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Abstract
Especially in the insurance industry interest rate models play a crucial role, e.g. to 
calculate the insurance company’s liabilities, performance scenarios or risk meas-
ures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++ 
model)—in a different representation also known as the 2-Factor Hull-White model. 
In this paper, we propose a framework to estimate the model such that it can be 
applied under the risk neutral and the real world measure in a consistent manner. 
We first show that any time-dependent function can be used to specify the change of 
measure without loosing the analytic tractability of, e.g. zero-coupon bond prices in 
both worlds. We further propose two candidates, which are easy to calibrate: a step 
and a linear function. They represent two variants of our framework and distinguish 
between a short and a long term risk premium, which allows to regularize the inter-
est rates in the long horizon. We apply both variants to historical data and show that 
they indeed produce realistic and much more stable long term interest rate forecast 
than the usage of a constant function, which is a popular choice in the industry. This 
stability over time would translate to performance scenarios of, e.g. interest rate sen-
sitive fonds and risk measures.

Keywords  2-Factor Hull-White model · Gauss2++ model · Risk neutral and real 
world · Change of measure · Time-varying market price of risk

The original version of this article was revised: Equations under Section 3 and Section 3.3 are 
updated.

 *	 Christoph Berninger 
	 christoph.berninger@stat.uni-muenchen.de

1	 Department of Statistics, LMU München, Munich, Germany
2	 ROKOCO GmbH, Ludwig‑Ganghofer‑Str. 6, 82031 Grünwald, Germany

http://orcid.org/0000-0002-3502-856X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13385-021-00260-7&domain=pdf


678	 C. Berninger, J. Pfeiffer 

1 3

1  Introduction

Two prominent approaches to model the term structure of interest rates are the 
classes of equilibrium and no-arbitrage models. Most equilibrium models concen-
trate on the dynamic of the short-rate—the instantaneous interest rate—and derive 
interest rates with longer maturities from it. Prominent candidates of this model 
class include the models of Cox et  al. [3], Duffie and Kan [9] and Vasicek [18]. 
No-arbitrage models focus on exactly fitting the term structure at a specific point in 
time to prevent arbitrage possibilities. Representatives of this class are introduced by 
Heath et al. [11] and Hull and White [12].

Applications of these models often relate to pricing interest rate derivatives, 
which is the reason why they are directly defined under the risk neutral measure 
most of the time. A general form of a one-factor short-rate model under the risk neu-
tral measure is, e.g. given by

where � and � are two functions, which can depend on time point t and the short-rate 
r, and W is a Brownian motion. A lot of advances in theoretic models and their esti-
mation have been conducted in the last 30 years, but only in connection to pricing 
(see Diebold and Li [6]). Regarding these models little attention has been given to 
forecasting and risk management purposes (see Diebold and Li [6]). For these appli-
cations the corresponding model needs to be regarded under the real world measure. 
Under this measure the corresponding one factor short-rate model has the following 
dynamic

where � is the market price of risk and can also depend on t and r. W̃ is a Brownian 
motion under the real world measure. The exact functional choice for � completes 
the model specification under the real world measure. Dai and Singleton [5] as well 
as Jong [14] use a fixed multiple of the model’s variance for the market price of 
risk and investigate the in sample fit of specific short-rate models, but do not focus 
on forecasting. Duffee [8] concludes that the class of term structure models ana-
lysed in Dai and Singleton [5] fail in forecasting. He argues that a restriction for the 
market price of risk to be a fixed multiple of the variance reduces the flexibility of 
the model. Hull et al. [13] stress that the market price of risk for a model with few 
factors should be time-dependent. This results not from an economic interpretation 
but from a modelling issue because of an insufficient number of factors (see Hull 
et al. [13]). They estimated the market price of risk based on historical 3-month and 
6-month interest rates and came to a similar result as Ahmad and Wilmott [1], Cox 
and Pedersen [4] and Stanton [17]. But they argue that this value is only valid in the 
short horizon. Keeping this market price of risk constant could lead to extreme risk 
premiums and interest rates in the long horizon.

In this paper we tackle exactly this problem for the Gauss2++ model. Instead of 
assuming a constant, we assume a time-varying function for the market price of risk. 

dr(t) = �(t, r)dt + �(t, r)dW(t),

dr(t) =

[

�(t, r) + �(t, r)�(t, r)

]

dt + �(t, r)dW̃(t),
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In contrast to Hull et al. [13], who estimate the market price of risk for each fore-
casting horizon individually, we propose two parametric functions. The step func-
tion is the easiest non-constant function, which allows to model a market price of 
risk valid in the short and one valid in the long horizon. The linear function assumes 
that the market price of risk in the short horizon converges linearly to a long-term 
level. With these simplified time-dependent functions it is possible to account for the 
problem mentioned by Hull et al. [13] and the functions can still be easily estimated 
by historical data or calibrated in a forward looking manner to interest rate forecasts.

In our backtest we use a very similar calibration approach as described in Korn 
and Wagner [15]. The framework illustrated in this monograph has been developed 
by the Fraunhofer ITWM on behalf of the Produktinformationsstelle Altersvorsorge 
GmbH (PIA) and is the industry standard to classify packaged retail and insurance 
based investment products (PRIIPs) into chance-risk classes. For the interest rate 
model they use a Gauss2++ model with a presumed constant market price of risk. 
Following their calibration procedure allows us to compare our results to real appli-
cations in the insurance industry.

The structure of the paper is as follows. In Sect. 2 we introduce the Gauss2++ 
model under the risk neutral and the real world measure in a very general frame-
work. In Sect. 3 we propose the constant function for comparison reason as well as 
the step and the linear function to specify the change of measure and explain how 
they can be estimated. All three variants of the Gauss2++ model are applied to data 
and backtested for the last 3 years in Sect. 4. In the final section the results are sum-
marized and concluded.

2 � The Gauss2++ model in the risk neutral and the real world

Throughout this section a filtered probability space (Ω,F, (Ft)t∈[0,T],�) is given, 
where � is either the risk neutral measure ℚ with respect to the bank account or 
the real world measure ℙ . T  represents an appropriate modelling horizon. The bank 
account (B(t))t∈[0,T] is given by

where r(t) denotes the short-rate. We further adopted notations and descriptions of 
the Gauss2++ model from the relevant chapters in Brigo and Mercurio [2].

2.1 � The Gauss2++ model under the risk neutral measure

Short-rate models differ in the underlying process for the short-rate. The Gauss2++ 
model assumes that the short-rate is given by a sum of two correlated normally dis-
tributed processes, (x(t))t∈[0,T] and (y(t))t∈[0,T] , and a deterministic function � , which 
is well defined on the time interval [0, T]:

dB(t) = r(t)B(t)dt, B(0) = 1,

r(t) = x(t) + y(t) + �(t), r(0) = r0,
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where r0 is the short-rate at time point 0. The processes (x(t))t∈[0,T] and (y(t))t∈[0,T] sat-
isfy under the risk neutral measure ℚ the following stochastic differential equations

where a, b, � , � are non-negative constants and −1 ≤ � ≤ 1 is the instantaneous cor-
relation between the two Brownian motions W1 and W2.

Short-rate models derive spot rates via prices of zero-coupon bonds. As the 
short-rate in the Gauss2++ model is normally distributed, there exists an analytic 
solution for a zero-coupon bond price, P(t, T), at time point t and maturity T:

where

and

A derivation can be found in Brigo and Mercurio [2]. With formula (1) for the zero-
coupon bond price under the risk neutral measure spot rates can be directly derived 
via

where r(t, T) represents the spot rate at time point t and a maturity of T.
The financial market we actually model consists of a bank account and a set 

of zero-coupon bonds, P(t,  T), which differ in the maturity T. The dynamic of 
a zero-coupon bond price can be derived from the bond price formula in (1) by 
applying Ito’s formula and is given by

A detailed derivation can be found in “Appendix 1”. Note that all assets have the 
same drift as it is the case in the risk neutral world.

dx(t) = −ax(t)dt + �dW1(t), x(0) = 0,

dy(t) = −by(t)dt + �dW2(t), y(0) = 0,

�dt = dW1(t)dW2(t),

(1)P(t, T) = e
− ∫ T

t
�(s)ds−B(a,t,T)x(t)−B(b,t,T)y(t)+ 1

2
V(t,T),

B(z, t, T) =
1 − e−z(T−t)

z

V(t, T) =
�2

a2

[
(T − t) +

2

a
e−a(T−t) −

1

2a
e−2a(T−t) −

3

2a

]

+
�2

b2

[
(T − t) +

2

b
e−b(T−t) −

1

2b
e−2b(T−t) −

3

2b

]

+ 2�
��

ab

[

(T − t) +
e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
−

e−(a+b)(T−t) − 1

a + b

]

.

(2)r(t, T) =
−ln(P(t, T))

T − t
,

dP(t, T) = P(t, T)

[

r(t)dt − �B(a, t, T)dW1(t) − �B(b, t, T)dW2(t)

]

.
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2.2 � The Gauss2++ model under the real world measure

To calculate performance scenarios and risk indicators the Gauss2++ model must be 
regarded under the real world measure ℙ.

2.2.1 � The change of measure

By specifying the Gauss2++ model under the risk neutral measure, we implicitly 
assume an arbitrage free market. Therefore, we can make the transition to a real world 
measure ℙ by defining the change of measure according to Girsanov, who states that a 
progressive and square-integrable process � =

(
Φ1(t),Φ2(t),… ,Φd(t)

)
t∈[0,T]

 deter-
mines a new probability measure ℙ such that if (Ŵ(t))t∈[0,T] is a standard d-dimensional 
(Ft)t∈[0,T]-Brownian motion under ℚ , then

defines a standard d-dimensional (Ft)t∈[0,T]-Brownian motion under ℙ (see Girsanov 
[10]).

The Gauss2++ model is a two-factor model and � is therefore two-dimensional. Its 
components can be interpreted as the market price of risk for each factor in the model. 
We will represent � such that the resulting processes (x(t))t∈[0,T] and (y(t))t∈[0,T] still 
belong to the class of Ornstein–Uhlenbeck processes under ℙ

Note that we restrict � to be a function of time. By this the change of measure only 
changes the mean reversion level. More general measure change specification can be 
applied. For example, Diez and Korn [7] introduce a measure change for the 1-Fac-
tor Vasicek model, which influences the mean reversion level as well as the mean 
reversion speed.

The conditions for the Girsanov theorem translate directly to the functions dx(t) and 
dy(t) . In the following we will specify the change of measure via dx(t) and dy(t) . An 
appropriate interpretation of these functions will be given in Sect. 2.2.2.

2.2.2 � The dynamics under the real world measure ℙ

With the representation of � as in (3) the dynamics of the processes x and y in the 
Gauss2++ model change according to Girsanov to

W̆(t) ∶= �W(t) + ∫
t

0

�(s)ds

(3)�(t) =

�
Φ1(t)

Φ2(t)

�

=

�
−

adx(t)

�

−
bdy(t)

�
√
1−�2

+
�adx(t)

�
√
1−�2

�

.

(4)dx(t) = a(dx(t) − x(t))dt + �dW̃1(t), x(0) = 0,

(5)dy(t) = b(dy(t) − y(t))dt + �dW̃2(t), y(0) = 0,
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where W̃1 and W̃2 are two correlated Brownian motions under ℙ . The derivation can 
be found in “Appendix 2”. We observe that x and y are still Ornstein–Uhlenbeck 
processes with the solutions

The mean reversion level of each process at time point t amounts to dx(t) and dy(t) , 
respectively. Recall that the sum of x(t) and y(t) and a deterministic function �(t) 
under the risk neutral measure adds up to the instantaneous return rate r(t) of a risk 
free investment. Changing the measure changes the mean reversion level at time 
point t from 0 to dx(t) for the process x and to dy(t) for the process y. Therefore, 
dx(t) + dy(t) can be interpreted as the local long run risk premium of the short-rate—
the amount, which is added in the real world to the risk neutral short-rate in the long 
run, if dx(t) + dy(t) would stay constant over time. If this amount is negative, future 
bond prices increase in expectation compared to the risk neutral world and a risk 
averse investor, therefore, gets compensated for the risk of investing in a risky bond. 
This means in contrast to equity prices, in a market where investors are risk averse, 
future interest rates tend to be lower in the real world than in the risk neutral world 
(see, e.g. Hull et al. [13]). Therefore, dx(t) and dy(t) can be interpreted as the local 
long run risk premium the corresponding risk factor is mean reverting to at time 
point t.

In the following we will specify the change of measure by these two functions 
instead of the market prices of risk. The market price of risk of each risk factor 
is then directly defined by these two functions.

If we assume a step or a piecewise linear function for dx(t) and dy(t) the functional 
form of the individual market prices of risk are the same.

The dynamics of a zero-coupon bond with maturity T under ℙ has the follow-
ing form

The derivation can be found in “Appendix 3”.

(6)x(t) = ∫
t

0

e−a(t−u)adx(u)du + � ∫
t

0

e−a(t−u)dW̃(u),

(7)y(t) = ∫
t

0

e−b(t−u)bdy(u)du + � ∫
t

0

e−b(t−u)dW̃(u).

Market price of risk of risk factor 1: −
adx(t)

�

Market price of risk of risk factor 2: −
bdy(t)

�
√
1 − �2

+
�adx(t)

�
√
1 − �2

.

(8)
dP(t, T) =P(t, T)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

− P(t, T)B(a, t, T)�dW̃1(t) − P(t, T)B(b, t, T)�dW̃2(t)
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2.2.3 � The bond price formula under the real world measure

The price of a zero-coupon bond under ℙ is obtained by the same analytic formula 
as in (1). The only difference is that the x- and the y-process are now regarded 
under the real world measure (see Diez and Korn [7]). In the following we will 
shortly explain why the formula does not change under this new measure.

To calculate the price of a zero-coupon bond under the real world measure we 
use the following conditional expectation

where XP(t,T) represents the cash flow, with which we have to discount the zero-
coupon bond such that the discounted price process is a martingale under ℙ . The 
dynamic of XP(t,T) coincides with the deterministic part of the zero-coupon bond 
price dynamic in (8) and is therefore specified by the change of measure:

A short proof can be found in “Appendix 4”. The solution of this dynamic is given 
by

The price of a zero-coupon bond at time point t is therefore given by

The ratio in the expectation amounts to

To determine the distribution of this ratio, we first derive the distribution of the inte-
gral in the exponent, i.e.

It can be shown that I(t, T) is normally distributed with mean

and variance

P(t, T)

XP(t,T)(t)
= Eℙ

[
P(T , T)

XP(t,T)(T)

|
|||
Ft

]

,

dXP(t,T)(t) = XP(t,T)(t)
[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt, XP(t,T)(0) = 1.

XP(t,T)(t) = e∫ t

0 (r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u))du.

P(t, T) = Eℙ

[
XP(t,T)(t)

XP(t,T)(T)

|
|||
Ft

]

.

XP(t,T)(t)

XP(t,T)(T)
= e− ∫ T

t (r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u))du.

I(t, T)∶=∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du.

(9)M(t, T) = ∫
T

t

�(u)du +
1 − e−a(T−t)

a
x(t) +

1 − e−b(T−t)

b
y(t)
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The variance is the same as in the risk neutral world as the change of measure does 
not influence the variance of the processes. Note that also the mean has the same 
form as in the risk neutral case as the terms B(a, u, T)adx(u) and B(b, u, T)bdy(u) in 
I(t, T) cancel out in the calculations. The derivations can be found in “Appendix 5”.

The expression e−I(t,T) is therefore log-normally distributed and the zero-coupon 
bond price under ℙ is given by the same analytic formula as under ℚ:

3 � Local long run risk premium functions—specification 
and calibration

In the following three different types of functions for dx(t) and dy(t) are intro-
duced: the constant, the step and the linear function. Following the interpretation in 
Sect. 2.2.2 these functions represent the long run risk premium for each risk factor at 
a specific time point t in the Gauss2++ model. The functional equations of the three 
types are 

where dx , lx , mx and dy , ly , my are real valued constants and �A represents the indica-
tor function of a subset A.

The constant function assumes that the local long run risk premium is constant 
for the whole modelling horizon. The latter two functions distinguish between a 
local long run risk premium valid in the short and in the long horizon, seperated 
at time point � . As mentioned in Sect. 2.2.2 the same holds for the market price of 
risk, respectively. Hull et al. [13] argue that a time-varying market price of risk is 

(10)

V(t, T) =
�2

a2

[
(T − t) +

2

a
e−a(T−t) −

1

2a
e−2a(T−t) −

3

2a

]

+
�2

b2

[
(T − t) +

2

b
e−b(T−t) −

1

2b
e−2b(T−t) −

3

2b

]

+ 2�
��

ab

[

(T − t) +
e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
−

e−(a+b)(T−t) − 1

a + b

]

.

P(t, T) = Eℙ

[
e− ∫ T

t
r(u)−B(a,u,T)adx(u)−B(b,u,T)bdy(u)du ∣ Ft

]

= e
−M(t,T)+

1

2
V(t,T)

= e
− ∫ T

t
�(u)du− 1−e−a(T−t)

a
x(t)−

1−e−b(T−t)

b
y(t)+

1

2
V(t,T)

.

Constant: dx(t) = dx

dy(t) = dy

Step: dx(t) = �t≤𝜏dx + �t>𝜏 lx

dy(t) = �t≤𝜏dy + �t>𝜏 ly

Linear: dx(t) = �t≤𝜏(1 − mxt)dx + �t>𝜏 lx

dy(t) = �t≤𝜏(1 − myt)dy + �t>𝜏 ly
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necessary to account for unobserved risk factors and to prevent unrealistic interest 
rate forecasts in the long horizon. They therefore estimate an individual market price 
of risk for each forecasting horizon. We use a more parsimonious function with 
regard to the number of parameters. The step function we propose is the simplest 
time-varying function that expects that the local long run risk premium differs in the 
short and the long horizon but is still constant in each period. The linear function 
implements the property that the local long run risk premium in the short horizon 
approaches the long term level linearly. The simplicity of these functions allows a 
straight forward calibration to interest rate forecasts.

Because of the distributional properties of the Gauss2++ model the expected 
values for interest rates under the real world measure ℙ for any future time point 
can be calculated:

where RPx(t) and RPy(t) represent the actual risk premium of the short-rate at time 
point t for each risk factor and are given by the first integral in (6) and (7)

For the constant, the step and the linear function these integrals can be easily calcu-
lated. To get the risk premium for longer maturities the functions RPx(t) and RPy(t) 
are weighted by a loading function, which accounts for the different riskiness of the 
corresponding zero-coupon bonds

To calibrate the local long run risk premium functions, dx(t) and dy(t) , the param-
eters of the functions are chosen in such a way that the model meets specific interest 
rate forecasts in expectation. For the constant type two interest rate forecasts are 
needed. For the other two types four interest rate forecasts are necessary—two short 
term and two long term forecasts. The time parameter � , which determines the sepa-
ration between the short and the long term local long run risk premium must lie 
between the forecasting horizons of the two short and the two long term forecasts.

In Fig. 1 the three types of local long run risk premium functions have been 
exemplary calibrated. � has been set to 24 months, which is the forecasting hori-
zon of the short term interest rate forecasts.

In the following subsections the calibration procedures for all three types 
of local long run risk premium functions, which are applied in this paper, are 
described.

(11)Eℙ[r(t, T)] = Eℚ[r(t, T)] +
B(a, t, T)

T − t
RPx(t) +

B(b, t, T)

T − t
RPy(t),

RPx(t)∶=∫
t

0

e−a(t−u)adx(u)du,

RPy(t)∶=∫
t

0

e−b(t−u)bdy(u)du.

B(a, t, T)

T − t
and

B(b, t, T)

T − t
.
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3.1 � The constant function

The constant functions represented in Fig.  1a implement a constant local long 
run risk premium for the whole modelling horizon, which can amount to 40 years 
or more for actual applications in the insurance industry, e.g. to classify certi-
fied pension contracts into risk classes. The absolute risk premiums, RPx(t) and 
RPy(t) , are given by:

Note that if t → ∞ , RPx(t) and RPy(t) indeed converge to dx and dy , the long run 
risk premiums, respectively. To calibrate the parameters of the constant functions 
two interest rate forecasts, r̂(t1, T1) and r̂(t2, T2) , are used. Plugging the absolute risk 
premium functions, RPx(t) and RPy(t) , into (11) and setting the expectations equal to 
the interest rate forecasts results in the following two equations

As the expectations are linear functions in dx and dy , the two parameters can be eas-
ily determined.

The constant function for the local long run risk premium in the Gauss2++ 
model and this calibration procedure is a standard approach in the insurance 
industry. As the values for dx and dy determine the risk premium for the whole 
modelling horizon, their calibration is crucial for the model’s interest rate dis-
tribution. Especially if the interest rate forecasts used for the calibration have a 
short forecasting horizon, the resulting distribution in the long horizon is very 
sensitive to these forecasts. For example if the interest rate forecasts and the for-
ward rates—calculated from the current yield curve—are very different, to reach 
the forecasts a huge risk premium is necessary, which might be valid in the short 
horizon, but produces extreme interest rates in the long horizon. The next two 
functions account for this problem by representing a time-varying local long run 
risk premium.

RPx(t) = (1 − e−at)dx,

RPy(t) = (1 − e−bt)dy.

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)

(T1−t1)
(1 − e−at1 )dx +

B(b,t1,T1)

(T1−t1)
(1 − e−bt1 )dy,

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)

(T2−t2)
(1 − e−at2 )dx +

B(b,t2,T2)

(T2−t2)
(1 − e−bt2 )dy.

Fig. 1   Local long run risk premium functions
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3.2 � The step function

The step functions represented in Fig. 1b take the same value as the corresponding 
constant function up to time � as the same interest rate forecasts have been used 
for the short horizon, but then they jump to a different level to account for the risk 
premium in the long horizon. Similar to the constant function the absolute risk pre-
mium functions can easily be calculated and amount to

Note that if t → ∞ , RPx(t) and RPy(t) now converge to lx and ly , respectively. To 
calibrate the four parameters of the step function two short term and two long term 
interest rate forecasts are used resulting in the following equations:

where t1 ≤ t2 < t3 ≤ t4 . � must lie between t2 and t3 , i.e. t2 ≤ 𝜏 < t3.
Instead of interest rate forecasts direct forecasts of the absolute risk premium of 

the short-rate can be used. This approach is applied by Hull et al. [13], who estimate 
risk premiums for each forecasting horizon from historical data, but they also scale 
their result to a long term short-rate forecast. Another possible approach is to take 
the ultimate forward rate (UFR) from Solvency II as a long term target, which is 
reached at a future time point with a specific percentage (e.g. 95% of the UFR in 40 
years) and to 100% in the limit, i.e. t → ∞.

3.3 � The linear function

The linear functions represented in Fig. 1c avoid the sudden jump as it is the case in 
the step functions and converge in the short term linearly to a long term level. The 
absolute risk premiums at time point t can be calculated as before and amount to

RPx(t) =
(
e−a(t−min(t,�)) − e−at

)
dx +

(
1 − e−a(t−min(t,�))

)
lx,

RPy(t) =
(
e−b(t−min(t,�)) − e−bt

)
dy +

(
1 − e−b(t−min(t,�))

)
ly.

(I) r̂(t1, T1)
!
= EQ[r(t1, T1)] +

B(a,t1,T1)

(T1−t1)
RPx(t1) +

B(b,t1,T1)

(T1−t1)
RPy(t1),

(II) r̂(t2, T2)
!
= EQ[r(t2, T2)] +

B(a,t2,T2)

(T2−t2)
RPx(t2) +

B(b,t2,T2)

(T2−t2)
RPy(t2),

(III) r̂(t3, T3)
!
= EQ[r(t3, T3)] +

B(a,t3,T3)

(T3−t3)
RPx(t3) +

B(b,t3,T3)

(T3−t3)
RPy(t3),

(IV) r̂(t4, T4)
!
= EQ[r(t4, T4)] +

B(a,t4,T4)

(T4−t4)
RPx(t4) +

B(b,t4,T4)

(T4−t4)
RPy(t4),

RPx(t) =
((

e−a(t−min(t,�)) − e−at
)(

1 +
mx

a

)
− e−a(t−min(t,�))mx min(t, �)

)
dx

+
(
1 − e−a(t−min(t,�))

)
lx,

RPy(t) =

(
(
e−b(t−min(t,�)) − e−bt

)
(

1 +
my

b

)

− e−b(t−min(t,�))my min(t, �)

)

dy

+
(
1 − e−b(t−min(t,�))

)
ly.
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Note again that if t → ∞ , RPx(t) and RPy(t) converge to lx and ly , the long term risk 
premiums, respectively. To calibrate dx , lx , dy and ly four interest rate forecasts as for 
the step function are used. By imposing that the absolute risk premium functions, 
RPx(t) and RPy(t) , are differentiable at the forecasting horizon � to prevent a kink 
in the absolute risk premium function, two further conditions are incorporated to 
specify mx and my:

where (RP
⋅
)�
−
(�) and (RP

⋅
)�
+
(�) denote the derivative from the left and from the right, 

respectively. Solving the equations for mx and my leads to the following closed form 
solutions reducing the number of free parameters to four:

Note that with this condition the same number of interest rate forecasts as for the 
step function are needed to calibrate dx(t) and dy(t).

4 � Results

In this section the calibration results of three variants of our framework for the 
Gauss2++ model are presented. The variants differ in the assumption about the 
local long run risk premium functions, which determine the change from the risk 
neutral to the real world measure. Variant 1 assumes a constant, variant 2 a step and 
variant 3 a linear local long run risk premium function for the risk factors. In the 
first subsection the three variants of the Gauss2++ model are compared if calibrated 
at the same valuation date. In Sect. 4.2 we show with a backtest over the last three 
years that variant 2 and 3 produce much more stable interest rate scenarios for the 
long forecasting horizon over this time period. This stability would transfer to per-
formance scenarios and risk measures of, e.g. an interest rate sensitive fonds.

4.1 � Calibration at one valuation date

The calibration process of the Gauss2++ model can be split into two steps. In the 
first step the model is calibrated under the risk neutral measure. This step does not 
depend on the choice of the local long run risk premium function and is therefore 
the same for all modelling cases. In the second step the change of measure is cali-
brated. The choice of the local long run risk premium function plays an important 
role and leads to different interest rate scenarios, performance measures and risk 
indicators.

(V) (RPx)
�
−
(�) = (RPx)

�
+
(�),

(VI) (RPy)
�
−
(�) = (RPy)

�
+
(�),

mx =
dx − lx

dx�
,

my =
dy − ly

dy�
.
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To calibrate the model at a specific valuation date under the risk neutral meas-
ure the term structure of interest rate swaps and swaption volatilities at this date 
are used. In the Gauss2++ model the deterministic and time-dependent function � 
ensures the market consistency regarding the current term structure by being defined 
as follows:

f M(0, t) represents the instantaneous forward rate at time point 0 for a maturity t, i.e. 
f M(0, t) =

�PM (0,t)

�T
 , where �P

M

�T
 denotes the partial derivative with respect to the sec-

ond argument and PM(0, t) is the market zero-coupon bond price. For the derivation 
and further information the reader is referred to Brigo and Mercurio [2]. The param-
eters a, b, �, � and � of the model are chosen in such a way that the model prices of 
the considered swaptions coincide with the market prices. For this the downhill sim-
plex algorithm1 is used to minimize the root mean squared error (RMSE):

where CModel,i represents the model price of swaption i of the Gauss2++ model and 
CMarket,i is the market price of that swaption. The swaptions considered in the cali-
bration process differ with respect to their tenor and maturity combination, which is 
denoted by the subscript i. N represents the number of considered swaptions. The 
analytic formula for the price of a swaption in the Gauss2++ model can be found in 
Brigo and Mercurio [2]. Table 1 shows the result of a calibration at the 31.12.2019. 
We used at-the-money receiver swaptions with a maturity and tenor combination of 
{5, 7, 10, 12, 15, 20} × {5, 7, 10, 12, 15, 20} , i.e. in total N = 36 swaption prices. The 
RMSE amounts to 0.0619. In the optimization we further restricted � to lie between 
− 1 and 1 as well as all other parameters to be > 0.

These parameters together with the current interest rate curve determine the 
dynamics of the Gauss2++ model under the risk neutral measure.

In the second step the local long run risk premium functions, which determine 
the change of measure, are calibrated to interest rate forecasts as described in Sects. 
3.1–3.3. For the short term interest rate forecasts we use forecasts published by 
the OECD for a 3-month and a 10-year interest rate. To take the OECD forecasts 

�(t) = f M(0, t) +
�2

2a
(1 − e−at)2 +

�2

2b
(1 − e−bt)2 + �

��

ab
(1 − e−at)(1 − ebt).

RMSE =

√√√
√

N∑

i=1

(
CModel,i(a, b, �, �, �) − CMarket,i

)2
,

Table 1   Parameters of the 
Gauss2++ model calibrated at 
31.12.2019

a b � � �

0.2997 0.0407 0.0114 0.0114 − 0.9998

1  For a detailed description of this algorithm—also known as the Nelder–Mead algorithm—the reader 
is referred to Nelder and Mead [16]. For the reflection coefficient, the expansion coefficient and the con-
traction coefficient of the algorithm we have chosen the values 1.0, 2.0 and 0.5, respectively.
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we have been inspired by the framework developed by the Frauenhofer ITWM on 
behalf of PIA to classify PRIIPs into chance-risk classes (see Korn and Wagner 
[15]). Their model represents the industry standard for PRIIP calculations. The lat-
est OECD forecasts regarding the 31.12.2019 for the longest horizon, which is the 
fourth quarter of 2021, amount to − 0.4% and 0.4% , respectively.2 For the long term 
interest rate forecasts, which are needed to calibrate the step and the linear function, 
we take the average of monthly 3-month and 10-year interest rates over the last 15 
years also published by the OECD. This is a valid approach if interest rates follow 
a stationary process, because in this case historical data can be considered as a ran-
dom sample from the corresponding interest rate distribution. Hull et al. [13] point 
out that this approach is questionable if monetary and fiscal policies are expected to 
be materially different from those in the past. Nevertheless any other model based 
on historical data would be questionable and the user of the model can alternatively 
provide personal estimates or an expert judgment. The historical average amounts to 
1.08% for the 3-month and 1.84% for the 10-year interest rate and as we assume these 
forecasts to be a long run average we set the forecasting horizon to 40 years—the 
modelling horizon. We further set � to 24 months, which is the forecasting horizon 
of the short term OECD forecasts.

Table 2 shows the calibration results for the three local long run risk premium 
function types.

The values of dx and dy coincide for the constant and the step function as the same 
interest rate forecasts have been used in the calibration process. But in contrast to 
the step function, which takes the values of lx and ly after 24 months, the constant 
function stays constant for the whole modelling horizon. It also appears that the step 
and the linear function take the same values for lx and ly . But there is a slight differ-
ence as their functional forms differ in the first two years, which influences the abso-
lute risk premium in future time points. This influence decreases in time, such that 
the difference is negligible as we calibrated lx and ly to forecasts with an forecasting 
horizon of 40 years.

Figures  2, 3 and 4 visualize for the three calibrated variants of the Gauss2++ 
model the development of the expectation of the short-rate, the 10-year and the 
20-year interest rate for forecasting horizons of up to 40 years. The solid line rep-
resents the expectation under the risk neutral measure, the dashed line shows the 
expected values under the real world measure.

Table 2   Parameters of the local 
long run risk premium functions

dx dy lx ly

Constant function − 0.0112 0.0779
Step function − 0.0112 0.0779 − 0.0081 − 0.0088

Linear function − 0.0151 0.1672 − 0.0081 − 0.0088

2  https://​stats.​oecd.​org: The rounded numbers can be found, if one selects the data for the Economic 
Outlook N.106 of November 2019 in the section Economic Projections.

https://stats.oecd.org
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For the variant of the Gauss2++ model, which uses the constant function as 
the local long run risk premium function, the expected real world interest rates 
lie above the risk neutral expectation. This means, that a risk seeking behaviour 
of the investors is assumed for the whole modelling period, because an investor 
accepts a lower expected return for a corresponding bond if the interest rates are 
expected to be higher in the real world compared to the risk neutral world. Ahmad 
and Wilmott [1] show that there have been time periods where investors seem to 
have historically behaved in this way. But in general investors are assumed to be 
risk averse and therefore interest rates should be lower in the real world than in 
the risk neutral world, which is an opposite behaviour to equity prices (see, e.g. 
Hull et al. [13]). For the other two variants of the Gauss2++ model the expected 

Fig. 2   Constant function: expected values of the short-rate, the 10-year and the 20-year interest rate 
under the risk neutral and the real world measure

Fig. 3   Step function: expected values of the short-rate, the 10-year and the 20-year interest rate under the 
risk neutral and the real world measure

Fig. 4   Linear function: expected values of the short-rate, the 10-year and the 20-year interest rate under 
the risk neutral and the real world measure
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real world interest rates lie also above the risk neutral interest rates in the short 
horizon but below in the long horizon. This assumption of risk seeking behav-
iour in the short horizon stems from the quite high forecasts of the OECD for the 
short horizon, but it might be valid in the current market situation. In contrast 
to the constant case, which keeps this risk seeking behaviour assumption for the 
whole modelling horizon, in the long run the other two variants of the Gauss2++ 
model assume in this calibration a risk averse behaviour. The difference between 
the step and the linear function is only visible in the short horizon. While the 
step function has a kink in the expectation after � years, the linear function is 
smoother due to its condition that the derivative of the absolute risk premium 
function exists at this time point.

Furthermore, the absolute difference in the risk neutral and real world expecta-
tions decreases for interest rates with longer maturities. This results from the less 
variation of interest rates with longer maturities, which is an implicit model charac-
teristic of the Gauss2++ model and is supported by historical data as well. A risk 
premium is therefore higher (less negative) for a risk averse and lower (less positive) 
for a risk seeking investor in an arbitrage free market.

Figure 5 shows the absolute risk premium functions of the short-rate for all three 
modelling types.

It can be observed that for the constant and the step function the absolute risk 
premium is the same up to year 2. After that year the Gauss2++ variant with the 
step function has a kink in the absolute risk premium as the local long run risk pre-
mium changes to a different level, while the modelling case with the constant func-
tion continuous to approach the long term risk premium determined by the short 
term interest rate forecasts. The modelling case with the linear function results in 
a different risk premium for the first 2 years, but approaches—without a kink—the 
same long term risk premium as the step function.

All three functions intersect after 2 years as this is the forecasting horizon of the 
short term interest rate forecasts, which were used for the calibration. The absolute 
risk premium at this time point must be the same for all modelling cases such that 
the expected interested rates of the model coincide with the forecasts.

Fig. 5   Absolute risk premium 
function for the variants of the 
Gauss2++ model
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We further investigated the resulting yield curve shapes of the three variants of 
the Gauss2++ model. The variant, which uses a constant function, represents the 
industry standard regarding PRIIP calculations (see Korn and Wagner [15]). An 
unpleasent feature of this model is the unrealistic high frequency of inverse yield 
curves with growing time (see Diez and Korn [7]). In their paper they show that 
for the 2-Factor Vasicek model the number of inverse yield curves can be reduced 
by assuming a negative risk premium. The share of inverse yield curves in our cali-
bration of the three variants were investigated in a simulation study. We simulated 
10,000 yield curve paths with each calibrated model and counted the number of 
yield curves, which have a higher 1-year interest rate than a 30-year interest rate. 
The result is visualized in Fig. 6. We can see a similar behaviour as described in 
the paper of Diez and Korn [7]. The variant with the constant function, which has a 
positive risk premium over the modelling horizon, shows an unrealistic high share 
of inverse yield curves. The other two variants have a negative risk premium and 
decrease the number of inverse yield curves in the long run compared to the risk 
neutral case. Using the step or the linear function for the risk premium results there-
fore not only in more realistic interest rates but also in more realistic yield curve 
shapes in the long horizon.

4.2 � Backtest

In this subsection the different variants of the Gauss2++ model calibrated on a 
quarterly basis over the last 3 years are compared.

As in Sect. 4.1 interest rate swaps and swaption volatilities have been used for 
the risk neutral calibration of the Gauss2++ model. To calibrate the parameters of 
the local long run risk premium functions in the second calibration step short term 
interest rate forecasts published by the OECD and a long term average have been 
used. The forecasts are shown in Table 3. The calibration results of the parameters 
of the Gauss2++ model under the risk neutral measure and of the local long run risk 

Fig. 6   The share of inverse yield 
curves for the Gauss2++ model 
under the risk neutral measure 
and under the real world meas-
ure using a constant, a step and 
a linear function for the market 
price of risk
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Table 3   Interest rate forecasts of the OECD and historical average of the 3-month and the 10-year inter-
est rate

https://​stats.​oecd.​org: The rounded numbers can be found, if one selects the annual interest rate forecasts 
of the corresponding Economic Outlook in the section Economic Projections

Date Short term interest rate forecasts Historical average

Forecasting horizon 3-m IR 10-y IR 3-m IR 10-y IR

(in months) (in %) (in %) (in %) (in %)

30.09.2019 15 − 0.3 1.0 1.13 1.91
30.06.2019 18 − 0.3 1.0 1.18 1.98
31.03.2019 21 −0.2 1.6 1.22 2.04
31.12.2018 24 −0.2 1.6 1.26 2.10
30.09.2018 15 − 0.2 1.3 1.31 2.16
30.06.2018 18 − 0.2 1.3 1.35 2.23
31.03.2018 21 − 0.3 1.4 1.39 2.30
31.12.2017 24 − 0.3 1.4 1.44 2.36
30.09.2017 15 − 0.3 1.6 1.48 2.43
30.06.2017 18 − 0.3 1.6 1.52 2.50
31.03.2017 21 − 0.3 1.6 1.57 2.56
31.12.2016 24 − 0.3 1.6 1.63 2.63

Fig. 7   Absolute risk premium functions

Fig. 8   Development of the expectation of the 10-year interest rate over the modelling horizon for all 
three variants of the Gauss2++ model

https://stats.oecd.org
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premium function for each variant of the Gauss2++ model can be found in Tables 4, 
5, 6 and 7 in “Appendix 6”.

For each calibration the absolut risk premium function of the short-rate and the 
development of the expected 10-year interest rate have been calculated and visual-
ised in Figs. 7 and 8.

The absolute risk premium function of the short-rate for the Gauss2++ model, 
which uses the constant function for the local long run risk premium, depends 
highly on the risk neutral calibration results and the forecasts of the OECD. An 
unfavorable combination of market data and interest rate forecasts can lead to a 
high value for the local long run risk premium. This value might be reasonable to 
meet the short term forecasts used for the calibration, but as it stays constant over 
time it is the value the absolute risk premium is converging to. Therefore, this 
problem can strike through if the modelling horizon is much longer than the fore-
casting horizon of the interest rates used for the calibration. In this case a time-
varying local long run risk premium function, which can be calibrated to a short 
and a long term forecast, is more convenient to regularize the risk premium. As it 
can be seen in Fig. 7 the variants of the Gauss2++ model, which use the step or 
the linear function for the local long run risk premium, produce more stable risk 
premiums in the long horizon. In each calibration the absolute risk premium is 
positive in the first years, which presumes a risk seeking behaviour of the inves-
tors, but in the long horizon the absolute risk premium lies between − 0.5 and 
−2.5% representing a risk averse market. Also the interest rate distribution in the 
long horizon is more stable. Figure 8b, c show that the expectation of the 10-year 
interest rate in the long horizon change only little in each calibration according 
to the historical average, which was used for the long term interest rate forecast.

5 � Conclusion

As the Gauss2++ model is often used for pricing purposes, the focus in the lit-
erature lies on the evolution of interest rates under the risk neutral measure ℚ . 
But regarding risk management and forecasting applications the model under the 
real world measure is needed. In this paper we introduced a framework to apply 
the model under both measures in a consistent manner. This framework first con-
ducts a calibration under the risk neutral measure and then determines the change 
of measure such that it is possible to switch between the risk neutral and the real 
world. We showed that according to Girsanov this change of measure can be speci-
fied by any time-dependent function without loosing the analytic tractability of, e.g. 
zero-coupon bond prices. Hull et al. [13] argue that because of unobserved risk fac-
tors, which are not included in the model, a time-varying function should be used, 
because otherwise unrealistic interest rates in the long forecasting horizon could be 
reached. We therefore compared the industry standard, which uses a constant func-
tion to model the change of measure, with two variants, which use either a step or 
a linear function. These functions are the simplest extensions of the constant func-
tion to a time-varying function without increasing the computational effort much. 
By accounting for different risk premiums in the short and in the long horizon the 
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time-varying functions result in much more stable interest rate forecasts in the long 
run if calibrated at different valuation dates. From a macroeconomical point of view 
it makes sense that current market fluctuations should not influence interest rate 
forecasts in the long horizon, e.g. in 40 years, much. This would also imply that risk 
measures calculated with the Gauss2++ model, which uses one of the time-varying 
functions for the change of measure, would be more consistent if estimated at differ-
ent valuation time points.

We further investigated the yield curve shapes by conducting a simulation study. 
The result is in line with the findings of Diez and Korn [7] for the 2-Factor Vasicek 
model. Assuming a positive risk premium—as it was the case in our calibration for 
the constant function—the number of inverse yield curves increases compared to the 
risk neutral case. This also replicates the problem of too many inverse yield curves 
in the insurance industry for PRIIP calculations (see Diez and Korn [7]). The other 
two variants represented in this paper, which apply a time-varying function for the 
market price of risk, assume a negative risk premium in the long run and have a 
much lower amount of inverse yield curves. Using a step or a linear function for the 
market price of risk, therefore, not only leads to more realistic interest rates in the 
long run, but also creates more realistic yield curve shapes.

Appendix 1: Bond price dynamic under the risk neutral measure

By defining

the price of a zero-coupon bond P(t, T) at time point t and maturity T can be calcu-
lated for the Gauss2++ model under the risk neutral measure ℚ by

A proof of this formula can be found in Brigo and Mercurio [2]. The derivatives of 
A(t, T) and V(t, T) with respect to the first entry and of B(z, t, T) with respect to the 
second entry are given by

Furthermore, it holds

To calculate the zero-coupon bond price dynamic, we apply Ito’s formula to (12), 
i.e.

A(t, T) = −∫
T

t

�(s)ds +
1

2
V(t, T),

(12)P(t, T) = eA(t,T)−B(a,t,T)x(t)−B(b,t,T)y(t).

A�(t, T) = �(t) +
1

2
V �(t, T),

V �(t, T) = −�2B(a, t, T)2 − �2B(b, t, T)2 − 2���B(a, t, T)B(b, t, T),

B�(z, t, T) = −e−z(T−t).

B(z, t, T)z − B�(z, t, T) = 1.
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Appendix 2: The dynamics of the Gauss2++ factors x and y 
under the real world measure

The dynamics of the two processes x and y under the risk neutral measure ℚ can 
be expressed in terms of two independent Brownian motions Ŵ1 and Ŵ2 , i.e.

where

According to Girsanov’s theorem , as Ŵ = (Ŵ1, Ŵ2) is a standard 2-dimensional 
Brownian motion and let (�(t))t∈[0,T] = (Φ1(t),Φ2(t))t∈[0,T] be a progressive and 
square-integrable process, the process W̆ defined by

is a standard 2-dimensional Brownian motion under a new measure, which we call 
ℙ and declare to be the real world measure. This means that the dynamic of the two 
Brownian motion Ŵ1 and Ŵ2 under the real world measure ℙ is given by

dP(t, T) =P(t, T)
[
A(t, T) − B(a, t, T)x(t) − B(b, t, T)y(t)

]�
dt + P(t, T)(−B(a, t, T))dx(t)

+ P(t, T)(−B(b, t, T))dy(t)

+
1

2
P(t, T)B(a, t, T)2�2dt

+
1

2
P(t, T)B(b, t, T)2�2dt

+ P(t, T)B(a, t, T)B(b, t, T)���dt

=P(t, T)

[

A�(t, T) − B�(a, t, T)x(t) − B�(b, t, T)y(t) + B(a, t, T)ax(t) + B(b, t, T)by(t)

+
1

2
B(a, t, T)2�2 +

1

2
B(b, t, T)2�2

+ B(a, t, T)B(b, t, T)���

]

dt

− B(a, t, T)P(t, T)�dW1(t)

− B(b, t, T)P(t, T)�dW2(t)

=P(t, T)[�(t) + x(t) + y(t)]dt − B(a, t, T)P(t, T)�dW1(t) − B(b, t, T)P(t, T)�dW2(t)

=P(t, T)r(t)dt − B(a, t, T)P(t, T)�dW1(t) − B(b, t, T)P(t, T)�dW2(t).

dx(t) = −ax(t)dt + �dŴ1(t),

dy(t) = −by(t)dt + ��dŴ1(t) + �
√
(1 − �2)dŴ2(t),

dW1(t) = dŴ1(t),

dW2(t) = �dŴ1(t) +
√
(1 − �2)dŴ2(t).

W̆(t) ∶= �W(t) + ∫
t

0

�(s)ds
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Therefore, the dynamics of the two processes x and y under the real world measure 
are then given by

If we specify Φ(t) as in (3) this simplifies to

Representing the dynamics by two correlated Brownian motions W̃1 and W̃2 results 
in the equations given in (4) and (5).

Appendix 3: Bond price dynamic under the real world measure

The dynamic of a zero-coupon bond price P(t, T) under the risk neutral measure 
ℚ expressed by the two independent Brownian motions Ŵ1 and Ŵ2 is given by

Applying Girsanov’s theorem as in “Appendix 2” the dynamic under the real world 
measure ℙ amounts to

d �W1(t) = dW̆1(t) − Φ1(t)dt,

d �W2(t) = dW̆2(t) − Φ2(t)dt.

dx(t) =

�

− Φ1(t)𝜎 − ax(t)

�

dt + 𝜎dW̆1(t),

dy(t) =

�

− Φ1(t)𝜂𝜌 − Φ2(t)𝜂
√
(1 − 𝜌2) − by(t)

�

dt + 𝜂𝜌dW̆1(t)

+ 𝜂
√
(1 − 𝜌2)dW̆2(t).

dx(t) = a(dx(t) − x(t))dt + 𝜎dW̆1(t),

dy(t) = b(dy(t) − y(t))dt + 𝜂𝜌dW̆1(t) + 𝜂
√
(1 − 𝜌2)dW̆2(t).

dP(t, T) =P(t, T)r(t)dt − P(t, T)B�(a)�dŴ
1(t) − P(t, T)B�(b)��dŴ

1(t)

− P(t, T)B�(b)�
√
(1 − �2)dŴ2(t),

=P(t, T)r(t)dt −

�

P(t, T)B�(a)� + P(t, T)B�(b)��

�

dŴ1(t)

− P(t, T)B�(b)�
√
(1 − �2)dŴ2(t).
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Representing the dynamic by two correlated Brownian motions W̃1 and W̃2 results in 
the equation given in (8).

Appendix 4: Individual discount rate for the zero‑coupon bonds 
in the real world

Proof  To proof that P(t,T)
X(t,T)

 is indeed a martingale we calculate the dynamic of the dis-
counted price process.

dP(t, T) =P(t, T)r(t)dt −

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

d �W1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)d �W2(t)

=P(t, T)

�

r(t) +

�

B𝜏(a)𝜎 + B𝜏(b)𝜂𝜌

��

−
adx(t)

𝜎

�

+ B𝜏(b)𝜂
√
(1 − 𝜌2)

�

−
bdy(t)

𝜂
√
(1 − 𝜌2)

+
𝜌adx(t)

𝜎
√
(1 − 𝜌2)

��

dt

−

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

dW̆1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)dW̆2(t)

=P(t, T)

�

r(t) − B𝜏(a)adx(t) − B𝜏(b)bdy(t)

�

dt

−

�

P(t, T)B𝜏(a)𝜎 + P(t, T)B𝜏(b)𝜂𝜌

�

dW̆1(t)

− P(t, T)B𝜏(b)𝜂
√
(1 − 𝜌2)dW̆2(t).
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Appendix 5: Bond price formula under the real world measure

To calculate the price of a zero-coupon bond under the real world measure ℙ , the 
distribution of

has to be determined. In the following we show, that the integral in the exponent is 
normaly distributed and calculate the mean and the variance of

We first concentrate on the integral over the short-rate r(s), which is a sum of the x- 
and the y-process and a deterministic function

The integral over the process x is given by

d
P(t, T)

X(t)
= d

( 1

X(t)
⋅ P(t, T)

)

=
1

X(t)
dP(t, T) + P(t, T)d

1

X(t)
+ d

⟨

P(t, T),
1

X(t)

⟩

=
1

X(t)
dP(t, T) −

P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

=
P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

−
P(t, T)

X(t)
B(a, t, T)�dW̃1(t) −

P(t, T)

X(t)
B(b, t, T)�dW̃2(t)

−
P(t, T)

X(t)

[
r(t) − B(a, t, T)adx(t) − B(b, t, T)bdy(t)

]
dt

= −
P(t, T)

X(t)
B(a, t, T)�dW̃1(t) −

P(t, T)

X(t)
B(b, t, T)�dW̃2(t)

exp

(

−∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du

)

(13)I(t, T)∶=∫
T

t

(
r(u) − B(a, u, T)adx(u) − B(b, u, T)bdy(u)

)
du.

r(s) = x(s) + y(s) + �(s).
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The first integral amounts to

For the second integral we use the integration by parts formula

For the third integral we again use the integration by parts formula

∫
T

t

x(u)du = ∫
T

t

(

x(t)e−a(u−t) + ∫
u

t

ae−a(u−s)dx(s)ds

+ ∫
u

t

�e−a(u−s)dW̃1(s)

)

du

= ∫
T

t

x(t)e−a(u−t)du

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

+∫
T

t ∫
u

t

ae−a(u−s)dx(s)dsdu

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

+ ∫
T

t ∫
u

t

�e−a(u−s)dW̃1(s)du.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3

1 = x(t)∫
T

t

e−a(u−t)du = x(t)
[
−
1

a
e−a(u−t)

]T

t
= x(t)

1 − e−a(T−t)

a
.

2 = ∫
T

t

(

∫
u

t

easdx(s)ds

)

ae−audu

= a∫
T

t

(

∫
u

t

easdx(s)ds

)

du

(

∫
u

t

e−avdv

)

= a

[(

∫
T

t

eaudx(u)du

)(

∫
T

t

e−avdv

)

− ∫
T

t

(

∫
u

t

e−avdv

)

eaudx(u)du

]

= a

[

∫
T

t

(

∫
T

u

e−avdv

)

eaudx(u)du

]

= ∫
T

t

(
1 − e−a(T−u)

)
dx(u)du

= ∫
T

t

aB(a, u, T)dx(u)du.
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The corresponding expressions for ∫ T

t
y(u)du can be obtained analogously. We 

observe that the results of integral 2  for ∫ T

t
x(u)du and ∫ T

t
y(u)du cancel out with 

the last two terms in equation (13). Therefore it remains

As W̃ = (W̃1, W̃2) is a 2-dimensional Brownian motion under ℙ , I(t, T) is normally 
distributed and the mean and the variance can be easily retrieved resulting in (9) and 
(10).

Appendix 6: Tables of backtest results

See Tables 4, 5, 6 and 7.

3 = � ∫
T

t

(

∫
u

t

easdW̃1(s)

)

ae−audu

= � ∫
T

t

(

∫
u

t

easdW̃1(s)

)

du

(

∫
u

t

e−avdv

)

= �

[(

∫
T

t

eaudW̃1(u)

)(

∫
T

t

e−avdv

)

− ∫
T

t

(

∫
u

t

e−avdv

)

eaudW̃1(u)

]

= �

[

∫
T

t

(

∫
T

u

e−avdv

)

eaudW̃1(u)

]

= � ∫
T

t

[
−
e−av

a

]T

u
eaudW̃1(u)

=
�
a ∫

T

t

(
1 − e−a(T−u)

)
dW̃1(u)

I(t, T) = ∫
T

t

�(u)du +
1 − e−a(T−t)

a
x(t) +

1 − e−b(T−t)

b
y(t)

+
�
a ∫

T

t

(
1 − e−a(T−u)

)
dW̃1(u) +

�

b ∫
T

t

(
1 − e−b(T−u)

)
dW̃2(u).
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Table 4   Calibration results of 
the risk neutral calibration on a 
quarterly basis from 31.12.2016 
to 30.09.2019

Date a b � � �

30.09.2019 0.2694 0.0269 0.0121 0.0089 − 0.8950

30.06.2019 0.1216 0.0628 0.0363 0.0283 − 0.9687

31.03.2019 0.3978 0.0331 0.0333 0.0091 − 0.8576

31.12.2018 0.1628 0.0521 0.0183 0.0154 − 0.8629

30.09.2018 0.6100 0.0429 0.0459 0.0104 − 0.8722

30.06.2018 0.2901 0.0459 0.0104 0.0112 − 0.9941

31.03.2018 0.5120 0.0386 0.0142 0.0097 − 1.0000

31.12.2017 0.3803 0.0471 0.0236 0.0120 − 0.8854

30.09.2017 0.0880 0.0655 0.0421 0.0460 − 0.9938

30.06.2017 0.1260 0.0890 0.0504 0.0517 − 0.9963

31.03.2017 0.2940 0.0581 0.0152 0.0146 − 0.9984

31.12.2016 0.2427 0.0606 0.0178 0.0173 − 1.0000

Table 5   Quarterly calibration 
results for the constant local 
long run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy

30.09.2019 − 0.0676 0.7400
30.06.2019 − 0.2848 0.5787
31.03.2019 − 0.0267 0.3636
31.12.2018 − 0.0539 0.2182
30.09.2018 − 0.0107 0.1518
30.06.2018 − 0.0173 0.1481
31.03.2018 − 0.0112 0.1099
31.12.2017 − 0.0150 0.0913
30.09.2017 − 0.7023 0.9836
30.06.2017 − 0.3883 0.5497
31.03.2017 − 0.0330 0.1710
31.12.2016 − 0.0405 0.1725
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Table 6   Quarterly calibration 
results for the step local long 
run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy lx ly

30.09.2019 − 0.0676 0.7400 − 0.0090 − 0.0129

30.06.2019 − 0.2848 0.5787 − 0.0376 − 0.0292

31.03.2019 − 0.0267 0.3636 − 0.0114 − 0.0034

31.12.2018 − 0.0539 0.2182 − 0.0163 − 0.0029

30.09.2018 − 0.0107 0.1518 − 0.0101 − 0.0047

30.06.2018 − 0.0173 0.1481 − 0.0107 − 0.0090

31.03.2018 − 0.0112 0.1099 − 0.0087 − 0.0129

31.12.2017 − 0.0150 0.0913 − 0.0099 − 0.0111

30.09.2017 − 0.7023 0.9836 − 0.0364 − 0.0087

30.06.2017 − 0.3883 0.5497 − 0.0423 − 0.0233

31.03.2017 − 0.0330 0.1710 − 0.0131 − 0.0068

31.12.2016 − 0.0405 0.1725 − 0.0154 − 0.0033

Table 7   Quarterly calibration 
results for the linear local long 
run risk premium functions 
from 31.12.2016 to 30.09.2019

Date dx dy lx ly

30.09.0219 − 0.1332 1.5015 − 0.0090 − 0.0129

30.06.2019 − 0.5474 1.1457 − 0.0376 − 0.0292

31.03.2019 − 0.0461 0.7377 − 0.0114 − 0.0034

31.12.2018 − 0.0959 0.4471 − 0.0163 − 0.0029

30.09.2018 − 0.0114 0.3111 − 0.0101 − 0.0047

30.06.2018 − 0.0250 0.3087 − 0.0107 − 0.0090

31.03.2018 − 0.0144 0.2355 − 0.0087 − 0.0129

31.12.2017 − 0.0216 0.1970 − 0.0099 − 0.0111

30.09.2017 − 1.3930 1.9854 − 0.0364 − 0.0087

30.06.2017 − 0.7567 1.1001 − 0.0423 − 0.0233

31.03.2017 − 0.0567 0.3550 − 0.0131 − 0.0068

31.12.2016 − 0.0700 0.3556 − 0.0154 − 0.0033

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


705

1 3

The Gauss2++ model: a comparison of different measure change…

References

	 1.	 Ahmad R, Wilmott P (2006) The market price of interest-rate risk: measuring and modelling fear 
and greed in the fixed-income markets. Wilmott Mag 30:64–70

	 2.	 Brigo D, Mercurio F (2007) Interest rate models—theory and practice: with smile, inflation and 
credit. Springer, Berlin

	 3.	 Cox JC, Ingersoll JE Jr, Ross SA (1985) An intertemporal general equilibrium model of asset prices. 
Econom J Econom Soc 30:363–384

	 4.	 Cox SH, Pedersen HW (1999) Nonparameteric estimation of interest rate term structure and insur-
ance applications. In: Proceedings of the 1999 ASTIN Colloquium, Tokyo, Japan (to appear)

	 5.	 Dai Q, Singleton Kenneth J (2000) Specification analysis of affine term structure models. J Financ 
55(5):1943–1978

	 6.	 Diebold FX, Li C (2006) Forecasting the term structure of government bond yields. J Econom 
130(2):337–364

	 7.	 Diez F, Korn R (2019) Yield curve shapes of vasicek interest rate models, measure transformations 
and an application for the simulation of pension products. Eur Actuar J 20:1–30

	 8.	 Duffee GR (2002) Term premia and interest rate forecasts in affine models. J Financ 57(1):405–443
	 9.	 Duffie D, Kan R (1996) A yield-factor model of interest rates. Math Financ 6(4):379–406
	10.	 Girsanov IV (1960) On transforming a certain class of stochastic processes by absolutely continuous 

substitution of measures. Theory Probab Appl 5(3):285–301
	11.	 Heath D, Jarrow R, Morton A (1992) Bond pricing and the term structure of interest rates: a new 

methodology for contingent claims valuation. Econom J Econom Soc 20:77–105
	12.	 Hull J, White A (1990) Pricing interest rate derivative securities. Rev Financ Stud 3(4):573–592
	13.	 Hull J, Sokol A, White A (2014) Short rate joint measure models. Risk 10:59–63
	14.	 de Jong F (2000) Time series and cross-section information in affine term-structure models. J Bus 

Econ Stat 18(3):300–314
	15.	 Korn R, Wagner A  (2019) Praxishandbuch Lebensversicherungsmathematik: Simulation und Klas-

sifikation von Produktent. VVW GmbH, Karlsruhe
	16.	 Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313
	17.	 Stanton R (1997) A nonparametric model of term structure dynamics and the market price of inter-

est rate risk. J Financ 52(5):1973–2002
	18.	 Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5(2):177–188

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	The Gauss2++ model: a comparison of different measure change specifications for a consistent risk neutral and real world calibration
	Abstract
	1 Introduction
	2 The Gauss2++ model in the risk neutral and the real world
	2.1 The Gauss2++ model under the risk neutral measure
	2.2 The Gauss2++ model under the real world measure
	2.2.1 The change of measure
	2.2.2 The dynamics under the real world measure 
	2.2.3 The bond price formula under the real world measure


	3 Local long run risk premium functions—specification and calibration
	3.1 The constant function
	3.2 The step function
	3.3 The linear function

	4 Results
	4.1 Calibration at one valuation date
	4.2 Backtest

	5 Conclusion
	Acknowledgements 
	References




