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Abstract
We present a market model of a liberalized aviation market with independent decision
makers. The model consists of a hierarchical, trilevel optimization problem where
perfectly competitive budget-constrained airports decide (in the first level) on opti-
mal runway capacity extensions and airport charges by anticipating long-term fleet
investment and medium-term aircraft scheduling decisions taken by a set of imper-
fectly competitive airlines (in the second level). Both airports and airlines anticipate
the short-term outcome of a perfectly competitive ticket market (in the third level). We
compare our trilevel model to an integrated single-level (benchmark) model in which
investments, scheduling, and market-clearing decisions are simultaneously taken by
a welfare-maximizing social planner. Using a simple six airports example from the
literature, we illustrate the inefficiency of long-run investments in both runway capac-
ity and aircraft fleet which may be observed in aviation markets with imperfectly
competitive airlines.

Keywords OR in airlines · Mixed-integer optimization · Multilevel optimization ·
Market design · Long-run investments

1 Introduction

Over the past decades, many countries have liberalized their air transportation sector—
see, for instance, Bowen (2002), Fu et al. (2010), or Burghouwt and deWit (2015). This
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liberalization has led to the creation of markets in which different airlines compete
with each other and invest in new aircraft on the basis of their expectations of the
market outcomes and the corresponding profits to be made. Regulated airports, by
deciding on capacity extensions and setting their charges, directly affect the outcomes
of such markets while, at the same time, they rely on an anticipation of the market
outcomes (as well as on the expected growth of passenger volumes) when taking long-
term decisions. Such a complex investment structure involving independent decision
makers whose decisions affect each other challenges traditional planning processes
(see the literature review below), which do not account for the interplay of the different
investment decisions made by the different players involved at different points in time
and for their impact on market outcomes.

The purpose of this paper is to introduce a newmodel capable of providing valuable
information on how to make optimal investments in a complex market environment
with many market participants (airlines and airport operators), which can also be of
interest to policy makers as a market-analysis tool. The model we propose features
three hierarchical levels which correspond to three different decision-making stages.
Focusing on a set of airports and airlines of interest in the context of a liberalizedmarket
environment, the model allows for identifying which (optimal) capacity expansion
options the airports should consider (in the first level) as well as which (optimal)
long-run investments in new aircraft and medium-term aircraft-scheduling decisions
the airlines should make (in the second level) so as to maximize their own profits.
As the investment decisions of the airlines are based on their expected future profits,
our trilevel model also encompasses (in the third level) a model of the ticket market
which determines the corresponding ticket sales. Assuming imperfectly competitive
airlines, we quantify the investment inefficiencies of an imperfect aviation market by
comparing, experimentally, the results obtained with our trilevel model to those of a
single-level benchmark model with perfect competition among all players. The latter
is equivalent to assuming a benevolent social planner which, as the unique decision
maker, plans the whole industry in an integrated and welfare-maximizing way.

Quantitative models such as the one proposed in this paper can provide a valuable
tool to evaluate and assess airport extension projects as well as their interdependent
long-run effects on the airlines’ strategic decision making and policy making. Let us
motivate the relevance of our model by a current example.

1.1 Example

Given the lack of sufficient runway capacity of the two existing airports of Istanbul,
the Turkish authorities decided to build a third airport (Saldiraner 2013, 2014). On
the one hand, the currently observed airport congestion directly limits the operations
of any airline arriving at or departing from Istanbul. In particular, congestion highly
affects the planning decisions of the major local airline, Turkish Airlines, which, in
turn, depend on the (future) demand behavior of the passengers. On the other hand,
the expected fleet expansion strategy of Turkish Airlines and the anticipated future
passenger demand are the main reasons for the construction of the new airport, which
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will have a capacity of 150 million passengers per year with estimated construction
costs of more than 32 billion Euro.

1.2 Previous works

Given the typically large-sized and computationally challenging problems in the airline
industry, the operations research literature has identified different classes of real-
word problems which deal with certain aspects of the airline operational and strategic
planning processes—seeBarnhart et al. (2003) andJacobs et al. (2012) for an overview.
Among other aspects, these problems comprise schedule design (seeTeodorović and
Stojković 1990; Lederer and Nambimadom 1998; Burke et al. 2010), fleet assignment
(seeAbara 1989; Hane et al. 1995; Rushmeier and Kontogiorgis 1997, orRexing et al.
2000), and fleet planning (see, for instance,List et al. 2003; Clark 2007).

More recently, some authors have started to analyze integratedmodels which simul-
taneously account for several adjacent planning steps. For instance, (Lohatepanont
and Barnhart 2004; Sherali et al. 2013) elaborate on optimal schedule design and fleet
assignmentwithin a single planningmodel. Based on theseworks, (Kölker and Lütjens
2015) combines network planning, scheduling, and aircraft rotation in an integrated
planning approach, while (Faust et al. 2017) focuses on an integrated schedule design
and aircraft maintenance routing. Cadarsoa and Marín (2011) andCadarso and Marín
(2013) propose a robust approach covering an integrated airline schedule develop-
ment/design and fleet assignment.

While our work is closely related to the literature on airport capacity extensions,
in the past the latter has, however, mainly built on very simplified models where, e.g.,
at most two airports are considered and/or airline fleet investments are completely
ignored—see, for instance, (Zhang and Zhang 2006; Basso 2008; Xiao et al. 2013;
Santos and Antunes 2015; Sun and Schonfeld 2015; Kidokoro et al. 2016). To the best
of our knowledge, no hierarchical models of the aviation market similar to ours, which
(as better explained in the remainder of the paper) involves multiple players taking
sequential decisions affecting each other, are present in the literature.

1.3 Outline of our paper

Our paper is organized as follows. Section2 describes the model framework we con-
sider. The hierarchical, trilevel market model that we introduce is presented in Sect. 3.
Our reformulation of such model and the corresponding approach that we propose for
solving it are described in Sects. 4 and5. Section6 presents the single-level benchmark
model which we use as reference. Section7 discusses the results of a simplified case
study with six airports, laying the basis for future research on larger instances. Finally,
Sect. 8 summarizes the main findings of our work.
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2 Model framework

In this section, we first describe the main structure of the market environment we con-
sider and introduce the basic market participants. Secondly, we present more detailed
information on these players, including their main characteristics, their corresponding
key decision variables, and their profit and cost structures.

2.1 Overview of the relevant market players

Given a set of planning periods t ∈ T of interest, we consider an inter-temporal prob-
lem where different players take decisions affecting each others’ costs and revenues.

By the set N , we model a set of airports which can decide to extend their current
runway capacity. For each airport n ∈ N , we denote the corresponding decision
variable by xn ∈ N ∪ {0}. The latter variable measures the maximum number of
takeoffs/landings that can take place at an airport within a single time period.

In an analogous way, we assume that different airlines (modeled by the set A) can
make fleet expansion decisions based on a set of possible aircraft types Pa . For each
type p ∈ Pa , the variable yap ∈ N ∪ {0} corresponds to the number of airplanes of
type p the airline decides to extend its fleet with.

We also assume that each airline can make a set of airplane-scheduling decisions.
Let C be a set of connections, and let c ∈ Ca be the subset of connections that can be
served by airline a due to its exogenous business model. We refer to such connections
as actual. For technical modeling reasons (which we will better explain in Sect. 3.2),
we also introduce a superset of connections C̄ ⊃ C , with C̄a ⊃ Ca for each airline
a ∈ A. C̄\C and C̄a\Ca contain dummy connections which we will use to account for
parking situations in which an aircraft stays at the same airport for one or more time
steps. With each connection c ∈ C̄ , we associate a departure time tdepc , an arrival time
tarrc , a departure airport �depc , and an arrival airport �arrc . Given the set C̄ , we introduce
the variable zapc ∈ N∪{0} to model the number of airplanes of type p ∈ P that airline
a ∈ A decides to use to serve an (actual or dummy) connection c ∈ C̄ .

We model the number of tickets sold by airline a ∈ A on an (actual) connection
c ∈ C by the continuous variablewac ∈ R≥0. Lastly, wemodel the connection-specific
demand for each (actual) connection c ∈ C by the nonnegative continuous variable
dc ∈ R≥0.

An overview of the relevant market players and their main decisions is given in
Fig. 1, while Tables 6, 7, and 8 in AppendixA summarize the main sets, variables, and
parameters used in this work. As Fig. 1 suggests, there is a clear temporal dimension
to the decision process faced by the different players. We will further expand on such
temporal dimension in the trilevel model that we propose in Sect. 3.

In order to simplify our notation, whenever a quantity such as xn, yap, dc, zapc, or
wac is reported without one of its sub-/superscripts, this quantity is to be understood
as a collection containing as many elements as the number of different values the
missing sub-/superscript(s) can take. For instance, for each a ∈ A, za corresponds to
(zapc)p∈Pa ,c∈C̄a

.

123



Airport capacity extension, fleet investment, and aircraft scheduling... 371

Fig. 1 Overview of the relevant market players
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Fig. 2 Piecewise-linear total variable-cost function of an airport

In the remainder of the section, we will look at the different players individually
and give some more details and insights into the way we model their behavior in this
paper.

2.2 Airports

2.2.1 Existing runway Capacity and airport operation costs

Given the set of airports N of interest, we assume a given runway capacity κ
airport
n for

each airport n ∈ N . This value corresponds to the maximum number of takeoffs and
landings that can take place in that airport in a single timeperiod before any investments
take place. Such a modeling choice is in line with the assumption of runways operated
in a so-called mixed mode (in which a runway is used for both landings and takeoffs),
which is the case in various airports all around the world.

We assume that the airports face flight-dependent costs when operating an airport
and handling arriving and departing flights, which we describe by the total variable-
cost function Vairport

n . In this paper, we assume a piecewise-linear total variable-cost
function for each scheduled flight, an example of which is depicted in Fig. 2. The func-
tion consists of two different cost components and accounts for the total operational
expenses of an airport. First, for each aircraft arriving at or departing from airport
n ∈ N , a cost of α

airport
n is incurred (independently of the number of passengers on

board of the respective aircraft). This cost component may, for instance, comprise
taxi-in or taxi-out, parking, or gate-usage expenses. In addition, we assume that, for
each passenger on board of the aircraft, airport n ∈ N faces additional costs of βairport

n ,
which include, e.g., baggage handling, passenger transportation, or security checking
on a per-capita basis.
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Let δinn (Ca) be the set of all (actual) ingoing connections at airport n ∈ N of
airline a ∈ A. Analogously, let δoutn (Ca) be the corresponding set of outgoing (actual)
connections. By letting δn(Ca) := δinn (Ca) ∪ δoutn (Ca), the total variable-cost function
for airport n ∈ N reads:

Vairport
n (z, w) :=

∑

a∈A

∑

c∈δn(Ca)

⎛

⎝
∑

p∈Pa

α
airport
n zapc + β

airport
n wac

⎞

⎠ . (1)

We remark that, while we assume that both the cost for arriving and departing at an
airport as well the passenger-based ones are identical, this assumption is not central to
our approach and can be easily lifted without hindering the correctness of our results. 1

2.2.2 Runway capacity investment costs

As described above, we assume that each airport n ∈ N may choose to invest in
additional runway capacity xn ∈ N∪{0}with a unit investment cost of iairportn . Besides
the actual runway construction costs, a runway capacity investment may also comprise
gate or terminal extensions which might be necessary in order to handle additional
flights. In line with the existing literature, throughout this paper we will assume that
all investment decisions are made (and realized) at the beginning of the planning
horizon—see, for instance, (Jenabi et al. 2013; Grimm et al. 2016a, b; Weibelzahl
2017). If, at a given airport, no investments are possible, we set xn = 0. We denote
the total investment costs of an airport n ∈ N by:

Iairportn (x) := iairportn xn . (2)

We note that the assumption of linearity of Iairportn is not stringent. Indeed, since Iairportn
only shows up in the objective function of the first-level problem (see Sect. 3), the
solution method we propose (see Sect. 4) in this paper is correct independently of the
nature of such a function, provided that the latter can be handled by a standard spatial
branch-and-bound solver (see Sect. 7.2 for more details on the solver we rely on).

1 Indeed, one could, w.l.o.g., introduce departure costs α
airport,dep
n , β

airport,dep
n and landing costs

α
airport,land
n , β

airport,land
n , and redefine V airport

n (z, w) in Eq. (1) as follows:

V
airport
n (z, w) =

∑

a∈A

⎛

⎜⎝
∑

c∈δinn (Ca )

∑

p∈Pa

(
α
airport,land
n zapc + β

airport,land
n wac

)

+
∑

c∈δoutn (Ca )

∑

p∈Pa

(
α
airport,dep
n zapc + β

airport,dep
n wac

)
⎞

⎟⎠ .
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2.2.3 Airport charges and budget

In this paper, we consider airport charges as a measure to recover investment and
operational airport costs. Even though different types of charges may be applied in
practice, we make the simplifying assumption that a passenger-based charge φn be
imposed on each passenger on board of an aircraft arriving at or departing from an
airport n ∈ N . Given these charges, the revenues of an airport n ∈ N paid by an
airline a ∈ A as a function of the number of tickets (wac) it sells on each (actual)
connection c ∈ Ca are defined as:

Rairport
na (φ,w) :=

∑

c∈δn(Ca)

φnwac. (3)

For similar charges that are used at different airports all around the world, see,
e.g., Frankfurt Airport (2016),Heathrow Airport (2017), orKennedy (2017). Let us
remark that our model can be easily adapted in order to account for other types of
airport charges (e.g., charges based on the tonnage of the airplane or on its noise
category). Such charges may in general be treated either as endogenous variables or
as exogenous parameters. Examples exist in the literature of both variants—see, for
instance, (Jenabi et al. 2013) or (Grimmet al. 2016a). Since, in our paper, purely exoge-
nous charges would limit and bias the investment behavior of the different airports,
we model the decision on optimal airport charges as endogenous.

We express the profits of an airport as equal to its income from airport charges
minus runway capacity investments and operational costs. For each airport n ∈ N ,
such profit can be expressed as:

ρ
airport
n (x, φn, z, w) :=

∑

a∈A

Rairport
na (φ,w) −

(
Vairport
n (z, w) + Iairportn (x)

)
. (4)

2.3 Airlines

Let Pa be the set of different aircraft types, e.g., A330 or Boeing 747, which an
airline a ∈ A is willing to operate or to invest in according to its exogenous business
model given ex ante. The importance of the business models in the airline industry
has recently been highlighted by different authors. For instance, Nataraja and Al-Aali
(2011) discusses the strategy of Emirates, which mainly builds on the two aircraft
types A380 and Boeing 777.

Let eairlineap be the number of aircraft of a specific type p ∈ Pa the existing fleet of
airline a ∈ A is composed of at the beginning of the planning horizon. Let also κaircraft

p
be the seat capacity of each aircraft of type p ∈ Pa .

2.3.1 Fleet operation costs

Similarly to the airports, we assume that flight-dependent costs are described by a
piecewise-linear total variable-cost function Vairline

a which depends on two different
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cost parameters. Independently of the number of passengers on board of the aircraft, we
assume that a constant cost equal to αairline

apc is incurred per completed flight due to, for
instance, fuel costs of the empty aircraft p ∈ Pa on an (actual) connection c ∈ Ca . As
the total fuel costs would increase with the number of passengers, we further assume
a variable per capita passenger-related cost coefficient of βairline

ac , which may vary
between different (actual) connections c ∈ Ca .2 Note that this cost may also capture
further passenger-related costs like, for instance, food or beverage costs. Using this
notation, the total variable-cost function for an airline a ∈ A is:

Vairline
a (z, w) :=

∑

c∈Ca

⎛

⎝
∑

p∈Pa

αairline
apc zapc + βairline

ac wac

⎞

⎠ . (5)

2.3.2 Aircraft investment and fleet expansion costs

As mentioned before, we assume that the airlines can invest in new aircraft. Similarly
to runway capacity extensions, we assume that aircraft investments take place at the
beginning of the planning horizon. For each type of aircraft p ∈ P , we assume a unit
cost of iaircraftp . Thanks to the decision variable yap ∈ N ∪ {0}, which quantifies the
number of additional aircraft of type p ∈ Pa that airline a ∈ A purchases, the total
investment cost for airline a ∈ A corresponds to:

Iairlinea (ya) :=
∑

p∈Pa

iaircraftp yap. (6)

2.4 Passengers (ticket demand, consumer surplus, and resulting revenues of
airlines)

A set of (price-sensitive) passengers can buy tickets for the different (actual) flight
connections c ∈ Ca of an airline a ∈ A. Each (actual) connection c ∈ C departs and
arrives within the assumed planning horizon T . For the sake of simplicity, we only
consider a single, aggregated fare class as done, for instance, inLohatepanont and
Barnhart (2004). As discussed above, we use the variable dc ∈ R≥0 to describe the
elastic ticket demand on connection c, while we denote by wac ∈ R≥0 the number of
tickets sold by airline a ∈ A on its flight connection c ∈ Ca .

We further assume non-arbitraging customers who purchase flight tickets from their
origin to their destination of choice without intermediate stops (we illustrate how to
partially lift this assumption in Sect. 3.4). The strictly decreasing function Pconc (s)
gives the maximum price that at least s customers are willing to pay for a ticket for
connection c ∈ C . Note that Pconc is given as an input and it cannot be influenced by any
decisions made by an airline. For the way the ticket prices are determined (they corre-
spond, for each connection c ∈ C , to the Lagrangian multiplier of the market-clearing

2 For the sake of simplicity and in order to reduce the computational burden, we assume a cost coefficient
which is independent of the aircraft type. The model can be, nevertheless, easily generalized to the case of
a cost βairline

apc specific to the aircraft type by extending the variable wac with an index p.
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Fig. 3 Timing of the hierarchical, trilevel game

constraint for that connection of the single-level welfare-maximization problem), we
refer the reader to Proposition1.

Based on the above definitions, we define the gross consumer surplus as the fol-
lowing integral: ∫ dc

0
Pconc (s) ds. (7)

By aggregating the maximum willingness to pay for dc tickets, the gross consumer
surplus corresponds to the total monetary gross benefit obtained from purchasing and
eventually using dc tickets. As we will see in Sects. 3.1 and 3.3, by subtracting the
costs necessary to supply the dc tickets from the gross consumer surplus, we arrive at
the concept of welfare.

Finally, since the airline revenues are generated by ticket sales, the revenue of an
airline a ∈ A corresponds to the above-defined ticket price Pconc multiplied by the
number of tickets sold:

Rairline
a (d, w) :=

∑

c∈Ca

Pconc (dc) wac. (8)

3 Trilevel market model

The key feature as well as the key challenge of liberalized aviation markets is that an
optimal decision of a player will highly depend on the optimal decisions of all the
other players. In this section, we present a market model where the optimal behavior
of the players we consider is influenced by their expectations on the optimal reaction
of the other players to their choices.

Inmore detail, themodelwe propose is a hierarchical game-theoreticalmodelwhere
three groups of players, the airports, the airlines, and the passengers, make decisions
over three different levels (or stages). The order of such levelsmarks the different points
in time in which the players’ decision-making problems arise. The actual timing
of the decision-making situation we consider is depicted in Fig. 3. In it, long-term
airport capacity investments are followed by long-term airline fleet investments and
medium-term aircraft scheduling, which are then followed by short-term ticket trade.
Planning and operation situations with a similar timing are commonly highlighted in
the literature as, e.g., in Smith and Jacobs (1997) or Jacobs et al. (2012).

Key to our hierarchical model is the fact that, as mentioned before, the decisions
taken by each player (either as a group or individually) affect the utility (in terms of
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revenues and costs) of the other players and, in turn, are affected by such decisions.
For instance, the airlines’ fleet expansion decisions as well as their scheduling deci-
sions are affected by the airports’ investments in runway capacities, while, in turn,
the investments the airlines would make as a consequence of the airports’ capacity
expansion choices drive the airports’ investment decisions. Assuming rational players,
the optimal decisions made by a player should therefore take into account how the
other players would react to it, factoring their reaction into the player’s own decision-
making process so to choose a strategy which is best possible for her/him/it. Similar
assumptions are made in the operations research andmathematical programming liter-
ature on bilevel (and multilevel) optimization, seeColson et al. (2007), Bolusani et al.
(2020) for a survey, and are rooted in the game-theoretical literature on Stackelberg
and hierarchical games, whose origin is inVon Stackelberg (1934).

As we will better explain in the following, in our hierarchical, trilevel model the
airports play as a single, aggregated player (leader) in the first level while the airlines
play imperfectly competitively in the second level, thereby reaching a generalized
Nash equilibrium, or GNE [i.e., a Nash equilibrium with constraints, seeFacchinei
and Kanzow (2010) for a survey as well as the seminal paper (Nash 1951) on Nash
equilibria]. The outcome (in terms of number of sold tickets) of the competitive ticket
market is modeled in level three as a further optimization problem whose solution
is affected by the airlines’ investment and scheduling decisions on level two (which,
in turn, depend on the airports’ decisions made in level one). The latter is in line
with previous works, includingBarroso et al. (2006) andPozo et al. (2013). All the
modeling choices we make are better motivated in the following.

From a mathematical optimization perspective, we will cast the problem of com-
puting an equilibrium in the game underlying our hierarchical, trilevel model as a
trilevel mathematical programming problem with a single (different) decision maker
in levels one and three and many competing decision makers in level two.

For the sake of a better overview, the overall trilevel market model that we consider
is depicted in Fig. 4. In the remainder of the section, we describe the different problems
that occur in each level of the trilevel model, their dependency on the solution that
was determined in the previous levels as well as on the anticipated solution to the
problems in the next levels and the way in which, in the second level, the players
(airlines) imperfectly compete with each other. A mathematically equivalent single-
level reformulation, which will be the key for solving the problem from an algorithmic
perspective, is presented in Sect. 4.

3.1 First-level problem: airport capacity investment

In the first level, the airports choose the passenger-based charges φ and provide the
necessary infrastructure (which is used by both airlines and passengers) by taking
runway capacity-extension decisions.

In a lot of countries all around the world, many airports are highly regulated by gov-
ernmental authorities with complex planning and approval procedures. In Germany,
for instance, the GermanAviation Law (§19b) requires the airports to obtain an official
permission for their charges where, among other (public interest) criteria, objectivity,
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Fig. 4 The Trilevel problem

transparency, and non-discrimination must be guaranteed. In addition, especially in
structurally weak regions, airports are often regarded as state-infrastructure projects
oriented toward public (i.e., welfare) goals, offering important infrastructure services
to the public (it is often the case that airports are owned and operated by public bodies).
On these and related topics, also seeBasso (2008).

It is therefore natural to make (as we do in this paper) the assumption that the
airports and their charges be regulated in such a way that it is in an airport’s best
interest to maximize welfare—the welfare function being defined as the aggregated
difference between the gross consumer surplus defined in (7) and the total investment
and variable costs of the airports and airlines defined in (1)–(2) and (5)–(6). As such,
welfare gives the net realized monetary gains obtained from trading and eventually
using the flight tickets, having subtracted the relevant costs. It is therefore a natural
objective of a regulated airport pursuing public interests.

ω(d, x, y, z, w) :=
∑

c∈C

∫ dc

0
Pconc (s)ds

−
∑

n∈N

(
Iairportn (x) + Vairport

n (z, w)
)

−
∑

a∈A

(
Iairlinea (y) + Vairline

a (z, w)
)

.

(9)

We remark that, under the assumption of welfare-maximizing airports, the airport
charges are chosen as a way to “break even,” rather than to increase an airport’s own
profits by squeezing margins from the airlines.
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As thewelfare function ismaximized by each airport n ∈ N , we canw.l.o.g. assume
that the different airports behave as a single, aggregated player in control of all the
decisions that pertain the whole set of airports N . From a mathematical perspective,
this has the effect of reducing the number of players in the first level of our model to
just one.

Even though we assume welfare-maximizing airports, we still make the realistic
assumption that the airports are budget-constrained, i.e., that their profits must always
be nonnegative. Thus, we introduce the following budget constraints:

ρ
airport
n (x, φn, z, w) ≥ 0 ∀ n ∈ N . (10)

Finally, we make the following assumptions on the variables controlled by the
airports:

x ∈ N
|N | ∪ {0}. (11)

φ ∈ R
|N |
≥0 . (12)

We remark that, while the aggregated first-level decision maker, which corresponds
to the airports, can only control the investment and charge variables x and φ, its objec-
tive function and its budget constraints also depend on the fleet expansion variables
y, on the aircraft scheduling variables z, and on the ticket variables w. The values of
these variables are determined by other players in other levels of the hierarchy. Due to
the standard assumption of rationality, the aggregated first-level decision maker (the
airports) makes its decisions by anticipating the optimal value that y, z, and w vari-
ables would take when the corresponding decision makers (airlines and passengers)
react to the choice made by the airports for the values of the x and φ variables. This
implies that these different levels cannot be solved independently. We will formalize
this aspect from a mathematical perspective in Sect. 3.5.

3.2 Second-level problem: fleet expansion and aircraft scheduling

In the second level, imperfectly competitive airlines observe the capacity-extension
decisions made by the airports and (reacting to them) decide on their optimal fleet
expansion by investing in new aircraft, thereby choosing the value of the y variables.
For a discussion of imperfect competition in the airline industry, see, e.g., Adler (2001).
The airlines also schedule their aircraft by deciding, for each time period t ∈ T , what
number of aircraft of each type p ∈ Pa (be it new ones or old ones) should serve
which (actual or dummy) connection c ∈ C̄a . We assume, here, that each individual
airline a ∈ Amaximizes its profitρairline

a . Such value can be expressed as the difference
between revenues from ticket trade in the third level and the corresponding aircraft
investment cost, operational aircraft cost, and airport charges. Thus, the profit function
that each imperfectly competitive airline a ∈ A maximizes in the second-level reads:
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t1 t2 t3

sap fap

Munich

Berlin

∑

e∈δout(sap)

ze = yap + eairlineap

Fig. 5 Example of a time–space graph used for modeling the scheduling constraints

ρairline
a (φ, y, z, d, w) := Rairline

a (d, w)

−
(
Vairline
a (z, w) + Iairlinea (ya) +

∑

n∈N
Rairport
na (φ,w)

)
.
(13)

Once the investment in new aircraft has taken place, the airlines schedule their
whole fleet (which comprises both existing and new aircraft) as described above. In
particular, a decision is made by each airline as to whether or not a certain connection
should be served by one of its aircraft. In this context, a connection c ∈ C is defined, as
we mentioned before, as a tuple (�

dep
c , �arrc , tdepc , tarrc ) describing the departure airport

�
dep
c the flight starts from at a certain time tdepc and the corresponding arrival destination

�arrc that it will reach at another point in time tarrc . Note that our definition of connection
is independent of the assigned aircraft type and, rather, it only depends on time–space
characteristics, i.e., on the time and airport of departure and arrival. To give an example
of such a connection, consider an aircraft departing from �

dep
c = Munich at tdepc = 1

p.m. and reaching �arrc = Berlin at tarrc = 2 p.m. As defined before, Ca is the set of all
possible (actual) connections that airline a can decide to serve. Observe that, similarly
to fleet investment decisions, Ca may again be determined by an exogenous business
model of airline a ∈ A given ex ante. As we already introduced in Sect. 2.1, we also
consider a superset C̄ ⊃ C containing, besides all “actual” connections in C , a set of
“dummy” connections which we use to model the position in time and space of the
aircraft when they are not flying.

In order to describe the aircraft scheduling constraints, we introduce a time–space
graph for every pair (a, p) ∈ (A, Pa) to model the routes of all aircraft of type p ∈ Pa
of airline a ∈ A. See Fig. 5 for an illustration.

We first define a pair of dummy nodes consisting of a start node sap and a final
node fap. Moreover, for every airport and every time period, we introduce Ñap as the
set of nodes corresponding to the locations the aircraft can be at.

We define start edges Sap = δout(sap) and final edges Fap = δin( fap) to connect
the final and start nodes with the respective time and location-specific nodes at time
t = 1 and t = |T |. Horizontal edges define holdover edges e ∈ Hap and model the
fact that an aircraft can be in parking state for a certain amount of time. The edges
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in Sap ∪ Fap ∪ Hap correspond to the dummy connections C̄a\Ca we introduced
before. Furthermore, we use the actual connections Ca to define the flight edges Cap

depending on the aircraft type p ∈ Pa , connecting the departure node �
dep
c at time tdepc

to the arrival node �arrc at time tarrc . Such edges only exist if a connection can be served
by an airline given its exogenous business model specified ex ante.

Let us again refer to our example with two locations, Berlin andMunich, and three
time periods t1, t2, and t3, as depicted in Fig. 5. In the example, the aircraft starts in
Berlin and arrives after one time period in Munich. The way back takes more time,
which, for instance may be due to the flight trajectory being longer (this is the case
of, e.g., Larnaca–London flights which, usually, take about half an hour more than
London–Larnaca ones).

The following constraints ensure a feasible aircraft route:

∑

e∈Sap
ze = yap + eairlineap ∀ a ∈ A, p ∈ Pa (14a)

∑

e∈δoutn (Hap∪Cap)

ze −
∑

e∈δinn (Hap∪Cap)

ze = 0 ∀ a ∈ A, p ∈ Pa, n ∈ Ñap (14b)

∑

p∈Pa

zapc ≤ 1 ∀ a ∈ A, c ∈ Ca . (14c)

In the above constraints, we have extended our delta-notation by a time index t ∈ T
with δnt (Ca) so to describe the set of all ingoing and outgoing (actual) connections at
airport n ∈ N of airline a ∈ A in time period t ∈ T . For every (a, p) ∈ A×Pa pair and
for every edge e, the ze variables correspond to the scheduling variables zapc, where
c is the (actual or dummy) connection corresponding to edge e. Eq. (14a) guarantees
that no more than the aircraft that constitute the fleet of airline a be used, where eairlineap
is the number of aircraft of type p originally available. Constraints (14b) are flow-
conservation constraints enforcing that an aircraft can only serve a connection if it is
available at the respective airport. Furthermore, (14c) limits the number of scheduled
aircraft on each connection for each airline to one. This way, we prevent nonrealistic
schedules where two or more airplanes take off at the same time from the same origin
airport and land at the same time at the same destination airport.

Given the capacity expansion choice made by the airports in level one, whose
variable x (due to being set in the previous level) is perceived as a constant by the
airlines, we have to guarantee that the sum of all ingoing and outgoing flights of an
airport n ∈ N do not exceed its runway capacity (also accounting for possible runway
capacity extensions) in any time period t ∈ T :

∑

a∈A

∑

c∈δnt (Ca)

∑

p∈Pa

zapc ≤ κ
airport
n + xn ∀ n ∈ N , t ∈ T . (15)

Observe that, whilewe do notmodel airport congestion effects via delay cost functions,
our model could easily be extended to incorporate such functions explicitly. We also
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remark that, while all the scheduling constraints are specific to each airline, the airport
capacity constraints are shared by them.

Finally, we assume the following restrictions on the decision variables controlled
in this level:

yap ∈ N ∪ {0} ∀ a ∈ A, p ∈ Pa (16a)

zapc ∈ N ∪ {0} ∀ a ∈ A, p ∈ Pa, c ∈ Ca . (16b)

We remark that, while we assume that all types of aircraft can be used on every
connection, this assumption is not stringent and it can be easily lifted by introducing,
for all airlines a ∈ A, a 0 upper bound on the variables zapc for each pair (p, c)
corresponding to an aircraft type p and a connection c which are incompatible.

Let us highlight that, due to the assumption of imperfect competition in level two,
the airlines explicitly compete for the scarce runway capacity as well as for a share of
the ticket market (whose outcome is determined in level three) in order to maximize
their profits. Notice that the objective function and the constraints in this level depend
on variables (x, d, andw) whose value is set in either level one or three. As the value of
the x variables is set in the first level, such quantities are perceived as constants by the
airlines. Differently, the values of the d and w variables is determined in level three as
a consequence of the decisions made in level one and two. Therefore, we assume that
the airlines make their decisions by anticipating the value that such variables would
take as a consequence of their choice.

Crucially, due to the assumption of imperfect competition we cannot condense
all the airlines in a single player (as we did for the airports). In line with previous
works includingBarroso et al. (2006) andPozo et al. (2013), we rely on the concept
of generalized Nash equilibrium (GNE) and formulate the second-level problem as
an equilibrium problem with |A| players, one per airline, noncooperatively seeking
to maximize their individual profits subject to individual flow-conservation/airplane-
trajectory constraints and joint capacity constraints imposed on their scheduling
variables z. According to the notion of GNE, the airlines decide on a collection
of strategies y = (y1, . . . , y|A|) and z = (z1, . . . , z|A|) such that the decision ya, za of
each airline a ∈ A is best possible assuming that all the other airlines play according to
their strategy in y−a and z−a , where the latter two identify the decisions of all airlines
except for airline a.

We remark that, in this level, the imperfectly competitive airlinesmay decide to limit
their investments in order to increase their profits through higher prices on the ticket
market on the third level. In particular, the airlines’ imperfectly competitive behavior
does not necessarily imply an efficient (in terms of social welfare) use of airport
infrastructures. We illustrate such a situation in the computational experiments we
carry out in Sect. 7.

3.3 Third-level problem: ticket trade

After the airlines have invested and scheduled their flights in level two, the ticket
prices that will have to be paid by the price-sensitive customers and the corresponding
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number of sold tickets on the different routes (which, in turn, depend on the scheduling
choices of the airlines) are determined.

Especially with the emergence of various travel-fare metasearch engines and online
travel agencies like Expedia, Opodo, or Momondo, the ability for customers to com-
pare fares of different airlines has increased significantly (Egger et al. 2014). Thanks
to websites that the customers can use for price monitoring, price comparison, and
booking of (typically) the cheapest airline ticket on a desired route (and booking class),
the pressure on the airlines is constantly increasing. As a consequence, the airlines
are constantly monitoring the price level of their competitors by appropriate tools and
adjust their own price levels on the different connections appropriately. Therefore,
especially in timeswhere the customers can rely onmanymultichannel ticket purchase
possibilities, it is reasonable to model the outcome (in terms of number of tickets sold)
of the ticket market by a perfectly competitive ticket-market model.3

We formulate the ticket trade problem as an equilibrium problem involving two
groups of players: the customers, aggregated as a player per connection c ∈ C , and
the different airlines. W.l.o.g., we aggregate all customers of a given connection c ∈ C
into a single “aggregate” customer. Under the assumption of perfect competition, we
assume exogenously given ticket prices π∗

c for each connection c ∈ C .
The aggregate customer of connection c maximizes its benefit, defined as the dif-

ference between gross consumer surplus (as a function of realized demand dc) and the
ticket price that corresponds to it:

∫ dc

0
Pcon
c (s)ds − π∗

c dc ∀c ∈ C . (17)

The aggregate customer only faces a nonnegativity restriction on the demand:

dc ∈ R≥0 ∀c ∈ C . (18)

Each airline a ∈ A maximizes its profits, defined as:

∑

c∈C
π∗
c wac − V airline

a (za, wa) −
∑

n∈N
Rairport
na (φ,wa) ∀a ∈ A. (19)

To guarantee that, for each airline a ∈ A, the number of passengers on a connection c ∈
Ca does not exceed the capacity of the aircraft that has been scheduled on it, we impose
the following constraint to limit the number of sold tickets per connection:

wac ≤
∑

p∈Pa

κaircraft
p zapc ∀ a ∈ A, c ∈ Ca . (20)

Also, we assume the following restrictions on the variables of each airline:

wa ∈ R
|C|
≥0 ∀a ∈ A. (21)

3 The same assumption (of perfect competition) is often made in the literature for many complex multilevel
models that arise from the applications. See, e.g.,Grimm et al. (2016a).
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In addition, we must ensure market clearing for each connection, i.e., we must
ensure that, for each connection, the number of tickets bought by the passengers be
equal to the number of tickets sold for that connection. This is achieved by imposing
the following constraint:

dc =
∑

a∈A

wac ∀ c ∈ C . (22)

Compactly, the ticket-market model we consider boils down to the following equi-
librium problem, where the exogenous prices π∗

c , c ∈ C , are variables:

dc ∈ argmax
dc≥0

{∫ dc

0
Pcon
c (s)ds − π∗

c dc

}
∀c ∈ C (23a)

wa ∈ argmax
wa∈R|C |

≥0

⎧
⎪⎪⎨

⎪⎪⎩

∑

c∈C
π∗
c wac − V airline

a (za , wa) −
∑

n∈N
R
airport
na (φ, wa)

s.t. wac ≤
∑

p∈Pa

κaircraftp zapc ∀ c ∈ Ca

⎫
⎪⎪⎬

⎪⎪⎭
∀a ∈ A (23b)

dc =
∑

a∈A

wac ∀ c ∈ C (23c)

π∗
c ∈ R ∀c ∈ C . (23d)

We remark that Problem (23a) coincides with the maximization of (17) over dc ≥ 0
with a given price π∗

c . Due to Pcon
c (s) being (by assumption) strictly decreasing, the

(unique) solution to Problem (23a) coincides with setting dc = arg sups≥0{Pcon
c (s) ≥

π∗
c }, which indicated that every passenger with willingness to pay at least π∗

c will buy
a ticket.

The objective functions of the players involved in this equilibrium problem depend
on the z and φ variables, whose value is not determined in it but, rather, it is set in,
respectively, the second and the first level. Therefore, these variables are all perceived
as constants here. Crucially, as the third-level problem is the last problem in our
hierarchical model, it does not involve any variables whose value is set in further
levels and, therefore, it does not involve any anticipation.

3.4 Reformulation of the third-level problem as a (single-level)
welfare-maximization problem

We now show how to recast the third-level equilibrium problem as a single-level
problem in which welfare is maximized. Similar reformulations can be found in,
e.g.,Grimm et al. (2016a), Hobbs and Helman (2004).

Let us introduce the following third-level welfare function, defined as the difference
between the gross consumer benefit and the total costs incurred by the airlines (we
refer to it as ωtickets to distinguish it from the welfare function ω that is maximized by
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the airports in level one):

ωtickets(φ, z, d, w) :=
∑

c∈C

∫ dc

0
Pconc (s)ds

−
∑

a∈A

(
Vairline
a (za, w) +

∑

n∈N
Rairport
na (φ,w)

)
.

(24)

The single-level welfare-maximization problem we introduce calls for maximizing
the objective function in (24) subject to constraints (20) and (22), as well as to the
restrictions on the variables in (18) and (21). Similarly to the original equilibrium
problem, this problem is parametric in the x, φ, y, z variables which, in it, behave as
givens. Compactly, it reads as follows:

max
d∈R|C |

≥0 ,w∈R|A|×|C |
≥0

ωtickets(φ, z, d, w) =
∑

c∈C

∫ dc

0
Pconc (s)ds (25a)

−
∑

c∈Ca

( ∑

p∈Pa

αairline
apc zapc + βairline

ac wac

)
(25b)

−
∑

a∈A

∑

n∈N

∑

c∈δn(Ca)

φnwac (25c)

s.t. wac ≤
∑

p∈Pa

κaircraft
p zapc ∀ a ∈ A, c ∈ Ca (25d)

dc =
∑

a∈A

wac ∀ c ∈ C . (25e)

With the following proposition, we show that the two problems are equivalent:

Proposition 1 The solutions to the single-level welfare maximization problem (25)
coincide with those to the perfect-competition equilibrium problem (23).

Proof All of the constraints of the welfare-maximization problem in (25) are linear,
which implies that constraint qualification holds everywhere on the feasible region.
Since the problem calls for the maximization of a concave function, all of its KKT
points are global optima, i.e., its KKT conditions are both necessary and sufficient (see,
for instance, Boyd and Vandenberghe (2004)). Therefore, all of its optimal solutions
satisfy the following KKT system:

− βairline
ac − φ

�
dep
c

− φ�landc
− γac + λac + μc = 0 ∀a ∈ A, c ∈ Ca (26a)

Pconc (dc) − μc + νc = 0 ∀c ∈ C (26b)

wac −
∑

p∈Pa

κaircraft
p zapc ≤ 0 ∀a ∈ A, c ∈ Ca (26c)

dc −
∑

a∈A

wac = 0 ∀c ∈ C (26d)
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− wac ≤ 0 ∀a ∈ A, c ∈ Ca (26e)

− dc ≤ 0 ∀c ∈ C (26f)

γac ≥ 0 ∀a ∈ A, c ∈ Ca (26g)

μc ∈ R ∀c ∈ C (26h)

λac ≥ 0 ∀a ∈ A, c ∈ Ca (26i)

νc ≥ 0 ∀c ∈ C (26j)

γac

(
wac −

∑

p∈Pa

κaircraft
p zapc

)
= 0 ∀a ∈ A, c ∈ Ca (26k)

λac(−wac) = 0 ∀a ∈ A, c ∈ Ca (26l)

νc(−dc) = 0 ∀c ∈ C . (26m)

Let us consider the equilibrium problem (23). For each player c ∈ C , the KKT system
of its decision-making problem reads:

Pconc (dc) − π∗
c + νc = 0 (27a)

νc ≥ 0 (27b)

νc(−dc) = 0. (27c)

For each player a ∈ A, the KKT system of its decision-making problem reads:

π∗
c − βairline

ac − φ
�
dep
c

− φ�landc
− γac + λac = 0 ∀c ∈ Ca (28a)

wac −
∑

p∈Pa

κaircraft
p zapc ≤ 0 ∀a ∈ A, c ∈ Ca (28b)

−wac ≤ 0 ∀c ∈ Ca (28c)

γac ≥ 0 ∀c ∈ Ca (28d)

λac ≥ 0 ∀c ∈ Ca (28e)

γac

(
wac −

∑

p∈Pa

κaircraft
p zapc

)
= 0 ∀c ∈ Ca (28f)

λac(−wac) = 0 ∀c ∈ Ca . (28g)

Thus, every solution to (23) consists of a triple (d, w, π∗) satisfying (27), (28), and the
market-clearing constraint (22). Letting π∗ = μ, (d, w, π∗), these equations coincide
with (26). 	


In the remainder on the paper, we will solely consider the welfare maximization
problem as, while the two are equivalent, the former results in a less complex problem
from a computational point of view.

We remind that the welfare-maximization problem is always feasible for every
choice of the first and second-level variables (x, φ, y, z) and it always admits a finite
optimal solution.
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Notice that this problem can be decomposed into |C | independent problems, one
per connection. From an economical perspective, this is due to the fact that we are
assuming the demands for two different connections to be independent. Also observe
that, in contrast to the welfare objective functionω that is used in level one, the welfare
function ωtickets that we adopt here to model the ticket market does not account for
(sunk) investment costs, but, rather, only considers variable flight-dependent costs and
the relevant airport charges.

We note that, while, in our model, we assume that passengers consider each con-
nection separately, the extension to the case with multileg trips and changeovers can
be made without too much effort. 4

3.5 Complete trilevel model

We are now ready to introduce the trilevel optimization problem that we propose in this
paper from a mathematical-optimization perspective. First, we present the following
result:

Theorem 1 Assume that, for each airline a ∈ A, the variable-cost coefficients βairline
ac

are pairwise distinct for each connection c ∈ C. Then, the third-level welfare-
maximization problem (25) admits a unique optimal solution.

Proof The objective function ωtickets(φ, z, d, w) of the problem features three terms:
∑

c∈C
∫ dc
0 Pconc (s)ds,

∑
a∈A V

airline
a (z, w), where Vairline

a (z, w) = ∑
c∈Ca

(∑
p∈Pa

αairline
apc zapc + βairline

ac wac

)
, and

∑
a∈A

∑
n∈N Rairport

na (φ,w), where Rairport
na (φ,w) =

∑
c∈δn(Ca)

φnwac. The first term, due to Pconc (s) being a strictly decreasing function, is
strictly concave in d and constant in w, while the second and third term are constant
in d and linear inw. The problem decomposes into |C | independent subproblems, one
per connection. As each connection c ∈ C has a unique pair of departure and landing
airports �

dep
c , �landc , the value of φn is constant in each subproblem and, thus, the third

term can be ignored. Let d∗
c be the optimal demand level of the subproblem for con-

nection c ∈ C . Due to the assumption, we can assume, w.l.o.g., βairline
ac < βairline

a′c for
all a, a′ ∈ A : a < a′. Any solution w with wac <

∑
p∈Pa κaircraft

p zapc and wa′c > 0
for some a, a′ ∈ A : a < a′ is not optimal as shifting some of the value of wa′c to
wac would improve the solution value. We deduce that w∗

ac is optimal if and only if

4 Let T be a set of trips, with each trip τ ∈ T consisting of a collection of connections (or legs)Cτ . Rather
than a demand dc per connection c ∈ C , let us introduce a demand dτ per trip τ ∈ T . Let us redefine

the gross consumer surplus per trip τ ∈ T as
∫ dτ
0 Pcons

τ (s)ds, where Pcons
τ is the maximum price at least

s customers are willing to pay for a ticket for trip τ . From an equilibrium-problem perspective, we now
have a consumer/player for each trip τ ∈ T , rather than for each connection c ∈ C . The market-clearing
constraint becomes

∑
τ∈T :c∈Cτ

dτ = ∑
a∈A wac for all c ∈ C . Assuming exogenous prices π∗

c for each
connection c ∈ C and assuming a price of

∑
c∈Cτ

π∗
c for each trip τ ∈ T , it is not difficult to see that

the result of Proposition 1 still applies, i.e., we can still solve the market-clearing problem as a single-level
welfare-maximization problem with variables dτ , τ ∈ T , rather than dc, c ∈ C , and the above-redefined
willingness to pay function Pcons

τ and market-clearing constraint. As this has no impact on levels 1 and 2
(as only the wac variables have an impact there), the method we propose in the paper remains valid for the
trip case.
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∃ā ∈ A such that:

w∗
ac =

⎧
⎪⎨

⎪⎩

∑
p∈Pa κaircraft

p zapc a < ā

d∗
c − ∑

a∈A:a<ā
∑

p∈Pa κaircraft
p zapc a = ā

0 a > ā.

Clearly, such a solution is unique. Due to the objective function of each subproblem
being strictly concave in dc, this implies that the overall problem admits a unique
global optimum. 	


In the following, whenever it is necessary to refer to the (unique, due to Theorem1)
values that the variables w and d take for a specific choice, let us call it φ̂, ẑ, of the
φ, z variables which is different from the value these variables take in an equilibrium
solution to the trilevel model, we will use the notation w(φ̂, ẑ) and d(φ̂, ẑ).

According to the standard notion of generalized Nash equilibrium, we say that
a strategy profile (a collection of strategies, one per airline) (y, z) corresponds to a
GNE if and only if, for every airline a ∈ A, a unilateral deviation from a GNE which
is feasible when the other airlines play their equilibrium strategy does not lead to a
strictly larger profit for airline a. Denoting by y−a and z−a the set of subvectors of
y and z containing every component except for that of airline a, the latter implies,
equivalently, that, given a GNE (y, z), the (feasible) best-response strategy that each
airline a ∈ A can adopt to react to the strategies (y−a, z−a) the other airlines play
at that GNE must not yield airline a a profit strictly larger than the one the airline
would make by playing the strategy (ya, za) that the equilibrium prescribes. Formally,
we must guarantee that the following best-response constraints be satisfied for each
a ∈ A:

ρairline
a (φ, y, z, w, d)

≥ max ŷa ,ẑa

{
ρairline
a (φ, ŷa, y−a, ẑa, z−a, w(φ, ẑa, z−a), d(φ, ẑa, z−a)) :

(ŷa, y−a, ẑa, z−a) satisfy (14), (15), (16a), (16b) for the given x

}
.

(29)

The right-hand side of the inequality corresponds to the problem of computing a best-
response strategy (ŷa, ẑa) for airline a ∈ A, possibly different from (ya, za), to react to
the strategy (y−a, z−a)of the other airlines.According to the standardgame-theoretical
terminology,we refer to it as abest-responseproblem. Theoptimal solution to this best-
response problem corresponds to the largest revenue airline a could make given the
airport chargesφ and under the assumption that the investment strategy and scheduling
decisions of the other airlines correspond to (y−a, z−a). Note that the objective func-
tion of the best-response problem depends on w(φ, ẑa, z−a), d(φ, ẑa, z−a), which,
according to our notation, correspond to the (unique, due to Theorem1) values that
thew, z variables would take if the all airlines but a were to play the strategy specified
by y, z while airline a were to deviate from it by playing ŷa, ẑa .

Formally, we require that the best response (ŷa, ẑa), together with the other air-
lines’ strategies (y−a, z−a), satisfy constraints (14), (15), (16a), and (16b)—or, more
precisely, that ŷa satisfy (16a), ẑa satisfy (16b), that (ŷa, ẑa) satisfy (14), and that
ẑa , jointly with z−a and for the given x , satisfy (15). Note that the latter are the only
constraints that link the strategies of the different airlines together, i.e., they are the
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only constraints responsible for the problem to be a GNE problem, rather than just a
Nash equilibrium problem.

By imposing best-response constraints with (29), we guarantee that the investment
strategy ya and the scheduling decision za of each airline a ∈ A be at least as profitable
for that airline as the most profitable ones, which we denote by (ŷa, ẑa), that the airline
couldmake under the assumption that the other airlines’ decisions were those in (y, z).

Interestingly,wenote that the right-hand side of each of constraints (29) corresponds
to a bilevel programming problem (i.e., a multilevel problem with two levels). This
is because, due to containing w(φ, ẑa, z−a) and d(φ, ẑa, z−a), each best-response
problem embeds an instance of the third-level problem.

We now report, for better readability, a schematic illustration of the full trilevel
model we propose:

max
x∈N|N |
φ∈R|N |

≥0

ω(d, x, y, z, w)

s.t. ρ
airport
n (x, φn ) ≥ 0 ∀n ∈ N

ρairline
a (φ, y, z, d, w) ≥ max

ŷa∈N|A|
ẑa∈{0,1}|A|

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρairline
a (φ, ŷa , y−a , ẑa , z−a , d̂a , ŵa )

s.t.
∑

a′ ∈A\{a}
∑

c∈δnt (Ca′ )

∑
p∈Pa′

za′ pc + ∑
c∈δnt (Ca′ )

∑
p∈Pa

ẑapc ≤ κ
airport
n + xn ∀n ∈ N , t ∈ T

∑
e∈Sap

ẑe = ŷap + eairlineap ∀p ∈ Pa

∑

e∈δoutn (Hap∪Cap )

ẑe − ∑

e∈δinn (Hap∪Cap )

ze = 0 ∀p ∈ Pa , n ∈ Ñap

∑
p∈Pa

ẑapc ≤ 1 ∀c ∈ Ca

(d̂a , ŵa ) ∈ argmax
d̂∈R|C|

≥0

ŵ∈R|A|×|C|
≥0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ωtickets(d̂a , ŵa )

s.t. ŵa
a′ c ≤ ∑

p∈Pa′
κaircraft
p zaa′ pc ∀a′ ∈ A\{a}, c ∈ Ca′

ŵa
ac ≤ ∑

p∈Pa

κaircraft
p ẑaapc ∀c ∈ Ca

d̂ac = ∑
a∈A

ŵa
ac ∀c ∈ C

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀a ∈ A

∑
a∈A

∑
c∈δnt (Ca )

∑
p∈Pa

zapc ≤ κ
airport
n + xn ∀n ∈ N , t ∈ T

∑
e∈Sap

ze = yap + eairlineap ∀a ∈ A, p ∈ Pa
∑

e∈δoutn (Hap∪Cap )

ze − ∑

e∈δinn (Hap∪Cap )

ze = 0 ∀a∈ A, p∈ Pa , n∈ Ñap

∑
p∈Pa

zapc ≤ 1 ∀a ∈ A, c ∈ Ca

(d, w) ∈ argmax
d∈R|C|

≥0

w∈R|A|×|C|
≥0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωtickets(d, w)

s.t. wac ≤ ∑
p∈Pa

κaircraft
p zapc ∀a ∈ A, c ∈ Ca

dc = ∑
a∈A

wac ∀c ∈ C

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Let us comment on the model from the bottom up:

• Third level In its lower level, the constraints (d, w) ∈ argmax{·} impose that, given
the value of the x, φ variables chosen in level one and those of the variables y, z
chosen in level two, the d, w variables be equal to the (unique, due to Theorem1)
optimal solution to the market-clearing problem.

• Second level The constraints ρairline
a (φ, y, z, w, d) ≥ max{·}, together with the

three linear inequalities that follow them, guarantee that, given the value of the
x, φ variables set in level one, y and z be optimal for the GNE problem in level
two. In particular, this requires that, for each airline a ∈ A, its choice of values
for the ya, za variables be best possible given, besides the value of the x variable
chosen in level one, the choice for y−a, z−a made by the other airlines. The max{·}
part in the right-hand side is the best-response problem of computing the maxi-
mum revenue (with decision variables ŷa, ẑa) that is obtainable by airline a given
the choices y−a, z−a made by the other airlines—the constraint imposes that the
revenue ρairline

a (φ, y, z, w, d) be at least as large as this value. As the choice of an
airline a ∈ A to switch strategy from ya, za to ŷa, ẑa could trigger a change in the
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Fig. 6 Solution approach

market outcome, the best-response problem contains, as a subproblem, another
instance of the third level problem with variables d̂a, ŵa . Such variables model
the anticipation of the market outcomes for airline a under the assumption that
its strategy correspond to variables ŷa, ẑa rather than ya, za , while all the other
variables, including the y−a and z−a variables of airline a, keep their original
value.

• First level Our trilevel model is concluded by its airport capacity-extension con-
straints and its objective function, which correspond to those we introduced in
Sect. 3.1 when describing the first-level problem.

We show how to further reformulate the problem into a single-level problem in the
next section.

We remark that, in this model, we have implicitly made the assumption of opti-
mism, i.e., we have assumed that, if multiple GNE arose, a welfare-maximizing GNE
would be chosen. We believe that such an assumption is appropriate as, in general,
the airlines will abide by a corporate social responsibility that will not lead them to
choose a solution with a welfare-diminishing effect. For instance, a responsible busi-
ness practice is part of the corporate strategy of the Lufthansa Group, which aims at
“meeting (its) responsibilities toward the environment and society”—see Lufthansa
Group (2000).

4 Single-level problem reformulation

Multilevel problems are known to be computationally very challenging. See, for
instance, (Dempe 2002; Colson et al. 2007; Dempe et al. 2014; Coniglio et al. 2017;
Basilico et al. 2017, 2020; Coniglio et al. 2020) in which hardness and inapproxima-
bility results are shown for simpler problems featuring only two levels and a single
player per level. For a recent survey, we refer the reader toBolusani et al. (2020). To
find a solution to the model we proposed, in this paper we develop a reformulation
strategy which builds on the steps depicted in Fig. 6.

In the first step, we replace the third-level market problem by its Karush–Kuhn–
Tucker (KKT) conditions. We then add such conditions (and the corresponding
third-level variables) on top of the first-level problem. Then, we reformulate the best-
response problem of each airline via a set of extra constraints and variables which
we collectively refer to as best-response systems and which do not contain the max
operator which the original best-response constraints featured. Lastly, we add a copy
of the KKT conditions to the best-response systems of each airline to model the value
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that the third-level variables would take as a consequence of the deviation that the best-
response system looks for, thus obtaining what we refer to as explicit best-response
systems. Overall, this sequence of transformations yields a single-level reformulation
of the original trilevel problem.

4.1 Step 1: KKT reformulation of the third-level problem

In the trilevel hierarchy, the third-level market clearing problem is solved last, after
the values of all the decision variables controlled by the airports (x, φ) and the air-
lines (y, z) have been chosen. The third-level problem is, therefore, parametric in the
x, φ, y, z variables which, in it, behave as givens. From this perspective, the problem
is a maximization problem with a strictly concave quadratic objective and linear con-
straints and, hence, constraint qualification holds everywhere on its feasible region.
Therefore, all of its KKT points are global optima, i.e., its KKT conditions are both
necessary and sufficient (see for instance Dempe (2002) or Boyd and Vandenberghe
(2004)). Therefore, we can replace this problem by its KKT conditions, as reported
in (26).

We remind that the third-level problem is always feasible for every choice of the
first and second-level variables (x, φ, y, z) and, due to its strictly convex objective
function, it always admits a finite optimal solution.

4.2 Step 2: reformulation of the generalized Nash equilibrium problem via
best-response systems

We now show how to reformulate the best-response constraints (29) with a set of
constraints and variables that do not require the introduction of the max operator
featured in (29). As mentioned above, we refer to this set as to a best-response system.

For each a ∈ A, let Da be the set of indices of all pairs of strategies (ŷ j
a , ẑ ja) which

are feasible when considering airline a individually, that is, the indices of all pairs
(ŷ j

a , ẑ ja) which satisfy (14), (16a), and (16b). By construction, Da indexes a superset
of the possible deviations that airline a can take from an equilibrium solution.

Without loss of generality, we can rewrite constraints (29) as the following con-
straint:

ρsecond
a (φ, y, z, w, d)

≥ ρsecond
a (φ, ŷ j

a , y−a, ẑ
j
a, z−a, w(φ, ẑ ja, z−a), d(φ, ẑ ja, z−a)),

(30)

to be imposed for all pairs (ŷ j
a , ẑ ja) with j ∈ Da with the property that

(ŷ j
a , y−a, ẑ

j
a, z−a) is feasible for the given x and such that (ẑ

j
a, z−a) satisfy (15). Given

a strategy profile (y, z), for each a ∈ A and j ∈ Da (i.e., for each deviation (ŷ j
a , ẑ ja))

the previous constraints is equivalent to requiring that the following disjunction be
satisfied:
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• Either (ŷ j
a , y−a, ẑ

j
a, z−a), together with the φ and x chosen in the first level, sat-

isfies (30) as well as (15) for all n ∈ N and t ∈ T (in this case, we refer to
(ŷ j

a , y−a, ẑ
j
a, z−a) as a feasible deviation)

• Or (ŷ j
a , y−a, ẑ

j
a, z−a), together with the φ and x chosen in the first level, does not

need to satisfy (30) as it violates (15) for at least a pair of indices n ∈ N and t ∈ T
(in this case, we refer to (ŷ j

a , y−a, ẑ
j
a, z−a) as an infeasible deviation).

We now show how to express this disjunction in mixed-integer quadratic terms.
Let, for each a ∈ A, j ∈ Da, n ∈ N , t ∈ T , ζ

aj
nt ∈ {0, 1} be a binary variable

indicating whether the instance of constraint (15) with indices n, t is satisfied by
(ŷ j

a , y−a, ẑ
j
a, z−a) (i.e., ζ

aj
nt = 1) or violated (i.e., ζ

aj
nt = 0). In addition, for each

a ∈ A and j ∈ Da , let the binary variable ξaj ∈ {0, 1} be equal to 1 if and only if
constraints (15) are satisfied by (ŷ j

a , y−a, ẑ
j
a, z−a) for all n ∈ N , t ∈ T . The following

holds:

Theorem 2 Given a strategy profile (y, z), constraint (29) is satisfied for each a ∈ A
if and only if the following best-response system is satisfied, i.e., if and only if there
is an assignment of values to the variables ζ

aj
nt and ξaj for each j ∈ Da, n ∈ N, and

t ∈ T such that the following constraints are satisfied:

ρairline
a (φ, y, z, w, d)

≥ ρairline
a (φ, ŷ j

a , y−a, ẑ
j
a, z−a, w(φ, ẑ ja, z−a), d(φ, ẑ ja, z−a)) − M(1 − ξaj )

∀a ∈ A, j ∈ Da (31)
∑

a′∈A\{a}

∑

c∈δnt (Ca′ )

∑

p∈Pa′
za′ pc +

∑

c∈δnt (Ca)

∑

p∈Pa

ẑ japc ≤ κ
airport
n + xn + M(1 − ζ

aj
nt )

∀ n ∈ N , t ∈ T , j ∈ Da (32)
∑

a∈A

∑

c∈δnt (Ca)

∑

p∈Pa

zapc +
∑

c∈δnt (Ca)

∑

p∈Pa

ẑ japc ≥ κ
airport
n + xn − Mζ

aj
nt + 1

∀ n ∈ N , t ∈ T , j ∈ Da (33)

ζ
aj
nt ≥ ξaj ∀ a ∈ A, j ∈ Da, n ∈ N , t ∈ T (34)

∑

n∈N ,t∈T
(1 − ζ

aj
nt ) ≥ 1 − ξaj ∀ a ∈ A, j ∈ Da . (35)

Proof Consider each a ∈ A, j ∈ Da, n ∈ N , t ∈ T . If ζ
aj
nt = 1, (32) becomes equal

to (15) and (33) is slack. If ζ ajnt = 0, (32) is slack and (33) imposes that (15) be strictly
violated (by 1, which is the smallest possible positive violation since the constraint
contains integer coefficients and integer variables only). If ξaj = 1, (30) is imposed as
(31) becomes identical to it and, due to (34), ζ ajnt = 1 for all n ∈ N , t ∈ T . Therefore,
all of constraints (15) are imposed. If ξaj = 0, (30) is not imposed as (31) is slack
and, due to (35), ζ ajnt = 0 holds for at least a pair n ∈ N , t ∈ T—which implies that,
due to (33), the corresponding instance of constraint (15) is strictly violated. 	


123



Airport capacity extension, fleet investment, and aircraft scheduling... 393

4.3 Step 3: introduction of explicit best-response systems

Note that, to arrive at a single-levelmathematical programming formulation,we should
drop the two implicit functions w(φ, ẑ ja, z−a) and d(φ, ẑ ja, z−a) from constraints (31)
and substitute, for them, an appropriate set of variables with the corresponding con-
straints. Recall that w(φ, ẑ ja, z−a) and d(φ, ẑ ja, z−a) represent the anticipation of
airline a of the market outcome due to passenger charges equal to φ and flight sched-
ule decisions equal to (ẑ ja, z−a).

To drop them, we introduce the variables ŵaj and d̂a j for each j ∈ Da and impose
ŵaj = w(φ, ẑ ja, z−a) and d̂a j = w(φ, ẑ ja, z−a) by relying on a set of conditions
structurally similar to the KKT conditions (26). For each airline a ∈ A and j ∈ Da ,
such conditions read:

− βairline
a′c − φ

�
dep
c

− φ�landc
− γ

aj
a′c + λ

aj
a′c + μ

aj
c = 0 ∀a′ ∈ A, c ∈ Ca′ (36a)

Pconc (dajc ) − μ
aj
c + ν

aj
c = 0 ∀c ∈ C (36b)

w
aj
a′c −

∑

p∈Pa′
κaircraft
p za′ pc ≤ 0 ∀a′ ∈ A\{a}, c ∈ Ca′ (36c)

w
aj
a′c −

∑

p∈Pa′
κaircraft
p ẑ japc ≤ 0 ∀c ∈ Ca′ (36d)

− w
aj
a′c ≤ 0 ∀a′ ∈ A, c ∈ Ca′ (36e)

− dajc ≤ 0 ∀c ∈ C (36f)

dajc −
∑

a′∈A

w
aj
a′c = 0 ∀c ∈ C (36g)

γ
aj
a′c ≥ 0 ∀a′ ∈ A, c ∈ Ca′ (36h)

λ
aj
a′c ≥ 0 ∀a′ ∈ A, c ∈ Ca′ (36i)

ν
aj
c ≥ 0 ∀c ∈ C (36j)

γ
aj
a′c

(
w

aj
a′c −

∑

p∈Pa′
κaircraft
a′ za′ pc

)
= 0 ∀a′ ∈ A\{a}, c ∈ Ca′ (36k)

γ
aj
a′c

(
w

aj
a′c −

∑

p∈Pa

κaircraft
a ẑ japc

)
= 0 ∀c ∈ Ca′ (36l)

λ
aj
a′c(−w

aj
a′c) = 0 ∀a′ ∈ A, c ∈ Ca′ (36m)

ν
aj
c (−dajc ) = 0 ∀c ∈ C . (36n)

We introduce one such system of inequalities and variables for each pair a ∈
A, j ∈ Da . Each of them contains its own copy ŵaj , d̂a j of the w, d variables, the
corresponding constraints, the corresponding dual variables, and the corresponding
complementarity constraints. Notice that the system features two types of z vari-
ables: the za′ pc variables, which refer to the equilibrium strategy chosen by all airlines
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a′ ∈ A\{a}, and the ẑa jpc variables, which correspond to the deviating strategy of index
j ∈ Da that is considered by airline a in the original best-response system. We refer
to a best-response system employing, rather than the implicit functions w(φ, ẑ ja, z−a)

and d(φ, ẑ ja, z−a), constraints (36), as an explicit best-response system.

4.4 Final single-level problem

Applying the above reformulation steps, we arrive at a single-level problem which
reads as follows. For better readability, we separate the constraints into four blocks: 1.
first-level constraints, 2. explicit best-response system for the second-level problem,
3. other second-level constraints, and 4. third-level constraints.

max w(d, x, y, z, w)

s.t. ρ
airport
n (x, φn) ≥ 0 ∀n ∈ N

ρairline
a (φ, y, z, w, d) ≥ ρairline

a (φ, ŷ j
a , y−a , ẑ

j
a , z−a , ŵ

aj , d̂a j ) − M(1 − ξaj ) ∀a ∈ A, a ∈ A, j ∈ Da∑
a′∈A\{a}

∑
c∈δnt (Ca′ )

∑
p∈Pa′

za′ pc +∑
c∈δnt (Ca )

∑
p∈Pa

ẑ japc ≤ κ
airport
n + xn + M(1 − ζ

aj
nt ) ∀n ∈ N , t ∈ T , a ∈ A, j ∈ Da

∑
a∈A

∑
c∈δnt (Ca )

∑
p∈Pa

zapc +∑
c∈δnt (Ca )

∑
p∈Pa

ẑ japc ≥ κ
airport
n + xn − Mζ

aj
nt + 1 ∀ n ∈ N , t ∈ T , j ∈ Da

ζ
aj
nt ≥ ξaj ∀ a ∈ A, j ∈ Da , n ∈ N , t ∈ T∑

n∈N ,t∈T
(1 − ζ

aj
nt ) ≥ 1 − ξaj ∀ a ∈ A, j ∈ Da

∑
e∈Sap

ẑe = ŷap + eairlineap ∀p ∈ Pa
∑

e∈δoutn (Hap∪Cap )

ẑe − ∑

e∈δinn (Hap∪Cap )

ze = 0 ∀p ∈ Pa , n ∈ Ñap

∑
p∈Pa

ẑapc ≤ 1 ∀c ∈ Ca

−βairline
a′c − φ

�
dep
c

− φ�landc
− γ

aj
a′c + λ

aj
a′c + μ

aj
c = 0 ∀a′ ∈ A, c ∈ Ca′

Pconc (dajc ) − μ
aj
c + ν

aj
c = 0 ∀c ∈ C

w
aj
a′c − ∑

p∈Pa′
κaircraft
p za′ pc ≤ 0 ∀a′ ∈ A\{a}, c ∈ Ca′

w
aj
a′c − ∑

p∈Pa′
κaircraft
p ẑ japc ≤ 0

∀c ∈ Ca′

−w
aj
a′c ≤ 0 ∀a′ ∈ A, c ∈ Ca′

−dajc ≤ 0 ∀c ∈ C

dajc − ∑
a′∈A

w
aj
a′c = 0 ∀c ∈ C

γ
aj
a′c ≥ 0 ∀a′ ∈ A, c ∈ Ca′

λ
aj
a′c ≥ 0 ∀a′ ∈ A, c ∈ Ca′

ν
aj
c ≥ 0 ∀c ∈ C

γ
aj
a′c

(
w

aj
a′c − ∑

p∈Pa′
κaircraft
a′ za′ pc

)
= 0 ∀a′ ∈ A\{a}, c ∈ Ca′

γ
aj
a′c

(
w

aj
a′c − ∑

p∈Pa

κaircraft
a ẑ japc

)
= 0

∀c ∈ Ca′

λ
aj
a′c(−w

aj
a′c) = 0 ∀a′ ∈ A, c ∈ Ca′

ν
aj
c (−dajc ) = 0 ∀c ∈ C
∑
a∈A

∑
c∈δnt (Ca )

∑
p∈Pa

zapc ≤ κ
airport
n + xn ∀n ∈ N , t ∈ T

∑
e∈Sap

ze = yap + eairlineap ∀a ∈ A, p ∈ Pa
∑

e∈δoutn (Hap∪Cap )

ze − ∑

e∈δinn (Hap∪Cap )

ze = 0
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∀a ∈ A, p ∈ Pa , n ∈ Ñap∑
p∈Pa

zapc ≤ 1 ∀a ∈ A, c ∈ Ca

−βairline
ac − φ

�
dep
c

− φ�landc
− γ dual

ac + λdualac + μdual
c = 0 ∀a ∈ A, c ∈ Ca

Pconc (dc) − μdual
c + νdualc = 0 ∀c ∈ C

wac − ∑
p∈Pa

κaircraft
p zapc ≤ 0 ∀a ∈ A, c ∈ Ca

dc − ∑
a∈A

wac = 0 ∀c ∈ C

−wac ≤ 0 ∀a ∈ A, c ∈ Ca

−dc ≤ 0 ∀c ∈ C
γ dual
ac ≥ 0 ∀a ∈ A, c ∈ Ca

λdualac ≥ 0 ∀a ∈ A, c ∈ Ca

νdualc ≥ 0 ∀c ∈ C

γ dual
ac

(
wac − ∑

p∈Pa

κaircraft
p zapc

)
= 0 ∀a ∈ A, c ∈ Ca

λdualac (−wac) = 0 ∀a ∈ A, c ∈ Ca

νdualc (−dc) = 0 ∀c ∈ C

5 Solution strategy

An obvious drawback of the above problem reformulation is the high number of
explicit best-response systems (i.e., the variables and constraints appearing in the
second block of reformulated model). Therefore, in this section we present a solution
strategy which iteratively solves a master problem and a set of subproblems thanks to
which an explicit best-response system is iteratively added at each iteration and only
if needed.

5.1 Description of the algorithm

The main idea of our algorithm is to iteratively alternate between solving a master
problem which only contains a (small) subset of explicit best-response systems, i.e.,
only featuring explicit best-response systems for a small subset of Da , for each a ∈ A,
and solving an auxiliary subproblem per airline to verify whether at least one airline
a ∈ A has an incentive to deviate from the investment and scheduling decisions y, z
made when solving the master problem.

In particular, for each airline a ∈ A, the subproblem corresponds to the best-
response problem of maximizing the airline’s profits subject to all the scheduling
restrictions (14), (15), (16b), fleet investment constraints (16a), the KKT system (26),
and fixed scheduling and investment values for all other airlines, as determined by
the solution to the current master problem. If we identify a profit-enhancing strategy
(ŷa, ẑ

j
a) for an airline a which allows it to profit by unilaterally deviating from the

solution found when solving the master problem, we add a corresponding instance of
the explicit best-response system (31)–(35), (36) to the master problem (substituting,
as we explained, ŵaj for w(φ, ẑ ja, z−a) and d̂a j for w(φ, ẑ ja, z−a)), and solve it again.

At iteration one, the first master problem is obtained by relaxing all the explicit
best-response systems by dropping the second block of constraints in the single-level
reformulation, together with the variables which occur solely in it.

An overview of the resulting iterative solution strategy can be found in Algorithm1.
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Algorithm 1: Decomposition approach for the reformulated market model
Input : Parameters for the market model
Output: Optimal solution (x∗, φ∗, y∗, z∗, w∗, d∗) to the problem

1 Initialize the master problem as an instance of the single-level reformulation with no explicit
best-response systems.

2 while True do
3 Solve the master problem.

4 Denote its solution by (xM , φM , yM , zM , wM , dM ).
5 for all airlines a ∈ A do
6 Fix xM , φM , yM−a , zM−a and solve the best-response subproblem.

7 Denote its solution by (ŷSa , ẑSa , wS , dS).

8 if ρairlinea (ŷSa , yM−a , ẑSa , zM−a , wS , dS) − ρairlinea (yM , zM , wM , dM ) > ε then
9 Add the explicit best-response system (31)–(35),(36) for airline a ∈ A and deviation

(ŷSa , ẑSa ) to the master problem.
10 break

11 return solution (x∗, φ∗, y∗, z∗, w∗, d∗) := (xM , φM , yM , zM , wM , dM ).

5.2 Correctness of the algorithm

We now establish the correctness of our algorithm:

Theorem 3 Let |Pa | < ∞ and assume all investment variables x, y as well as airport
chargesφ have a finite upper bound. Then, Algorithm1 terminates after a finite number
of iterations with an optimal solution.

Proof Since y and z are integer variables and, by assumption, they are bounded, the
number of possible strategies (ŷa, ẑa) that an airline a ∈ A may use to deviate from
a GNE is finite. Hence, the number of explicit best-response systems which can be
generated is finite. Any instance of the master problem solved in Algorithm 1 is a
relaxation of the trilevel problem (as it is obtained by relaxing some of the explicit
best-response systems the problem features according to our reformulation). Let
(xM , φM , yM , zM , wM , dM ) be solution to themaster problem and let, for each a ∈ A,
(ŷSa , ẑ Sa , wS, dS) be the solution to the corresponding best-response subproblem. If,
for all a ∈ A, ρairline

a (ŷSa , yM−a, ẑ
S
a , zM−a, w

S, dS) − ρairline
a (yM , zM , wM , dM ) ≤ ε,

we conclude that no airline can obtain a strictly larger profit via a deviation. This
implies that all the explicit best-response systems that have not yet been taken into
account and added to the master problem are satisfied and, hence, the algorithm halts
with an optimal solution. If, conversely, the subproblem produces a strictly improving
deviation for at least one airlinea ∈ A, adding the corresponding explicit best-response
system to the master problem guarantees that, after reoptimizing the latter, we obtain
a solution (x̃ M , φ̃M , ỹM , z̃M , w̃M , d̃M ) in which either (ỹMa , z̃Ma ) = (ŷa, ẑa) (i.e., in
which the previous deviation is featured as the action chosen by airline a ∈ A), or
the first-level solution has changed (i.e., (x̃ M , φ̃M ) �= (xM , φM )) and, thanks to this,
(ŷa, ẑa) is not anymore an improving deviation. 	
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6 Theoretical benchmark: The integrated planningmodel

We now present an integrated planning model which allows for finding an ideal
welfare-maximizing allocation of resources with the corresponding optimal invest-
ments and operational decisions. We will rely on such model as benchmark, using it
as baseline to quantify the costs of liberalized and imperfect aviation markets that are
obtained under our trilevel model in the case study we report in the next section. As
we will see in it, such an integrated planning model may indeed yield (investment)
decisions which are quite different from those identified by our trilevel model.

In the integrated planning model, we make the assumption that all of the airports’
and airlines’ investment and scheduling decisions be taken by a benevolent social
planner in a globally efficient way, i.e., in such a way that the welfare of the whole
industry is maximized. In this model, we assume that the airports are not limited by
budget restrictions. Models similar to this one are typically referred to as “theoretical”
or “first-best” benchmarks and are frequently used in the literature. See, e.g., Jenabi
et al. (2013),Grimm et al. (2016a), orWeibelzahl and Märtz (2017).

From an economical point of view, the integrated planning model yields the same
outcome as a variant of our market model in which welfare is maximized in each
level.5 The corresponding competitive market prices adequately reflect scarcity of
resources and incentivize efficient long-run investments for the players, i.e., they align
the individual profit maximization objectives of the airlines with the overall welfare
maximization goal. Formore details on such equivalence see, e.g.,Whinston andGreen
(1995), Feldman (1991), Varian (2014).

Adopting the same definition of welfare as in (9), the integrated planning model
corresponds to the following optimization problem:

max Welfare: (9) (37a)

s.t. Aircraft Capacity Limitations: (20) (37b)

Market Clearing: (22) (37c)

Runway Capacity Limitations: (15) (37d)

Aircraft Scheduling Constraints: (14) (37e)

Variable Restrictions: (3.3). (37f)

5 In the first level, welfare is expressed as gross consumer surplus minus all investment and operational
costs of both airports and airlines. In the second level, welfare equals gross consumer surplus minus fleet
investment and fleet operation costs. In the third level, welfare is defined as the difference between gross
consumer surplus and operational costs of the airlines. First, as all the players in the same level maximize
the same objective function, they can be collapsed into a single player. Secondly, from a mathematical point
of view, see, e.g.,Grimm et al. (2016a), the three welfare functions we introduced are affinely equivalent.
This implies that, under the assumption of optimism, it is without loss of generality to assume that all levels
maximize the same welfare function as the first-level problem. Thus, the trilevel model can be solved as a
single-level welfare maximization problemwith a single decision maker, which is identical to our integrated
planner model.

123



398 S. Coniglio et al.

Fig. 7 Hub-and-spoke topology with demand functions according to Dobson and Lederer (1993)

7 Case study

In this section, we present an academic six-airport network featuring different flight
connections and adopt it as case study.

7.1 Test network

The test network we consider was originally introduced inDobson and Lederer (1993)
and is used to illustrate the relevant economic effects in an intuitive way on a simple
example. The instance is reported in Fig. 7. As it can be seen in the figure, the six
airports are divided into the hub airport H and the destination airports 1 to 5.

Let us assume that there is no pre-existing runway capacity at the beginning of the
planning horizon. Due to this assumption, the analysis we are about to carry out may
be alternatively interpreted as an analysis of the residual flight demand that cannot
be covered by existing runway capacities, under the assumption that any pre-existing
flight schedule would not be modified after the runway capacity extensions have taken
place.

Per-unit airport investment costs for the hub H and the airports 1–5 amount to
$20,000 and $10,000, respectively. Furthermore, the intercept αairport and the slope
βairport of the variable-cost function for all airports amount to $5000 and $5, respec-
tively. In order to keep our example (and the corresponding scheduling decisions) as
simple as possible, we only consider five connections with takeoffs taking place in
subsequent periods. In particular, the connections from the hub H to airports 1 and 2
are long-haul flights with a flight duration of three periods, while the connections with
destination 3, 4, and 5 are short-haul flights with a flight duration of only one period.
Therefore, in our test example we consider a total planning horizon of six periods.
In addition, we assume that connections (H , 1) and (H , 3) are the two high-demand
connections of the network. Note that all the five considered connections may equiv-
alently be interpreted as return trips without affecting our analysis. As it can be seen
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in Fig. 7, all the demand functions we use are linear (and decreasing), which implies
that the consumer surplus is a concave function.

In analogy to runway capacities, we assume that no pre-existing aircraft are avail-
able. We consider two possible candidate aircraft for fleet expansion with a seat
capacity κaircraft of 300 and 600, which represent a small and a large aircraft type,
respectively. Investment cost iaircraft of the “small” and “large” aircraft amount to
$10,000 and $20,000. Note that the investment costs we consider here should be inter-
preted as annualized costs, corresponding to the costs of using an aircraft only over
the planning period under consideration. Since we only consider a very short planning
period of a few hours in this section, the investment costs will be relatively small when
compared to the respective variable costs of a flight (see below).

We assume that all five connections can be served by each of the two aircraft.
Moreover, the intercept αairline of the variable-cost function of the “small” aircraft is
assumed to be $22,500 for the long-haul flights and $7200 for the short-haul flights.
For the “large” aircraft, these values are higher and are given by $45,000 and $22,500,
respectively. The slope βairline of the variable-cost function for the long-haul flights
and the short-haul flights amounts to $25 and $8, respectively. 6 Note that, similarly
to the intercept values we introduced, we assume higher slope values for long-haul
flights than for short-haul flights as, e.g., fuel costs or meal costs will, in general,
increase with the flight time.

For the discussed test network, in the following we present the welfare optimum
of the integrated planning problem as well as the equilibrium solution of our trilevel
market model. In particular, for our trilevel model we analyze the effects of different
degrees of competition among airlines, considering both a monopoly airline and a
duopoly.

7.2 Setup

Note that, for the case of linear demand functions, our integrated planning model
reduces to a mixed-integer problem with linear constraints and a concave objec-
tive, while the trilevel market model is intrinsically nonconvex—this calls for the
adoption of a spatial branch-and-bound solver to achieve a globally optimal solution.
All our problem instances are solved with the spatial branch-and-bound solver SCIP
3.2.1Gamrath et al. (2016). Using our Algorithm1, all instances of our trilevel model
are solved in only a few iterations. All the computations are performed on an Intel©

CoreTMi5-3360M CPU with 4 cores and 2.8GHz each and 4 GB RAM.

7.3 Discussion of main results

Let us first analyze the results obtained with the integrated planner model. As Table1
shows, in its solution the capacity of all six airports is extended.Moreover, as shown in
Tables2 and 3, investments take place in five aircraft serving all available connections.

6 If more than a single airline is present, their costs αairline are made pairwise distinct by adding a small
perturbation ε to them—see footnote 7 for more details.
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Table 1 Results for the different airports (set N )

N Integrated planner Monopoly Duopoly

φ x I V φ x I V φ x I V

H – 1 20, 000 35, 410 43.88 1 20, 000 19, 500 34.16̄ 1 20, 000 21, 000

1 – 1 10, 000 8000 55 1 10, 000 6500 30 1 10, 000 8000

2 – 1 10, 000 6500 0 0 0 0 0 0 0 0

3 – 1 10, 000 7910 55 1 10, 000 6500 55 1 10, 000 6500

4 – 1 10, 000 6500 55 1 10, 000 6500 55 1 10, 000 6500

5 – 1 10, 000 6500 0 0 0 0 0 0 0 0

Passenger-based charge (φ, in $), runway capacity extension (x), airport investment cost (I , in $), and
airport variable cost (V , in $) for different models (integrated planner, monopoly, duopoly)

Table 2 Results for the different airline(s) (set A). New aircraft ordered (y300, y600), airline investment
cost (I , in $), and airline variable cost (V , in $) for different models (above: integrated planner, monopoly;
below: duopoly)

A Integrated planner Monopoly

y300 y600 I V y300 y600 I V

– 3 2 70, 000 128, 256 3 – 30, 000 49, 200

A Duopoly

y300 y600 I V

Small 2 – 20, 000 19, 200

Large – 1 20, 000 60, 000

Table 3 Results for the different connections C . Number of passengers (w), scheduled aircraft capacity
(κ), and price (P , in $) for different models (integrated planner, monopoly, duopoly)

C Integrated planner Monopoly Duopoly

Airline large Airline small
w(κ) P w(κ) P w(κ) w(κ) P

(H , 1) 600(600) 300 300(300) 750 600(600) 0(0) 300

(H , 2) 300(300) 50 0(0) 500 0(0) 0(0) 500

(H , 3) 582(600) 18 300(300) 300 0(0) 300(300) 300

(H , 4) 300(300) 200 300(300) 200 0(0) 300(300) 200

(H , 5) 300(300) 100 0(0) 400 0(0) 0(0) 400

Two large aircraft are scheduled on the high-demand connections (H , 1) and (H , 3),
whereas, on the three remaining connections, only small aircraft are used. Overall, the
total welfare amounts to $553,262. We will use this value as a benchmark to assess
possible market inefficiencies in the imperfect aviation market case, relying on our
trilevel model—see Table4.
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Table 4 Welfare (in $), (net) consumer surplus (in $), and the sum of airline/airport profits (in $) for different
models (integrated planner, monopoly, duopoly)

Integrated planner Monopoly Duopoly

Welfare ω 553,262 364,300 478,800

(net) consumer surplus 596,861 157,500 360,000
∑

airport profits −140,819 0 0
∑

airline profits 97,220 206,800 118,800

We now discuss the results of our trilevel market model, which are summarized in
Tables1, 2, 3, and4. We first assume the presence of a single airline, i.e., a monop-
olist, which invests in its fleet and schedules its aircraft on the second level. As
expected, the monopolist reduces ticket supply in order to increase its profits. In
particular, the monopolist only invests in three small aircraft that are scheduled on
connections (H , 1), (H , 3), and (H , 4). Given this supply shortage based on the
reduced seat capacity, welfare reduces to $364,300 when compared to the reference
integrated-planning solution. The total profits of the monopolist amount to $206,800.
The connection-specific profits, of $155,333, $40,733, and $10,734 for, respectively,
the three connections (H , 1), (H , 3), and (H , 4), show that, indeed, all three legs
are profitable for the monopolist. We remark that the observed equilibrium prices
are the outcome of the competitive ticket market. This implies that the monopolist
cannot charge a monopolistic price but, rather, can only affect the resulting (perfectly
competitive) price through its strategic aircraft investments and scheduling decisions
in level two. Therefore, for example, given a monopolist choice of investing into the
small aircraft and of scheduling it on connection (H , 3) with a capacity of 300 and
assuming a total of 300 passengers on that connection, the resulting market price will
be Pcon3 = 300.

In a second experiment, we assume a duopoly, i.e., we consider two competing
airlines on level two. In particular, we consider (i) a “large” airline that, according to
its assumed airline-specific fleet portfolio, can only invest in the large aircraft type,
as well as (i i) a “small” airline that can only invest in the small aircraft type. 7 As
expected, the increased competition leads to a welfare of $478,800, which is higher
when compared to the monopoly solution. This underlines the importance of adequate
competition policy regulations—see the vast literature on competition and competition
policy in the airline industry, e.g., Borenstein andRose (1994),Mazzeo (2003), orSilva
et al. (2014). The observed welfare gain is mainly driven by the fact that the “large”
airline schedules one large aircraft on connection (H , 1), which increases the seat
capacity on this connection by 300. In addition, we can observe a reduction of airline
profits to $117,800 relative to the monopoly, whereas the consumer surplus moves
in the opposite direction. In both the monopoly and in the duopoly cases, the airport
profits are zero, i.e., their budget constraints are binding.

7 To guarantee pairwise-distinct costs, we add a positive perturbation ε > 0 to the cost for connections
(H , 1) and (H , 2) for the small airline, and a positive perturbation by the same ε for connections (H , 3),
(H , 4), and (H , 5) for the large airline.
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We also note that, in line with the above observations, airport charges at the hub
and at airport 1 decrease in the duopoly case when compared to the monopolistic
case. This is due to the fact that the airport investment and operational costs can be
recovered via an increased number of passengers.

Given efficient ticket prices under the integrated planner problem (equivalent to
a perfectly competitive market outcome), our trilevel market model will, in general,
distort the optimal price structure of the former. In our example, for instance, the ticket
prices under both the duopoly and the monopoly will be inefficiently high, which
directly reflects an underinvestment in aircraft and airport capacity—see Tables1 and
2. For instance, the price observed in themonopoly case for connection 1 in the amount
of $750 is inefficiently high when compared to the price of $300 that is obtained under
the benchmark model. This is because the flight capacity on this connection is reduced
by the monopolist from 600 seats/tickets to only 300. In line with the current policy
debate on the bankruptcy of theGerman carrier AirBerlin, the results obtainedwith our
model underline that priceswill, in general, tend to increase if themarket concentration
increases.

Finally, we note that our model may not only be used for policy analyses (carried
out by, for instance, a regulator wishing to assess, e.g., the impact on the market when
losing a competitor), but it can also serve as a valuable tool for business support of
private actors. In particular, our model inherently allows airlines to identify an optimal
strategy for a given investment and scheduling decision of its competitor(s).

Within the context of optimal airline-strategies and profitable strategy deviations,
in Table5 we present, as an example, the solutions of the last three restricted master
problems and subproblems for the duopoly case.

As it can be seen in the third-last iteration, it is optimal for both airlines of the
duopoly to unilaterally reduce their investments, i.e., to only invest in a single air-
craft scheduled on the most profitable connections (which are connections 1 and 4,
respectively). While, in the second-last iteration, there is no further unilateral and
profit-enhancing deviation strategy for the large airline (which now serves connection
1), the small airline has an incentive not to offer a flight to airport 5. Adding a corre-
sponding best-response system to the new master problem, in the last iteration no new
deviation strategies are found in either subproblem and the algorithm terminates with
an optimal solution, i.e., with an equilibrium.

8 Conclusion

In this paper, we have presented a trilevel market model which accounts for differ-
ent economic players including airports, airlines, and passengers. In particular, we
have assumed welfare-regulated airports which choose their optimal runway capacity
expansion as well as an optimal airport charge in the first level, imperfectly competi-
tive airlines which make investment in new aircraft and flight scheduling decisions in
the second level, and a ticket market in the third level, in which the number of tickets
that is sold is determined.

Using an integrated single-level benchmark model, we have been able to quantify
the costs of imperfect markets in terms of inefficient investments in the multilevel
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Table 5 Solutions of the last three restricted master and subproblem iterations (duopoly case)

Iteration Solution to master problem Solution to subproblem

Airline large Airline small Airline large Airline small

Third last y300 – 2 – 1

y600 2 – 1 –

z1 1 0 1 0

z2 0 0 0 0

z3 1 0 0 0

z4 0 1 0 1

z5 0 1 0 0

Second last y300 – 3 – 2

y600 1 – 1 –

z1 1 0 1 0

z2 0 0 0 0

z3 0 1 0 1

z4 0 1 0 1

z5 0 1 0 0

Last y300 – 2 – 2

y600 1 – 1 –

z1 1 0 1 0

z2 0 0 0 0

z3 0 1 0 1

z4 0 1 0 1

z5 0 0 0 0

imperfect-market model. In order to illustrate the underlying (economic) effects, as a
first starting point we have analyzed a small test network that consists of six airports
and five flight connections.

Due to the difference in solutions that we obtain when considering either the inte-
grated benchmarkmodel or our trilevelmodel, our results suggest the need for a careful
design of (future) market structures as, otherwise, investment incentives for airports
and airlines may be aligned in a way that yields severe long-run inefficiencies when
implemented in practice. To this end, our model may be seen as a valuable tool to
evaluate and assess different policy options on a quantitative basis in the future.

Future works include the development of algorithms for tackling instances of larger
size, possibly relying on techniques of cut diversity and bound improvement for select-
ing the next explicit best-response system to be introduced (seeAmaldi et al. (2010),
Amaldi et al. (2014), Coniglio and Tieves (2015)), as well the application of tech-
niques similar to those we developed in this paper to other multilevel decision-making
problems in the airline industry.

Another interesting direction for future research is investigating under which con-
ditions the game that is played in the second level by the airlines always admits
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a generalized Nash equilibrium. This could be done, for instance, by investigating
whether such a game can be cast as a congestion game where the connections are
interpreted as resources whose value/price is determined as a solution to the ticket-
pricing game played in the third level—see, for instance, (Harks and Klimm 2012). It
would also be of interest to assess the impact on thewhole trilevel problem of adopting,
in the generalizedNash equilibriumproblem, different equilibrium-selection strategies
besides the optimistic one where a welfare-maximizing equilibrium is selected.
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Appendix A. Parameters, sets, and variables

In this appendix, we summarize main parameters, sets, and variables in Tables 6, 7
and 8.

Table 6 Sets Symbol Description

T Set of time periods

N Set of airports

A Set of airlines

P Set of aircraft or plane types

Pa ⊂ P Set of aircraft types of airline a

C Set of connections

Ca ⊂ C Set of connections of airline a
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Table 7 Variables and derived quantities

Symbol Description Unit

xn Runway capacity extension at airport n N ∪ {0}
φn Passenger-based charge of airport n $

yap Number of new aircraft of type p bought by airline a N ∪ {0}
zapc Decision of scheduling an aircraft of type p on connection c by a {0, 1}
dc Ticket demand on connection c R≥0

Pconc Ticket price or inverse demand function for connection c $

wac Ticket sold by airline a on connection c R≥0

Vairport
n Variable-cost function of airport n $

Iairportn Investment cost function of airport n $

Rairport
na Revenues of airport n paid by a $

Vairline
a Variable-cost function of airline a $

Iairlinea Investment cost function of airline n $

Rairline
a Revenues of airline a $

Table 8 Parameters

Symbol Description Unit

κ
airport
n Existing runway capacity of airport n N ∪ {0}
i
airport
n Slope of investment cost function of airport n $

α
airport
n Intercept of variable-cost function of airport n $

β
airport
n Slope of variable-cost function of airport n $

eairlineap Number of existing aircraft of type p owned by airline a N ∪ {0}
αairlineapc Intercept of variable-cost function of airline a $

βairline
ap Slope of variable-cost function of airline a $

κaircraftp Seat capacity of aircraft type p N ∪ {0}
iaircraftp Slope of investment cost function of aircraft p $
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