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Abstract
A flexible semiparametric class of models is introduced that offers an alternative to

classical regression models for count data as the Poisson and Negative Binomial

model, as well as to more general models accounting for excess zeros that are also

based on fixed distributional assumptions. The model allows that the data itself

determine the distribution of the response variable, but, in its basic form, uses a

parametric term that specifies the effect of explanatory variables. In addition, an

extended version is considered, in which the effects of covariates are specified

nonparametrically. The proposed model and traditional models are compared in

simulations and by utilizing several real data applications from the area of health

and social science.

Keywords Count data � Smoothing � Transition model � Varying coefficients � Zero-
inflated model

1 Introduction

In many applications the response variable of interest is a nonnegative integer or

count which one wants to relate to a set of covariates. Classical regression models

are the Poisson model and the Negative Binomial model, which can be embedded

into the framework of generalized linear models (McCullagh and Nelder 1989).

More general models use the generalized Poisson distribution, the double Poisson

distribution or the Conway–Maxwell–Poisson distribution (Consul 1998; Zou et al.

2013; Sellers and Shmueli 2010). Specific models designed to account for excess

zeros are the hurdle model and the zero-inflated model. Concise overviews of
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modeling strategies were given by Kleiber and Zeileis (2008), Hilbe (2011),

Cameron and Trivedi (2013) and Hilbe (2014). Specific models using distributions

beyond the classical ones were considered, among others, by Joe and Zhu (2005),

Gschoessl and Czado (2006), Nikoloulopoulos and Karlis (2008), Rigby et al.

(2008) and Böhning and van der Heijden (2009). More recently, existing count

regression approaches were compared, for example, by Hayat and Higgins (2014),

Payne et al. (2017) and Maxwell et al. (2018).

Most of the established models assume that a fixed distribution holds for the

response variable conditional on the values of covariates, and the mean (and

possibly the variance parameter) is linked to a linear function of the covariates.

Various methods have been proposed to estimate the parametric effect of covariates

on the counts (Cameron and Trivedi 2013). Specifying a distribution of the counts,

however, can be rather restrictive, and the validity of inference tools depends on the

correct specification of the distribution.

To address this issue, we propose a class of models that does not require

specifying a fixed distribution for the counts. Instead, the form of the distribution is

determined by parameters that reflect the tendency to higher counts, which has the

effect that the fitted distribution is fully data-driven. For the estimation of the

parameters that determine the distribution penalized maximum likelihood estima-

tion procedures are introduced. The proposed models automatically account for zero

inflation, which typically calls for more complex models, see, for example, Mullahy

(1986a), Lambert (1992), Loeys et al. (2012). Interpretation of the parameters is

kept simple, since the conceptualization uses that counts typically result from a

process, where the final count is the result of increasing numbers.

The effect of covariates on the response is modeled by a linear term. This enables

an easy interpretation of the regression coefficients in terms of multiplicative

increases or decreases of the counts. The proposed models are semiparametric in

nature, because the distribution of the response is modeled in a flexible way adapted

to the data while the effect of covariates is modeled parametrically. The models are

also extended to allow for smoothly varying coefficients in a nonparametric fashion.

A main advantage of the proposed model class is that it can be embedded into the

framework of binary regression. This implies that standard software for maximum

likelihood estimation of generalized additive models (Wood 2006) can be used for

model fitting.

The rest of the article is organized as follows: In Sect. 2 classical models for

count data are briefly reviewed. In Sect. 3 the model class is introduced and

penalized maximum likelihood estimation methods are described. A simulation

study investigating the properties of the proposed model class is presented in

Sect. 4. Sections 5 and 6 are devoted to applications from the area of health and

social science. In Sect. 6 the model is also extended to allow for more flexible

effects of covariates, which are not necessarily restricted to linear effects. Details on

implementation and software are given in Sect. 7. Section 8 summarizes the main

findings of the article.

123

1260 M. Berger, G. Tutz



2 Classical models for count data

Let Yi 2 f0; 1; 2; . . .g denote the response variable and xTi ¼ ðxi1; . . .; xipÞ a vector of
covariates of an i.i.d. sample with n observations. In generalized linear models

(GLMs) one specifies a distributional assumption for Yijxi and a structural

assumption that links the mean li ¼ EðYijxiÞ to the covariates. The structural

assumption in GLMs has the form

li ¼ hðxTi bÞ or gðliÞ ¼ xTi b ;

where b ¼ ðb1; . . .; bpÞ> is a set of real-valued coefficients, g is a known link

function and h ¼ g�1 denotes the response function, see, for example, McCullagh

and Nelder (1989), Fahrmeir and Tutz (2001).

2.1 Poisson and negative binomial model

Popular models for count data are the Poisson model and the Negative Binomial

model. The Poisson model assumes that Yijxi follows a Poisson distribution PðliÞ,
where the mean and the variance are given by li, respectively. The most widely

used model uses the canonical link function by specifying

li ¼ expðxTi bÞ or logðliÞ ¼ xTi b : ð1Þ

In model (1) the expressions expðb1Þ; . . .; expðbpÞ have a simple interpretation in

terms of multiplicative increases or decreases of li. More generally one can assume

that Yijxi follows a Negative Binomial distribution NBðm; liÞ with probability

density function (p.d.f.)

PðYi ¼ yijxiÞ ¼
CðYi þ mÞ

CðmÞCðYi þ 1Þ
li

li þ m

� �yi m
li þ m

� �m

; yi 2 f0; 1; 2; . . .g ;

where Cð�Þ denotes the gamma function. The parameter m is a shape parameter that

allows more flexible modeling of the variance than the Poisson distribution. Mean

and variance are given by

li ¼ expðxTi bÞ and varðYijxiÞ ¼ li þ l2i =m : ð2Þ

While the mean is the same as for the simple Poisson model, the variance exceeds

the Poisson variances by l2i =m, which may be seen as a limiting case ðm ! 1Þ. As m
is not related to the mean, it is assumed to be constant for all observations. For

alternative formulations of the Negative Binomial model, see, for example,

Cameron and Trivedi (2013).

2.2 Zero-inflated model

In some applications one observes more zero counts than is consistent with the

Poisson or Negative Binomial model; then data display overdispersion through

excess zeros. This happens in cases in which the population consists of two
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subpopulations, the non-responders who are ‘‘never at risk’’ with counts Yi ¼ 0 and

the responders who are at risk with counts Yi 2 f0; 1; . . .g, see, for example,

Cameron and Trivedi (2005), Cameron and Trivedi (2013). Formally, the zero-

inflated density function is a mixture of distributions. With Ci denoting the class

indicator of subpopulations (Ci ¼ 1 for responders and Ci ¼ 0 for non-responders)

one obtains the mixture distribution

PðYi ¼ yijxiÞ ¼ PðYi ¼ yijCi ¼ 0Þ pi þ PðYi ¼ yijxi;Ci ¼ 1Þ ð1� piÞ ;

where pi ¼ PðCi ¼ 0Þ are the mixing probabilities. Typically one assumes that a

classical count data model, for example the Poisson model (1), holds for the

responders, that is, one assumes Yijxi;Ci ¼ 1�PðliÞ, and a binary model, for

example the logistic model, determines class membership. Then the link between

responses and covariates is determined by the two predictors

logðliÞ ¼ xTi b and logitðpiÞ ¼ xTi c ; ð3Þ

where c ¼ ðc1; . . .; cpÞ> is a second set of real-valued coefficients.

Instead of the Poisson model also the Negative Binomial model can be used to

represent responders, see, for example, Greene (1994). Alternative models, in which

the Poisson distribution is replaced by the generalized Poisson distribution have

been considered by Famoye and Singh (2003), Gupta et al. (2004), Famoye and

Singh (2006), Czado et al. (2007) and Min and Czado (2010). Identifiability of zero-

inflated models was investigated by Li (2012). Estimation procedures for zero-

inflated models are available in the R package pscl (Zeileis et al. 2008).

2.3 Hurdle model

An alternative model that is able to account for excess zeros is the hurdle

model (Mullahy 1986b; Creel and Loomis 1990). The model specifies two

processes that generate the zero counts and the positive counts. It combines a

truncated-at-zero count model (left-truncated at Yi ¼ 1) which is employed for

positive counts and a binary model or censored count model (right-censored at

Yi ¼ 1) which determines whether the response is zero or positive, i.e., if the

‘‘hurdle is crossed’’. Formally, the hurdle model is determined by

PðYi ¼ yijxiÞ ¼
f1ð0jxiÞ if yi ¼ 0 ;

f2ðYijxiÞ
1� f1ð0jxiÞ
1� f2ð0jxiÞ

if yi [ 0 ;

8<
:

where f1 determines the binary decision between zero and a positive response. If the

hurdle is crossed, the response is determined by the truncated count model with

p.d.f.

PðYi ¼ yijxiÞ ¼ f2ðyijxiÞ=ð1� f2ð0jxiÞÞ ; yi ¼ 1; 2; . . . :

If f1 ¼ f2, the model collapses to the so-called parent process f2. The model is quite

flexible, because it allows for both under- and overdispersion. For example, in the
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hurdle Poisson model where both f1 and f2 correspond to Poisson distributions with

means l1 and l2, the link between responses and covariates is determined by the

two predictors

li1 ¼ expðxTi bÞ and li2 ¼ expðxTi cÞ: ð4Þ

The Poisson and geometric hurdle model have been examined by Mullahy (1986b),

Negative Binomial hurdle models have been considered by Pohlmeier and Ulrich

(1995). Zero inflated and hurdle models have also been generalized to multiple

inflated models to allow for count-inflation at multiple values, see Giles (2007), and,

more recently, Bocci et al. (2020).

Estimation procedures for hurdle models are available in the R package

pscl (Zeileis et al. 2008).

3 The transition model for count data

In particular the Poisson and the Negative Binomial model have a simple structure

with a clearly defined link between the covariates and the mean. The models

however are rather restrictive since they assume that the distribution of Yijxi is
known and fixed. A strict parametric form is assumed for the whole sup-

port f0; 1; 2; . . .g and typically just the dependence of the mean on the predictors is

specified by the model.

3.1 The basic transition model

The approach proposed here is much more flexible and does not assume a fixed

distribution for the response. It focuses on the modeling of the transition between

counts. In its simplest form, it assumes for Yi 2 f0; 1; 2; . . .g

PðYi [ rjYi � r; xiÞ ¼ Fðhr þ xTi bÞ ; r ¼ 0; 1; . . . ; ð5Þ

where Fð�Þ is a fixed distribution function. The parameters hr represent intercept

coefficients and bT ¼ ðb1; . . .; bpÞ is a vector of regression coefficients. One models

the transition probability dir ¼ PðYi [ rjYi � r; xiÞ, which is the conditional prob-

ability that the number of counts is larger than r (i.e., transition to a higher value

than r) given the number of counts is at least r. These probabilities are determined

by a classical binary regression model. For example, if Fð�Þ is the logistic distri-

bution function, one uses the binary logit model.

In general, a distribution of count data Yi can be characterized by the probabilities
on the support pi0; pi1; . . . , where pir ¼ PðYi ¼ rÞ, or the (conditional) transition

probabilities di0; di1; . . . given by

dir ¼ PðYi [ rjYi � rÞ ¼ 1� pi0 � � � � � pir
1� pi0 � � � � � pi;r�1

:

The transition model (5) specifies the transition probabilities. If no covariates are

present, any discrete distribution with support f0; 1; 2; . . .g can be represented by
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the model, determined by the intercept parameters h0; h1; . . .. In the presence of

covariates the intercepts represent the basic distribution of the counts, which is

modified by the values of the covariates. Thus, the functional form of the count

distribution is not restricted. In particular the response may follow a Poisson dis-

tribution or a Negative Binomial distribution. In addition the model is able to

account for specific phenomena like excess zeros.

The parameters in model (5) have an easy interpretation depending on the

function Fð�Þ. If one chooses the logistic distribution function one obtains the

conditional transition to a higher number of counts in the form

log
PðYi [ rjYi � r; xiÞ

1� PðYi [ rjYi � r; xiÞ

� �
¼ hr þ xTi b ;

and the regression coefficients b1; . . .; bp have the usual interpretation as in the

common binary logit model. An alternative form is the representation as continu-

ation ratios

log
PðYi [ rjxiÞ
PðYi ¼ rjxiÞ

� �
¼ hr þ xTi b : ð6Þ

The ratio PðYi [ rjxiÞ=PðYi ¼ rjxiÞ compares the probability that the number of

counts is larger than r to the probability that the number of counts is equal to r.
The basic assumption of model (6) is that the effect of covariates is the same for

any given number of counts r. This property can also be seen as a form of strict

stochastic ordering. That means, if one considers two population that are

characterized by the covariate values x and ~x, one obtains

PðY [ rjxÞ=PðY ¼ rjxÞ
PðY [ rj~xÞ=PðY ¼ rj~xÞ ¼ expððx� ~xÞTbÞ : ð7Þ

Thus the comparison of populations in terms of the transition odds

PðY [ rjxÞ=PðY ¼ rjxÞ does not depend on the counts. If, for example, the odds in

population x are twice the odds in population ~x this holds for all r.
The modeling of transitions as specified in model (5) was used in various

contexts before. In ordinal regression transition modeling is known under the name

sequential model; in the logistic version it is called continuation ratio model

(Agresti 2002; Tutz 2012). Its properties as an ordinal regression model have been

investigated in particular by Maxwell et al. (2018). It is also used in discrete

survival analysis, where one parameterizes the discrete hazard function kðrjxiÞ ¼
PðYi ¼ rjYi � r; xiÞ instead of the conditional probability of transition (Tutz and

Schmid 2016).

Modeling of transitions, however, seems not to have been used in the modeling of

count data. The main difference to the use in ordinal regression and discrete hazard

modeling is that, in contrast to these models, the number of categories is not

restricted. In ordinal models one typically uses up to ten categories, which limits the

number of parameters. In count data, however, there is no restriction on the number

of intercepts (i.e. the possible number of counts). Particularly, in extended models,

where also the regression coefficients vary across categories (to be considered in
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Sect. 6), the main problem is that the number of parameters cannot be handled by

simple maximum likelihood estimation. For count data and fixed predictor value,

model (5) is a Markov chain model of order one, because the probability of

transition depends only on the previously obtained category. It is related to

categorical time series, which have been investigated by Kaufmann (1987),

Fahrmeir and Kaufmann (1987), and Kedem and Fokianos (2002).

3.2 Illustration of flexibility of the model

Before giving details of the fitting procedure we demonstrate the flexibility of the

proposed transition model by a small benchmark experiment that was based on 100

replications. We generated samples of size n ¼ 100 with the outcome values drawn

from (i) a Poisson distribution, yi �Poðli ¼ 5Þ; i ¼ 1; . . .; n, and (ii) a Negative

Binomial distribution, yi �NBðm ¼ 5=8; li ¼ 5Þ; i ¼ 1; . . .; n, which equals vari-

ance varðyiÞ ¼ 45.

Figure 1 shows the estimated probability density functions for 10 randomly

chosen replications (upper and middle panel) and the average estimated probability

density function over all 100 replications (lower panel) obtained from fitting the

transition model and the true data-generating model (Poisson or Negative Binomial)

to the data, respectively. In both cases, it is seen that the transition model is well

able to capture the underlying distribution. In particular, the average estimated

p.d.f. and the true p.d.f. (black line) closely coincide for both distributions (lower

panel).

3.3 Maximum likelihood estimation

For i.i.d. observations ðYi; xiÞ; i ¼ 1; . . .; n, the log-likelihood has the simple form

‘ðaÞ ¼
Xn
i¼1

logðpirÞ ;

where aT ¼ ðh0; h1; . . .; bTÞ collects all parameters and pir ¼ PðYi ¼ rjxiÞ is the

probability of observing category r, which for the transition model (5) is given by

pir ¼ PðYi ¼ rjYi � r; xiÞ
Yr�1

s¼0

PðYi [ sjYi � s; xiÞ

¼ 1� Fðhr þ xTi bÞ
� �Yr�1

s¼0

Fðhs þ xTi bÞ :

ð8Þ

For the model considered here it is helpful to represent the data in a different way.

One considers the underlying Markov chain Yi0; Yi1; Yi2; . . ., where Yir ¼ IðYi ¼ rÞ
with Ið�Þ denoting the indicator function (IðaÞ ¼ 1, if a holds, IðaÞ ¼ 0 otherwise).

Then the log-likelihood can be given in the form
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‘ðaÞ ¼
Xn
i¼1

XYi
s¼0

Yis logðpisÞ :

By using (8) it can be rewritten as

‘ðaÞ ¼
Xn
i¼1

XYi
s¼0

Yis log 1� Fðhs þ xTi bÞ
� �

þ ð1� YisÞ log Fðhs þ xTi bÞ
� �

: ð9Þ

In (9) the realizations of the Markov chain Yi0; Yi1; . . .; YiYi up to the observed

response have the form ðYi0; Yi1; . . .; YiYiÞ
T ¼ ð0; 0; . . .; 0; 1Þ. They can be seen as

dummy variables for the response or as binary variables that indicate if transition to

the next category occurred or not. The value Yir ¼ 0, r\Yi, denotes that the
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Fig. 1 Estimated probability density functions when fitting the transition model and the true data-
generating model to samples drawn from a Poisson distribution (left) and samples drawn from a Negative
Binomial distribution (right). The upper and middle panels show the estimates of 10 randomly chosen
replications when the transition model (upper panel) and the true data generating model (middle panel)
are fitted. The lower panel shows the respective average estimates obtained from 100 simulation runs. The
black lines correspond to the true probability density function
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transition to a higher category than r occurred. If one wants to indicate transition as

0-1 variable with 1 denoting transition to a higher category one uses ~Yir ¼ 1� Yir
yielding the log-likelihood

‘ðaÞ ¼
Xn
i¼1

XYi
s¼0

~Yis log Fðhs þ xTi bÞ
� �

þ ð1� ~YisÞ log 1� Fðhs þ xTi bÞ
� �

; ð10Þ

which is obviously equivalent to the log-likelihood of the binary response model

Pð ~Yir ¼ 1jxiÞ ¼ Fðhr þ xTi bÞ for observations ~Yi0; ~Yi1; . . .; ~YiYi . Thus the model can

be fitted by using maximum likelihood methods for binary data that encode the

sequence of transitions up to the observed response.

3.3.1 Penalized maximum likelihood estimation

Maximum likelihood (ML) estimators tend to fail because model (5) contains many

parameters, in particular the number of intercepts becomes large unless the counts

are restricted to very small numbers. Therefore alternative estimators are needed.

We will use penalized maximum likelihood estimates. Then instead of the log-

likelihood (10) one maximizes the penalized log-likelihood

‘pðaÞ ¼ ‘ðaÞ � kJðaÞ ; ð11Þ

where ‘ð�Þ is the common log-likelihood of the model and JðaÞ is a penalty term that

penalizes specific structures in the parameter vector. The parameter k is a tuning

parameter that specifies how serious the penalty term has to be taken. Since the

intercept parameters hr determine the dimensionality of the estimation problem the

penalty is used to regularize these parameters.

A reasonable assumption on the h-parameters is that they are changing slowly

over categories. A penalty that enforces smoothing over response categories uses the

squared differences between adjacent categories, Let Mmax denote the maximal

value that has been observed, that is, Mmax ¼ maxfYig. Then one uses the penalty

JðaÞ ¼
XM
s¼0

ðhs � hs�1Þ2 ; ð12Þ

where M is larger than Mmax, for example, M can be chosen as the integer closest to

1:2Mmax. When maximizing the penalized log-likelihood one obtains

hMmax
¼ hMmaxþ1 ¼ . . . ¼ hM . It is important to chooseM larger thanMmax to account

for possibly larger future observations and to avoid irregularities at the boundaries.

If one uses k ¼ 0 in (11) one obtains the ML estimates. In the extreme case k ! 1
all parameters obtain the same value.

An alternative, more general smoothing technique uses penalized splines as

proposed by Eilers and Marx (1996). Let the h-parameters be specified as a smooth

function over categories by using an expansion in basis functions of the form
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hr ¼
Xm
k¼1

ck/kðrÞ ;

where /kð�Þ are fixed basis functions, and m denotes the number of basis functions.

We will use B-splines (Eilers and Marx 1996) on equally spaced knots in the range

[0, M], where M is again a larger value than the maximal observed response. The

penalty now does not refer to the h-parameters themselves but to the c-parameters.

A flexible form is

JðaÞ ¼
Xm
k¼dþ1

ðDdckÞ2 ; ð13Þ

where Dd is the difference operator, operating on adjacent B-spline coefficients, that

is, Dck ¼ ck � ck�1;D
2ck ¼ Dðck � ck�1Þ ¼ ck � 2ck�1 þ ck�2. The method is

referred to as P-splines (for penalized splines). P-splines are strong tools that have

various advantages. They are very flexible and allow for different polynomial

degrees of the basis functions and difference operators (Dd). Since the basis func-

tions are strictly local single fitted basis functions have no effect on remote areas.

Moreover, one obtains simple polynomials if the smoothing parameter takes large

values.

3.3.2 Embedding into the framework of varying-coefficients models

The transition variables ð ~Yi0; ~Yi1; . . .; ~YiYiÞ
T ¼ ð1; 1; . . .; 1; 0Þ in (10) are binary

variables. The log-likelihood is the same as for binary response models of the form

Pð ~Yir ¼ 1jxiÞ ¼ Fðhr þ xTi bÞ. The binary models can also be seen as varying-

coefficients models of the form Pð ~Yir ¼ 1jxiÞ ¼ F bðrÞ þ xTi b
� �

, where bðrÞ ¼ hr is
an unknown function of the counts, that is, the intercepts vary across counts. By

considering the counts as an explanatory variable one may treat the models as

specific varying-coefficients models and use existing software for fitting (see Sect. 7

for further details).

3.4 Selection of smoothing parameter and prediction accuracy

For the choice of the tuning parameter (for example by resampling or cross-

validation) a criterion for the accuracy of prediction is needed. A classical approach

in linear models is to estimate the mean and compare it to the actually observed

response by using the quadratic distance. But since the whole distribution given a

fixed covariate is estimated it is more appropriate to compare the estimated

distribution to the degenerated distribution that represents the actual observation by

using loss functions.

Candidates are the quadratic loss L2ðpi; p̂iÞ ¼
P

rðpir � p̂irÞ2 and the Kullback–

Leibler loss LKLðpi; p̂iÞ ¼
P

r pir logðpir=p̂irÞ, where the vectors pi ¼ ðpi0;pi1; . . .Þ>

and p̂i ¼ ðp̂i0; p̂i1; . . .Þ> denote the true and estimated probabilities. When the true
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probability vector is replaced by the 0-1 vector of observations Yi ¼
ðYi0; Yi1; Yi2; . . .Þ> one obtains for the quadratic loss the Brier score

L2ðYi; p̂iÞ ¼ ð1� p̂iYiÞ
2 þ

X
r 6¼Yi

p̂2ir :

For the Kullback–Leibler loss one obtains the logarithmic score

LKLðYi; p̂iÞ ¼ � logðp̂i;YiÞ. The latter has the disadvantage that the predictive dis-

tribution p̂i is only evaluated at the observation Yi. Therefore, it does not take the

whole predictive distribution into account. As Gneiting and Raftery (2007) postu-

late, a desirable predictive distribution should be as sharp as possible and well

calibrated. Sharpness refers to the concentration of the distribution and calibration

to the agreement between the distribution and the observations. For count data, a

more appropriate loss function derived from the continuous ranked probability score

(Gneiting and Raftery 2007), which will also be used in the simulation and the

applications, is

LRPSðYi; p̂iÞ ¼
X
r

p̂iðrÞ � IðYi � rÞð Þ2; ð14Þ

where p̂iðrÞ ¼ p̂i0 þ p̂i1 þ � � � þ p̂ir represents the cumulative distribution. It was

also used by Czado et al. (2009) for the predictive assessment of count data.

4 Simulation study

To further demonstrate the flexibility and to show the added value of the proposed

transition model compared to classical models we extended the numerical

experiment shown in Sect. 3.2.

We generated data of size n ¼ 100 from (a) a Poisson model with mean

li ¼ 5; i ¼ 1; . . .; n, (b) a Negative Binomial model with parameters

li ¼ 5; m ¼ 5=8, (c) a zero-inflated Poisson model with parameters li ¼ 6:25 and

pi ¼ 0:2, (d) a zero-inflated Negative Binomial model with parameters li ¼
6:25; m ¼ 7=8 and pi ¼ 0:2, and (e) a transition model with Mmax ¼ 21 and

decreasing intercepts h0 ¼ �2; h1 ¼ �2:14; . . .; h6 ¼ �2:86; h7 ¼ �3, and

increasing intercepts h8 ¼ �1; h9 ¼ �0:92; . . .; h19 ¼ �0:08; h20 ¼ 0. The latter

scenario results in data, where the distribution of the outcome values has two spikes.

Figure 2 shows the distribution of one example data set.

In each of the five settings we generated a learning and test data set (100

replications), fitted all models to the learning data and evaluated the performance by

calculating the ranked probability score (14) on the test data.

The results (given in Fig. 3) nicely illustrate that the Poisson distribution is quite

rigid compared to the Negative Binomial distribution, as the performance of the

Poisson model and the zero-inflated Poisson model deteriorates in scenar-

ios (b) and (d). It is remarkable that the transition model performs consistently

well and equal to the true data-generating model in the four scenarios (a) to (d).

This underlines the high flexibility of our proposed method. In scenario (e) the
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transition model outperforms all classical parametric models (even the zero-inflated

Negative Binomial model), which are less well able to capture the structure of the

data. Our semiparametric approach therefore appears advantageous in such a more

complex scenario.

5 Applications

To illustrate the usefulness of the proposed transition model, we present the results

of three data examples comparing the various approaches introduced in the previous

sections. Specifically, we consider

(i) the Poisson model, hereinafter referred to as Poisson,
(ii) the Negative Binomial model, referred to as NegBin,
(iii) the zero-inflated model (3) using a Poisson model for the responders

and a logit model to determine the class membership, referred to as

Zero (Poisson),
(iv) the zero-inflated model (3) using a Negative Binomial model for the

responders and a logit model to determine the class membership,

referred to as Zero (NegBin)
(v) the hurdle model (4) using a logit model for f1 and a Poisson model for

f2, referred to as Hurdle (Poisson),
(vi) the hurdle model (4) using a logit model for f1 and a Negative Binomial

model for f2, referred to as Hurdle (NegBin),
(vii) the transition model with a quadratic difference penalty (12) on the

intercepts, referred to as QuadPen and
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Fig. 2 Distribution of the outcome values for one exemplary data set in scenario (e) of the simulation
study
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(viii) the transition model, where the intercepts are expanded in cubic

B-splines using a first order difference penalty (13), referred to as P-
Splines.

To determine the optimal smoothing parameters k for models (vii) and (viii) and to

compare the predictive performance of all eight approaches we used the ranked

probability score (14). For this purpose, we repeatedly (100 replications) generated

subsamples without replacement containing 2/3 of the observations in the original

data and computed the ranked probability score from the remaining test data sets

(i.e., from 1/3 of the original data).
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Fig. 3 Results of the simulation study. The boxplots show the ranked probability score (for
r 2 f0; . . .; 10g) of the transition model (left) and the four classical models (right). The median value
of the true data generating model (indicated in the subheadings) is marked by a dashed line, respectively

123

Transition models for count data: a flexible alternative to... 1271



5.1 Absenteeism from school

We first consider a sociological study on children in Australia. The data set is

available in the R package MASS (Venables and Ripley 2002) and was initially

analysed by Aitkin (1979). The data consists of a sample of 146 children from New

South Wales, Australia. The outcome of interest is the number of days a child was

absent from school in one particular school year (Mmax ¼ 81). The unconditional

distribution of the outcome for values Yi 2 f0; . . .; 50g is shown in Fig. 4 (eight

observations had counts [ 50). The covariates included in the models are

Aboriginal ethnicity (Eth; 0: no, 1: yes), gender (Sex; 0: female, 1: male), the

educational stage (Edu; 0: primary, 1: first form, 2: second form, 3: third form) and

a learner status (Lrn; 0: average, 1: slow).

Figure 5 shows the results of the resampling experiment comparing the eight

different approaches. In the case of the zero-inflated and Hurdle models the

covariates were only included in the predictor for the responders/positive counts,

respectively.

The ranked probability score was computed from the test data sets (containing 46

observations each) for outcome values r 2 f0; . . .; 30g. This range of values was

chosen to ensure outcome values up to r ¼ 30 in each of the learning and test

samples. When fitting the transition models the minimal ranked probability score

(averaged over 100 replications) was obtained for k ¼ 23 (QuadPen) and k ¼ 466

(P-Splines), respectively. It is seen that the Negative Binomial models (middle

panel) and the two transition models (right panel) outperform the Poisson models

with only minor differences between them. This result indicates that the Negative

Binomial distribution is much more appropriate than the Poisson distribution for the

analysis of this data set. Also accounting for excess zeros in the Negative Binomial

model does not show an additional benefit. Importantly, the performance of the

flexible transition model in terms of accuracy of prediction is the same as for the

Negative Binomial model. Like in the simulations (b) and (d), the transition model

is equally able to capture the essential characteristics of the data.
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Fig. 4 Distribution of the outcome variable in the absenteeism from school data (n ¼ 146)
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The estimated coefficients b̂ and the corresponding standard errors and z-values

obtained by the Negative Binomial model and the transition model with penalized

B-splines using the whole sample of n ¼ 146 children are given in Table 1. Overall,

the results of both models widely coincide. From the z-values it can be derived that

only ethnicity has a significant effect on the outcome (at the 5% type 1 error level).

Based on the Negative Binomial model, the expected number of days a child is

absent from school is increased by the factor expð0:569Þ ¼ 1:766 for the group of

aboriginal children. In terms of the transition model, the continuation ratio (defined

in (7)) is increased by the factor expð0:585Þ ¼ 1:795, indicating higher counts in the
group of aboriginal children.

5.2 Demand for medical care

Deb and Trivedi (1997) analyzed the demand for medical care for individuals, aged

66 and over, based on a dataset from the U.S. National Medical Expenditure survey

●

● ●
●

5
6

7
8

9

R
an

ke
d 

pr
ob

ab
ili

ty
 s

co
re

Poisson Zero
(Poisson)

Hurdle
(Poisson)

NegBin Zero
(NegBin)

Hurdle
(NegBin)

QuadPen P−Splines 

Fig. 5 Analysis of the absenteeism from school data. The boxplots show the ranked probability score (for
r 2 f0; . . .; 30g) of the six classical models (left and middle panel) and the two transition models (right
panel). All methods were fitted to 100 subsamples without replacement of size 100 and evaluated on the
remaining 46 observations each

Table 1 Analysis of the

absenteeism from school data
NegBin P-Splines

Coef SE z-value Coef SE z-value

Eth 0.569 0.153 3.713 0.585 0.178 3.291

Sex 0.082 0.160 0.515 0.082 0.185 0.446

Edu:1 - 0.448 0.240 - 1.870 - 0.470 0.266 - 1.764

Edu:2 0.088 0.236 0.373 0.087 0.271 0.321

Edu:3 0.357 0.248 1.437 0.368 0.277 1.329

Lrn 0.292 0.186 1.566 0.309 0.205 1.507

Parameter estimates, standard errors and z-values obtained from

fitting the Negative Binomial model (left) and the transition model

with penalized B-splines (right)
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in 1987/88. The data (‘‘NMES1988’’) are available from the R package AER
(Kleiber and Zeileis 2008). Like Zeileis et al. (2008) we consider the number of

physician/non-physician office and hospital outpatient visits (Ofp) as outcome

variable. The covariates used in the present analysis are the self-perceived health

status (Health; 0: poor, 1: excellent), the number of hospital stays (Hosp), the

number of chronic conditions (Numchron), age, maritial status (Married; 0: no, 1:

yes), and number of years of education (School). Since the effects vary across

gender, we restrict consideration to male patients (n ¼ 356). Figure 6 shows the

unconditional distribution of the outcome Yi 2 f0; . . .; 40g.
The ranked probabilty scores for outcome values r 2 f0; . . .; 30g obtained from

the approaches (i) to (viii) are shown in Fig. 7. Again, in the case of the zero-

inflated and Hurdle models the covariates were only included in the predictor for the

responders/positive counts, respectively. For the transition models the optimal

smoothing parameters were k ¼ 5 (QuadPen) and k ¼ 16 (P-Splines). Similar to the

previous example the Negative Binomial model (fourth boxplot) and the two

transition models (seventh and eighth boxplot) performed considerably better than

the Poisson model and at least as good as the models accounting for excess zeros.

The estimated coefficients b̂ and the corresponding standard errors and z-values

obtained by the Negative Binomial model and the transition model with penalized

B-splines using the whole sample of n ¼ 356 patients are given in Table 2. Again,

the two models yielded very similar results. An excellent health status reduced the

expected number of visits, whereas the number of hospital stays and the number of

years of education significantly increased the expected number of visits. Figure 8

shows the fitted smooth function of the h-parameters obtained by the transition

model with penalized B-splines, which represents the basic distribution of the

counts. The function reveals decreasing coefficients with a local peak at � 20 visits.
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Fig. 6 Distribution of the outcome variable Ofp measured in the National Medical Expenditure survey
(n ¼ 356)
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Fig. 7 Analysis of the medical care data. The boxplots show the ranked probability score (for
r 2 f0; . . .; 30g) of the six classical models (left and middle panel) and the two transition models (right
panel). All methods were fitted to 100 subsamples without replacement of size 237 and evaluated on the
remaining 119 observations each

Table 2 Analysis of the medical care data

NegBin P-Splines

Coef SE z-value Coef SE z-value

Health - 0.681 0.140 - 4.863 - 0.794 0.158 - 5.021

Hosp 0.164 0.053 3.092 0.197 0.068 2.878

Numchron 0.058 0.040 1.452 0.057 0.043 1.312

Age 0.024 0.080 0.300 0.031 0.094 0.325

Married 0.074 0.122 0.608 0.067 0.138 0.482

School 0.042 0.013 3.259 0.045 0.014 3.127

Parameter estimates, standard errors and z-values obtained from fitting the Negative Binomial mod-

el (left) and the transition model with penalized B-splines (right)
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Fig. 8 Analysis of the medical
care data. Smooth function of
the h-parameters obtained from
fitting the transition model with
penalized B-splines (k ¼ 16)
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6 Transition model with varying coefficents

An extended form of the transition model assumes for Yi 2 f0; 1; 2; . . .g

PðYi [ rjYi � r; xiÞ ¼ Fðhr þ xTi brÞ ; r ¼ 0; 1; . . .; ð15Þ

where the regression coefficients bTr ¼ ðb1r; . . .; bprÞ may vary over categories, i.e.

number of counts. The parameter bjr represents the weight on variable j for the

transition to higher categories than r. The model does not assume that odds are

proportional, and the stochastic ordering property (7) no longer holds. This makes

the model much more flexible but strongly increases the number of parameters. A

reduced number of effective parameters is obtained by assuming that they can be

represented by basis functions, which implies that the parameters vary slowly across

categories. Then the b-parameters are represented by

bjr ¼
Xm
k¼1

cjk/kðrÞ ; j ¼ 1; . . .; p ;

where /kðrÞ are fixed basis functions. The whole predictor of the model becomes

log
PðYi [ rjxiÞ
PðYi ¼ rjxiÞ

� �
¼

Xm
k¼1

ck/kðrÞ þ
Xp
j¼1

Xm
k¼1

xijcjk/kðrÞ :

Estimation is again based on penalized maximum likelihood approaches with a

penalty term on the differences of the c-parameters on basis functions. Then,

individual tuning parameters kj are used for each covariate to weight the sum of

differences of the c-parameters, respectively.

Extended model for excess zeros
A specific model with varying coefficients that is tailored to the case of excess

zeros is obtained if one separates the first transition from all the other transitions. In

the model

PðYi [ 0jxiÞ ¼ Fðh0 þ xTi b0Þ ;

PðYi [ rjYi � r; xiÞ ¼ Fðhr þ xTi bÞ ; r ¼ 1; 2; . . . ;
ð16Þ

the first transition is determined by the parameter vector b0 while the other tran-

sitions are determined by the parameter vector b. In model (16) one has varying

coefficients bðrÞ ¼ hr in the second equation of the model that vary across cate-

gories r ¼ 1; 2; . . .. These can again be fitted using a quadratic difference penalty or

penalized B-splines as described for the basic model in Sect. 3. The model is a

special case of model (15). It postulates a rather simple structure of varying coef-

ficients by distinguishing just between the first transition and all other transitions. As

in zero-inflated count models and hurdle models one specifies separate effects that

model the occurrence of excess zeros. The model is referred to as P-Splines (Zero)
in the following. It is useful if zero-inflation is suspected but a comparatively simple

transition model with fixed parameter values can be used for all transitions beyond

zero.
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6.1 Absenteeism from school (contd.)

Let us again consider the study on schoolchildren in Australia. Figure 9 shows the

results when fitting the extended transition model (15) in its most general form, that

means the coefficients of all covariates are expanded in cubic B-splines using a first

order difference penalty.

As in the basic transition model (cf. Table 1) the estimated functions indicate

non-significant constant effects for girls compared to boys and for second form

pupils compared to primary pupils (Edu:2). However, there are significant non-

linear effects for ethnicity (which was also significant in the basic model) as well as

for first form pupils (Edu:1) and learner status.

As an example, let us consider how slow learners compare to average learners

(upper right panel of Fig. 9). It is seen that the continuation ratio increases by the

factor expð0:024Þ ¼ 1:024 (r ¼ 0) up to the factor expð0:726Þ ¼ 2:067 (r ¼ 23),

which doubles the probability for a higher count. That means the type of learner has

a stronger impact on the days of absence if the student already has been absent for

many days.

6.2 Demand for medical care (contd.)

The results from fitting the extended model (16) accounting for excess zeros to the

data of the National Medical Expenditure survey are shown in Table 3 and Fig. 10.

The first transition is referred to as Zero while the other transitions are referred to as

the Non-Zero art of the model. There are remarkable differences compared to the
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Fig. 9 Analysis of the absenteeism from school data. Smooth estimates br (for r 2 f0; . . .; 30g) obtained
from fitting the extended transition model with varying coefficients in all covariates
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previous results in Table 2: (i) the number of years of education (school) had a

significant effect on the first transition, but there was no evidence for an effect on

the other transitions (z-value = 1.591), (ii) the number of chronic conditions, which

was not significant in the basic model, showed a significant positive effect

(b̂0 ¼ 0:591) on the first transition (driving the decision to consult a doctor or not),

and (iii) an excellent health status and the number of hospital stays had significant

effects only in the part of the model that models the transition to higher categories

given the number of visits was already above zero (Non-Zero). Figure 10 shows

how the h-parameters decrease over categories.

The ranked probability score of the extended model (evaluated on the test data

sets and averaged over 100 replications) was 3.562, which indicates a slightly better

predictive performance then all the previously considered models (cf. Fig. 7).

Table 3 Analysis of the medical care data

Zero Non-Zero

Coef SE z-value Coef SE z-value

h0 - 6.421 2.314 - 2.774 – – –

Health - 0.375 0.466 - 0.806 - 0.749 0.171 - 4.379

Hosp 0.608 0.373 1.631 0.178 0.069 2.574

Numchron 0.591 0.187 3.161 0.015 0.045 0.336

Age 0.394 0.270 1.456 - 0.045 0.102 - 0.440

Married 0.512 0.361 1.417 - 0.007 0.152 - 0.044

School 0.161 0.041 3.918 0.025 0.016 1.591

Parameter estimates, standard errors and z-values obtained from fitting the extended transition with

penalized B-splines accounting for excess zeros
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Fig. 10 Analysis of the medical
care data. Smooth function of
the h-parameters obtained from
fitting the extended transition
model with penalized B-
splines (k ¼ 16)
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6.3 Boating trips

As third example we consider data based on a survey in 1980 administered to

n ¼ 659 leisure boat owners in eastern Texas, which is available from R

package AER (Kleiber and Zeileis 2008) and was analyzed before by Ozuna and

Gomez (1995). Here, the outcome of interest is the number of recreational boating

trips to Lake Somerville, Yi 2 f0; . . .; 40g. Note that 417 (63%) observations take

the value zero, which calls for a model accounting for excess zeros (two extreme

observations with outcome values 50 and 88 were excluded, as they seem

implausible in the view of 52 weaks per year).

The five covariates used in the present analysis are the facility’s subjective

quality ranking (Quality; 1: very negative—5: very positive), an indicator, if the

individual did water-skiing at the lake (Ski; 0: no, 1:yes), the annual household

income (Income; in 1000 USD), an indicator, if the individual payed an annual user

fee at the lake (Userfee; 0: no, 1: yes) and the expenditure when visiting the lake

(Cost; in USD).

Next to the approaches (i)–(viii), we also considered the extended transition P-

Splines (Zero) model (16). Here we included the covariates in both predictors when

fitting zero-inflated and Hurdle models, which is in the same spirit as for the

extended transition model, where zero and non-zero counts are separately

determined by the covariates. Note that, due to a quasi-complete separation of the

outcome with regard to Userfee (all individuals paying a user fee had [ 0 counts),

we excluded Userfee from the zero part of the models, respectively. Because of

computational problems in many subsamples causing non-convergence, we had to

exclude the zero-inflated Negative Binomial model from the analysis. Figure 11

shows the ranked probability scores computed from the test data sets (containing

219 observations each) for outcome values r 2 f0; . . .; 30g. It is seen that
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Fig. 11 Analysis of the boating trips data. The boxplots show the ranked probability score (for
r 2 f0; . . .; 30g) of the six classical models (left and middle panel) and the three transition models (right
panel). Due to computational problems, the zero-inflated Negative Binomial model was excluded from
the analysis. All methods were fitted to 100 subsamples without replacement of size 438 and evaluated on
the remaining 219 observations each
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accounting for excess zeros strongly improves the predictive performance within all

three model classes. The clearly best-performing models (on average), were the

Hurdle Negative Binomial model (sixth boxplot) and the extended transition model

(ninth boxplot). This again underlines that the proposed model flexibly adapts to the

data and is not inferior to tailored classical models in terms of prediction.

The results from fitting the two superior models to the whole sample of n ¼ 657

individuals are given in Table 4. Both models closely coincide. A high quality

ranking increases the probability for outcome values greater than zero

(b̂0 ¼ 1:428=1:495). Within the second part of the model the expected number of

boating trips was significantly higher for individuals that (i) did water-skiing at the

lake, and (ii) payed a user fee. On the other hand, the expected number of boating

trips decreased with the expenditure spent when visiting the lake. In terms of the

transition model, the continuation ratio (7) is decreased by the factor expð�0:9Þ ¼
0:407 with an increased expenditure of 100 USD, since the corresponding

parameter is �0:009.

7 Software

A crucial advantage of the proposed transition models is that they can be fitted using

standard software for binary response models. Before fitting models one has to

generate the binary data ð ~Yi0; ~Yi1; . . .; ~YiYiÞ
T ¼ ð1; 1; . . .; 1; 0Þ that encode the

transitions up to the observed outcome. This is done by the generation of an

Table 4 Analysis of the boating trips data

Zero Non-Zero

Coef SE z-value Coef SE z-value

Hurdle (NegBin)

Quality 1.428 0.118 12.143 0.156 0.103 1.524

Ski 0.216 0.374 0.579 0.705 0.260 2.711

Income 0.012 0.095 0.124 - 0.087 0.088 - 0.987

Userfee – – – 1.113 0.526 2.115

Cost - 0.004 0.003 - 1.207 - 0.010 0.004 - 2.847

P-Splines (Zero)

Quality 1.495 0.101 14.821 0.110 0.062 1.782

Ski 0.188 0.315 0.595 0.393 0.161 2.443

Income - 0.033 0.083 - 0.398 - 0.068 0.053 - 1.299

Userfee – – – 1.021 0.317 3.216

Cost - 0.003 0.003 - 1.085 - 0.009 0.002 -3.963

Parameter estimates, standard errors and z-values obtained from fitting the Hurdle Negative Binomial

model (upper panel) and the extended transition model (lower panel) with penalized B-splines accounting

for excess zeros

123

1280 M. Berger, G. Tutz



augmented data matrix, which is composed of a set of smaller (augmented) data

matrices for each individual. The resulting matrix has
Pn

i¼1 Yi rows. In R the

augmented data matrix can be generated using the function dataLong() in the

R package discSurv (Welchowski and Schmid 2019). Estimates of the model with a

quadratic penalty on the intercepts can be computed using the function

ordSmooth() in the R package ordPens (Gertheiss 2015), estimates of the

model with penalized B-splines can be obtained using the function gam() in the

R package mgcv (Wood 2006).

8 Concluding remarks

A semiparametric alternative for the modeling of count data is proposed. The

models are very flexible, as they do not assume a fixed distribution for the response

variable, but adapt the distribution to the data by using smoothly varying

coefficients. The extended form of the model further allows that also the regression

coefficients vary smoothly over categories. Importantly, the models also directly

account for the presence of excess zeros This has the key advantages that no

parametric distribution has to be chosen and no specific two-component model

needs to be built.

Our simulations and applications showed that in terms of prediction (measured

by the ranked probability score) the transition model performs at least as good as the

classical models in various settings. In more complex scenarios (as considered in

simulation (e)) the transition model is even superior to its parametric alternatives. It

was also illustrated that the extension to varying regression coefficients (in the third

application) further enhances the flexibility and the predictive ability of the model

class.

An important advantage of the transition models is that they can be embedded

into the class of binary regression models. Therefore all inference techniques

including asymptotic results to obtain confidence intervals that have been shown to

hold for this class of models can be used. A further consequence is that selection of

covariates can be done within that framework. Selection of covariates may be

demanding even for a moderate number of covariates, because the number of

regression coefficients highly depends on the number of response categories. For

example, regularization methods as the lasso are applicable but beyond the scope of

this article.

We restricted our consideration to the logistic link function. Although it is an

attractive choice, because of the simple interpretation of effects, it should be noted

that also alternative link function (e.g., the complementary log-log link function)

can be used for fitting. Also the assumption of linear predictors can be relaxed by

additive predictors, for example, by the use of spline functions for continuous

covariates. Then one might investigate non-linear (smoothly varying) coefficients.
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