L2([−R,R]d ,π) ≤ max{1,R}m−1/2‖f ‖B. (5.26)

The bound (5.26) follows from Barron [5, Theorem 1], and was generalised in E and
Wojtowytsch [19, Eq. (1.3)] to ReLU activation.
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The bound in (5.26) is free from the CoD: the number N of parameters in the DNN
grows as O(md) so that m−1/2 ≤ CN−1/2d1/2 with an absolute constant C > 0.

With (5.15), (5.16), for every τ ≥ 0, sufficient conditions for x �→ vd(τ, x) to
belong to B can be verified. With (5.26), DNN mean-square expression rate bounds
of option prices that are free from the CoD follow.

Proposition 5.6 Assume that �(z) = ReLU(z) = max{z,0} for z ∈ R. Assume fur-
thermore that the payoff vd(0, · ) in log-variables belongs to B. Then for every τ ≥ 0,
R > 0 and probability measure π on [−R,R]d , the price x �→ vd(τ, x) can be ex-
pressed by a NN x �→ ṽd (τ, x) of depth 2 and size m(d + 2) with m ∈ N and error
bound

‖vd(τ, · ) − ṽd (τ, · )‖L2([−R,R]d ,π) ≤ max{1,R}m−1/2‖vd(0, · )‖B.

Proof We observe that for every ξ ∈R
d , the identity (5.16) with τ = 1 shows that

exp
(− ReψXd (ξ)

)= ∣∣ exp
(− ψXd (ξ)

)∣
∣= |E[exp(iξ�Xd

1 )]| ≤ 1

and therefore ReψXd (ξ) ≥ 0. From (5.15), (5.16), we obtain for τ ≥ 0 that

|v̂d (τ, ξ)| = ∣∣ exp
(− τψXd (ξ)

)
v̂d (0, ξ)

∣
∣= exp

(− τReψXd (ξ)
)|v̂d (0, ξ)|, ∀ξ ∈ R

d .

The payoff vd(0, · ) in log-price belonging to B implies ‖vd(0, · )‖B < ∞. Using
ReψXd (ξ) ≥ 0, we find for every τ ≥ 0, ξ ∈ R

d that |v̂d (τ, ξ)| ≤ |v̂d (0, ξ)|. This
implies for every τ ≥ 0 that ‖vd(τ, · )‖B ≤ ‖vd(0, · )‖B . The approximation bound
(5.26) implies the assertion. �

Pointwise, L∞-norm error bounds can be obtained by using [19, Eq. (1.4)].

5.4.2 Parabolic smoothing and sparsity of chaos expansions

The second non-probabilistic approach to Theorem 5.1 towards DNN expression er-
ror rates not subject to the CoD is based on dimension-explicit derivative bounds
of option prices, which allow in turn establishing summability bounds for gener-
alised polynomial chaos (gpc for short) expansions of these prices. Good summabil-
ity of gpc coefficient sequences is well known to imply high, dimension-independent
rates of approximation by sparse, multivariate polynomials. This in turn implies cor-
responding expression rates by suitable DNNs; see Schwab and Zech [49, Theo-
rem 3.9]. Key in this approach is to exploit parabolic smoothing of the Kolmogorov
PDE. The corresponding dimension-independent expression rate results are in gen-
eral higher than those based on probabilistic or Barron space analysis, but hold only
for sufficiently large τ > 0.

We start by discussing more precisely the dependence of the constants in the proof
of Theorem 5.4 on the dimension d .

Remark 5.7 The constant C(d) = C(τ, d) in the derivative bound (5.19) need not be
exponential in d . To see it, we bound (5.19) by the inverse Fourier transform and the
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Cauchy–Schwarz inequality. For α ∈ N
d
0 with |α| =∑d

i=1 αi = k, we find with the
Cauchy–Schwarz inequality and the lower bound (4.17) that

sup
x∈Id

|(Dα
x vd)(τ, x)| = sup

x∈Id

∣
∣
∣
∣

1

(2π)d/2

∫

Rd

(iξ)α exp(ix�ξ) exp
(− τψ(ξ)

)
v̂d (0, ξ)dξ

∣
∣
∣
∣

≤ 1

(2π)d/2

∫

Rd

|ξ |k∣∣ exp
(− τψ(ξ)

)∣∣|v̂d (0, ξ)|dξ

≤ 1

(2π)d/2

(∫

Rd

exp(−2τC1|ξ |2ρ)dξ

)1/2

×
(∫

Rd

|ξ |2k exp(−2τC1|ξ |2ρ)|v̂d (0, ξ)|2dξ

)1/2

.

The last factor can be bounded precisely by the square root of the right-hand side of
(5.18) (by using (4.23)). Using kk ≤ k! ek , we obtain the bound (5.19) as

sup
x∈Id

|(Dα
x vd)(τ, x)| ≤ C(d, τ)

(
A(τ,ρ)

)k
(k!)1/min{1,2ρ}‖vd(0, · )‖L2(Rd ) (5.27)

with constant A(τ,ρ) = (2τC1ρ)−1/(2ρ) and the explicit constant

C(d, τ) = 1

(2π)d/2

(∫

Rd

exp(−2τC1|ξ |2ρ)dξ

)1/2

= 1

(2π)d/2

(

2
π

d
ωd

∫ ∞

0
rd−1 exp(−2τC1r

2ρ)dr

)1/2

= 1

(2π)d/2

(
π

ρd

1

(2τC1)d/(2ρ)
ωd�

( d

2ρ

))1/2

= 1

(2π)d/2

(
π

ρd

1

(2τC1)d/(2ρ)

πd/2�( d
2ρ

)

�(d
2 + 1)

)1/2

, (5.28)

where ωd denotes the volume of the unit ball in R
d . Inspecting the constant C(d, τ)

in (5.28), we observe that e.g. for ρ = 1 and τ0 = τ0(C1) = 1/(8πC1), τ ≥ τ0 > 0
sufficiently large implies that C(d, τ) is bounded independently of τ and d .

Remark 5.8 In certain cases, the parabolic smoothing implied by the ellipticity as-
sumption (4.17) on the generator A entails that the constant C in the regularity esti-
mates (5.19) grows only polynomially with respect to d . For instance, in Remark 5.7,
we have provided sufficient conditions which ensure that the constant C in the reg-
ularity estimates (5.19) is even bounded with respect to d . This allows deriving an
explicit and dimension-independent bound on the series of Taylor coefficients. This
in turn allows obtaining bounds on the constant in (5.22) which scale polynomially
with respect to d . Consider for example ρ = 1 (i.e., non-degenerate diffusion) and
assume that τ > 0 is sufficiently large; specifically, (2τC1)

1/2 ≥ 1 and dA(τ,1) < 1,
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where A(τ,1) = (2τC1)
−1/2 denotes the constant in large parentheses in (4.24). This

holds if

τ >
d2

2C1
. (5.29)

With (5.29) and using
∑

α∈Nd
0 ,|α|=k

(
k
α

)= dk , we may estimate with the multinomial
theorem that

∑

α∈Nd
0

supx∈Id |(Dα
x vd)(τ, x)|

α! ≤ C(d, τ)
∑

α∈Nd
0

A(τ,1)|α|(|α|)!
α!

= C(d, τ)

∞∑

k=0

(
dA(τ,1)

)k = C(d, τ)
1

1 − dA(τ,1)
.

By Remark 5.7, (5.29) implies that C(d, τ) in (5.28) is bounded uniformly with re-
spect to d . Thus in this case, one may obtain bounds on the constant in (5.22) which
scale polynomially with respect to d . However, the DNN size still grows polylog-
arithmically with respect to the dimension d , in terms of | log ε| (i.e., at least as
O(| log ε|d)), so that the curse of dimensionality is not overcome.

The constant C > 0 in the exponential expression rate bounds established in Theo-
rem 5.4 depends in general exponentially on the basket size d , resp. on the dimension
of the solution space of the PIDE (5.13), due to the reliance on the ReLU DNN
expression rate analysis in Opschoor et al. [43]. Furthermore, the DNN size grows
polylogarithmically with respect to the dimension d , in terms of | log ε|. Consider-
ing exponential expression rate bounds, this exponential dependence on d in terms
of | log ε| seems in general not avoidable, as can be seen from [43, Theorem 3.5].
Nevertheless, in Remark 5.8, we already hinted at parabolic smoothing implying suf-
ficient regularity (under the d-dependent provision (5.29) on τ ) for constants in DNN
expression rate bounds which are polynomial with respect to d .

In the following paragraphs, we settle for algebraic DNN expression rates and
overcome exponential dependence on d in ReLU DNN expression error bounds under
certain sparsity assumptions on polynomial chaos expansions, as shown in Schwab
and Zech [49], Cohen et al. [15] and the references there. We develop a variation of
the results in [49] in the present context.

We impose the following hypothesis, which takes the place of the lower bound in
(4.17). We still impose |ψ(ξ)| ≤ C2|ξ |2ρ + C3, i.e., the second condition in (4.17)
holds for each d ∈N (but C2, C3 and ρ in that condition are allowed to depend on d).

Assumption 5.9 There exist a constant C1 > 0 and (ρj )j∈N with 1
2 < ρj ≤ 1 such

that for each d ∈N, the symbol ψXd of the LP Xd satisfies that

ReψXd (ξ) ≥ C1

d∑

j=1

|ξj |2ρj , ∀ξ ∈ R
d . (5.30)
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Furthermore,

ρ = inf
j∈Nρj >

1

2
.

The payoff function ϕd in (5.13) is such that vd(0, · ) = ϕd ◦ exp ∈ L2(Rd).

In comparison to the lower bound in (4.17), the condition (5.30) is restricted to
the case ρ > 1

2 . On the other hand, different exponents ρj are allowed along each
component. Furthermore, note that Assumption 5.9 imposes that C1 does not depend
on the dimension d .

Remark 5.10 Consider the pure diffusion case, i.e., when the characteristic triplet is
(Ad,0,0) with a symmetric, positive definite diffusion matrix Ad and Lévy symbol
ψXd : Rd → R, ξ �→ ξ�Adξ . A sufficient condition for assumption (5.30) to hold is
that the eigenvalues (λd

i )i=1,...,d of Ad should be lower bounded away from zero, i.e.,

C1 = inf
i,d

λd
i > 0. (5.31)

To see this, write Q�AdQ = D for a diagonal matrix D containing the eigenvalues
of Ad and an orthogonal matrix Q. Then we obtain for arbitrary ξ ∈ R

d that

ψXd (ξ) = ξ�Adξ = (ξ�)QDQ�ξ =
d∑

i=1

λi(Q
�ξ)2

i

≥ (min
i

λi

)|Q�ξ |2 = (min
i

λi

)|ξ |2.

Therefore (5.30) is satisfied with C1 as in (5.31) and ρj = 1 for all j ∈N.
This condition imposes in applications that different assets (modelled by different

components of the LP Xd ) should not become asymptotically (perfectly) dependent
as the dimension grows.

Remark 5.11 Consider characteristic triplets (Ad, γ d, νd) and the more general case
of non-degenerate diffusion, i.e., with Ad satisfying the condition (5.31) from Re-
mark 5.10. Then the real part of the Lévy symbol ψXd of Xd satisfies for all ξ ∈ R

d

that

ReψXd (ξ) = 1

2
ξ�Adξ −

∫

Rd

(
cos(ξ�y) − 1

)
νd(dy) ≥ 1

2
ξ�Adξ ≥ C1|ξ |2

with C1 as in (5.31). Hence Assumption 5.9 is satisfied also in this more general
situation. Further examples of LPs satisfying Assumption 5.9 are based on stable-
like processes and copula-based constructions as e.g. in Farkas et al. [24].

As we shall see below, Assumption 5.9 ensures good “separation” and “anisotropy”
properties of the symbol (5.17) of the corresponding Lévy process Xd .
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For τ > 0 satisfying (5.29), we now analyse the regularity of x �→ vd(τ, x). From
Assumption 5.9, we find that for every τ > 0, x �→ vd(τ, x) is in L2(Rd) and that its
Fourier transform has the explicit form

v̂d (τ, ξ) = Fx→ξ vd(τ, · ) = exp
(− τψXd (ξ)

)
v̂d (0, ξ). (5.32)

For a multi-index ν = (ν1, . . . , νd) ∈ N
d
0 , denote by ∂ν

x the mixed partial derivative
of total order |ν| = ν1 + · · · + νd with respect to x ∈ R

d . Formula (5.32) and As-
sumption 5.9 can be used to show that for every τ > 0, x �→ vd(τ, x) is analytic at
any x ∈ R

d . This is of course the well-known smoothing property of the generator
of certain non-degenerate Lévy processes. To address the curse of dimensionality, we
quantify the smoothing effect in a d-explicit fashion.

To this end, with Assumption 5.9, we calculate for any ν ∈ N
d
0 at x = 0 (by sta-

tionarity, the same bounds hold for the Taylor coefficients at any x ∈ R
d ) that

(2π)d/2|∂ν
x vd(τ,0)| =

∣
∣
∣
∣

∫

ξ∈Rd

(iξ)ν v̂d (τ, ξ)dξ

∣
∣
∣
∣

≤
∫

ξ∈Rd

|v̂d (0, ξ)|
d∏

j=1

|ξj |νj exp(−τC1|ξj |2ρj )dξ.

We use (4.23) with m := νj , κ := C1τ , μ = 2ρj to bound the product as

d∏

j=1

|ξj |νj exp(−τC1|ξj |2ρj ) ≤
d∏

j=1

(
νj

2ρj τC1e

)νj /(2ρj )

.

For the Taylor coefficient of order ν ∈N
d
0 of vd(t, · ) at x = 0, we arrive at the bound

|tν | =
∣
∣
∣
∣

1

ν!∂
ν
x vd(τ, x)|x=0

∣
∣
∣
∣

≤ 1

(2π)d/2
‖v̂d (0, · )‖L1(Rd )

d∏

j=1

1

νj !
(

νj

2ρj τC1e

)νj /(2ρj )

. (5.33)

Stirling’s inequality

n! ≥ nne−n
√

2πn ≥ nne−n, ∀n ∈ N,

implies in (5.33) the bound

|tν | ≤ 1

(2π)d/2
‖v̂d (0, · )‖L1(Rd )

(
(ν!)−1bν

)ρ′
, ∀ν ∈ N

d
0 . (5.34)

Here, ρ′ = 1 − 1
2ρ

> 0 and the positive weight sequence b = (bj )j≥1 is given by

bj = (2ρj τC1)
−1/(2ρj ρ′), j = 1,2, . . . , and multi-index notation is employed: we

write ν−ν = (ν
ν1
1 ν

ν2
2 · · · )−1, bν = b

ν1
1 b

ν2
2 · · · and ν! = ν1!ν2! . . ., with the convention
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0! = 1 and 00 = 1. We raise (5.34) to a power q > 0 with q < 1/ρ′ and sum the
resulting inequality over all ν ∈N

d
0 to estimate (generously)

∑

ν∈Nd
0

|tν |q ≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

∑

ν∈Nd
0

(
1

ν!b
ν

)qρ′

≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

∑

ν∈Nd
0

( |ν|!
ν! bν

)qρ′

.

To obtain the estimate (5.34), one could also use the L2-bound with the explicit con-
stant derived in (5.27), (5.28).

Under hypothesis (5.30) and for τ > 0 satisfying (5.29), q-summability of the
Taylor coefficients follows; indeed,

∑

ν∈Nd
0

|tν |q ≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

∑

ν∈Nd
0

( |ν|!
ν! bν

)qρ′

≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

∞∑

k=0

∑

ν∈Nd
0 :|ν|=k

( |ν|!
ν! (2ρτC1)

−k/(2ρρ′)
)qρ′

≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

∞∑

k=0

(2ρτC1)
−qk/(2ρ)

∑

ν∈Nd
0 :|ν|=k

( |ν|!
ν!
)qρ′

.

Using that |ν|! ≥ ν! and that 1 ≥ qρ′ > 0, the multinomial theorem yields

∑

ν∈Nd
0 :|ν|=k

( |ν|!
ν!
)qρ′

≤
∑

ν∈Nd
0 :|ν|=k

|ν|!
ν! = dk.

Hence, provided that

τ > τ0(d) := d2ρ/q

2ρC1
, (5.35)

it follows that

‖(tν)‖q

�q(Nd
0 )

=
∑

ν∈Nd
0

|tν |q ≤
‖v̂d (0, · )‖q

L1(Rd )

(2π)dq/2

1

1 − d(2ρτC1)−q/(2ρ)
. (5.36)

Therefore, we have proved q-summability of the Taylor coefficients of the map
x �→ vd(τ, x) at x = 0 for any τ > τ0(d) as in (5.35). The q-norm ‖(tν)‖�q (Nd

0 ) is

bounded independently of d provided that τ > τ0(d) and ‖v̂d (0, · )‖L1(Rd )(2π)−d/2

is bounded independently of d .
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The q-summability (5.36) of the Taylor coefficients of x �→ vd(τ, x) at x = 0 with
q = 1 implies for τ > τ0(d) absolute, pointwise convergence in the cube [−1,1]d of

vd(τ, x) =
∑

ν∈Nd
0

tνx
ν, xν = x

ν1
1 x

ν2
2 · · · . (5.37)

Furthermore, as was shown in Schwab and Zech [49, Lemma 2.8], the fact that the
sequence (tν) is q-summable for some 0 < q < 1 and the coefficient bound (5.34)
imply that for τ > τ0(d) with τ0(d) as defined in (5.35), there exists a sequence
(�n)n≥1 ⊆ N

d
0 of nested, downward closed (i.e., if ej ∈ �n, then ei ∈ �n for all

0 ≤ i ≤ j ) multi-index sets �n ⊆ N
d
0 with #(�n) ≤ n such that general polynomial

chaos (gpc) approximations given by the partial sums

v
�n

d (τ, x) =
∑

ν∈�n

tνx
ν

converge at the dimension-independent rate r = 1/q − 1 (see e.g. Cohen et al. [15,
Lemma 5.5]), i.e.,

sup
x∈[−1,1]d

|vd(τ, x) − v
�n

d (τ, x)| ≤
∑

ν∈Nd
0\�n

|tν | ≤ n−(1/q−1)‖(tν)‖�q (Nd
0 ).

The summability (5.36) of the coefficients in the Taylor gpc expansion (5.37) also
implies quantitative bounds on the expression rates of ReLU DNNs. With [49, Theo-
rem 2.7, (ii)], we find that there exists a constant C > 0 independent of d such that

sup
ν∈�n

|ν|1 ≤ C(1 + logn).

We now refer to [49, Theorem 3.9] (with q in place of p in the statement of that
result) and, observing that in the proof of that theorem, only the p-summability of
the Taylor coefficient sequence (tν) was used, we conclude that for τ > 0 satisfying
(5.35), there exists a constant C > 0 that is independent of d and for every n ∈ N,
there exists a ReLU DNN ṽn

d with input dimension d such that

M(ṽn
d ) ≤ C

(
1 + n logn log(logn)

)
,

L(ṽn
d ) ≤ C

(
1 + logn log(logn)

)
,

sup
x∈[−1,1]d

|vd(τ, x) − R(ṽn
d )(x)| ≤ Cn−(1/q−1). (5.38)

6 Conclusion and generalisations

We have proved that prices of European-style derivative contracts on baskets of d ≥ 1
assets in exponential Lévy models can be expressed by ReLU DNNs to accuracy
ε > 0 with DNN size polynomially growing in ε−1 and d , thereby overcoming the
curse of dimensionality. The technique of proof is based on probabilistic arguments
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and provides expression rate bounds that scale algebraically in terms of the DNN size.
We have then also provided an alternative, analytic argument that allows proving ex-
ponential expressivity of ReLU DNNs of the option price, i.e., of the map s �→ u(t, s)

at any fixed time 0 < t < T , with the DNN size growing polynomially with respect to
log ε to achieve accuracy ε > 0. For sufficiently large t > 0, based on analytic argu-
ments involving parabolic smoothing and sparsity of generalised polynomial chaos
expansions, we have established in (5.38) a second, algebraic expression rate bound
for ReLU DNNs that is free from the curse of dimensionality. In forthcoming work
(Gonon and Schwab [28]), we address PIDEs (5.13) with non-constant coefficients.
In addition, the main result of the present paper, Theorem 5.1, could be extended in
the following directions.

First, the expression rates are almost certainly not optimal in general; for high-
dimensional diffusions, which are a particular case with Ad = I and νd = 0, we
have established in Elbrächter et al. [22] for particular payoff functions a spectral
expression rate in terms of the DNN size, free from the curse of dimensionality.

Next, solving Hamilton–Jacobi partial integro-differential equations (HJPIDEs for
short) by DNNs: It is classical that the Kolmogorov equation for the exponential LP
Xd in Sect. 2.2 is in fact a special case of an HJPIDE (see e.g. Barles et al. [2], Barles
and Imbert [3]). In forthcoming work [28], we aim at proving that the expression rate
bounds obtained in Sect. 5 imply corresponding expression rate bounds for ReLU
DNNs which are free from the curse of dimensionality for viscosity solutions of
general HJPIDEs associated to the LP Xd and for its exponential counterparts.

Barriers: We have considered payoff functions corresponding to European-style
contracts. Here, the stationarity of the LP Xd and exponential Lévy modelling have
allowed to reduce our analysis to Cauchy problems of the Kolmogorov equations
of Xd in R

d . In the presence of barriers, option prices in Lévy models in general
exhibit singularities at the barriers. More involved versions of the Fourier-transform-
based representations are available (involving a so-called Wiener–Hopf factorisation
of the Fourier symbol; see e.g. Boyarchenko and Levendorskiı̆ [13]). For LPs Xd

with bounded exponential moments, the present regularity analysis may be localised
to compact subsets, well separated from the barriers, subject to an exponentially small
localisation error term; see Hilber et al. [32, Chap. 10.5]. Here, the semiheavy tails
of the LPs Xd enter crucially in the analysis. We therefore expect the present DNN
expression rate bounds to remain valid also for barrier contracts, at least far from the
barriers, for the LPs Xd considered here.

Dividends: We have assumed throughout that contracts do not pay dividends.
However, including a dividend stream (with constant rate over (0, T ]) on the un-
derlying does not change the mathematical arguments; we refer to Lamberton and
Mikou [38, Sect. 3.1] for a complete statement of exponential Lévy models with con-
stant dividend payment rate δ > 0, and for the corresponding pricing of European-
and American-style contracts for such models.

American-style contracts: Deep-learning-based algorithms for the numerical solu-
tion of optimal stopping problems for Markovian models have been recently proposed
in Becker et al. [8]. For the particular case of American-style contracts in exponential
Lévy models, [38] provide an analysis in the univariate case and establish qualitative
properties of the exercise boundary {(b(t), t) : 0 < t < T }. Here, for geometric Lévy
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models, in certain situations (d = 1, i.e., single risky asset, monotonic, piecewise an-
alytic payoff function), the option price as a function of x ∈ R at fixed 0 < t < T is
shown in [38] to be a piecewise analytic function which is globally Hölder-continuous
with a possibly algebraic singularity at the exercise boundary b(t). This holds like-
wise for the price expressed in the logarithmic coordinate x = log s. The ReLU DNN
expression rate of such functions has been analysed in Opschoor et al. [42, Sect. 5.4].
In higher dimensions d > 1, recently also higher Hölder-regularity of the price in
symmetric, stable Lévy models has been obtained for smooth payoffs in Barrios et
al. [4].
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