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Abstract
The Kilombero Valley floodplain in Tanzania is a major agricultural area.
Government initiatives and projects supported by international funding have
long sought to boost productivity. Due to increasing population pressure, small-
holder farmers are forced to increase their output. Nevertheless, the level of
intensification is still lower thanwhat is considerednecessary to increase produc-
tion and support smallholder livelihoods significantly. This article aims to better
understand farmers’ intensification choices and their interdependent determi-
nants. We propose a novel modeling approach for identifying determinants
of intensification and their interrelationships by combining a Bayesian belief
network (BBN), experimental design, and multivariate regression trees. Our
approach complements existing lower-dimensional statistical models by con-
sidering uncertainty and providing an easily updatable model structure. The
BBN is constructed and calibrated using data from a survey of 304 farm house-
holds. Our findings show how the data-driven BBN approach can be used to
identify variables that influence farmers’ decision to choose one technique over
another. Furthermore, themost important drivers vary widely, depending on the
intensification options being considered.

KEYWORDS
agriculture, Bayesian belief network, intensification, Kilombero Valley, land use, regression
trees, Tanzania
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1 INTRODUCTION

The Tanzanian government places high priority on achiev-
ing food security while fostering sustainable development.
The agricultural sector is the backbone of the country’s
economy and a major force behind rural development.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Agricultural Economics published by Wiley Periodicals LLC on behalf of International Association of Agricultural Economists.

Around 80% of the workforce is employed in the sector,
which also supports the livelihoods of over 70% of the
population and contributes to approximately 95% of the
national food requirements (Mwimo et al., 2016). This sec-
tor also contributes 28% of the gross domestic product and
accounts for about 27% of export earnings (Milder et al.,
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2013;Mwimo et al., 2016; United States Agency for Interna-
tional Development [USAID], 2019; World Food Program
(WFP), 2019). However, with population growth outpac-
ing production growth, food self-sufficiency declining, and
malnutrition remaining high, subsistence agriculture still
predominates (WFP, 2019).
The government pursues a policy of increasing domes-

tic agricultural production, which is either driven by a
switch to large-scale commercial farms or by an increase in
smallholders’ productivity as a result of opportunities and
resources being made available to them (Coulson, 2015;
URT, 2013). The government has sought to align these
goals through different policy statements and national
visions, including Kilimo Kwanza (Agriculture First), the
Southern Agricultural Growth Corridor of Tanzania (SAG-
COT), and Big Results Now (Coulson, 2015).
The wetland of the Kilombero Valley Floodplain (KVF)

is one focus for the government in its effort to transform
the country into a sustainable food basket. The low alti-
tude plain with alluvial deposits has abundant natural
resources, including fertile land, reliable water supply, and
large pastures (Bamford et al., 2010; Nindi et al., 2014).
In the past, smallholders in the floodplain have ben-

efited from an abundance of land to expand their agri-
cultural production by cultivating new wetland areas and
marginal lands (Figure 1) (Leemhuis et al., 2017; Msofe
et al., 2019).
However, this type of land-use change is associated with

various negative environmental consequences, such as loss
of habitat and of above and underground biodiversity
(Jones et al., 2012). Furthermore, increased immigration
and population growth have pushed agricultural land
expansion to its limit, and agricultural intensification has
become the norm rather than the exception (Binswanger-
Mkhize & Savastano, 2017; Kajisa, 2016; Otsuka & Place,
2013). As a result, with the support of a number of non-
governmental organizations and private multinational
corporations, the government has been promoting the use
of optimized/high-quality inputs, adoption of new tech-
nologies or mechanization, and value-chain development
as means of increasing productivity and closing yield gaps
to generate sustainable and inclusive growth (Agra, 2016;
Binswanger-Mkhize & Savastano, 2017; Otsuka & Larson,
2016). The current average rice and maize yield of farm-
ers in the valley is 1.2 ton/ha, with more than half of
farmers receiving less than 1 ton/ha, which is much lower
than the 10–11 ton/ha of potential attainable yield under
improved management practices and input-intensive rice
and production systems in Tanzania (Nakano et al., 2018;
Senthilkumar et al., 2018).
Although efforts are underway to accelerate and inten-

sify production through increased adoption of improved
technologies and optimal input use, smallholder farmers’

adoption of these options has been disappointing thus far
(though gradually increasing) (Sheahan & Barrett, 2014).
Feder et al. (1985) and Foster and Rosenzweig (2010) con-
ducted extensive literature reviews on the adoption of
different technologies in developing countries. A subset
of this literature focuses on farmers’ intensification deci-
sions and the factors that influence relevant technology
choices (Abay et al., 2016; Erenstein, 2006; Headey et al.,
2014; Howley et al., 2012; Okike et al., 2001; Schelhas,
1996; Shriar, 2000, 2001; Wainaina et al., 2016). These
sources indicate that the choices made by farmers are not
simple reflexive responses to external drivers, but rather
the result of complex decision-making. Farmers make
decisions based on farm household socioeconomic char-
acteristics, infrastructure, existing institutions, and the
agro-ecological context (Wainaina et al., 2016). However,
neither the current state of agricultural intensification nor
the context- and locally specific factors influencing farm-
ers’ selection of specific intensification options are known
for KVF (Milder et al., 2013; Milder et al., 2013; Nakano
et al., 2016).
As noted by Vanlauwe et al. (2014) and Vanlauwe (2016),

pathways toward intensification in Africa will necessi-
tate a broad-based approach that considers a variety of
options tailored to local agro-ecological conditions, crop
choice and cropping patterns, farmer ability and willing-
ness to invest, and specific institutional settings. Recent
research has also revealed that farmers’ perceived con-
straints and benefits play significant roles in their decision
to pursue a specific option (Alomia-Hinojosa et al., 2018;
Ntshangase et al., 2018; Yamano et al., 2015). Thus, it is
integral to uncover factors that drive farmers’ prioritization
of options and their perceived constraints. The analy-
sis of pathway-specific and locally relevant determinants
of intensification in KVF could lead to the develop-
ment of future policies that increase productivity through
ecologically sustainable and pro-poor trajectories.
The article offers three novel contributions to the liter-

ature. First, we investigate how farm households decide
on intensification when multiple pathways are available,
highlighting the distinct factors influencing these deci-
sions in a sensitive ecological landscape with high yield
potential. Here, we focus on four land-saving intensifi-
cation options: (1) using chemical fertilizers, (2) using
improved seed, (3) using small-scale irrigation systems,
and (4) increasing planting frequency. Second, we propose
using a Bayesian belief network (BBN) as an analytical tool
alternative to existing, typically lower-dimensionalmodels
(e.g., logit and probit models and decision trees). BBNs
have the advantage of explicitly accounting for uncertainty
and allowing for the incorporation of a diverse range of
data types, including expert knowledge. They are struc-
turally adaptable (Korb & Nicholson, 2010; Sun & Müller,
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F IGURE 1 Land Use and land cover maps of the Kilombero floodplain for 1990 (a) 2004 (b) and 2016 (c) (Leemhuis et al., 2017, p. 8)

2013). Finally, we demonstrate how model-agnostic expla-
nations (a combination of BBN, design of experiments,
and regression trees) can be used to understand how
various determinants influence intensification choices.
The remainder of this article is organized as follows.

Section 2 provides a brief overview of our motivation
for the methodological approach. Section 3 introduces
the study site and data source. Section 4 describes the
empirical model and variable selection in detail. Sec-
tion 5 presents the results and discusses the intensification
strategy options, and Section 6 concludes the article.

2 MOTIVATION OF THE
METHODOLOGICAL APPROACH

Different modeling tools have been proposed to under-
stand individual decision-making regarding intensifica-
tion alternatives. One strand of tools models the inten-
sification decision as a binary choice problem involving
adopting or rejecting a single intensification option. Preva-
lent approaches include probit models (Abay et al., 2016),
logistic regression models (Erenstein, 2006; Okike et al.,
2001; Perz, 2003), and decision trees (Gladwin, 1989), to
name a few. For a review of modeling farmer adoption
decision, see Besley and Case (1993). The second strand
of tools examines the intensification option as one of sev-
eral potential strategies using multivariate models, such
as multinomial probit (Dorfman, 1996; Kassie et al., 2015;

Wainaina et al., 2016) andmultinomial logit selectionmod-
els (Kassie et al., 2018; Khonje et al., 2018; Teklewold et al.,
2013). We propose a BBN as an alternative modeling tech-
nique for multivariate data. BBN, also known as Bayesian
net, causal probabilistic network, Bayesian network, or
simply belief network, is a probabilistic graphical mod-
eling tool that permits the representation of knowledge
and facilitates reasoning under uncertainty (Kjaerulff &
Madsen, 2012; Korb & Nicholson, 2010; Pearl, 2009). Simi-
lar to other graphical models, the nodes represent stochas-
tic variables, and the arcs direct dependencies based on
process understanding, statistical, or other types of associ-
ations between the linked variables (Chen& Pollino, 2012).
Formally, the Bayesian network is a directed acyclic graph
(DAG) that defines a factorization of a joint probability dis-
tribution over variables, where the directed links of the
DAGprovide the factorization. Specifically, for aDAG𝐺(𝑉,
E), where 𝐺 denotes graph, 𝑉 denotes a set of nodes, and
E is a set of directed links (or edges) between pairs of the
nodes, a joint probability distribution, 𝑃(𝑋𝑉), over the set
of variables 𝑋𝑣 𝑣 ∈ 𝑉 can be factorized as

(𝑃 (𝑋𝑣) =
∏
𝑣∈𝑉

𝑃
(
𝑋𝑣|𝑋𝑝𝑎(𝑣))

where 𝑋𝑝𝑎(𝑣) is a set of parent nodes for variable 𝑋 at node
𝑣 (Kjaerulff & Madsen, 2012).
In addition to jointly considering multiple pathways

of intensification choices, our methodological choice is
driven by the following benefits of BBNs:
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a. The relevance of random events and the complex-
ity of farmers’ decision-making processes favor an
approach that explicitly addresses uncertainty. The
Bayesian approach to uncertainty ensures that the sys-
tem remains consistent, which also provides a direct
way to apply the model to data (Koski & Noble,
2011). Because BBNs are joint probability distribu-
tions, uncertainty is reflected in the model’s output.
In contrast to deterministic models, the probabilistic
representation of knowledge in BBN prevents over-
confidence in the potency of responses obtained by
simulating changes in one or more variables of interest
(Uusitalo, 2007).

b. BBN provides generality and formalism of displaying
relationships clearly and intuitively, in contrast to other
“black-box” models (Daly et al., 2011; Margaritis, 2003).
They can include quantitative data and the qualita-
tive opinions and viewpoints of experts and other key
players (Daly et al., 2011; Sun & Müller, 2013; Uusitalo,
2007).

c. BBNs are easily updated asmore data become available.
d. Because Bayesian networks with discrete variables are

non-parametric models, they do not require assump-
tions about the distribution of the variables. Addi-
tionally, probabilistic methods can infer nonlinear
functions (Blattberg et al., 2008, p. 486).

e. Another significant advantage of Bayesian networks
over other models is their capacity for both forward
propagation (prediction) and backward (diagnostic)
inferences. For instance, by enabling models to evalu-
ate likely outcomes based on assumed states of various
factors, forward propagation can address prediction
questions, whereas backward inference can address
profile questions, such as “What is the probability that
an irrigator is located in the center of the floodplain?”
or “What is the probability that a non-intensifier is
a young household head?” (Blattberg et al., 2008;
Uusitalo, 2007)

Despite the advantages of BBN as a modeling tool, some
difficulties are inherent in its development and appli-
cation. The primary disadvantage of BBNs is the lack
of a widely accepted mechanism for deriving network
structure from data. Despite efforts, most models are cur-
rently built using domain knowledge (expert advice) or
a combination of machine learning and empirical data
(Kyrimi et al., 2021). Another significant limitation of
BBN modeling is its reliance on discrete variables. They
are also computationally expensive. Because inference in
a Bayesian network necessitates summarizing over an
exponential number of terms, this task requires massive
processing power (Blattberg et al., 2008).

Bayesian belief networks are widely used in diverse
domains, including medicine, environmental modeling,
natural resourcemanagement, and forecasting (Daly et al.,
2011; Korb & Nicholson, 2010; Uusitalo, 2007). However,
only a few BBN applications to farm management are
known; see Drury et al. (2017) for a review of BBN appli-
cations in agriculture. Cain (2001) employed a BBN to
investigate crop yield determinants, and Prishchepov et al.
(2019) used a BBN to examine wheat yield determinants in
Siberia. Sun and Müller (2013) choose a BBN to simulate
land conversion patterns by modeling the binary choice
of participating in a scheme with payments for ecosys-
tem services and combining it with opinion dynamics in
an agent-based modeling framework. Meanwhile, Frayer
et al. (2014) developed a BBN to analyze the drivers of
the decision to plant trees on former cropland in a similar
study. Aalders (2008) and Celio et al. (2014) built a BBN
to incorporate farmers’ preferences for various land-use
options. Meanwhile, Rasmussen et al. (2013) used Farm-
ers Agricultural Data Network data to create a large-scale
BBN tool for riskmanagement in EU agriculture. Pope and
Gimblett (2017) investigated the various ranching strate-
gies farmers choose under varying environmental con-
ditions using BBN and agent-based modeling. Moreover,
Ticehurst et al. (2011) investigated landholder adoption of
conservation practices decisions (fencing of native bush-
land) in the Wimmera region of southeast Australia using
BBN. To our knowledge, no other study has used a BBN
to model farmers’ adoption of multiple intensification
options.

3 CONTEXT AND DATA

3.1 Study site

This research was conducted in KVF, Tanzania. The
low-elevation plain with alluvial deposits possesses a pro-
ductive natural resource base with fertile land, dependable
water availability, and extensive pastures (Bamford et al.,
2010; Nindi et al., 2014). It is one of the four principal
subbasins of the Rufiji River Basin, located in southern
Tanzania’s Ulanga and Kilombero districts (Figure 2). It
consists of several rivers and seasonally flooded marshes
and swamps (Dinesen, 2016). The seasonal variation in
water levels is significant. During the wet season, the
plains are completely submerged, whereas the water fully
retracts to rivers, river margins, and areas with perma-
nent swamps andwater bodies (Kato, 2007; Ntongani et al.,
2014).
The KVF contains the Kilombero Game Controlled

Area, which encompasses approximately 7000 km2, and



GEBREKIDAN et al. 27

F IGURE 2 Location of the study site

the Kilombero Valley Ramsar site, which comprises
7976 km2(Dinesen, 2016; Nindi et al., 2014). The Kilombero
Valley, one of Africa’s most extensive wetlands, has a long
history of agricultural production (Kato, 2007; McCartney
et al., 2010). The floodplain provides crops, fish, drinking
water, forest products, and fuelwood to more than 500,000
people (Government of Tanzania, 2013), thereby contribut-
ing significantly to their standard of living (Mombo et al.,
2011). This area has witnessed rapid growth in agricul-
tural land utilization (Jones et al., 2012). Immigration into
the valley has increased dramatically due to the perceived
availability of high-quality and cheap farmland. Moreover,
conflicts between pastoralists and farmers over land use
are pervasive and persistent, resulting in injury and liti-
gation disputes (Dinesen, 2016; MALF, 2015; Nindi et al.,
2014).

3.2 Data

The primary data source is a household survey conducted
in 21 villages across the Ulanga and Kilombero districts of
the Kilombero Valley. In total, 304 farm households were

surveyed. Data were gathered using a household ques-
tionnaire, which also included demographics data, infor-
mation on land use (crop selection), labor use, physical
crop output quantities, specific input use at the plot level,
and the household’s embeddedness in social networks
and institutions (the full questionnaire and descriptive
statistics of the respondents are attached with supple-
mentary material). Six well-trained (university graduates)
enumerators with a working knowledge of the farming
environment and the regional language administered the
questionnaire during a 2-h in-person interview. The inter-
view’s questions were initially written in English and then
translated into Swahili by field assistants. A pre-test sur-
vey was also carried out to ensure the enumerators could
properly administer the questionnaire and the farmers
understood the questions. Several questions and possi-
ble answers have been rewritten in light of the pre-test
to improve participant comprehension. Following a final
clean-up, we obtained 297 observations with complete data
and seven observations (2.3%) with missing data in one or
more variables.
The household selection was based on a multi-stage

sampling strategy. First, 11 wardswere purposively selected
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F IGURE 3 Workflow of our modeling approach

based on the presence of floodplain farming. In the sec-
ond stage, 21 villages were chosen at random based on
population size within the wards. In the final stage,
households were chosen at random from a list provided
by village leaders. To estimate the study area’s boundaries
and total population size, we employed a GIS approach
incorporating the land use map from GLC30(Jun et al.,
2014), the administrative boundary, and 2012 census data
from the Tanzania statistics office. We used a digital ele-
vation model at 90-m resolution from the shuttle radar
topographymission to drive the biophysical characteristics
of farmer plots (slope, elevation, roughness) (Jarvis et al.,
2008).

4 METHODOLOGY TO EMPIRICALLY
SPECIFY, VALIDATE, AND INTERPRET
THE BBN

This section describes ourmethodology for generating, val-
idating, and interpreting the results. As shown in Figure 3,
our empirical modeling strategy comprises four steps. The

specification or learning of a BBN includes (1) structure
learning and (2) parameter learning, which correspond to
model selection and parameter estimation in conventional
statistical models, respectively (Koller & Friedman, 2009;
Nagarajan et al., 2013). The learning is then followed by
(3) k-fold stratified cross-validation to evaluate themodel’s
performance and by (4) interpretations of the final BBN
via sensitivity analysis and model-agnostic explanations.
In the subsequent subsections, we will highlight each step
in greater depth.

4.1 Structure learning

In general, there are two methods for creating a BBN’s
structure. It can be learned through knowledge of engi-
neering from experts, literature, and theory (Frank, 2015).
Experts’ opinions on the correlations between random
variables are helpful in the learning process. Structure
learning can use experts’ opinions to learn more accurate
network architectures than can be learned from data alone
(Amirkhani et al., 2017).
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Alternatively, it can be learned from data. As further
described, we use a data-based approach in this study
supplemented with theory and plausibility.
Finding dependencies between variables that produce

distributions in the probability space that are as close as
possible to the observed data is a key step in the empirical
method of learning a BBN.1 The following are two gen-
eral classes of algorithms for learning a Bayesian network’s
structure from data:

4.1.1 Constraint-based structure learning

These approaches view a Bayesian structure learning
network as a representation of interdependencies. The
approach selects conditional dependence and indepen-
dence based on statistical tests (such as chi-squared or
mutual information) and uses these relationships as con-
straints to construct a BBN (Koller & Friedman, 2009;
Neapolitan, 2010). These algorithms include inductive
causation, grow-shrink, and incremental association.

4.1.2 Score-based structure learning

This optimization-based search treats a Bayesian network
as though it were a statistical model that needs to be speci-
fied. It generates potential Bayesian network candidates,
scores each candidate individually, and then returns the
candidate with the highest score (Kjaerulff & Madsen,
2012; Nielsen & Jensen, 2009).
We used a score-based structure learning variant called

a tree-augmented naive (TAN) Bayesian network for this
study (Friedman et al., 1997). It relaxes the assumption of
attribute-independence of Naive Bayes by imposing con-
straints on the network structure and selects the tree
that maximizes the likelihood conditional on the train-
ing data (Koller & Friedman, 2009; NorsysSoftwareCorp,
2016; Zheng & Webb, 2010). According to Friedman et al.
(1997), using TAN to learn a network’s structure achieves
a good trade-off between estimation quality and compu-
tational complexity. We iteratively modify the network
structure after it has been created using TAN, as suggested
by Frayer et al. (2014), Neapolitan (2010), Prishchepov et al.
(2019), Sun and Müller (2013) and Ragno et al. (2022).
During this process, some links’ direction is reversed,
and new links are added. For example, the relationship
between household age, crop choice, and topographic
wetness index is reversed based on domain knowledge.

1 For a detailed explanation of algorithms learning the Bayesian network
structure from data see Koller and Friedman (2009) and Nielsen and
Jensen (2009).

To capture the dependency between the two nodes, we
added a link between the share of nonfarm income and
per capita income. The structure learning process is then
repeated with the newly constrained link. However, modi-
fying the model learned through TAN based on theoretical
knowledge may reduce the model’s accuracy and perfor-
mance. Appendix B compares our final model’s model
accuracy to unmodified TAN. Our post-processing indeed
increases the average error rate of the TAN model by
4%. Hence, the final model we chose involved a trade-
off between plausibility and prediction accuracy. Netica
(5.4)was used to create the structure (NorsysSoftwareCorp,
2016)2.

4.2 Parameter learning

Several alternativeways of parameter learning, that is, gen-
erating estimates for the conditional probabilities (CPTs),
are available for BBN structure learning. Amaximum like-
lihood procedure was used to derive the probabilities from
the survey data. We opted for learning the CPTs from data
to reduce the number of conditional probability entries
required from experts or the literature and to learn objec-
tive rather than subjective probabilities. Some algorithms
can solve the underlying maximum likelihood problem
(e.g., count learning, expectation-maximization (EM), and
gradient descent (GD); Frank, 2015; NorsysSoftwareCorp,
2016). Our final network is based on EM learning, as pro-
posed by Uusetello (2007). EM has an advantage over
learning parameters because it converges more robustly
and provides slightly better accuracy, despite the number
of missing observations being minimal (2.3%). Appendix B
presents model accuracy using EM and GD for robustness
testing.

4.3 Validation of the BBN

Validating the BBN is essential for ensuring the model’s
quality. There are several quantitative and qualitative
methods for validating the constructed BBN. Qualita-
tive ones check the validity using an expert opinion
(Celio et al., 2014; Frank, 2015). Meanwhile, quantitative

2 Netica provides numerous simplifying tasks for themodeler, including a
high visual capability to display the network and advanced algorithms to
learn the structure and parameters of the network. Using the Java API
for the construction of BBNs provides an advantage in terms of trans-
parency, reproducibility, and easy integration with other modelling tools
of interest as it resulted in Java source code. The full documentation and
Java code, Python code for regression tree, and the data can be found as
supplementary material a GitHub link https://github.com/agpo-ilr-uni-
bonn/CodeRepositoryForMS2021339

https://github.com/agpo-ilr-uni-bonn/CodeRepositoryForMS2021339
https://github.com/agpo-ilr-uni-bonn/CodeRepositoryForMS2021339
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validation employs a test data set not used in parameter
learning to evaluate the accuracy of the target variable’s
predictions.
Our BBN is quantitatively validated using the n-fold

cross-validation method. It is a resampling technique that
employs multiple repetitions of data, each with a distinct
subset of observations, to test and train a model. Cross-
validation assesses a model’s ability to predict data not
used during estimation. This aids in identifying problems
such as overfitting and bias and provides insight into how
the model will generalize to unknown data points (Hastie
et al., 2009).
Cross-validation in a single round involves dividing a

data sample into complementary subsets, performing anal-
ysis on one subset (called the training set), and confirming
the analysis on the other subset (called the validation set
or test set). To reduce variability, we conducted multi-
ple rounds of cross-validation with distinct subsets and
pooled the validation results (e.g., averaged) across rounds
to determine the model’s accuracy.
We implement a fivefold cross-validation strategy

(Hastie et al., 2009, p. 243) by partitioning our data into
five disjoint subsets, followed by an iterative validation of
the parameters. The error rate is then calculated using the
confusion matrix. The error rate indicates the frequency
with which the network predicted an incorrect value. To
account for the unbalanced nature of our target node and
ensure that all states are represented equally in the split,
we employ stratified cross-validation (Kuhn, 2008).

4.4 Model interpretation

The final step is to interpret our model (i.e., explain the
BBN) after its construction and parameter validation. To
determine the impact of various determinants on choices
of intensification, we employ two distinct approaches:
(1) sensitivity analysis and (2) model-agnostic explana-
tion. The first identifies the most important variables for
determining the probability distribution across intensi-
fication options (Rohmer & Gehl, 2020; Sun & Müller,
2013), whereas the second identifies the variables’ specific
contribution to predicting each option.

4.4.1 Sensitivity analysis

We use sensitivity analysis to measure changes in the
overall probability distribution of the target node with
changes in states of one of the input nodes (Pollino
et al., 2007; Rohmer & Gehl, 2020). The entropy reduc-
tion (mutual information) method is used in this case
to evaluate the sensitivity of the BBN model’s output to

changes in a specific input parameter because the input
nodes necessary for the sensitivity analysis contain dis-
crete values. The entropy reduction method calculates
the anticipated decrease in entropy at the target node
(i.e., the increase in information) due to findings at another
child node. It is calculated as follows (Marcot et al., 2006;
NorsysSoftwareCorp, 2016; Pearl, 1988):

𝐼 = 𝐻 (𝑄) − 𝐻 (𝑄|𝐹) = ∑
𝑞

∑
𝑓

𝑃 (𝑞, 𝑓) log (𝑃 (𝑞, 𝑓))

𝑃 (𝑞) 𝑃 (𝑓)

where𝐻(𝑄) and𝐻(𝑄∕𝐹) are the entropy of node 𝑄 before
and after any new findings in node 𝐹, respectively. 𝑞 is the
state of the query variable, and 𝑓 is the state of the varying
variable.

4.4.2 Model-agnostic explanation

Although the sensitivity analysis provides insight into the
importance of influencing factors in explaining variations
(via entropy reduction) in the overall probability distribu-
tion of intensification strategies, it does not tell us how the
variables included in our model influence the probability
of each strategy. To deliver such information, we con-
duct amodel-agnostic interpretation (Molnar, 2019, p. 110),
combining a BBN simulation based on the design of exper-
iments with a meta-modeling approach. Our approach is
based on a widely used post-hoc model-agonistic tech-
nique known as local interpretable model-agnostic expla-
nation (LIME), which explains the predictions of any
classifier or predictor by fitting a less complex model
locally around the prediction (Molnar, 2019; Ribeiro et al.,
2016). LIME uses perturbed samples of a given instance
in the feature space and observes the effect of these new
sample points on the classifier’s output (Molnar, 2019)).
Four steps comprise our model-agonistic approach,

(i) The perturbations of the network’s entry values C
(i.e., the determinants) are generated by drawing from
probability distributions that take into account the corre-
lation between the features using nearly orthogonal Latin
hypercube (NOLH) sampling (Sanchez, 2005), (ii) The
query probability of interest P derived from the infer-
ences is estimated using the BBN, and the probabilities of
each strategy for each sample point are recorded, (iii) The
link between C and P are established using a regression
tree. The incorporation of nonlinear interactions, the min-
imal assumptions about the data structure required, their
robustness to outliers, and the implicit handling of vari-
able selection are all advantages of regression tree (Coutts
&Yokomizo, 2014; Kuhn& Johnson, 2013). Furthermore, it
serves as an analogy for natural rule induction from results.
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The regression trees were implemented using Scikit-learn
(machine learning tool in Python; Pedregosa et al., 2011),
and (iv) The regression tree results are interpreted using
feature importance (themost important predictor) and tree
rule induction.

5 VARIABLE SELECTION

In general, the factors that influence the choice of an
intensification strategy fall into three broad categories:
(1) socioeconomic characteristics of farm households,
(2) infrastructure and institutional factors, and (3) the
farm’s agro-ecological context (Wainaina et al., 2016).
Numerous studies found that household resource endow-
ments in terms of labor, land, capital, risk behavior, and
social capital influence the selection of a specific strategy
(Erenstein, 2006; Feder et al., 1985; Ghadim et al., 2005;
Okike et al., 2001). For example, increasing cropping
frequency is frequently constrained by labor availabil-
ity. Moreover, human capital acquired through education,
training, and experience affects the decisions of farmers
(Kijima, 2016; Wainaina et al., 2016). Furthermore, numer-
ous empirical studies demonstrate that infrastructure and
institutions, such as distance to the nearest market or
access to credit and agricultural extension, are significant
(Feder et al., 1985; Kassie et al., 2015, 2018; Teklewold et al.,
2013). Finally, biophysical characteristics of the farm plots,
including slope, hydrological regime, and soil character-
istics, influence the choice of one strategy over another
(Khonje et al., 2018; Nkonya et al., 1997; Sirén, 2007).
To avoid unnecessary model complexity, we employ

a data mining technique to select the most significant
variables for explaining variation in intensification selec-
tion. In the first step, we encoded a farmer as either
an intensifier (if the farmer adopted at least one option)
or a non-intensifier using a binary variable. Scikit-learn
(Python’s machine learning library) is then utilized to
execute a random forest algorithm between the binary
choice variable and a variety of explanatory variables
(Pedregosa et al., 2011). Recently, random forest algorithms
have gained popularity in variable selection. See Genuer
et al. (2010), Rogers and Gunn (2005), Rogers and Gunn
(2006) and Sandri and Zuccolotto (2006) for information
regarding their application and use in variable selection.
Our variable of interest (target node), intensification, is

treated as a discrete node containing four intensification
options (use of improved seed variety, small-scale irriga-
tion, fertilizer application, and multi-season farming) and
all possible combinations of these strategy bundles. Also
included is a state that captures the absence of an inten-
sification strategy. Because only five strategy sets were
observed in our data set, “others” represent the unob-

served strategy combinations. Here, we can take advantage
of BBN’s capability to update the conditional probabilities
when new data are collected.
We used per capita income as a surrogate for a resource

endowment and availability of capital. It includes income
from agriculture (farming and fishing), off-farm activities,
land rental, and brickmaking. To represent the farming
practices used by a particular household, we also include
the farmer type. The farmer type variable is a typology
constructed through a combination of principal compo-
nent analysis and hierarchical clustering to stratify farmers
into homogeneous clusters according to their livelihood
and land use (Gebrekidan et al., 2020). We generated a
topographic wetness index (TWI) using a digital elevation
model of our study area (slope and upslope contributing
area) to capture the quality and hydrological characteris-
tics of the farm. According to Sörensen et al. (2006), the
index indicates the relative wetness within the catchment
and is highly correlated with soil moisture and ground-
levelwater. It is especially helpful in situationswith limited
data availability and high spatial variations because it only
uses one data source (i.e., digital elevationmodel; Kopecký
et al., 2021; Sörensen et al., 2006). Crop selection and
anticipated income will be impacted by expected prices.
Based on the household’s proximity to the market, we
included the prices paid for rice and maize as expected
prices for the two crops. Due to a lack of past price data, we
assume farmers expectwhat they received during planting.
Our distance variable expresses the distance in kilome-
ters between the farm and the closest large market. When
determining distance froma farm rather than ahomestead,
access to and the cost of transportation from the farm to
either the farmers homestead or the market are taken into
consideration. While homesteads are clustered around the
single main road, farms that are in the bottom valley are
quite far from homesteads.
Although BBNs can typically handle continuous nodes,

the handling of continuous variables is currently con-
strained by methods and software applications. Hence,
we followed a common practice of discretizing all con-
tinuous variables into smaller classes (Frayer et al., 2014;
Sun & Müller, 2013). We use a heuristic method called
“equal interval” to partition our continuous variables into
groups of K equal lengths or width (Clarke & Barton, 2000;
Nojavan et al., 2017). However, we cannot rule out infor-
mation loss, and the resulting discretized variable closely
resembles the continuous variable’s distribution, which
may also affect the model’s accuracy.
Table 1 presents the descriptive statistics of our tar-

get node and 15 evidence nodes included in the final
network. Regarding the target node (choice of intensifi-
cation), approximately 62% of our sample households did
not intensify their production, whereas 38% chose one or
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TABLE 1 Descriptive statistics for the variables included in the final network

Variable Unit Mean (SD) Distribution 
Intensification options

1. Apply Fertilizer

2. Apply Improved Seed

3. Crop Multiple Times

4. None

5. Use Irrigation

6. Use Irrigation + Fertilizer 

21 (7.1%)

35 (11.8%)

24 (8.1%)

186 (62.6%)

11 (3.7%)

20 (6.7%)

Age of the Household Head Year 46.41

(12.82)

Household Size Number 5.13

(2.18)

Farm Size Hectares 2.64

(2.83) 

Share of Hired Labor Percent 36.41

(32.98) 

Commercialization Index Percent 46.87

(24.99) 

Total Labor Man-Days/ per 

hectares

321.94

(343.58)

Share of Nonfarm Income Percent 8.1

(18.37)

Topographic Wetness Index Index 20.73

(4.49) 

Distance to the nearest big 

Market 

Km 22.1

(16.44)

Maize Price Tanzanian

Shilling 

(Tsh)/kg

382.01

(425.44) 

Rice Price Tanzanian

Shilling 

(Tsh)/kg

1232.38 

(260.49) 

Income 000’Tanzanian

Shilling (Tsh)

501.58 

(1048.67) 

Farmer Type

1. Agro-Pastoralist

2. Diversifier

3. Mono-Crop Rice Producers

21 (7.1%)

81 (27.3%)

195 (65.7%)

Credit Access

1. No

2. Yes

199 (67.0%)

98 (33.0%)

Crop Choice

1. Maize

2. Rice

3. Rice + Maize

4. Rice + Maize + Vegetables

5. Vegetables + Rice

5 (1.7%)

148 (49.8%)

100 (33.7%)

20 (6.7%)

22 (7.4%)
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F IGURE 4 A Bayesian belief network of intensification decision in KVF.
Note: To reduce the complexity of the CPT and easy learning of the parameters, the links leave the target node rather than pointing to it and
also represent the application of the BBN for backward propagation

more intensification options. Twelve percent of farmers
use improved seed varieties, 8% plant in short and long
rainy seasons, 7% use chemical fertilizers, 6.73% use irri-
gation and chemical fertilizer together, and only 3.7% use
irrigation.

6 RESULTS AND DISCUSSION

6.1 Factors affecting the choice of
intensification strategy

Figure 4 depicts the final learned Bayesian belief network,
highlighting key relationships for determining KVF inten-
sification decisions. All variables are associated with the
choice of intensification strategy by design (TAN struc-
ture learning algorithms). Some of the input nodes are also
correlated. For example, the age of the household head is
correlated with farmers’ commercialization index, credit
availability, and crop selection. The proportion of hired
labor is also related to cropland and household size. More-
over, topographic wetness index of the plot influences the
farmer’s crop choices.
Furthermore, the distance from the nearest large mar-

ket has a direct impact on the expected prices of rice and

maize, and the amount of output sold to the market. The
size of cultivated land is directly related to the proportion
of hired labor and total labor use in person-days. Another
link exists between per capita income, market participa-
tion, the proportion of hired labor, and access to nonfarm
income.
The BBN also shows the posterior probabilities learned

from the data using the EM algorithm. The probabilities
match the data, demonstrating that the parameter learning
algorithm can learn the underlying joint distribution and
conditional probability tables, given the network structure.
However, we perform a fivefold stratified cross-validation
to fully assess the quality of both structure and param-
eter learning (see model validation section above). The
resulting confusion matrix has an average error rate of
45% predicting the choice of intensification strategy. Error
rates are generally relative measures that are interpreted
concerning the cost associated with the model’s objective
and decision. We compared our model to Naive Bayes,
another classifier, to determinewhether the high error rate
was due to our modeling choices (Appendixes B and C).
Even though the error rates in prediction are not signif-
icantly different between Naive Bayes and the BBN, the
BBN provides more probabilistic links between the deter-
minants and the choices, allowing policy implications to
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F IGURE 5 Sensitivity analysis of intensification choice

be deduced. To reduce error rates even further, one could
obtain additional data to ensure that themodel has enough
observations to learn all relevant patterns, compare various
discretization methods and levels, and finally, obtain prior
probabilities from experts and stakeholders.
The results of the sensitivity analysis are shown in

Figure 5. The graph compares each variable’s contribu-
tion to the total expected entropy reduction of our target
node, that is, choice of intensification strategy. A closer
inspection of Figure 5 indicates that crop choices strongly
influence the choice of intensification strategy with a
5.87% reduction in entropy. This suggests that farmers
who cultivate particular crops are more likely to employ
one type of intensification over another. Given that rice
is the predominant crop in the region, crop selection
variations primarily involve rice, maize, and vegetables.
Additionally, distance from the farm to the closest market
and commercialization substantially impact the selection
of intensification strategy (with 3.8% and 2.02% entropy
reduction, respectively). This is consistent with the find-
ings of Erenstein (2006a), who discovered that market
access affects both access to key input and output mar-
kets, thereby significantly affecting intensification. The
outcome also indicates that nonfarm income has a signif-
icant impact. The importance of off-farm income in the
adoption decision is widely recognized. Off-farm income

is a substitute for borrowed capital in rural economies
with absent or dysfunctional credit markets (Reardon
et al., 2007).
The farmer characteristics are of varying importance:

Age of the household and per capita income significantly
impacts the choice of intensification measure, whereas
the size of the household and the amount of land avail-
able have a negligible impact. Access to more information
or variances in risk aversion may influence the choice
of intensification as a function of age (Kariyasa & Dewi,
2013; Mwangi & Kariuki, 2015). In addition, the per capita
income has a strong influence on the strategy farmers pri-
oritize over others. As a proxy for farmers’ endowment, per
capita income indicates their capacity to invest additional
resources and assume the risks associated with adopting
new options (Xie&Huang, 2021). Although the availability
of family and hired labor is regarded as a crucial determi-
nant of intensification choice (Lee, 2005; Wainaina et al.,
2016), our sensitivity analysis indicates only a moderate
impact.
Farmers’ intensification is also influenced by the ecolog-

ical context of the farm, as indicated by the topographic
wetness index of the plots. One possible explanation is that
the ecological context determines whether or not a partic-
ular option is applicable to a given farm, as well as how
much it costs to implement and what other options are
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F IGURE 6 Variable importance for intensification decisions. Note: The data underlying the regression trees are posterior probabilities
from our BBN using 257 sample points generated through NOLH design that captured the structure of the conditional distribution between
determinants

already in place on that farm (e.g., farms located within
the floodplain may not need to irrigate their plot (Pronti et
al., 2020; Yesuf & Köhlin, 2008).

6.2 Factors affecting a specific
intensification strategy

Themeta-modeling analysis reveals the variables influenc-
ing a selection of specific intensification strategy. Themain
finding is that although all options have a similar set of
variables that affect their probabilities, differences exist in
themagnitude and order of those effects. A variable impor-
tance plot for the regression trees for each intensification
strategy can be seen in Figure 6. The variable importance
is determined based on the total (normalized) reduction of
the residual sum of squares caused by a particular variable.
A high value denotes an important predictor (James et al.,
2013).
The findings from the regression tree suggest that fac-

tors such as total labor available throughout the year, the
commercialization index, the topographic wetness index,
income, and distance to the central market are the best
predictors of whether a farmer will decide to plant mul-
tiple crops. Having enough labor supply is one of the

pre-requisites for cropping multiple times, which suggests
a potential limiting factor in the KVF given that household
members may alternatively travel to the city for work dur-
ing the dry season. The decision to plant is also influenced
by market accessibility and availability. Access to markets
encourages farmers to double crop rice–rice, rice–maize,
and rice–vegetables, thereby producing excess quantities
for sale on the neighborhood market.
The use of improved seeds is best predicted by the share

of nonfarm income, age, household size, distance to the
market, and farm size. These findings are consistent with
previous adoption studies. For example, age is one of the
human capital characteristics frequently associated with
the adoption of improved varieties (Kafle, 2010). Simi-
larly, Salasya et al. (2007) discovered a strong correlation
betweenmarket distance and adoption of improved variety
(stress-tolerant maize hybrid).
Meanwhile, market proximity has the largest influence

on the likelihood of using irrigation and fertilizer. Farmers
with better market access may obtain a better quality and
more sustainable supply of fertilizers (Kafle, 2010), allow-
ing them to cultivate vegetables and other high-value crops
sold on the market to supplement their income. Further-
more, farm size, nonfarm income share, and topographic
wetness index all influence the decision to use irrigation.
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TABLE 2 Factors discriminating highest and lowest probability of choosing a specific intensification option

Cropping multiple times
High Probability = .338 Low Probability = .107
Topographic wetness index > 18.9 Topographic wetness index > 18.9
Commercialization Index < 66.6% Commercialization Index < 66.6%
Distance from market > 44 km Distance from market < = 44 km
Commercialization Index < 36.14% Total labor (man days) < = 615

Income (‘000 Tsh) > 228
Improved seed
High Probability = .282 Low Probability = .051
Household size < 5 Household size > 4
Distance to the market > = 23 km Age of household head < = 51 years
Farm size > 10 ha Commercialization Index < 72 %

Farm size > 9 ha
Small-scale irrigation
High probability = .058 Low probability = .008
Labor in man-days > 110 Labor in man-days > 110
Farmer type! =Mono-crop rice producer Farmer type! =Mono-crop rice producer
Topographic wetness index > 28.78 Topographic wetness index < 28.78

Share of non-farm income < 30 %
Household size > 5

Fertilizer application
High probability = .276 Low probability = .068068
Farm size > 5 ha Farm size < = 5 ha
Topographic wetness index < 28 Distance to the market < = 35 km

Irrigation and fertilizer
High probability = .223 Low probability = .0228
Share of non -farm income > 38.13% Share of non -farm income < = 38.13%
Farm size > 7.4 ha Topographic wetness index < 28
Distance to the market > 22 km Farmer type ≠ diversifier

Share of nonfarm income > 30 %

Commercialization, or growing for profit rather than sub-
sistence, is another important factor influencing whether
a farmer will apply fertilizer or irrigate his or her crops.
One of the primary benefits of our modeling approach

is that it allows us to see how specific attributes, criti-
cal thresholds, and nonlinear interactions influence the
likelihood of selecting a specific strategy. Table 2 shows the
variable value ranges that result in the highest and low-
est probability of selecting a specific option (The complete
regression trees are presented in Appendix A).
The likelihood of multiple harvests is greatest when the

TWI is greater than 18.9, the commercialization index is
between 36.14% and 66.6%, and the distance to the mar-
ket is greater than 44 km (Table 2). The lowest probability
is predicted using the same variables at the opposite end
of the thresholds. These results suggest that smallholders
are likely to intensify their cropping systems by employ-

ing multi-season cropping when there is sufficient water
availability, soil moisture, and access to highly commer-
cializedmarkets. Additionally, labor scarcity and relatively
higher annual per capita income decrease the likelihood of
choosing multi-season cropping.
Regarding the choice of improved seed varieties, the

analysis of this regression tree indicates that the proba-
bility of selecting improved seed varieties is highest when
the household size is less than 5, the distance to the mar-
ket is greater than 23 km, and the farm size is greater
than 10 ha. Moreover, the lowest probability is predicted
when a household has more than five members, its head is
younger than 51 years old, it sells less than 72% of its crop
yield, and it owns more than 9 ha of land. Interestingly,
a larger farm size is a strong predictor in both situations.
However, depending on how farm size interacts with other
factors (e.g., household size and market access), it can
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either increase or decrease the likelihood that improved
genomes will be adopted.
Small-scale irrigation is most likely to be utilized if there

are more than 110 person-days of available labor, farmers
are not monoculture rice producers, and their farm has a
TWI greater than 28. Similarly, having more than 110 labor
days available, not being monoculture rice producers, hav-
ing a TWI below 28.7, receiving less than 31% of income
from sources other than farming, and having a household
with more than five members all predict a lower probabil-
ity. TWI (availability of sufficient water and soil moisture)
strongly determines whether a farmer will choose small-
scale irrigation, which is an intriguing aspect of this
finding. The limited water availability, relatively large
family size, and minimal participation in off-farm activ-
ities will decrease the likelihood of small-scale irrigation
investment and use.
Additionally, there is a 27% chance that farm house-

holds with an area greater than 3.56 ha and a TWI less
than 17.425 will use fertilizer. Those who cultivate less
than 3.56 ha and live less than 35 km from the market
will have the lowest probability (7%) of using fertilizer.
The farm households with the highest probability (22%)
to combine small-scale irrigation with fertilizer applica-
tion have a nonfarm income greater than 38%, a farm
size greater than 7 ha, and a market distance of less than
22 km.
Larger farms situated in drier portions of the flood-

plain are more likely to utilize fertilizer. Similarly, farmers
who earn a significant portion of their income from non-
farming sources, have large farm sizes, and reside further
away from themarket aremore likely to apply fertilizer and
irrigation on a smaller scale.
Finally, we looked qualitatively at how farmers in the

valley perceived intensification limits. Farmers were asked
if they planned to use any of the intensification options
during the previous production season, and if not, they
were prompted to explain the main obstacles or limita-
tions. Themain restrictionsmentioned by farmers for each
option are compared in Figure 7.
Most farmers cited the prohibitive price of fertilizer

as the main deterrent to adoption (which account for
54.8% of non-users). Additionally, a belief that their soil
is fertile (38.7%) and crop not suitable for fertilizers
are additional reasons for non-fertilization. Regarding
the use of improved seed, half of farmers cited the
market’s preference for conventional varieties as their
main deterrent. Farmers gave additional justifications
for not using improved seed varieties, including high
transaction costs (9.47%), unaffordable prices (20.7%), a
lack of financial capital (15.4%), and quality uncertainty
(5.33%). The most common reason given for not using

irrigation are a lack of irrigation equipment (49.1%),
restricted access to water (25.7%), enough water on the
plot (21.6%), and a labor shortage (3.59%). Numerous fac-
tors, including inconsistent rainfall (51.1%) and a labor
shortage, prevent the cultivation of multiple seasons
(36.2 %).

6.3 Limitations

Although we demonstrate the contributions of a data-
driven Bayesian network approach to analyzing the under-
lying determinants of intensification choices in small-
holder agriculture, this study has limitations, and our
findings should be interpreted with these limitations in
mind. As mentioned in the methodological approach sec-
tion, some of these limitations are related to the general
modeling approach, such as difficulty inferring a network
structure from data, reliance on discrete variables, and
high computational requirement.
There are also additional limitations that are pecu-

liar to this study. First, although BBN is recommended
for small and incomplete data sets (Uusitalo, 2007, p. 6;
Kontkanen et al., 1997, p. 317) and our sample size is
comparable to other studies (Prishchepov et al., 2019;
Sun & Müller, 2013), it is small in comparison to the
data used for typical machine learning problems. Sec-
ond, the research was limited to a single floodplain,
namely, KVF. Therefore, generalizations of the findings
require first replicating these findings in other similar
floodplain environments. Third, because other factors
could not be accurately measured, those that may influ-
ence intensification decisions at the household level were
excluded from this analysis (e.g., access to extension ser-
vice). Fourth, rather than identifying causal relationships,
we gain insights into how factors associated with inten-
sification choices differ across options. Fifth, we cannot
be certain that all relevant intensification options (other
labor-saving intensification options, such as mechaniza-
tion) were considered in the analysis because they were
excluded from our survey instrument. Finally, the BBN
presented in this study is static and does not account for
dynamics. To this end, a planned follow-up study com-
bines the BBN with a spatially explicit agent-based model
(ABM) that considers farmer heterogeneity, interaction
among themselves, and interaction with the floodplain.
Combining BBN with an ABM reduces the computa-
tional challenges of ABMs by providing probabilistic agent
rules. Moreover, representing BBN nodes as state vari-
ables in the ABM will provide temporal dynamics to
the BBN approach (Kocabas & Dragicevic, 2013; Sun &
Müller, 2013).
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F IGURE 7 Perceived constraint for specific intensification option

7 CONCLUSION

Increasing population pressure, efforts to protect the frag-
ile wetland biome, and the need to increase food produc-
tion will encourage smallholder farmers in the KVF to
shift from land expansion to land-saving strategies, that
is, intensification. Although intensification options have
been gradually increasing (Otsuka & Larson, 2016), they
are still not widely used, leaving significant room for fur-
ther intensification by smallholders in the valley. This
study sets out to systematically analyze the factors that
influence the choice of various intensification options in
the KVF’s floodplain production systems. Our data-driven
BBN allows us to represent complex interactions and
dependencies between various factors and intensification
choices while accounting for uncertainties based on statis-
tical theory. Moreover, our augmented sensitivity analysis
revealed individual choices for improved seed variety, fer-
tilizer application, small-scale irrigation, andmulti-season
cropping. A variety of covariates were included, includ-
ing plot and household characteristics, market access, and
agro-ecological conditions. For better interpretability, we
used a novel approach that combined a data-driven BBN
with meta-modeling by regression trees. This revealed the
relative importance of determinants in the selection of
different strategies. The analyses show that the decision-
making process for intensification options is complex
and highly dependent on various factors. Although the

choice of each option is influenced differently by the
covariates under consideration, access to nonfarm income,
market access, and plot topography all play vital roles
across options. Despite smallholder farmers’ willingness
to increase yield, those who did not use intensification
options gave various reasons. The main reasons for not
cropping multi-season are a lack of rain or water access
and a labor shortage. Higher fertilizer prices and increased
consumer demand for traditional seedlings are cited as
the primary reasons for not using fertilizer, and improved
seed—access to river networks and irrigation tools limits
farmers’ ability to irrigate their plots.
Our findings have important policy implications for

targeted productivity enhancement in a vulnerable flood-
plain ecosystem and for explaining potential variation
in intensification strategy choices. The preferences and
choices of smallholders for various intensification path-
ways should be addressed in agricultural development
programs and policies. These pathways must be tai-
lored to site-specific conditions, local needs, and available
resources to increase crop production in KVF. Fertil-
izer adoption can be increased if, for example, farmers
with relatively large farm sizes and farms located on the
peripheral (not in heavily flooded areas) are assisted in
accessing fertilizer and encouraged to participate in the
market simultaneously. Adoption of improved seed vari-
eties would be boosted even further if nonfarm income
streams and market access were made more accessible.
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Similarly, increasing access to markets, equipment, and
irrigation drainage systems for farmers in the floodplain’s
center may increase irrigation adoption.
Exploitingmultiple cropping potential in KVF is a viable

and underutilized option for increasing agricultural pro-
duction and providing farmers with the opportunity to
diversify, thus reducing risk or adding nutritional quality.
Furthermore, such exploitation can mitigate the reduc-
tion of the regional water cycle and improve soil ecology
(Xiang et al., 2021; Kawaski, 2019). This requires collective
efforts that go far beyond simply promoting intensification
through standardized extension services and increased
input supply. It includes encouraging farmers to pursue
the options that they believe are most appropriate in their
specific circumstances.
Furthermore, incentivizing farmers to pursue inten-

sification measures tailored to their specific needs and
conditions could help reduce cropland encroachment in
floodplains, which is currently the most serious problem.
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