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Abstract
It is typical in collectively administered pension funds that employees delegate fundmanagers
to invest their contributions. In addition, many pension funds still need to sustain guarantees
(prescribed by law) in spite of the current low interest environment. In this paper, we consider
an optimal collective investment problem for a pool of investors who (implicitly) demand
minimum guarantees by deriving utility from the wealth exceeding their guarantees in two
financial market settings, one with a stochastic and one with a constant volatility.We find that
individual investors’ well-being will not be worsened through the collective investment in
both financial markets, as individual optimal solutions are attainable if a financially fair state-
dependent sharing rule is applied. When more prevailing sharing rules like linear rules are
applied, this holds no longer. Furthermore, the degree of sub-optimality imposed by linear
sharing rules is more pronounced in the stochastic volatility market than in the constant
volatility market.

Keywords Collective investment problems · Stochastic volatility · portfolio insurance ·
Sharing rules

JEL Classification G11 · G23

1 Introduction

There exist various reasons for fund delegation in today’s world, one of the most promi-
nent examples being a collectively administered pension fund. There are two main types
of occupational pensions schemes: In a defined benefit (DB) scheme, the sponsoring com-
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panies promise their employees a guaranteed pension payment. In a defined contribution
(DC) scheme, the benefit at retirement depends on the performance of the investment returns
experienced during the plan membership. Consequently, in a DC scheme, the market risk is
carried completely by the employees instead of the employers.1 Very recently, people have
started to believe that hybrid pension plans combining the DC and DB plan might meet the
requirements of employees and employers even better. A key component of such hybrid
schemes is to provide safety by offering a minimum guarantee (which is lower than in pure
DB schemes), and, simultaneously, to let employees participate in potential upside scenar-
ios of the markets.2 In such pensions, fund managers shall take account of the guarantee
requirement in their portfolio planning, while simultaneously capturing the members’ risk
preferences in the investment strategy to provide acceptable bonuses to the members in well-
performing markets. Another reason for fund delegation, besides collectively administered
pension funds, is explained, for example, in Kim et al. (2016): Many households display
investment inertia because handling investments costs time and energy. The authors find that
delegation can be beneficial for individual investors.

In this article, we consider an optimal investment problem of a fund manager who invests
on behalf of a collective of individuals requiring aminimumguaranteed payment in a stochas-
tic volatility framework. In a utility maximization framework, it is common in the literature
to assume that individuals implicitly satisfy their guarantee requirements by deriving utility
only from the residual wealth exceeding the guarantee,3 see, for example, Basak (2002),
Balder and Mahayni (2010) and Zieling et al. (2014).4 Each of the individuals in the col-
lective may demand a certain guarantee. We allow individuals with various degrees of risk
aversion to choose a different guarantee level. The utility function used by the fund manager
is itself defined by an optimization problem in such a way that the weighted sum of the
individual utility functions is maximized for a given vector of positive weights. Due to the
inclusion of guarantee requirements, this is a generalization of a popular utility funciton (with
no minimum subsistence level) in the literature [see, for example, Dumas (1989), Karatzas
et al. (1990), Xia (2004), Pazdera et al. (2016), Branger et al. (2018b) and Chen et al. (2021)].
The fund manager then sets up a collective investment strategy such that all these individual
guarantees are met.We not only consider the Black–Scholes setting with a constant volatility,
but also move beyond normally distributed returns and describe the evolution of the stock
with a more general stochastic volatility model in the sense of Heston (1993). A stochastic
volatility model is more realistic than a model with constant volatility, for it allows to explain
stylized facts often observed in financial markets such as heavy tails, volatility clustering, and
the smile of implied volatilities [see Cont and Tankov (2004)]. In such a stochastic volatil-
ity model, which leads to bigger tail risks, appropriate fund management under portfolio

1 For further details on DB and DC schemes, see also OECD (2018).
2 An overview over existing hybrid schemes can, for example, be found in Turner (2014). A literature review
on dynamic hybrid pension products is provided by Hambardzumyan and Korn (2019).
3 Note that, in a Black–Scholes setting, the resulting optimal investment strategy for an individual investor
with such utility preferences is a so-called constant proportion portfolio insurance (CPPI) strategy, a rather
popular type of portfolio insurance strategies [see, for example, Black and Jones (1987), Black and Perold
(1992), Basak (2002) and, more recently, Temocin et al. (2018), and for the relevance of CPPI strategies in
practice see Pain and Rand (2008)]. While this type of strategy is optimal for a single individual with risk
preferences as described above, we find that this result holds no longer for a collective of individuals who
jointly invest their initial wealth. Further details regarding this result and CPPI strategies are provided in Sect.
3.2 of this article.
4 While we follow this first approach in this article, a second popular approach would be to impose aminimum
guarantee constraint in the utility maximization problem, as done, for example, in Jensen and Sørensen (2001)
and Hambardzumyan and Korn (2019).
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insurance becomes even more important than in a model with normally distributed returns,
because the probability of extremal market scenarios increases [see Chen et al. (2018)]. In
this article, we are particularly interested in finding out the influence of such a more realistic
financial market modeling on the expected utility of the individual investors, and comparing
it to the constant volatility framework.

We show that, under both constant and stochastic volatility, individual optimal solutions
are achievable if a state-dependent sharing rule is applied to the optimal collective terminal
wealth and the financial fairness condition in the sense of Bühlmann and Jewell (1979)
and Schumacher (2018) is imposed. In other words, individual welfare does not deteriorate
in both financial markets if an appropriate state-dependent sharing rule is applied. Under
more prevailing sharing rules, like linear ones, this result holds no longer, as linear sharing
rules impose a certain suboptimality to the collective [see, for example, Jensen and Nielsen
(2016)]. Then, either all the individuals in the collective suffer a loss or an unfair distribution
of the terminal wealth, where some individuals benefit at the cost of others, results. To assess
the losses imposed by linear sharing rules in both financial markets, we compare the state-
dependent sharing rule to two linear sharing rules: one satisfying the financial fairness and
one not. If the linear sharing rule does not fulfill the fairness condition, some individuals
in the collective are better off, but the majority of investors is largely worse off than in the
individual optimization problem.When a financially fair linear sharing rule is applied, all the
individuals suffer a (relatively) small loss. In this sense, a financially fair linear sharing rule
performs better from a fundmanager’s point of viewwhowants to consider all the individuals
in the collective in a fair way. A comparison between the constant and stochastic volatility
framework reveals that the degree of sub-optimality imposed by linear sharing rules is larger
under stochastic volatility.

Individuals’ utility optimization in incomplete stochastic volatility markets has been
considered extensively in the literature [see, for example, Pham (2002), Fleming and
Hernández-Hernández (2003), Chacko and Viceira (2005), Kraft (2005) and Liu (2006)].
For common utility functions (for example power utility), the solution is available in closed
form by applying a separation technique in the Hamilton–Jacobi–Bellman (HJB) equation
resulting from the dynamic programming principle. Unfortunately, such a separation tech-
nique seems impossible in our collective utility maximization framework. Consequently, we
rely on another way of solving the optimal investment problem: We complete the financial
market using derivatives. This approach is well-documented in the literature and applied,
for instance, in Liu and Pan (2003), Branger et al. (2008, 2017), Escobar et al. (2018) and
Chen et al. (2018). Following this approach, we can determine the optimal terminal wealth
levels and the dynamic trading strategies explicitly for our collective utility maximization
problem in the stochastic volatility framework using the static martingale approach [see,
for example, Cox and Huang (1989)]. Solving the collective optimization problem under a
constant volatility is less complicated, as the constant volatility market is complete without
adding derivatives. In this sense, our article contributes to the literature on utility maximiza-
tion in incomplete stochastic volatility markets by the consideration of a collective utility
maximization problem.

The remainder of the paper is organized in the following way: Sect. 2 introduces the utility
preferences assumed for the individuals in the collective and, particularly, the collective utility
function used for modeling the fund manager’s preferences. Section 3 briefly presents the
solution to the optimal collective investment problem in a constant volatility framework.
Section 4 deals with the collective optimization problem in the Heston model which allows
for stochastic volatility. In Sect. 5, we show that individual optimal solutions can be achieved
through the collective investment under financial fairness and a state-dependent sharing rule.
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In Sect. 6, we discuss different sharing rules and compare the well-being of the investors in
the collective under constant and stochastic volatility. Section 7 concludes the article and is
followed by the appendix with one proof.

2 Risk preferences

In this section,we describe the basic assumptions regarding the preferences of the individuals.
To model individual preferences, we mainly take account of the fact that the individuals are
interested in obtaining a minimum payment and building their utility on the (residual) wealth
exceeding the minimal guarantee.

2.1 Individual preferences

We consider a collective of n individuals on a financial market. Each of the investors assigns
her initial wealth xi to the fund manager for investment in financial assets at time 0. We use

a special type of HARA utility function of the form Ui,Gi (v) =
(
v−Gi

)1−γi

1−γi
with γi �= 1,

γi > 0 for i = 1, . . . , n to model each investor’s preferences, where Gi is investor i’s
subsistence level. This subsistence level will be referred to as a minimum guarantee that
investor i is interested in achieving from now on. The corresponding relative risk aversion is
given by γiv

v−Gi which is increasing in Gi and γi . In the special case that Gi = 0, we obtain
constant relative risk aversion (CRRA) utility functions. Note that each investor derives her
utility only from the difference between the total terminal wealth and the guarantee. This
preference representation for individuals interested in sustaining a minimum guaranteed
income is common in the literature, see, for example, Basak (2002), Balder and Mahayni
(2010) and Zieling et al. (2014). The resulting inverse marginal utility function is denoted by

Ii,Gi (·) := (U ′
i,Gi )

−1(·) = Gi + (·)− 1
γi .

2.2 Collective utility function

From now on, we assume that the n investors delegate a fund manager to collectively invest
their total initial wealth x =∑n

i=1 xi on their behalf. Reasons for fund delegation can be dif-
ferent: For example, in an occupational pension context, it is common that beneficiaries do not
administrate their contributions themselves. Instead, contributions are collectively managed
by a pension fund manager. Another reason for fund delegation could be professional skills
and knowledge of the fund manager, leading individual investors to believe that investment
delegation is more beneficial for them than handling investments on their own. Further, Kim
et al. (2016) observe that many individuals display investment inertia as managing money
costs time and energy and show that delegation is valuable.

We assume that the fund manager does not charge any additional fees, so the total wealth
x is completely invested in financial assets. The fund manager’s primal goal is to provide
individual guarantees, as it is the case, for example, in many occupational pension schemes
that are not of the pure DC type.5 In many other real-life fund delegation situations, fund
managers might be more interested in maximizing their own compensations from advising

5 For instance, in all German pension schemes, some sort of guarantee had been prescribed until very recently
in 2018 when a new pension scheme was introduced along with the “Betriebsrentenstärkungsgesetz”.
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individual investors regarding the suitability of financial products. As in Kim et al. (2016),
we assume that the fund manager behaves more on behalf of individual investors, that is,
the fund manager’s utility function reflects the individuals’ utility and, more importantly,
the fund manager aims to meet individual guarantees. We denote by G the time-T -value of
the collective guarantee which the fund manager needs to meet. Unless stated otherwise, we
will always assume that this guarantee is equal to the sum of the individual guarantees, that
is, G = ∑n

i=1 G
i . Additionally, we want to emphasize that the case with no guarantee is

included throughout this article, as all the individual guarantees can always be set equal to
zero.

Concerning the collective utility function (which the fund manager uses), we are inspired,
for example, by Dumas (1989), Karatzas et al. (1990), Xia (2004), Pazdera et al. (2016),
Branger et al. (2018b) and Chen et al. (2021). We assume that the fund manager uses the
following (collective) utility function which depends on the collective and individual guar-
antees:

UB,G : (G,∞) → (0,∞), v �→ UB,G(v) = max
v1≥G1,...,vn≥Gn

v=∑n
i=1 vi

n∑

i=1

βiUi,Gi (vi ) , (1)

where B = (β1, . . . , βn) is a vector consisting of strictly positive numbers adding up to 1.
The vector B controls how each individual investor is weighted in the collective investment
problem. Note that the utility of the fund manager is only defined for values exceeding the
collective guarantee. Lemma 1 states that uB,G is, in fact, a utility function, as it has already
been shown in Branger et al. (2018b) for the case where all the individual guarantees are
equal to zero.

Lemma 1 UB,G is a strictly increasing and concave function on (G,∞) for all G =∑n
i=1 G

i

with Gi ≥ 0, whose inverse marginal utility is given by

IB,G(·) := (U ′
B,G)−1(·) =

n∑

i=1

Ii,Gi

( ·
βi

)
. (2)

Proof The collective utility function given in (1) is itself defined through an optimization
problem whose Lagrangian is given by

L =
n∑

i=1

βiUi,Gi (vi ) + y

(

v −
n∑

i=1

vi

)

.

The first order conditions are

∂L
∂vi

=βiU
′
i,Gi (vi )−y=0 ⇔ vi = Ii,Gi

(
y

βi

)
for all i=1, . . . , n.

This results in

v =
n∑

i=1

Ii,Gi

(
y

βi

)
. (3)

Now we define the function

IB,G : (0,∞) → (G,∞), y �→ IB,G(y) =
n∑

i=1

Ii,Gi

(
y

βi

)
.
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Note that this function is strictly decreasing on (0,∞), that limy→0 IB,G(y) = ∞ and that
limy→∞ IB,G(y) = G. Hence, for any v ∈ (G,∞) there exists a unique value y ∈ (0,∞)

such that IB,G(y) = v for which the optimization problem (1) attains its maximum at

vi = Ii,Gi

(
y
βi

)
. This maximum collective utility level is given by

UB,G(v) =
n∑

j=1

β jU j,G j (v j ) =
n∑

j=1

β jU j,G j

(
I j,G j

(
y

β j

))
. (4)

The first order derivative of UB,G can now be determined as

U ′
B,G(v) =

n∑

j=1

β jU
′
j,G j

(
I j,G j

(
y

βi

))
I ′
j,G j

(
y

β j

)
dy

β j dv
= y

n∑

j=1

I ′
j,G j

(
y

β j

)
dy

β j dv
= y,

where the last equality can be obtained from taking the derivative with respect to v on both
sides of (3). This leads to

(U ′
B,G)−1(y) = v =

n∑

i=1

Ii,Gi

(
y

βi

)
,

which completes the proof. 
�

3 Constant volatility model

We start our analysis by a brief consideration of the classic Black–Scholes model which
assumes a constant volatility of the risky asset. It will serve as a comparison basis to the
stochastic volatility case specified in Sect. 4.

3.1 Financial market

We consider a financial market consisting of a risk-free asset B and a risky asset S. The
risk-free asset B is assumed to earn a constant interest rate r , that is,

dBt = r Btdt, B0 = 1. (5)

Let {Wt }t∈[0,T ] be a standard Brownian motion on a probability space (Ω,F,P) satisfying
the usual hypothesis. The risky asset S follows a geometric Brownian motion

dSt = μStdt + σ StdWt , S0 = s.

Here we assume that μ − r > 0 and σ > 0. In this complete market, the state price density
process is uniquely determined by the following stochastic differential equation:

dξt = −ξt (rdt + χdWt ) , ξ0 = 1, χ = μ − r

σ
.

The value ξt can be interpreted as the state of the economy at time t : The better the market
performs, the lower ξt gets. In the following sections, we will use this property to analyze the
performance of the (state-dependent) terminal wealth and investment strategy under different
market states. From now on, let Gi

t = e−r(T−t)Gi denote the time-t-value of the fixed level
of guarantee investor i requires, where Gi = Gi

T ∈ (0, xi erT ). We assume an upper bound
for the guarantee to ensure the feasibility of our optimization problems.
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If we denote by {πt }t∈[0,T ] the fraction of total wealth which is invested in the risky asset
by the fund manager and assuming a self-financing trading strategy, the dynamics of the total
wealth {Xt }t∈[0,T ] are described by the following stochastic differential equation:

dXt = (r + πt (μ − r)) Xtdt + σπt XtdWt , X0 = x . (6)

The trading strategy {πt }t∈[0,T ] is chosen from the following set of admissible strategies:

A(x) :=
{
{πt }t∈[0,T ]

∣
∣
∣
∣ X0 = x, {πt }t∈[0,T ] is progressively measurable,

Xt ≥ 0 for all t ≥ 0,
∫ T

0
π2
s ds < ∞ a.s.

}
.

3.2 Collective optimization problem

In a constant volatility framework, the collective optimization problem can be written down
as

max
(πt )t∈[0,T ]

E
[
UB,G(XT )

]
subject to (6) . (7)

Due to the market completeness, this problem can be solved using the static martingale
approach (Cox and Huang 1989), that is, by solving the static optimization problem

max
XT

E
[
UB,G(XT )

]
subject to E [ξT XT ] = x (8)

for the optimal terminal wealth XT and then determining the optimal trading strategy from the
optimal wealth. To ensure the feasibility of the optimization problem (8), we shall examine
the following two integrability conditions:

E
[
ξT IB,G(λξT )

]
< ∞, (9)

E
[
UB,G

(
IB,G(λξT )

)]
< ∞, (10)

for all λ > 0. Condition (9) ensures that the initial market value of the terminal wealth is
finite for all possible values of the Lagrangian multiplier. Condition (10) ensures that the
value function is finite for all possible values of the Lagrangian multiplier. Note that both
conditions are fulfilled in our Black–Scholes financial market with (modified) power utility
functions.

Due to the nice property of the collective utility function, particularly the explicit repre-
sentation of the inverse marginal utility of UB,G , we obtain the solution of the optimization
problem (8) as

X∗
T = IB,G(λξT ) =

n∑

i=1

Ii,Gi

(
λ

βi
ξT

)
=

n∑

i=1

(

Gi +
(

λ

βi
ξT

)− 1
γi

)

, (11)

where λ is the Lagrangian multiplier which can be uniquely determined from the budget
constraint E[ξT X∗

T ] = x .

Remark 1 For n = 1, Problem (8) is reduced to the individual optimization problem (taking
individual i with an initial wealth xi > Gie−rT as an example):

max
Xi
T

E

[
Ui,Gi (X

i
T )
]

subject to E

[
ξT X

i
T

]
= xi . (12)
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The individual optimal solution for individual i is given by

X (i,∗)
T = Ii,Gi (λiξT ), (13)

where λi can be determined explicitly from the budget constraint E[ξT X (i,∗)
T ] = xi .

From Eq. (11), we can derive the optimal wealth for any t ∈ [0, T ) as follows:

X∗
t = E

[
ξT

ξt
X∗
T

∣
∣
∣
∣ Ft

]

= Gt + E

[
ξT

ξt

n∑

i=1

(
λ

βi
ξT

)− 1
γi
∣
∣
∣
∣ Ft

]

= Gt +
n∑

i=1

E

[(
ξT

ξt

)1− 1
γi
(

λ

βi
ξt

)− 1
γi
∣
∣
∣
∣ Ft

]

= Gt +
n∑

i=1

(
λ

βi
ξt

)− 1
γi
ki (t), (14)

where ki (t) := E

[(
ξT
ξt

)1− 1
γi

]
= e

(
1− 1

γi

)(
−r− 1

2χ2
)
(T−t)+ 1

2χ2
(
1− 1

γi

)2
(T−t)

. Applying Itô’s

formula to (14) and comparing it to the wealth dynamics in (6), we obtain the self-financing
investment strategy by equating the coefficients of dWt :

π∗
t =

n∑

i=1

ki (t)

X∗
t

(
λ

βi
ξt

)− 1
γi χ

σγi
, (15)

where the terms χ
σγi

are the individual Merton portfolios (Merton 1971). For the special case
n = 1, expression (15) simplifies as follows for an individual investor i :

π
(i,∗)
t = χ

σγi
· ki (t) (λiξt )

− 1
γi

X (i,∗)
t

= χ

σγi
· X

(i,∗)
t − Gi

t

X (i,∗)
t

=: mi · X
(i,∗)
t − Gi

t

X (i,∗)
t

, (16)

where X (i,∗)
t can be obtained from (14) by setting n = 1. The strategy in (16) is a CPPI

strategy, where the multiplier mi is the Merton portfolio of investor i . It is a well-known
result that the strategy given in (16) is optimal for investors with modified power utility
preferences [see, for example, Basak (2002)]. The idea behind a CPPI strategy is simple: To

ensure that the guarantee level Gi is met, the fraction of wealth Gi
t

X (i,∗)
t

is invested in the risk-

free asset. The remainder X (i,∗)
t −Gi

t

X (i,∗)
t

, where X (i,∗)
t − Gi

t is the so-called cushion, multiplied

by mi is then the fraction of wealth invested in the risky asset. Note, however, that the
collective optimal solution obtained in (15) is not a CPPI strategy. In this sense, there is a
clear difference between the optimal individual and collective investment strategy. There are
going to be losses in the collective expected utility if a CPPI investment strategy is applied by
a fund manager. It would then be interesting to analyze the suboptimality induced by using
CPPI strategy on the individual investors. We leave this analysis for future research.
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4 Collective investment under stochastic volatility

As motivated in the introduction, the assumption of a constant volatility may not reflect a
realistic financial market. In this section, we describe the evolution of the stock with a more
general stochastic volatility model in the sense of Heston (1993). In this stochastic volatility
setting, we solve the collective optimal investment problems, based on which we then study
the welfare implications to the individual investors.

4.1 Financial market

We assume that the volatility of the risky asset is itself driven by a stochastic process. While
the risk-free asset B remains as in (5), the drift and the volatility of the risky asset are
now given by μt and

√
Vt . Further, let {W (1)

t }t∈[0,T ] and {W (2)
t }t∈[0,T ] be two independent

Brownian motions in a probability space (Ω,F,P). The risky asset and its volatility are then
assumed to follow the Heston model (Heston 1993):

dSt = St
(
μt dt +√VtdW

(1)
t

)
,

dVt = κ(V − Vt )dt + δ
√
Vt
(
ρdW (1)

t +
√
1 − ρ2dW (2)

t

)
,

where ρ ∈ (−1, 1) is a correlation coefficient, V > 0 is the long-run mean for the variance,
κ > 0 is the speed of mean reversion and δ > 0 is the volatility of the variance. In particular,
the variance process follows a square-root process as used in the interest rate model in Cox
et al. (1985). To ensure that the variance is almost surely positive at all times, we assume
2κV ≥ δ2 and V0 > 0 [see Cox et al. (1985)]. The perfect negative/positive correlation
implies that the variance risk is fully hedgeable through trading in the underlying asset. In
this case, we return to a complete market setting. The solution to this problem is then more
similar to the constant volatility case.

The variance process contains the second source of risk which is not traded in the market
and cannot be hedged. Therefore, the underlying financial market is incomplete. In other
words, the market price for the second source of risk is not uniquely determined. A typical
way to proceed is to choose a market price of risk for both sources of randomness and make
the considered market artificially complete. This can be done by adding a derivative written
on the risky asset to the financial market. This approach is well-known in the literature, see,
for example, Liu and Pan (2003), Branger et al. (2008), Branger et al. (2017), Escobar et al.
(2018) and Chen et al. (2018). We start by assuming

μt − r√
Vt

= η1
√
Vt , (17)

and define the volatility risk premium as η2
√
Vt , where η1 and η2 are constants. We set

W̃ (i)
t = W (i)

t +
∫ t

0
ηi
√
Vsds

for i = 1, 2. By Girsanov’s theorem, W̃ (1)
t and W̃ (2)

t are independent Brownian motions
under the probability measure P(η), η := (η1, η2), which is defined by

ζt := dP(η)

dP

∣∣∣∣Ft

= exp

(

−
∫ t

0
η1
√
VsdW

(1)
s −

∫ t

0
η2
√
VsdW

(2)
s − η21 + η22

2

∫ t

0
Vsds

)
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for any t ∈ [0, T ]. It is a density, as shown in Chen et al. (2018). Note that for the equivalent
martingale measure P(η), the process

ξ
(η)
t = e−r t dP

(η)

dP

∣
∣
∣
∣Ft

= e−r tζt , t ∈ [0, T ],

is the corresponding pricing kernel or stochastic discounting process. The value ξ
(η)
t has a

similar interpretation as the state price density ξt in the constant volatility framework: The
lower ξ

(η)
t gets, the better the market performs. In the following sections, we express the

optimal wealth and investment strategy in terms of ξ
(η)
t and can thus easily interpret their

performance under different market states. In this market, for any derivative O on the risky
asset with some maturity T1 ≤ T , the no-arbitrage-price at time t ≤ T1 is now given by

Ot := E

[
ξ

(η)
T1

ξ
(η)
t

OT1

∣
∣
∣
∣ Ft

]

.

Now let g be a smooth function such that Ot = g(t, St , Vt ) (which exists as {St , Vt }t∈[0,T ]
is a Markov process). Since e−r t Ot is a martingale under P(η), Itô’s formula leads to

dOt = rOtdt + gSSt
√
VtdW̃

(1)
t + δgV

√
Vt
(
ρdW̃ (1)

t +
√
1 − ρ2dW̃ (2)

t

)
,

where gS and gV are the first order partial derivatives of g with respect to the risky asset and
the variance process. Now let πt denote the fraction of wealth invested in the risky asset S
and φt denote the fraction of wealth invested in the derivative O . The remainder 1− πt − φt

is invested in the risk-free asset. Assume that {πt , φt }t∈[0,T ] is self-financing. This yields the
following dynamics for the collective wealth process {Xt }t∈[0,T ]:

dXt = Xt

(

rdt +
(

πt + φt
gS St + δρgV

Ot

)√
VtdW̃

(1)
t + φt

gV δ
√
1 − ρ2

Ot

√
VtdW̃

(2)
t

)

= Xt

(
rdt + Θ

(1)
t

√
VtdW̃

(1)
t + Θ

(2)
t

√
VtdW̃

(2)
t

)

= Xt

((
r + η1Θ

(1)
t Vt + η2Θ

(2)
t Vt

)
dt + Θ

(1)
t

√
VtdW

(1)
t + Θ

(2)
t

√
VtdW

(2)
t

)
, (18)

where X0 = x , Θ
(1)
t is the hedge demand and Θ

(2)
t is the speculative demand, following,

for example, Liu and Pan (2003) and Chen et al. (2018). The hedge demand reflects the fund
manager’s position in the risk which is hedgeable by the risky asset. The speculative demand
reflects the fundmanager’s position in the risk which cannot be hedged by trading in the risky
asset. In our optimization problem, the hedge and speculative demand will be determined
explicitly.

Before proceeding to the following sections, let us first state Lemma 2 which is of major
importance when determining the solutions of our optimization problems.
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Lemma 2 Consider the following notations:

η+ := ρη1 +
√
1 − ρ2η2,

η− :=
√
1 − ρ2η1 − ρη2,

qi := 1 − 1

γi
,

ai := qi η+δ−1,

bi := qi

(

η+κδ−1 + η2+
2

+ (1 − qi )
η2−
2

)

,

and assume that

κ2 + qi

(
2η+κδ + η2+δ2 + 1

γi
η2−δ2

)
≥ 0 for all i = 1, . . . , n. (19)

Then it holds

k(η)
i (t) := E

[(
ξ

(η)
T

ξ
(η)
t

)qi ∣∣∣∣ Ft

]

= e−rqi (T−t)+κVai (T−t)Ψi (T − t, ai , bi , Vt ) (20)

for all i = 1, . . . , n, where

Ψi (s, ai , bi , Vt ) = exp (−Ai (s) − Vt (Bi (s) − ai )) ,

Ai (s) = −2κV

δ2
ln

(
2θi e(θi+κ) s2

δ2ai (eθi s − 1) + θi (eθi s + 1) + κ(eθi s − 1)

)

,

Bi (s) = ai
(
θi + κ + eθi s(θi − κ)

)+ 2bi (eθi s − 1)

δ2ai (eθi s − 1) + θi (eθi s + 1) + κ(eθi s − 1)
,

θi =
√

κ2 + 2biδ2 .

Proof See Appendix A. 
�

4.2 Collective optimization problem

The collective optimization problem under stochastic volatility can be expressed as:

max
(πt ,φt )t∈[0,T ]

E
[
UB,G(XT )

]
subject to (18) . (21)

Let us firstmention that optimization for a single investor in amarketwith stochastic volatility
has been considered extensively in the literature, see, for example, Pham (2002), Fleming
and Hernández-Hernández (2003), Chacko and Viceira (2005), Kraft (2005) and Liu (2006)
using the dynamic programming principle. For power utility functions, a closed-form solution
can be obtained by applying a separation technique together with a verification step. This
verification procedure is essential to make sure that the value function is finite [see, for
example, Kraft (2005)]. To the best of our knowledge, the optimization problem (21) has
not yet been considered in the literature. In our collective framework, such a separation
technique seems not possible. Hence, dynamic programming does not allow us to achieve
an explicit solution to the value function and the investment strategies. Therefore, below, we
solve Problem (21) by relying on a martingale approach which results in an explicit solution.

123



96 Annals of Operations Research (2021) 302:85–109

To this end, we complete the market with an additional hedging instrument as discussed in
the previous section. In particular, our objective is the following static problem

max
XT

E
[
UB,G(XT )

]
subject to E

[
ξ

(η)
T XT

]
= x . (22)

In order to proceed with the collective utility maximization problem, we shall examine
two integrability conditions similar to (9) and (10) to ensure that the optimization problem
(22) is well-defined:

E

[
ξ

(η)
T IB,G(λξ

(η)
T )
]

< ∞, (23)

E

[
UB,G

(
IB,G(λξ

(η)
T )
)]

< ∞, (24)

for all λ > 0. Note that assumption (19) is sufficient for both conditions to be fulfilled: For
(23), this is straightforward to see. To show (24), we use (4) to obtain

E

[
UB,G

(
IB,G(λξ

(η)
T )
)]

= E

[
n∑

i=1

βiUi,Gi

(
Ii,Gi

(
λ

βi
ξ

(η)
T

))]

=
n∑

i=1

βi

1 − γi
E

⎡

⎣
(

λ

βi
ξ

(η)
T

)− 1−γi
γi

⎤

⎦ ,

which leads to (19) again. Thus, roughly speaking, the verification result needed in the context
of HJB now boils down to the integrability assumption (24) in the martingale approach.

The solution of Problem (22) can be obtained from the Lagrangian approach as

X∗
T = IB,G(λξ

(η)
T ) =

n∑

i=1

Ii,Gi

(
λ

βi
ξ

(η)
T

)
=

n∑

i=1

(

Gi +
(

λ

βi
ξ

(η)
T

)− 1
γi

)

, (25)

where λ is determined from the budget constraint.

Remark 2 For n = 1, Problem (22) is reduced to the individual optimization problem (taking
individual i with an initial wealth xi > Gie−rT as an example):

max
Xi
T

E

[
Ui,Gi (X

i
T )
]

subject to E

[
ξ

(η)
T Xi

T

]
= xi . (26)

The individual optimal solution for individual i is given by

X (i,∗)
T = Ii,Gi (λiξ

(η)
T ), (27)

where λi can be determined explicitly from the budget constraint and is given by

λi =

⎛

⎜⎜⎜
⎝

xi − Gi
0

E

[(
ξ

(η)
T

)1− 1
γi

]

⎞

⎟⎟⎟
⎠

−γi

.

Using Lemma 2, we can now determine the optimal strategy of Problem (22) explicitly.
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Proposition 1 Consider the optimization problem (22). Using the notations in Lemma 2, the
optimal wealth at time t ∈ [0, T ) is given by

X∗
t = X∗

t

(
ξ

(η)
t , Vt

)
=

n∑

i=1

Gi
t +
(

λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t).

The optimal hedge and speculative demand are then given by

Θ
(1,∗)
t = 1

X∗
t

n∑

i=1

(
η1

γi
− δρHi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t), (28)

Θ
(2,∗)
t = 1

X∗
t

n∑

i=1

(
η2

γi
− δ
√
1 − ρ2Hi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t), (29)

where Hi (s) := Bi (s) − ai . In particular, the optimal fraction of wealth invested in the
derivative and the risky asset at time t ∈ [0, T ) are then given by

φ∗
t =

∑n
i=1

(
η2
γi

− δ
√
1 − ρ2Hi (T − t)

) (
λ
βi

ξ
(η)
t

)− 1
γi k(η)

i (t)

X∗
t
gV δ

√
1−ρ2

Ot

,

π∗
t = 1

X∗
t

n∑

i=1

(
η1

γi
− δρHi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t) − φ∗

t
gS St + δρgV

Ot
.

Proof Using Lemma 2, we obtain

X∗
t = E

[
ξ

(η)
T

ξ
(η)
t

IB,G(λξ
(η)
T )

∣∣∣∣ Ft

]

=
n∑

i=1

E

[
ξ

(η)
T

ξ
(η)
t

(

Gi +
(

λ

βi
ξ

(η)
T

)− 1
γi

) ∣∣∣∣ Ft

]

=
n∑

i=1

Gi
t +
(

λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t). (30)

Next, we compute the optimal fractions of wealth invested in the risky asset π∗
t and the

derivative φ∗
t . Observe that

∂X∗
t

∂ξ
(η)
t

= −
n∑

i=1

1

γi

(
λ

βi

)− 1
γi
(
ξ

(η)
t

)− 1
γi

−1
k(η)
i (t) ,

∂X∗
t

∂Vt
= −

n∑

i=1

(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)Hi (T − t) .

We use Itô’s formula to represent the dynamics of the wealth process as

dX∗
t = (drift)dt + ∂X∗

t

∂ξ
(η)
t

dξ
(η)
t + ∂X∗

t

∂Vt
dVt .

Recall that

dξ
(η)
t = −ξ

(η)
t

(
rdt + η1

√
VtdW

(1)
t + η2

√
VtdW

(2)
t

)
,

dVt = κ(V − Vt )dt + δ
√
Vt (ρdW

(1)
t +

√
1 − ρ2dW (2)

t ) .

123



98 Annals of Operations Research (2021) 302:85–109

This leads to

∂X∗
t

∂ξ
(η)
t

dξ
(η)
t =

n∑

i=1

1

γi

(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)

(
rdt + η1

√
VtdW

(1)
t + η2

√
VtdW

(2)
t

)
,

∂X∗
t

∂Vt
dVt = −

n∑

i=1

(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)Hi (T − t)

(
κ(V − Vt )dt + δ

√
Vt (ρdW

(1)
t +

√
1 − ρ2dW (2)

t )
)

.

From this, together with (18), we obtain

Θ
(1,∗)
t X∗

t

√
VtdW

(1)
t =

n∑

i=1

(
η1

γi
− δρHi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)

√
VtdW

(1)
t ,

Θ
(2,∗)
t X∗

t

√
VtdW

(2)
t =

n∑

i=1

(
η2

γi
− δ
√
1 − ρ2Hi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)

√
VtdW

(2)
t .

From the definitions ofΘ(1)
t andΘ

(2)
t as given in (18), it is straightforward to derive formulas

for π∗
t and φ∗

t :

Θ
(1)
t X∗

t =
(

πt + φt
gS St + δρgV

Ot

)
X∗
t =

n∑

i=1

(
η1

γi
− δρHi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)

⇔ πt = 1

X∗
t

n∑

i=1

(
η1

γi
− δρHi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t) − φt

gS St + δρgV
Ot

,

Θ
(2)
t X∗

t = φt
gV δ

√
1 − ρ2

Ot
X∗
t =

n∑

i=1

(
η2

γi
−δ
√
1 − ρ2Hi (T − t)

)(
λ

βi
ξ

(η)
t

)− 1
γi
k(η)
i (t)

⇔ φt =
∑n

i=1

(
η2
γi

− δ
√
1 − ρ2Hi (T − t)

) (
λ
βi

ξ
(η)
t

)− 1
γi k(η)

i (t)

gV δ
√

1−ρ2

Ot
X∗
t

.


�
Remark 3 As pointed out in Chen et al. (2018) (Appendix F), individual i’s optimal hedge
and speculative demand in the case without guarantees are given by η1

γi
− δρHi (T − t) and

η2
γi

− δ
√
1 − ρ2Hi (T − t), respectively. Hence, the collective optimal hedge and speculative

demand are given as the sum of the optimal individual demands without guarantees, weighted

by
(

λ
βi

ξ
(η)
t

)− 1
γi k(η)

i (t)/X∗
t , which is individual i’s surplus [see (30) for n = 1] divided by

the collective optimal wealth.

Let us consider a numerical example. The base case parameter choice is summarized in
Table 1. Concerning the choice of the volatility parameters and the correlation, we follow
Liu and Pan (2003) whose choice of parameters is “in the generally agreed region” of the
empirical studies by Andersen et al. (2002), Pan (2002) and Eraker et al. (2003). Concerning
the risk premiums, we also follow Liu and Pan (2003). In particular, we assume that volatility
risk is negatively priced, as supported by the findings ofBenzoni (1998), Chernov andGhysels
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Table 1 Parameters of the standard example

Volatility parameters Risk premiums Correlation
V0 = V = 0.132, κ = 5, δ = 0.25 η1 = 4, η2 = −6 ρ = −0.4

Risk-free rate, maturity Pool size Weights βi

r = 0.02, T = 1 n = 30 βi = (λi )
−1

∑n
i=1(λi )

−1 , i = 1, . . . , n

Degrees of risk aversion Initial wealth Guarantee

γi = 1
2 + 9.5(i−1)

n−1 , i = 1, . . . , n xi = 1, i = 1, . . . , n Gi = 0.5, i = 1, . . . , n

Fig. 1 The optimal wealth X∗
t , the hedge demand Θ

(1,∗)
t and the speculative demand Θ

(2,∗)
t as functions of

the pricing kernel ξ(η)
t and the variance Vt at t = T /2 for the base case parameter setup summarized in Table

1

(2000), Pan (2002) and Bakshi and Kapadia (2003). Although we rely on the same financial
market parameters as Liu and Pan (2003), the goals of ours differ substantially from theirs,
which makes a direct comparison of these two papers rather difficult. While Liu and Pan
(2003) focus on the portfolio improvement from participating in the derivatives market using
the HJB approach, we are interested in risk sharing and welfare analysis of the collective
in a stochastic volatility market using a martingale approach. We consider a collective of
investors with heterogeneous risk preferences, rather than a single investor as in Liu and Pan
(2003). In addition, we consider HARA-type utility functions taking into account a demand
for guarantee in the investment decision, whereas Liu and Pan (2003) apply CRRA-utility
preferences. Due to the last two points, some parts of our model setup are more general than
the one in Liu and Pan (2003), while some parts are less. For instance, Liu and Pan (2003)
also consider jump risk in their model, while we focus exclusively on the volatility risk. Note
that the negative price of volatility risk leads the investor to seek a short position in volatility
risk. In other words, under negatively priced volatility risk, an investor seeks a short position
in derivatives with positive exposure to the volatility risk. The choice of the weights βi is
motivated by Sect. 5, where we show that the collective terminal wealth (25) rewrites to the
sum of individual terminal wealths (27) under these weights.

In Fig. 1 the optimal wealth at time t = 1/2, the hedge demand and the speculative
demand are plotted as functions of the pricing kernel ξ (η)

t and the instantaneous variance Vt
at t = 1/2.

We see that the optimal wealth and the hedge demand are increasing in the variance
Vt and that the speculative demand is decreasing in Vt . The reason for the increase of the
wealth and the hedge demand in this example is assumption (17) along with the positive

123



100 Annals of Operations Research (2021) 302:85–109

choice of η1 which imply that an increase in the volatility at time t yields a higher rate of
return per unit of volatility. The decrease of the speculative demand can be explained by
the negatively priced volatility risk (η2 < 0). Regarding the pricing kernel, we observe that
well-performing markets (a low value of ξ

(η)
t ) lead to a higher wealth and hedge demand and

a lower speculative demand. Further, we see that the hedge demand is positive (long position)
while the speculative demand is negative (short position) in all scenarios. The reason for this
“reverse” behavior of the hedge and speculative demand in our parameter setup is the negative
volatility risk premium which results from choosing η2 smaller than zero.

5 Achieving individual optimal solutions

In this section, we address the question how the optimal terminal wealth (25) can be shared
among the individuals in the collective. As it is the fund manager’s primal goal to meet
individual guarantees Gi , we assume that the fund manager starts by distributing to each
individual her guaranteeGi . Further, let (αi )i=1,...,n be any (possibly state-dependent) sharing
rule satisfying αi ≥ 0 for all i = 1, . . . , n and

∑n
i=1 αi = 1. This sharing rule is applied to

the wealth exceeding the collective guarantee and determines the fraction of terminal surplus
each individual receives. That is, for any collective terminal wealth XT > G, investor i
receives Xi

T = Gi + αi (XT − G). Based on the optimal collective terminal wealth (25), a
natural candidate for the terminal wealth which investor i obtains is given by

Xi
T = Ii,Gi

(
λ

βi
ξ

(η)
T

)
= Gi +

(
λ

βi
ξ

(η)
T

)− 1
γi

, (31)

that is,

αi (ξ
(η)
T ) =

(
λ
βi

ξ
(η)
T

)− 1
γi

X∗
T

. (32)

Naturally, the question arises whether a fair way of sharing the surplus can be achieved by a
specific choice of the weights βi , as the sharing rule in (32) is not necessarily fair. Without
fairness, there might be some individuals in the collective who profit from the collective
investment and some who suffer losses (compared to their individual investment). Let us
now assume that the financial fairness condition as considered in Bühlmann and Jewell
(1979) or, more recently, also in Schumacher (2018) is fulfilled. To be precise, we assume
that the initial market value of the terminal payoff received by each investor i equals the
initial contribution of this investor, that is,

xi = E

[
ξ

(η)
T Ii,Gi

(
λ

βi
ξ

(η)
T

)]
. (33)

In our setting, it is then possible to return to each investor her individual optimum as obtained
from Problem (22) for n = 1.

Proposition 2 We assume that each investor in the collective receives the terminal wealth
given in (31). If we further impose the financial fairness condition (33), each investor in the
collective obtains her individual optimum as given in (27).
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Proof Let us introduce the notation k(η)
i = k(η)

i (0) as defined in equation (20). The financial
fairness condition delivers

xi = E

[
ξ

(η)
T Ii,Gi

(
λ

βi
ξ

(η)
T

)]
= Gi

0 +
(

λ

βi

)− 1
γi
k(η)
i ⇔ βi

λ
=
(
xi − Gi

0

k(η)
i

)γi

.

Using the fact that the βi add up to 1, we obtain

λ = 1
∑n

i=1

(
xi−Gi

0

k(η)
i

)γi
, βi =

(
xi−Gi

0

k(η)
i

)γi

∑n
j=1

(
x j−G j

0

k(η)
j

)γ j
. (34)

For the case n = 1, the budget constraint of Problem (22) can be written as

xi = E

[
ξ

(η)
T Ii,Gi

(
λiξ

(η)
T

)]
= Gi

0 + λ
− 1

γi
i k(η)

i .

Plugging this expression into the two expressions given in (34), we obtain

λ = 1
∑n

i=1(λi )
−1

, βi = (λi )
−1

∑n
i=1(λi )

−1
. (35)

Consequently, each investor’s terminal payoff in (31) simplifies to the following:

Xi
T = Gi +

(
λ

βi
ξ

(η)
T

)− 1
γi = Gi +

(
λiξ

(η)
T

)− 1
γi = Ii,Gi (λiξ

η
T ),

where Ii,Gi (λiξ
(η)
T ) is the individual optimum given in (27). 
�

Proposition 2 states that it is possible to achieve the individual optimal terminal wealth
for all the individuals in the collective. The main assumptions for this result are the financial
fairness and the use of a state-dependent sharing rule. This result is also valid under constant
volatility and can be proven in the exact same way by simply replacing ξ

(η)
T with ξT . In fact,

this result has already been proven in Branger et al. (2018b) in a Black–Scholes market for
CRRA utility functions (i.e. with all the individual guarantees being equal to zero).

Under the financial fairness condition, the sharing rule (32) can be simplified to the
following:

αi (ξ
(η)
T ) =

(
λiξ

(η)
T

)− 1
γi

∑n
j=1

(
λ jξ

(η)
T

)− 1
γ j

(36)

for all i = 1, . . . , n. A disadvantage of this sharing rule is, however, that it depends on the
market state at maturity and is, thus, not easy to communicate. Therefore, in the following
section, we consider two examples of more prevailing sharing rules which are easier to
communicate.

6 Linear sharing rules and welfare analysis

In practice, sharing rules that are easier to communicate, like linear (or affine) sharing rules,
are applied. We aim at finding out how these sharing rules affect individuals’ benefits in a
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stochastic volatility setting and compare the results to a constant volatility setting. Following
the existing literature, we consider two further sharing rules in addition to the sharing rule
defined in (36). The sharing rules considered here are inspired by previous works concerning
a collective of individuals facing a joint decision under uncertainty. For example, Wilson
(1968) and Huang and Litzenberger (1985) analyze the Pareto optimality of sharing rules.
Weinbaum (2009) considers two individuals with different utility functions who are tied
together by a social planner who uses a weighted sum of the individual utility functions and
then characterizes the optimal sharing rule implicitly. Jensen and Nielsen (2016) consider
a similar social planner whose sharing rule is initially fixed to be linear, though. Branger
et al. (2018a) consider a rather similar setting as Jensen and Nielsen (2016) but generalize
the analysis to n investors instead of two.

– Linear sharing rule (without financial fairness): One of the most frequently used
sharing rules in practice is the linear (or affine) sharing rule (̃αi )i=1,...,n defined by

α̃i = xi
x

, i = 1, . . . , n. (37)

The shares that the individuals obtain from the total surpluses correspond to the shares
of their initial investment in the fund. This simple sharing rule is known at time 0 and
is thus easier to communicate than the state-dependent sharing rule (36). In addition,
it can be shown that this linear sharing rule does not necessarily fulfill the financial
fairness condition. It has been documented that this linear sharing rule is suboptimal,
see, for example, Jensen and Nielsen (2016) and Branger et al. (2018a). In our numerical
analysis, we will quantify the possible utility loss for the individuals.

– Financially fair linear sharing rule: A slight modification of (37) delivers the fair
sharing rule (̂αi )i=1,...,n which is defined as

α̂i = xi − Gi
0

x − G0
, i = 1, . . . , n. (38)

It is straightforward to check that this sharing rule results in a financially fair payoff to
each individual.

Note that none of the two linear sharing rules manages to deliver the individually optimal
solutions to all the individuals in the collective. In the following, we compare the well-being
of the investors in the financial market under the sharing rules introduced above. To measure
the well-being of the investors, we rely on the certainty equivalent return introduced in Sect.
6.1. For our analysis, we assume that the weights βi are given as in (35).

6.1 Certainty equivalent

For any investor i and a given terminal payoff Xi
T , the certainty equivalent wealth is denoted

by CEi = CEi (Xi
T ). It is defined as the deterministic wealth level which yields the same

expected utility as some terminal wealth Xi
T :

Ui,Gi (CEi ) = E[Ui,Gi (Xi
T )].

This results in

CEi = E
[
(αi (X

∗
T − G))1−γi

] 1
1−γi + Gi
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for some sharing rule (αi )i=1,...,n . Under the state-dependent sharing rule (36), we can com-
pute the certainty equivalent of investor i in the Heston model as

CE∗
i = Gi + E

[
(
λiξ

(η)
T

)− 1−γi
γi

] 1
1−γi

= Gi + λ
− 1

γi
i E

[(
ξ

(η)
T

)1− 1
γi

] 1
1−γi

= Gi + λ
− 1

γi
i

(
k(η)
i

) 1
1−γi . (39)

Under the linear sharing rule (37), for example, we can compute the certainty equivalent
of investor i in the Heston model as

C̃Ei = E
[
(̃αi (X

∗
T − G))1−γi

] 1
1−γi + Gi

= α̃iE
[
(X∗

T − G)1−γi
] 1
1−γi + Gi

= α̃iE

⎡

⎢
⎣

⎛

⎝
n∑

j=1

(
λ jξ

(η)
T

)− 1
γ j

⎞

⎠

1−γi
⎤

⎥
⎦

1
1−γi

+ Gi , (40)

and an analogous calculation can be carried out for the linear sharing rule (38). Inspired by,
for example, Zieling et al. (2014) and Branger et al. (2018a), we now consider the certainty
equivalent return. It is defined as the deterministic rate of return yi = yi (Xi

T ) which delivers
the same utility as some state-dependent terminal wealth, that is,

Ui,Gi

(
xi e

yi T
)

= E[Ui,Gi (Xi
T )] ⇔ yi = 1

T
ln

(
CEi (Xi

T )

xi

)

. (41)

The certainty equivalent return is easier to interpret than the certainty equivalent wealth,
particularly when individuals own different wealth levels.

6.2 Numerical analysis

In Fig. 2, we compare the certainty equivalent returns defined in (41). Panel (a) demonstrates
the certainty equivalent returns for the base case, where the parameters are listed in Table
1. In particular, we have used in the base case that the initial wealth levels and the required
guarantees for all the individuals are identical, which implies that both linear sharing rules
are identical. In addition to the base case, we show in Panel (b) the case of a guarantee which
increases in γi . The guarantees for this case are chosen as

Gi = pi xi e
gi T , pi = i − 1

n − 1
, gi = −0.015 + 0.03

i − 1

n − 1
, i = 1, . . . , n. (42)

This illustrates a more realistic choice for the minimum guarantees: the more risk-averse an
individual is, the higher is the minimum guarantee chosen.

Note that in the determination of the optimal collective investment strategies, only the total
guarantee level plays a role, while the individuals’ certainty equivalent returns do additionally
depend on the individual guarantees. In Fig. 2, we observe the following:
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Fig. 2 Certainty equivalent returns (41) of the investors in the collective. In Panel (a), the base case is used,
while in Panel (b), we show the case given in (42)

– In Panel (a), we observe that imposing the linear sharing rule leads to losses for all the
individuals, which can be considered as the (negative) deviation of the certainty equiv-
alent returns from the state-dependent case (or individuals’ optimal certainty equivalent
returns). High losses arise for the least and the most risk-averse individuals. The benefits
of some investors are hardly influenced by the linear sharing rule. The main reason for
this result is probably that the optimal collective investment strategy is closest to the
individual optimal investment strategies with γi around 3.5. For those who are least or
most risk-averse, the optimal collective investment strategy differs significantly from
their individual optimal investment strategies.

– In Panel (b), we make the following observations:

– Fair linear sharing rule: Similarly as in Panel (a), compared to the (fair) state-
dependent sharing rule, the application of a fair linear sharing rule causes losses to
all the investors. Different from Panel (a), individuals having medium and small risk
aversions suffer most. The reason that highly risk-averse investors’ losses are reduced
compared to Panel (a) is the additional effect caused by their required high minimum
guarantees.

– Unfair linear sharing rule: As the fund manager will first meet all the individ-
ual guarantees and then split the surpluses, individuals who require low guarantees
implicitly finance the guarantees of individuals who demand high guarantees. For the
unfair linear sharing rule, this argument seems to dominate. As a consequence, indi-
viduals demanding lowguarantees suffer drastic losses,whereas investors demanding
high guarantees are better off compared to their individual optimal solution. The cer-
tainty equivalents can even become negative for individuals with low risk aversions
and low guarantees.

Due to the drastic losses occurring under unfair linear sharing rules (compared to moderate
losses under a fair sharing rule), fairness shall certainly be taken into consideration if a linear
sharing rule is applied in practice.

In Fig. 3 we compare the certainty equivalents of the investors in the collective under
constant volatility.We use the parameters fromTable 1. The parameters of the Black–Scholes

market are specified as μ = 0.0876 and σ = 0.13. Note that we obtain μ−r
σ

= η1

√
V under

these parameters. We consider the Black-Scholes analogue of the sharing rule defined in (36)
(that is, we replace ξ

(η)
T by ξT ) and the linear sharing rules (37) and (38).
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Fig. 3 Certainty equivalent returns (41) of the investors in the collective for constant volatility case (where

ξ
(η)
T is replaced by ξT ). In Panel (a), the base case is used, while in Panel (b), we show the case (42)

Fig. 4 Relative losses Ri as defined in (43) of the investors in the collective. In Panel (a), the base case is used,
while in Panel (b), we show the case (42)

We observe from Fig. 3 that the certainty equivalent returns under constant volatility
exhibit similar patterns as in the stochastic volatility case (cf. Fig. 2). However, the certainty
equivalent returns under constant volatility seem to be overall lower than in the stochastic
volatility case. The “unfairness” caused by the (unfair) linear sharing rule (37) seems to
weaken slightly.

In conclusion, by the use of the unfair linear sharing rule, individuals requiring high
guarantees benefit largely from the collective, while those who require low guarantees suffer
substantially from the collective. The fair linear sharing rule, on the other hand, causes
only moderate losses to all the individuals in the collective. Thus, from a fund manager’s
perspective, to serve each individual in the collective fairly, the use of a financially fair sharing
rule shall be preferred.

Given the widespread use of linear sharing rules, it is interesting to find out whether
the sub-optimality of linear sharing rules will be amplified in the more realistic stochastic
volatility setting. For this purpose, we consider the quantity

Ri := y∗
i − y�

i (43)

for all individuals i = 1, . . . , n, where y�
i is the certainty equivalent return under a linear

sharing rule. They are provided in Fig. 4.
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In both panels, we observe that the curves resulting from the Heston model lie above
those from the Black–Scholes model. In other words, the imposition of a suboptimal linear
sharing rule leads to larger losses (and, in Panel (b), smaller gains) for all the individuals
in the collective under the Heston model compared to the Black–Scholes model. Let us,
for example, consider the base case: In the current parameter choice, an individual with
parameter γi ≈ 6 obtains a certainty equivalent return that is 3% lower than the optimal one
in the Heston model and 1% lower than the one in the Black–Scholes model. Among the
individuals in the collective, the difference between the two models is the largest for those
with a very low risk aversion. This behavior can be explained by the thicker tails of the Heston
model which delivers more extreme market scenarios than the Black–Scholes model. Thus,
in a more realistic financial market setting with stochastic volatility, the sub-optimality of
the linear sharing rule is intensified.

7 Conclusion

In this article, we solve a collective investment problem of a fund manager who invests for
a collective of individuals who measure their utility from the terminal wealth exceeding a
deterministic minimum guarantee, both in a Black–Scholes model and a Heston model. We
have shown that all the investors in the collective receive their individually optimal terminal
wealth levels under financial fairness when the fund manager uses a specific state-dependent
sharing rule. Using a financially fair linear sharing rule leads to moderate losses for all
investors in the collective. However, imposing a linear sharing rule which is not financially
fair makes some individuals better and some worse off, compared to the financially fair
linear sharing rule. As ignoring the financial fairness condition can lead to drastic losses for
some individuals, a financially fair linear sharing rule performs better from a fund manager’s
perspective if she wants to take account of all individuals in the collective in a fair way. Our
results show that losses imposed by linear sharing rules are larger under stochastic volatility
than under constant volatility.

It would be interesting to analyze how individual utility is affected if the fund manager is
restricted to some commonly applied investment strategies like, for example, CPPI strategies.
We leave this analysis for future research.

Acknowledgements Open Access funding enabled and organized by Projekt DEAL. Manuel Rach acknowl-
edges the financial support given by the DFG for the research project “Zielrente: die Lösung zur alternden
Gesellschaft in Deutschland” (Grant number 418318744). Furthermore, the authors thank anonymous referees
for helpful comments and suggestions.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2021) 302:85–109 107

A Proof of Lemma 2

To compute the conditional expectation in (20), let us additionally introduce the following
notation:

Z+
t := ρW (1)

t +
√
1 − ρ2W (2)

t ,

Z−
t :=

√
1 − ρ2W (1)

t − ρW (2)
t ,

ζ±
t := exp

(

−η±
∫ t

0

√
VsdZ

±
s − η2±

2

∫ t

0
Vsds

)

.

Note that Z+
t and Z−

t are independent Brownian motions because their covariation is equal
to zero. Under this notation, we have

∫ t

s

√
VνdZ

+
ν = 1

δ

(
Vt − Vs − κV (t − s) + κ

∫ t

s
Vνdν

)
, (44)

and we can write ξ
(η)
t = e−r tζ+

t ζ−
t . This leads us to

E

[(
ξ

(η)
T

ξ
(η)
t

)qi ∣∣∣∣ Ft

]

= e−rqi (T−t)
E

[(
ζ+
T ζ−

T

ζ+
t ζ−

t

)qi ∣∣∣∣ Ft

]

.

Conditioning on the path {Z+
s }s∈[t,T ], which is the Brownianmotion driving the volatility, the

process ζ−
t follows a log-normal distribution. Hence, using (44), this term can be expressed

as

e−rqi (T−t)
E

[(
ζ+
T

ζ+
t

)qi

E

[(
ζ−
T

ζ−
t

)qi ∣∣∣∣ {Z+
s }s∈[t,T ]

] ∣∣∣∣ Ft

]

= e−rqi (T−t)
E

[(
ζ+
T

ζ+
t

)qi

e−qi (1−qi )
η2−
2

∫ T
t Vsds

∣∣∣∣ Ft

]

= e−rqi (T−t)
E

[
e(Vt+κV (T−t))ai e−ai VT −bi

∫ T
t Vsds

∣∣∣∣ Ft

]

= e−rqi (T−t)e(Vt+κV (T−t))aiE

[
e−ai VT −bi

∫ T
t Vsds

∣∣∣∣ Ft

]
. (45)

The expectation in (45) is the Laplace transform of (VT ,
∫ T
t Vsds) at (ai , bi ) . An explicit

formula for this Laplace transform and the necessary conditions for this representation are
given in Proposition 5.1 in Kraft (2005) and Proposition 6.3.4.1 in Jeanblanc et al. (2009). It
is shown in Chen et al. (2018) that assumption (19) is sufficient for the Laplace transform to
be well-defined at (ai , bi ) for all i = 1, . . . , n. Therefore, we can simplify (45) to (20). 
�
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