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Abstract
This study demonstrates the importance of account-
ing for correlated unobserved heterogeneity to correctly
identify the relevance of career and education for fer-
tility decisions. By exploiting individual-level life-cycle
information on fertility, career and education from large
administrative longitudinal datasets, this paper shows
that non-linear panel models produce substantially dif-
ferent results than the cross-sectional approaches widely
used in previous studies. Higher opportunity costs of
having children are found to be associated with lower
fertility within a country, while the magnitude of the
adjustment differs strongly across countries. In Ger-
many, fertility decisions are found to depend more on
individual circumstances than in France, where bet-
ter public childcare support enhances the compatibility
between family and professional life.
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1 INTRODUCTION

In most developed countries, the decline in fertility is widely considered one of the greatest soci-
etal challenges. Reproduction numbers below the replacement rate lead to population ageing
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distri-
bution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Journal of the Royal Statistical Society: Series A (Statistics in Society) published by John Wiley & Sons Ltd on behalf of
Royal Statistical Society.

J R Stat Soc Series A. 2022;185 (Suppl. 2):S515–S546. wileyonlinelibrary.com/journal/rssa S515

https://orcid.org/0000-0001-7530-703X
https://orcid.org/0000-0002-6105-6345
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/RSSA


S516 LIPOWSKI et al.

with all the undesirable consequences such as increasing financial obligations for health, pen-
sion and social insurances. The key to shape fertility must be to better understand the factors
that determine fertility. There is extensive literature on fertility in the social sciences, eco-
nomics and demography. Much of this work has focused on the relationship between fertility
and education. Some work is descriptive (e.g. Rendall et al., 2005, Skirbekk et al., 2006, Isen &
Stevenson, 2010, Oppermann, 2017) and some work uses regression analysis (e.g. Naz et al., 2006,
Jones & Tertilt, 2008, McCrary & Royer, 2011, Cygan-Rehm & Maeder, 2013, Fort et al., 2016).
Although not all studies reach the same conclusion, there is some consensus, in particular among
demographers, that there is both a negative relationship between education and fertility, and a
postponing behaviour among higher educated females (e.g. Gustafsson, 2001, Ní Bhrolcháin &
Beaujouan, 2012, Schaeper et al., 2017, Tropf & Mandemakers, 2017).

Figure 1 displays the average number of children per female by education and wage for France
and Germany. In addition to the fact that the average number of children is higher in France than
in Germany, the figure suggests that wages and education are negatively related to fertility, and
apparently more so in Germany than in France. The point of departure of this paper is that the
problem is more complex. Fertility depends on many other factors confounding the relationship of
interest, especially the woman’s professional career, and factors that are usually unobserved, such
as the preference for children. Females with relatively weaker preferences for children may sort
into higher education and jobs with higher wages, introducing a correlation between observed
and unobserved factors and fertility. In addition, there may be a simultaneity problem as the num-
ber of children also plays a role for education and wages. In most economic and social decision
problems, there is a wealth of relationships between the relevant variables, making the direction
of causality unclear. Omitted variables, simultaneity, and related issues violate the assumptions
of standard regression models which yield inconsistent estimates if not appropriately adapted or
if more comprehensive data are unavailable.

Many existing studies on fertility rely on data from one period only, such as censuses or sur-
veys, and use regression methodology for cross-sectional data (e.g. Naz et al., 2006, O’Donoghue &
O’Shea, 2006, Cygan-Rehm & Maeder, 2013, Fort et al., 2016). Others rely on household sur-
vey data that are rather small (Hotz & Miller, 1988, Francesconi, 2002, Keane & Wolpin, 2010)
or suffer from non-response and recall errors in important variables (Francesconi, 2002). Oth-
ers lack individual level information about employment and fertility (Fort et al., 2016, Heck-
man & Walker, 1990, Del Boca, 2002, Keane & Wolpin, 2010, Adda et al., 2017). To sum up,
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the data sets employed in previous studies do not contain information about both fertility and
employment situation (especially wages) at the individual level over the entire life-cycle of the
female.

Much of the existing analysis on the interaction between fertility and career has focused
on employment outcomes such as wages. Although there is consensus that mothers experience
a wage penalty compared to childless females (Budig & England, 2001, Anderson et al., 2002,
Gangl & Ziefle, 2009, Picchio et al., 2021), additional research is required to analyse the role of
the interplay of career and education for fertility.

In this paper, we study the importance of economic factors and unobserved heterogeneity on
fertility outcomes in France and Germany. By using large-scale linked administrative data sets
with daily information for several decades, our analysis benefits in two dimensions: first, we can
model the employment situation of women during their life cycle in great detail, including wages,
tenure and occupation. Second, by exploiting the longitudinal structure of the data, we can apply
econometric panel techniques which give consistent estimates even if included variables are con-
founded with unobserved factors such as preferences. We can, therefore, separate the effect of
education from the effect of the employment situation while allowing both to be related with
unobserved factors. To deal with so-called endogeneities stemming from omitted variables and
simultaneity, the panel data approach is preferred over a cross-sectional analysis with instru-
mental variables. The latter is plagued by inefficiencies and easily suffers from sizable estimation
biases when instruments are invalid. By analysing the role of the number of children for labour
supply, Jakubson (1988) has demonstrated that a correlated random effects (CRE) panel model
gives substantially different results than a cross-sectional model.

This analysis also adopts a panel methodology that allows unobservables to be correlated
with covariates. It is the first study to look at fertility that applies a nonlinear Poisson panel
methodology. Regarding the methodology and the subject matter, our analysis makes two main
contributions to the literature. First, by using panel data with detailed information about the pro-
fessional career and by estimating a panel model, we purge the relationship between education
and employment characteristics and fertility from individual unobserved factors. These unobserv-
ables, such as preferences, bias estimates in previous studies not using panel data. We compare
our results with hypothetical results based on inferior data sets and models to assess the direc-
tion and magnitude of potential differences. By doing so, we highlight the importance of making
large administrative panel data available for these types of analyses. We suggest a decomposi-
tion of the estimated partial covariate effects on the expected number of children that decouples
the role of unobserved confounders, such as preferences, from the actual role of the covariate.
We hereby show that education and wages of females are substantially related with unobserved
factors, rendering cross-sectional models invalid. Second, we exploit comprehensive longitudinal
employment information over a period of several decades to perform a detailed analysis of the
relationship between various career-related factors and fertility outcomes in France and Germany.
France and Germany are of particular interest, as these countries are characterised by substan-
tial differences in fertility, female labour force participation, family policies and approaches to
childcare. We can therefore analyse whether education and career play a different role for fertility
decisions in different institutional setups.

The structure of this paper is as follows: Section 2 introduces the relevant statistical methodol-
ogy. Section 3 describes the data and sample. Section 4 compares the contextual settings of France
and Germany and states the main hypotheses. The estimation results are given in Section 5.
Section 6 concludes.
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2 STATISTICAL METHODOLOGY

This section outlines the statistical frameworks for our data analysis. In the first subsection, we
formally present several statistical panel models that are used in the application. The second sub-
section focuses on the interpretation of marginal effects (ME) and a decomposition analysis of
them. In the last subsection, we describe the problem of unobserved heterogeneity for consis-
tently estimating the effects of individual characteristics, such as education or wage, on fertility
when the analysis is based on cross-sectional data. We report directly comparable results for the
models outlined before in one overview table (Table 1). These results point to the importance
of using appropriate panel data methods by showing that estimates partly change substantially
when doing so.

2.1 Count data regression models

In this subsection, we present the Poisson count data regression model and relevant panel data
variants that are used in the application to estimate the partial relationship between various
observable factors and the number of children.

Let yit denote the number of children for female i = 1, ...,N and period t = 1, ...,Ti. yit can only
take on non-negative integer values m = 0, 1, 2.... The non-negative expected number of children
conditional on individual characteristics xit (1 × K) and an unobserved time-invariant individual
effect ai ≥ 0 is

E[yit|xit, ai] = ai 𝜆it = ai exp(xit𝜷), (1)

where 𝜷 is a (K × 1) vector of unknown parameters. It is common for count data to assume a
Poisson distribution, for example, yit|xit, ai ∼ (ai 𝜆it). We follow Cameron and Trivedi’s (2013,
chapter 9) convention and for the sake of identification, we exclude the constant term from xit.
A first approach to estimate this model is to use a pooled maximum likelihood estimator. An
important advantage of Poisson estimates is that they are consistent as long as the conditional
mean is correctly specified (Gouriéroux et al., 1984). This holds even with misspecified higher
moments, although at the expense of efficiency. Models with other count distributions may be
more efficiently estimated but have the disadvantage of being more complex and time intensive.
Given the size of our data sets we give a lower priority to efficiency. The conditional mean function
is misspecified, however, in presence of confounded or endogenous covariates.

The availability of panel data allows to model unobserved individual heterogeneity and to
mitigate biases of cross sectional or pooled models. The conditional joint density for individual i
is obtained by integrating out the unobserved individual-specific effect:

Pr(yi1, ..., yiTi |xi) =
∫

∞

0
Pr(yi1, ..., yiTi |xi, a)f (a|xi)da. (2)

We consider models which are assumed to satisfy

E[yit|xi1, ..., xiTi , ai] = E[yit|xit, ai], t = 1, ...,Ti (3)

Pr(yi1, ...yiTi |xi, ai) =
Ti∏

t=1
Pr(yit|xi, ai). (4)
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with xi = (xi1, ..., xiTi). Equation (3) defines strict exogeneity of xit conditional on ai, while
Equation (4) defines independence of the dependent variable over time conditional on xi and ai.
The strict exogeneity assumption rules out lagged values of yit as explanatory variables but it does
not restrict the relationship between xit and ai.

A well-known model that allows for arbitrary correlations between xit and ai is the fixed effects
(FE) Poisson model, see Cameron and Trivedi (2013). We estimate the FE model for comparison
but do not focus on it because it neither identifies the parameters of time-invariant covariates nor
produces interpretable marginal effects.

Instead, we focus on the CRE model, which allows ai to be conditionally correlated with xit.
Based on the ideas of Mundlak (1978) and Chamberlain (1980, 1982) for the linear model, the
individual effect is specified as

ai = exp(xi𝝃 + 𝜀i), (5)

where xi denotes the vector of time averages of the time-varying covariates. 𝜀i is an i.i.d. error term
independent of xit. The term xi𝝃 in Equation (5) establishes a direct relationship between ai and
xit. In contrast, any correlation between time-constant variables and ai is only modelled indirectly
via the correlation between the (mean of the) time-varying and the time-constant variables. The
model therefore only allows for restrictive endogeneity patterns for the time-constant covariates,
which may affect the consistency of estimated coefficients on these variables. Plugging (5) into
(1) yields

E[yit|xit, ai] = exp(xit𝜷 + xi𝝃 + 𝜀i). (6)

Under the common assumption that exp(𝜀i) follows a gamma distribution (𝛾, 𝛾∕𝛼), it turns
out that conditionally on observables xi, the random term ai is also characterised by a Gamma
distribution: (𝛾, exp(−xi𝝃)𝛾∕𝛼) with E[ai|xi] = 𝛼 exp(xi𝝃), and V[ai|xi] = 𝛼2 exp(2xi𝝃)∕𝛾 . The
conditional density of unobserved heterogeneity is then given by:

f
(

a|xi
)
= 1
Γ(𝛾)

(
𝛾

𝛼

exp
(
−xi𝝃

))𝛾
a𝛾−1 exp

(

− 𝛾
𝛼

exp
(
−xi𝝃

)
a
)

.

This conditional density can be plotted for different values of 𝛼, 𝛾 and xi𝝃 as it is done in Figure A1
in the Appendix.

When we condition the expected number of children and its variance on observables only, it
turns out that E

[
yit|xit, xi

]
≤ V

[
yit|xit, xi

]
when 𝛼, 𝛾 > 0. In the case where 𝝃 = 0, the density of

unobserved heterogeneity is independent of xi which corresponds to an unconditional Gamma
marginal density, and characterises the random effects (RE) model. We do not report results for
the RE Poisson model, because it is plagued by the same sources of inconsistencies as the pooled
model.

The cross-sectional or pooled model requires independence between unobserved heterogene-
ity and covariates and neglects heterogeneity by requiring ai = 𝛼, and hence V[ai] = 0. This
implies equidispersion: V[yit|xit] = E[yit|xit], which does not fit the data in many applications.
Violation of equidispersion alone does not affect the consistency of the estimator, but its effi-
ciency, and it invalidates inference. For this reason, robust standard errors (SE) and statistics are
reported for the pooled model.

We have reasoned that FE and CRE models are more adequate in the context of our appli-
cation than RE or pooled models without unobserved effects, because FE and CRE models
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permit for correlation between observables and unobservables. A disadvantage of the CRE
model is that it is expected to mainly address correlation between time-constant unobservables
and time-varying covariates. One of the reviewers pointed to other interesting approaches to
tackle endogeneities. Picchio et al. (2021) consider a system of two labour market outcome
equations to study the effect of fertility on these outcomes. They address the endogeneity of
fertility related variables by estimating selection equations and by incorporating unobserved
time-varying RE. Fernandez-Val (2009) studies bias correction techniques for coefficients and
average partial effects for the FE probit model to mitigate the incidental parameter problem.
However, Martin (2017) shows that with panel Poisson FE models, the average partial effects of
time-varying covariates can be consistently estimated despite the incidental parameters problem.
Regarding the CRE approach, Hsu and Shiu (2021) show that (under reasonable assumptions)
the density of the unobserved heterogeneity is identified for nonlinear CRE models. These
two results are useful for the estimation of the density of unobserved heterogeneity pursued
here.

In the application we estimate pooled, CRE and FE variants of the Poisson model. For compar-
ison, we also estimate linear regression models such as pooled OLS and FE, which do not restrict
the count variable to be non-negative and integer valued.

Serial correlation between observations for the same female requires further adjustments of
SEs and inference statistics. Therefore, we report cluster-robust SEs, which are implemented
using block bootstrap, where clustering is done at the individual level. For more details, and
related references for the Poisson count models for panel data, see the textbooks by Cameron and
Trivedi (2013) and Wooldridge (2010).

2.2 Marginal effects and decomposition analysis

2.2.1 Marginal effects

Given the limited interpretability of the parameters in non-linear models, we report ME in the
application. The ME of the jth (continuous) covariate on the expected number of children in the
Poisson model with unobserved effects is

MEj(xit, ai) =
𝜕E[yit|xit, ai]

𝜕xitj
= ai exp(xit𝜷)𝛽j = 𝛽j E[yit|xit, ai], (7)

with xitj the jth component of xit. Computing the ME is not possible without knowing ai. One
advantage of the CRE model (over FE) is that it yields an estimate for exp(xi𝝃)which is consistent
for E[ai|xi] and this allows to compute MEj. In our empirical analysis, we compute the average
MEj which is the sample average of MEj(xit, ai). In the case of discrete covariates, we take the
sample average of differences in estimated conditional expectations of yit given xit and ai, when
the covariate increases by one unit.

2.2.2 Decomposition analysis: the role of observables and unobservables

We illustrate the dilemma of confounded observables and unobservables with the help of a sim-
ple decomposition. The number of children y is determined by observed covariates (x) and by
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individual heterogeneity (a). Given that a is not observable, our empirical model cannot directly
base on both but only on x:

E[y|x] =
∫

E[y|x, a] f(a|x)da,

where f (a|x) denotes again the conditional density of the unobserved heterogeneity. The differ-
ence in the expected number of children between two females can be decomposed into two parts.
One is due to different observables such as different educational degrees or different wages, the
other is due to different unobservables such as relative preferences. Put formally, the difference
in the expected number of children between a woman A with covariates xA and a woman B with
covariates xB can be written as:

E [y|xA] − E [y|xB] =
∫

E [y|xA, a] f (a|xA) − E [y|xB, a] f (a|xB) da

=
∫
(E [y|xA, a] − E [y|xB, a]) f (a|xB) da

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Difference holding “preferences” constant

+
∫

E [y|xA, a] (f (a|xA) − f (a|xB)) da
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Difference holding observed characteristics constant

. (8)

We estimate both contributions to this simple decomposition: the part due to changing covari-
ates holding ‘preferences’ constant (first difference, upper term) and the part due to different
preferences if both women had the same covariates (second difference, lower term). In the special
case where the individual unobserved heterogeneity is independent of the covariates, the sec-
ond difference vanishes and empirical results obtained from cross-sectional data and panel data
become similar, provided that the data are large enough. The decomposition in Equation (8) is
applicable when A and B differ in all, some, or only one covariate. The last case is the most preva-
lent as it corresponds to the ME of changing one covariate, holding all others constant. For the
CRE model, unobserved heterogeneity ai is assumed to be independent of xi conditionally to xi𝝃,
where the dimension of xi equals the number of time varying covariates in the model. It follows
that f (a|xi) = f (a|xi, xi𝝃) = f (a|xi𝝃), where the first equality is valid because xi ∶= T−1

i
∑

t xit. The
second equality results from the conditional independence which reduces the conditioning set to
the scalar xi𝝃. The decomposition in (8) then simplifies to:

E [y|xA] − E [y|xB] =
∫
(E [y|xA, a] − E [y|xB, a]) f

(
a|xB𝝃

)
da

+
∫

E [y|xA, a]
(

f
(

a|xA𝝃
)
− f

(
a|xB𝝃

))
da. (9)

The second (lower) term is not identified with cross-sectional data. Despite our focus on the
expected value, the analogue of the decomposition can also be applied to the conditional probabil-
ity of having a certain number of children. In this case, the expectation operator in Equations (8)
and (9) simply needs to be replaced by a probability. When combining the Poisson model with
Gamma densities for ai, the resulting negative binomial model allows to simplify Equation (9)
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further, and to decompose the overall expected number of children into a part due to changes in
the explanatory variables and a part due to the shift in the unobserved heterogeneity:

E [y|xA] − E [y|xB] =
(

E
[
y|xA, xB𝝃

]
− E

[
y|xB, xB𝝃

])
+
(

E
[
y|xA, xA𝝃

]
− E

[
y|xA, xB𝝃

])
. (10)

If xA differs from xB in one variable only, it corresponds to the ME. Estimates for this are reported
for Model D in Table 1. We also use this expression to study changing fertility patterns over cohorts
(see Appendix A.2).

2.2.3 Decomposition of cross-country differences

The public debate often focuses on differences between countries in estimated population means,
such as the average number of children. To understand better the origin of the difference in the
unconditional expected number of children between France (F) and Germany (D), we use our
regression results to decompose it into three components (see Section 5.3):

EF [y] − ED [y] =
∫
(EF [y|x, a] − ED [y|x, a]) fF (a|x)da dFF (x)

+
∫

ED [y|x, a] (fF (a|x) − fD (a|x)) da dFF (x)

+
∫

ED [y|x, a] (dFF (x) − dFD (x)) fD (a|x)da. (11)

The first term of the RHS in Equation (11) shows how much is due to different 𝜷s in the two
countries. These are the differences in responses that are due to different strengths of the ME.
The second term shows how much is due to differences in the distribution of unobservables, in
particular different 𝝃s. The third term expresses the part due to differences in the distribution of
the observed characteristics.

2.3 Fertility choices and unobserved heterogeneity

The expected number of children is typically computed within a country, for individuals with dif-
ferent characteristics and preferences. Because education, income and fertility are to some extent
chosen by individuals, there is likely endogenous sorting: women with stronger relative prefer-
ences for career may choose longer educational tracks and fewer children. In contrast, females
with stronger relative preferences for children may choose shorter educational tracks, refrain from
climbing the career ladder and have more children. Naturally, unobserved individual preferences
are related with both fertility and career outcomes. Hence, it is crucial to account for these pref-
erences to avoid mistakenly attributing differences in fertility caused by preferences to education
or income.

Although some surveys include questions related to individual preferences such as personal-
ity traits, family status, desired number of children etc., the full set of individual preferences can
unfortunately never be observed. While the presence of unobservables in the fertility equation
does not in itself invalidate results, the problem arises from correlations with the included observ-
able variables. This correlation between the explanatory variables and the error term makes the
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observables endogenous. In addition to the omission of correlated variables, the problem may
also arise from simultaneity of the outcome and the covariates. Whatever is the origin of endo-
geneity, it invalidates estimation results if not appropriately taken into account. Our approach is
to use longitudinal information which allows us to take care of individual specific unobservables
in the model. For time series of independent surveys (repeated cross sections), specific methods
first proposed by Deaton (1985) have been developed to control for individual unobserved effects.
However, when there is panel data available, it is preferable to rely on panel models as they have
better statistical properties.

To illustrate the relevance of using a panel methodology in the context of our analysis, we
present a selection of results from our application. The full set of results are presented and inter-
preted in detail in Section 5, including inference about some hypotheses. Table 1 compares ME
for a selection of variables for four different models: a cross-sectional model of completed fertility
with commonly used covariates (A); a pooled cross-sectional model for current fertility with com-
monly used covariates (B); a pooled cross-sectional model for current fertility with the full set of
covariates (C) and a CRE panel model with the full set of variables (D). All models are Poisson
count models. Reported statistics for Model A, B and C are estimated ME on the expected number
of children when changing the respective covariate, while holding all others constant. For Model
D, we report the terms of our decomposition in Equation (9), plus the overall effect given on the
left hand side (LHS).

The results in Table 1 reveal that it is important to include information about the employment
situation of the female and to use panel data methods to allow observables to be correlated with
unobserved heterogeneity. Model A, which consider women with completed fertility, have been
routinely studied in the context of fertility (e.g. Naz et al., 2006, Cygan-Rehm & Maeder, 2013, Fort
et al., 2016). Model A is based on one observation for each female at the end of her reproductive
cycle. Going from Model A to Model B shows that the restriction to completed fertility in Model
A leads to selectivity in the sample such that some of the estimated effects change considerably.
For example, the estimated effects of the cohort variables decrease strongly in magnitude when
going from Model B to Model A. While the restriction to one year only decreases the precision of
the estimate, the selection of observations for which the dependent variable attains its maximum
causes the estimates for Model A to be different. Without reporting these results, we confirmed
this by estimating Model B with data restricted to one calendar year (i.e. one observation per
female), which only led to less precision compared to Model B.

Regression analysis for fertility that is based on census information or a survey at one time
point is expected to give results similar to Model B or C (although based on a much smaller sam-
ple). The addition of covariates that describe the current situation of the female (Model C) is
expected to reduce the omitted variable bias. For both countries, the effect of higher education
reduces further in magnitude. The cohort effects for Germany also decrease further in size, while
they increase slightly for France.

Our preferred approach corresponds to Model D. It exploits the panel data structure and allows
unobserved heterogeneity to be correlated with included covariates. In contrast to the other mod-
els, the estimates are compatible with selection into, for example, education and jobs with high
wages based on individual preferences. When comparing two females with the same unobserved
heterogeneity (first difference of Equation 9, column 5), the effect of wages on fertility decreases
further. The non-zero second difference terms in Equation (9) for the wage categories (column 6)
provide evidence for wages to be correlated with unobserved heterogeneity (since the conditional
density of the unobserved effect changes with wage). The larger the size of the second difference
term, the more biassed are the results for the time varying variables in Model C. Therefore, by
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T A B L E 1 Estimated marginal effects for different model specifications

A B C D
Compl.
fertility Full data Full data Full data
Basic
variables

Basic
variables

Full set
of variables Full set of variables

Pooled Pooled Pooled Panel - CRE

LHS
First
term

Second
term

(1) (2) (3) (4) (5) (6)

France
Education - Reference category: No VT

VT −0.125 −0.057 −0.030 −0.077 −0.077

TE −0.308 −0.273 −0.217 −0.190 −0.190
Wage - Reference category: No wage or in first wage quartile

25–49 wage pct. −0.028 −0.048 −0.043 −0.005

50–74 wage pct. −0.079 −0.069 −0.051 −0.018

75–89 wage pct. −0.120 −0.075 −0.048 −0.027

90-94 wage pct. −0.172 −0.088 −0.049 −0.039

95-98 wage pct. −0.178 −0.060 −0.018 −0.043

99-100 wage pct. −0.147 −0.025 0.013 −0.038
Cohort - Reference category: Born 1949–1958

1959–1968 −0.154 −0.080 −0.137 0.013 0.013

1969–1978 −0.265 −0.239 −0.314 −0.085 −0.085

1979–1989 — −0.456 −0.535 −0.081 −0.081

Germany
Education - Reference category: No VT

VT −0.067 −0.073 −0.026 −0.099 −0.099

TE −0.377 −0.330 −0.235 −0.327 −0.327
Wage - Reference category: No wage or in first wage quartile

25–49 wage pct. −0.050 −0.059 −0.028 −0.031

50–74 wage pct. −0.156 −0.115 −0.081 −0.034

75–89 wage pct. −0.246 −0.161 −0.128 −0.033

90–94 wage pct. −0.303 −0.179 −0.147 −0.032

95–98 wage pct. −0.375 −0.206 −0.166 −0.040

99−100 wage pct. −0.444 −0.214 −0.161 −0.053
Cohort - Reference category: Born 1949–1958

1959–1968 −0.276 −0.128 −0.071 −0.011 −0.011

1969–1978 −0.488 −0.351 −0.225 0.060 0.060

1979–1989 — −0.683 −0.559 −0.048 −0.048

Notes: Dependent variable: number of children. Basic variables (A, B): education, age, interaction age × education, cohort. Full
set of variables (C, D): basic variables plus wage, tenure, wage increase, employment, past employment, having twins/multiples
and year categories. First and second term correspond to the estimated decomposition terms in Equation (8).
Abbreviations: CRE, correlated random effects; TE, Tertiary education; VT, vocational training.
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not allowing for unobserved heterogeneity to be correlated with observables, a pooled model (C)
produces inconsistent results. Hence, the overall ME of Model D (column 4), which combines the
effect of changing the covariate and the effect of the correlation between the covariate and the
unobserved heterogeneity, is quite off the estimated effects of the pooled Model C. For example,
the ME of tertiary education is 1.5 times as large in Model D as in Model C for Germany. To sum
up, the pooled model is neither informative for the joint effect (LHS of Equation 9), nor for the
partial effect (first difference term).

3 DATA

We construct comparable samples from two administrative data sources for France and Germany.
This is a non-trivial exercise given that these data sources differ substantially in shape and content
as they are collected through different processes. In this section we provide a brief overview of how
this comparability is achieved and present first stylised facts. More details on the data preparation
and harmonisation and descriptive statistics are given in Appendix A.1.

3.1 France: Déclaration Annuelle des Données Sociales - Echantillon
Démographique Permanent, 2010 (DADS-EDP 2010)

The French panel contains socio-demographic information of individuals observed in the EDP
combined with administrative employment data from the DADS since 1976. Drawing its infor-
mation from civil registers and the census, the EDP contains details on education, marriage and
fertility. Only persons born from 1 to 4 October of each year are followed. Since 2004 the dataset
is enriched by individuals born from 1 to 4 of April and July. The information in the DADS stems
from mandatory declarations completed by all businesses with dependently employed staff. It
comprises data on start and end dates of employment, wages, hours worked, types of contract and
occupation. Self-employed, civil servants and individuals that have never been employed do not
appear in this data. Since 2004, persons living in French overseas territories have been included,
whereas before 2004 only continental France was considered.

3.2 Germany: Biographical data of selected social security agencies
in Germany (BASiD)

The Biographical data of selected social security agencies in Germany (BASiD) links administra-
tive individual-level data from the Federal Employment Agency and the Institute for Employment
Research to data from the German Pension Insurance. Detailed information on the dataset can be
found in Hochfellner et al. (2011). The pension insurance covers 96% of the German population,
from which a 1% random sample is made available via the BASiD. The dataset encompasses indi-
viduals up to the age of 67 who held an insurance account at the end of 2007, provided that they
had at least one entry and that they were still alive. Periods of employment, training measures,
registered unemployment and certain types of inactivity are reported with exact dates. Further-
more, the database provides information on average daily salary, occupation, type of employment
(full-time vs. part-time), characteristics of the employing firm and demographic information such
as gender, age, educational achievements and dates of birth for any child.
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3.3 Constructing comparable data samples

The French dataset is more selective than the German dataset in terms of individuals included
and periods recorded: the DADS-EDP exclusively encompasses persons with at least one record of
non-self-employed work, whereas the BASiD also covers individuals that have never been depen-
dently employed but were observed by the Federal Employment Agency or the Pension Insurance
for a different reason, for example due to voluntarily insured self-employment or the eligibility
for minimum income support. Selection into these data sets is therefore not entirely random and
might hereby induce biases for our country-specific estimates. Individual employment histories
are less complete in the French data than in the German data because the former exclusively con-
tain periods of dependent employment. This restriction affects the set of explanatory variables
included in the comparative two-country analysis as the current and past labour market states
likely affect fertility behaviour. Unfortunately, no information on marital status and hence on
a potential partner is recorded in the BASiD. The French dataset contains the date of marriage
but neither has current updates on marital status nor information on the spouse. Information on
personal preferences, religion or social conventions is not provided in any of the data sources.
Instead, we exploit the longitudinal dimension of the data to address the omission of important
variables. The precision of our analysis benefits from the large cross-sectional and longitudinal
data dimensions that are not available with survey data. Furthermore, errors due to misstatements
in the birth and employment variables are unlikely since they are key variables of administrative
records.

We construct comparable annual panel data sets for the period 1994 to 2007 for the two coun-
tries. The panels are based on employment records of women aged between 18 and 45 in the
respective years, where the variables are constructed from any daily information that is available
in the raw data since the 1970s. We group education information into three categories: hav-
ing no vocational training or higher education (no VT), having completed a vocational training
(VT) and holding a tertiary education diploma (TE). In both panels, a woman is observed for at
least one and at most 14 years. The French panel contains 102,574 females, the German panel
175,353. When we construct aggregate birth rates from the BASiD and the DADS-EDP, they are
somewhat lower than the birth rates reported by the national statistical institutes. This pattern is
observed with and without the restrictions on our sample and could be due to general selectivity
of the underlying data sources or by births which occurred after the last observed record in our
data. Descriptive statistics of the independent variables and the estimation samples are given in
Table A1.

4 BACKGROUND, MECHANISMS AND HYPOTHESES

Systematic differences in fertility behaviour and female labour force participation between
women in France and Germany are likely due to different historical and cultural backgrounds,
social conventions and family policies. While there was still a strong historical attachment to the
male breadwinner model in Germany, the French state provided incentives for young mothers to
return to the labour market quickly. In addition to the goal of reconciling work and family life, the
French system promoted families of three or more children. In contrast, Germany neither encour-
age young mothers to return to work nor favoured large families but supported child-rearing
at home with cash benefits. In the following, we briefly compare the different national child-
care arrangements, child-rearing benefits and aggregated transfers during the period 1994–2007.
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This is followed by hypotheses to be tested in the empirical analysis. A more detailed presentation
of the family policies in France and Germany can be found in Section S.II of the Supplementary
Material S1.

Unlike in France, the German approach to childcare was characterised by a shortage of child-
care places for children below the age of 6, a late entry into daycare and an incompatibility
between the regular working hours of parents and the opening hours of day care institutions.
For more details on the childcare policies policies see Brewster and Rindfuss (2000), Plantenga
et al. (2005), Fagnani and Math (2010) and Salles et al. (2010). Due to the restricted supply of
childcare places in conjunction with traditional gender roles, it was more difficult for mothers in
Germany to return to paid work. OECD data confirm these patterns: while both countries spent
similar percentages of GDP on family cash benefits between 1994 and 2007, government expen-
diture on family services was approximately twice as high in France as in Germany. In addition,
expenditure on childcare and education was between 1.8 and 3.6 times higher in France than in
Germany (OECD, 2019). Due to the better possibilities to work for mothers in France compared
to mothers in Germany, there are less pronounced opportunity costs of having children in terms
of forgone career opportunities and lost wages in France. Therefore, we expect weaker responses
in fertility to employment and education in France than in Germany.

Towards the end of our analysis period, Germany began to promote female employment and
to invest in public childcare. For example, the percentage of children aged under three attending
childcare facilities or being cared for by child minders increased from 6.3 in 1994 to 15.5 in 2007
in Germany (Fagnani & Math, 2010). We therefore anticipate a ceteris paribus increase in fertility
in later years.

In the macro literature, a positive relationship between female labour force participation and
fertility has been found repeatedly (e.g. Brewster and Rindfuss, 2000, Ahn & Mira, 2002, Billari &
Kohler, 2004, Adsera, 2004), even though it may look at a glance counter-intuitive on the indi-
vidual level. By hypothesising individual fertility in France to be weaker affected by education
and wages than in Germany, we expect individual level behaviour to be consistent with macro
outcomes.

The two countries also differ in their tax breaks and social benefits in relation to having chil-
dren, which are the (Allocations familiales), the (Complément familial) and the (Quotient familial)
in France and the (Kinderfreibetrag) and the (Kindergeld) in Germany. Baclet et al. (2005) cre-
ate a so-called effective tax rate for the two countries, which combines the incentives set by the
income tax, the child cash benefits and the child tax reductions. For both countries they find that
the effective tax rate decreases with the number of children. The evolution of the effective tax
rate with income differs between both countries: for households earning below a certain thresh-
old, the effective tax rate is lower in Germany than in France. For pre-tax incomes greater than
36.000–45.000 Euros (depending on the marital status and the number of children), however, the
German effective tax rate is higher than the French. For a more complete picture, social assis-
tance and housing benefits also need to be taken into account. The resulting aggregate transfers
in France are U-shaped in family income: on the one hand, low-income families gain relative
to median earners. On the other hand, high-income families benefit from the quotient familial
(Bechtel et al., 2005). We therefore expect a relative increase in fertility at high levels of income
in both countries. Since aggregate transfers for high wages are higher in France than in Germany,
we expect this increase in fertility with high incomes to be stronger in France than in Germany.
However, negative opportunity costs of having children, which are higher in Germany than in
France, will reduce this effect.

In both countries females are expected to sort into employment according to their prefer-
ences for children and career (Adda et al., 2017). Females with relatively high career ambitions
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compared to preferences for children likely sort into higher educational tracks and jobs with
higher wages. We therefore expect a non-trivial correlation between unobserved and observed
employment related factors in both countries.

5 EMPIRICAL RESULTS

5.1 Main results

As outlined in Section 2 we focus on the CRE model and the estimation of the average ME on
the expected number of children. These are reported in Figure 2 along with their 95% block boot-
strap confidence intervals. Although we mainly focus on the effects on the expected value, we
sometimes also refer to the estimated ME on the probabilities of having a certain number of chil-
dren (both estimates are readily obtained with the Poisson model). These results are given in
Table A4.

23–27
28–32
33–38
38–45
18–22
23–27
28–32
33–38
38–45
18–22
23–27
28–32
33–38
38–45
PT
FT
Non-empl
25%–49%
50%–74%
75%–89%
90%–94%
95%–98%
99%–100%

>0
>median
6–11
12–23
24–35
>=36
Teacher
1959–1968
1969–1978
1979–1989

No VT*

VT

TE

Employment

Past empl.
wage

Wage increase

Tenure

Occup. choice
Cohort

–0.4 –0.2 0 0.2
Coefficient + 95% Confidence interval

France Germany

F I G U R E 2 Average marginal effects of the Poisson correlated random effects model. Dependent variable:
number of children. Based on Tables A2 and A3. Confidence intervals based on 100 bootstrap replications (this
value was chosen due to very long computing times). FT, Full-time; PT, Part-time; TE, Tertiary Education; VT,
Vocational Training. Reference Categories: No VT: aged 18–22; VT and TE: having No VT and being of the same
age, Employment: not employed, Past Employment: Employed, Wage: 0 or in the 1st to 24th wage percentile,
Wage Increase: 0 or negative, Tenure: 0–5 months, Occupational Choice: not teacher, Cohort: 1949–1958.
*Marginal effects of no VT are divided by 5 for better visibility.
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5.1.1 Cohorts

Estimated cohort effects are mostly insignificant for both countries, which is in contrast to
when one uses data on completed fertility or cross-sectional data (compare Table 1). When not
appropriately controlling for correlated unobserved heterogeneity, the estimated cohort effects of
cross-sectional analyses are largely inconsistent. Our results appear to contradict the well-known
strong decline in unconditional fertility by cohort. To shed light on this puzzle and to understand
better why unconditional fertility declines, we apply the decomposition approach of Section 2.3.
The results in Appendix A.2 show that the decline in average fertility across cohorts is due to
changes in unobservables such as preferences but also due to changes in the distribution of observ-
ables such as education, age and wage (compare Table A5). We also confirm that the distribution
of unobserved heterogeneity shifts to the left across cohorts.

5.1.2 Education and age

While for both countries higher educational attainment is associated with a significantly lower
expected number of children at most ages, the estimated ME are up to twice as large in magni-
tude for Germany than for France. In Germany, having a tertiary education degree compared to
having no vocational training is estimated to reduce the expected number of children by 0.24 to
0.51, in France by 0.06 to 0.43. The decline in the expected number is mainly due to a hike in
the probability of remaining childless of +14 percentage points in Germany and +8 percentage
points in France (compare Table A4). Thus, the effect in France is clearly weaker than what the
descriptive evidence suggests (see again Figure 1).

Other studies that focus on the estimation of the causal effect of education by means of edu-
cational reforms generally find no or a positive effect of education on fertility (e.g. Fort et al., 2016
for continental Europe, McCrary & Royer, 2011 for the United States, Monstad et al., 2008 for
Norway). Cygan-Rehm and Maeder (2013) use a compulsory schooling reform in Germany and
find a negative effect on the expected number of children. Their estimates are similar in size to
ours: one additional year of schooling decreases the expected number of children by at least 0.1
and increases the probability of remaining childless by 5 percentage points. In line with them, we
conclude that opportunity costs of having children are especially severe in Germany.

Our results confirm much lower fertility for females during educational periods of tertiary
education. This postponement has been extensively stressed in the literature (e.g. Rindfuss
et al., 1996, Ní Bhrolcháin & Beaujouan, 2012). Highly educated females have roughly 0.3 to
0.5 children less in their mid 20s than a female without vocational training. There is a catch up
behaviour at higher ages: the difference in the expected number of children between high and low
educated women narrows to around 0.1–0.2 when they are in their 40s. Again, these patterns are
more pronounced for Germany than for France. The equivalent postponement effects for females
with vocational training are much weaker.

5.1.3 Wage

We also provide evidence of higher wages being associated with a lower expected number of chil-
dren. Although this is found to be present in both countries, the estimated effect is again much
stronger in magnitude for Germany than for France. We explain this by higher opportunity costs
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due to a weaker work–family compatibility in Germany compared to France. In Germany, being
in the highest earnings decile compared to the lowest quartile reduces the expected number of
children by nearly 0.2. For Germany, higher wages are associated with a higher probability to stay
childless (+5 percentage points when earning in the upper 5% of the earnings distribution com-
pared to no wage or a wage in the lower quartile) and a reduced probability to have any positive
number of children (compare Table A4). In contrast, for France, higher wages are associated with
higher probabilities of having no or one child and with a reduced probability of having two or
more children.

For France, there is weak evidence of a positive income effect at high wages. For French
females in the top one percentile (around 6000 observations), the wage effect is not signifi-
cantly negative. This is in line with our hypothesis about the consequences of aggregate transfers
for children, see Section 4. This positive relation at high wage brackets is robust to different
specifications of the econometric model and is of high interest as it differs from most previous
studies. Several studies find a negative relationship between wages and fertility (e.g. Heckman &
Walker, 1990, Jones & Tertilt, 2008). Causal analyses using exogenous and unexpected income
shocks, however, find evidence of a positive effect of income on fertility (Lindo, 2010, Loven-
heim & Mumford, 2013). Coupled with the available childcare opportunities, this could explain
the positive wage effect at the top of the income distribution for France. Similarly, Hazan and
Zoabi (2015) report a recent change in fertility patterns by education: they find higher fertility
rates for young, highly educated American women than for medium educated females and trace
this back to changes in the relative cost of childcare.

The pooled model gives much more sizeable effects of wages on fertility for both countries
(see Tables A2 and A3). This supports the hypothesis of the presence of important sorting effects,
for example, females with low preferences for children and strong preferences for career sort into
high paid jobs. Models that do not take into account the endogeneity of the wage lead to estimates
that are about 5–10 times larger (see again Table 1).

5.1.4 Employment situation

The results also show the relevance of the current and past employment situation (other than
wage) for fertility. Being employed (part-time and full-time) is estimated to reduce fertility in
Germany as opposed to France, which confirms higher opportunity costs of fertility in Germany.
Similarly, the French coefficient of non-employment during the past year is close to zero, while
the estimate is significantly positive and important for Germany (+0.06). This suggests that the
positive effect of reduced opportunity costs outweighs the negative effect of deteriorated economic
security. The German data allows us to disentangle the effect of past unemployment from the
effect of past inactivity, see Table S3. While having been unemployed is estimated to have virtually
no effect on fertility, past inactivity increases the expected number of children by 0.2 children.
This finding supports the results by Arntz et al. (2017) who find a high propensity for German
women to have a second child during the job protection period of the first child.

The literature acknowledges the endogeneity of part-time work by noting that part-time work
is associated with preferences for children (Francesconi, 2002, Adda et al., 2017). Our estimates
confirm this sorting into part-time work: while the estimates of part-time work are large and
positive for both countries in the pooled model (+0.22 in France and +0.18 in Germany), they
are much smaller and partly negative when accounting for this endogeneity (+0.08 and -0.01
respectively). This sorting can best be seen by the example of teachers: naturally, being a teacher



LIPOWSKI et al. S531

does not increase fertility, but having a preference for children leads to an occupational choice
that is more compatible with family life. For Germany, the pooled model estimates the number of
children to be 0.22 higher for teachers than for females in other occupations, while the estimate is
just 0.05 for the CRE model. This points to an endogenous sorting of females with a preference for
children into the teaching profession in Germany. Interestingly, the opposite is found for France,
where the estimated effect for the CRE model is smaller in size than for the pooled model.

Following Francesconi (2002), an increase in female wages serves as proxy for career advance-
ment and is thus associated with additional opportunity costs. Therefore, we expect a negative
association between career jumps and fertility. Not taking into account unobserved heterogeneity,
we indeed find a negative estimate for Germany (−0.06). However, when allowing for sorting of
career-oriented females in trajectories with wage promotions, the estimate turns positive (+0.04).
Overall we find mixed results for the relationship between wage increases and fertility. For smaller
increases there is evidence of a negative relationship, while for large increases it is found to be
positive.

With respect to tenure, we do not find evidence of substantial strategic adaptation of the timing
of births to ensure eligibility for child benefits. For France, the effect increases in size with tenure.
For Germany, the effect is zero for tenures of 1–3 years and negative for longer periods of tenure,
presumably because it is more common for mothers in France to return to the same employer after
childbirth than for mothers in Germany (Rodrigues & Vergnat, 2018 for France; Arntz et al., 2017
for Germany). For both countries, the estimated effect of tenure is much more positive in the
pooled model. Again, this can be explained by sorting: females with relative preferences for career
are more mobile, change their jobs more often and, therefore, have shorter tenure. Hence, the
pooled model produces an estimate of the effect of tenure that is confounded with the effect of
preferences for career and children.

5.2 Robustness checks

The full set of results for the Poisson and linear regressions, in each case for the pooled, FE and
CRE model, is given in the Appendix (Tables A2 and A3). Note that our coefficients of the CRE
models are very close to the estimates of the FE models, both for the linear and the Poisson speci-
fication. This is reassuring as the FE model does not restrict correlations between ai and the time
varying covariates. We compute likelihood ratio tests by comparing the RE model with the CRE
model to assess whether unobserved heterogeneity is correlated with the observed variables. The
increase in the log likelihood when allowing for this correlation is substantial for both countries
(from −1,032, 458 to −1,030, 769 for France and from −1,198, 888 to −1,192, 702 for Germany).
Therefore, we reject the hypothesis of no improvement at p-values that are virtually zero.

To ensure the best possible comparability between both countries, we use comparable vari-
ables for France and Germany. In addition, we estimate a country-specific regression for each
country separately by including additional covariates which are not available in the other dataset.
For France, we add variables on being born overseas, marriage and living in Île-de-France. For
Germany, we additionally control for nationality, federal states, former East Germany (inter-
acted with cohorts) and split up past non-employment status in unemployed, inactive and
unobserved. The results can be found in Tables S3 and S4. Importantly, our main estimates
are unaffected by the inclusion of these extra variables. This implies that the individual effects
do a good job in picking up unobserved heterogeneity in relation to the partner and ethnic-
ity. While in France having been married increases the expected number of children by around
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0.5, the effects of education, wages and employment remain virtually the same. For Germany,
the inclusion of the additional variables, in particular living in former East Germany, leads
to an increase in the negative effects of wage and education on fertility. The estimate of the
effect of part-time work, however, becomes more positive and the difference between the pooled
and CRE model becomes even larger. Additional robustness checks have been conducted using
different cut-off dates when constructing the yearly panel. No relevant differences have been
detected.

5.3 Decomposition of country differences

The findings above reconcile the micro effects within a country and the macro effects between
countries: within each country, higher opportunity costs in terms of foregone wages and
employment opportunities generally harm fertility outcomes. However, the cross-country rela-
tion between female employment and fertility is positive: during our analysis period, the
country with higher female labour force participation, France, has higher fertility rates.
This can be explained by cross-country differences in the availability of childcare and,
hence, higher opportunity costs of having children in Germany than in France. Using a
decomposition of fertility differences between the two countries, we now show that the
lower fertility in Germany is indeed due to differing responses to employment related
characteristics.

There are pronounced differences in the sample averages of the number of children for France
and Germany. While it is 1.04 for France, the equivalent value is just 0.65 for Germany (Table 2,
column 1). As these figures are sample averages (over all females and periods), they should not be
confused with average completed fertility. The CRE Poisson model predicts only slightly higher
means than the actual average number for the two countries, indicating that the model explains
average fertility well. The average predicted number of children is 0.33 higher in France than in
Germany. To understand better what is driving the difference between the two countries, we use
our regression results and decompose the expected difference into a part due to differences in
𝜷s, differences in unobserved heterogeneity (captured by 𝝃) and differences in the distribution of
the observables x. The decomposition is outlined in Equation (11). The estimated decomposition
terms are given Table 2.

The first decomposition term suggests that the ̂𝜷s for France are more favourable for fertility
than those for Germany. As explained above, the main country differences in the ME are found
for education and variables related to employment. Therefore, females in Germany would have
a considerably higher number of children if they experienced the same less negative effects of

T A B L E 2 Decomposition of country differences in the expected number of children

Raw differential LHS First RHS term Second RHS term Third RHS term

yF − yD Ê(yF) − Ê(yD) due to diff. 𝜷̂ due to diff. 𝝃̂ due to diff. x

(1.04–0.65) (1.05–0.72) (1.05–0.37) (0.37–1.22) (1.22–0.72)

0.39 0.33 0.68 −0.85 0.50

Notes: Estimated terms of the decomposition given in Equation (11).
Abbreviations: D, Germany; F, France.
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wages and education on fertility as their counterparts in France. In contrast, the negative sec-
ond term in relation to ̂𝝃 suggests that unobservable heterogeneity is more favourable for fertility
in Germany than in France. This sizeable non-zero second term highlights that controlling for
unobserved individual heterogeneity is crucial since it avoids attributing too much explanatory
power to the observed variables with which it is correlated. The last term shows that the com-
position of observables, such as age and wages, leads to higher fertility rates in France than
in Germany. To summarise, the higher fertility in France is driven by more beneficial fertility
responses to observables and a more favourable composition of the observable covariates. We
explain the former by a better work family compatibility in the French system. The fertility gap
between France and Germany would be much wider if females in Germany had not comparatively
favourable unobservables such as stronger preferences for children. Therefore, our decomposi-
tion analysis finds no evidence of lower fertility in Germany being driven by lower preferences for
children.

6 CONCLUSIONS

We reason in detail that a panel analysis of fertility gives better results than an analysis based on
cross-sectional or pooled data. We demonstrate the relevance of accounting for individual het-
erogeneity by providing empirical results that differ substantially from results obtained by usual
analytical approaches without panel dimension. Most cross-country comparisons of fertility are
based on census information or cross-sectional surveys. These data sources, such as the Fertil-
ity and Family Survey (FFS), are sometimes internationally harmonised and exist for a range of
countries. They contain detailed information about fertility but they lack a longitudinal dimen-
sion which makes the application of panel techniques impossible. Other harmonised panel data
sets with focus on fertility such as the Generations and Gender Survey (GGS) lack precision about
the professional career compared to the daily administrative data of our study. A more targeted
approach would be to conduct panel surveys that are directly linked to administrative data sources
to enhance these data structures.

We provide detailed results of a cross-country comparison of factors determining fertility
behaviour in France and Germany. While most result patterns are similar for both countries,
they often differ substantially in strength. We provide evidence of the female’s professional career
being highly important for fertility decisions, just as education, and confirm negative wage effects
for large parts of the income distribution. These effects are more pronounced for Germany than
for France. We provide evidence of adjustments taking place not only with respect to the num-
ber of children, but also with respect to the timing of births. Highly educated women have
a strong tendency to postpone births to a later age when career advancements have already
taken place.

We explain the differences in the results for France and Germany by different societal
approaches to childcare and other parenthood-related aspects. Lower fertility in Germany com-
pared to France results from stronger negative responses to education and employment due to
greater opportunity costs of having children, rather than from lower preferences for children. This
is an important finding since it implies that there is scope for policymakers to influence fertility
decisions by determining the opportunity costs—a proposition controversially discussed in the
literature (see Gauthier, 2007 for a review and discussion on the effectiveness of policies in raising
fertility). While this policy conclusion is rather broad, it provides a foundation for analyses investi-
gating the effectiveness of particular country-specific policy measures to reduce opportunity costs
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of having children. For example, it provides important support for national studies finding signif-
icant positive effects of increases in public childcare on fertility (e.g. Bauernschuster et al., 2016
for an assessment of the effectiveness of the introduction of universal child care in Germany in
raising fertility). Along these lines, we reason that the apparent paradox of ‘higher female labour
force participation rates - higher fertility rates’ that has been observed on the macro level is actu-
ally compatible with family policies and public provision of day-care that mitigate the negative
economic consequences of having children.
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APPENDIX

A.1 Additional results

T A B L E A1 Description of the independent variables

Share in %Time
variant Description France Germany

Age Yes 18–22 years 16.1 17.9
23–27 years 19.7 21.1
28–32 years 20.3 21.2
33–37 years 19.7 18.2
38–45 years 24.2 21.6

Education No No VT 13.4 20.7
VT 55.2 66.9
TE 31.4 12.4

Employment Yes Not employed 53.5 42.9
Part-time 15.9 19.0
Full-time 30.6 38.1

Past employment Yes Not employed 50.4 50.8
Gross wage Yes 0 or <25% 64.1 56.9

<50% 11.4 14.4
<75% 12.0 14.3
<90% 7.5 8.6
<95% 2.5 2.9
<99% 2.0 2.3
>=99% 0.5 0.6

Change in wage relative Yes Negative 18.3 21.2
to past year positive 30.4 45.5

>median 51.3 33.3
Tenure at firm Yes <6 months 12.1 45.0

6–11 months 4.0 7.0
12–23 months 10.6 9.9
24–36 months 8.4 7.1
>36 months 65.0 31.0

Child-friendly profession Yes Yes 2.2 1.7
Twins Yes Yes 0.6 0.7
Multiples Yes Yes 0.5 0.0
Birth cohort No 1949–1958 9.1 8.2

1959–1968 36.9 32.4
1969–1978 39.5 44.2
1979–1989 14.5 15.2
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T A B L E A1 (Continued)

Share in %

Factor
Time
variant Description France Germany

Year Yes 1994–1996 20.0 19.8

1997–1999 21.7 21.2

2000–2002 22.6 22.1

2003–2005 22.1 22.3

2006–2007 13.6 14.6

Variables only observed for France

Île-de-France Yes Yes 21.1

Married Yes Yes 31.8

Born overseas No Yes 2.0

Variables only observed for Germany

Former GDR No Yes 14.6

Federal state Yes No info. 21.5

SH & MV 3.3

LS & B 6.7

NRW 17.3

Hesse 6.7

RP & S 4.4

BW 11.4

Bavaria 12.6

B & H 5.3

S & B 6.4

T & SA 4.4

Foreign nationality No Yes 30.6

Unempl. last year Yes Yes 15.0

Inactive last year Yes Yes 13.1

Unobs. last year Yes Yes 30.9

Notes: Reference categories of the following regressions are underscored.
Abbreviations: B & H, Berlin & Hamburg; BW, Baden-Wuerttemberg; LS & B, Lower Saxony & Bremen; NRW, North
Rhine-Westphalia; RP & S, Rhineland-Palatinate & Saarland; S & B, Saxony & Brandenburg; SH & MV, Schleswig-Holstein &
Mecklenburg-Western Pomerania; T & SA, Thuringia & Saxony-Anhalt.
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T A B L E A2 Baseline results France

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Education × Age

No Vocational Training—Ref. Category: without vocational training, aged 18–22

23–27 0.38*** 0.22*** 0.22*** 1.69*** 0.36*** 1.52*** 1.48*** 0.44***

(0.01) (0.01) (0.01) (0.02) (0.00) (0.03) (0.02) (0.00)

28–32 0.95*** 0.64*** 0.63*** 2.41*** 0.95*** 2.16*** 2.09*** 1.00***

(0.01) (0.01) (0.01) (0.02) (0.00) (0.03) (0.02) (0.00)

33–37 1.36*** 0.85*** 0.85*** 2.70*** 1.38*** 2.29*** 2.21*** 1.20***

(0.02) (0.02) (0.01) (0.02) (0.01) (0.03) (0.03) (0.00)

38–45 1.58*** 0.78*** 0.78*** 2.80*** 1.52*** 2.19*** 2.10*** 1.09***

(0.02) (0.02) (0.01) (0.02) (0.01) (0.03) (0.03) (0.00)

Vocational Training—Ref. Category: without vocational training, same age group

18–22 −0.00 0.09*** −0.07** −0.07 0.07* 0.01

(0.00) (0.01) (0.03) (0.05) (0.03) (0.01)

23–27 −0.02* −0.09*** 0.01 −0.05*** −0.03** −0.14*** 0.00 −0.00

(0.01) (0.01) (0.01) (0.03) (0.01) (0.03) (0.03) (0.01)

28–32 −0.03*** −0.16*** −0.06*** −0.02*** −0.02 −0.23*** −0.06*** −0.08***

(0.01) (0.01) (0.01) (0.03) (0.01) (0.03) (0.03) (0.01)

33–37 −0.03 −0.20*** −0.10*** −0.01* −0.02 −0.27*** −0.08*** −0.11***

(0.01) (0.02) (0.02) (0.03) (0.01) (0.03) (0.03) (0.01)

38–45 −0.08*** −0.21*** −0.10*** −0.03*** −0.06*** −0.2*** −0.07*** −0.09***

(0.02) (0.02) (0.02) (0.00) (0.02) (0.03) (0.03) (0.01)

Tertiary Education—Ref. Category: without vocational training, same age group

18–22 −0.08*** −0.07*** −2.10*** −0.09*** −2.03*** −0.14***

(0.00) (0.01) (0.05) (0.01) (0.05) (0.01)

23–27 −0.27*** −0.22*** −0.28*** 1.01*** −0.35*** 1.05*** −0.96*** −0.43***

(0.01) (0.01) (0.01) (0.05) (0.01) (0.05) (0.05) (0.01)

28–32 −0.29*** −0.24*** −0.30*** −0.32*** −0.31*** 1.67*** −0.32*** −0.35***

(0.01) (0.02) (0.01) (0.05) (0.01) (0.05) (0.05) (0.01)

33–37 −0.20*** −0.11*** −0.18*** −0.12*** −0.18*** 1.88*** −0.12*** −0.16***

(0.01) (0.02) (0.02) (0.05) (0.01) (0.05) (0.05) (0.01)

38–45 −0.21*** −0.01 −0.09*** −0.10*** −0.16*** 1.94*** −0.05*** −0.06***

(0.02) (0.02) (0.02) (0.00) (0.01) (0.05) (0.01) (0.01)
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T A B L E A2 (Continued)

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Employment—Ref. Category: not employed

Part-time 0.20*** 0.06*** 0.06*** 0.19*** 0.22*** 0.07*** 0.08*** 0.08***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

Full-time −0.10*** −0.04*** −0.04*** −0.06*** −0.06*** 0.03*** 0.03*** 0.03***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)
Past employment—Ref. Category: employed

Not empl. 0.02*** 0.02*** 0.02*** 0.01** 0.01** −0.01** −0.01** −0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Wage—Ref. Category: 0 or in the first to 24th wage percentile

25%–49% −0.01 −0.03*** −0.03*** −0.03*** −0.03*** −0.04*** −0.04*** −0.04***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

50%–74% −0.07*** −0.05*** −0.05*** −0.08*** −0.08*** −0.05*** −0.05*** −0.05***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

75%–89% −0.14*** −0.07*** −0.07*** −0.12*** −0.12*** −0.04*** −0.05*** −0.05***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

90%–94% −0.21*** −0.09*** −0.09*** −0.17*** −0.17*** −0.04*** −0.05*** −0.05***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

95%–98% −0.23*** −0.07*** −0.07*** −0.18*** −0.18*** −0.01 −0.02 −0.02***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

99%–100% −0.21*** −0.04*** −0.04** −0.15*** −0.15*** 0.01 0.01 0.01

(0.03) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
Wage Increase—Ref. Category: 0 or negative

>0 −0.02*** −0.04*** −0.04*** −0.03*** −0.03*** −0.05*** −0.05*** −0.05***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

>median 0.02*** 0.01*** 0.01*** 0.03*** 0.04*** 0.01** 0.01** 0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Tenure in months—Ref. Category: 0–5 months

6–11 0.00 −0.02*** −0.02*** −0.02* −0.01*** −0.02*** −0.02*** −0.02***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

12–23 0.08*** 0.05*** 0.05*** 0.06*** 0.06*** 0.01* 0.01** 0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00)

24–35 0.09*** 0.05*** 0.05*** 0.09*** 0.09*** 0.03*** 0.04*** 0.04***

(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

≥36 0.11*** 0.05*** 0.05*** 0.13*** 0.13*** 0.07*** 0.08*** 0.08***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
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T A B L E A2 (Continued)

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Occupational Choice—Ref. Category: not teacher

Teacher −0.12*** −0.00 −0.01 −0.11*** −0.11*** 0.02 −0.04** −0.04***

(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

Cohort- Ref. Category: 1949–1958

1959–1968 −0.19*** −0.06* −0.12*** −0.14*** 0.02 0.02

(0.01) (0.03) (0.00) (0.01) (0.03) (0.03)

1969–1978 −0.40*** −0.11*** −0.30*** −0.31*** −0.08 −0.08*

(0.02) (0.04) (0.01) (0.01) (0.05) (0.03)

1979–1989 −0.48*** −0.10 −0.58*** −0.54*** −0.08 −0.08

(0.02) (0.05) (0.01) (0.02) (0.07) (0.05)

Year—Ref. Category: 1994–1996

1997–1999 −0.01*** 0.10*** 0.10*** −0.03*** −0.03*** 0.06*** 0.06*** 0.06***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2000–2002 0.02*** 0.23*** 0.23*** −0.00 −0.00 0.16*** 0.16*** 0.16***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2003–2005 0.07*** 0.37*** 0.37*** 0.05*** 0.05*** 0.28*** 0.28*** 0.29***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

2006–2007 0.08*** 0.48*** 0.48*** 0.07*** 0.07*** 0.39*** 0.39*** 0.43***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

Constant 0.39*** 0.37*** 0.04 −2.19*** −1.94***

(0.02) (0.00) (0.11) (0.02) (0.05)

Obs. 1,155,439 1,155,439 1,155,439 1,155,439 1,155,439 813,637 1,155,439 1,155,439

LL −1,288,786 −716,521 −1,030,769

Notes: SEs based on 100 bootstrap replications (this value was chosen due to very long computing times). AME denotes average
marginal effect. Controlling for twins and multiples.
* p < 0.05,
** p < 0.01,
*** p < 0.001.



S542 LIPOWSKI et al.

T A B L E A3 Baseline results Germany

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Education × Age

No vocational training—Ref. Category: without vocational training, aged 18–22

23–27 0.24*** 0.09*** 0.09*** 1.26*** 0.23*** 0.91*** 0.90*** 0.32***

(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.01) (0.00)

28–32 0.57*** 0.24*** 0.25*** 1.78*** 0.54*** 1.22*** 1.20*** 0.59***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.02) (0.00)

33–37 0.84*** 0.33*** 0.33*** 2.09*** 0.80*** 1.29*** 1.26*** 0.68***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.02) (0.00)

38–45 1.04*** 0.30*** 0.30*** 2.25*** 0.99*** 1.23*** 1.19*** 0.63***

(0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.02) (0.00)

Vocational training—Ref. Category: without vocational training, same age group

18–22 −0.01*** −0.02*** −0.73*** −0.06*** −0.70*** −0.13***

(0.00) (0.00) (0.02) (0.00) (0.02) (0.01)

23–27 −0.02*** −0.02*** −0.05*** −0.28*** −0.10*** 0.34*** −0.32*** −0.17***

(0.01) (0.00) (0.00) (0.02) (0.00) (0.02) (0.02) (0.01)

28–32 −0.02*** −0.01* −0.03*** −0.06*** −0.03*** 0.51*** −0.15*** −0.12***

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01)

33–37 0.01 0.00 −0.02*** 0.01* 0.01 0.54*** −0.10*** −0.09***

(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01)

38–45 −0.01* −0.00 −0.03** 0.01*** 0.01 0.54*** −0.10*** −0.08***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01)

Tertiary education—Ref. Category: without vocational training, same age group

18–22 −0.11*** −0.10*** −2.79*** −0.11*** −2.47*** −0.24***

(0.00) (0.00) (0.07) (0.00) (0.07) (0.01)

23–27 −0.25*** −0.12*** −0.23*** −2.02*** −0.33*** 0.82*** −1.56*** −0.50***

(0.00) (0.00) (0.00) (0.07) (0.01) (0.08) (0.07) (0.01)

28–32 −0.32*** −0.18*** −0.28*** −0.82*** −0.37*** 1.54*** −0.76*** −0.46***

(0.01) (0.01) (0.01) (0.07) (0.01) (0.08) (0.07) (0.01)

33–37 −0.27*** −0.12*** −0.23*** −0.31*** −0.24*** 1.83*** −0.43*** −0.32***

(0.01) (0.01) (0.01) (0.07) (0.01) (0.08) (0.07) (0.01)

38–45 −0.20*** −0.09*** −0.19*** −0.11*** −0.12*** 1.88*** −0.35*** −0.25***

(0.02) (0.01) (0.01) (0.07) (0.02) (0.08) (0.07) (0.01)
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T A B L E A3 (Continued)

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Employment—Ref. Category: not employed

Part-time 0.18*** 0.01*** 0.01*** 0.26*** 0.18*** −0.01*** −0.01*** −0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Full-time −0.01* −0.05*** −0.05*** −0.02*** −0.01 −0.11*** −0.11*** −0.08***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Past employment- Ref. Category: employed

Not empl. 0.25*** 0.01*** 0.01*** 0.36*** 0.24*** 0.09*** 0.09*** 0.06***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Wage—Ref. Category: 0 or in the first to 24th wage percentile

25–49% −0.05*** −0.04*** −0.04*** −0.07*** −0.05*** −0.04*** −0.04*** −0.03***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

50%–74% −0.18*** −0.10*** −0.10*** −0.24*** −0.16*** −0.10*** −0.11*** −0.08***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

75%–89% −0.28*** −0.15*** −0.15*** −0.41*** −0.25*** −0.17*** −0.18*** −0.13***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

90%–94% −0.38*** −0.18*** −0.18*** −0.54*** −0.30*** −0.20*** −0.21*** −0.14***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00)

95%–98% −0.47*** −0.19*** −0.19*** −0.72*** −0.38*** −0.22*** −0.25*** −0.16***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

99%-100% −0.56*** −0.17*** −0.17*** −0.94*** −0.44*** −0.22** −0.24*** −0.16***

(0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01)
Wage Increase—Ref. Category: 0 or negative

>0 0.03*** 0.01*** 0.01*** 0.03*** 0.02*** −0.01*** −0.01*** −0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

>median −0.09*** 0.05*** 0.05*** −0.10*** −0.06*** 0.05*** 0.05*** 0.04***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Tenure in months—Ref. Category: 0—5 months

6–11 −0.03*** −0.01*** 0.01*** −0.01*** −0.07*** −0.06*** −0.05*** −0.04***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00)

12–23 0.08*** 0.00** 0.00** 0.08*** 0.06*** 0.00*** 0.00 0.00*

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

24–35 0.10*** −0.01*** −0.01*** 0.11*** 0.08*** −0.01*** −0.01*** −0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

≥36 0.02*** −0.03*** −0.03** 0.04*** 0.03*** −0.05*** −0.05*** −0.03***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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T A B L E A3 (Continued)

Linear Poisson

OLS FE CRE Pooled FE CRE

𝜷 𝜷 𝜷 𝜷 ÂME 𝜷 𝜷 ÂME

Occupational Choice—Ref. Category: not teacher

Teacher 0.18*** 0.02*** 0.03*** 0.29*** 0.22*** 0.04** 0.07*** 0.05***

(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

Cohort- Ref. Category: 1949-58

1959–1968 −0.18*** −0.04* −0.10*** −0.07*** −0.01 −0.01

(0.01) (0.00) (0.00) (0.01) (0.04) (0.02)

1969–1978 −0.37*** 0.00 −0.34*** −0.23*** 0.08 0.06*

(0.01) (0.03) (0.01) (0.01) (0.06) (0.03)

1979–1989 −0.41*** 0.00 −1.25*** −0.56*** −0.07 −0.05*

(0.01) (0.04) (0.01) (0.01) (0.08) (0.05)

Year—Ref. Category: 1994-1996

1997–1999 −0.03*** 0.07*** 0.07*** −0.08*** −0.06*** 0.05*** 0.05*** 0.03***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2000–2002 −0.05*** 0.15*** 0.15*** −0.12*** −0.08*** 0.16*** 0.17*** 0.11***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

2003–2005 −0.10*** 0.21*** 0.21*** −0.18*** −0.12*** 0.26*** 0.26*** 0.19***

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

2006–2007 −0.15*** 0.25*** 0.25*** −0.22*** −0.15*** 0.37*** 0.37*** 0.28***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00)

Constant 0.39*** 0.38*** −1.67*** −1.95*** −6.98***

(0.01) (0.00) (0.08) (0.01) (0.17)

Obs. 1,908,071 1,908,071 1,908,071 1,908,071 1,908,071 912,028 1,908,071 1,908,071

LL −1,722,231 −789,594 −1,192,702

Notes: SEs based on 100 bootstrap replications (this value was chosen due to very long computing times). AME denotes average
marginal effect. Controlling for twins and multiples.
* p < 0.05,
** p < 0.01,
*** p < 0.001.
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T A B L E A4 Average marginal effect on the conditional probability of having 0 to many children

France Germany

0 1 2 3 4+ 0 1 2 3 4+
No VT 32.7 32.2 19.4 9.3 6.4 54.4 25.9 10.9 4.6 4.0

VT +1.5 +0.8 −0.4 −0.7 −1.1 +3.8 −1.4 −1.0 −0.6 −0.8

TE +8.3 −3.0 −2.4 −1.5 −1.4 +13.7 −5.5 −3.7 −2.1 −2.3

Non-employed 46.3 25.9 15.2 7.5 5.1 60.8 22.0 9.4 4.1 3.5

PT −1.9 −0.4 +0.6 +0.7 +1.0 +0.3 −0.0 −0.1 −0.1 −0.1

FT −0.8 −0.1 +0.2 +0.3 +0.4 +2.4 −0.4 −0.7 −0.5 −0.7

0–24 pct 45.3 25.6 15.5 7.9 5.7 60.5 22.1 9.5 4.1 3.6

25–49 pct +1.0 +0.2 −0.3 −0.5 −0.6 +0.8 −0.1 −0.2 −0.2 −0.3

50–74 pct +1.2 +0.2 −0.4 −0.5 −0.6 +2.4 −0.4 −0.8 −0.6 −0.7

75–89 pct +1.2 +0.2 −0.3 −0.4 −0.6 +4.0 −0.7 −1.2 −0.9 −1.1

90–94 pct +1.2 +0.2 −0.4 −0.5 −0.6 +4.6 −0.9 −1.5 −1.0 −1.3

95–98 pct +0.4 +0.1 −0.1 −0.2 −0.2 +5.3 −1.0 −1.7 −1.2 −1.4

99–100 pct −0.3 −0.1 +0.1 +0.1 +0.2 +5.1 −1.0 −1.6 −1.1 −1.4

1949–1958 44.9 26.0 15.7 7.9 5.5 62.2 21.4 9.0 3.9 3.4

1959–1968 −0.3 −0.1 +0.1 +0.1 +0.2 +0.3 −0.1 −0.1 −0.1 −0.1

1969–1978 +2.2 +0.4 −0.7 −0.8 −1.0 −1.7 +0.2 +0.5 +0.4 +0.6

1979–1988 +2.1 +0.4 −0.7 −0.8 −1.0 +1.5 −0.3 −0.4 −0.3 −0.4

Notes: In percentage points. Based on the Poisson CRE estimates, see Tables A2 and A3.
Abbreviations: FT, Full-time; PT, Part-time; TE, Tertiary education; VT, Vocational training.

A.2 Decomposition of cohort changes and the distribution of unobserved heterogeneity
The results in Table 1 and Figure 2 suggest that the ME of the cohort variables on fertility are
surprisingly small. Previous literature has claimed that changes across cohorts are important
determinants for the overall decline in fertility. This appendix provides two further analyses. First,
we show that the distribution of unobserved heterogeneity is strongly related with the cohort vari-
ables, making the latter endogenous in cross-sectional analysis and, therefore, invalidating classic
regression analysis. Second, we apply a decomposition to understand better what is driving the
decline in average unconditional fertility across cohorts.

To make the point that the distribution of unobserved heterogeneity differs across cohorts,
we consider the implied Gamma densities of the unobserved heterogeneity ai as outlined in
Section 2.1. As shown in Figure A1, these densities differ importantly. In particular, they shift to
lower values of the a’s for later cohorts. This shows that the cohort variables are endogenous in a
cross sectional analysis. The strong left shift for the 1979–1989 born cohort is mainly due to the
incomplete fertility for this group at the end of our analysis period.

To understand better what is driving the decline in average unconditional fertility across
cohorts, we apply the decomposition in Equation (10). For this purpose, we compare two females
that differ in various aspects, in particular, a representative female of one cohort and one from
another cohort. We set xA and xB to the average values of the observables for cohort 1949–1958
and any other cohort, respectively. Consequently, xA contains the cohort averages of the individ-
ual averages of the time varying variables for cohort 1949–1958 and analogously for xB. The results
for this mutatis mutandis empirical exercise are given in Table A5.
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F I G U R E A1 Conditional densities of unobserved heterogeneity by birth cohort. Gamma density of the
unobserved heterogeneity ai across cohorts. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E A5 Decomposition of the expected number of children by cohort

Total (LHS)
First term due to
changes in xA

Second term due to
changes in xA

France: reference category (B): women born in 1949–1958

1959–1968 −0.24 +0.32 −0.56

1969–1978 −1.28 −0.84 −0.44

1979–1988 −1.59 −1.36 −0.22

Germany: reference category (B): women born in 1949–1958

1959–1968 −0.25 +0.44 −0.69

1969–1978 −0.88 −0.02 −0.86

1979–1988 −1.07 −0.58 −0.49

Notes. Decomposition according to Equation (10).

The decomposition isolates the contribution to the change in average fertility over cohorts
(LHS) that is due to changes in observed covariates (first term) from what is due to changes in
unobserved characteristics (second term). It can been seen that the decrease in fertility is due to
both: females have different fertility patterns across cohorts due to changes in observables such
as age, education and wages. Surprisingly, for both countries the cohort 1959–1968 has more
favourable observables than the first birth cohort. Thus, education and increased labour force par-
ticipation is not found to explain the reduction in fertility for this cohort. For this group the decline
is strongly driven by changes in unobservables. For later cohorts, the composition of observables
becomes less favourable for fertility, but changes in unobservables still play an important role. The
much greater role of the covariates that is found for the youngest cohort can be explained by the
fact that this cohort was not at the end of its reproductive cycle at the end of our analysis period.
The results provide evidence of unobservables playing an important role for explaining the fertil-
ity decline over cohorts. Increased labour force participation and higher educational attainment
do not suffice to explain this.

http://wileyonlinelibrary.com
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