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Abstract
Scheduling of megaprojects is very challenging because of typical characteristics, such as expected long project durations,
many activitieswithmultiplemodes, scarce resources, and investment decisions. Furthermore, eachmegaproject has additional
specific characteristics to be considered. Since the number of nuclear dismantling projects is expected to increase considerably
worldwide in the coming decades, we use this type of megaproject as an application case in this paper. Therefore, we consider
the specific characteristics of constrained renewable and non-renewable resources, multiple modes, precedence relations
with and without no-wait condition, and a cost minimisation objective. To reliably plan at minimum costs considering all
relevant characteristics, scheduling methods can be applied. But the extensive literature review conducted did not reveal
a scheduling method considering the special characteristics of nuclear dismantling projects. Consequently, we introduce a
novel scheduling problem referred to as the nuclear dismantling project scheduling problem. Furthermore, we developed
and implemented an effective metaheuristic to obtain feasible schedules for projects with about 300 activities. We tested our
approach with real-life data of three different nuclear dismantling projects in Germany. On average, it took less than a second
to find an initial feasible solution for our samples. This solution could be further improved using metaheuristic procedures
and exact optimisation techniques such as mixed-integer programming and constraint programming. The computational study
shows that utilising exact optimisation techniques is beneficial compared to standard metaheuristics. The main result is the
development of an initial solution finding procedure and an adaptive large neighbourhood search with iterative destroy and
recreate operations that is competitive with state-of-the-art methods of related problems. The described problem and findings
can be transferred to other megaprojects.
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1 Introduction

Megaprojects denote the biggest investment boom in human
history with an assessed total global spending of US$6 to
US$9 trillion annually, or 8% of the total global gross domes-
tic product (GDP) (Flyvbjerg 2014). The dismantling of
nuclear facilities (in this paper, the term “nuclear facilities”
includes both nuclear power plants and research reactors)
is a special application case of megaprojects with expected
durations of about 10 to 15 years and costs of about 0.3 to
1.3 billion euros per facility (European Commission 2016b).
The International Energy Agency (IEA) forecasts that until
2040, about 200 nuclear reactors in various nuclear facilities
worldwide will have to be decommissioned and dismantled
(IEA 2014). Especially the EU, the USA, Russia, and Japan
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will have the highest numbers of nuclear dismantling projects
(IEA 2014; Volk et al. 2019). In its Nuclear Illustrative Pro-
gramme, the European Commission estimates that more than
50 nuclear reactors will be decommissioned in the EU until
2025 (European Commission 2016a). Because of the huge
amount of investment in the future (Volk et al. 2019) and the
specific project characteristics, the dismantling of nuclear
facilities is used as an application case in this paper to be
solved. In particular, we develop a scheduling problem and a
methodology to solve the problem. However, the developed
mathematical model and the methodology can be adapted to
the requirements of other application cases and thus can be
transferred to other megaprojects.

By the end of 2018, about 17 nuclear reactors worldwide
were fully dismantled (WNA 2017). The project duration
and project costs of completed nuclear dismantling projects
most commonly deviate significantly from the original dis-
mantling plans (NEA 2016). The reasons for such deviations
are, on the one hand, long-lasting and costly approval pro-
cedures and, on the other hand, insufficient planning due to
manual planning, errors, misestimation, unexpected events.
Since activities and resources have to be approved by a legal
authority, project scheduling is required to be very detailed,
and hence, operational planning is needed. Changes in plan-
ning after receipt of a legal approval must again be approved,
which again causes high costs, takesmuch time, and thusmay
lead to project delays.

Since there are only few completed nuclear dismantling
projects, only very little scheduling and estimation experi-
ence is available so far. Consequently, uncertainties in the
planning and execution prevail. To avoid replanning and the
necessity of new legal approvals, uncertainties should be con-
sidered in project planning. Furthermore, an effective and
efficient operational planning is crucial. Such an operational
planning has to calculate schedules in a sufficient degree of
detail for practitioners within short computation times con-
sidering the large number of activities, activity modes, and
scarce resources of such a megaproject. Additionally, spe-
cific constraints, such as legal or technical specifications,
time lags, or overhead expenses, have to be considered in
project scheduling. The goal of the dismantling companies
is to dismantle the nuclear facilities at minimum costs tak-
ing safety and security into account. To minimise errors in
the planning and to compile a reliable planning at minimum
costs, scheduling methods can be applied.

A general overview of different scheduling methods is
given in Sect. 2. To be able to use these scheduling methods
for certain application cases, adaptions are often neces-
sary. In a literature review of related approaches conducted
in Sect. 2, we show that for operational scheduling of
nuclear dismantling projects, optimising scheduling meth-
ods and project scheduling software considering the specific
characteristics of multiple modes, constrained renewable

and non-renewable resources, precedence relations with and
without no-wait condition, and a cost minimisation objective
are lacking. Therefore, the aim of this paper is to define the
problem formally and to implement and test a metaheuristic
framework for its solution. Four steps are required. In the first
step, relevant and necessary data for scheduling of a sample
project are compiled, and the scheduling goal with its influ-
encing parameters is explained in Sect. 3. In the second step,
with the help of these scheduling requirements in this par-
ticular case, the related mathematical model is derived (also
Sect. 3). To obtain an adequate mathematical model for this
scheduling problem, we adapt and extend the multi-mode
resource investment problem (MRIP) considering the con-
straints of the application case. We introduce a novel project
scheduling problem called the nuclear dismantling project
scheduling problem (NDPSP). In the third step, for tackling
this problem, we propose necessary adaptations of a meta-
heuristic framework which is described in Sect. 4. In the
fourth and last step, we apply, test, and validate the algo-
rithm with several data samples of real-life projects with up
to 300 activities. Different instances of these real-life projects
and computational results using the algorithm are presented
in Sect. 5. Finally, Sect. 6 gives a critical appraisal and con-
cludes the findings of this paper.

2 Literature review

In Sect. 2.1, we first present a literature review on existing
project scheduling software. The specific characteristics of
nuclear dismantling projects are not considered using avail-
able project scheduling software (see Sect. 2.1). To identify
an appropriate scheduling method, we present a literature
review on existing scheduling methods for the application
case of nuclear dismantling projects in Sect. 2.2. As shown
in Sect. 2.2, scheduling in this application case has been sub-
ject to several shortcomings so far. To identify an appropriate
scheduling method for the application case “dismantling of a
nuclear facility”, we present a literature overview of existing
scheduling methods in Sect. 2.3.

2.1 Project scheduling software

For the planning of projects, different software is available. In
this paper, we focus on project scheduling software for the
dismantling of nuclear facilities as an example for project
scheduling of megaprojects. The scheduling goal is to iden-
tify a schedule at minimum costs taking safety and security
into account. However, current approaches in practice are
based onmanual planning and experience, or, if experience is
lacking, speculation. Such approaches are often error-prone
and most commonly lead to deviations from the respective
plans. Mostly, only software to visualise the schedule, such
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as MS Project, Primavera, or Cora Calcom, which is based
on MS Access and MS Project, is applied and scheduling
is done by engineers and qualified people manually without
support by optimisation methods.

An extensive literature review did not reveal a soft-
ware applying optimising methods. Only the report of the
Co-ordination Network on Decommissioning of Nuclear
Installations (CND) of the Research and Technological
Development (RTD) of the European Commission recom-
mends using the critical path method as an optimising
scheduling method. Furthermore, MS Project, Primavera P6,
Cora Calcom, or CERREX is used as planning software for
nuclear dismantling projects.

MS Project is a software of Microsoft that can visualise
schedules linking it with the resources needed. Neverthe-
less, costs are only considered using resources and are not
completely included in the planning. The main shortcom-
ing is the absence of an optimising method. Primavera P6
of Oracle is comparable to MS Project. It is only able to
visualise schedules, but not able to optimise them. Cora Cal-
com is a software of the company Siempelkamp that consists
of the two modules: “Cora” and “Calcom”. Cora (Compo-
nent Registration and Analysis) is a database implemented
in MS Access or Oracle Database that helps to structure the
project and to estimate inventory andmasses of a dismantling
project. Based on the information of Cora, the module Cal-
com (Calculation and Cost Management) helps to schedule
the project including a resource and cost planning. Never-
theless, all these plannings have to be done manually. The
International Atomic Energy Agency (IAEA) provides the
MS Excel-based calculation software CERREX (Cost Esti-
mate for Research Reactor in Excel) for the cost planning of
nuclear research reactors. With the help of this software, the
whole dismantling project is structured by several disman-
tling steps. The planner has to enter information for each step
andCERREX sums up the total project dismantling costs. An
optimising schedulingmethod is missing, too. Consequently,
a manual scheduling is necessary.

2.2 Project scheduling of nuclear facility
dismantling

Scheduling methods for the application case “dismantling of
a nuclear facility” are very rare because many adaptations
of existing approaches are necessary (Bartels 2009). Bartels
(2009) used a resource-constrained project scheduling prob-
lem with discounted cash flows (RCPSPDC) and extended it
by cumulative resources and two modes. Furthermore, Bar-
tels (2009) adapted the objective function to minimise the
total project costs. Cumulative resources are used to describe
buffer stocks for nuclear wastes. The two modes represent
either the execution of an activity by own staff or by external
staff. To minimise the total project costs, costs for own staff

as well as for external staff are considered and discounted
by a discount rate. For solving the problem, Bartels (2009)
extended an enumeration algorithm provided by De Reyck
and Herroelen (1998). Bartels’ scheduling model has several
shortcomings. He only considers two modes which concern
the execution of activities with own or external staff. A dif-
ferentiation of modes, such as the use of different alternative
machines, is not considered. In this context, Bartels (2009)
minimises only the costs related with these two modes. Vari-
able costs of the use of differentmachines, procurement costs,
and indirect overhead costs, such as post-operational costs,
are not considered. Furthermore, in his approach, Bartels
(2009) modelled cumulative resources using two kinds of
activities: either storing or removal activities. For each stor-
ing activity, a corresponding removal activitymust exist. This
is not realistic since two or more removal activities can have
the same amount of pieces/material as one or more storing
activity/activities and vice versa. Also, a major shortcoming
is planning with time slices of three months which is not an
operational planning procedure satisfying the requirements
for legal approvals of nuclear facilities.

Apart from themethodology introducedbyBartels (2009),
to the authors’ knowledge no scheduling method for nuclear
dismantling projects exists.OnlyYanagihara et al. (2012) and
Iguchi et al. (2004) considered nuclear dismantling project
planning in their research. They use the programme eval-
uation and review technique (PERT) to schedule nuclear
dismantling projects and exposure times of staff. However,
further details on how the scheduling method and the under-
lying algorithms work are missing in their publications.

The scheduling of nuclear dismantling projects is espe-
cially challengingbecauseof theproject-scale process requir-
ing many resources, such as specific machinery or diverse
qualified staff, expected durations of about 10 to 15 years,
and a budget per reactor/unit that amounts to about 0.3 to 1.3
billion euros (European Commission 2016b). The main goal
of nuclear dismantling projects is dismantling at minimum
costs considering safety, security, and resources, the latter
being partly constrained. To avoid cost increases because of
misestimation or unexpected events, uncertainties should be
considered in operational project planning. Herroelen and
Leus (2005) compare different methods for schedule gener-
ation under uncertainty. Stochastic project scheduling aims
at scheduling project activities with uncertain durations but
does not use a baseline schedule and rather uses schedul-
ing policies or scheduling strategies that make decisions
at decision points during project execution (Herroelen and
Leus 2005). Since a baseline schedule has to be submit-
ted to the authorities for a legal approval before project
execution, stochastic scheduling is not applicable for this
application case. Reactive scheduling uses a baseline sched-
ule, but with no anticipation of variability (Herroelen and
Leus 2005). In the case of unexpected events, the baseline
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schedule has to be revised or reoptimised. Since the proce-
dures for new legal approvals are long-lasting and costly,
replanning or plan adaptions should be avoided. Conse-
quently, reactive scheduling is also not applicable for this
application case. Instead, an ex ante stable schedule should
be identified. Therefore, Herroelen and Leus (2005) recom-
mend using proactive and robust scheduling. “This approach
may use information about the particular variability char-
acteristics (for example probability distributions for activity
durations) [...]” (Herroelen and Leus 2005, p. 291). To iden-
tify an ex ante stable schedule Herroelen and Leus (2005)
recommend to apply sensitivity analysis. For the applica-
tion case of nuclear dismantling projects, the application of
sensitivity analysis is suitable to identify an ex ante stable
schedule for a given project. Therefore, different potential
scenarios are simulated, optimised, and compared regarding
their robustness. However, an effective scheduling method to
calculate a schedule atminimumcosts for a deterministic sce-
nario is lacking. Consequently, in this paper we focus on the
development of such a deterministic scheduling method that
deals with the specific requirements of nuclear dismantling
projects and thus with the specific requirements of megapro-
jects.An example how to simulate different scenarios is given
in Sect. 5.1.

2.3 General project scheduling approaches

In the field of project scheduling, Möhring (1984) distin-
guishes between problems of scarce resources and problems
of scarce time. In the former, known as resource-constrained
project schedulingproblems (RCPSP), the amount of resources
is fixed and the goal is to find the shortest possible schedule.
Problems of scarce time, however, are determined by a due
date that has to be respected. Their goal isminimisation of the
costs of the resources that are allocated to the project. In the
literature, suchproblems are called resource investment prob-
lems (RIP) or resource availability cost problems (RACP).
These terms were first introduced by Möhring (1984).

The resource-constrained project scheduling problem
(RCPSP) and its extensions have received a lot of attention
in literature. Especially for the multi-mode extension, where
activities can be performed in different modes, many differ-
ent heuristic, e.g. Geiger (2017), and exact procedures, e.g.
Schnell and Hartl (2017), have been proposed in the recent
years. For a broad overview of the existing work concerning
the MRCPSP, we refer to Mika et al. (2015). Another exten-
sion of the RCPSP is the RCPSP/max, where more advanced
precedence constraints are introduced. They are also called
generalised precedence constraints or time windows, and
with them, it is possible to define minimum and maximum
time lags between the start of two activities. Schnell andHartl
(2016) present an exact approach to the multi-mode exten-
sion of theRCPSP/max, applying a combination of constraint

programming (CP) and Boolean satisfiability solving (SAT)
techniques.

Since our primary concern related to project scheduling
of nuclear dismantling projects is the minimisation of costs,
the resource investment problem is more applicable to our
purposes. The amount of resources is not fixed, and project
duration plays only a secondary role. For an overview of the
existing exact and heuristic procedures for the basic RIP, we
refer to Rodrigues and Yamashita (2015) and van Peteghem
and Vanhoucke (2015), respectively. Most recently, Kreter
et al. (2018) have investigated different mixed-integer pro-
gramming (MIP) and CP formulations for the RIP, and Zhu
et al. (2017) proposed an effective heuristic procedure.

Shadrokh and Kianfar (2007) propose an extension of the
RIP where they allow exceeding the project’s due date, but
penalise this in the objective function. A multi-mode exten-
sion of the RIP, called MRIP, was firstly introduced by Hsu
and Kim (2005). They propose a heuristic that combines two
priority criteria for this new problem setting, where each
activity can be processed in different modes that differ in
both duration and resource requirements.

Another similar project schedulingproblem is the resource
levellingproblem (RLP),where activities also require resources
and have to respect precedence relations. However, here, the
goal is to level or smoothen the resource utilisation over the
course of the project. Different types of objective functions
are considered. The most common ones as well as exact and
heuristic procedures for RLP are presented by Rieck and
Zimmermann (2015) and Christodoulou et al. (2015).

The software project scheduling problem (SPSP) is also
closely related to the RCPSP and our setting. Employees are
the single resource in this problem and can have different
skills that are needed to perform project tasks (cf. Alba and
Chicano (2007)). Like in our problem, it is hard to predict
the optimal project duration and resource usage in the SPSP.
However, the objective in the SPSP is minimising two con-
flicting goals at the same time: the project duration and the
project costs that are associated with employee costs. For a
literature overview of the SPSP, we refer to Vega-Velázquez
et al. (2018).

Most of the existing project scheduling methods men-
tioned above were only tested on small- to medium-sized
project instances with 10 to 30 activities per project. The lit-
erature available on larger, practical-sized instances is scarce.
The authors van Peteghem and Vanhoucke (2014) present a
benchmark library with up to 100 activities per project for
theMRCPSP. For the single-mode resource investment prob-
lem, Kreter et al. (2018) investigate their proposed methods
on project instances with a maximum of 500 activities, but
their procedure is not suited (yet) for the multi-mode setting
we desire.

While many of the above problems possess useful prop-
erties to model the task of dismantling a nuclear facility,
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none can capture its challenges completely, yet. However,
by adding a special form of generalised precedence con-
straints to the MRIP and adjusting the objective function,
it is possible to model our application case more accu-
rately and provide additional decision support on resource
investments/procurement to project managers. Therefore, we
propose a novel kind of project scheduling problem in the
next section (Sect. 3).

3 Problem description

3.1 Definition

The main goal of nuclear dismantling projects is dismantling
at minimum costs in line with national safety and security
guidelines aswell as the consideration of (partly) constrained
resources. Project costs in nuclear dismantling projects par-
ticularly arise from

1. procurement costs, which are different for different
resources, such as machines, and arise for any procure-
ment,

2. direct, variable costs, which only occur when activities
are executed due to the use of resources, e.g. because of
wear, abrasion, or electricity needed, and

3. post-operational costs, which are indirect costs and
occur independently of the execution of activities, e.g.
due to the operation of ventilation systems, cleaning sys-
tems, security services, fire protection, or general safety
protection that have to be maintained 24/7 to guarantee
safety and security.

In particular, the post-operational costs that may amount to
three up to five million euro per month significantly influ-
ence the total project costs (cf. Klasen and Seizer (2015)).
Some activities reduce the amount of post-operational costs,
e.g. when ventilation or cleaning systems are removed. How-
ever, this can only be done when it is technically safe and
reasonable. Furthermore, the post-operational costs may also
increase after the completion of specific activities, e.g. when
additional ventilation or cleaning systems are installed.

Sinceprocurement costs, variable costs, andpost-operational
costs should be minimised, influences on these costs should
be considered in planning. Procurement costs depend on the
number of machines that have to be bought for project exe-
cution. Variable costs arise from the execution of activities.
In some cases, activities can be executed in different modes,
e.g. with own or external staff (cf. Bartels (2009)). However,
the execution of activities also may be done using different
techniques, such as decontamination by means of a milling
machine versus decontamination bymeans of chemicals. The
execution of an activity in differentmodesmay differ in terms
of activity duration and direct, variable costs per activity.

When an activity mode is shorter than other modes of this
activity, the total project duration and, thus, the amount of
post-operational costs and maybe also the total project costs
might be reduced. However, it has to be considered that in
some cases, activities may only be executed earlier when a
higher amount of resources will be procured or when more
expensive modes of activities are chosen beforehand. Con-
sequently, this trade-off has always to be considered when
scheduling nuclear dismantling projects.

Furthermore, a maximum amount of resources is avail-
able that can be used at the same time, e.g. due to limited
space conditions in the reactor room or supply bottlenecks
for nuclear containers. To minimise the total project costs,
decision makers have to decide in which mode each activity
should be executed considering post-operational costs, pro-
curement costs, direct, variable costs of execution, and scarce
resources.

Moreover, the starting times must be determined consid-
ering predefined technically induced precedence relations.
For example, before removal of the reactor vessel, the vessel
head has to be removed (Brusa et al. 2002). In some cases,
activities have to be executed successively without the exe-
cution of other activities and without any waiting time in
between, e.g. when activities contain work with radioactive
material. We call these types of successors successors with
no-wait condition.

Altogether, the result of scheduling should be a schedule
with minimum total project costs that defines the starting
times of each activity, the mode of each activity, and the
number of each resource type that is needed in total. The
total project costs and total project duration can be derived
from the resulting schedule. Further limitations are discussed
in Sect. 6.

3.2 Mathematical and constraint programming
model

Since the existing problems found in the literature do
not capture all desired features of the nuclear dismantling
megaproject, we suggest a new problem type: the nuclear
dismantling project scheduling problem (NDPSP). It is an
extension of the MRIP, where we adapt the objective func-
tion and add extra constraints. To model successors with a
no-wait condition, we use finish-to-start minimum and max-
imum time lags of 0. They are a special case of “generalised
precedence constraints” and are represented in the set Enw.
Kreter et al. (2018) propose MIP and CP models for the RIP
with generalised precedence constraints.
An instance of the NDPSP consists of the following infor-
mation:

– a set of activities A
– a set of renewable resources R

123



274 Journal of Scheduling (2021) 24:269–290

– a set of non-renewable resources Rn as in the
MRCPSP (Mika et al. 2015)

– a set of modes Mi for each activity i ∈ A
– a set of precedence relations E ⊂ A × A among the
activities

– a set of no-wait precedence relations Enw ⊂ A × A
among the activities

– durations dim ∈ Z
+
0 for each activity i and each mode

m ∈ Mi

– resource requirements rimk ∈ Z
+
0 for each activity i and

each mode m ∈ Mi and each resource k ∈ R ∪ Rn

– resource unit cost factors ck ∈ Z
+
0

– resource maximum capacities amax
k ∈ Z

+
– activity finish bonus/penalty cost factors bi ∈ Z

The goal is to determine a processing mode and, thus, the
resource requirements and starting time for each activity and,
consequently, a resource allocation to the project so that the
resulting schedule is resource- and precedence-feasible and
the total project costs areminimised. Precedence feasibility is
achieved, on the one hand, if for each pair of activities (i, j) ∈
E , the predecessor activity i finishes no later than the start of
the successor activity j . This represents precedence relations
without no-wait condition. On the other hand, for each pair
of activities (i, j) ∈ Enw, there is a minimum and maximum
time lag of 0 between the finish of activity i and the start of
activity j . These are so-called no-wait precedence relations,
where no time lag is allowed between activities. The no-wait
precedence relations cannot be modelled/aggregated to one
single activity as also mode decisions have to be made for
each activity, and resource use among resources would vary.

The schedule is resource-feasible if the amount of allo-
cated resources is at least as high as the amount used by
activities. Furthermore, the amount of allocated units of a
resource k cannot exceed the upper bound amax

k . The total
project costs consist of resource procurement costs, direct,
variable costs per activity, and post-operational costs. The
resource costs for resource k are the product of the amount
of allocated units of resource k multiplied with the respec-
tive resource unit cost factor ck . The direct, variable costs
are modelled as a non-renewable resource and the number
of needed non-renewable resource units for each activity dif-
fers in each mode. The resource unit cost factor of these
non-renewable resources is 1. Post-operational costs are
incurred by each period the project is not finished. The factor
bi ∈ Z defines how the completion of activity i influences
the post-operational costs per period. Hence, at project start,
the post-operational costs per period are exactly equal to
∑

i∈A bi and are increased and decreased in the following
periods depending on which activities terminate. For each
period where activity i is not completed, post-operational
costs bi ≥ 0 occur, and completing the activity reduces
the post-operational costs per period. The term bi < 0 rep-

resents a rise in post-operational costs per period since in
each period before completion of that activity i , we sub-
tract |bi |. Depending on the values of bi , it may occur that
the problem is unbounded. With Succ(i), we denote the
set of all successor activities of activity i , i.e. Succ(i) =
{ j ∈ A : ∃ a path from i to j in graph G = (A, E∪ Enw)}.
If Succ(i) = ∅ and bi < 0, then the instance is unbounded
since the starting and finish time tend towards infinity, the
costs approach negative infinity. Furthermore, if there is an
activity i with bi < 0 and

∑
j∈Succ(i) b j < −bi , then the

problem is also unbounded. Again, we can delay the fin-
ish of activity i and its successors indefinitely and the costs
decrease more and more. We assume that the values for bi
are reasonable and the problem is bounded.

min
∑

k∈R∪Rn

ck · ak +
∑

i∈A

bi ·
⎛

⎝
∑

m∈Mi

LSi∑

t=ESi

ximt · (t + dim )

⎞

⎠ (1)

s.t .
∑

m∈Mi

LSi∑

t=ESi

ximt = 1 ∀i ∈ A (2)

∑

m∈Mi

LSi∑

t=ESi

ximt · (t + dim ) ≤
∑

m∈Mj

LS j∑

t=ESj

x jmt · t ∀(i, j) ∈ E (3)

∑

m∈Mi

LSi∑

t=ESi

ximt · (t + dim ) =
∑

m∈Mj

LS j∑

t=ESj

x jmt · t ∀(i, j) ∈ Enw (4)

∑

i∈A

∑

m∈Mi

LSi∑

t=ESi

ximt · rimk ≤ ak ∀k ∈ Rn (5)

∑

i∈A

∑

m∈Mi

min(t,LSi )∑

q=max(ESi ,t−dim+1)

ximq · rimk ≤ ak ∀k ∈ R, t = 0, . . . , T (6)

ak ≤ amax
k ∀k ∈ R ∪ Rn (7)

ak ∈ R
+ ∀k ∈ R ∪ Rn (8)

ximt ∈ {0, 1} ∀i ∈ A,∀m ∈ Mi , t = ESi , . . . , LSi (9)

Next, we present a mixed-integer programming formula-
tion for the problem described in the previous subsection.
The model uses similar variables and constraints as a time-
indexedmodel for theMRCPSP introduced byTalbot (1982).
In this model, we have two types of decision variables. First,
there are real-valued decision variables ak for each renew-
able and non-renewable resource k. They determine how
many units of resource k are allocated to the project. Second,
we introduce binary decision variables ximt that represent
the mode choice and the scheduling decision for all activ-
ities. For an activity i , a mode m ∈ Mi and a time point
t ∈ {ESi , . . . , LSi }, the decision variable ximt is 1 if and
only if activity i is processed in mode m and starts at time
point t . Here, ESi and LSi denote the earliest and latest start-
ing times of the activity, which can either be computed using
the critical path method (CPM) introduced by Kelley (1963)
or specified in a restrictiveway to reduce computational com-
plexity of a MIP (as described in Sect. 4.2).
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The objective function (1) minimises, in the first term,
the costs of the allocated renewable and non-renewable
resources, and the sum of post-operational costs in the sec-
ond term. The renewable resource costs correspond to the
procurement costs while the direct, variable costs per activ-
ity are captured by the non-renewable resources. Equation
(2) enforces that for each activity exactly one mode and one
starting time is chosen. If for activities i and j , the tuple
(i, j) ∈ E , then activity i has to be completed before activ-
ity j can start. This is modelled by inequality (3), where on
the left side of the inequality is the finish time of activity i and
on the right side is the starting time of activity j . Similarly,
the set Enw represents no-wait precedence relations among
activities, which means that there is a zero time lag between
the finish time of activity i and the starting time of activity j .
Consequently, j has to start directly after the finishing period
of its predecessor i , if (i, j) ∈ Enw. Due to the fact that the
finish time of activity i , on the left side of (4), and the starting
time of activity j , on the right side of (4), have to be equal,
a zero time lag, and thus, no-wait conditions are represented
in equation (4).

The next constraints (5)–(8) are concerned with the
resources. In constraint (5), we compute the use of the
non-renewable resources in the project and set the avail-
ability variable ak for that resource k ∈ Rn accordingly.
For the renewable resources, inequality (6) ensures that
for each time period, sufficient units of the respective
resource are allocated to the project. With inequality (7),
it is possible to introduce an upper bound on how many
units of a resource can be allocated to the project, e.g.
due to space limitations. Note that in the original prob-
lem formulation of the RIP, such limitations were not
given.

Finally, (8) and (9) define the real-valued and binary deci-
sion variables, respectively.

Note that, unlike in the original problem description of
the RIP, there is no due date or deadline constraint. As an
upper bound T for the calculation of the latest starting times,
we use the sum of the maximal durations of all activities
(10).

T =
∑

i∈A

max
m∈Mi

dim (10)

We assume that the problem is bounded, i.e. there is a rea-
sonable post-operational cost structure, and, hence, there is
no reason for considering starting times later than T . For a
given solution,we can compute in polynomial time if it is fea-
sible. Hence, the NDPSP is in NP. Furthermore, the NDPSP
is also an NP-complete problem since we can construct a
polynomial-time reduction from the well-known MRCPSP
which isNP-complete. Given anMRCPSP instance,we com-
pile an equivalent NDPSP instance where bn+1 = 1 and

bi = 0 for all i ∈ A\{n+1}. The resource cost factors are all
set to 0 and the maximum resource capacities amax

k are cho-
sen equal to the resource capacities in theMRCPSP instance.
There are no no-wait constraints in the NDPSP instance and
all other data, such as precedence constraints and mode, is
chosen as in the MRCPSP instance. It is easy to see that they
are equivalent.

min
∑

k∈R∪Rn

ck · ak +
∑

i∈A

bi · endOf(act[i]) (11)

s.t . alternative(act[i], {mode[i,m] : m ∈ Mi }) ∀i ∈ A (12)
endBeforeStart(act[i], act[ j]) ∀(i, j) ∈ E (13)
endAtStart(act[i], act[ j]) ∀(i, j) ∈ Enw (14)
∑

i∈A

∑

m∈Mi

presenceOf(mode[i,m]) · rimk ≤ ak ∀k ∈ Rn (15)

renewUsagek =
∑

i∈A

∑

m∈Mi

pulse(mode[i,m], rimk) ≤ ak ∀k ∈ R

(16)

0 ≤ ak ≤ amax
k ∀k ∈ R ∪ Rn (17)

interval act[i] ∀i ∈ A (18)
interval mode[i,m] optional size dim ∀i ∈ A, ∀m ∈ Mi (19)

Next, we also give a CP formulation in (11) - (19) for the
problem using the framework of IBM ILOG CP Optimizer
(Laborie et al. 2018). It is an adaption of CP formulation
of the MRCPSP and utilises so-called interval variables to
model the start and end times of the activities. The objective
function (11) is similar to the MIP formulation but the end
time of activity i is denoted by endOf(act[i]). Here, act[i]
is an interval variable that marks the start and end of activity
i ∈ A.We introduce additional interval variablesmode[i,m]
for eachmodem ∈ Mi (see (19)). Themode variables get the
keyword optional which means that they do not need to be
processed. However, with the alternative constraint in
(12),we ensure that exactly one of themode interval variables
is processed and the start and end time of the corresponding
act[i] interval variable coincide. Hence, each activity is pro-
cessed in exactly one mode. With (13) and (14), we model
the normal as well as the no-wait precedence constraints,
respectively. The non-renewable resources are considered
in (15) where we sum up the resource consumption of all
present (i.e. chosen) modes. To model a renewable resource
k ∈ R, we use a so-called cumulative function renewUsagek
and the pulse expression in (16). This expression sums up
the resource consumption rimk between the start and end
time of the interval variable mode[i,m]. Finally, (17) sets
the bounds of the real-valued decision variables that rep-
resent the amount of allocated resources like in the MIP
model.

To compute a simple lower bound for the problem, we use
the following equation:
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LB =
∑

k∈R∪Rn

ck · amin
k

+
∑

i∈A
bi>0

bi · (ESi + min
m∈Mi

{dim})

+
∑

i∈A
bi<0

bi · (LSi + max
m∈Mi

{dim})

(20)

In Eq. (20), for renewable resources k ∈ R, we use as mini-
mum resource consumption amin

k with

amin
k = max

i∈A
{ min
m∈Mi

{rimk}}

being the maximum overall minimum activity resource
consumptions. For non-renewable resource k ∈ Rn , themin-
imum allocation amin

k is the sum over all minimum resource
consumptions of the activities, i.e.:

amin
k =

∑

i∈A

min
m∈Mi

{rimk}.

The minimal resource allocations are multiplied with the
respective unit resource cost factor in the first sum in (20).
The second sum takes into account activities with a positive
post-operational cost value bi and multiplies them with the
earliest finish time of the activity. Finally, in the last sum in
(20), activities with negative post-operational cost values are
multipliedwith their latest finish time in order to reduce costs
as much as possible.Wewill use this lower bound to evaluate
our results in Sect. 5.2.

We set up the formulation of the NDPSP displayed in (1)–
(9) for different projects of different project sizes (number
of activities, modes, resources, etc.) using the MIP solver
CPLEX to calculate optimised schedules. But, as described
in Sect. 5.2.3, CPLEX needs long computation time or does
not even find a feasible schedule for larger projects. There-
fore, we adapt an existing metaheuristic to develop a new
methodology to solve such problems quicker and to identify
optimised schedules for larger projects (see Sect. 4).

4 Methodology

Next, we describe the methodology we used to generate
(nearly) optimal solutions to this problem. The proposed
approach is divided into two phases. In the first phase, the
main goal is to find a feasible solution and improve it by
means of a local search procedure. Finding any feasible solu-
tion to the project instances at hand can be a difficult task
especially because of the no-wait precedence constraints and
the resource constraints. We use a multi-start local search

(MLS) that applies a parallel schedule generation scheme
(PSGS).

In the second phase of the proposed procedure, we use
an adaptive large neighbourhood search (ALNS) to further
improve the initial solution. Here, large parts of the solu-
tion are destroyed by various destroy operators. A recreate
operator is used to repair these destroyed parts and obtain a
feasible solution that usually has a better objective value. In
our implementation, the recreate operator uses exact opti-
misation techniques to obtain feasible and (sub-)optimal
solutions.

4.1 Initial solution generation

Since the ALNS needs a feasible initial solution, we use pri-
ority rules and a schedule generation scheme to compute a
feasible initial solution. Different rules are used to generate
scheduling sequences. The initial solution can then be fur-
ther improved by amulti-start local search (MLS) procedure.
The local search component of the MLS only changes the
scheduling sequence and keeps the mode choice. Multi-start
methods have been applied to various combinatorial optimi-
sation problems. For an overview of the concept and existing
work, we refer to Martí et al. (2013).

In theMLS, we use a parallel schedule generation scheme
(PSGS) to construct schedules based on a sequence of
strongly connected components π and a mode vector M .
We partition the graph G = (A, E ∪ Enw ∪ Enw) into its
maximum set of strongly connected components, also called
strong components. Here, the set Enw = {( j, i) : (i, j) ∈
Enw} contains the backward arc for each no-wait precedence
constraint in Enw. We denote the set of strong components
with C = {C1, . . . ,Cp}. A maximum strongly connected
component (strong component) GC of the graph G is a max-
imum subgraph GC = (C, AC ) induced by the vertex set C
such that for two vertices i, j ∈ C there is a directed path
from i to j and from j to i inGC . If an activity i is not strongly
connected with any other activity j in graph G, then it forms
its own singleton subgraph in C. Note that each strong com-
ponent GC is defined by its vertex set C , and hence, we may
also use the term strong component for C .

The reason why we use a parallel schedule generation
scheme is that the no-wait precedence relations may require
a successor of an activity to start directly after the predecessor
activity is finished. Hence, if the starting time of an activity i
is set to a specific point of time the starting times of all no-wait
successors and predecessors of activity i are also determined.
Therefore, we determine the starting times of all activities
that belong to the same strong component simultaneously,
i.e. in parallel, during the PSGS.

A small example of precedence relations and the resulting
strong components is depicted in Fig. 1 and Table 1. There,
dotted arcs represent no-wait precedence relations in Enw
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Fig. 1 Example precedence relations activity-on-the-node network

Table 1 Example project data

i m dim rim1 ESi LSi bi C

0 1 0 0 0 10 0 C0 = {0}
1 1 5 2 0 10 0 C1 = {1, 2, 3, 4}
2 1 3 1 5 15 0 C1 = {1, 2, 3, 4}
3 1 2 1 5 16 0 C1 = {1, 2, 3, 4}

2 4 1 5 14 0 C1 = {1, 2, 3, 4}
4 1 4 1 8 18 0 C1 = {1, 2, 3, 4}
5 1 4 1 0 16 0 C2 = {5, 6}
6 1 2 2 4 20 0 C2 = {5, 6}
7 1 0 0 12 22 10 C3 = {7}

and Enw while normal arcs represent the normal precedence
relations in E .

We use Tarjan’s algorithm (Tarjan 1972) to compute the
strong components of the project in linear time.Given amode
choice for each activity, we can compute minimum start-to-
start time lags δi j for all activities in i, j ∈ C in a strong
componentC using a longest path label-correcting algorithm
on the strong component (cf. Neumann et al. (2003), Sect.
1.4). A minimum start-to-start time lag δi j defines how large
the time difference between the start of two activities i and
j has to be, i.e. S j − Si ≥ δi j .
The arc weights for this longest path problem are chosen

as follows:

ωi j =
{
dim if (i, j) ∈ E ∨ (i, j) ∈ Enw

−d jm if (i, j) ∈ Enw
(21)

This label correcting algorithm returns amatrix δ inO(|C |3).
Hence, if we find an activity i with δi i > 0 the current mode
choice is infeasible since the no-wait precedence constraints
will be violated for this component. If δi j +δ j i = 0, we know
that S j = Si + δi j and the start of one activity determines
the start of the other.

Next, we explain how the PSGS translates a sequence of
strong components π and a mode vector M into a schedule.
Algorithm 1 depicts the basic outline of the PSGS. For each
activity, the mode vector M determines in which mode the

activity is processed, i.e. the mode is not determined during
the PSGS, but given as an input parameter. For each activity,
we keep track of the earliest and latest starting times. They
are initialised with the ones calculated with CPM and are
updated whenever a successor or predecessor of an activity
is scheduled.

The sequence of components π determines in which order
the strong components are scheduled. At iteration s of the
PSGS, strong component Cπs is scheduled. When we sched-
ule a component, we choose a starting time for activity
j∗ = argmin{ESi : i ∈ Cπs }with the lowest earliest starting
time and determine the starting times of all other activities
i ∈ Cπs \ { j∗} by adding the value δ j∗i , i.e. if S j∗ = t , then
Si = t + δ j∗i . Hence, for activities with no-wait conditions
between them, these are fulfilled. However, for activities
with some float time, e.g. activity 3 in Fig. 1, we choose
the earliest starting time which respects the normal prece-
dence constraints. If this violates the resource constraints,
an unscheduling procedure tests later starting times for such
activities.

Since our objective function is locally quasiconcave, not
all starting times need to be checked as it suffices to check
the starting times in the set DT (πs) (Neumann et al. 2003,
Sect. 3.3).

DT (πs) =
⋃

i∈Cπs

LS j∗⋃

t=ESj∗
(t + δ j∗i ) ∩ DT (22)

Above, DT is the set of already assigned starting and finish
times in the (partial) schedule. Hence, the set DT (πs) con-
sists of all the relevant time points where the resource use
may change. A starting time t ∈ DT (πs) is only consid-
ered for scheduling if the maximum resource consumption
of any resource k does not exceed amax

k if the component is
scheduled at that time (cf. constraint (7)).

Among the feasible starting times for the strong compo-
nent in question, we choose the one with the least change in
the objective function value Δ when comparing the partial
schedules. If a resource infeasibility for time t is encountered,
we set the respective cost increase Δt = ∞.

Here, the effect on the objective function of activities with
a negative cost reduction bi value is omitted since it would
favour delaying these activities to late finish times. Ties are
resolved by selecting the earlier time.

It is possible that the PSGS does not find a feasible sched-
ule for a specific scheduling sequence even if the scheduling
sequence itself is precedence-feasible. As explained above,
this can happen when the activity durations in the chosen
modes produce positive length cycles in a strong component
or when the resource demands of the chosen modes exceed
the given resource capacity limits. Yet, for the instances at
hand, this procedure always found at least one feasible sched-
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Data: sequence π , mode vector M
Result: candidate solution cb

1 Compute ESi and LSi for all activities with CPM using
durations of modes in M

2 Compute minimum and maximum longest path matrix δ for each
component

3 DT := {0}
4 s := 1
5 while s ≤ number of strong components do
6 tb := ∞
7 Δ := ∞
8 forall the t ∈ DT (πs) do
9 Calculate cost increase Δt of scheduling Cπs at t

10 if Δt < Δ then
11 tb := t
12 Δ := Δt

13 end
14 end
15 if tb < ∞ then
16 Schedule component Cπs at t

b in solution cb

17 Update ESi for all successors of component activities
18 Update DT
19 end
20 else
21 PSGS failed
22 end
23 s := s + 1
24 end
25 return cb

Algorithm 1: Parallel schedule generation scheme (PSGS)

ule when applying it to different precedence-feasible activity
sequences.

For the example depicted by the network in Fig. 1 and
the data shown in Table 1, we illustrate the outcome of dif-
ferent sequences of strong components and mode vectors.
Note that only activity 3 has 2 modes available. We assume
that there is only one renewable resource with unit cost fac-
tor c1 = 1 and no maximum availability limitation. For
the component sequence π1 = [0, 1, 2, 3] and mode vec-
tor M1 = [1, 1, 1, 1, 1, 1, 1, 1], the schedule computed by
the PSGS and the resource consumption is depicted in Fig. 2.

At first, the component C0 containing only dummy activ-
ity 0 is scheduled with start and finish at time 0. Next, the
component containing activities 1, 2, 3, and 4 is scheduled.
No matter which feasible starting times are selected, the
change in costs of the partial schedule is the same. Hence,
the PSGS schedules the start of activity 1 at time 0 and the
other activities in the component according to the zero time
lag precedence constraints. It is not possible to update the
earliest start time ES7 of activity 7.

The next component to be scheduled (C2) contains activi-
ties 5 and 6. For all starting times earlier than 8, themaximum
resource usewould increase.Hence, thePSGSdetermines the
starting time of activity 5 to be 8 and the one of activity 6 at
time 12 such that no extra resource costs occur. We update
ES7 := 14 because of the finish of activity 6. The dummy

Data: time limit T , perturbation percentage mode vector pM ,
perturbation percentage component sequence pS

Result: best obtained candidate cb

1 Calculate mode vector M with minimal duration modes
2 Calculate initial precedence feasible sequence π by applying
priority rules

3 cb := PSGS(π, M)

4 Mb := M
5 πb := π

6 while time limit T is not reached do
7 Mit := Perturb(Mb, pM )

8 π i t := Perturb(πb, pS)
9 cit := PSGS(π i t , Mit )

10 Try improving cit and π i t with local search
11 if costs(cit ) < costs(cb) then
12 cb := cit

13 Mb := Mit

14 πb := π i t

15 end
16 end
17 return cb

Algorithm 2: Multi-start local search (MLS)

end activity 7 starts and finishes at time 14. If the positions
of component 1 and 2 are reversed, i.e. π2 = [0, 2, 1, 3], the
PSGS obtains the schedule which is depicted in Fig. 3. Since
the project finish time of this schedule is greater than before,
b7 > 0, and the amount of used resources is the same, this
schedule has higher costs than the one depicted in Fig. 2.

If the mode of activity 3 is changed to 2, i.e. M2 =
[1, 1, 1, 2, 1, 1, 1, 1], we can detect a cycle of positive length
in component C1 while computing the δi, j . Since there are
no-wait precedence constraints among activities 1 and 2 and
activities 2 and 4, the processing duration of activity 3 can-
not be greater than the one of activity 2. Because of the
precedence constraints among activities 1 and 3 and 3 and
4, activities 3 and 2 need to be executed partly in parallel.
Hence, M2 is an infeasible mode vector.

In Algorithm 2, the pseudocode of the MLS is depicted.
The input parameters of the MLS are an overall time limit
T and perturbation parameters for the mode vector pM and
for the component sequence pS , respectively. First, a mode
vector is computed where for each activity the minimum
duration is selected. Next, we calculate an initial sequence
π of strong components by applying several priority rules.
This sequence respects the precedence constraints of the set
E : if (i, j) ∈ E and i and j do not belong to the same
component, then the strong component of activity i has to
be at an earlier position in the sequence π than the compo-
nent of activity j . We get a precedence-feasible order in the
following way: First, we add the component of the dummy
start activity to the sequence. Then, we iteratively select the
component with the highest priority value according to the
chosen priority rule among the components where all the
components containing predecessors with respect to E have
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Fig. 2 PSGS schedule for π1
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Fig. 3 PSGS schedule for π2
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already been added to the sequence and add it to the sequence.
This is repeated until all strong components are added to the
sequence and ties are resolved by choosing the component
with the lowest index. We used the following priority rules:
minimum LST, minimum LFT, minimum slack, i.e. the dif-
ference between the latest and earliest finish time, minimum
number of successors, maximum number of successors and
maximum rank positional weight (cf. Kolisch (1996)). These
rules were traditionally used to obtain activity sequences.
Hence, we adapted them such that for example the minimum
LST of a componentC is defined as the minimumLST of the
activities in the component, i.e.mini∈C LSi .We apply the six
rules mentioned above in turn and, together with the mode
vector M , we use the PSGS to translate them into a solution
candidate. The priority rule that results in the lowest costs is
stored in π and kept as starting point for the local search.

Together with the mode vector, we use the PSGS to trans-
late π into the first solution candidate cb. Then, we initialise
the mode vector Mb and sequence πb with M and π , respec-
tively. In every iteration of the while loop, we first perturb the
current best mode vector and component sequence to obtain
Mit and π i t . In the mode vector perturbation, we change the
chosen mode of a random activity to another one (the total
number of changes is random and smaller than or equal to
pM · |A|). A changed mode vector is only used if it is fea-
sible with respect to the time lags in the components, i.e.
δi i ≤ 0 for all activities i . To obtain a perturbed sequence
π i t , we iteratively delete a random strong component from
the sequence and reinsert it at a random but precedence feasi-
ble position. This is repeated a random number of times, but
at most pS · |C| many times. Then, we translate the current
mode vector Mit and the current sequence π i t into a solution
candidate with the PSGS. Afterwards, we try to improve this
solution candidate with a local search.

In the local search, we exchange the position of two strong
components in the sequence. If the exchangemeets the prece-
dence constraints as mentioned above, we apply the PSGS
to the altered sequence and evaluate the cost value. If a cost

improvement is found, we apply the change to the sequence.
Hence, we use a first improving move policy. This is repeated
until all possible 2-swaps have been checked and have not led
to a cost improvement. If an improvement to cb was obtained,
we update cb as well as Mb and πb. In Sect. 5.2.1 we per-
form experiments to identify suitable parameter choices for
the MLS procedure.

4.2 Adaptive large neighbourhood search

Here, we explain how the master algorithm for the second
phase of the search is implemented. We basically use the
adaptive large neighbourhood search (ALNS) metaheuristic
with modifications. The concept of ALNS was introduced
by Ropke and Pisinger (2006). It is an extension of the
large neighbourhood search (LNS) framework established by
Shaw (1997). In the field of project scheduling, the ALNS
concept was successfully applied to the MRCPSP by Muller
(2011) and Gerhards et al. (2017).

In each iteration of the ALNS, one of several destroy oper-
ators is chosen with some defined probability and used to
destroy large parts of the current solution. It is then repaired
by the use of a mixed-integer programme based on the for-
mulation in (1)–(9) or using the constraint programming
formulation in (11)–(19). We do not solve the full MIP or
CP, but instead, we limit the number of decision variables
present with a parameter freeVar in the destroy step and
solve a subproblem by fixing all other decision variables to
the value in the undestroyed solution part. The purpose of
reducing the number of decision variables is to be able to
solve the MIP or CP in reasonable time. When introducing
decision variables for all available modes and starting times
for each activity, the MIP or CP is not solvable with current
state-of-the-art hardware components for the desired instance
sizes due to memory and time limitations. Thus, by limiting
the number of decision variables, the MIP or CP becomes
solvable. The application of exact optimisation techniques
in the recreate step of the ALNS enables us to incorporate
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complex problem-specific constraints, such as precedence
relations with no-wait condition.

In our implementation, instead of changing the proba-
bilities for choosing the destroy and recreate operators, the
adaptive part of the ALNS consists of adapting the size of
the neighbourhood that is searched. More precisely, if the
search has not found a better solution in the current iteration
because it has got stuck in a local optimum, for example, we
increase the neighbourhood size and the iteration time limit.

The neighbourhood size is defined by the two parame-
ters freeVar and varPerMode. Here, freeVar limits
the total number of decision variables in the MP, and
varPerMode is an upper bound on the number of deci-
sion variables introduced for each mode of an activity. If
the search encounters a better solution, the neighbourhood
size and the iteration time limit are reset to their initial val-
ues. The implementation of the ALNS for the MRCPSP in
Gerhards et al. (2017) also uses MIP techniques in the recre-
ate step. However, there the neighbourhood size was only
defined by the number of decision variables in the MIP and
each activity could start at all possible starting times in the
MIP. For the instances at hand, the respective MIP would
not be solvable in reasonable time, and hence, we saw the
need to limit the number of decision variables per activity.
Furthermore, in this implementation, we obtain the sched-
ule directly from the MIP without an additional SGS step.
The ALNS implementation in Gerhards et al. (2017) used
the MIP to obtain priority values for the activities and then
translated them with an SGS into a feasible solution. Since
constraint programming solvers have become a powerful tool
for resource-constrained project scheduling problems (see
e.g. Kreter et al. (2018) for a successful implementation of
CP for the RIP), we also implement a CP solver as a recreate
operator.

The basic outline of the algorithm is depicted in
Algorithm 3. In the next subsections, we will describe in
more detail how the destroy operators and the recreate oper-
ator work.

As relevant input data for the ALNS, we need a fea-
sible solution candidate ci , a pool of destroy operators
D, and probabilities P to select them. Furthermore, we
need initial values for the maximum number of deci-
sion variables (initFreeVar), for the number of deci-
sion variables for each mode (initVarPerMode) as
well as for the MIP solver time limit of each iteration
(initTimePerIteration). Lastly, the parameters α

and β are used to increase the size of the neighbourhood.
In Sect. 5.2.1, we investigate which values for these param-
eters perform best.

In lines 1–4 of Algorithm 3, we initialise the variable
parameters. Here, freeVar and varPerMode are used
in the destroy step (see Sect. 4.2.1) as parameters, and
timePerIteration is used in the recreate step (see Sect.

Data: ci , D, P , initFreeVar, initVarPerMode, α, β,
initTimePerIteration

Result: best obtained candidate cb

1 cb := ci

2 freeVar := initFreeVar
3 varPerMode := initVarPerMode
4 timePerIteration := initTimePerIteration
5 while overall time limit is not reached do
6 Choose a destroy operator d from D with probabilities in P
7 DC := d(cb,freeVar,varPerMode)

8 cp := r(cb, DC,timePerIteration)

9 if costs(cp) < costs(cb) then
10 cb := cp

11 freeVar := initFreeVar
12 timePerIteration = initTimePerIteration
13 varPerMode := initVarPerMode
14 else
15 freeVar := α · freeVar
16 if number of iterations since last improvement is even

then
17 varPerMode := β · varPerMode
18 end
19 if iteration took longer than timePer I teration then
20 timePerIteration :=actual time of iteration +1
21 end
22 end
23 end
24 return cb

Algorithm 3: ALNS

4.2.2). Each iteration of the while loop (lines 5–23) can be
divided into three parts: The destroy step (line 7), the recreate
step (line 8), and the update and adapt step (lines 9–22).

In the destroy step, one of the destroy operators is cho-
sen based on probability values stored in P . This operator
destroys specific parts of the current best solution candidate
cb. The parts selected for destruction are determined by the
type of operator. The number of parts that are chosen and the
size of these parts are controlled by the parametersfreeVar
and varPerMode, respectively. The destruction process is
explained in further detail in the next subsection.

The recreate operator sets up either a mixed-integer pro-
gramme with the mathematical model depicted in (1)–(9)
or the constraint programming formulation shown in (11)–
(19). But instead of adding all activity decision variables
to the model, some of them are fixed according to the cur-
rent undestroyed solution parts. Only in destroyed parts of
the solution, the decision variables are added. Thus, only a
subproblem is set up and solved by a generic solver, such as
CPLEX or Gurobi. This has the advantage that it is less time-
and memory-consuming than solving the full MIP or CP for-
mulation of the problem. With timePerIteration, we
limit the computation time of the solver. More information
on how the exact optimiser is used is described in Sect. 4.2.2.

If an improving solution candidate is found by the recre-
ate operator, the current best solution candidate is updated
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(line 10) and we reset the parameters that control the destroy
and recreate operators to their initial values (lines 11–13).
Otherwise, we adapt the parameters so that a larger neigh-
bourhood is searched. Therefore, the parameter freeVar
is increased by factor α (line 15). Hence, in the destroy
step of the next iteration, more parts of the current solution
are destroyed. Also, every second iteration, we increase the
parametervarPerModeby factorβ (lines 16–18) to enlarge
the size of the destroyed parts.We extend the time for theMIP
or CP solving (lines 19–21) since the neighbourhood that is
investigated in the following iteration is larger. We set the
time limit to the actual computation time of the current itera-
tion and add one extra second. This is done becausewe expect
a longer computation time for the increased neighbourhood;
thus, we need to limit the overall computation time.

4.2.1 Destroy operators

The purpose of the destroy operators in the ALNS is to
destroy specific parts of the current solution candidate while
the remaining parts of the solution are fixed. In order to do so,
we define with the term destroyed candidate a data structure
which contains the information about the fixed and destroyed
parts of the solution which is used in the recreate step of the
ALNS. A destroyed candidate stores lists that contain infor-
mation about mode indices in which each activity i can be
processed. Also, for each activity i , an earliest (ESdi ) and lat-
est starting time (LSdi ) is stored. A destroy operator d returns
a destroyed candidate DC and takes a solution candidate c,
the maximum number of decision variables freeVar, and
the number of variables per mode varPerMode as input
parameters. The corresponding number of decision variables
of such a destroyed candidate depends on the number of
modes and possible starting times of the chosen activities.

DC := d(c,freeVar,varPerMode)

In the destroyed candidate, activities can be classified as
either free or fixed activities. We apply two destroy operators
that differ in the sequence the activities are selected as free
activities. A fixed activity i has only its modemi of the input
solution candidate c available for processing, and earliest
starting time as well as the latest starting time are set to
be the starting times in the schedule of the input solution
candidate c. Hence, nothing can change for this activity. For
a free activity i , all of its possible mode indices are added to
the mode list in the destroyed candidate DC and the earliest
and latest starting time (ESdi and LSdi , respectively) depend
on the starting time si in the solution candidate as well as
the parameter varPerMode. Basically, we want to set ESdi
and LSdi to such values that they form an interval with the
old start si in the middle of it. The size of the interval is not
larger thanvarPerMode, i.e. LSdi −ESdi ≤ var PerMode.

Hence, we initially set ESdi := si − var PerMode
2 and LSdi :=

si + var PerMode
2 . We adjust the borders of the interval if they

extend over the earliest or latest starting times calculated by
CPM (ESi and LSi , see also 3.2). Hence, if ESdi < ESi , we
shift the interval to the right by increasing LSdi by ESi −
ESdi and setting ESdi = ESi . Similarly, if LSdi > LSi , we
shift the interval to the left by decreasing ESdi by LSdi −
LSi and setting LSdi = LSi . However, if both cases appear
simultaneously, i.e. ESdi < ESi and LSdi > LSi , we assign
the earliest and latest starting times calculated byCPM.After
a shift, the old start si may not be in the centre of the interval
formedby ESdi and LS

d
i but it is still contained in the interval.

For each free activity, we can count how many decision
variables are added in the recreate step to the MIP. For free
activity i , we introduce

|Mi | ·
(
LSdi − ESdi + 1

)

decision variables. The destroy operator stops selecting free
activities after a certain threshold of decision variables
freeVar has been exceeded. All remaining activities are
fixed activities. Hence, the sum of decision variables cor-
responding to a destroyed candidate is calculated as follows
and has to be lower than or equal to the parameter freeVar:

∑

free activity i

|Mi | ·
(
LSdi − ESdi + 1

)
≤ freeVar

In the following, we describe how the two applied opera-
tors work.

The first destroy operator we introduce is called destroy-
TimeInterval (DTI). The main idea is to select activities that
are processed in similar time periods. First, a random time
period t ∈ {1, . . . , cmax} is chosen with equal probability.
Here, cmax denotes the makespan of the current schedule and
a period t starts at time t − 1 and ends at t . We use a time
period to identify which activities are selected as free with
initial lower bound t − 1 and upper bound t . Iteratively, DTI
selects free activities that fulfil one of the following criteria:

– The starting time point of the activity is contained in the
time period.

– The finish time point of the activity is included in the
time period.

– The time period contains both the start time point and the
finish time point of the activity.

The activities are selected in increasing order of their indices
if more than one activity is eligible for selection. If an activ-
ity is selected, we add all activities that belong to the same
strong component as free activities since they are linked by
no-wait precedence constraints. If the sum of corresponding
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decision variables does not exceed the parameter freeVar,
we increase the original interval. To make more activities
eligible for selection in the next iteration, we increase the
interval by 5 time units in both directions in order to speed
up the selection process. The activity selection and interval
enlargement alternation is repeated until either the bound
freeVar of corresponding variables is reached or all activ-
ities are selected. All activities that have not been selected
are fixed activities in the destroyed candidate. Hence, the free
activities all have relatively close-by starting or finish time
points, and the change of the mode or starting time point of
one of them will most likely influence the others.

The second destroy operator, destroyPredecessorsAnd-
Successors (DPS), exploits the precedence relations among
activities. Iteratively, we select a random strong component
C ∈ C that has not been selected before and mark all activ-
ities belonging to it as free. Then, we also select all strong
components that contain successor activities or predecessor
activities of the current component’s activities andmark their
activities as free in this order and if theywere notmarked pre-
viously. Furthermore, we also consider transitive successors
and predecessors in this selection process, i.e. if (i, j) ∈ E
and ( j, k) ∈ E , then k is a transitive successor of i .We repeat
this procedure with another random strong component until
the limit freeVar is reached or exceeded. Again, all activ-
ities that have not been selected are fixed. Here, we want to
focus on activities that have precedence relations between
them since they often limit the starting or finish time. In
the case of the no-wait precedence relations Enw, changing
the start of one activity has effects on all activities in the
same strong component, and thus, the solver can explore the
neighbourhood more effectively if all activities of the strong
component are free.

4.2.2 Recreate operator

Next, we present how the recreate operator works. It uses
the following input parameters: the current best solution
candidate cb, a destroyed candidate DC , and a time limit
timePerIteration. The recreate operator returns a fea-
sible solution candidate cp.

cp := r(cb, DC,timePerIteration)

It uses the information provided in the destroyed candi-
date data structure to set up a MIP or a CP. In the MIP case,
we use the mathematical formulation presented in (1)–(9)
(see Sect. 3.2) but with the mode list from the destroyed can-
didate. Hence, for the binary decision variables in (9), the set
Mi is adapted, and we also use the adapted earliest and latest
starting times ESdi and LSdi instead of the ones calculated
by CPM. Thus, for fixed activities, only the decision vari-
able corresponding to the mode and starting time from the

current best solution candidate is added to the MIP. For free
activities, however, we use all available modes but depend-
ing on varPerMode only a subset of the possible starting
times. By design of the destroy operators, the total number of
decision variables in the MIP is smaller than or equal to the
parameter freeVar. Similarly, in the CP case, we setup the
formulation presented in (11)–(19). Here, we restrict the ear-
liest start and finish times of the interval decision variables
in (18) and remove the mode interval variables displayed in
(19) if they are not present in the destroyed candidate.

We use the parameter timePerIteration to limit the
running time for solving theMP. This is done to save time that
could be wasted by the exact solver by proving the optimality
of a solution.

Since by definition of the destroy operators the current
best solution candidate cb is feasible for the constructedMIP
or CP, we hand it to the solver for a warmstart. In this way,
the MIP or CP solver obtains an upper bound immediately
which speeds up the search process. The solution obtained by
the solver for the subproblem can be an improvement of the
current solution candidate. If the MIP or CP solver does not
find an improving solution, this may be due to three reasons:

– The current solution candidate is already optimal, but we
do not know it since the lower bound information of the
solver is only for a subproblem and not for the original
problem.

– The current solution candidate is locally optimal for the
current neighbourhood defined by the destroyed candi-
date but a better solution candidate exists in a larger
neighbourhood.

– The solver was not able to find a better solution in the
current neighbourhood because the iteration time limit
timePerIteration was too small.

The latter two reasons are addressed by the adaptation step of
the ALNS, where we increase the size of the neighbourhood
and the iteration time limit.

5 Case study

5.1 Real-life projects data

To apply, test, and validate our algorithms, we used data of
three nuclear dismantling projects of different sizes. Since
worldwide only 17 nuclear facilities have been totally dis-
mantled yet (see Sect. 1), data of three nuclear dismantling
projects is a very good sample size. All data of these real-life
projects were handed over by companies that are involved in
the nuclear dismantling industry.

These real-life projects represent one small-sized project
with about 50 activities and 37 renewable resources, one
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mid-sized project with about 85 activities and 37 renewable
resources, and one large-scale project with about 300 activi-
ties and 22 renewable resources in Germany. The projects all
feature activities with different modes and are described in
detail at the end of this subsection after some general infor-
mation about the uncertainty and the simulation of different
scenarios were depicted.

Altogether, the project planning of these projects is subject
to the planning requirements described in Sects. 1 and 3.1.
Since uncertainty prevails in real-life projects, this has to be
considered in project planning. Thus, for each project, we
considered uncertainties in activity durations and uncertain
sequences of activities to cover as many potential changes
during project execution as possible.

Therefore, experts estimated potential activity durations,
parameters of the activity duration distribution, activity
modes, and potential sequences of activities. By varying
activity durations and the sequence of activities, we simu-
lated for each project 200 deterministic instances covering
these potential changes. These 200 deterministic instances
per project are divided into two sets of 100 instances each.
One hundred instances are used as a training set for optimis-
ing the parameter setting of the heuristic (see Sect. 5.2.1) and
a test set of 100 instances is used for assessing the quality of
the algorithm (see Sect. 5.2.2 and Sect. 5.2.3).

The activity durations in real-life projects are either well
known, e.g. for standard procedures, or not well known, e.g.
when using new techniques or when an unknown intensity
of contamination prevails. We modelled well-known activ-
ity durations with deterministic values and uncertain activity
durations using a beta distribution. With the help of mini-
mum, maximum, and most likely duration values, that are
also estimated by experts, we derived the parameters of the
beta distribution by combining the PERT formulas for the
expected value and the variance with the formulas for the
parameters α and β of the beta distribution.

The sequence of activities in nuclear dismantling projects
is most commonly deterministic. However, in some cases,
it is uncertain which activities have to be executed, e.g.
when it is uncertain whether or not radioactivity is found in
some areas. To model the uncertainty of activity sequences,
we distinguish between deterministic and stochastic deci-
sion points. At a deterministic decision point, all outgoing
activities are executed with a probability of 1. However,
at stochastic decision points, exactly one outgoing activity
among several optional activities is carried out. For each of
these optional activities, a probability of execution<1 is allo-
catedwhere the sumofoptional activities’ probabilities at one
decision point must be 1. Consequently, in some cases, e.g.
when contamination is found, different activities have to be
executed as compared to when no contamination was found.
Different activities can be executed in either only one or sev-
eral modes. Furthermore, in some cases, decontamination

activities have to be repeated several times to comply with
the legal threshold. Because of these reasons, each project has
a set of obligatory and a set of optional activities. Altogether,
the number of activities and, consequently, the number of
possible execution modes may be different in each determin-
istic instance.

In the following, we briefly describe the data of the
instances of each project. The first project is dedicated to
the dismantling of a pressurised water reactor (PWR), which
is the core unit of a nuclear power plant. Considering every
possible activity, it consists of 55 activities without dummy
activities and 37 different resources. One of them is a non-
renewable resource representing the activity costs and the
others are renewable resources. The 200 simulated determin-
istic instances consist of 47 to 55 activities, 4 to 7 activities
can be executed in different modes, 21 to 24 activities have
successors without a no-wait condition, and 26 to 31 activi-
ties have successors with a no-wait condition.

The second project deals with the dismantling of a boiling
water reactor (BWR) and the dismantling of the connected
turbine hall. Initially, the project consists of 92 activities and
38 different resources Again, one of them is a non-renewable
resource and the others are of the renewable type. After sim-
ulation, the 200 deterministic instances consist of 82 to 90
activities. Four to seven activities can be executed in different
modes, 66 to 72 activities have successors without a no-wait
condition, and 14 to 19 activities have successors with a no-
wait condition.

The third project comprises the dismantling of a whole
nuclear facility through to the so-called green field. This
includes dismantling of the reactor and all its components
in the reactor room, the cooling systems including the cool-
ing tower, the turbines, the generator and all components in
the turbine hall aswell as all further components and building
structures. In this sample, 305 activities may be executed and
23 resources can be used in this project. By varying the activ-
ity durations and the sequence of activities, 200 deterministic
instances were created with 295 to 299 activities, whereof 33
to 37 activities may be executed in several modes, 204 to 206
activities have successors without a no-wait condition, and
100 to 102 activities have successors with a no-wait condi-
tion.

5.2 Computational experiments

In order to evaluate the proposed methods, we also imple-
mented an adaption of a simulated annealing (SA) approach
with reheating of Józefowska et al. (2001). This metaheuris-
tic procedure was originally used to find solutions for the
MRCPSP. To encode a solution, we used the same scheduling
sequence andmode vector as in theMLSprocedure presented
above. However, in the SAmetaheuristic the acceptance rule
differs and it is possible to accept a worse solution with some

123



284 Journal of Scheduling (2021) 24:269–290

probability. A starting solution for the SA was computed by
applying the same priority rules that we use in the MLS.

Furthermore, we also adapted the genetic algorithm (GA)
of Afshar et al. (2019) which was also proposed for the
MRCPSP.To represent a solution,weused the same encoding
aswith theMLS and the SAprocedure. The initial population
was generated by applying each of the priority rules pre-
sented in Sect. 4.1 as well as random scheduling sequences.
We utilised the one-point crossover in our GA implementa-
tion. However, the forward backward improvement (FBI, cf.
Tormos and Lova (2001)) that is used as local improvement
operator does not work in the NDPSP problem setting since
the objective function of the NDPSP is not regular. There-
fore, we adapted the local improvement procedure of the GA
in such a way that the activities are still shifted to the back
(front) but not necessarily to the latest (earliest) starting time.
Instead, each activity is shifted to its best cost improving start-
ing time. Especially for activities with a negative bi value,
this results in starting times that improve the overall objec-
tive value of a solution. Although this adapted FBI operator
is time-consuming, it yielded better results than using the
GA without this local improvement operator. Furthermore,
we used a 2-tournament system to select the solutions for the
next iteration of the GA as in Tormos and Lova (2001).

Before evaluating the proposed MLS and ALNS proce-
dure in long-run experiments with 3600 seconds of runtime
(cf. Sect. 5.2.2), we performed experiments to calibrate the
algorithm parameters. This was done to investigate which
parameters have yielded the best solution quality. We mea-
sured the solution quality as the relative optimality gap. This
is the relative deviation of the upper bound UB and a lower
bound LB. As a lower bound, we used the term (20) intro-
duced in Sect. 3.2, and asUB we used cb. Hence, the relative
gap in percent computes as follows:

gap = UB − LB

LB
(23)

Asoftware prototypeof theproposedprocedurewas coded
in C#. We used IBM ILOG CPLEX 12.8 to solve the MIP
and IBM ILOG CP Optimizer 12.8 to solve the CP in the
recreate step. All experiments were performed on a PC with
16 GB of RAM and an Intel i7 6700 CPU running at 3.40
GHz.

5.2.1 Calibration of the algorithm parameters

We calibrated the algorithm parameters on a training set
consisting of 100 instances for each of the three project
types.We used the irace software package of the statistical
computing software R to tune the algorithm parameters (cf.
López-Ibáñez et al. (2016)). This software package performs
iterated racing which is an extension of the iterated F-racing

algorithm proposed by Birattari et al. (2010). The param-
eters of the MLS and ALNS algorithm were calibrated in
separateirace experiments. Furthermore,wedistinguished
between an ALNS using MIP methods (ALNSMIP) and one
using CPmethods (ALNSCP). For each calibration, we spec-
ified themaximumnumber of experiments, the time limit of a
single experiment, and the possible values for each algorithm
parameter. Here, it is especially important to balance the por-
tion between total calibration time and gained precision of
the estimated parameter values. Therefore, we limited the
running time of the single experiments in order to speed up
the calibration experiments to lower values than in the long-
run experiments in Sect. 5.2.2. The comparison in Sect. 5.2.3
clearly shows that the proposed methodology outperforms a
standard MIP solver. Longer calibration experiments would
merely further improve the results of the MLS and ALNS.

Note that the MLS procedure always found an opti-
mal solution with UB = LB for the sample PWR project
instances after an average running time of 0.62 seconds in
the initial experiments. Therefore,weomitted those instances
from calibration experiments, but it is still important to see
whether other methods can also find optimal solutions for
these instances.

For the calibration of the MLS, we set the number of
MLS runs to be at most 2000 and tested different param-
eters pM ∈ [0, 0.2] and pS ∈ [0, 0.5] with a running time
limit of T = 600 seconds. Higher values for pM are not suit-
able for the instances at hand since only approximately 10%
of the activities can be performed in different modes. With
pS ≤ 0.5, we limited the maximal perturbation of the cur-
rent best scheduling sequence. The irace calibration run
shows that pM = 0.04 and pS = 0.19 performs best on the
training data. Hence, we use this parameter configuration in
the following experiments.

Next, we investigated which parameter values are appro-
priate for the ALNS. Again, we used the irace software
package with the following parameter choices:

– initFreeVar ∈ [1 000, 100 000]
– initVarPerMode ∈ [10, 5 000]
– α ∈ [1, 1.5]
– β ∈ [1, 1.5]
– initTimePerIteration ∈ [0.1, 10]
– P = {p1, p2} with p1 ∈ [0, 1], p2 = 1 − p1

Here, p1 and p2 are the probabilities of selecting the destroy
operators DTI and DPS, respectively. For each instance of
the training set, we computed an initial solution by applying
the MLS with the parameters calibrated above and a running
time of 1 second. We set a fixed maximum running time of
600 seconds for each ALNS run in the calibration experi-
ments and performed 2000 ALNS runs for both the MIP and
the CP version. Again, this was done to speed up the cali-
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Table 2 ALNS calibration results after 2000 experiments

ALNSMIP ALNSCP

initFreeVar 4827 96742

initVarPerMode 82 3369

α 1.45 1.32

β 1.07 1.08

initTimePerIteration 9.14 6.75

(p1, p2) (0.86, 0.14) (0.22, 0.78)

bration process but we expect the calibrated parameters to be
appropriate for longer running times of the ALNS as well.
The irace experiment results are depicted in Table 2.

To our surprise, the CP-based version can cope with a
higher count of decision variables than the MIP. This also
results in a larger neighbourhood that is investigated in each
iteration. Hence, we expect better results from ALNSCP.
Since the parameter initVarPerMode is chosen rather
large, a small value for its adoption rate β is efficient. The
destroy operator DTI, which is focusing on specific time
intervals in the current schedule, seems to be more efficient
for theMIP version, and therefore, it is selected with a higher
probability. For the CP version, it is the other way around and
the DPS operator is chosen with a higher probability.

The calibration of the SA adaption of Józefowska et al.
(2001) results in a cooling factor of 0.83 for the temperature.
This factor is used to reduce the probability of choosing a
deteriorating solution along the search. For a runtime limit
of 600 seconds, the number of reheats is equal to 964. After
a reheat, the temperature is reset to its initial value and we
adjusted the number of reheats for longer running times
accordingly. For the GA, the population size, i.e. the number
of solutions generated in each iteration, is set to 262 and the
mutation probability is equal to 0.2. This probability con-
trols, how often a random alteration of a population member
is performed after the crossover.

5.2.2 Main experiments

The calibration experiments revealed that for the small-sized
instances we are able to find optimum solutions in a short
time. For the larger instances at hand, however, the perfor-
mance of the MLS and the ALNS varied depending on the
parameter setting. Hence, we performed additional experi-
ments with the best-performing parameter settings found in
the previous section. We tested the MLS and the ALNS pro-
cedure on the 100 BWR and large project test instances that
were not used during the calibration experiments. The run-
ning time of the search was increased to a total time of 3600
seconds in order to investigate the long-term behaviour of the
algorithm. In all experiments, we computed an initial solu-

tion using the priority rules and the PSGS. For the BWR
instances, the minimum LST rule yields the best results for
97 instances and the minimum slack rule for the remaining
3 instances. The average relative gap of the BWR instances
after using the priority rules is 5.78%. The minimum LFT
rule outperforms all other rules on all large instances with
an average relative gap of 3.88%. The average computation
time for the priority rule solutions is 0.44 seconds.

To compare the MLS and the ALNS, we used different
time allocations for the MLS and the ALNS part of the
search. With MLSxALNS, we denote a run where the MLS
part of the search is allowed x seconds and the ALNS part
uses the remaining time. Table 3 shows the average gap for
the tested combinations as well as the SA and GA meta-
heuristics. We also included a run where we used only the
MLS and one experiment where the constraint programming
solver is used without the ALNS and no warmstart solution
(CP). It is interesting to see that the application of the ALNS
improves the results for the BWR instances only slightly. We
suspect that those instances, much like the PWR instances,
are in fact solved optimally but the lower bound used in our
comparison is too weak for these instances. The standalone
CP experiment compute an average relative gap of 0.47%
for these instances, but cannot detect optimality. The ALNS
approaches and the standalone CP find the same results and
simulated annealing and the MLS perform slightly worse.

To our surprise, the standaloneMLSoutperforms theMIP-
based ALNS versions on the large project instances. Shorter
running time limits were not successful with ALNSMIP since
setting up the time-indexed model required more than 60
seconds for most of the instances.

As expected, the CP-based ALNS performs very well
and especially for the shorter run time limits of 60 and 600
seconds. However, for the 3600 seconds time limit, the stan-
dalone CP run achieves slightly better results than ALNSCP.
It is interesting to see that the MIP solver is not able to cope
with the large project instances. Even setting up the MIP
model can take several minutes. The CP solver, on the other
hand, sets up the model in a matter of seconds and is even
able to achieve high quality results without the ALNS frame-
work. The average relative gap computed with the CP lower
bound after one hour of computation is 1.45% for the large
project instances. The SA and the GA metaheuristics are
superior to the MLS on both the BWR and the large project
instances except for a run time limit of 60 seconds where the
MLS achieves slightly better results than the GA. Further-
more, the SA performs better than the GA. However, SA is
outperformed by ALNSCP and the standalone constraint pro-
gramming formulation. Compared to the solutions initially
generated with the priority rules, the ALNSCP procedure was
able to improve them by 0.97% for the large instances and by
0.09% for the BWR instances. On first glance, this may not
sound like much, but the absolute improvement is on aver-
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Table 3 Average relative gap
for the different methods and
running times (lowest values for
the large instances are
highlighted in bold)

BWR Large
Method / Running time 60 600 3600 60 600 3600

MLS1ALNSCP 5.68% 5.68% 5.68% 2.98% 2.90% 2.89%

MLS60ALNSCP – 5.68% 5.68% – 2.89% 2.89%

MLS1 800ALNSCP – – 5.68% – – 2.89%

MLS1ALNSMIP – 5.68% 5.68% – 3.83% 3.82%

MLS60ALNSMIP – 5.68% 5.68% – 3.71% 3.71%

MLS1 800ALNSMIP – – 5.68% – – 3.37%

CP 5.68% 5.68% 5.68% 2.98% 2.91% 2.88%

SA 5.68% 5.68% 5.68% 3.29% 3.02% 2.93%

GA 5.68% 5.68% 5.68% 3.74% 3.28% 3.17%

MLS 5.72% 5.72% 5.71% 3.71% 3.56% 3.29%

age 4.5 · 106 monetary units in the case of the large projects.
Hence, utilising our proposedmethod can help savemillions.

5.2.3 Evaluation against a MIP solver

To analyse the strength of themethodology presented in Sect.
4, we compare its scheduling results in terms of the objective
function value, relative optimality gap, and computation time
with the scheduling results usingCPLEX solving theNDPSP
formulation displayed in (1)–(9) with andwithout warmstart.

TheNDPSP formulation is set up in IBM ILOGOptimiza-
tion Studio 12.8.0 (CPLEX Studio IDE) and solved using
CPLEX (version 12.8.0). For the warmstart, we use the best
obtained schedule of the MLS step of the methodology with
T = 60, pS = 0.19, and pM = 0.04. Because of the high
computational effort solving the NDPSP with CPLEX, all
following experiments are performed on a PC with 64 GB
of RAM and an Intel i7 4930 CPU running on 12 processors
at 3.40 GHz each. For the methodology, we use the param-
eter settings obtained by the calibration experiments and a
total time limit of 3600 seconds with time allocations as in
MLS1ALNSCP. For the evaluation, we use the three real-life
projects presented in Sect. 5.1.

Table 4 shows the results of the evaluation of the method-
ology and CPLEX solving the NDPSP with and without
warmstart for scenario 1 of each project. We only tested
scenario 1 because, on the one hand, it is a representative
example and on the other hand calculation with and with-
out warmstart is very time-consuming. For the PWR project,
each procedure calculates the same objective function value
with a relative optimality gap of 0.00%. But, CPLEX with
warmstart needs 163 times and CPLEX without warmstart
388 times longer than the proposed methodology. The com-
plete mixed-integer linear programme has 23362 decision
variables and 37942 constraints.

The calculation of the BWR project with CPLEX without
warmstart crashed after 495509 seconds. Since the relative

optimality gap of 0.37% is already very small and since the
computation time is very high compared to the methodol-
ogy, we refrained from recalculating. For the same reasons
we abandoned the calculation ofCPLEXwithwarmstart after
253753 seconds. This mixed-integer linear programme con-
sists of 77944 decision variables and 61028 constraints. The
methodology found the best objective function value after 8
seconds. But, since the lower bound is not adapted, only a
relative optimality gap of 5.55% was calculated.

Due to the fact that CPLEX without warmstart did not
find any schedule for the large project, we abandoned the
calculation after 434532 seconds. The complexity of the cal-
culation becomes obvious by 951185 decision variables and
98053 constraints. We abandoned the calculation of CPLEX
with warmstart after 83569 seconds because of the calcu-
lated relative optimality gap of close to 0%. Our ALNSCP
methodology, however, found an even better solution with a
gap of 2.80% with respect to the simple lower bound. This
solution is 1.4% better than the one found by CPLEX with
a warmstart. ALNSCP found the best-known solution after
2585 seconds.

Altogether, for small- and medium-sized projects the
methodology needs less computation time and identifies
schedules with the same or less total project costs than
CPLEX with or without warmstart. Figures 4 and 5 illus-
trate the pathway of the calculated key indicators objective
function value and relative optimality gap depending on
the computation time. Note that the pathway of relative
optimality gap for the methodology is not visible in both
figures because of the short computation time and the over-
lying graph representing the objective function value of the
methodology in Fig. 5. But since the lower bound is only
very vague and is not adapted during the calculation by the
methodology, the relative optimality gap can be higher than
using CPLEX. This is for example the case for the method-
ology in Fig. 5. MLS starts with a relative optimality gap
of 5.63% which is improved to 5.55%. Nevertheless, time
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Table 4 Evaluation of the
methodology and CPLEX
solving the NDPSP with and
without warmstart for scenario 1
for each project size

MLS1ALNSCP NDPSP using
CPLEX without
warmstart

NDPSP using
CPLEX with
warmstart

PWR Computation
time [Seconds
(Minutes)]

1.33 (0.02) 514 (8.57) 215 (3.58)

Objective
function value
[e]

10129250 10129250 10129250

Relative
optimality gap
[%]

0.00 0.00 0.00

BWR Computation
time [Seconds
(Hours)]

3600 (1) 495509 (137.64)* 253,753 (70.49)***

Objective
function value
[e]

15700650 15703700* 15700700***

Relative
optimality gap
[%]

5.55 0.37* 0.35***

large Computation
time [Seconds
(Hours)]

3600 (1) 434532 (120.7) 83569 (23.21)***

Objective
function value
[e]

469928989 ** 474920000***

Relative
optimality gap
[%]

2.80 ** ***

* Computer crash after calculating these results.
** No results were found.
*** User abandonment

savings by calculating schedules with minimum total project
costs are the main advantage of the developed methodol-
ogy. In particular, for large-scale projects feasible schedules
cannot be identified with CPLEX without warmstart. Fur-
thermore, with the proposedmethodology feasible schedules
with lower objective functions can be identified with less
computation times than CPLEX with warmstart.

6 Conclusion

For scheduling and resource allocation, various different
scheduling methods are described in the literature. However,
for megaprojects special requirements have to be considered,
such as expected long project durations, many activities with
multiple modes, scarce resources, and investment decisions.

As shown in this paper, the dismantling of nuclear
facilities is a growing sector of megaprojects with up to
200 projects until 2040. Consequently, nuclear dismantling
projects were used as an application case in this paper to

Fig. 4 Evaluation of project PWR scenario 1

develop a planning method for these specific megaprojects.
The findings can be transferred to other megaprojects.
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Fig. 5 Evaluation of project BWR scenario 1

Nuclear dismantling projects have specific characteristics,
such as constrained renewable and non-renewable resources,
precedence relationswith andwithout no-wait condition, and
a cost minimisation objective. An extensive literature review
could neither reveal a problem formulation nor a scheduling
method considering these characteristics. Hence, we intro-
duced a novel project scheduling problem referred to as the
nuclear dismantling project scheduling problem (NDPSP).
It contains the desired features for the dismantling of nuclear
facilities.

For this novel problem,we developed and implemented an
effective algorithm that is able to obtain feasible solutions for
projects with about 300 activities and considers the specific
characteristics of a nuclear dismantling project. To consider
uncertainties and to identify an ex ante stable schedule, the
developed algorithm can be used for sensitivity analysis.

In this paper, we also tested and validated the developed
algorithm with samples of real-life nuclear facility disman-
tling projects.

One main result is the development of an initial solu-
tion finding procedure and an adaptive large neighbourhood
search with iterative destroy and recreate operations that
enable project scheduling that was not possible before due
to computational limitations of existing algorithms. The
adapted parallel schedule generation scheme was able to find
feasible solutions very fast, and the proposed combination of
multi-start local search and adaptive large neighbourhood
search improved them effectively. On average, it took 0.44
seconds to find an initial feasible solution for our test samples
with about 300 project activities, and this could be further
improved by 0.97% from the initial solution within 3600
seconds.

Nevertheless, some extensions in futurework are possible.
Tominimise the total project costs, we consider procurement,
direct and variable, and post-operational costs. But,we do not
consider funding, depreciation, inflation, or exchange rates
although this could significantly influence total project costs.
The consideration of these constraints is complex because
of changing interest rates during such large-scale projects.
Furthermore, various individual project conditions, such as
funding or contracts with foreign companies, have to be con-
sidered. As a further development, post-operational costs
could be modelled in more detail. In our algorithms, we
assume that the post-operational costs are zero at the end
of the project. If we want to consider any possible amount
of post-operational costs at the end of a project, the algo-
rithms have to be adapted. Additionally, we only consider
finish-to-start precedence relations. By implementing gen-
eralised precedence relations, any precedence relation can
be implemented. A further development could also con-
sider time-dependent descending capacities of renewable
resources. In nuclear dismantling projects, own staff of the
nuclear facilities’ operational stage is usually entrusted with
the deconstruction project. During project execution, own
staff is retiring step by step due to the high average age of
staff in nuclear facilities, and new staff is not hired by facility
operators. Consequently, the number of own staff decreases
during project execution and may lead to external staff hir-
ing, expertise bottlenecks, or project prolongation and thus
may affect project scheduling and project cost. Because of
the high complexity and thus high computational effort, we
skipped these constraints in this paper to be able to calculate
a feasible schedule in reasonable time.

As already mentioned, many uncertainties prevail dur-
ing project execution, and especially in nuclear dismantling
projects, because of very little experience, long project dura-
tions, and hardly calculable risks. Thus, uncertainties could
be integrated or considered in project planning in the future
by efficient proactive scheduling methods or concepts. In
particular, the comparison of optimised scenarios regarding
their robustness while performing sensitivity analysis could
be further investigated.

Due to the increasing number of nuclear dismantling
projects expected in the coming decades worldwide, the
development and further improvement of project schedul-
ing methods are essential for efficient project time and
resource management. The developed methods enable plan-
ners to quickly calculate and compare initial and alternative
project schedules and total project costs for different project
risks/uncertainties and scenarios. Moreover, the approach
cannot only be applied to nuclear dismantling projects but
can also easily be transferred to other projects involving long
project durations, many activities with multiple modes, con-
strained renewable and non-renewable resources, precedence
relations with and without no-wait condition, and a cost min-
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imisation objective, such as construction, infrastructure and
power plant projects, urban development, and restructuring
projects.
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