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Abstract
Given automated order systems, detailed characteristics of items and vehicles enable 
the detailed planning of deliveries including more efficient and safer loading of dis-
tribution vehicles. Many vehicle routing approaches ignore complex loading con-
straints. This paper focuses on the comprehensive evaluation of loading constraints 
in the context of combined Capacitated Vehicle Routing Problem and 3D Loading 
(3L-CVRP) and its extension with time windows (3L-VRPTW). To the best of our 
knowledge, this paper considers the currently largest number of loading constraints 
meeting real-world requirements and reducing unnecessary loading efforts for both 
problem variants. We introduce an approach for the load bearing strength of items 
ensuring a realistic load distribution between items. Moreover, we provide a new 
variant for the robust stability constraint enabling better performance and higher sta-
bility. In addition, we consider axle weights of vehicles to prevent overloaded axles 
for the first time for the 3L-VRPTW. Additionally, the reachability of items, bal-
anced loading and manual unloading of items are taken into account. All loading 
constraints are implemented in a deepest-bottom-left-fill algorithm, which is embed-
ded in an outer adaptive large neighbourhood search tackling the Vehicle Routing 
Problem. A new set of 600 instances is created, published and used to evaluate all 
loading constraints in terms of solution quality and performance. The efficiency of 
the hybrid algorithm is evaluated by three well-known instance sets. We outperform 
the benchmarks for most instance sets from the literature. Detailed results and the 
implementation of loading constraints are published online.
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1  Introduction

In recent years, sales in online trading have risen steadily. Forecasts for the com-
ing years predict significant growth. Therefore, efficient logistics operations are 
more important than ever. Through many years of research in the field of Vehicle 
Routing Problems (VRP), (near-) optimal tour plans can be found for many use 
cases. Hereby, the demand of a customer is often simplified by using a total mass 
or volume for the items to be delivered. In practice, solutions might be infeasi-
ble since a vehicle cannot be feasibly packed because of unbalanced loading and/
or unsafe placement of items. As more and more information on items becomes 
available for detailed planning, the realistic planning of transportation and of 
packing processes could become the key factor for cost reduction and safety, lead-
ing to an increasing interest in combined routing and loading problems.

The combined problem at hand is the Three-Dimensional Loading Capacitated 
Vehicle Routing Problem (3L-CVRP). It was first introduced by Gendreau et al. 
(2006) and assumes delivery of cuboid items laying at the depot. A homogene-
ous fleet of vehicles is available for transporting the items to a number of cus-
tomers. Each vehicle must be equipped with a feasible packing plan considering 
several loading constraints. The depot and the customers have specific time win-
dows, in which the delivery must take place. This problem variant is known as 
the Three-Dimensional Loading Vehicle Routing Problem with Time Windows 
(3L-VRPTW).

The focus of this paper is on the comprehensive examination of loading con-
straints. Although the consideration of different complex loading constraints 
leads to more realistic models, it is mainly neglected in work dealing with the 
3L-CVRP problem or its variants so far. The reason is that modelling and evalu-
ation of loading constraints are complex and require new solution approaches. 
We tackle this problem and integrate the current largest constraint set so far. We 
introduce a new variant for the robust stability constraint, which increases the 
stability and the performance. Moreover, we develop an approach based on the 
science of statics so that for the first time, the acting load on an item is distrib-
uted through the entire stack, which ensures realistic and stable packing plans. In 
addition, this paper considers aspects for manual unloading, reachability, the axle 
weights of vehicles and a balanced loading. For the latter, we introduce formulas 
to illustrate our implementation approach. In case of manual unloading, the items 
are unloaded without lifting. The reachability constraint avoids unnecessary rear-
rangements of items. Detailed modelling of axle weights and balanced loading 
prevents overloaded axles and tipping over of vehicles. The implementation of all 
loading constraints is published online within a solution validator written in C++ 
as well as in Java. The validator can be used to check the feasibility of solutions 
for different loading constraint sets.

All constraints are integrated in a hybrid algorithm. The hybrid algorithm 
consists of an inner deepest-bottom-left-fill algorithm which solves the Load-
ing Problem and is embedded in an outer adaptive large neighbourhood search 
tackling the Vehicle Routing Problem. The efficiency of the hybrid algorithm is 
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shown by using the instance sets by Ceschia et  al. (2013), Moura and Oliveira 
(2009) and Zhang et al. (2017). Experiments show that the hybrid algorithm per-
forms better than the benchmark for most instance sets.

Moreover, we have created and published an instance set consisting of 600 new 
instances varying systematically in the number of customers, of item types and of 
items. For the first time, every complex loading constraint is evaluated concerning 
its impact on the objective values (number of used vehicles and total travel distance) 
grouped by number of item types, items and customers. Our evaluations consist of 
over 30,000 results, and we provide all results online and in detail (e.g. routing and 
packing plans with the position of all items) to ensure extraordinary transparency. 
On this basis, we give recommendations about which constraints are reasonable 
based on their impact on algorithmic performance and solution quality.

The paper is organized as follows. In Sect. 2, the relevant literature is reviewed. 
The 3L-CVRP and the 3L-VRPTW are formulated in Sect. 3. In Sect. 4, the new 
definitions and the implementation variants of the loading constraints are presented. 
In Sect. 5, the hybrid algorithm is described, and Sect. 6 deals with the testing of the 
constraints. Finally, conclusions are drawn in Sect. 7.

2 � Literature review

This paper considers the Three-Dimensional Loading Capacitated Vehicle Routing 
Problem (3L-CVRP) and its extension with Time Windows (3L-VRPTW), which 
represent a combination of the Vehicle Routing Problem (VRP) and 3D Loading 
constraints. As shown in Table 2, the consideration of multiple loading constraints 
is currently sparely researched. Thus, this paper examines the impact of different 
loading constraints on the results for the 3L-CVRP and the 3L-VRPTW. The current 
state of modelling loading constraints for both problems is analysed in the following.

2.1 � 3L‑CVRP

Gendreau et  al. (2006) introduced the combined Vehicle Routing and 3D Load-
ing Problem, namely 3L-CVRP. They solve the VRP using an ”outer” tabu search, 
which determines customer sequences. An iteratively invoked ”inner” tabu search 
defines the item sequence for the routes. The loading algorithms are based on the 
touching parameter algorithm by Lodi et  al. (1999) and the bottom-left-algorithm 
by Baker et al. (1980). The items are packed orthogonally into the vehicle loading 
space (orthogonality constraint) without overlapping and respecting their dimen-
sions (geometry  constraint). The rotation of the items is only allowed along the 
width-length plane (rotation constraint). Each item has a mass, and the vehicle has 
a maximum capacity (load capacity). Moreover, a fragility flag is assigned to each 
item to prevent stacking fragile items on top of each other (fragility constraint). 
When stacking items, they must be supported by other items with a certain percent-
age (minimal supporting area constraint). When unloading items, it should be done 
by direct movements parallel to the length of the vehicle (LIFO constraint). Since 
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the constraints orthogonality, geometry, rotation, load capacity, fragility, minimal 
supporting area and LIFO are commonly considered in researches on the 3L-CVRP 
and its variants, this set is here defined as basic constraint set. For testing, Gendreau 
et al. (2006) developed 27 instances.

The 3L-CVRP has been studied intensively in recent years so that the results for 
this benchmark have been improved repeatedly (e.g. Tarantilis et  al. 2009; Fuel-
lerer et al. 2010; Bortfeldt 2012 and Wei et al. (2014)). Tarantilis et al. (2009) used 
a combination of tabu search and guided local search to build the routes. For the 
Loading Problem, successively six packing heuristics are called until a feasible solu-
tion is found. They also present a new variant—the Capacitated Vehicle Routing 
Problem with Manual 3D Loading Constraints (M3L-CVRP). This variant deals 
with the manual handling of items, e.g. the items are small and of low mass. There-
fore, the LIFO constraint is modified so that it is allowed that one item hangs over 
another one. This adaption of the LIFO policy, which is in this paper referred to as 
MLIFO, is also examined in a paper by Ceschia et al. (2013). Ceschia et al. propose 
a local search approach combining simulated annealing and large neighbourhood 
search to solve the VRP. To handle the Loading Problem, one out of nine loading 
heuristics based on the bottom-left-algorithm and the touching perimeter algorithm 
is selected. Besides the MLIFO constraint, they consider the reachability of an item 
for the first time within the 3L-CVRP. In the context of the Three-Dimensional 
Bin Packing Problem, this constraint was developed by Junqueira et  al. (2013) to 
avoid the driver standing on items to reach other items for unloading or arranging 
operations. Ceschia et al. (2013) also include the item’s load bearing strength (lbs), 
which was first mentioned by Bischoff and Ratcliff (1995) and examined in Bischoff 
(2003) for the Three-Dimensional Bin Packing Problem. Thus, to the best of our 
knowledge, Ceschia et al. currently combine the most loading constraints. Krebs and 
Ehmke (2021) consider detailed modelling of axle weights of vehicles for the first 
time for the 3L-CVRP.

2.2 � 3L‑VRPTW

In Moura (2008) and Moura and Oliveira (2009), the VRTWLP is introduced, which 
corresponds to the 3L-VRPTW without the consideration of masses and stacking 
constraints (e.g. fragility and load capacity) and with higher stability requirements 
(full support) and with more rotation possibilities. Moura (2008) proposes a multi-
objective genetic algorithm to generate routes (VRP). If a customer is inserted in a 
route, a wall-building heuristic is called to tackle the Loading Problem. This pack-
ing heuristic is also used in Moura and Oliveira (2009), where a hierarchical and a 
sequential approach are combined. The hierarchical one solves primarily the VRP, 
while the sequential one handles the VRPTW and the bin packing. 46 instances are 
created. The current best-known results for these instances are received by Reil et al. 
(2018), who solve the packing problem through a tabu search algorithm. Then, a 
multi-start evolutionary search minimizes the number of used vehicles while another 
tabu search algorithm minimizes the total travel distance. Pace et al. (2015) propose 
a heuristic based on simulated annealing and an iterated local search for the routing 
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phase. Since they examine the distribution of fibre boards, a specialized loading 
heuristic based on a depth-first tree search and a balanced loading constraint are nec-
essary. The latter is also adopted by Mak-Hau et al. (2018), who develop a mixed-
integer linear programme model of the 3L-VRPTW with a heterogeneous fleet. 
Zhang et al. (2017) solve the 3L-VRPTW with a hybrid approach, consisting of a 
new loading heuristic and a routing heuristic based on a tabu search and an artificial 
bee colony algorithm. They include the basic constraint set and combine the two 
well-known instance sets provided by Gendreau et al. (2006) and Solomon (1987).

In this paper, we use the approach by Koch et  al. (2018) proposed for the 
3L-VRPTW with Backhauls, which is also used for the 3L-CVRP in Krebs and 
Ehmke (2021). The following Table 1 summarizes the approaches.

Table  2 summarizes the related literature and highlights our contribution. As 
demonstrated in Table 2, this paper deals with the largest constraints set and com-
bines the robust stability (C6b), load bearing strength (C7b) and reachability (C8) 
with axle weights  (C9) and the balanced loading  (C10) constraints. Moreover, we 
distribute the loads for the first time through the entire stack in the load bearing 
strength constraint.

3 � Problem formulation

Following the convention by Koch et al. (2018), the 3L-VRPTW is described as fol-
lows: Let G = (N,E) be a complete, directed graph, where N is the set of n+1 nodes 
including the depot (node 0) and n customers to be served (node 1 to n), and E is the 
edge set connecting each pair of nodes. Each edge ei,j ∈ E (i ≠ j, i, j = 0, ..., n) has an 
associated routing distance di,j (di,j > 0) . The demand of customer i ∈ N ⧵ {0} con-
sists of ci cuboid items. Let m be the total number of all demanded items. Moreover, 
time windows are considered by assigning three times to each node i: the ready time 
RTi , which is the earliest possible start time of service, the due date DDi , the latest 
possible start time, and the service time STi , which specifies the needed time to (un-)
load all ci items of a customer i.

Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k , length li,k , width wi,k and 
height hi,k . The items are delivered by at most vmax available, homogenous vehicles. 
Each vehicle has a maximum load capacity D and a cuboid loading space defined by 
length L, width W and height H. It is assumed that each vehicle has a constant speed 
of 1 distance unit per time unit. If a vehicle arrives at an edge before its ready time, 
it has to wait until the ready time is reached.

Let vused be the number of used vehicles in a solution. A solution is a set of vused 
pairs of routes Rv and packing plans PPv , whereby the route Rv (v = 1, ..., vused) is an 
ordered sequence of at least one customer and PPv is a packing plan containing the 
position within the loading space for each item included in the route.

A solution is feasible if 

	(S1)	 All routes Rv and packing plans PPv are feasible (see below);
	(S2)	 Each customer is visited exactly once;
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	(S3)	 The number of used vehicles vused does not exceed the number of available 
vehicles vmax;

	(S4)	 Each packing plan PPv contains all ci items of all customers i included in the 
corresponding route ( i ∈ Rv).

A route Rv must meet the following routing constraints: 

	(R1)	 Each route starts and terminates at the depot and visits at least one customer;
	(R2)	 The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must obey a loading set P defining a subset of the following loading 
constraints, which are described in detail in next Sect. 4. 

	(C1)	 Geometry: The items must be packed within the vehicle without overlapping;
	(C2)	 Orthogonality: The items can only be placed orthogonally inside a vehicle;
	(C3)	 Rotation: The items can be rotated 90◦ only on the width-length plane;
	(C4)	 Load capacity: The sum of masses of all included items of a vehicle does not 

exceed the maximum load capacity D.
	(C5a)	LIFO: No item is placed above or in front of item Ii,k , which belongs to a cus-

tomer served after customer i;
	(C5b)	MLIFO: No item is placed on or in front of item Ii,k , which belongs to a cus-

tomer served after customer i;
	(C6a)	Minimal supporting area: Each item has a supporting area of at least a percent-

age � of its base area;
	(C6b)	Robust stability: Each item has a supporting area of at least a percentage � of 

its base area at any height;
	(C7a)	Fragility: No non-fragile items are placed on top of fragile items;
	(C7b)	Load bearing strength: The load bearing strength lbsi,k is the maximal load per 

area unit an item can bear. It must not be exceeded anywhere on the top face of 
an item;

	(C8)	 Reachability: The distance between an item and the driver must be less or equal 
than a certain length �;

	(C9)	 Axle weights: The loads for the front and the rear axle do not exceed the permis-
sible axle weights FAperm and RAperm;

	(C10)	Balanced loading: The load of one vehicle half does not exceed a certain per-
centage p of D.

The 3L-CVRP and 3L-VRPTW aim at determining a feasible solution minimizing the 
objective values, e.g. number of used vehicles vused and the total travel distance ttd, and 
meeting all corresponding constraints.
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4 � Definitions and implementations of loading constraints

This section discusses the implementation details and challenges of the considered 
loading constraints. We introduce new realizations and implementation variants. 
Detailed algorithms are provided and explained in a solution validator, written in 
Java and C++, available via http://​github.​com/​Corin​naKre​bs/​Solut​ionVa​lidat​or.

Table 3 gives an overview of the considered loading constraints. The loading con-
straints C1-C4, C5a, C6a and C7a are used as described in Gendreau et al. (2006). 
In Table 3, we have highlighted new developed loading constraints in bold and con-
straints examined for the first time for the 3L-VRPTW in italics.

4.1 � Unloading sequence (C5)

The unloading sequence constraints define the order in which the items of the cus-
tomers of one route should be unloaded. The purpose is to prevent costly reloading 
processes of items during the unloading process. In the following, two definitions, 
namely LIFO (C5a) and MLIFO (C5b), are shown.

4.1.1 � LIFO (C5a)

As shown in Gendreau et  al. (2006), the last-in first-out (LIFO) constraint treats 
the unloading sequence in the way that all items ci of a customer  i are loaded and 
unloaded by movements parallel to the front-rear axis (x-axis) of the vehicle without 
moving other items. Forklifts are mostly used for this purpose, which may need to 
lift an item during the unloading process (cf. Ceschia et al. 2013). Therefore, no item 

Table 3   Overview of loading constraints

Abbr. Constraint Definition Variant

C1 Geometry
C2 Orthogonality
C3 Rotation
C4 Load capacity
C5a Unloading sequence LIFO
C5b Unloading sequence MLIFO
C6a Vertical stability Minimal supporting area
C6b1 Vertical stability Robust stability Multiple overhanging
C6b2 Vertical stability Robust stability Top overhanging
C7a Stacking Fragility
C7b1 Stacking Load bearing strength Simplified selection
C7b2 Stacking Load bearing strength Complete selection
C8 Reachability
C9 Axle weights
C10 Balanced loading

http://github.com/CorinnaKrebs/SolutionValidator
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demanded by a customer that is delivered later can be placed over Ii,k or between Ii,k 
and the rear of the vehicle.

4.1.2 � MLIFO (C5b)

In the Manual LIFO constraint (MLIFO) introduced by Tarantilis et al. (2009), the 
items are (un-)loaded by manual operations without the usage of, e.g. forklifts. Con-
sequently, the items can be (un-)loaded without lifting them. Therefore, an item 
demanded by a customer that is served later than customer i can hang over the item 
Ii,k without touching its surface and without being placed between Ii,k and the rear of 
the vehicle.

The differences between the LIFO and the MLIFO constraint are visualized in 
Fig. 1. For both variants, it is not allowed to place an item directly on top of another 
item that is delivered earlier (see Fig. 1a). In contrast to the LIFO constraint, it is 
allowed that one item hangs over another item that is delivered earlier (see Fig. 1b).

4.2 � Vertical stability (C6)

The vertical stability constraints prevent stacked items from falling on the ground. 
For this purpose, we show that the current definition is not sufficient and formulate 
the new robust stability constraint.

4.2.1 � Minimal supporting area (C6a)

The minimal supporting area constraint ensures that a certain ratio � of the base of 
a stacked item is supported by the upper surface of the directly underlying items 
(see Gendreau et al. 2006). As shown in Fig. 2, this formulation can lead to unsta-
ble, but still feasible item arrangements: When stacking several items with same 

Fig. 1   Difference between LIFO and MLIFO
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density, whereby the length or width of each item enlarge by 1
�
 , an overhanging stack 

of items is created.
This arrangement is in accordance with the minimal supporting area con-

straint (C6a) because for the calculation of the support for one item, only the directly 
underlying items are considered. According to the science of statics, this stack is not 
stable, because the x-value of the centre of gravity (CG) lays outside of the dimen-
sions of the first item. Therefore, the stack would topple.

4.2.2 � Robust stability (C6b)

As shown above, the minimal supporting area can lead to unstable stacks, since in 
the calculation of the item’s support only the directly underlying items are consid-
ered. Therefore, we formulate the robust stability constraint as follows: For each 
item, the relative support of at least a percentage of � needs to be guaranteed at any 
height from the vehicle ground to the item’s bottom edge.

Multiple overhanging (C6b1): This constraint was first introduced by Ceschia 
et  al. (2013). As the name suggests, all items of a stack are allowed to overhang. 
When placing an item, the minimal supporting area is checked for all underlying 
items: Let U be the set which includes all placed items supporting directly or indi-
rectly the item Ii,k . An item Iu supports Ii,k directly if the top area of item Iu has direct 
contact with the base area of item Ii,k . An item Iu supports Ii,k indirectly if Iu directly 
supports any placed item which directly supports Ii,k . Each coordinate for the top 
surface of item Ia ∈ U defines a plane. Another item Ib ∈ U counts to this plane 
if the top surface of Ib is at the same level as of the plane (see items I1,2 and I1,3 in 
Fig. 3b) or if the top surface of Ib is above the plane and the base area of Ib is below 
the plane (see item I1,3 in Fig. 3c). Each plane must obey the minimal supporting 

Fig. 2   Unstable, feasible stack 
w.r.t. minimal supporting area

Fig. 3   Determination of planes for item I1,5
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area constraint. Otherwise, the constraint is violated and the placement of item Ii,k is 
rejected.

Top overhanging (C6b2): In this paper, we want to introduce another variant 
for the robust stability, namely the “top overhanging” constraint. In contrast to the 
previous approach, here, only the topmost item of a stack is allowed to hang over 
other items. Hence, all items of a stack must be completely supported by other 
items except the topmost item, which can hang over considering the minimal sup-
porting area constraint  (C6a) (see Fig.  4b). This is appropriate for high stability 
requirements.

Top overhanging is implemented in the following way: Let distanceceiling be the 
distance between the topmost item of a stack and the ceiling (see Fig. 4a). Let hmin 
be the smallest height of any unplaced item Imin of the route and Ii,k be the item 
which should be placed on top of the stack. When stacking items, two cases can 
occur: 

1.	 If distanceceiling + hi,k ≥ hmin , then item Ii,k as well as Imin can be placed on the 
stack. In this case, the item Ii,k must be fully supported, since Imin could be placed 
on top of Ii,k , so that Ii,k is not the topmost item of the stack.

2.	 If distanceceiling + hi,k < hmin , then no unplaced item can be stacked on top of the 
stack. Thus, the item Ii,k is the topmost item and must therefore obey the minimal 
supporting area constraint (C6a).

4.3 � Stacking (C7)

The stacking constraints focus on the ability of items to bear other items. In the 
following, different approaches are shown. The fragility constraint (C7a) as shown 
in Gendreau et al. (2006) is the standard approach. The load bearing strength con-
straint  (C7b) is proposed by Bischoff (2003) for the Container Loading Problem, 
where each item has an additional parameter indicating the maximum load it can 
bear. For this load bearing strength constraint, two implementation variants are 
described below. The first one (C7b1) is proposed by Bischoff (2003), while another 

Fig. 4   Implementation of robust stability—top overhanging
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approach is developed and introduced in this paper and is based on the science of 
statics (C7b2).

4.3.1 � Fragility (C7a)

As shown in Gendreau et al. (2006), a fragility flag fi,k is assigned to each item to 
divide them into fragile items (fi,k = 1) and non-fragile ones (fi,k = 0) . On top of a 
fragile item, only another fragile item can be stacked, whereas both fragile and non-
fragile items can be stacked on a non-fragile item. As demonstrated in Ceschia et al. 
(2013), the fragility constraint (C7a) has weaknesses: It is supposed that a non-frag-
ile item lies mostly on another non-fragile item and a very small part on a fragile 
one (see Fig.  5). Even if the non-fragile part on top of the fragile item would be 
infinitely small, the arrangement remains infeasible.

4.3.2 � Load bearing strength (C7b)

To handle the issue described before, the actual load on the items should be con-
sidered. Therefore, the load bearing strength (LBS) constraint  is introduced: Each 
item Ii,k can support a maximum load per area described by the parameter lbsi,k . It 
must not be exceeded anywhere on the top face of an item. A small lbsi,k value cor-
responds to fragile items.

If an item Ic is stacked on top of another item Iu , then, a load caused by Ic acts 
on the underlying item Iu ( loadc,u ). For its calculation, the percentage of support for 
item Ic ( supportc ) provided by all directly underlying items must be first determined. 
Then, all area units ( supportAreac,u ) between Item Ic and Iu must be identified.

Based on that, the support share of Iu on Ic is given as follows:

Since the item Ic could overhang, but the load must be distributed in total, the sup-
port share is increased proportionally:

The load acting on item Iu is given as follows:

(1)supportc,u =
supportAreac,u

lc ⋅ wc

.

(2)supportprop =
supportc,u

supportc
.

Fig. 5   Infeasible item arrange-
ment w.r.t. fragility constraint
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where loadc is the load which has to be distributed due to item Ic . Its value is 
explained below.

When placing an item on top of another, then the load must be distributed to under-
lying items. There are two ways to select these items: the simplified and the complete 
selection.

Simplified selection (C7b1): The approach proposed by Bischoff (2003) selects all 
items which are underneath the base area (e.g. the footprint) of an item Ic . When plac-
ing an item Ic on top of a stack, then all items which are underneath the base area and 
which directly or indirectly support item Ic are considered. In this case, not all items 
of the stack may contribute to the mass distribution (see item I1,3 in Fig. 6). In this 
approach, loadc in Eq. 3 corresponds to the mass of Ic . The example in Fig. 6 shows the 
resulting loads for the underlying items caused only by item I1,6.

Complete selection (C7b2): The following approach is based on the science of stat-
ics. When placing an item Ic on top of other items, all items are investigated that are 
located directly below item Ic . Therefore, the mass of Ic is distributed as loadc to the 
directly underlying items. Then, for each of these items, the received loadc is further 
adopted and distributed to the directly underlying items again. This is recursively 

(3)loadc,u = supportprop ⋅ loadc,
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repeated until the items on the ground are reached. Fig. 7 shows the same exemplary 
situation as Fig. 6.

In this approach, all items of a stack contribute to the mass distribution. The result-
ing loads caused by item I1,4 and item I1,5 are calculated in the same way.

4.4 � Reachability (C8)

When an item is (un-)loaded, then it should be guaranteed that the working equip-
ment or the driver can reach the item when standing as close as possible to the item 
(cf. Junqueira et al. 2013). For this purpose, the distance ri,k of an item Ii,k should 
be equal or less than a certain length � , which represent the driver’s arm length, for 
example.

In this paper, for the reachability of an item Ii,k , all items of customers, which are 
served after customer  i and placed above or beneath item Ii,k , are considered (see 
Fig. 8a). The distance ri,k is defined by the front of the item which is the closest to 
the door (MaxFront) and the front of item Ii,k.

If the distance is larger than � and thus the item is not reachable, then it is tried 
to shift the item along the x-axis. This is achieved by searching for the maximum 
x-value of already placed items on the same layer (MaxShift). The new placement 
must obey the DBL policy. Therefore, the item Ii,k is shifted until the reachability 
constraint is just fulfilled, which means the new distance is defined by MaxFront − � 
(see Fig. 8b). Additionally, the new placement is tested w.r.t. the loading constraint 
set P. If the item is not reachable and it cannot be shifted, the placement is rejected.

Fig. 8   Illustration of the distance search space for I3,1

4.5 � Axle weights (C9)

The exceedance of the maximum axle weights of one or more axles leads to far-
reaching consequences with regard to vehicle safety: It increases the braking distance 
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and, in the event of a collision, the consequences are more severe due to the increased 
impact energy. Therefore, the axle weights constraint respects the permissible axle 
weights for the front and rear axles of a vehicle. Let FAperm be the maximum load 
the vehicle’s front axle can bear and RAperm be the maximum load for the rear axle, 
respectively. Both limits are given in mass units. Let Lf  be the length between the 
front axle and the loading space (see Fig.  9). The wheelbase WB is the distance 
between the front and the rear axle. For each placed item Ii,k at the x-position xi,k , the 
distance si,k between the mass centre of Ii,k and the front axle must be determined.

According to the approach by Krebs and Ehmke (2021), the following formulas 
can be applied for a vehicle v to calculate the acting forces for the front FFA and the 
rear FRA axle. Hereby, g is the constant for acceleration of gravity ( g ≈ 9.81

m

s2
).

and

The acting forces must be below the permissible ones, but also greater than zero to 
avoid uplifting:

and

(4)si,k = Lf + xi,k + li,k∕2,

(5)
1

WB
⋅

n∑

i=1|i∈Rv

ci∑

k=1

(mi,k ⋅ g ⋅ si,k) = FRA

(6)
n∑

i=1|i∈Rv

ci∑

k=1

(mi,k ⋅ g) − FRA = FFA.

(7)FFA ≤ FAperm ⋅ g,

(8)FRA ≤ RAperm ⋅ g,

(9)FFA ≥ 0,

(10)FRA ≥ 0.

Fig. 9   Vehicle data
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As demonstrated in Krebs and Ehmke (2021), the constraint must be checked after 
each placement of an item since, an axle may become overloaded after unloading 
items.

4.6 � Balanced loading (C10)

To prevent a reduction in vehicle stability, the load per vehicle half should be exam-
ined. Therefore, Pace et al. (2015) suggest that a percentage p of the vehicle capacity 
D is not exceeded. In the following, we introduce formulas for this approach.

In our implementation, the item’s mass mi,k is assigned to the vehicle sides 
depending on its y-position ( yi,k ). If an item lays entirely on the left side of the 
vehicle (see Fig. 10a), its total mass is assigned to the left vehicle side. The same 
is true for the opposite right side (see Fig. 10b). Otherwise, the mass of the item 
is distributed proportionally to the vehicle sides (see Fig.  10c). The sum of all 
assigned masses must not exceed a certain percentage p of the load capacity D. 
Consequently, the following must apply:

(11)f (t) =

{
t t > 0

0 else

(12)
n∑

i=1|i∈Rv

ci∑

k=1

mi,k

li,k
⋅

[
f

(
W

2
− yi,k

)
− f

(
W

2
− (yi,k + wi,k

)]
≤ D ⋅ p

(13)
n∑

i=1|i∈Rv

ci∑

k=1

mi,k

li,k
⋅

[
f

(
(yi,k + wi,k) −

W

2

)
− f

(
yi,k −

W

2

)]
≤ D ⋅ p

Fig. 10   Mass distribution according to the position of I
i,k
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Formula 11 restricts the range to positive real values. It is used to assign the masses 
to the corresponding vehicle sides. The constraint for the left vehicle side is checked 
in Formula 12 and in 13 for the right one, respectively. Inside of the large square 
brackets, the position of the item with respect to the corresponding vehicle side is 
determined in order to assign the proportional mass.

5 � Hybrid solution approach

We propose a hybrid solution approach consisting of a routing heuristic (adaptive large 
neighbourhood search) for creating routes and an embedded packing heuristic (deep-
est-bottom-left-fill algorithm), which optimizes the loading of the items of all custom-
ers of a route into the loading space of a vehicle. The packing heuristic generates fea-
sible packing plans for the generated routes. This packing plan is created following a 
loading constraint set P, which determines the included loading constraints.

5.1 � Routing heuristic

We use the routing algorithm as described in Koch et  al. (2018), who modified 
the adaptive large neighbourhood search (ALNS) proposed by Ropke and Pisinger 
(2006). The algorithm by Koch et al. (2018) was developed for the 3L-VRPTW 
with Backhauls and is applied to the pure 3L-VRPTW in this paper, consider-
ing additional constraints. The general framework is shown in Alg. 1. The corre-
sponding line number of the algorithms are given in square brackets. In general, a 
solution is feasible if all loading and routing constraints are obeyed except S3 so 
that the used vehicles could exceed the number of available vehicles. 

Algorithm 1 Adaptive Large Neighbourhood Search
Input: Instance data, parameters
Output: best feasible solution sbest
1: construct initial solution sinit

2: sbest := sinit

3: scurr := sinit

4: do
5: select removal operator rem
6: select insertion operator inst
7: select number of customers to be removed nrem

8: determine next solution snext := inst(rem(scurr, nrem))
9: check acceptance of snext

10: if snext is accepted then
11: scurr := snext

12: if f(scurr) < f(sbest) then
13: sbest := snext

14: end if
15: end if
16: if iterp reached then
17: update selection probabilities for insertion and removal heuristics
18: end if
19: while one stopping criterion is not met
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5.1.1 � Initial solution

The initial solution sinit is constructed [1] with the savings heuristic developed by 
Clarke and Wright (1964). Hereby, all routing (except S3) and loading constraints 
are obeyed. Based on this feasible initial set of routes, the ALNS determines other 
feasible improved solutions.

5.1.2 � Iteration

In each iteration of the ALNS, one removal rem and one insertion operator inst are 
randomly chosen [5-6]. These are used to generate the next solution snext by remov-
ing a number of customers nrem from the solution and reinserting them again [8]. 
The number of customers to be removed nrem ( nmin ≤ nrem ≤ nmax ) is determined ran-
domly [7]. Then, it is checked whether the generated solution meets the routing con-
straints [9] described in Sect. 3. The packing procedure shown in the next subsection 
is called here.

5.1.3 � Evaluation function

In order to evaluate different solutions and to lead the search, the following internal 
evaluation function is defined. The evaluation function f for a solution s giving total 
routing costs is described as follows:

where Nmiss is a set containing all customers that have not been dispatched yet, vmax 
is the maximal number of available vehicles and vused the number of used vehicles. 
Each customer i, which is not yet dispatched ( i ∈ Nmiss ), is assigned to one vehicle 
(round-trip) even if this leads to an exceedence of the number of used vehicles. The 
penalty term penv is used to achieve a reduction of used vehicles vused . Additionally, 
the total travel distance ttd(s) for a solution s is respected.

5.1.4 � Solution acceptance

A solution is regarded better the smaller its evaluation function value is. A better and 
feasible solution is always accepted. A worse solution may be accepted [9] accord-
ing to an acceptance probability which depends on a simulated annealing heuristic 
proposed by Kirkpatrick et  al. (1983). In particular, the acceptance probability is 
adapted to the annealing process with a geometric cooling schedule. The best solu-
tion sbest is updated [13] if it has a superior evaluation function value relative to the 
current solution scurr [12].

(14)f (s) = ttd(s) + penv ⋅ max(0, vused + |Nmiss| − vmax) +

Nmiss∑

i∈Nmiss

(c0,i + ci,0),
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Table 4   Overview removal operators

Neighbourhood operators Description

Shaw Removes related customers w.r.t. distance, demand, time windows
Random Removes random customers
Worst Removes customers increasing the total routing costs the most
Cluster Divides a random tour into two clusters and randomly removes one of the 

cluster
Neighbour graph Removes customers increasing the average distance of a tour
Overlap Removes customers leading to intersection of two tours
Inner route Removes a tour which is completely surrounded by another and splits the 

surrounding tour into two
Intersection Removes customers leading to intersections within a tour
Tour pair Removes two intersecting tours

Table 5   Overview insertion operators

Neighbourhood operators Description

Greedy Inserts customers iteratively so that an increase of routing costs is minimal
Regret-2 Inserts customers iteratively so that the maximal difference of routing 

costs for the best and the second best insertion in different tours is 
achieved

Regret-3 Inserts customers iteratively so that the sum of two differences of routing 
costs is maximal. The first difference is the routing cost for the best and 
the second best insertion in different tours, while the second difference 
results from the best and the third best insertion in different tours

5.1.5 � Removal and insertion operators

Table  4 shows nine removal operators and Table  5 summarises the three inser-
tion approaches used in this paper. We use the removal and insertion operators as 
described and evaluated in Koch et al. (2018).

After a defined number of iterations iterp , the selection probabilities for the 
removal and insertion operators are adjusted [16-18] according to their improve-
ment of the solution. This is described in detail in the following section.

5.1.6 � Operator selection and probability adaption

The selection of the operators is accomplished by means of the roulette wheel 
selection principle. Hereby, the probability to select one operator op is defined by 
their weighting wgop . Initially, all operators have the same selection probability 
( wgop = 1).
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The number of iterations is counted, in which the operator op

–	 is selected ( counterop),
–	 is selected and led to a new best solution ( iterbestop),
–	 is selected and improved the current solution ( iterimprop),
–	 is selected and led to a worse but not yet accepted solution or a solution as good 

as the current solution ( itereop).

After a certain number of iterations iterp , the success of the operator is evaluated and 
described by scoreop , which is calculated as follows:

Hereby, �best , �impr and �e are coefficients.
Then, the new weighting wgop can be calculated. A reaction factor r regulates the 

influence of the adaptions:

Moreover, counterop , iterbestop , iterimprop and itereop are reset to zero.

5.1.7 � Stopping criteria

If one of the following stopping criteria is met [19], the heuristic terminates, and the 
current best known solution is given:

–	 Number of total iterations itermax;
–	 Number of iterations without improvement iterwimpr;
–	 Calculation time limit tmax.

5.2 � Packing heuristic

As packing heuristic, we use the same approach as in Krebs and Ehmke (2021), 
which is based on the deepest-bottom-left-fill (DBLF) algorithm proposed by 
Karabulut and İnceoğlu (2005). The algorithm is detailed in Alg. 2. The basic con-
cept is to place the items as far as possible to the back (first priority), to the bottom 
(second priority) and to the left (third priority) of the loading space. The available 
free spaces in the vehicle’s loading space are stored in a list.

In the following, the point of origin of a Cartesian coordinate system is assumed 
to be located in the deepest, bottom, leftmost point of the loading space. The driver’s 
cab is located behind it accordingly. The length, width and height of the loading 
space are parallel to the x-, y- and z-axes. The placement of an item Ii,k is defined by 
( xi,k, yi,k, zi,k ) of the corner which is closest to the point of origin.

(15)scoreop = iterbestop ⋅ �best + iterimprop ⋅ �impr + itereop ⋅ �e.

(16)wgop = wgop ⋅ (1 − r) + r ⋅
scoreop

counterop
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Fig. 11   New spaces based on I3,1

Before starting the packing process, the items of each customer are sorted by 
means of the following priorities: 

1.	 fragility flag fi,k (non-fragile first)
2.	 volume (larger volume first)
3.	 length li,k (longer first)
4.	 width wi,k (wider first).

Then, the items are added to the packing sequence IS reversed to the customer’s vis-
iting order [1]. Let S be the set of unique cuboids representing available free spaces 
for placing items. Initially, the set consists of one potential space, which corresponds 
to the entire loading space [2]. Therefore, the first item of the packing sequence is 
placed in the origin. The potential spaces of the set S are always sorted based on the 
DBL-rule [10]. Thus, an item is placed in the deepest, bottom, leftmost point of the 
space. For each item Ic (c = 1, ..., |IS|), a feasible placement is determined [3]. For 
this purpose, each space sp of the set is tested as possible item position [5] until a 
feasible position is found obeying all loading constraints of the loading set P [7-8]. 
In comparison to Karabulut and İnceoğlu (2005), the set S does not contain all avail-
able placements inside the loading space. Rather, three new spaces (front, right, top) 
are created based on the feasible item placement [9].

The front (right, top) space is defined by the item’s front (right, top) edge and 
either the door (wall, ceiling) or the nearest item in front (rightmost, topmost) 
of the item. Then, the minimum and maximum values for the y-(x, y) and z-axis  
(z, x) limited by the loading space or other items are searched. Fig.  11 shows 
these three created spaces exemplary based on item I3,1 . Additional three spaces 
are created if they are unique: Another front and right space, where the minimum 
z-value represents the bottom edge of item Ic , and another top space, where the 
minimum x-value is the deepest edge of item Ic . The new spaces (front, right, top) 
are included in the set. 
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Algorithm 2 Deepest-Bottom-Left-Fill with Spaces
Input: Instance data
Output: Feasibility, Packing Plan PPv

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ic ∈ IS do
4: for each space sp ∈ S do
5: for each permitted orientation do
6: if item Ic fits in space sp then
7: if placement is feasible w.r.t. the constraint set P then
8: save placement for Ic
9: create new spaces
10: sort spaces based on DBL
11: erase space sp
12: get smallest dimensions lmin and hmin of unplaced items ∈ IS
13: for each space si ∈ S do
14: update space si
15: if si too small then
16: erase space si
17: end if
18: end for
19: break
20: end if
21: end if
22: end for
23: end for
24: if no feasible position found then
25: return false
26: end if
27: end for
28: return true

After each feasible placement of an item Ic , the available spaces are updated 
[13–14], which means that all available spaces are checked w.r.t. an intersec-
tion with item Ic . If one or more spaces intersect with item Ic , then these spaces 
are decreased so that no intersection occurs. Therefore, if an item can be placed 
within an available space, it is guaranteed that the item does not overlap with 
other items or with the vehicle’s walls (geometry constraint (C1)). In contrast to 
the approach by Karabulut and İnceoğlu (2005), an overlapping check between 
each item is not necessary for this approach, which improves the performance. 
The used space is removed from the set [11]. To increase the efficiency of the 
packing heuristic and to reduce the number of spaces in the set, only spaces 
which are large and high enough for the smallest dimensions of any unplaced 
item of the route are inserted in the set S. Therefore, the shortest length or width 
lmin and height hmin of any unplaced item of the route are searched [12]. Due to the 
permitted rotations, only the two measures lmin and hmin are relevant. If the length 
or height of any space in the set is smaller than lmin or hmin , the space is removed 
from the set [15-17]. Then, a placement for the next item is searched [19].

If no feasible position for the item can be found, the route is revised, and a new 
one must be searched by the ALNS [24-26].
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6 � Computational studies

In this section, we investigate the solution quality and the performance of the 
hybrid algorithm in the context of advanced loading constraints. We use well-
known instance sets and investigate the impact of the proposed loading con-
straints on the objective values by means of a new instance set. All results along 
with detailed packing plans are available via https://​github.​com/​Corin​naKre​bs/​
Resul​ts.

The hybrid algorithm is implemented in C++ as single-core, x64-application and 
is compiled using the GCC version 4.8.3, compiler. The experiments were executed 
on a High Performance Cluster, Haswell-16-Core with 2.6 GHz.

6.1 � Parameters

The parameters for the loading constraints (see Sect. 4) and for the routing heuristic 
(see Sect. 5) are listed in Table 6. Regarding the parameters for the routing heuristic, 
we performed a preliminary study to tune the parameters. As the evaluation showed, 
the best results were obtained by the parameters as described in Koch et al. (2018) 
and therefore, these parameters were set. The parameters for the loading constraints 
are those used in the literature so far.

6.2 � Instances

For our computational study, we use the instance sets by Moura and Oliveira (2009), 
Ceschia et al. (2013) and Zhang et al. (2017). Moreover, a new instance set consist-
ing of 600 instances is created. The characteristics of the instance sets are shown 
in Table  7. Our new instance set is available via https://​doi.​org/​10.​24352/​UB.​
OVGU-​2020-​139.

The instances vary in the number of customers, items and item types. They either 
have 20, 60 or 100 customers, which demand either 200 or 400 items in total. These 
items differ in their homogeneity: Either there are only three item types (very homo-
geneous), 10 item types or 100 different item types (very heterogeneous). For real-
istic item masses, we analysed 12,000 products from a Swedish furniture company 
which offers products of different categories among other housewares, decorative 
articles and groceries. The densities of these products vary mainly between 0.5 and 
1.5 kg/dm3 . So the densities for the items are assigned by choosing a value randomly 
within this interval. Thereby, it is considered that the total mass for one customer is 
less than the vehicle load capacity D, since a customer can only be served by a vehi-
cle (see constraints S1 and C4).

The fragility flag is set randomly to the items, where approx. 30% are fragile. To 
define the parameters for the load bearing strength, the formula by Ratcliff and Bis-
choff (1998) is used. For each item, a value r is determined depending on the fragil-
ity flag: If an item is fragile, then the value r is randomly chosen in the interval [1.0, 

https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/Results
https://doi.org/10.24352/UB.OVGU-2020-139
https://doi.org/10.24352/UB.OVGU-2020-139
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2.0]. Otherwise, r lays in the interval [1.0, 5.0]. Then, over all items, the value 
max

mi,k

mi,k⋅li,k
 is searched and for each item multiplied by r.

To ensure a realistic proportion between vehicle load capacity and axle weights, 
parameters from the two-axle truck ML180 by IVECO were chosen, which has a 
maximum payload of 12,595 kg. Then, a proportional factor pr was calculated on 
the basis of the vehicle load capacity D of an instance and the maximum payload of 
the IVECO truck. Thus, the following applies: pr = D

12595
 . The axle weights for the 

front and the rear axle were then proportionally scaled on the basis of pr.

6.3 � Evaluation of hybrid algorithm

This section deals with the evaluation of the hybrid algorithm concerning its solu-
tion quality and performance. Hereby, we use our instance set and the benchmark 
instances by Ceschia et  al. (2013), Zhang et  al. (2017), and Moura and Oliveira 
(2009). Every instance is tested five times. We present summarized results. The 
more detailed results are presented in the "appendix" and are available via https://​
github.​com/​Corin​naKre​bs/​Resul​ts. Note again that smaller objective values ( vused 
and ttd) represent better results.

In Table 8, we compare the received best and average results based on the basic 
constraint set used in Gendreau et  al. (2006). On average, the difference between 
best and average for the number of vehicles is 1.42%, for the total travel distance 
only 0.42%. The results show a tendency that the more difficult the instances are 
(more customers or items), the higher the deviation between best and average results 
for the objective values. Therefore, we see potential for improvement as the hybrid 
algorithm should achieve an average deviation of only 1% at most.

The following Table 9 presents the best results per instance set.
Concerning the Ceschia et al. (2013) instances, some of the instances require split 

delivery or feature a heterogeneous vehicle fleet. Excluding these instances, seven 
instances remain. Ceschia et al. (2013) have a maximum time limit varying between 
300 and 10000 seconds. In contrast, the calculation time limit for our computational 
tests is only 3600 seconds. The results are based on the basic constraint set. The 
hybrid algorithm achieves clearly better results than the benchmark for nearly all 
instances (except SD-CSS04). On average, 19.33% less vehicles are used and the 
total travel distance decreases by 11.87%. Moreover, a shorter calculation time is 
required.

Table 7   Overview of instance sets

Author Problem # n m

Ceschia et al. (2013) 3L-CVRP 13 [13, 129] [254, 8060]
Moura and Oliveira (2009) 3L-VRPTW 46 25 1050, 1550
Zhang et al. (2017) 3L-VRPTW 27 [15, 100] [26, 199]
This paper 3L-VRPTW 600 20, 60, 100 200, 400

https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/Results


861

1 3

Advanced loading constraints for 3D vehicle routing problems﻿	

Ta
bl

e 
8  

C
om

pa
ris

on
 b

es
t a

nd
 a

ve
ra

ge
 re

su
lts

 fo
r P

1,
 o

ur
 in

st
an

ce
s

B
es

t
A

ve
ra

ge
D

iff
er

en
ce

su
m

 v
u
s
e
d

su
m

 tt
d

av
g.

 ti
m

e 
[s

]
su

m
 v
u
s
e
d

su
m

 tt
d

av
g.

 ti
m

e 
[s

]
v
u
s
e
d

ttd
tim

e

n
20

50
3.

00
52

,7
42

.0
6

2,
02

3.
92

50
5.

80
52

,8
37

.0
7

2,
03

5.
13

0.
56

%
0.

18
%

0.
55

%
60

3,
50

6.
00

29
1,

08
0.

57
2,

00
3.

48
3,

54
8.

40
29

2,
49

6.
96

1,
99

6.
96

1.
21

%
0.

49
%

-0
.3

3%
10

0
4,

00
7.

00
36

4,
64

2.
68

2,
33

1.
85

4,
07

5.
60

36
6,

08
1.

91
2,

32
8.

51
1.

71
%

0.
39

%
-0

.1
4%

m
20

0
3,

05
2.

00
30

0,
44

3.
12

1,
70

2.
83

3,
08

9.
60

30
1,

41
5.

49
1,

69
9.

53
1.

23
%

0.
32

%
-0

.1
9%

40
0

4,
96

4.
00

40
8,

02
2.

19
2,

57
5.

00
5,

04
0.

20
41

0,
00

0.
45

2,
57

4.
90

1.
54

%
0.

48
%

0.
00

%
Ite

m
 ty

pe
s

3
2,

52
3.

00
22

5,
54

9.
08

1,
72

5.
60

2,
55

0.
00

22
6,

26
5.

32
1,

72
9.

26
1.

07
%

0.
32

%
0.

21
%

10
2,

67
1.

00
23

6,
64

9.
38

2,
31

1.
98

2,
71

7.
00

23
7,

72
0.

68
2,

30
4.

15
1.

72
%

0.
45

%
-0

.3
4%

10
0

2,
82

2.
00

24
6,

26
6.

85
2,

37
9.

17
2,

86
2.

80
24

7,
42

9.
94

2,
37

8.
23

1.
45

%
0.

47
%

-0
.0

4%
To

ta
l

8,
01

6.
00

70
8,

46
5.

31
2,

13
8.

92
8,

12
9.

80
71

1,
41

5.
94

2,
13

7.
22

1.
42

%
0.

42
%

-0
.0

8%



862	 C. Krebs et al.

1 3

For the Zhang et  al. (2017) instances tested with the basic constraint set, the 
hybrid algorithm achieves a reduction of 23.24% used vehicles and a reduction of 
the total travel distance by 19.31%, on average. Moreover, the presented hybrid 
algorithm achieves the results with half of the calculation times compared to the 
benchmark. In case of the Moura and Oliveira (2009) instances, the instances do not 
provide any item masses, vehicle load capacities or fragility flags. Moreover, fully 
support of items is required ( � = 1 ) and we only rotate the items along the length-
width plane. The currently best-known results are received by Reil et al. (2018). In 
comparison to the benchmark, the number of used vehicles increases by 20.24%, 
while the total travel distance decreases by 2.16%. The reason for these results is 
that we cannot use all rotation possibilities and only a small amount of iterations 
are conducted due to the high number of items per vehicle. We see potential for 
improvements of our hybrid algorithm to be able to compete with these instances.

To summarize, the hybrid algorithm finds new best results for two of three 
benchmark instances. In case of a high number of items per vehicle, the hybrid 
algorithm is not competitive so that we need to address this in our further research.

6.4 � Evaluation of loading constraints

The following subsections analyse the impact of the different loading constraints on 
the objective values.

6.4.1 � Constraint sets

In order to evaluate the impact of the new loading constraints in a systematical way, 
one new constraint is either replaced or added based on the basic constraint set P1. 
The last constraint set is a combination of the most restrictive ones. Table 10 shows 
the loading constraints as considered in each set. Details are as follows: 

Table 9   Summarized best results for instance sets

Benchmark results Our best results

Sum 
v
used

Sum ttd Sum 
v
used

Sum ttd Avg. time 
[s]

Diff. v
used

Diff. ttd

Ceschia et al. (2013) 150 122,678.60 121 108,110.62 3,600.00 − 19.33% − 11.87%
Zhang et al. (2017) 383 26,074.94 294 21,039.00 469.70 − 23.24% − 19.31%

Sum 
v
used

Avg. ttd Sum 
v
used

Avg. ttd Avg. time 
[s]

Diff. v
used

Diff. ttd

Moura and Oliveira 
(2009)

247 548.5 297 536.66 3258.14 20.24% − 2.16%
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1.	 Replacing: The constraint sets P2–P6 are created by replacing one definition or 
implementation variant with another.

2.	 Adding: The constraint sets P7–P9 are generated by adding further loading con-
straints to P1.

3.	 Combination: The constraint set P10 is a combination of replacing and adding of 
loading constraints.

6.4.2 � Results

For the analysis of the loading constraints, we use our new instance set to enable com-
parison concerning the number of customers (n), items (m) and item types. Every 
instance is tested five times for each constraint set. In sum, our analysis is based on 
30,000 results (600 instances, 10 constraint sets, 5 runs). In the following Table 11, we 
report the average results and calculate the percentage difference to the basic constraint 
set P1. Note again that smaller objective values ( vused and ttd) represent better results.

The impact of the MLIFO constraint (C5b) is evaluated by set P2. Compared 
to the LIFO constraint (C5a), on average, the objective values decrease slightly by 
around 0.2%. The solution space of the MLIFO constraint (C5b) is larger; contrast-
ing our expectations, a significant influence of an increasing number of customers, 
items or item types on the objective values is not evident, though. To be more flex-
ible in the handling of items, we recommend to rely further on the LIFO (C5a) 
constraint.

The robust stability (sets P3 and P4) reduces the solution space due to its more 
stable definition in comparison to the minimal supporting area definition. Thus, 
the constraints lead to a notable increase of the objective values and the calcula-
tion time. In case of the multiple overhanging constraint, the number of used vehi-
cles rise by 10.80%, the total travel distance by 8.27%, on average. Since the top 
overhanging constraint is more restrictive, the number of used vehicles increases 
by additional 4.16% points, the total travel distance by 2.66% points, on average. 
For both variants, the calculation time increases by around 60%. Moreover, the 
more heterogeneous the items are (more item types), the more the objective values 
rise, since homogeneous item stacks items do not overhang and therefore, the con-
straint is fulfilled. Another aspect is the calculation time. In case of instances with 
200 items, the calculation time increases by around 97%. In contrast, the increase 
for instances with 400 items is only around 37%. The explanation is as follows: 
In general, the higher the number of items, the higher the calculation time and 
the smaller the difference to the maximum calculation time. In case of the robust 
stability constraints, the maximum calculation time is exploited for most instances 
and therefore also for those, which had a small calculation time for the basic set 
P1. We recommend using the top overhanging constraint since its more stable 
definition.

The constraint sets P5 and P6 deal with the impact of the load bearing strength 
constraint. In general, the simplified and the complete selection variants lead to 
comparable objective values. On average, the number of used vehicles increases by 
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approx. 3.2% ( vused ), the total travel distance by approx. 2.6% for both approaches. 
The objective values of some instances are even smaller since the fragility con-
straint (C7a) is more restrictive than the load bearing strength constraints  in this 
case. Since the load of items is calculated for the entire stack starting from the last 
placed item to the vehicle floor, the calculation time increases rapidly due to the 
algorithmic complexity (on average by around 29%) and also the objective val-
ues increase with the number of items. Interestingly, the objective values decrease 
with the number of customers. An explanation could be that with a lower number 
of customers, a higher number of items per customer is demanded. Since all items 
of a customer have to be packed into a vehicle, more items are stacked on top 
of each other, so that the limit values for the LBS are reached. Furthermore, our 
results show that a higher number of item types has a positive effect on the objec-
tive values. The reason is that with homogeneous item stacks, the load is distrib-
uted over fewer items. Since both variants lead to similar results and due to the 
fact that the complete selection variant is more realistic, we recommend using 
the complete selection.

The reachability constraint (C8), evaluated by set P7, leads to an increase of the 
number of used vehicles by 4.06% and the total travel distance by 2.80%, on average. 
However, the constraint has almost no effect on the objective values for half of the 
instances. A higher number of items or item types leads to an increase of the objec-
tive values by some per cent points, because in case of heterogeneous items or of 
overall more items, it is more likely that the items block the way. As the constraint 
has rather small impacts and avoids unnecessary rearrangements of items dur-
ing unloading, it is recommended to take it into account in practically oriented 
VRP computations.

The sets P8 and P9 deal with the effects of distributed masses. The axle 
weights constraint (C9) distributes the masses in the vehicle along the x-axis, 
while the load is balanced along the y-axis in the balanced loading constraint 
(C10). For the majority of instances, the objective values remain unchanged or 
increase by only a few per cent. On average, the number of used vehicles increase 
by around 2.9%, the total travel distance by approx. 1.8%. Moreover, there is a 
positive effect on the calculation time, which is reduced by around 20%. A cor-
relation between objective values and the number of customers, items and item 
types is not apparent. Due to the small impact on the objective values, the pos-
itive effects on the calculation time and the great safety relevance in traffic, 
considering both constraints makes sense if the appropriate information is 
available.

Since P10 contains all new complex constraints, the objective values clearly 
deteriorate, whereby the number of used vehicles increases more (24.42%) than 
the total travel distance (17.15%), on average. A comparison with the previous 
results reveals that a combination of several loading constraints leads to a deterio-
ration of the objective values but not to the extent that the sum of the deteriora-
tions would result from individually investigated constraints. The same applies 
for the calculation time.

Finally, regarding the results of all loading constraints, a correlation between an 
increasing number of customers or items and the objective values is not evident. 
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However, an increase of the number of item types and therefore an increase of the 
degree of heterogeneity tends to be correlated with an increase of the objective val-
ues except for the load bearing strength constraints, where the load can be better 
distributed along heterogeneous items.

7 � Conclusions and future work

This paper continues the research on the combined Vehicle Routing Problem and 3D 
Loading (3L-CVRP) introduced by Gendreau et al. (2006) and the extended prob-
lem with the consideration of Time Windows (3L-VRPTW). In our implementation, 
the possible placement of items is represented by free spaces inside the vehicle’s 
loading space improving the performance of the algorithm. For a more realistic 
modelling, new loading constraints are introduced. Since the common definition of 
stability leads to unstable stacks, the robust stability is investigated by means of two 
implementation variants. In the first one, items of a stack are allowed to overhang 
when respecting a minimal supporting area at any height (multiple overhanging). 
In the second variant, only the topmost item of a stack is allowed to overhang (top 
overhanging). Moreover, instead of a simple fragility flag grouping items in fragile 
and non-fragile ones, the load per area unit for each item is considered. For this load 
bearing strength constraint, also two implementation variants (simplified and com-
plete) are investigated. Additionally, constraints regarding the reachability of items, 
the axle weights and the balanced loading inside the vehicle are considered as well 
as the Manual LIFO by Tarantilis et  al. (2009). The solution quality and the per-
formance of our hybrid algorithm are evaluated by using well-known instances by 
Moura and Oliveira (2009), Ceschia et al. (2013) and Zhang et al. (2017). For the lat-
ter two instance sets, the presented algorithm performs better than the benchmarks.

The impact of the loading constraints on the objective values (number of used 
vehicles and total travel distance) is tested by 600 new instances varying in the num-
ber of customers, items and item types. In most cases, the Manual LIFO constraint 
has no influence on the objective values. Both variants for the load bearing strength 
constraint lead to comparable results. Therefore, the usage of the realistic “com-
plete” variant instead of the simplified one is recommended. In case of the robust 
stability, we recommend using the top overhanging variant since it achieves higher 
stability of the stacks. The axle weights and the balanced loading constraints only 
lead to small increases of the objective values and even decrease the calculation 
time. Since they increase the vehicle stability and thus the safety, we recommend to 
investigate these further in future research. The same applies to the reachability con-
straint, which prevents unnecessary rearrangements during unloading. Furthermore, 
our investigations showed that when combining complex constraints, the results 
deteriorate, but not to the extent that the sum of the deterioration would result from 
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Table 12   Results for Ceschia et al. (2013) instances

Instance Ceschia et al. (2013) Our results

Best Best Average

v
used

ttd v
used

ttd time [s] v
used

ttd time [s]

SD-CSS1 5 5,708.60 5 5,152.2 3,600 5 5,152.2 3,600
SD-CSS2 13 12,033.2 13 11,865.7 3,600 13 11,866.8 3,600
SD-CSS4 12 11,398.6 12 11,470.4 3,600 12 11,794.8 3,600
SD-CSS9 23 17,724.8 17 13,789.5 3,600 17 13,891.5 3,600
SD-CSS10 18 12,945.9 9 10,103.9 3,600 9 10,269.5 3,600
SD-CSS12 48 34,807.3 45 37,458.4 3,600 46.8 37,274.6 3,600
SD-CSS13 31 28,060.2 20 18,270.5 3,600 20 18,346.1 3,600
Total 150 122,678.6 121 108,110.6 25,200 122.8 108,595.6 25,200

Table 13   Results for Moura and Oliveira (2009) instances

Reil et al. (2018) Our results

Best Best Average

Sum v
used

Avg. ttd Sum v
used

Avg. ttd Avg. time [s] Sum v
used

Avg. ttd Avg. time 
[s]

GI  
 I1 62 545.3 70 536.28 2,847.94 72.8 537.72 2,870.75
 I2 44 525.0 56 498.73 3,600.00 58.6 503.45 3,600.00

GII  
  I1 75 577.9 93 573.17 3,041.59 93 573.57 3,063.70
  I2 66 543.5 78 535.19 3,600.00 78 535.69 3,600.00

Total 247 548.5 297 536.66 3,258.14 302.4 538.39 3,269.86

individually investigated constraints. As future work, we suggest to improve the per-
formance of the hybrid algorithm and of the complex loading constraints. Further-
more, we plan to determine the influence of the individual neighbourhood operators 
on the results as well as impact of instance features on the packing algorithm.

Appendix

See Tables 12, 13, 14 and 15.
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