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Abstract
The Pareto/NBD model is one of the best-known models in customer base analy-
sis. Extant literature has brought up three different Markov Chain Monte Carlo 
(MCMC) procedures for parameter estimation of this model. Nevertheless, three 
main research gaps remain. Firstly, the issue of hyper parameter sensitivity for these 
procedures has been disregarded even though this is crucial when dealing with small 
sample sizes. Secondly, present research lacks a performance comparison between 
the different MCMC procedures as well as with Maximum Likelihood Estimates 
(MLE). Thirdly, existing minimal data set requirements for this model neglect 
MCMC estimation procedures as they only refer to MLE. To tackle these gaps, we 
perform two extensive simulation studies. We demonstrate that the algorithms dif-
fer in their sensitivity towards the hyper distributions and identify one algorithm 
that outperforms the other procedures in all respects. In addition, we provide deeper 
insights into individual level forecasts when using MCMC and enhance extant data 
set limitation guidelines by considering not only the cohort size but also the length 
of the calibration period.

Keywords Customer base analysis · Pareto/NBD model · Markov Chain Monte 
Carlo

JEL Classification M31 · C11

1 Introduction

Customer base analysis (CBA) is an essential component of customer relationship 
management when looking at companies in a non-contractual setting being inter-
ested in a long-term relationship with their customers. CBA uses information on 
past purchases to analyse and predict transactional patterns. Classical models in this 
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field assume that the inter-purchase times of an individual customer follow a given 
type of distribution, where the distribution parameter(s) themselves follow another 
probability distribution to account for heterogeneity within the customer cohort. In 
addition, most of these models imply that every customer will at some point stop 
doing business with the company. This may e.g. happen when a customer starts pur-
chasing from a competitor, does not need the product anymore, or literally dies. The 
estimation of a customer’s lifetime is particularly challenging in a non-contractual 
setting because the timing of the dropout cannot be directly observed. Modelling 
lifetimes can be done in a similar way to the purchase process, involving individual 
dropout rates which themselves follow a heterogeneity distribution.

CBA models generally provide two measures that offer direct management bene-
fits. The expected number of future purchases and the probability of a customer still 
being active at the end of the observation period are valuable metrics that enable the 
optimisation of marketing strategies regarding incentive or reactivation campaigns. 
In addition, the estimated parameters can be used to calculate the customer lifetime 
value (CLV) (see e.g. Fader et al. 2005b and Glady et al. 2009). On an operational 
level, the CLV can additionally substantiate marketing decisions like individual ser-
vice offers. On the general management level, the cumulated CLV helps to deter-
mine the financial value of a company (McCarthy and Fader 2018).

The Pareto/Negative Binomial Distribution (Pareto/NBD) model was introduced 
by Schmittlein et  al. (1987) and is one of the most acknowledged and cited CBA 
models in the literature. Its performance is highly regarded among researchers 
(see e.g. Fader et al. 2005a; Gupta et al. 2006; Batislam et al. 2007). In the early 
2000s, the major point of criticism of the Pareto/NBD model was its computational 
complexity despite its rather simple mathematical assumptions (Fader and Hardie 
2005; Jain and Singh 2002). This complexity mainly arises from the large number 
of hypergeometric functions that need to be calculated. In addition, determining the 
maximum likelihood estimates (MLE) often led to numerical problems (Ma and Liu 
2007; Hoppe and Wagner 2010). This was reflected by the fact that only very few 
empirical validations had been performed at that time (Batislam et  al. 2007). The 
technological progress has relaxed this issue in different respects. Not only the pro-
cessing speed and methods have improved considerably, but also predefined func-
tions and packages in publicly available software like R (R Core Team 2020) reduce 
the individual effort for the application of such a model and enables its utilisation 
as a benchmark model (Fader et al. 2005a; Jerath et al. 2011; Bemmaor and Glady 
2012; Platzer and Reutterer 2016).

Over the past 10–15 years, the concept of Markov Chain Monte Carlo (MCMC) 
algorithms has taken root in CBA (Ma and Liu 2007; Abe 2009; Singh et  al. 
2009; Ma and Büschken 2011; Schweidel et al. 2014; Platzer and Reutterer 2016). 
Although their mathematical basis is more complex than the calculation of the 
MLE, these algorithms enable a new type of data analysis (Paap 2002) offering 
three main advantages. Firstly, MCMC procedures provide not only point estimates 
(i.e. the mode) of the model parameters but the entire posterior distribution of the 
parameters, which allows to also determine the mean, median, or standard devia-
tion. Secondly, these procedures can estimate individual level parameters in addition 
to describing the heterogeneity distribution across customers. Thirdly, it is possible 
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to augment the timing of the individual dropouts, which gives new insights into the 
unobserved customer lifetime.

MCMC methods have been applied to the Pareto/NBD model using three dif-
ferent algorithms or algorithm frameworks, namely those by Abe (2009), Ma and 
Liu (2007), and Singh et  al. (2009). However, the extant literature on the param-
eter estimation of this model is incomplete in three significant aspects. Firstly, prior 
research has not performed a comparison between the different MCMC algorithms 
or with MLE. Though MCMC algorithms provide much richer information about 
the model parameters than MLE, it is unclear if these algorithms perform better 
regarding parameter recovery or forecast accuracy and are thus worth the additional 
implementation effort. Secondly, the influence of the (hyper) prior distributions, i.e. 
the distributions of the heterogeneity parameters r, αs, and β, is left unconsidered 
in all three implementation methods. Robert (2007) states that the (hyper) prior 
distributions are the key to Bayesian inference and their determination is thus the 
most important step in the MCMC procedure. However, none of the authors who 
introduced a MCMC algorithm for the Pareto/NBD model has addressed this issue. 
Singh et al. (2009) use a � (5, 5) distribution for each of the heterogeneity param-
eters without further elaboration, whereas Abe (2009) and Ma and Liu (2007) do 
not state which hyper parameters they employed at all. As the Pareto/NBD model 
is mostly used for cohorts of new customers or products and thus for small data 
sets, the choice of hyper distributions may be crucial for the analysis and inferences 
(Edwards et al. 1963). Thirdly, to the best knowledge of the authors, there exists no 
research on minimal data set requirements for the application of the Pareto/NBD 
model with MCMC. Two studies (Schmittlein and Peterson 1994; Hoppe and Wag-
ner 2010) performed such examinations but referred to MLE only.

In this article, we contribute to extant literature by addressing these neglected 
issues. We use simulated data sets with known underlying parameter values to assess 
the hyper parameter sensitivity as well as the recovery and forecast quality of the 
different estimation procedures. In study 1, we compare the different MCMC algo-
rithms (partially based on the R package BTYDplus (Platzer 2016)) with each other 
as well as with MLE. In order to systematically analyse the parameter estimates, 
especially with respect to the prior distribution sensitivity, we choose the simply 
structured parameter space of Fader et al. (2005), which provides three equally dis-
tributed values for each heterogeneity parameter. The results show that MCMC, 
and in particular Abe’s algorithm, outperforms MLE. The diagnosed superiority of 
Abe’s MCMC algorithm leads to the question whether existing data set restrictions 
for the practical application of the Pareto/NBD model in the literature (Schmittlein 
and Peterson 1994; Hoppe and Wagner 2010) can be relaxed as these refer to MLE. 
In study 2, we address this question by replicating the simulation study of Hoppe 
and Wagner (2010) and additionally incorporating Abe’s algorithm. As this research 
question focusses on the data set properties, the parameter space for this simulation 
study is based on behavioural characteristics, leading to a more complex set of het-
erogeneity parameters. Both studies require preliminary work on the choice of hyper 
parameters, which gives us valuable insights into this mostly disregarded but crucial 
aspect of MCMC in CBA.
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The remainder of this paper is organised as follows. In Sect.  2, we recall the 
Pareto/NBD model assumptions, describe the properties of the different MCMC 
algorithms, and introduce the measures we employ for their comparison. The 
explicit procedures, probabilities, and distributions are outlined in detail in the Tech-
nical Appendix (A). In Sect. 3, we compare the different MCMC algorithms with 
each other and with MLE as outlined above. In Sect. 4, we analyse the MCMC per-
formance on different data set sizes to derive minimal requirements for cohort sizes 
and the length of the calibration period. In Sect. 5, we summarise and discuss our 
results and derive implications for researchers and practitioners alike.

2  The Pareto/NBD model

2.1  Model assumptions

The Pareto/NBD model is based on the following assumptions (Schmittlein et  al. 
1987). For the simplification of the notation, we remove the customer index i when 
regarding individual level formulas. In addition, we explain the effects of different 
numerical values for each of the parameters. 

1. Each of the N customers goes through two stages. The “lifetime” with a firm starts 
with the initial purchase and ends at a non-observable time � , where the state of 
inactivity is non-reversible.

2. While the customer is active, the time elapsed between two consecutive purchases 
follows an exponential distribution with parameter � , i.e. 

 where tj denotes the time elapsed from the initial (t0 = 0) to the jth purchase. As 
E(tj − tj−1) =

1

�
 , the inter-purchase times tend to be shorter for larger values of � , 

leading to a higher number of purchases. Therefore, an arbitrary customer with 
� = 0.05 has an average inter-purchase time of 20 time units (e.g. weeks) and, 
leaving the dropout process aside, we would expect him to make five purchases 
within 100 times units.

3. The customer’s lifetime � is exponentially distributed with parameter � , i.e. 

 Comparable to the purchase process, E(�) = 1

�
 , i.e. a small � implies a longer 

lifetime with the company. A customer with � = 0.1 would thus be expected to 
drop out after 10 time periods. Another perspective on the dropout process is the 
defection rate (DR). For an exponentially distributed lifetime � , DR is a constant 
given by 

(1)f (tj − tj−1) = �e−�(tj−tj−1),

(2)f (�) = �e−�� .

(3)DR = 1 − e−�,
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 which quantifies the probability that a customer will defect within one time 
unit. In the above example, the probability that a customer with � = 0.07 defects 
within the next time unit is 6.8%.

4. The purchase rate � varies across customers and follows a gamma distribution 
with parameters r and � , i.e. 

 A direct behavioural understanding of the parameters (r, �) is very difficult. 
Instead, we can interpret the expected value and dispersion by considering that 

 with �� being the standard deviation and CV� the coefficient of variation (CV) 
for � . This implies that, e.g. for r = 0.5 and � = 10 , the average purchase rate 
E(�) is 0.05 and � averagely varies by 1.41 = 141% within the cohort.

5. Heterogeneity in � follows a gamma distribution with parameters s and � , i.e. 

 Similar to the purchase process, a direct interpretation of (s, �) is unfeasible. 
Using 

 allows us to interpret that e.g. for s = 2 and � = 20 , the average dropout param-
eter E(�) is 0.1 and that it varies by 1 = 100% within the cohort.

6. � and � vary independently across customers.

The posterior distributions of the individual and heterogeneity parameters are 
derived in A2.

2.2  MCMC algorithms for the Pareto/NBD model

The extant literature provides three different MCMC algorithms for the Pareto/NBD 
model. We present each of them in 2.2.1 to 2.2.3 and discuss their technical differ-
ences in 2.2.4.

2.2.1  Ma and Liu (2007)

Ma and Liu (2007) generate the individual parameter estimates {�̂�i, �̂�i} as well as 
the heterogeneity parameter estimates (r̂, �̂�, ŝ, 𝛽) by applying a Gibbs sampler. Since 

(4)g(�|r, �) = �r�r−1e−��

� (r)
.

(5)E(�) =
r

�
, �� =

√
r

�
,CV� =

1√
r
,

(6)g(�|s, �) = �s�s−1e−��

� (s)
.

(7)E(�) =
s

�
, �� =

√
s

�
,CV� =

1√
s
,
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only the posteriors of � and � reduce to a known distribution, we draw from the 
combined posterior distributions (22)–(25) by using a slice sampling routine (Neal 
2003) to simulate the heterogeneity parameters.For our study, we use a slice sam-
pling routine based on the R package BTYDplus (Platzer 2016). To reduce the com-
putational cost, the slice sampling is outsourced to C++ using the Rcpp package 
(Eddelbuettel and François 2011; Eddelbuettel 2013).

2.2.2  Abe (2009)

Abe (2009) also generates individual and heterogeneity parameter estimates, but 
additionally simulates the unobserved individual dropout times {�i} by applying a 
data augmentation technique (Tanner and Wong 1987). He first creates a latent indi-
cator variable zi , which specifies if customer i is still active in Ti by using formula 
(17) for P(alive) . Depending on the aliveness status, he draws 𝜏i from the appropriate 
distribution shown in Figs. 1 and A3.1. The specific value of �i simplifies the poste-
rior distributions for {�i} and {�i} according to A2. Therefore, we can draw the indi-
vidual parameters straight from a gamma distribution employing a common number 
generator. Abe’s version of the posterior distribution for {�i} noted in (19) is condi-
tional on being alive rather than conditional on the specific value of �i . We therefore 
implement a slightly different version by using � (s + 1, � + �i) from formula (21) in 
both cases of the aliveness status in order to consider all information available. As 
the data augmentation has no effect on the heterogeneous likelihood, we need to per-
form the same slice sampling technique for {r, �, s, �} as in the algorithm introduced 

Fig. 1  Comparison of the different MCMC procedures
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by Ma and Liu. Abe’s algorithm in the described form is also coded in the BTY-
Dplus package (Platzer 2016).

2.2.3  Singh et al. (2009)

Singh et  al. (2009) use a divergent approach for their MCMC procedure. The 
major difference to the other algorithms is that they waive the individual param-
eters {�i,�i} . They separately regard the NBD-distributed counting process on 
the one hand side and the Pareto-distributed dropout process on the other. The 
full conditional distributions in A2 require values for the dropout times {�i} . 
The candidates for this individual lifetime are drawn from a truncated Pareto-
II-distribution with parameters s and � . A candidate � (c)

i
 is being accepted with 

probability (30) from A3.3. The heterogeneity parameters r, �, s, and � are drawn 
from (26)–(29) using a slice sampling routine.

2.2.4  Similarities and differences

Figure 1 shows a schematic overview of similarities and differences of the three 
MCMC algorithms.

Even though Singh et  al. (2009) and Abe (2009) both use a data augmenta-
tion procedure, Singh et al.’s  (2009) algorithm reveals some weaknesses in the 
direct comparison. The most obvious one is that they do not provide estimates 
for {�̂�i, �̂�i} , which makes certain evaluations impossible on the individual level. 
Additionally, their data augmentation technique allows the estimated dropout 
times to stay constant over many iterations. In contrast, Abe’s augmented life-
times inevitably change in every step, which leads to a more granular distri-
bution. Lastly, their algorithm underperforms in terms of computational cost. 
Using data augmentation simplifies the posterior distributions and thus generally 
speeds up the estimation. The absence of the individual parameter level though 
causes higher data input requirements in the slice sampling step, which is very 
time-consuming.

Ma and Liu (2007) use the very laborious slice sampling routine for the esti-
mation of the individual parameters {�̂�i, �̂�i} , which impedes the determination 
of lifetime estimates. These are two major disadvantages compared to the data 
augmentation procedures.

At this point, we can conclude that the conception of Abe’s algorithm is supe-
rior to the others as it unifies all advantages concerning (1) individual parameter 
estimates, (2) augmented dropout dates, and (3) calculation time while showing 
no weaknesses compared to the other methods.

When we think of the likelihood as a distribution, there are three measures 
of central tendency that we can use as point estimates, namely the mode, the 
mean, and the median. MLE is defined as the likelihood mode, whereas MCMC 
procedures also provide the mean and median of the posterior parameter distri-
butions. We additionally examine which of these measures is the best point esti-
mate regarding parameter recovery in our simulation study.
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All MCMC algorithms in this study are performed using four chains with ran-
dom initial values and 5,000 draws each, where the first 2,000 steps are defined 
as the burn-in. The MLE comparison values are determined by a routine from 
the BTYD package in R (Dziurzynski et al. 2014) which is based on the optim() 
function of the stats package (R Core Team 2020).

2.3  Performance Metrics

Let �i =
(
r, �, s, �,E(�) =

r

�
,E(�) =

s

�

)
i
 denote the vector of the true parameter 

values and �̂�i,k the parameter point estimate (mean, median, or MLE) for customer 
i ( i = 1, ...,N ) of data set k ( k = 1, ...,K) . We analyse the recovery of the heteroge-
neity parameter estimates (r̂, �̂�, ŝ, 𝛽) of our simulated data sets by using the mean 
percentage error (MPE) and the mean absolute percentage error (MAPE), which 
are defined as:

For the performance comparison of the recovery of the individual parameters {�i} 
and {�i} , the MPE and MAPE are unsuitable measures as the parameter values may 
be very close to zero and therefore produce infinite or undefined M(A)PE values. 
Hence, we draw on the concept of the mean arctangent absolute percentage error 
(MAAPE) instead (Kim and Kim 2016). The MAAPE is defined as follows:

The arctan(x) function is bound to 
[
0,

�

2

]
 , which makes the MAAPE robust against 

very small parameter values as well as estimate outliers.
Abe and Singh et  al. provide augmented values for the individual dropout 

times {𝜏i} , which we use to derive a different type of information on the activity 
status of an individual customer than P(alive) gives us. We define the survival 
accuracy SA as

with

(8)MPE
(
�̂�
)
=

100

K ⋅ N
⋅

K∑
k=1

N∑
i=1

�̂�i,k − 𝜃i,k

𝜃i,k
,

(9)MAPE
(
�̂�
)
=

100

K ⋅ N
⋅

K∑
k=1

N∑
i=1

|||�̂�i,k − 𝜃i,k
|||

𝜃i,k
.

(10)MAAPE
�
�̂�
�
=

100

K ⋅ N
⋅

K�
k=1

N�
i=1

arctan

⎛⎜⎜⎝

����̂�i,k − 𝜃i,k
���

𝜃i,k

⎞⎟⎟⎠
.

(11)SA =
100

K ⋅ N
⋅

K∑
k=1

N∑
i=1

I{(Ti−𝜏i)⋅(Ti−𝜏i)>0},
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where the indicator function is one if and only if the median estimate {𝜏i} states cor-
rectly whether a customer has defected.

The analysis of the future number of individual purchases x∗
i
 requires the mean 

absolute error (MAE) because the basic value may be zero and leads to errors in 
MPE, MAPE, and MAAPE. It is defined as

3  Study 1: Comparison of the MCMC procedures

3.1  Data set generation for study 1

Our parameter space for creating the synthetic data sets of study 1 is based on Fader 
et al. (2005) and uses r, s ∈ {0.25, 0.5, 0.75} and �, � ∈ {5, 10, 15} , allowing 34 = 81 
combinations of these parameter values. To reduce the computational cost, we 
choose a random sample of 500 with replacement from these 81 combinations. This 
implies an average number of 500

3
= 166.7 data sets for the analysis of a single under-

lying heterogeneity parameter value. As E(�) = r

�
 and E(�) = s

�
 rely on two parame-

ters each, their average number of data sets reduces to 500
32

= 55.6 . To simulate the 
individual purchase and dropout rate of the customers for each of these 500 data 
sets, we use the integrated random number generator in R and draw a sample of 
1,500 individual values for {�i} and {�i} from � (r, �) and � (s, �) respectively. For 
each data set and customer, we now draw one realisation from Exp(�i) to receive the 
lifetime {�i} of the individual customers by using the integrated random number 
generator for the exponential distribution. Lastly, we simulate an initial purchase 
time for each customer as a fraction of the first time unit and generate successive 
inter-purchase times by drawing random values from Exp(�i) until the individual 
lifetime {�i} is exceeded. We simulate these transaction data for a total period of 104 
time units, of which 78 are used as the calibration period and the remaining 26 as 
the forecast period, corresponding to 1.5 years and 6 months on a weekly basis. To 
reduce the computational effort, we keep these values as well as the cohort size of 
1,500 fixed throughout study 1.

3.2  Comparison of the hyper parameters

The application of MCMC procedures requires the choice of a prior distribution for 
the heterogeneity parameters (r, �, s, �) . This means that we need to choose a distri-
bution type and specify its parameters (“hyper parameters”). We perform the 

(12)I{(Ti−𝜏i)⋅(Ti−𝜏i)>0} =

{
1, (Ti − 𝜏i)(Ti − 𝜏i) > 0

0, (Ti − 𝜏i)(Ti − 𝜏i) ≤ 0
,

(13)MAE
(
x̂∗
)
=

1

K ⋅ N
⋅

K∑
k=1

N∑
i=1

|||x̂∗i,k − x∗
i,k

|||.



716 L. Simon, J. Adler 

1 3

MCMC algorithms with different hyper parameters to learn about the sensitivity of 
the parameter recovery. Using gamma distributions � (h1, h2) as the conjugate prior, 
we need to specify their expected values and CV given by h1

h2
 and h−0.5

1
 , respectively. 

As each of the heterogeneity parameters (r, �, s, �) can take three values, we choose 
the middle one as the expected value of the prior distribution, i.e. 
E(r) = E(s) =

h1

h2
= 0.5 and E(�) = E(�) =

h1

h2
= 10 . This enables us to analyse the 

effect of the expectation of � (h1, h2) being set too large (for r, s = 0.25 and �, � = 5 ), 
too small (for r, s = 0.75 and �, � = 15 ), or accurate (for r, s = 0.5 and �, � = 10 ). 
We simultaneously vary the coefficient of variation (CV) of � (h1, h2) between 0.01 
and 2.

Figure  2 shows the MAPE of all four heterogeneity parameters for all three 
MCMC procedures based on their median draw, both averaged over the 500 data 
sets (bold red line) and separated by their underlying parameter value. Most 
plots for the total MAPE show a slight U-shape. The numeric values suggest 

Fig. 2  MAPE of the heterogeneity parameters for the different hyper distributions of study 1
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an optimal CV of 0.5 for the algorithms of Abe and Singh et  al. for the given 
parameter space. Their courses of the MAPE for the low (blue dotted line) and 
high (green dashed line) parameter values illustrate that an overrated prior mean 
causes higher deviations than an underrated, in particular when being combined 
with a small CV. Thus, in case of uncertainty about the choice of hyper param-
eters when employing the algorithms of Abe or Singh et al., it is recommended 
to combine a smaller expected value with a larger dispersion. The estimates of 
Ma and Liu though show a high sensitivity towards both the mean and the CV 
of the hyper distribution. Considering the different scaling of their plots on both 
axes because of their high MAPE values, they only generate comparatively good 
estimates when using highly informative prior distributions. For the further com-
parison with the other procedures, we use CV = 0.1 when estimating parameters 
for Ma and Liu’s algorithm, as this value provides the smallest MAPE for all four 
heterogeneity parameters.

In addition to the conjugate prior distribution, we also apply uninformative 
hyper prior distributions based on Jeffreys (1946). However, as they turn out to be 
less accurate than a gamma distribution, they will not be considered in the further 
analysis. To decide between the mean and median draw as the best fitting point 
estimate, we compare their MPE and MAPE values. The median outperforms the 
mean in all respects, especially for larger CV values as these promote outliers. 
For the further analysis, we will therefore restrict to using the median draw when-
ever a point estimate is required and compare the performance metrics for the dif-
ferent MCMC procedures with their respective optimal hyper parameters.

3.3  Comparison of the MCMC procedures

3.3.1  Recovery of the heterogeneity parameters

Table 1 reports the MPE and MAPE values for � using the optimal hyper distri-
bution of each algorithm as derived above. As Fig. 2 already suggested, Ma and 
Liu’s procedure generates highly overrated estimates because the given parameter 

Table 1  MPE and MAPE for �

Abe and Singh et al. with hyper CV 0.5, Ma and Liu with hyper CV 0.1

MPE MAPE

Abe Ma/Liu Singh MLE Abe Ma/Liu Singh MLE

r 2.2 37.0 1.6 3.2 7.7 41.0 7.8 9.8
� 3.7 18.8 3.4 5.4 8.2 24.2 8.3 9.9
s 0.2 47.8 −7.5 15.5 14.8 51.7 15.3 32.8
� 4.0 20.1 −7.4 45.7 30.2 41.7 28.0 77.3
E(�) =

r

�
−0.9 15.0 −1.3 −1.9 5.0 19.4 5.0 5.4

E(�) =
s

�
4.1 38.6 7.1 6.8 18.7 50.5 18.9 30.2



718 L. Simon, J. Adler 

1 3

space is too broad to satisfy the need for very informative priors. Singh et  al.’s 
results are very similar to Abe’s in the absolute deviation but show an underes-
timation in the dropout process parameters s and � . The MLE routine performs 
well for the purchase process but produces high deviations in the dropout process. 
We can therefore conclude that Abe’s algorithm is clearly preferred over all other 
estimation procedures.

3.3.2  Recovery of the individual parameters

As Singh et  al. and MLE do not provide any individual parameter information, 
we can only compare the parameter recovery of the individual parameters {�i,�i} 
for Abe’s and Ma and Liu’s algorithms. Table 2 reports the MAAPE values which 
were calculated in total as well as separated by the number of repurchases in the 
calibration period. We should consider that very small parameter values pro-
mote higher relative deviations and therefore increase the MAAPE. The results 
show that the MAAPE for {�i} decreases with an increasing number of purchases 
because a higher number of repurchases gives us more information on the indi-
vidual � and also implies larger values for � . Opposed to this, the estimation of 
� deals with two contrary effects. A higher number of repurchases gives more 
indirect information on the lifetime. Simultaneously, it also suggests a later drop-
out and thus a lower value of � , which promotes larger values for the MAAPE. 
These effects cause decreasing MAAPE values for {�i} and a U-shaped curve for 
{�i} . As the M(A)PE values for E(�) and E(�) in Table 1 already suggested, Abe’s 
individual estimates outperform Ma and Liu’s in the MAAPE. This holds in par-
ticular for two hardly traceable domains, namely the purchase parameter {�i} for 
the cohort of single buyers and the complete dropout process, represented by {�i}.

3.3.3  Survival accuracy

Abe and Singh et al. both provide augmented values for the individual lifetimes 
{�i} . The distribution of the survival accuracy (11) over the 500 data sets is 
box-plotted in Fig.  3 and shows a significantly higher rate for Abe’s algorithm 
than for Singh et  al. In Fig.  4, we compare the actual activity status with the 
median draw of {�i} for all customers of all data sets. According to the plotted 
figures, Abe’ algorithm performs particularly better at correctly classifying the 

Table 2  MAAPE for study 1, 
Abe with hyper CV 0.5, Ma and 
Liu with hyper CV 0.1

Number of repurchases Total

0 1 2 3 4 5 > 5

� Abe 0.84 0.60 0.49 0.42 0.37 0.34 0.26 0.68
Ma and Liu 0.91 0.62 0.50 0.43 0.38 0.34 0.26 0.72

� Abe 0.80 0.78 0.78 0.74 0.78 0.79 0.81 0.80
Ma and Liu 0.85 0.83 0.83 0.84 0.84 0.84 0.86 0.85
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churned customers. The reason for this can be attributed to the different simula-
tion routines for {�i} , which are described in A3.1 and A3.3. As Singh et al. use 
an acceptance probability, the values for {�i} tend to remain unchanged for many 
simulation steps, leading to a less accurate distribution and thus to a smaller sur-
vival accuracy.

3.3.4  Forecast accuracy

In our final analysis of study 1, we compare the forecast accuracy of the four 
algorithms. Corresponding to a length of 6  months on a weekly basis, we cal-
culate E(x∗) for our forecast period of 26 time units using three different meth-
ods. These methods depend on the available parameters and are described in A4. 
Method 1 solely requires the heterogeneity parameters (r, �, s, �) and can hence be 
applied to all procedures. Method 2 is the individual expectation conditional on 
the customer still being active. As it requires values for {�i} , {�i} , and {�i} , it can 
only be applied to Abe’s algorithm. In method 3, the above condition is removed 

Fig. 3  Survival accuracy

Fig. 4  Survival cross tables 
(in %)
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by multiplying the individual expectations with P(alive) and thus it only requires 
values for {�i} and {�i} . Therefore, it can be applied to the procedures of Abe and 
Ma and Liu. We conjecture that considering individual level parameters in meth-
ods 2 and 3 should lead to better forecasts for an individual customer, whereas the 
use of the heterogeneous estimates in method 1 should yield a better forecast on 
the aggregated level.

Table 3 reports different measures for the forecast accuracy. The individual MAE 
is defined in (13) and shows the mean deviation over all customers and data sets 
on the individual level. The aggregated MPE and MAPE refer to the total sum of 
future purchases of all customers in a data set. These forecast metrics reveal three 
effects. Firstly, small individual MAE values do not necessarily imply a small M(A)
PE on the accumulated level. As zero buyers cannot be underrated, a general under-
estimation leads to a small MAE on the individual level for zero buyers but to a 
higher deviation in the accumulated purchases. This effect is very distinct here as 
80.3% of the customers over all data sets made no purchase in the forecast period. 
Secondly, Ma and Liu’s overestimation of E(�) (see Table 1) implies shorter life-
times and hence less future purchases leading to the previously described effect of 
small individual MAE values but large M(A)PE values. Thirdly, we can observe 
the expected effect that individual level parameters perform well when consider-
ing the individual purchase behaviour whereas heterogeneous estimates do better on 
the aggregated level. The reason for this can be seen in a “smoothing” effect which 
impedes extremely small values for x∗ . Exemplarily for Abe’s algorithm, 54.3% of 
all customers have a forecast of less than 0.01 purchases when using the individual 
method 3, whereas method 1 predicts less than 0.01 purchases for only 1.4% of all 
customers. We can conclude that the choice of the best forecast method depends 
on its purpose. Forecasts on the cohort level should be made by using method 1 
either with Abe’s MCMC algorithm or MLE. Since an individual method should be 
used to receive the most accurate individual forecast, the application of MCMC is 
required. In this case, Abe slightly outperforms Ma and Liu.

Table 3  Purchase forecast accuracy for the different procedures and formulas

Estimates Individual MAE Aggregated

used x
∗
= 0 x

∗
> 0 Total MPE MAPE

Method 1 Abe r, �, s, � 0.23 1.53 0.48 1.4 5.4
Singh r, �, s, � 0.23 1.52 0.48 2.2 5.6
Ma/Liu r, �, s, � 0.20 1.56 0.47        5.8 8.7
MLE r, �, s, � 0.23 1.53 0.48 0.0 6.0

Method 2 Abe {�
i
,�

i
, �

i
} 0.14 1.60 0.42 17.2 17.3

Method 3 Abe {�
i
,�

i
} 0.16 1.59 0.43 15.4 15.5

Ma/Liu {�
i
,�

i
} 0.14 1.62 0.43 21.5 21.5
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3.4  Summary of study 1

The inferences we can draw from study 1 regarding the best Pareto/NBD procedure 
are very clear. Abe’s algorithm is the only one that provides the full range of esti-
mate values and can hence be applied to all covered analyses. From all the perfor-
mance metrics examined, it is at least equal to the other procedures but mostly out-
performs them. In addition, it requires considerably less computing time than the 
other two algorithms. Furthermore, we showed that the augmented values of {�i} are 
a valuable addition to the parameter estimates. Concerning the sensitivity analysis, 
we have shown that the choice of the hyper parameters has a crucial influence on the 
parameter estimation.

To investigate the data set requirements for applying the Pareto/NBD model in 
study 2, we will limit ourselves to the superior algorithm of Abe and compare it with 
MLE as a benchmark.

4  Study 2: Data Set requirements

In study 2, we replicate the simulation study of Hoppe and Wagner (2010) and 
examine whether the minimal data sets requirements they derived for MLE can be 
relaxed when using Abe’s MCMC procedure.

4.1  Data set generation for study 2

The simulation framework developed by Hoppe and Wagner (2010) is based on 
behavioural characteristics. As these cannot directly be mapped by the heterogeneity 
parameters, the authors define the average purchase frequency, the average dropout 

Table 4  Behavioural characteristics and derived parameter values

Behavioural characteristic Numerical value

Low Medium High

Purchase frequency E(�) = 1/6 1/2 1/1
Dropout rate DR(�) = 50/1000 275/1000 500/1000
Purchase process heterogeneity CV(�) = 1/2 3/4 3/2
Propout process heterogeneity CV(�) = 3/4 1/1 2/1

Table 5  Derived parameter 
space

Parameter space of study 2

r ∈ {0.44, 1.78, 4}

� ∈ {0.44, 0.89, 1.78, 2.67, 3.56, 4, 8, 10.67, 24}

s ∈ {0.25, 1, 1.78}

� ∈ {0.36, 0.78, 1.44, 2.56, 3.11, 4.87, 5.53.19.50, 34.66}
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rate, and their dispersions within the cohort and translate them back into values for 
(r, �, s, �) using the formulas (3), (5), and (7). Table 4 shows the behavioural char-
acteristics used for study 2. The 34 = 81 combinations of their values result in the 
heterogeneity parameter space as noted in Table 5.

For each of the 81 scenarios, Hoppe and Wagner (2010) created 100 synthetic 
data sets for cohort sizes of N ∈ {250, 500, 750, 1000, 1250, 1500} and calibration 
periods of Tcal ∈ {12, 18, 24, 30} time units. Since the parameter estimation with 
a MCMC procedure requires a multiple of time and storage space compared to 
MLE, we reduce the sample size of the synthetic data sets to 30 replications for 
each scenario and perform both MLE and Abe’s MCMC algorithm.

Similar to study 1, we randomly generate 1,500 individual parameters {�i,�i} for 
each data set of each combination of (r, �, s, �) and simulate the individual lifetimes 
and purchase profiles. For smaller cohort sizes N < 1, 500 , we only consider the first 
n customers and vary the cut-off dates for shorter calibration periods of Tcal < 30.

4.2  Technical limitations

The number of data sets that cannot not be estimated with the MLE routine from 
the BTYD package (Dziurzynski et  al. 2014) increases with a decreasing num-
ber of customers and calibration period length. In total, 17.6% of all data sets 
can either not be estimated or contains parameter estimates equal to their upper 
boundary defined in the optimisation routine and are therefore regarded as ille-
gitimate estimates. Hence, we additionally apply the solnl() optimiser from the 
NlcOptim package (Chen and Yin 2019). As the optim() function tends to strug-
gle with small values of E(�) and solnl() with large values of E(�) , we are able 
to reduce the ratio of missing or illegitimate estimates to 7.6%. In cases where 
both routines produced results, we choose the one with the higher log-likelihood 
value. Hoppe and Wagner (2010) reported similar estimation problems in their 
study but gave no detailed information on their fail ratio.

4.3  Hyper parameter sensitivity

For the analysis of the hyper parameter sensitivity of Abe’s MCMC algorithm, 
we use the mean of the parameter space in Table 5 as the prior mean and vary 
the CV of the heterogeneity parameters between 0.5 and 5. For each of the 81 
parameter combinations, we apply these values to a sample of three data sets. 
Since the influence of the hyper parameters increases with a decreasing size of 
the data set (Edwards et al. 1963), we use reasonably small data set restrictions 
based on Hoppe and Wagner (2010) by specifying N = 750 and Tcal = 18 time 
units to reduce the computational effort of this analysis.

Figure  5 shows the MAPE of �̂� with respect to the different hyper param-
eters. The numeric values of the MAPE as well as the MPE reveal the small-
est accumulated error for a CV of the heterogeneity parameters of 1 which we 



723

1 3

Worth the effort? Comparison of different MCMC algorithms…

therefore apply to the whole data set framework. The parameter space in study 2 
has a much wider range than in study 1, explaining this higher value of the hyper 
CV. However, this enhanced range of parameters also yields another effect. As 
we use the same hyper parameters for each parameter combination regardless of 
their true underlying values, we should be aware that the performance metrics we 
receive in study 2 will be more conservative than in study 1.

4.4  Parameter Recovery

Table  6 compares the marginal MAPE values (i.e. the MAPE averaged over 
all parameter sets and data sets) of Abe’s algorithm with MLE (in italic) and 
shows their progression over the different numbers of customers and observation 

Fig. 5  MAPE for the different hyper CVs of study 2

Table 6  Marginal MAPE for the study 2 data sets

MLE values are written in italic

N T

250 500 750 1, 000 1, 250 1, 500 12 18 24 30

r 20.6 15.5 13.2 11.7 10.6 9.7 15.0 13.8 13.0 12.5
31.3 20.0 17.1 14.7 12.7 11.3 20.7 18.2 16.4 16.0

� 20.5 15.7 13.4 12.2 11.3 10.6 15.1 14.1 13.5 13.1
31.2 20.4 17.4 15.2 13.6 12.4 20.6 18.7 17.2 16.9

s 26.4 22.1 20 18.5 17.6 16.6 28.3 21.2 16.8 14.5
47.9 35.0 28.9 24.6 22.9 21.9 47.1 31.3 23.3 19.1

� 47.3 41.5 37.3 34.0 31.9 30.3 51.3 38.0 31.2 27.8
98.1 65.7 51.5 42.9 38.8 37.0 87.9 54.9 43.2 36.4

E(�) =
r

�
8.2 6.1 5.4 4.9 4.5 4.2 6.1 5.6 5.4 5.4
8.3 6.2 5.4 4.9 4.5 4.2 6.1 5.6 5.4 5.3

E(�) =
s

�
35.8 22.3 17.6 15.3 13.9 12.7 24.7 20.1 17.6 16.0
116.1 37.5 21.7 19.1 16.1 14.2 67.0 46.0 19.7 16.9
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periods. MCMC outperforms the MLE in the recovery of the true parameters in 
every respect, in particular in E(�) for very small data sets with N ≤ 500 and 
Tcal ≤ 18 time units. This is mainly driven by the fact that the ML strives exclu-
sively for the mode as the single desirable point of the likelihood, which is chal-
lenging when dealing with very uninformative data sets. In contrast to this, 
MCMC considers the entire distribution and is thus less prone to extreme outliers 
in case of very flat likelihood functions.

Further, Table  6 shows that the recovery of the purchase process parameters 
is more sensitive to the cohort size N than to the length of the calibration period 
Tcal . Opposed to this and in line with the results obtaines by Hoppe and Wagner 
(2010), the estimates of the dropout process are highly dependant on both N and 
Tcal.

4.5  Minimal data set requirements

Hoppe and Wagner (2010) derived the minimal data set requirements solely based 
on a criterion for E(�) , disregarding the dropout process. Due to the low sensitiv-
ity of the purchase process to Tcal , they could restrict their limit recommendations 
to specifications of N. They determined the 95% quantile of the MAPE for E(�) 
for each combination of purchase frequency, dropout rate (as defined in Table 4), 
N, and Tcal.

We cannot fully replicate the minimal requirements of Hoppe and Wagner (2010) 
when applying the thresholds to our MLE values. Though the MAPE of the MCMC 
estimates outperforms MLE, the difference is not large enough to allow a relaxa-
tion of their minimal requirements on the cohort size. To the contrary, we receive 
even more restrictive data set limitations for medium and high purchase rates. Still, 
we enhance their data set specifications with conditions of E(�) using the same 
method as for E(�) . Lewis (1982) defines thresholds for the interpretation of the 
MAPE. The limit of 10% used by Hoppe and Wagner (2010) for E(�) corresponds to 
a highly accurate estimation. As the parameters of the dropout process are consider-
ably more difficult to estimate, we use the MAPE threshold of 50% for a reasonably 
accurate estimation for E(�) . We apply these twofold thresholds to E(�) and E(�) 

Table 7  Enhanced data set 
requirements

Dropout rate

Low Medium High

Purchase 
frequency

Low N ≥ 1, 000 N > 1, 500 N > 1, 500

T
cal

≥ 24 T
cal

≥ 18 T
cal

≥ 24

Medium N ≥ 1, 000 N ≥ 1, 250 N > 1, 500

T
cal

≥ 12 T
cal

≥ 12 T
cal

≥ 12

High N ≥ 750 N ≥ 1500 N > 1, 500

T
cal

≥ 18 T
cal

≥ 12 T
cal

≥ 12
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with a type-I error of 5%. Tcal serves as a second dimension in the minimal require-
ments because of the high sensitivity of E(�) estimate to the length of the calibration 
period.

Table 7 shows the new, combined data set requirements that result from apply-
ing the E(�) and E(�) criteria to our MCMC estimates. These are based on the 
purchase and dropout rate defined in Table  4. The combinations of N and Tcal 
which are stated here use the lowest possible value of the cohort size. Hence, the 
requirements related to Tcal can be relaxed when N is increased.

5  Discussion and implications

Using MCMC algorithms for the Pareto/NBD model is a powerful tool and 
undoubtedly worth the additional implementation effort. However, the results 
from study 1 emphasise the necessity of a sensitivity analysis for the hyper 
parameters. The prior distributions that we derived in our studies might give a 
tentative idea of how in particular the CV of the heterogeneity parameters could 
be chosen. Still, our results do not replace the acquisition of prior information 
on the specific data sets. Regarding the choice of the hyper parameters, available 
information from different sources like experts, theories, or other data sets should 
be considered (Rossi and Allenby 2003).

Despite the application of two MLE routines, we received no results for 7.6% 
of the data sets, whereas the parameters of all data sets could be estimated with 
MCMC while simultaneously reducing the risk of extreme outliers. Therefore, 
using MCMC algorithms for CBA model parameter estimations in practice is less 
defective but still manageable concerning calculation time when being applied to 
a single data set only.

We contribute to extant literature by demonstrating that the parameter recovery 
and forecasting accuracy of Abe’s algorithm is superior to other MCMC methods 
and to MLE. Moreover, it is the only procedure that generates the complete posterior 
distribution of the parameters on the individual as well as on the aggregate level and 
augments the unobserved individual dropout times {�i} . Thus, it provides the entire 
range of available information. In particular compared to MLE, the use of Abe’s 
algorithm herewith enriches the toolbox available to marketing management. Study 
1 shows that using the individual parameters {�i,�i} rather than {r, �, s, �} on the 
aggregate level increases the accuracy of individual purchase forecasts. In addition, 
the provision of the full posterior distributions allows to explicitly account for (fore-
casting) uncertainty through confidence intervals or other distributional measures.

The individual level parameter values {�i,�i} enable managers to identify cus-
tomers with a high purchase rate and a short estimated lifetime (i.e. large �i and 
�i ) for individually targeted marketing activities like discount coupons or win-
back campaigns. Moreover, the posterior distribution of these individual param-
eters can be used to calculate the distribution of the next customer purchase time, 
allowing management to use predefined quantiles for activity timing. In cases 
where point estimates are required, study 1 shows that the median draw of the 
posterior distribution outperforms the ML estimators. On the aggregate level, the 
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posterior distributions can be used to enrich the calculation of the CLV by con-
sidering uncertainty through confidence intervals.

Regardless of whether the parameters are estimated using MLE or MCMC, the 
size of the available data set plays a decisive role for the practical application of 
the Pareto/NBD model. In study 2, we amend the extant minimal data set require-
ments of Hoppe and Wagner (2010) which are restricted to the required cohort 
size by additionally considering a threshold based on the dropout process. Fur-
ther, we expand the minimal requirements with a second dimension, including 
limitations for the minimal length of the calibration period.

Like any simulation-based research, there are limitations to the results of these 
studies. We were not able to fully replicate Hoppe and Wagner’s (2010) results and 
found generally stricter cohort size requirements for medium and high purchase fre-
quencies. This may, to a certain extent, be caused by the smaller number of replica-
tions (30 instead of 100) that we used to reduce the computational effort. In addition, 
these requirements refer to perfectly Pareto/NBD distributed data sets of a predefined 
parameter space. The examination of their validity for data sets which violate these 
prerequisites is left for future research. Within our simulation studies, we applied iden-
tical prior distributions to all data sets irrespective of the true heterogeneity param-
eter values, which lead to more conservative values of the performance metrics. When 
employing an MCMC procedure to a single real data set, we can assume that the prior 
distribution may fit better. We thus propose replicating study 2 with data set specific 
hyper parameters in future research. This might allow relaxing the minimal data sets 
requirements in case of more precise prior information. Furthermore, the influence of 
the hyper parameters should also be examined in the context of a decreasing data set 
size. Future research can also test the MCMC procedure not only against MLE but 
may use alternative parameter estimation approaches like quantile-based procedures.

A Technical appendix

This technical appendix is organised as follows. Chapter A1 contains different ver-
sions of the Pareto/NBD likelihood depending on the information available as well 
as P(alive) which is defined as the probability that a customer is still active in {Ti} . 
In A2, we derive the (hyper) posterior distribution for the different MCMC proce-
dures and describe their single steps in A3. In A4, we present the different methods 
for the future purchase forecast.

A1 General formulas

For an individual customer i, Abe (2009) presents some intermediate results for the 
Pareto/NBD model, which we use to explain the distributions we use for the differ-
ent MCMC procedures.

If the customer is still active in T, the likelihood of the given purchase pattern is 
given by
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If the customer has become inactive at a time � ∈ (tx, T] , the likelihood is given by

As Ma and Liu (2007) do not augment the dropout times {�i} , they use the individ-
ual likelihood that Fader and Hardie (2005) noted as

The probability of a customer still being active in T was derived by Schmittlein et al. 
(1987) as

A2 Posterior distributions

Bayes’ theorem states that the posterior distributions � we draw from in our MCMC 
procedures are proportional to the product of the corresponding likelihood and the 
prior distribution. Depending on the information we have on � , we receive the fol-
lowing formulas for the posterior distributions

– if 𝜏 > T:
  𝜋(𝜆|x, tx, 𝜏 > T ,𝜇, r, 𝛼) ∝ L(𝜆,𝜇|x, tx, 𝜏 > T) ⋅ g(𝜆|r, 𝛼)

𝜋(𝜇|x, tx, 𝜏 > T , 𝜆, r, 𝛼) ∝ L(𝜆,𝜇|x, tx, 𝜏 > T) ⋅ g(𝜇|s, 𝛽)

– if tx < 𝜏 ≤ T ∶

  𝜋(𝜆|x, tx, tx < 𝜏 ≤ T ,𝜇, r, 𝛼) ∝ L(𝜆,𝜇|x, tx, tx ≤ 𝜏 < T) ⋅ g(𝜆|r, 𝛼)

𝜋(𝜇|x, tx, tx < 𝜏 ≤ T , 𝜆, r, 𝛼) ∝ L(𝜆,𝜇|x, tx, tx ≤ 𝜏 < T) ⋅ g(𝜇|s, 𝛽)

– if we have no information on �:
  �(�|x, tx, T ,�, r, �) ∝ L(�,�|x, tx, T) ⋅ g(�|r, �)

(14)L(𝜆,𝜇|x, tx, 𝜏 > T) =
𝜆xtx−1

x

𝛤 (x)
e−(𝜆+𝜇)T .

(15)L(𝜆,𝜇|x, tx, tx ≤ 𝜏 < T) =
𝜆xtx−1

x

𝛤 (x)
𝜇e−(𝜆+𝜇)𝜏 .

(16)L(�,�|x, tx, T) = �x

� + �

(
�e−(�+�)tx + �e−(�+�)T

)
.

(17)P
(
𝜏 > T|𝜆,𝜇, x, tx, T

)
=

L(𝜆|x, tx, 𝜏 > T) ⋅ P(𝜏 > T|𝜇)
L(𝜆,𝜇|x, tx,T) .

(18)∝ �r+x−1e−�(�+T) ∝ � (x + r, � + T),

(19)∝ �s−1e−�(�+T) ∝ � (s, � + T).

(20)∝ �r+x−1e−�(�+�) ∝ � (x + r, � + �),

(21)∝ �se−�(�+�) ∝ � (s + 1, � + �).
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�(�|x, tx, T , �, r, �) ∝ L(�,�|x, tx, T) ⋅ g(�|s, �)

The posterior distributions in (18) to (21) are proportional to gamma distributions. 
Therefore, if � is known, we can draw values for � and � straight from these distri-
butions without having to use sampling algorithms like Metropolis–Hastings or slice 
sampling which induce large computational cost when being applied for each customer.

To derive the posterior heterogeneity distributions, we assume that r, �, s, and � 
are themselves gamma distributed with r ∼ � (h1, h2), � ∼ � (h3, h4), s ∼ � (h5, h6),

and � ∼ � (h7, h8) . We then receive the following joint distributions with 
x =

{
xi
}
, tx =

{
txi

}
 , and T =

{
Ti
}
 for the purchase and the dropout process, respec-

tively: �
(
r, �|, x, tx, T , �,�, h1, h2, h3, h4

)

=

N∏
i=1

[
L(�i,�i|x, tx, T) ⋅

�r�r−1
i

e−�i�

� (r)

]
h
h1
2
rh1−1e−rh2

� (h1)
⋅

h
h3
4
�h3−1e−�h4

� (h3)

and �
(
s, �|x, tx, T , �,�, h1, h2, h3, h4

)

=

N∏
i

[
L(�i,�i|x, tx, T) ⋅

�s�s−1
i

e−�i�

� (s)

]
h
h5
6
sh5−1e−sh6

� (h5)
⋅

h
h7
8
�h7−1e−�h8

� (h7)

We draw the parameter values from (24) and (25) by using a slice sampling routine.
Singh et  al. (2009) use the NBD and Pareto distributions separately. For the 

purchase process with r and � , the full conditional distributions are given by 
Π(r|x, tx, T , �, �, h1, h2)

Π(�|x, tx, T , �, r, h3, h4)

(22)∝
�x+r−1e−��

� + �

(
�e−(�+�)tx + �e−(�+�)T

)
,

(23)∝
�x+s−1e−��

� + �

(
�e−(�+�)tx + �e−(�+�)T

)
.

(24)∝ rh1−1e−rh2 ⋅ �h3−1e−�h4
n∏
i=1

�r�r−1
i

e−�i�

� (r)
,

(25)∝ sh5−1e−sh6�h7−1e−�h8
N∏
i=1

�s�s−1
i

e−�i�

� (s)
.

(26)

=
h
h1
2
rh1−1e−rh2

� (h1)

N∏
i=1

� (r + xi)

� (r)� (xi + 1)

(
�

� + min(�i, Ti)

)r(
min(�i, Ti)

� + min(�i, Ti)

)xi

,

(27)=
h
h3
4
�h3−1e−�h4

� (h3)

N∏
i=1

� (r + xi)

� (r)� (xi)

(
�

� + min(�i, Ti)

)r(
min(�i, Ti)

� + min(�i, Ti)

)xi

.
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For the dropout process with s and � , Singh et al. (2009) use the Pareto distribution. 
Therefore, the full conditional distributions are given by 

Π(s�x, tx, T , �, �, h1, h2) = ∏N

i=1

s�s

(� + �)s+1

h
h5
6
sh5−1e−sh6

� (h5)

Π(��x, tx, T , �, �, h1, h2) = ∏N

i=1

s�s

(� + �i)
s+1

⋅

h
h7
8
�h7−1e−�h8

� (h7)

A3 MCMC procedure steps

A3.1 Abe

1. Initialise parameters 
{
�i
}
,
{
�i

}
,
{
�i
}
, r, �, s, �.

2. Using (18) for 𝜏i > Ti and from (20) for tx < 𝜏i ≤ Ti , we can draw 
{
�i
}
 straight 

from the combined gamma distribution
  �i ∼ �

(
xi + r, � + min

(
�i, Ti

))
.

3. As outlined in (), we always use the specific value of 
{
�i
}
 and thus draw 

{
�i

}
 

straight from the gamma distribution given in (21):
  �i ∼ � (s + 1, � + �i).
4. D r a w  t h e  a l i v e n e s s  v e c t o r  

{
zi
}

 u s i n g  ( 1 7 )  w i t h 

P(zi = 1) = P
(
𝜏 > T|𝜆i,𝜇i, xi, txi , Ti

)
=

L(𝜆i|xi, txi , 𝜏i > Ti) ⋅ P(𝜏i > Ti|𝜇i)

L(𝜆i,𝜇i|xi, txi , Ti)
 and 

P(zi = 0) = 1 − P(zi = 1).
5. Draw � =

{
�i
}
 using an exponential distribution for z = 1 and a double truncated 

exponential distribution for z = 0:

  �i ∼

⎧⎪⎨⎪⎩

Ti + rexp(�i), zi = 1

−
ln
�
(1−runif )⋅e

−(�i+�i)txi +unif ⋅e−(�i+�i)Ti
�

�i+�i

, zi = 0
,

  where runif ∈ [0, 1] is a random number.
6. Draw r and � simultaneously from (24) using slice sampling:
  (r, �) ∼ rh1−1e−rh2 ⋅ �h3−1e−�h4

∏
i

�r�r−1
i

e−�i�

� (r)

7. Draw s and � simultaneously from (25) using slice sampling:
  (s, �) ∼ sh5−1e−sh6�h7−1e−�h8

∏
i

�s�s−1
i

e−�i�

� (s)

8. Repeat from step 2 with updates parameter values.

(28)∝
sn+h5−1�sne−sh6∏N

i=1
(� + �i)

s+1
,

(29)∝
�ns+h7−1e−�h8∏N

i=1
(� + �i)

s+1
.
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A3.2 Ma and Liu

1. Initialise parameters 
{
�i
}
,
{
�i

}
, r, �, s, �.

2. As Ma and Liu do not augment 
{
�i
}
 , we draw 

{
�i
}
 from (22) using a slice sam-

pling routine:
  �i ∼

�
xi+r−1

i
e−�i�

�i+�i

(
�ie

−(�i+�i)txi + �ie
−(�i+�i)Ti

)
3. Draw 

{
�i

}
 from (23) for the same reason using slice sampling:

  �i ∼
�
xi+s−1

i
e−�i�

�i+�i

(
�ie

−(�i+�i)txi + �ie
−(�i+�i)Ti

)
4. Draw r and � simultaneously from (24) using slice sampling:
  (r, �) ∼ rh1−1e−rh2 ⋅ �h3−1e−�h4

∏N

i

�r�r−1
i

e−�i�

� (r)

5. Draw s and � simultaneously from (25) using slice sampling:
  (s, �) ∼ sh5−1e−sh6�h7−1e−�h8

∏N

i

�s�s−1
i

e−�i�

� (s)

6. Repeat from step 2 with updates parameter values.

A3.3 Singh et al.

1. Initialise parameters 
{
�i
}
, r, �, s, �.

2. Draw a candidate vector 
{
𝜏
(c)

i

}
>
{
txi

}
 from the truncated Pareto-II-distribution 

with parameters (s, �) . This is given by

  Ftrunc(�i) =
F
(
�
i

)
− F

(
t
x
i

)

1 − F
(
t
x
i

) =

[
1 −

(
1 +

�
i

�

)s]
−

[
1 −

(
1 +

t
x
i

�

)s]

1 −

[
1 −

(
1 +

�
i

�

)s] =

(
t
x
i
+ �

�
i
+ �

)s

− 1 and 

therefore inversion gives �i =
(
txi + �

)
(1 − unif )

−
1

s − �.
3. Calculate the likelihoods for the old and new 

{
�i
}
-vector and accept the entry � (c)

i
 

with pi =
L(�

(c)

i
|r, �)

L(�
(c)

i
|r, �) + L(�i|r, �)

.

  The acceptance probability can be reduced to 

4. Draw r from (26) using slice sampling:

  r ∼
h
h1
2
rh1−1e−rh2

� (h1)

∏n

i=1

� (r + xi)

� (r)� (xi + 1)

�
�

� + min(�i,Ti)

�r�
min(�i, Ti)

� + min(�i,Ti)

�xi

.

5. Draw � from (27) using slice sampling:

  � ∼
h
h3
4
�h3−1e−�h4

� (h3)

∏n

i=1

� (r + xi)

� (r)� (xi)

�
�

� + min(�i,Ti)

�r�
min(�i, Ti)

� + min(�i,Ti)

�xi

6. Draw s from (28) using slice sampling:

  s ∼
�ns+h7−1e−�h8∏n

i=1
(� + �i)

s+1

(30)
pi =

1

1 +

(
� + min(�

(c)

i
, Ti)

� + min(�i, Ti)

)r+xi
.
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7. Draw � from (29) using slice sampling:

  � ∼
�ns+h7−1e−�h8∏n

i=1
(� + �i)

s+1

8. Repeat from step 2 with updates parameter values.

A4 Determination of the purchase forecast x∗

The conditional expectation of the future purchases can be determined in different 
ways depending on the available parameters. Method 1 (Schmittlein et  al. 1987) 
only uses the heterogeneity parameters {r, �, s, �} and can hence be used for all algo-
rithms. It is provided in the BTYD package in R (Dziurzynski et al. 2014) and is 
given by Fader and Hardie (2005) as

E
(
x∗
i

|||r, �, s, �, xi, txi , Ti, T∗
)

Method 2 can be applied to Abe’s algorithm only and is based on the individual 
form (Fader et al. 2005a) that requires values for {�i,�i, zi} where zi = 1 for 𝜏i > Ti
and zi = 0 for �i ≤ Ti:

Since Abe’s procedure does not only provide values for zi but distinct estimates for 
�i , we can modify (32) to

Method 3 requires values for {�i,�i} only and can thus be applied to Abe’s and Ma 
and Liu’s procedure. We have no information on the status of the individual cus-
tomer and therefore need to multiply (33) with P(alive):

E
(
x∗
i
||𝜆i,𝜇i, T

∗
)
= E

(
x∗
i
||𝜆i,𝜇i, 𝜏i > Ti, T

∗
)
⋅ P

(
𝜏i > Ti

|||𝜆i,𝜇i, txi , Ti

)
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(31)= E
(
x∗
i
||r + x, 𝛼 + Ti, s, 𝛽 + T , T∗

)
⋅ P

(
𝜏i > Ti

|||r, 𝛼, s, 𝛽, xi, txi , Ti
)
.

(32)E
(
x∗
i
||𝜆i,𝜇i, 𝜏i > Ti, T

∗
)
= E

(
x∗
i
||𝜆i,𝜇i, z = 1, T∗

)
=

𝜆i

𝜇i

⋅

(
1 − e−𝜇iT

∗
i

)
.

(33)E
(
x∗
i
||�i,�i, Ti, T

∗
)
=

�i

�i

⋅

(
1 − e−�i⋅min(�i,T

∗
i
)
)
.

(34)=

�i

�i

(1 − e�i )

1 +
�i

�i+�i

(
e
(�i+�i)(Ti−txi

)
− 1
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