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Abstract
We consider a binary multivariate regression model where the conditional expec-
tation of a binary variable given a higher-dimensional input variable belongs to a 
parametric family. Based on this, we introduce a model-based bootstrap (MBB) 
for higher-dimensional input variables. This test can be used to check whether a 
sequence of independent and identically distributed observations belongs to such a 
parametric family. The approach is based on the empirical residual process intro-
duced by Stute (Ann Statist 25:613–641, 1997). In contrast to Stute and Zhu’s 
approach (2002) Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), a transfor-
mation is not required. Thus, any problems associated with non-parametric regres-
sion estimation are avoided. As a result, the MBB method is much easier for users to 
implement. To illustrate the power of the MBB based tests, a small simulation study 
is performed. Compared to the approach of Stute & Zhu (Scandinavian J Statist 
29:535–545, 2002), the simulations indicate a slightly improved power of the MBB 
based method. Finally, both methods are applied to a real data set.
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1 Introduction

Binary multivariate regression models are for example used to analyze longitudinal 
data. Those appear in clinical studies and are used to evaluate the effect of interven-
tions over time. For different individuals, information is collected at several assess-
ment times. To deal with incomplete data in a longitudinal setup, inverse probability 
weighted generalized estimating equations (WGEE) (Robins et al., 1994) are used. 
The resulting WGEE provides consistent estimators only if the underlying (binary) 
process of missing data is properly modeled. Of course, this should be secured in 
advance.

This paper addresses, in a more general context than just described, the ques-
tion of how to test the model assumptions of a binary generalized linear regression 
model.

Mathematically, we describe the data with a sequence of independent and identi-
cally distributed (iid) random variables

where � is a binary or 0 − 1 response variable and X ∈ ℝd a d-dimensional input 
with continuous distribution function (df) H. For the binary regression model,

denotes the conditional expectation of � given X = x . Under the generalized linear 
model (GLM), one assumes that there exists a link function g, that is an invertible 
function with measurable inverse, such that

for H almost all x ∈ ℝd and an appropriate �0 ∈ ℝd . The function g is assumed to be 
known. Based on this, we set

Assuming that the data (�,X) comes from a GLM with link function g now means 
that m̂ ∈ M ∶= {m(𝛽⊤⋅)|𝛽 ∈ ℝd}.

If one assumes a GLM to analyze a sample (�1,X1), ..., (�n,Xn) of iid data, one 
has to guarantee that the linear part and the assumed link-function are correct or, 
at least, that the data shows no obvious departure from the model. Thus, we need a 
goodness-of-fit test to validate the model, i. e., we need a universal test to check the 
null hypothesis

A general approach for model checking in a regression setup was introduced by 
Stute, (1997). Stute & Zhu, (2002) specialized this approach to GLM, where the 
response variable is not necessarily binary. In the binary setup of GLM, the under-
lying probabilistic background is a functional limit result of the marked empirical 
process with estimated parameters:

(�1,X1), ..., (�n,Xn),

m̂ ∶ ℝ
d ∋ x → m̂(x) = 𝔼(𝛿|X = x) ≡ ℙ(𝛿 = 1|X = x) ∈ [0, 1]

g(�(𝛿|X = x)) = 𝛽⊤
0
x,

m ∶ ℝ ∋ t → m(t) = g−1(t) ∈ [0, 1].

H0 ∶ m̂ ∈ M versus H1 ∶ m̂ ∉ M.
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where �n is a proper estimator of �0 and I denotes the indicator function, see Stute 
(1997). With R1

n
(−∞) = 0 and R1

n
(∞) = n−1∕2

∑n

i=1
(𝛿i − m(𝛽⊤

n
Xi)) , this process is a 

random element in the Skorokhod space D([−∞,∞]) . Under appropriate conditions, 
R1
n
 converges in distribution against a centered Gaussian process R1

∞
 , which, how-

ever, has a rather complicated, model-dependent covariance structure, cf. Theorem 1 
in Stute & Zhu, (2002). To make this result usable for applications in statistics, Stute 
and Zhu introduced a model-based transformation. Applying this transformation, 
respectively its estimated version, to R1

n
 , this composition converges in distribution 

against a time-transformed Brownian motion, cf. Theorem 2 in Stute & Zhu, (2002). 
This framework is then used to get asymptotically distribution-free statistics.

The approach works excellently, but has two weak points. For the transforma-
tion, one needs an estimate of the conditional expectation of X given 𝛽⊤

0
X = v , 

�(X | 𝛽⊤
0
X = v) , for all v ∈ ℝ . Under general conditions, one must estimate this 

quantity using a non-parametric procedure. However, such a method always 
requires a smoothing parameter, but its selection is not unproblematic. However, 
since the model as a whole is parametric, the question inevitably arises whether 
this non-parametric method is absolutely necessary. Moreover, a user who wants 
to check a chosen GLM with this method must implement the model-dependent 
transformation in each case. This is of course feasible, but goes along with a con-
siderable effort, because the transformation is quite complex especially for non-
statisticians. Of course, parts of this procedure could be automated and imple-
mented as software, but then it will hardly be applicable without the appropriate 
knowledge about the transformation. It would be nice if all this could be avoided.

To estimate �0 , we use the maximum likelihood estimator (MLE) given by

where

is the normalized log-likelihood function.
For the bootstrap data, we propose the following model-based (MB) resa-

mpling scheme similar to the resampling scheme in Dikta et  al., (2006). MBB 
guarantees that the bootstrap data are always generated according to the null 
hypothesis.

Definition 1 Let (�1,X1), ..., (�n,Xn) be iid observations, where the �i are binary and 
the Xi have a continuous distribution function H. Let �n be the corresponding MLE. 
The model-based resampling scheme is then defined as follows: 

1. Set X∗
i
= Xi for 1 ≤ i ≤ n.

R1
n
(t) = n−1∕2

n∑
i=1

(𝛿i − m(𝛽⊤
n
Xi))I(𝛽

⊤

n
Xi ≤ t), t ∈ ℝ,

�n = argmax
�∈ℝd

ln(�),

ln(𝛽) =
1

n

n∑
i=1

(𝛿iln(m(𝛽
⊤Xi)) + (1 − 𝛿i)ln(1 − m(𝛽⊤Xi)))
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2. Generate a sample �∗
1
, ..., �∗

n
 of independent Bernoulli random variables where 

�∗
i
 has the probability of success given by m(𝛽⊤

n
Xi) , for 1 ≤ i ≤ n , where 

m(𝛽⊤x) = ℙ𝛽(𝛿 = 1|X = x).

Under this resampling scheme, only the �′s are resampled, the corresponding 
X′s are taken from the original sample.

To define R1∗
n

 , the bootstrap analog of R1
n
 , we assume a bootstrap sample

and set

where �∗
n
 is the MLE corresponding to the log-likelihood function based on the 

bootstrap sample. Usually the �n in the indicator is also replaced by �∗
n
 . We don’t 

replace it here, since both processes can be shown to be asymptotically equivalent. 
Furthermore, simulations that use �n instead of �∗

n
 run faster, since �n is the same for 

each bootstrap sample.
We will prove that the cumulative residual process R1∗

n
(t) corresponding to the 

MB bootstrap data behaves asymptotically as R1
n
 if the original data satisfy the 

null hypothesis. Thus, the distribution of any statistic that depends continuously 
on R1

n
 can be approximated by the corresponding distribution based on R∗1

n
 . This 

provides the basic asymptotic backup of our method. But in addition to this, an 
approximation based on R1∗

n
 also has the advantage that it accurately reflects the 

fixed sample sizes. Even if the original data come from the alternative, the boot-
strap data are always generated under the null hypothesis. Thus, a statistic based 
on R1∗

n
 fits the null hypothesis. This is crucial because p-values are based on the 

distribution under the null hypothesis. Overall, this should lead to a more accu-
rate approximation of the p-values compared to the pure asymptotic one under 
finite sample size, and, hence, to an improvement of the power. Indeed, we can 
observe some improvements in the simulation study.

As in Stute & Zhu, (2002), we consider a Kolmogorov-Smirnov (KS) and Cra-
mér-von Mises (CvM) test statistics Dn and Wn based on R1

n
 as

and

Here Hn is the empirical distribution function (edf) of the 𝛽⊤
n
X sample. Since, under 

H0 , R1
n
→ R1

∞
 in distribution, as n → ∞ , the continuous mapping theorem implies 

that

(�∗
1
,X∗

1
), ..., (�∗

n
,X∗

n
)

R1∗
n
(t) = n−1∕2

n∑
i=1

(𝛿∗
i
− m(𝛽∗⊤

n
X∗
i
))I(𝛽⊤

n
X∗
i
≤ t), t ∈ ℝ,

Dn = sup
t∈ℝ

|R1
n
(t)|

Wn = ∫ (R1
n
(t))2Hn(dt).
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and Wn → W∞ in distribution, as n → ∞.
If under H0 the process R1∗

n
 tends in distribution to the same limiting process R1

∞
 

as R1
n
 , the p-values corresponding to the KS and CvM test can now be approximated 

by the typical Monte-Carlo approach (used in bootstrap applications) based on the 
distribution of

and

where H∗
n
 denotes the edf based on the �T

n
X∗ sample.

This article is organized as follows: In Section 2 we state the main results, which 
guarantee that the MBB can be used to test our null hypothesis. In Section 3 the 
approach is applied in a simulation study and a real data application. Here, our 
approach is also compared to the approach by Stute & Zhu, (2002). The results of 
Section 3 are discussed in Section 4. The proofs of our main results are provided 
in Section  5. Additionally, in the Appendix  some results used in Section  5 are 
presented.

2  Main results

In this chapter, our main result is given in Theorem 2.
To prove Theorem  2, we first show that in the space D[−∞,∞] , the process 

R∗
n
(u) = n−1∕2

∑n

i=1

�
�∗
i
− m(�T

n
Xi)

�
I(�T

n
Xi ≤ u) → R∞ in distribution, where R∞ is a 

centered Gaussian process, see Theorem 1. This process is similar to R1
n
(u) , but � is 

replaced with �∗ . Theorem 1 is a stepping stone for proving Theorem 2, in which 
we also replace �n with �∗

n
 . To prove both theorems, we show that the fidis of both 

processes converge and that the processes are tight, see Theorem 13.5 of Billingsley, 
(1999). Lemma 1 (iii) provides a result which is required to prove the convergence 
of the fidis of the process R∗

n
 . Lemma 1 (i) and Lemma 1 (ii) are required to prove 

Lemma 1 (iii).
Since we finally replace �n with �∗

n
 in Theorem 2, we need to ensure that �∗

n
 con-

verges to �n , which is done in Lemma 2. The proof of Theorem 2 uses a decomposi-
tion of the process R1∗

n
(u) into R∗

n
(u) and a difference term. To simplify the represen-

tation, Lemma 3 is used. With the final decomposition we now prove the tightness 
and the convergence of the fidis of the process R1∗

n
(u) .

For Theorem 1 we need the following assumptions: 

 (A1) �n → �0 , as n → ∞ , w.p. 1.

Dn ⟶ D∞ ≡ sup
t∈ℝ

|R1
∞
(t)|,

D∗
n
= sup

t∈ℝ

|R1∗
n
(t)|

W∗
n
= ∫ (R1∗

n
(t))2H∗

n
(dt),



313

1 3

Journal of the Korean Statistical Society (2022) 51:308–335 

 (B1) Define 

 where m̄ = 1 − m . H is uniformly continuous in u at �.
 (C1) m(�Tx) is continuous in �Tx.
 (D1) m(�Tx) is continuous differentiable in �Tx with
   m�(�Tx) = �m(�Tx)∕�(�Tx) and m′ is bounded.

Assumptions (C1), (D1) and (B1) are similar to assumptions (B) and (C) in Stute 
& Zhu, (2002), but specified to the binary setup. Furthermore, with (A1) we ensure 
that �n → �0 , as n → ∞ , w.p. 1.

As mentioned before, the following Lemma is used to prove the convergence of 
the fidis of the process R∗

n
(u) , which is defined in Theorem 1.

Lemma 1 (i) If assumption (D1) is fulfilled,

as n → ∞ , w.p. 1.

(ii) If assumptions (B1) and (C1) are fulfilled,

as � → 0.

(iii) If assumptions (A1), (B1), (C1) and (D1) are fulfilled and �(|X|) < ∞ , then

as n → ∞ , w.p. 1.

Now, in the process R1
n
(u) , we replace � with �∗ , where �∗ is generated by using 

the MB scheme. As stated in the following Theorem, R∗
n
(u) converges.

H(u, 𝛽) = � m(𝛽TX)m̄(𝛽TX)I(𝛽TX ≤ u)dℙ,

sup
𝛽∈ℝd ,u∈ℝ

||||
1

n

n∑
i=1

I(𝛽TXi ≤ u)m(𝛽TXi)m̄(𝛽
TXi)

−𝔼
(
I(𝛽TX ≤ u)m(𝛽TX)m̄(𝛽TX)

)||| → 0,

sup
|𝛽−𝛽0|≤𝜀,u∈ℝ

|𝔼(I(𝛽TX ≤ u)m(𝛽TX)m̄(𝛽TX)
)

−𝔼
(
I(𝛽T

0
X ≤ u)m(𝛽T

0
X)m̄(𝛽T

0
X)
)||| → 0,

sup
u∈ℝ

||||
1

n

n∑
i=1

I(𝛽T
n
Xi ≤ u)m(𝛽T

n
Xi)m̄(𝛽

T
n
Xi)

−𝔼
(
I(𝛽T

0
X ≤ u)m(𝛽T

0
X)m̄(𝛽T

0
X)
)||| → 0,
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Theorem 1 Assume that �(|X|) < ∞ , assumptions (A1), (B1), (C1) and (D1) are sat-
isfied, and the MB resampling scheme is used to generate the bootstrap data, then, 
w.p. 1, under the null hypothesis, the process

in distribution in the space D[−∞,∞] , where R∞ is a centered Gaussian process 
with covariance function

After replacing � with �∗ , we need to replace �n with �∗
n
.

For this, we define

which is the derivative of the summands of the log-likelihood function and 
w(x, �) = �m(�Tx)∕�� =

(
w1(x, �), ...,wd(x, �)

)T.
Check that �∗

n

(
l(�T

n
X, �∗)

)
= 0.

For the following Lemmas and Theorem 2 we need some additional assumptions: 

 (A2) L(�0) = �
(
l(�T

0
X, �)lT (�T

0
X, �)

)
 exists and is positive definite.

 (B2) n1∕2(�∗
n
− �n) = n−1∕2

∑n

i=1
l(�T

n
Xi, �

∗
i
) + oℙ∗

n
(1) , w.p. 1.

 (C2) L∗
n
(�n) =

1

n

∑n

i=1
�∗
n

�
l(�T

n
Xi, �

∗
i
)lT (�T

n
Xi, �

∗
i
)
�
→ L(�0) , w.p. 1.

 (D2) For every x ∈ ℝd , w(x, �) = �m(�Tx)∕�� =
(
w1(x, �), ...,wd(x, �)

)T exists and is 
continuous with respect to � for every � in a neighborhood of �0 (not depending 
on x).

 (E2) There exists a square-integrable function M(x) such that for every x
   max

(
wi(x,�)

m(�Tx)
,

wi(x,�)

1−m(�Tx)

) ≤ M(x) for every � in a neighborhood of �0 and 
1 ≤ i ≤ d.

 (F2) The function 

 is uniformly continuous in u at �0 , where V� = {� ∶ � ∈ V} and V is given 
under (D2).

Assumptions (D2) and (E2) are again similar to assumption (B) in Stute & Zhu, 
(2002), but specified to the binary setup. Furthermore, assumptions (A2) and (B2) 
are similar to assumption (A).

Lemma 2 is necessary to ensure that �∗
n
 converges to �n.

R∗
n
(u) = n−1∕2

n∑
i=1

(
�∗
i
− m(�T

n
Xi)

)
I(�T

n
Xi ≤ u) → R∞

K(s, t) = 𝔼
(
R∞(s),R∞(t)

)
= � m(𝛽T

0
X)m̄(𝛽T

0
X)I(𝛽T

0
X ≤ s ∧ t)dℙ.

l(�TX, �∗) =
�

��

(
�∗ln

(
m(�TX)

)
+ (1 − �∗)ln(1 − m(�TX))

)

= �∗
w(X, �)

m(�TX)
− (1 − �∗)

w(X, �)

1 − m(�TX)

W ∶ ℝ × V� ∋ (x, �) → W(x, �) = 𝔼
(
w(X, �0)I(�

TX ≤ x)
)
∈ ℝ

d
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Lemma 2 Assume that assumptions (A1), (A2), (B2), (C2) and (E2) hold. Then, w.p. 
1,

where Z is a multivariate normal distribution with zero mean and covariance matrix 
L(�0).

In addition, we need some results for w(x, �) and W(x, �).

Lemma 3 Let 𝛽∗
n
∶ ℝd

→ V  be a measurable function such that 𝛽∗
n
(x) lies in the line 

segment that connects �∗
n
 and �n for each x ∈ ℝd and assume (A1), (A2), (D2), (E2) 

and (F2) hold. Then, w.p. 1, for 1 ≤ j ≤ d , 

 (i) sup
u∈ℝ

���n−1
∑n

i=1
wj(Xi, �0)I(�

T
n
Xi ≤ u) −Wj(u, �0)

��� → 0, as n → ∞,

 (ii) sup
u∈ℝ

���n−1
∑n

i=1

�
wj

�
Xi, 𝛽

∗
n
(Xi)

�
− wj(Xi, 𝛽0)

�
I(𝛽T

n
Xi ≤ u)

��� = oℙ∗
n
(1).

Finally, the process R1∗
n
(u) converges in distribution.

Theorem 2 Assume that �(|X|) < ∞ , assumptions (A1), (B1), (C1), (D1), (A2), (B2), 
(C2), (D2), (E2) and (F2) are satisfied, and the MB resampling scheme is used to 
generate the bootstrap data, then, w.p. 1, under the null hypothesis, the process

in distribution in the space D[−∞,∞] , where R1

∞
 is a centered Gaussian process 

with covariance function

3  Simulations and real data application

3.1  Simulations

To clarify the results, the Bootstrap approach is compared to the approach intro-
duced by Stute & Zhu, (2002). For the application of their method, we make use of 
an additional assumption to avoid the non-parametric estimation of �(X|�T

0
X = v) . 

As stated in Stute & Zhu, (2002), page 541, we assume that X belongs to a family of 
elliptically contoured distributions. Note that we do not need this assumption for our 
bootstrap approach. To calculate the p-values for the approach by Stute and Zhu we 

n1∕2(�∗
n
− �n) → Z, as n → ∞,

R1∗
n
(u) = n−1∕2

n∑
i=1

(
�∗
i
− m(�∗T

n
Xi)

)
I(�T

n
Xi ≤ u) → R1

∞

K̂(s, t) = K(s, t) +WT (s, 𝛽0)L(𝛽0)W(t, 𝛽0)

− 2WT (s, 𝛽0)W(t, 𝛽0).
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use the Karhunen-Loève expansion for a Brownian motion [(Bass, 2011), formula 
(6.2)] to approximate the distribution of the integrated squared Brownian motion 
over the unit interval.

In all simulations, the empirical powers and ecdfs of the p-values based on 
the CvM statistic are calculated from 1000 replications. The sample sizes are set 
to n = 50 and n = 100 . For the Bootstrap approach, each p-value is based on 200 
bootstrap samples. The ecdfs of the 1000 p values per simulation and approach are 
displayed in a graph together with the uniform distribution function (red: Bootstrap 
approach, blue: approach by Stute and Zhu, gray: uniform distribution function). 
In addition, the percentages of rejecting the null hypothesis (at levels � = 0.05 and 
� = 0.01 ) are given explicitly.

In the first simulation, we generate uncorrelated Xi from a 3-dimensional normal 
distribution with mean values 0 and variance 1. Based on a chosen � ( � = (1, 1, 2)T ) 
we calculate the probability P(� = 1|X = x) , assuming a logistic regression model. 
In our test, we assume that the generated data belong to a GLM with a logis-
tic regression function where � is 3-dimensional, which is true. Table 1 shows the 
results. The two ecdfs of the p values based on the CvM statistic are very similar to 
the distribution function of a uniform distribution. Thus, the test holds the level.

In the second simulation, the data are generated the same way as in the first simu-
lation, but now the third covariate was squared. We assume that the data belong to a 
GLM with a logistic regression function where the third component is not squared, 
which is false. Table  2 shows that both approaches yield similar results. Further-
more, in both cases the power increased with the sample size.

Table 1  H0 (logistic regression function, � is 3-dimensional) is true

BS Stute/Zhu Ecdfs (red: BS, blue: Stute/ Zhu)

n = 50 α = 0.05 5.2% 3.8%

α = 0.01 0.8% 0.4%

n = 100 α = 0.05 5.5% 4.9%

α = 0.01 1.4% 0.4%
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In the third simulation, we generate data using a nonparametric mixing of logistic 
regression, see Agresti, (2002), 13.2.2. The Xi are again generated from a 3-dimen-
sional normal distribution with mean values 0 and variance 1 and � = (1, 1, 2)T . Fur-
thermore, a Bernoulli variable with p = 0.2 is generated. If this variable is 0, we 
add 1 to �TX . Again we calculate the probability P(� = 1|X = x) assuming a logistic 
regression model. In our test, we assume that the generated data belong to a GLM 
with a logistic regression function where � is 3-dimensional, which is false. Table 3 
shows similar results as in the second simulation.

In the last simulation, we generate the data in the same way as in the first simu-
lation again. This time, we assume a probit regression model where � is 3-dimen-
sional, which is false. Table  4 shows, that all ecdfs of the p values based on the 
CvM statistic a are very similar to the distribution function of a uniform distribution. 
Thus, both tests do not detect this departure from the null hypothesis.

3.2  Real data application

We applied the introduced test to the data set reported on by Härdle and Stoker, (1989). 
This data set consists of 58 measurements on simulated side impact collisions. The 
fatality (binary 0 − 1 random variable, 1 means the crash resulted in fatality) and three 
covariates (age of the driver, velocity of the automobile, maximal acceleration meas-
ured on the subject’s abdomen) were measured. Härdle and Stoker estimated �0 and 
fitted m in a non-parametric way and concluded that the link function is of "distribution 

Table 2  H0 (logistic regression function, � is 3-dimensional, third component not squared) is false

Bootstrap Stute/Zhu Ecdfs (red: BS, blue: Stute/ Zhu)

n = 50 α = 0.05 87.4% 86.3%

α = 0.01 65.5% 65.9%

n = 100 α = 0.05 99.6% 99.6%

α = 0.01 96.3% 98.3%
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Table 3  H0 (logistic regression function, � is 3-dimensional) is false

BS Stute/Zhu Ecdfs (red: BS, blue: Stute/ Zhu)

n = 50 α = 0.05 49.0% 44.2%

α = 0.01 24.9% 21.3%

n = 100 α = 0.05 79, 9% 78.3%

α = 0.01 54.5% 53.6%

Table 4  H0 (logistic regression function, � is 3-dimensional) is false

BS Stute/Zhu Ecdfs (red: BS, blue: Stute/ Zhu)

n = 50 α = 0.05 6, 0% 5, 4%

α = 0.01 1, 4% 0, 9%

n = 100 α = 0.05 4, 3% 5, 4%

α = 0.01 0, 8% 0, 7%
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type", i.e., non-decreasing in �T
0
x , as in the logit or probit case. They did not check if a 

GLM would fit the data at all. We tested, if (after a standardization) a GLM with a logit 
or probit link function is appropriate for the data set. Based on the bootstrap approach 
the p value for a logit link function is 0.047, for a probit link function 0.049. Thus, in 
both cases, the model is rejected. Stute and Zhu (2002) also applied their approach to 
this data set and came to the same result.

4  Discussion

Our small simulation study indicates that the bootstrap approach has slightly better 
empirical power than the Stute & Zhu, (2002) approach. This is noteworthy because 
the Stute and Zhu approach was conducted here under an additional assumption (ellip-
tically contoured distributions) that is unnecessary for the bootstrap approach. If this 
additional assumption is not fulfilled, then non-parametric regression estimation has to 
be applied in the Stute and Zhu procedure, but this entails further problems (choice of 
smoothing parameter) and can have negative effects on the power of the test. For the 
bootstrap method all these problems do not exist.

The resampling procedure guarantees that the bootstrap data are always gener-
ated under the null hypothesis, regardless of whether the original data satisfy the null 
hypothesis or not. Consequently, the distribution of a test statistic based on the boot-
strap data fits the null hypothesis. If the test statistic based on the original data lies 
at the edge of this bootstrap-based distribution, then this indicates a violation of the 
null hypothesis. It is important to note that the sample size is also considered in the 
approximating distribution by the bootstrap approach. In the approximation with the 
asymptotic distribution this is not given in the last consequence. We assume that the 
slight improvement with respect to the empirical power is based on this. That the con-
sideration of the sample size in the approximating distribution can be advantageous 
compared to the approximation by the limiting distribution, Singh, (1981) was able to 
prove for the classical bootstrap and the standardized mean. However, this is not stud-
ied further in our paper, but should be addressed theoretically in future work.

The bootstrap method is easier to implement because it is not as technically demand-
ing as the method of Stute and Zhu. However, it is more complex in terms of comput-
ing time. The latter is always of great importance if the method is to be used on a large 
scale.

5  Proofs

Proof of Lemma 1 Define F = {I(𝛽T ⋅ ≤ u)m(𝛽T ⋅)m̄(𝛽T ⋅), 𝛽 ∈ ℝd, u ∈ ℝ} . Following 
Lemma 7, F  is GC. Thus (i) is true.

For (ii) check that
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Due to assumption (C1) the dominated convergence theorem yields that the first 
term converges to 0 as � → 0.

Denote the second term as sup
|�−�0|≤�,u∈ℝ

A(�, u) and choose K > 0 and check that

Select 𝛾 > 0 to get

Fix 𝛿 > 0 . Since �
(
m(𝛽T

0
X)m̄(𝛽T

0
X)
) ≤ 1 , we can find a K > 0 such that 

A2(�, �0, u,K) ≤ �. Due to assumption (B1), H(⋅, �0) is uniformly continuous and 
therefore we can find a 𝛾 > 0 such that A1,1 < 𝛿 uniformly in u. Furthermore, we can 
choose � such that 𝜀 < min(𝛾 , 𝛾∕K) which yields that A1,2(�, �0, � ,K) = 0 and, there-
fore, A(𝛽, 𝛽0, u) < 2𝛿 . This proves part (ii).

Since �n → �0 , w.p. 1, (iii) follows directly from (i) and (ii).   ◻

sup
|𝛽−𝛽0|≤𝜀,u∈ℝ

|||𝔼
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Proof of Theorem 1 To prove the Theorem, we will use Theorem 13.5 of Billingsley 
(1999). We first show, that the fidis of R∗

n
 converge in distribution to the fidis of R∞ . 

Obviously, R∗
n
 has independent zero-mean summands, since

For the covariance of R∗
n
 we get for u1, u2 ∈ ℝ

where �∗
i
 and �∗

j
 are iid. Thus, if i ≠ j , the expectation in the last equation is 0. There-

fore, the last equation equals

Here, the expectation equals the conditional covariance of a binomial distribution 
with success probability m(�T

n
Xi) . Thus, for the last equation we get

Due to Lemma  1 (iii), this converges to �
(
I(𝛽T

0
X ≤ u1 ∧ u2)m(𝛽

T
0
X)m̄(𝛽T

0
X)
)
 uni-

formly in u for n → ∞ , w. p. 1. Thus, w. p. 1, the covariance function of the process 
R∗
n
(u) converges to

Now let k ∈ ℕ and choose −∞ ≤ u1 < ... < uk ≤ ∞ . Following Cramér-Wold, see 
Theorem 7.7 of Billingsley, (1999), we have to show that, w.p. 1, for every a ∈ ℝk , 
a ≠ 0
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in distribution, with Σ = (�s,t)1≤s,t≤k and 
�s,t = Cov(R∞(us),R∞(ut)) = �(R∞(us),R∞(ut)) = K(us, ut).

Set

where �∗
i,n

= n−1∕2
(
�∗
i
− m(�nXi)

)
 and Ai,n =

∑k

j=1
ajI(�

T
n
Xi ≤ uj) . Here, �∗

1,n
, ..., �∗

n,n
 

are independent and centered, and A1,n, ...,An,n are deterministic in the bootstrap 
setup. To show the asymptotic normality of Z∗

n
 , we apply Theorem 1.9.3 of Serfling, 

(1980) and prove the Lindeberg condition,

as n → ∞ , is true w.p. 1 for each 𝜀 > 0.
First, check that

Since Σ is positive semi-definite, aTΣa ≥ 0 . If aTΣa = 0 , Tschebyscheff’s inequality 
guarantees that Z∗

n
= oℙ∗

n
(1) and thus, for n → ∞,

Now, assume that aTΣa > 0 . Obviously |Ai,n| ≤ ||a||k . Hence, for each 𝜖 > 0,
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Thus, the indicator of the Lindeberg condition equals 0 as n → ∞ and therefore the 
Lindeberg condition is fulfilled, the finite dimensional distributions converge to 
N(0, aTΣa) . This is part (i) of Theorem 13.5 of Billingsley, (1999).

For the tightness we use a modification of this Theorem, see Corollary 1, where 
F also depends on n. For this we assume that our process is only defined on the 
interval [0, 1]. If this is not the case, we can use a transformation to receive such a 
process.

Check that for 0 ≤ u1 ≤ u ≤ u2 ≤ 1

Now set
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Use this and check that

where the last equality follows since the �i and �i are independent and since either 
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Since Hn(u) → K(u, u) , w.p. 1, due to assumption (B1), a continuous, non-decreas-
ing function H with sup

u∈ℝ

||Hn(u) − H(u)|| → 0 exists. Therefore, following Corollary 1 

the process R∗
n
 is tight.   ◻

Proof of Lemma 2 Following Cramér-Wold, see Theorem 7.7 of Billingsley (1999), 
due to (B2) we have to show that, w.p. 1, for every a ∈ ℝd , a ≠ 0,

in distribution for n → ∞ . According to Serfling, (1980), Theorem 1.9.3, this fol-
lows from the Lindeberg condition,

Use (C2) to get
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for 1 ≤ i ≤ n and n sufficiently large.
Due to assumption (E2),

Thus, Borel-Cantelli yields

w.p. 1. Therefore, the indicator equals 0 as n → ∞ , and the Lindeberg condition is 
fulfilled.   ◻

Proof of Lemma 3 Since the half-spaces in ℝd are a GC-class and wj(X, �) is integra-
ble, see assumption (F2), Corollary 9.27 of Kosorok (2008) yields

Due to assumption (A1), for every 𝜀 > 0 we get

I
�
�n−1∕2aTl(𝛽T

n
Xi, 𝛿i)� > 𝜀

√
Varn(Zn)

�

= I
�
�aTl(𝛽T

n
Xi, 𝛿i)� > 𝜀n1∕2

√
Varn(Zn)

�

< I

�
�aTl(𝛽T

n
Xi, 𝛿i)� > 𝜀i1∕2

�
aTL(𝛽0)a∕2

�
,

n∑
i=1

ℙ
(|aTl(𝛽T

n
Xi, 𝛿i)|2 > 𝜀i

)

=

n∑
i=1

ℙ
(|aTl(𝛽T

n
X, 𝛿i)|2 > 𝜀i

)

=

n∑
i=1

𝜀−1 �[𝜀(i−1),𝜀i]

ℙ
(|aTl(𝛽T

n
X, 𝛿i)|2 > 𝜀i

)
dx

≤
n∑
i=1

𝜀−1 �[𝜀(i−1),𝜀i]

ℙ
(|aTl(𝛽T

n
X, 𝛿i)|2 > x

)
dx

= 𝜀−1 �
∞

0

ℙ
(|aTl(𝛽T

n
X, 𝛿i)|2 > x

)
dx

= 𝜀−1𝔼
(|aTl(𝛽T

n
X, 𝛿i)|2

)

< ∞.

lim sup
i→∞

�aTl(�T
n
Xi, �

∗
i
)�

√
i

= 0,

sup
�∈ℝd ,u∈ℝ

|||||
n−1

n∑
i=1

wj(Xi, �0)I(�
TXi ≤ u) −Wj(u, �)

|||||
→ 0, as n → ∞, w.p. 1.
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w.p. 1. Furthermore, the last term on the right side tends to 0 as � → 0 . This is part 
(i).

For part (ii) we get

since, due to (A1) and Lemma 2, for 𝜀 > 0 , ℙ∗
n
(|𝛽∗

n
− 𝛽0| > 𝜀) → 0 as n → ∞ , w.p. 1.

Furthermore, as n → ∞

Due to assumption (D2) and (E2), applying the dominated convergence theorem 
yields that the expectation on the right side tends to 0 as � → 0 .   ◻

Proof of Theorem 2 Check that

Since we already dealt with R∗
n
(u) in Theorem 1, we now have to handle S∗

n
(u) . It fol-

lows from assumptions (A1) and Lemma 2 that

lim sup
n→∞

sup
u∈ℝ

|||||
n−1

n∑
i=1

wj(Xi, 𝛽0)I(𝛽
T
n
Xi ≤ u) −Wj(u, 𝛽0)

|||||
≤ lim sup

n→∞

sup
𝛽∈ℝd ,u∈ℝ

|||||
n−1

n∑
i=1

wj(Xi, 𝛽0)I(𝛽
TXi ≤ u) −Wj(u, 𝛽)

|||||
+ sup

|𝛽−𝛽0|<𝜀,u∈ℝ
|||Wj(u, 𝛽) −Wj(u, 𝛽0)

|||
= sup

|𝛽−𝛽0|<𝜀,u∈ℝ
|||Wj(u, 𝛽) −Wj(u, 𝛽0)

|||,

sup
u∈ℝ

|||||
n−1

n∑
i=1

(
wj

(
Xi, 𝛽

∗
n
(Xi)

)
− wj(Xi, 𝛽0)

)
I(𝛽T

n
Xi ≤ u)

|||||
≤ n−1

n∑
i=1

sup
|𝛽−𝛽0|<𝜀

|||wj(Xi, 𝛽) − wj(Xi, 𝛽0)
||| + oℙ∗

n
(1),

n−1
n∑
i=1

sup
|𝛽−𝛽0|<𝜀

|||wj(Xi, 𝛽) − wj(Xi, 𝛽0)
|||

→ �

(
sup

|𝛽−𝛽0|<𝜀
|||wj(Xi, 𝛽) − wj(Xi, 𝛽0)

|||
)
.

R1∗
n
(u) = n−1∕2

n∑
i=1

(
�∗
i
− m(�∗T

n
Xi)

)
I(�T

n
Xi ≤ u)

= n−1∕2
n∑
i=1

(
�∗
i
− m(�T

n
Xi)

)
I(�T

n
Xi ≤ u)

− n−1∕2
n∑
i=1

(
m(�∗T

n
Xi) − m(�T

n
Xi)

)
I(�T

n
Xi ≤ u)

= R∗
n
(u) − S∗

n
(u).
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for 𝜀 > 0 . Thus, we can assume that �∗
n
 and �n are in the neighborhood of �0 . Follow-

ing assumption (D2) we can apply Taylor’s expansion to get

where 𝛽∗
n
(x) is in the line segment connecting �∗

n
 and �n . Thus we can write S∗

n
(u) as 

follows:

Lemma 3 now yields that

and with (B2) and (E2)

uniformly in u.
Now define

which is asymptotically equivalent to R1∗
n

 , see Theorem 4.1 of Billingsley (1999). 
Furthermore, following the proof of Theorem 1, R∗

n
(u) is tight in D[−∞,∞] and due 

to Lemma 2 n−1∕2
∑n

i=1
lT (�T

n
Xi, �

∗
i
) converges to a zero mean multivariate normal 

distribution with covariance matrix L(�0) , w. p. 1.
Furthermore, assumption (F2) yields that W(⋅) is continuous.
Thus, n−1∕2

∑n

i=1
lT (�T

n
Xi, �

∗
i
)W(u, �0) is tight in C[−∞,∞] and therefore also 

tight in D[−∞,∞] . Finally, w.p. 1, R̂1∗
n
(u) is tight in D[−∞,∞].

ℙ
∗
n
(|𝛽∗

n
− 𝛽0| > 𝜀) → 0, as n → ∞, w.p. 1,

m(𝛽∗T
n
x) = m(𝛽T

n
x) + (𝛽∗

n
− 𝛽n)

Tw
(
x, 𝛽∗

n
(x)

)
,

S∗
n
(u) = n1∕2(𝛽∗

n
− 𝛽n)

Tn−1
n∑
i=1

w
(
Xi, 𝛽

∗
n
(Xi)

)
I(𝛽T

n
Xi ≤ u) + oℙ∗

n
(1)

= n1∕2(𝛽∗
n
− 𝛽n)

TW(u, 𝛽0)

+ n1∕2(𝛽∗
n
− 𝛽n)

Tn−1
n∑
i=1

(
w
(
Xi, 𝛽

∗
n
(Xi)

)
− w(Xi, 𝛽0)

)
I(𝛽T

n
Xi ≤ u)

+ n1∕2(𝛽∗
n
− 𝛽n)

T

(
n−1

n∑
i=1

w(Xi, 𝛽0)I(𝛽
T
n
Xi ≤ u) −W(u, 𝛽0)

)

+ oℙ∗
n
(1).

S∗
n
(u) = n1∕2(�∗

n
− �n)

TW(u, �0) + oℙ∗
n
(1), w.p. 1,

S∗
n
(u) = n−1∕2

n∑
i=1

l(�T
n
Xi, �

∗
i
)W(u, �0) + oℙ∗

n
(1), w.p. 1,

R̂1∗
n
(u) = n−1∕2

n∑
i=1

(
(𝛿∗

i
− m(𝛽T

n
Xi))I(𝛽

T
n
Xi ≤ u) − lT (𝛽T

n
Xi, 𝛿

∗
i
)W(u, 𝛽0)

)

= R∗
n
(u) − n−1∕2

n∑
i=1

lT (𝛽T
n
Xi, 𝛿

∗
i
)W(u, 𝛽0),
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Now let k ∈ ℕ and choose −∞ ≤ u1 < ... < uk ≤ ∞ . Following Cramér-Wold, see 
Theorem 7.7 of Billingsley, (1999), we have to show that, w.p. 1, for every a ∈ ℝk , 
a ≠ 0

in distribution, with Σ = (�s,t)1≤s,t≤k and 
𝜎s,t = Cov

(
R1
∞
(us),R

1
∞
(ut)

)
= �

(
R1
∞
(us),R

1
∞
(ut)

)
= K̂(us, ut).

We can rearrange the terms to

with �∗
i,n

= n−1∕2
(
�∗
i
− m(�T

n
Xi)

)
 and �∗

i,n
= n−1∕2l(�T

n
Xi, �

∗
i
) . Obviously, those varia-

bles are centered and (�∗
1,n
, �∗

1,n
), ..., (�∗

n,n
, �∗

n,n
) are independent. Additionally, Ai,n and 

B are deterministic with respect to ℙ∗
n
 . Thus, we get for the variance of Z1∗

n

In the proof of Theorem 1 we have shown that

Furthermore, due to assumption (C2)

as n → ∞ , w.p. 1.
Now check that

Z1∗
n

=

k∑
j=1

ajR̂
1∗
n
(uj) → N(0, aTΣa), for n → ∞,

Z1∗
n

=

n�
i=1

�
𝛿∗
i
− m(𝛽T

n
Xi)√

n

k�
j=1

ajI(𝛽
T
n
Xi < uj)

−
lT (𝛽T

n
Xi, 𝛿

∗
i
)

√
n

k�
j=1

ajW(uj, 𝛽0)

�

=

n�
i=1

𝜉∗
i,n
Ai,n − 𝜂∗T

i,n
B,

Var∗
n
(Z1∗

n
) =

n∑
i=1

A2
i,n
Var∗

n
(�∗

i,n
) +

n∑
i=1

BT
�
∗
n
(�∗

i,n
�∗T
i,n
)B

− 2BT

n∑
i=1

�
∗
n
(�∗

i,n
�∗
i,n
)Ai,n.

n∑
i=1

A2
i,n
Var∗

n
(�∗

i,n
) →

∑
1≤s,t≤n

asK(us, ut)at, as n → ∞, w.p. 1.

n∑
i=1

BT
�
∗
n
(�∗

i,n
�∗T
i,n
)B → BTL(�0)B =

∑
1≤s,t≤n

asW
T (us, �0)L(�0)W(ut, �0)at,
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Thus, for the last term, due to Lemma 2 (i), we get as n → ∞

And finally, as n → ∞ , w.p. 1,

Assume that aTΣa > 0 . Then we have to prove the Lindeberg condition

as n → ∞ , w.p. 1.
The integral equals

Since Var∗
n
(Z1

n
) → aTL(�0)a we get for the indicator

�
∗
n
(�∗

i,n
�∗
i,n
)

=
1

n
�
∗
n

((
�∗
i
− m(�T

n
Xi)

)
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∗
i
)
)
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1

n
�
∗
n

((
�∗
i
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n
Xi)

)(
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i
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n
Xi)

− (1 − �∗
i
)
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n
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))
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n
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i
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n
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)(�∗
i
− m(�T

n
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)
w(Xi, �n)

m(�T
n
Xi)(1 − m(�T

n
Xi))

)

=
1

n
w(Xi, �n).

BT
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�
∗
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(𝜉∗

i,n
𝜂∗
i,n
)Ai,n
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(
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)T

1
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(
w(Xi, 𝛽n)

k∑
j=1
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T
n
Xi < uj)

)

=
∑

1≤,s,t≤k
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asW(us, 𝛽0)

T 1

n
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i=1

(
w(Xi, 𝛽n)I(𝛽
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at

]

→
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1≤,s,t≤k

asW(us, 𝛽0)
TW(ut, 𝛽0)at.

Var∗
n
(Z1∗

n
) →

∑
1≤s,t≤n

asK̂(us, ut)at = aTΣa.

1

Var∗
n
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)
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B)2

⋅ I
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∗
i,n
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Var∗
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√
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1
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for 1 ≤ i ≤ n an n sufficiently large.
Since |(�i − m(�T

n
Xi))Ai,n| and B are bounded, assumption (E2) yields

Thus, Borel-Cantelli yields

I

(|||𝜉i,nAi,n − 𝜂T
i,n
B
||| > �

√
Varn(Z

1
n
)

)

= I
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w.p. 1. Therefore, the indicator equals 0 as n → ∞ , and the Lindeberg condition is 
fulfilled and the finite dimensional distributions converge against a centered normal 
distribution with variance aTΣa in distribution as n → ∞ .   ◻

Appendix

The following results are used in the proofs in Section 5.

Lemma 4 H̃ ∶= {IH|H ∈ H} , with H =
{
{x|�Tx ≤ u}, � ∈ ℝd, u ∈ ℝ

}
 is a Vapnik-

Cervonenkis-class (VC), has a bounded uniform entropy integral (BUEI) with enve-
lope H̃ = 1 , and is pointwise measurable (PM).

Proof Due to Lemma 9.12 (i) of Kosorok (2008), the half-spaces built a VC-class. 
Thus, H̃ is also a VC-class and therefore also BUEI, see Lemma 9.8 and Theo-
rem 9.3 of Kosorok (2008). Since all values of H̃ are smaller or equal 1, H̃ has the 
envelope H̃ = 1 . Following Kosorok, (2008), H̃ is also PM.   ◻

Lemma 5 G ∶=
{
g ∶ g(x) = �Tx, � ∈ ℝd

}
 is a VC-class, BUEI and PM.

Proof Since G is a finite dimensional vector space of measurable functions, G is a 
VC-class and therefore also BUEI, see Lemma 9.6 and Theorem  9.3 of Kosorok 
(2008). Furthermore, we can choose the subset Gℚ of G such that the � are in the 
rational subset of ℝd , which is countable, and therefore Gℚ is also countable. Obvi-
ously, for each f ∈ G we can find a sequence {gm} ∈ Gℚ such that gm(x) → f (x) for 
each x ∈ X  . Thus G is PM.   ◻

Lemma 6 Assume m is continuous and m′ is bounded.

Then G̃ ∶= {m(g)m̄(g)|g ∈ G} is BUEI with envelope G̃ = 1 and PM.

Proof Define 𝜙(t) ∶= m(t)m̄(t) = m(t) − m2(t) and use Taylor expansion to get that

where t∗(�1, �2, x) is between �T
1
x and �T

2
x . The last inequality is correct since 

0 ≤ m ≤ 1 . Furthermore, m′ is bounded and due to Lemma 5 we can apply Lemma 

|�(�T
1
x) − �(�T

2
x)|2

=
|||�

�
(
t∗(�1, �2, x)

)(
�T
1
x − �T

2
x
)|||

2

=
|||
(
m�

(
t∗(�1, �2, x)

)
− 2m�

(
t∗(�1, �2, x)

)
m
(
t∗(�1, �2, x)

))(
�T
1
x − �T

2
x
)|||

2

=
|||m

�
(
t∗(�1, �2, x)

)(
1 − 2m

(
t∗(�1, �2, x)

))|||
2|||�

T
1
x − �T

2
x
|||
2

≤ |||m
�
(
t∗(�1, �2, x)

)|||
2|||�

T
1
x − �T

2
x
|||
2

,
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9.13 of Kosorok, (2008) to get that G̃ is BUEI. Additionally, 0 ≤ mm̄ ≤ 1 and there-
fore G̃ has the envelope G̃ = 1 . Also, m is continuous and G is PM, thus G̃ is also PM, 
see Lemma 8.10 of Kosorok, (2008).   ◻

Lemma 7 Assume m is continuous and m′ is bounded. Combine G̃ and H̃ to get 
F ∶= {m(g)m̄(g)IH , g ∈ G, IH ∈ H̃} . F  is BUEI with envelope F = 1 , PM, Donsker 
and GC.

Proof Since G̃ and H̃ are BUEI with envelopes G̃ and H̃ and PM, F = G̃H̃ is BUEI 
with envelope F = G̃H̃ = 1 and PM, see (Kosorok, 2008, Lemma 9.17(v)).

Furthermore, E(F2) < ∞ . Following Kosorok (2008, page 165) Kosorok (2008), 
F  is Donsker and therefore also a GC.   ◻

Corollary 1 Assume that Y is a process in D([0, 1]) and that w.p. 1, as n → ∞

in distribution for points ti of [0, 1], that w.p. 1

in distribution, and that, for r ≤ s ≤ t , n ≥ 1 and 𝜆 > 0,

where � ≥ 0 and 𝛼 > 1∕2 and there exists H, a continuous, non-decreasing function 
on [0,  1] with sup

s∈[0,1]

||Hn(s) − H(s)|| → 0 . Then Yn
→ Y  as n → ∞ in distribution 

w.p.1.

(1) follows from:

Proof Following Theorem  13.5 of Billingsley, (1999), it is sufficient to 
show, that for 𝜖 > 0, 𝜂 > 0 , there exists a � with 0 < 𝛿 < 1 and a n0 such that 
ℙn[y ∶ �

��

n
(�) ≥ �] ≤ �, n ≥ n0 , where �′′

n
 is the modulus of continuity. Apply Theo-

rem 10.4 (Billingsley 1999) with Yn in the role of � . Then (10.20) is the same as (1). 
Let T = [0, 1] . Thus we get by (10.2)

(
Y(t1)

n, ..., Y(tk)
n
)
→

(
Y(t1), ..., Y(tk)

)

Y(1) − Y(1 − �) → 0, � → 0,

(1)ℙ
(|Y(s)n − Y(r)n|2� ∧ |Y(t)n − Y(s)n|2� ≥ �

) ≤ 1

�4�

(
Hn(t) − Hn(r)

)2�
,

�
(|Y(s)n − Y(r)n|2�|Y(t)n − Y(s)n|2� ≥ �

) ≤ (
Hn(t) − Hn(r)

)2�
.
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This follows from Glivenko-Cantelli (first 2 summands) and the continuity of H (last 
summand). Thus, for given � and � we can choose � such that the right site of the 
inequality is less than � .   ◻

Acknowledgements We thank Cornelia Krome for her helpful notes and her careful reading of the manu-
script. Furthermore, we would like to thank Professor Li-Xing Zhu for providing us with the source code 
of further simulation studies of their method.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The data used in the Real Data Application can be found in the paper of Härdle and 
Stoker (1989).

Declarations 

Conflict of interest Not applicable

Code availability The code used in Section 3 can be provided.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Agresti, A. (2002). Categorical data analysis, second edn. Wiley Series in Probability and Statistics. New 
York: Wiley-Interscience [John Wiley & Sons].

Bass, R. F. (2011). Stochastic processes. Cambridge series in statistical and probabilistic mathematics. 
Cambridge University Press.

ℙn(y ∶ �
��

n
(�) ≥ �) ≤ 2K

�4�
sup

0≤t≤1−2�
(
Hn(t + 2�) − Hn(t)

)2�−1

≤ 2K

�4�

(
sup

0≤t≤1−2�
||Hn(t + 2�) − H(t + 2�)||2�−1

+ sup
0≤t≤1−2�

||H(t) − Hn(t)
||2�−1

+ sup
0≤t≤1−2�

|H(t + 2�) − H(t)|2�−1
)

≤ �

3
+

�

3
+

�

3
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


335

1 3

Journal of the Korean Statistical Society (2022) 51:308–335 

Billingsley, P. (1999). Convergence of probability measures. second edn. Wiley series in probability and 
statistics: probability and statistics. New York: John Wiley & Sons Inc.

Dikta, G., Kvesic, M., & Schmidt, C. (2006). Bootstrap approximations in model checks for binary data. 
Journal of the American Statistical Association, 101(474), 521–530.

Härdle, W., & Stoker, T. M. (1989). Investigating smooth multiple regression by the method of average 
derivatives. Journal of the American Statistical Association, 84(408), 986–995.

Kosorok, M. (2008). Introduction to empirical processes and semiparametric inference. New York: 
Springer.

Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some 
regressors are not always observed. Journal of the American Statistical Association, 89(427), 
846–866.

Serfling, R. (1980). Approximation theorems of mathematical statistics. [nachdr.] edn.Wiley series in 
probability and mathematical statistics : probability and mathematical statistics. NY: Wiley.

Singh, K. (1981). On the Asymptotic Accuracy of Efron’s Bootstrap. The Annals of Statistics, 9(6), 
1187–1195.

Stute, W. (1997). Nonparametric model checks for regression. The Annals of Statistics, 25(2), 613–641.
Stute, W., & Zhu, L. X. (2002). Model checks for generalized linear models. Scandinavian Journal of 

Statistics, 29(3), 535–545.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Bootstrap based goodness-of-fit tests for binary multivariate regression models
	Abstract
	1 Introduction
	2 Main results
	3 Simulations and real data application
	3.1 Simulations
	3.2 Real data application

	4 Discussion
	5 Proofs
	Acknowledgements 
	References




