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Abstract

Initialization of metaheuristics is a crucial topic that lacks a comprehensive and systematic review of the state
of the art. Providing such a review requires in-depth study and knowledge of the advances and challenges in
the broader field of metaheuristics, especially with regard to diversification strategies, in order to assess the
proposed methods and provide insights for initialization. Motivated by the aforementioned research gap, we
provide a related review and begin by describing the main metaheuristic methods and their diversification
mechanisms. Then, we review and analyze the existing initialization approaches while proposing a new cat-
egorization of them. Next, we focus on challenging optimization problems, namely constrained and discrete
optimization. Lastly, we give insights on the initialization of local search approaches.

Keywords: metaheuristics; initialization; evolutionary algorithms; swarm intelligence; local search

1. Introduction

Optimization is a powerful technique for obtaining suitable solutions for various engineering and
planning problems. Over the past three decades, a wide range of metaheuristic algorithms have been
developed by various researchers in order to solve complex optimization problems from engineer-
ing, business, etc. In fact, while gradient-based classical optimization algorithms are usually unable
to deal with nonlinear, nonconvex as well as multimodal problems, metaheuristics can handle these
types of problems more effectively. They are also useful when the methods that find optimal solu-
tions cannot be applied due to their computational cost (Bennis and Bhattacharjya, 2020). These
metaheuristics are usually iterative optimization algorithms, which most often share an algorith-
mic step, which is solution(s) initialization. It is widely accepted in the research community that
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this step plays an important role in the optimization process, because all the solutions generated
thereafter depend, to a certain extent, on their preceding solutions and, eventually, on the initial
solution or on the initial population of solutions. Nevertheless, measuring the degree of dependency
is not straightforward. Moreover, when addressing the issue, it is crucial to illustrate the purpose
of the approach, and whether it aims to improve quality and/or diversity. Diversity refers to the
degree to which solutions effectively explore the entire search space, while quality often refers to the
proximity of the generated solutions to a global optimum. For simplicity, we adopt this definition
for quality and we will discuss it later. The process of searching for improving quality within certain
limits of the search space is often known as intensification (also called exploitation) and enhancing
diversity is often labeled as diversification (or exploration), where the search attempts to explore as
yet unvisited parts of the solution space. The balance between both objectives is the most challeng-
ing issue when designing and improving metaheuristics. Nevertheless, the achievement of a balance
between them is not fully explored, due to the difficulty of carrying out theoretical and customized
work in this regard (e.g., Chen et al., 2009). Our goal in this paper is to bridge the gap between the
progress in metaheuristics initialization and the aforementioned trade-off.

By analyzing the literature on metaheuristics initialization, we note that little attention has been
paid to the synthesis and analysis of the initialization methods in a comprehensive and systematic
way. To our knowledge, the most recent survey on the initialization of metaheuristics was proposed
in Kazimipour et al. (2014), which is mainly devoted to population-based metaheuristics. The main
contribution of that paper is to categorize them according to three different dimensions, which are
randomness, compositionality, and generality. Our contribution compared to Kazimipour et al.
(2014) is to provide a critical analysis of the proposed approaches and to highlight the main re-
lated topics that are crucial to tackle this issue, while providing insights into it. Moreover, we do
not restrict ourselves to population-based approaches. In fact, to properly address these issues, it is
necessary to consider the main metaheuristics challenges, especially the mentioned dilemma. De-
spite this, we note that many papers referenced in Kazimipour et al. (2014) do not provide real
evidence why their initialization approaches work well and under which conditions.

The main purpose of this paper is to present a comprehensive review of the state of the art of
metaheuristics initialization that situates it within the current progress and findings in the field. In
other words, the field of metaheuristics has exerted a great development, particularly with respect
to the exploration—exploitation balance management. In this paper, we show how it has been ex-
ploited either directly (i.e., for the papers that focus primarily on initialization) or indirectly (i.e.,
for papers that offer generic ideas beneficial for initialization). We also give ideas in this respect
and highlight open challenges that have to be addressed for an effective and efficient initialization
of metaheuristics.

In this paper, we are interested more in generic initialization approaches and not so much in
problem-specific approaches. In fact, when detailed knowledge about the problem to be solved
is available, a common way to generate an initial solution is to use a constructive heuristic. For
instance, Ho and Gendreau (2006) adopted a stochastic heuristic to generate solutions for a routing
problem and Sapkal and Laha (2011) proposed a constructive heuristic to obtain initial solutions to
a scheduling problem. On the other hand, supervised machine learning (ML) approaches (Jo, 2021)
can be adopted to learn from previous experiences (i.e., results of previous executions), and then to
predict the best initialization approach, based on the best predicted performance, for each problem
instance (Birattari, 2006). Such approaches could be beneficial when historical information about
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the problem being solved is available. In this paper, our interest is in solving problems when no
(referenced) previous knowledge is available.

In Kazimipour et al. (2014), the referenced papers are notably divided into two categories, namely
noncompositional and compositional approaches. The latter methods require a preliminary step
(e.g., clustering) before defining the initial values. In this paper, we rather propose a categoriza-
tion based on the ideas behind the approaches and their technical concepts. This is the subject of
Sections 3-5. Most of the literature in metaheuristics initialization can be included in this catego-
rization. In addition, we are interested in particular problems and types of algorithms that are often
not directly addressed in the initialization literature. This is the case with constrained problems, and
single-solution algorithms, which are discussed in Sections 6 and 7, respectively.

One of the main issues in metaheuristic’s research of the last decade was the antipodal discussion
of possibly new approaches using certain metaphors (see, e.g., Sorensen, 2015) and the question
about their real novelty (see, e.g., Camacho Villalon et al., 2020; de Armas et al., 2022; Camacho-
Villalon et al., 2022). One of the possible ways to enhance the knowledge about metaheuristics is
to explore their components to discriminate novelty from repetition. In this sense, we add toward
the literature investigating specific components regarding the initialization of metaheuristics. In
this paper, we mainly focus on papers published in well-known journals and conferences. The main
repositories used are, for example, ScienceDirect, IEEE Xplore, ACM, and Springer. In addition,
we highlight other articles that promote new ideas while noting the limits of their findings. This
is done by searching the above-mentioned repositories plus some forward and backward search as
well as Google scholar entries under “metaheuristic” and “initialization.”

The remainder of this paper is organized as follows. In the next section, we outline the back-
ground of metaheuristics. In Section 3, we focus on randomized approaches. Section 4 is dedicated
to the learning concept. Section 5 is devoted to statistical and decomposition methods. Section 6
aims to shed light on the specificity with respect to the constraints and to provide suggestions for
combinatorial optimization. The purpose of Section 7 is to project the problem onto single-solution
methods. Finally, in Section 8, we summarize the findings of the paper and highlight promising re-
search directions.

2. Metaheuristic methodology

The aim of this section is to provide a preamble that introduces the necessary background needed
to situate, understand, and analyze the literature on metaheuristic initialization. More specifically,
we begin by showing the different optimization problems and metaheuristic concepts, then we
introduce the main metaheuristic methods while describing how they handle the diversification—
intensification (exploration—exploitation) dilemma. Then, we show and analyze their basic ap-
proaches for initialization.

2.1. Optimization problems

Optimization problems are often differentiated according to the constraints or the nature of the
variables. Regarding the former, for unconstrained optimization problems, the set of constraints
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is empty. Otherwise, the problem is labeled as a constrained optimization problem. Regarding the
latter, the solutions are encoded with real-valued variables for continuous optimization, and are
encoded with discrete and binary variables for discrete and binary optimization problems, respec-
tively. In this review, we start by exploring generic cases that are applicable or easily customized
to different types of problems. In general, the above-mentioned approaches do not face any spe-
cific limitation for unconstrained continuous optimization problems, and the other cases are often
more complicated and some of them could not be effectively personalized. Thereby, in Section 6,
we draw attention to the particularity with respect to constraints and the nature of the variables, re-
spectively. Concerning the nature of the variables, we are interested in combinatorial optimization,
since it is the usual and most studied case of discrete and binary optimization in the literature. In
this type of problem, the constraint of the binary variables is added to the other constraints related
to the problem.

2.2. Metaheuristic concepts

Before diving into the issue of metaheuristic initialization, we introduce the concept of metaheuris-
tics and the aforementioned dilemma. First of all, we note that a number of definitions have been
proposed. According to VoB et al. (1999), a metaheuristic is an iterative master process that guides
and modifies the operations of subordinate heuristics to efficiently produce high-quality solutions.
Vof3 and Woodruff (2003) distinguish between a guiding process and an application process. The
first process decides on possible (local) moves and forwards its decision to the second process,
which then executes the chosen move. According to Sorensen (2015), metaheuristics are high-
level problem-independent algorithmic frameworks that provide a set of guidelines or strategies
to develop heuristic optimization algorithms. We can conclude from these and other definitions
that metaheuristics are problem-independent and aim to guide the search process in an intelligent
way.

More practically, it is widely admitted that the diversification—intensification (or exploration—
exploitation) trade-off is a crucial aspect that has to be addressed by different metaheuristics. In
fact, they are two fundamental components of different metaheuristics (Glover and Samorani,
2019) and the success of most of them depends on the proper handling of this compromise. The
diversification—intensification (exploration—exploitation) dilemma is a crucial issue in the field of
metaheuristics, which has been associated with it since its introduction and has been studied from
its beginnings (Glover and Laguna, 1997). The former is responsible for the detection of the most
promising regions in the search space, while the latter promotes convergence of solutions. In gen-
eral, during an intensification stage, the search concentrates on the examination of the neighbors
of selected solutions. The diversification stage, on the other hand, encourages the search process
to examine unvisited regions and to generate solutions that differ in significant ways from those
seen before. We refer to Blum and Roli (2003) for some definitions and extrapolations of this
dilemma, which drives the various well-known and effective metaheuristics. We note that in the
literature, the terms diversification and intensification (respectively, exploration and exploitation)
are often associated with single-solution methods (respectively, population-based methods). Hence,
we will use them in this paper based on this differentiation. Next, we expose the metaheuristic
methods.
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2.3. Metaheuristic approaches

First of all, we discuss the extent to which we can design generic initialization approaches, given
that the number of metaheuristics is countless. In fact, one can guess that this could be a main
reason for the absence of a unified review of the addressed topic. But, we note that the novelty
of several metaheuristics introduced over the last decade has been questioned (or even denied) in
numerous papers (e.g., Sorensen, 2015; Weyland, 2015). Such claims have also been supported by
early pioneer researchers in the field in their recent publications (e.g., Sorensen and Glover, 2013;
Camacho Villalon et al., 2020; de Armas et al., 2022). In particular, de Armas et al. (2022) pointed
out that several different metaheuristics share similar components and most of them do not contain
any novelty at all. In this part, we take a look at classical metaheuristics and aim to categorize them
and highlight the different inspirations and philosophies beyond them, and how they deal with
the dilemma.

Metaheuristic approaches could be divided in several ways (see, e.g., Caserta and VoB3, 2009,
as well as the template concept in Greistorfer and Vo83, 2005). The best-known and most com-
mon approach is to divide them into single-solution metaheuristics and population-based meta-
heuristics. The former focus on modifying and improving a single candidate solution, while the
latter maintain and improve multiple candidate solutions. Typical examples of the former are sim-
ulated annealing (SA), tabu search (TS), iterated local search (ILS), and the greedy randomized
adaptive search procedure (GRASP). Examples of the latter are genetic algorithms (GA), particle
swarm optimization (PSO), differential evolution (DE), ant colony optimization (ACO), and scatter
search (SC).

On the one hand, single-solution metaheuristics are often based on a local search procedure. The
aim of the underlined metaheuristics is to provide intelligent mechanisms to exploit local search
moves (Caserta and VoB3, 2009), as outlined next.

TS is a single-solution metaheuristic that takes a potential solution to a problem and checks
its immediate neighbors. Its main contribution compared to classical local searches is that it con-
siders the history of the search by introducing the concept of memory in order to diversify the
solutions (VoB, 1993; Glover and Laguna, 1997). SA is based on another concept that mim-
ics the cooling of metals by allowing to accept worse solutions based on a probabilistic factor,
named temperature. This factor enables to control the aforementioned dilemma. ILS generates the
starting solution for the next iteration by perturbing the local optimum found by adopting a lo-
cal search, to enable a diversification of the search. GRASP is another multistart metaheuristic
(the concept is described in Section 7) for combinatorial optimization problems, in which each it-
eration essentially consists of two phases: construction and improvement (or local search). The
dilemma is managed by balancing both randomization and greedy parts of the method (Resende
and Ribeiro, 2018). We note that in this paper, we also refer to single-solution metaheuristics
by adopting the terms local searches or local search metaheuristics as widely embraced in the
literature.

On the other hand, population-based metaheuristics are most often inspired by natural phenom-
ena. Bio-inspired population-based metaheuristics are often divided into evolutionary algorithms
and swarm intelligence algorithms. GA and DE are the most popular algorithms belonging to the
first category, and PSO and ACO are the best-known examples of the second category. It is notable
that Molina et al. (2020) emphasized that most of the bio-inspired algorithms proposed recently
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Table 1
Metaheuristics and diversification/intensification

Algorithm Diversification Intensification Control

TS Prohibition list Local search Tabu list

SA Temperature Local search Cooling rate

ILS Restart Local search Perturbation

GRASP Randomization Local search Restricted candidate list
GA Mutation Crossover Rates

DE // // Adaptation

PSO Personal best Global best Inertia weight

ACO Randomization Neighbor Pheromone

SC Diversification Improvement Reference set

ACO, ant colony optimization; DE, differential evolution; GA, genetic algorithm; GRASP, greedy randomized adaptive search
procedure; ILS, iterated local search; PSO, particle swarm optimization; SA, simulated annealing; SC, scatter search; TS, tabu
search.

could be derived from PSO, DE, GA, and ACO (the rest could be derived from the artificial bee
colony method; cf. Karaboga et al., 2012), which are the methods considered in this part. (This is
also in line with the facts exposed in Camacho Villalon et al., 2020; de Armas et al., 2022.)

On the one hand, GA is a popular metaheuristic that is based on the idea of individuals com-
peting for survival. At each iteration, GA selects and generates solutions based on three main
operators, namely selection, mutation, and crossover. The dilemma management depends on mu-
tation and crossover operators. GA is a typical case of evolutionary algorithms. DE, which belongs
to the same category, adopts similar exploration and exploitation mechanisms. We note that other
exploration approaches for evolutionary algorithms have been proposed (e.g., Oliveto et al., 2019).
Additionally, several extensions of GA have been proposed to better handle the dilemma, such as
the biased random-key GA (Gongalves and Resende, 2010).

On the other hand, within the umbrella of swarm intelligence, PSO is the most adopted for
continuous optimization and ACO is best known for combinatorial optimization. The first guides
the search based on the location of high-quality solutions and the second focuses on the parts
of solutions that frequently appear in high-quality solutions. They both consist of the interaction
between a number of agents that share information about the solution space. In PSO, each agent
(particle) is a candidate solution to the problem, and is represented by velocity, a position in the
search space, and has a memory that helps remembering its previous positions. For the typical
PSO, the dilemma is controlled by the values of the parameters (Shi and Eberhart, 1999). ACO is
an algorithm for finding paths based on the behavior of ants foraging (Dorigo and Gambardella,
1997). The management of the balance depends on the values of the pheromone trails. SC draws its
foundations from previous strategies for combining decision rules and constraints. Equilibrium is
achieved in a manner similar to evolutionary algorithms.

In Table 1, we summarize the diversification and intensification mechanisms for the different
metaheuristics as well as the control mechanisms for each algorithm. Table 1 does not provide
complete information but just a simplistic overview.

We note that all these algorithms aim to balance the aforementioned dilemma through parameter
tuning. The algorithms usually allow for immense diversification at the start of the search, and
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tend to intensify in specific regions throughout the later stages of the search. This is the typical
case of setting the PSO inertia weight parameter (Shi and Eberhart, 1999) and the SA temperature
parameter (Henderson et al., 2003), and is widely used for the GA and DE mutation operator (e.g.,
Hassanat et al., 2019). Moreover, several method improvements aimed at strengthening this feature
have been proposed. For example, clustering and cooperative approaches (Section 5) frequently aim
to explore different regions of the search space in the first steps (diversification) and then to exploit
them in the last stages (intensification).

To handle the dilemma in the most appropriate way, we can observe from the literature that
much of the interest has been devoted to tuning the parameters of the algorithms. Conversely, less
attention has been paid to relating the initialization phase to the dilemma. Nevertheless, we can
argue that initialization can help achieving the same goal of the tuning process. In the remainder
of the paper, we address this issue and show how to diversify the solutions in the same spirit of
tuning advances.

2.4. Metaheuristic initialization

First of all, as stated earlier, a crucial question that needs to be addressed when proposing ini-
tialization approaches is whether they aim to diversify the initial solutions or have good objective
values for them. As illustrated in the previous part, diversification is the most sought-after feature
in the early stages of the different algorithms. Moreover, as indicated in Li et al. (2020), the average
distance between the initial population of solutions and the real optimal solution does not have a
significant correlation with the quality of the final solution for the algorithms.

Second, in the absence of prior information on the solution space, the generation of random
numbers is the most classical approach for initialization. A main difference between the two above-
mentioned approaches is that population-based metaheuristics generate initial solutions simultane-
ously, while single-solution metaheuristics generate the solutions sequentially.

Third, two issues that arise are to which extent we can design generic initialization approaches
that are independent of the nature of the algorithms, and what is the impact of the initialization
step on different algorithms. To address the first issue, we first note that some studies outlined sim-
ilarities among these algorithms. For example, Taillard et al. (2001) affirmed that procedures such
as SA, TS, or GA can be explained by means of an established structure named adaptive mem-
ory programming. Another structure, based on a pool template, has been proposed in Greistorfer
and VoB (2005) to unify these methods. We can then conclude that these algorithms share some
features and, as an initial guess, we can expect that the impact of initialization methods on them
is correlated.

With respect to the second issue, we can observe that studying the impact of the initialization
phase on metaheuristics has not been exhaustively reviewed. Nonetheless, some works have been
proposed in this regard. Li et al. (2020) studied the sensitivity of five algorithms, including PSO,
GA, and DE, to the initialization phase. The authors pointed out that some algorithms are more
sensitive to initialization than others. More specifically, the authors compared several different ini-
tialization methods, based on different probability distributions and found, for example, that PSO
performs differently for different initialization methods while DE is more robust when it comes
to the initialization method. Moreover, the paper reports the impact of studying the quality and
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diversity of the solutions on the performance of the algorithms. More details on the sensitivity
issue and on the paper’s findings will be provided later.

Other papers are interested in specific algorithms. For evolutionary algorithms, an example of
a work that includes this issue for the case of GA is Paul et al. (2015). The authors evaluated
seeding techniques using performance criteria such as the computation time, error rate, average
convergence, and convergence diversity. Oman and Cunningham (2001) analyzed the impact of
seeding the initial GA solutions with good ones (in terms of their objective value) for the traveling
salesman problem (TSP) and the job-shop scheduling problem. For swarm intelligence, for instance,
Helwig and Wanka (2008) studied the impact of different velocity initialization strategies on the
population behavior of PSO. In particular, the authors showed that uniform velocity initialization
causes many particles to leave the feasible search space.

Birattari et al. (2007) stressed the importance of this topic for ACO. In case of ACO, the ini-
tialization is related to the initial values of the pheromone trail. In that sense, no specific solutions
need to be provided. That is, the authors noted that the initialization of the pheromone plays a
critical role. In particular, for the algorithm to be invariant, the pheromone must be initialized in-
variably. Several other studies of different initialization techniques have been proposed and they
will be reviewed in the next corresponding sections. Our aim, in addition to the review, is to derive
meaningful conclusions.

At the end, we note that almost all the papers that have directly addressed the issue of initializa-
tion are concerned with population-based algorithms, hence our interest in the next three sections is
mainly devoted to them.

3. Randomization

Randomization may be used in different settings generating random solutions as incumbents or
generating sequences of random solutions.

3.1. Generating random solutions

In the absence of prior information about the solution space, random number generation is the
classic approach used by most population-based metaheuristics to generate an initial population
of solutions. In practice, most method implementations use pseudo-random number generators
(PRNGs) to generate initial solutions for them. Although PRNGs are widely adopted in a number
of areas (e.g., cryptography), only a few works are interested in studying and improving PRNGs
for metaheuristics. For instance, Ma and Vandenbosch (2012) studied the impact of random gener-
ators, such as standard Java and Matlab generators, on the initialization of positions and velocities
of particles (for a PSO) as well as on their update. Moreover, Kromer et al. (2014) proposed an
empirical comparison of the behavior of three common metaheuristics, namely GA, PSO, and DE,
based on various PRNG methods. In particular, the authors stressed the importance of studying
the properties of the distributions used in PRNGs. In fact, this issue is not sufficiently addressed
for the initialization of metaheuristics. According to Alhalabi and Dragoi (2017), the performance
of the algorithm varies considerably depending on the used distribution. In particular, the best
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results were obtained using Binomial and Weibull distribution and the worst were obtained using
the Beta distribution. (More information on these distributions can be found in Mun, 2015). In
that paper, the influence of different distributions adopted in PRNGs, either continuous or binary,
was compared for the differential search (DS) algorithm, which is a newly proposed metaheuristic.
However, the authors did not provide evidence for the existence of a significant difference between
these distributions. We, therefore, cannot generalize these results because of their randomness.

A typical approach to generate the random population is to use a uniform distribution as in
Equation (1):

xl’ = x; +rand;(0, 1)(X; — x;), M

where rand;(0, 1) is a uniform random number within [0, 1] and X; and x; are the upper and lower
bounds of the jth dimension of the problem, respectively.

Nevertheless, the most adopted PRNG is the Mersenne twister from Matsumoto and Nishimura
(1998). The name of this PRNG, which is included in most software, comes from the fact that a
Mersenne prime is chosen to be its period length. This approach has shown better performance
than other PRNGs. However, its main problem, as with other PRNGes, is concerning its diversifi-
cation capability. Indeed, randomization does not generally cover the search space in an optimal
way because there is no guarantee of a significant differentiation of the solutions. For example,
it is possible that many generated vectors have similar values or closer ones. For example, for bi-
nary problems, it is possible that almost all vectors are composed of 7/2 zeros and n/2 ones. Such
an initial population is not informative about the whole search space. In addition, it can cause a
premature convergence of algorithms such as PSO (Trelea, 2003) or if a local search is used subse-
quently. That is, if all the solutions are close and one corresponds to a local optimum, then all the
solutions will converge toward the local optimum.

Therefore, another exciting approach to build the initial population is to generate the individ-
uals in sequence. Maaranen et al. (2004) proposed a quasi-random sequence of points, instead of
pseudo-random numbers, for the same purpose. Another sequence for a GA has been proposed
in Kimura and Matsumura (2005). The main advantage of these approaches is that individuals
can take advantage of information from those previously initialized. In other words, the jth in-
dividual could be generated in such a manner to improve the quality or diversity based on the
previous individuals (e.g., (j — 1)th individual). An example of comparison between PRNGs and
quasi-random generators, for the case of a DE, can be found in Sacco and Rios-Coelho (2018),
which affirmed that the Mersenne twister is suitable for a small population while the Sobol’ se-
quence (an example of a quasi-random sequence) is adequate for large population sizes. Also, an-
other study has been proposed in Maaranen et al. (2006), which analyzed the properties of dif-
ferent point generators of a GA for continuous optimization problems. These results are in line
with the previous statements. In other words, quasi-random sequences are suitable to cover large
spaces and enlarge while PRNGs could be effective just for small search spaces, in which the di-
versification process might not be needed. This issue was studied in a broader way in Greistorfer
et al. (2008), which compared the quality of sequential and simultaneous generation approaches.
The paper focused on the solution quality but the idea could also be generalized to the diver-
sity as we will see next. But first, we are interested in how to generate this sequence using chaos
theory.
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3.2. Generating diversified sequences of random solutions

As stated earlier, the generation of solutions in sequence is a promising approach to avoid obtain-
ing initial solutions with similar values or properties. For example, the sequence of solutions can
be defined such that the x; solution is a combination of x; 1, ..., x; solutions. An example of a
mathematical formula for the Sobol’ sequence can be found in Sobol’ et al. (2011). However, the
Sobol’ sequence is not primarily designed to diversify solutions. In fact, when designing the popula-
tion, it is more important that the points are distributed as uniformly as possible to imitate diverse
random points. A common way to implement this feature is to adopt a chaotic initialization of the
algorithm: Chaotic methods mimic the behavior of dynamic systems and are very sensitive to their
initial conditions.

We can find in the literature that different forms of chaotic maps have been adopted to generate
an initial population (e.g., tent, logistic, sinusoidal maps). But, as in Kazimipour et al. (2014) and
Elsayed et al. (2017), we propose in Equation (2) a generic formula that can be used to generate an
initial population for the algorithms:

X = fen(xt ), 2)

where each j corresponds to the jth variable of the ith individual of the population (the first indi-
vidual is generated randomly). f,;, is the mapping function (e.g., logistic, circle, sinus, tent). Such
maps generate real values € [0, 1]. k is the iteration number, which is equal to 1 as we are interested
only in the first iteration (initialization phase).

We note that the use of chaotic approaches has been mainly embraced along with other ap-
proaches. For instance, Gao et al. (2012) adopted an initialization approach that uses a chaotic
system and an opposition-based learning (OBL) scheme (which is described in Section 4.3) to gen-
erate an initial population. The authors adapted Equation (1) by replacing the uniform random
number generation by a chaotically generated number.

A fairly similar idea was introduced in Tian (2017). In that paper, the proposed approach
consists first of randomly initializing solutions. Then, if a variable plunges into the fixed points
(as in the example above regarding binary problems), a tent map is adopted to add a very
small positive random perturbation (the pseudo-code of the approach is available in that pa-
per). Moreover, the author adopted a hybridization of a chaotic initialization of PSO and a
Cauchy mutation (a type of a mutation operator). The motivation beyond hybridizing chaotic
approaches is to attempt to deal with the exploration—exploitation dilemma. Indeed, Snaselova
and Zboril (2015) emphasized the benefits of mixing chaotic and nonchaotic individuals. That
is, the mixing of (chaotic) individuals, with better exploration capacity, and others, with good
exploitation capability, is a propitious option to manage the aforementioned dilemma. Also,
the coupling of a number of chaotic approaches could also be an emerging concept, as out-
lined in Ozer (2010), which compared the performance of several chaotic procedures. The
authors’ idea is to generate different chaotic variables according to a chaotic map formula
(Equation (2)).

We can then conclude that chaos theory is a research line that could benefit the initialization of
metaheuristics. Additionally, although sensitivity to initial conditions is often seen as a drawback
of algorithms, it can be exploited to provide a more diverse population or to improve the search
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process, as elaborated in Fischetti and Monaci (2014). The authors coined the concept of erraticism,
which reflects the sensitivity of initial solutions (for a more detailed illustration of the concept,
interested readers are referred to Lalla-Ruiz and VoB, 2016). More details on the options to exploit
this concept can be found in Section 7.2.

On the other hand, a common approach to evaluate these chaotic solutions is to adopt en-
tropy. Fuertes et al. (2019) claimed that chaotic maps with higher entropy show increased fit-
ness density and generate better solutions. The authors founded their claims on experimental
results. However, it would be of the utmost importance to explain the reasons for such behav-
ior. Also, the impact of the entropy measurement may differ from one algorithm to another.
In fact, Liu et al. (2007) intended to illustrate the chaotic behavior of the swarm intelligence.
Their study shows that the PSO results are correlated with the maximal exponent of Lyapunov
(Skokos, 2010). Likewise, according to Snaselova and Zboril (2015), the use of chaotic maps to
generate the initial GA population avoids premature convergence to a local optimum. However,
this characteristic is again mainly related to the dynamic system called Lyapunov exponent. In
addition, other measures of the diversity of the initial population could be proposed. For exam-
ple, Diaz-Gomez and Hougen (2007) suggested a metric based on the center of mass to measure
diversity.

As far as entropy is concerned, it can be calculated on the basis of the problem data, as Vargas
et al. (2018) did. The authors asserted a positive correlation between the entropy of the initial
populations and the performance of a GA while solving the problem at hand. Nevertheless, it is
unknown if this could be generalized to different problems. Also, Saroj et al. (2011) extended a GA
by incorporating a form of entropy-based probabilistic initialization to automate the process of rule
mining.

At the end of this section, we can conclude that the use of PRNGs is a typical way to
generate an initial population. However, the generation of individuals in sequence holds more
promise in either promoting the quality of solutions (in terms of their fitness function values)
or promoting diversity (Gagnon et al., 2021). Chaos theory is therefore the most propitious
way to generate diverse initial solutions, which is the most needed at this stage, as underlined
in Section 2. The contribution of sequential generation is clearly shown for large-scale solu-
tion spaces and where there is no computational advantage (e.g., parallel computing) for other
approaches.

In Table 2, we summarize the current literature related to randomized approaches. More pre-
cisely, we highlight the methodology adopted in each paper for the main papers above, as well as
their contribution(s) and/or finding(s). If quality or diversity issues are involved in the paper, we
highlight the most considered issues in parentheses. Finally, we show the algorithm(s) considered in
the study (noted Alg.). In Table 2, the papers are sorted in chronological order to give an overview
of the progress of the work on the subject. (We note that in the table, the contributions start with a
verb while findings begin with a noun to differentiate them.)

4. Learning

Learning can be incorporated into metaheuristics in various ways. Specifically, we look at super-
vised learning, Markov models, OBL as well as some alternative of OBL.
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Table 2
Studies of randomized approaches: methodology adopted, contributions and/or findings, and algorithm considered
Author(s) Methodology Contributions and/or findings Alg.
Maaranen et al. Quasi-random Improve the distribution of the solutions (diversity) GA
(2004) sequence of points
Kimura and Low-discrepancy Propose a uniform distribution of the solutions GA
Matsumura (2005) sequences (diversity)
Maaranen et al. PRNGs Analyze the properties of different point generators GA
(2006) Investigate the effects of the uniform coverage
Liu et al. (2007) Chaos theory PSO with a high maximum Lyapunov exponent PSO
usually achieves better performance than other
approaches
Ozer (2010) Chaos maps Analyze several chaotic maps DE
Saroj et al. (2011) Entropy Generate an initial population that has relevant and GA
informative attributes (quality)
Ma and Vandenbosch PRNGs Study and compare the impact of PRNGs on PSO PSO
(2012)
Gao et al. (2012) Chaotic maps and Enhance the convergence of a stochastic PSO variant PSO
OBL (quality)
Snaselova and Zboril Chaotic maps Exploit a mixture of chaotic solutions (diversity) and GA
(2015) convergent solutions (quality)
Tian (2017) Chaos theory Generate uniformly distributed solutions (diversity) PSO
Alhalabi and Dragoi PRNGs Study the influence of PRNGs on DS; Weibull DS
(2017) distribution has the best results
Sacco and PRNGs A PRNG is suitable for a small population while a DE

Rios-Coelho (2018)

quasi-random sequence is adequate for large
population sizes

DE, differential evolution; DS, differential search; GA, genetic algorithm; OBL, opposition-based learning; PRNGs, pseudo-
random number generators; PSO, particle swarm optimization.

4.1. Supervised learning

In the introduction, we outlined that supervised ML approaches are useful to learn from previ-
ously solved problem instances. Such approaches can also be adopted when prior knowledge is
not available. The idea beyond the use of supervised ML is to generate subsequent initial solutions
by learning the characteristics of the solutions previously found. In other words, on the basis of
the first solutions generated, the goal is to determine the remaining solutions based on the infor-
mation extracted from the previous solutions. For a while, the adoption of ML for this purpose
was proposed using case-based reasoning (Ramsey and Grefenstette, 1993). Surrogate optimiza-
tion is a concept that can adopt supervised learning to build models from sample points (e.g.,
Kim and Boukouvala, 2020). An example of an ML algorithm that can be used for this purpose
is support vector machines (e.g., Keedwell et al., 2018). Moreover, Zhou et al. (2007) adopted the
concept of time series forecasting (in which supervised ML approaches are widely used) for this
problem.

Supervised ML can be adopted for the initialization of different metaheuristics, as is done, for
example, in Ren et al. (2018) for a cooperative co-evolution (COCO). Nevertheless, its practical
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use is hardly arguable due to its impact on the computational time (e.g., the training process),
except for very large-scale optimization problems. It is also important to leverage recent techno-
logical computational advances for an efficient supervised learning-based initialization. Another
idea that could be explored further is to use these learning techniques for only parts of a pop-
ulation, as investigated in Li et al. (2021b), which adopted a modular neural network for this
purpose.

In a different setting, one may also extend conventional metaheuristic approaches to incorporate
related learning. An example is the fixed set search of Jovanovic et al. (2019) superimposed on the
GRASP. Another idea that could be subsumed under this category, though developed in a different
context, is target analysis as described, for example, in Laguna and Glover (1993).

4.2. Markov models

Another practical way of using ML is through Markov models. Markov models are stochastic
mathematical models that are used to model randomly changing systems. The main assumption
is that future states depend only on the current state, not on the previous states. It has shown
success in modeling several metaheuristics in which the mathematical formulation fits with this
assumption. Depending on the problem type, a Markov model can be named a Markov chain or
a Markov decision process. An example of modeling a metaheuristic through Markov models can
be found in Simon et al. (2011). Regarding metaheuristic’s initialization, Caserta and VoB3 (2014)
used a Markov chain based cross-entropy scheme that adopts a maximum likelihood estimator to
generate an initial transition probability matrix that reflects the chances of obtaining high-quality
solutions. The authors are primarily interested in maximizing the structural diversity of the initial
solutions and adopt a smoothing factor for this purpose.

The approach is used to get one (or more) incumbent solution(s) for the corridor method (see,
e.g., Sniedovich and VoB3, 2006; Caserta et al., 2011), but it could be generalized. We note that
although this idea was not directly extended, Markov chains and cross entropy are main ingre-
dients of the ML reinforcement learning approach which is attracting a lot of interest today. It
was used for metaheuristics initialization in de Lima Junior et al. (2007) and Cai et al. (2019). In
addition, Hsu and Phoa (2018) came up with an initialization idea, which they called swarm initial-
ization, for a swarm intelligence method they developed earlier. Their idea is to use a Markov chain
Monte Carlo (MCMC) pool, and the authors claimed that it can accelerate the convergence of the
algorithm.

4.3. Opposition-based learning

Another way to integrate ML for the initialization of metaheuristics is through the use of the con-
cept of OBL (Tizhoosh, 2005). This idea has been exploited in many problems. In particular, it
can be observed from the literature that it is the most-cited generic approach for the initialization
of metaheuristics. To be more specific, Rahnamayan et al. (2007) proposed an initialization ap-
proach using OBL to generate an initial population for evolutionary algorithms. The main idea
behind OBL is to consider both the generated random solution and its opposite. More precisely,
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the algorithm generates n random individuals and calculates n opposite points, then selects the n
fittest (best) individuals of the two populations. This proposed scheme was initially incorporated
into DE in Rahnamayan et al. (2007), but it can also be incorporated into other population-based
metaheuristics such as PSO (Wang et al., 2011). However, we note that the notions of an oppo-
site solution and a distance can differ according to each algorithm, but it must conform to the

following mathematical formula: let P(xy, ..., x,) be a point in an n-dimensional space, where
X1,...,X;, € R and x; € [a;, b;] Vi € {1, ..., n}. The opposite point of P is defined by P(x1, ..., X,),
where

Xi=a;+ b; — x,. (3)

The numerical experiments carried out in that paper revealed that replacing random initializa-
tion with an opposition-based population initialization accelerates the convergence speed of the
optimization algorithm. For a more detailed description of OBL, one can refer to Rahnamayan
et al. (2008a).

It is notable that the main motivation beyond the adoption of OBL is to improve the chances of
producing solutions closer to the global optimum. Moreover, Rahnamayan et al. (2008b) attempted
to establish a mathematical proof that opposite points (solutions) have a higher probability of being
closer to the best solution than a second random point (solution). However, as indicated before, di-
versification is the most desired feature for initial solutions, and can then be achieved by introducing
the notion of diversification-based learning. Despite this issue not yet having been systematically
addressed, in Section 4.4 we give insights on how to address it. In fact, as noted in Glover and Hao
(2019), OBL corresponds to the notion of a complemented solution in binary optimization. An
example of OBL improvement with respect to its diversity was proposed in Park and Lee (2016),
but was not yet projected to the initialization of the solutions. The issue was recently addressed in
Ghannami et al. (2021), which combined the approach with a sampling technique. We can then
conclude that OBL, despite its wide use, lacks diversification mechanisms and needs to be sup-
plemented by other approaches, which are described in Section 5. Another issue is that OBL was
mainly designed for unconstrained problems and found application in continuous problems. To our
knowledge, no extension and adaptation of OBL has been proposed to deal with constrained and
discrete problems.

4.4. Diversification-based learning

The notion of diversification-based learning has been explicitly introduced in Glover and Hao
(2019), which provides some alternatives to the OBL, highlighted next. In general, population-
based metaheuristics seek initial solutions that are meaningfully opposed to all other solutions in
the population. That is, a single solution has to be the farthest point to the collection of all other
solutions. In other words, the authors replaced the notion of an opposite solution with the notion
of a diverse (opposite) collection of solutions.

We note that despite that this concept is not formally well known as a concept associated with
metaheuristics initialization, it is integrated in some metaheuristics. For example, the idea is explic-
itly included in the generation phase of SC (Laguna and Marti, 2003). In the three next sections,
we show how this concept could be integrated into different types of problems. More concretely,
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Table 3
Studies of learning approaches
Author(s) Methodology Contributions and/or findings Alg.
Ramsey and Case-based reasoning  Guide the search in changing environments GA
Grefenstette (1993)
Zhou et al. (2007) Time series prediction  Reinitialize the algorithm when a change Dynamic
occurs in the fitness function MOO
Rahnamayan et al. OBL Improve the fitness function of the generated Dynamic
(2007) population (quality) MOO
de Lima Junior et al. Reinforcement Reinitialize the algorithm when a change GA and GRASP
(2007) Learning (RL) occurs
Caserta and Vo83 Markov chain based Generate an initial transition probability Corridor method
(2014) cross-entropy matrix that reflects the chances of obtaining
diversified solutions (diversity)
Hsu and Phoa (2018) MCMC pool Accelerate the convergence (quality) Swarm intelligence
Ren et al. (2018) A surrogate model Evaluate only promising solutions COCO
Keedwell et al. (2018)  Support Vector Reduce the computational cost (diversity) DE
Machines (SVM)
Cai et al. (2019) RL Propose a RL extension, that builds upon SA

proximal policy optimization, to better learn
an initialization for algorithms

Glover and Hao Diversification-Based ~ Motivate that DBL is more promising than -
(2019) Learning (DBL) OBL. Illustrate that some typical approaches
for initialization fall under the umbrella of
DBL
Liet al. (2021b) Neural network Generate some solutions when a change Dynamic
occurs, and generate others at random to MOO
maintain diversity (quality)
Ghannami et al. Sampling and OBL Path length diversity is more important during ~ PSO
(2021) the initialization phase. A repair function
can introduce diversity to the population
(diversity)

COCO, cooperative co-evolution; DE, differential evolution; GA, genetic algorithm; GRASP, greedy randomized adaptive
search procedure; OBL, opposition-based learning; MCMC, Markov chain Monte Carlo; MOO, multiobjective optimization;
PSO, particle swarm optimization; SA, simulated annealing.

in Section 5, we are interested in the implementation of this concept for unconstrained continu-
ous problems, which is the simplest case. In Section 6, we outline the main issues with respect to
constrained problems.

In Table 3, we summarize the work on learning approaches in the same way as for random-
ized approaches.

5. Sampling and decomposition

In Section 3, we focused on the probabilistic approaches that are used to generate pseudo-random
initial solutions. Here, we first look at sampling before we focus on clustering and cooperation.
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5.1. Sampling

In this section, we show statistical approaches that aim to sample the search space in the most
appropriate way. In general, these approaches aim to diversify the search for solutions to be gener-
ated within the search space instead of the probabilistic sampling methods that were presented in
that section.

A typical statistical concept that could be used to generate diverse solutions is the experimental
design (or design of experiments). It aims to determine the relationship between the factors and the
output. Uniform design is an approach that aims to sample a small set of points, from a given set
of points, that are uniformly scattered. It was applied, for example, in Leung and Wang (2000) to
generate an initial population for a GA in the multiobjective optimization (MOO) space. Another
type, which was defined in Zhang and Leung (1999), is the orthogonal design. The motivation
of using an orthogonal array is to specify a small number of combinations of solutions that are
scattered uniformly over the space of all the possible combinations. It was applied in Leung and
Wang (2001), along with a quantization technique, to generate an initial population for a GA in
a generic way for different types of problems. The concept of orthogonal design was also adopted
in Gong et al. (2009) to uniformly scan the neighborhood around each solution for the artificial
immune system (AIS) metaheuristic. We note here that both Leung and Wang (2000) and Leung
and Wang (2001) observed that some major steps of a GA can be considered as an experimental
design. Indeed, the aim of the first iterations of a GA, and other metaheuristics, is often to ex-
plore the search space and to locate promising regions. Then, it is reasonable to adapt the suitable
statistical concepts to improve the exploration process. At the time of developing their ideas, the
authors confirmed positive outcomes. However, those approaches have not been extended over the
past decade, as nowadays much of the emphasis is on learning and advanced data analytic concepts
instead of basic statistical methods.

Nevertheless, despite the rise of learning approaches, appropriate statistical tools are also
worth studying due to their computational advantage. Latin hypercube sampling (LHS) is an
example of a statistical approach that has shown its effectiveness, and it is nowadays the most
adopted for metaheuristic’s initialization. It divides a domain into intervals in each dimen-
sion, then places sample points so that each interval in each dimension contains only one
sample point. In other words, LHS is a spatial filling mechanism that creates a grid in the
search space by dividing each dimension into equal interval segments, and then generates ran-
dom points within an interval. It was adopted in Mousavirad et al. (2019) for the initializa-
tion of the population of a DE along with OBL. Mahdavi et al. (2016) proposed population
initialization strategies that attempt to generate points around a central point with different
schemes. Li et al. (2020) compared LHS with other probabilistic initialization approaches (men-
tioned in Section 3). The authors recommended its use for PSO. Although the number of pa-
pers that focused on LHS for initialization is limited, several papers adopted it when propos-
ing their approaches (e.g., Tian et al., 2020). In addition, Georgieva and Jordanov (2009) pro-
posed an advanced approach that exploits this idea. The authors suggested an initial seeding
of a GA by choosing the centers of regions and then seeding the neighborhood of each solu-
tion.

Other papers, such as Rahnamayan and Wang (2009), proposed other sampling strategies.
However, they did not provide enough evidence on the effectiveness of their approaches and their
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findings need to be further clarified. Another idea is to combine sampling and learning approaches
as in de Melo and Delbem (2012). The authors define a concept they named smart sampling for
the initialization of a DE. Their approach consists of using an ML algorithm to identify promis-
ing and nonpromising solutions, to guide the resampling procedure to smaller areas that include
high-quality solutions.

At the end of this section, we note that more specific studies, tailored to particular algorithms
such as GA, have been conducted. For example, in Maaranen et al. (2006), in addition to a ran-
dom sequence initialization, the paper proposed a sequential inhibition process in order to produce
points that are either diverse or have good uniform coverage.

5.2. Clustering

In general, the statistical sampling-based approaches highlighted in Section 5.1 are suited for small
and medium optimization problems. However, for large-scale problems, it is often impractical to
sample the entire search space. In such a case, a typical way to ensure the diversity of the gener-
ated population is through the clustering of the solution space. There are a number of clustering
approaches used in the literature for metaheuristic initialization. Bajer et al. (2016) employed a
clustering method that first generates uniformly random population solutions. The resulted clus-
ter centers are then used to identify promising regions of the search space. A mutation operator is
then applied to generate new individuals around these centers while promoting the best. Accord-
ing to the authors, although the approach requires more time to generate the initial population,
it exhibits an increased convergence rate resulting in a lower execution time in most of the func-
tions tested. The incorporation of clustering has also been proposed from different perspectives.
For instance, Elsayed et al. (2017) proposed to decompose the search domain of each decision
variable into segments, then generate combinations of different segments of all the variables such
that different points of different areas of the search space can be selected. Main contribution of
the approach is that the fitness values of the initial population could provide information on the
pattern of the function’s behavior. A three-step approach has been proposed in Poikolainen et al.
(2015). In the first step, two fast local search algorithms are applied. In the second step, the solu-
tions are clustered to identify the basins of attraction (this concept is explained in Section 7.5).
In the third step, the solutions are sampled from the clusters to identify the most promising
basins.

We can conclude that clustering methods are promising for metaheuristics initialization. How-
ever, they face the challenge of the additional computational time required to run them.

For this, other simplistic clustering approaches could be adopted. An example is the Voronoi
tessellations (VT). VT, as proposed by Du et al. (1999), can be described as a way to compart-
mentalize an area. In particular, in centroidal VT, the generating solution of each Voronoi cell is
also its centroid. The approach was examined for an evolutionary algorithm, namely estimation of
distribution algorithm (EDA) in Muelas et al. (2010). The authors defined a partition set of the
solution space in which each island or node will start its own exploration. More concretely, the ini-
tialization is based on the isolation of the initial search space of each island and the use of a heuristic
method to uniformly cover each region of the search space. Regarding swarm intelligence, Shatnawi
and Nasrudin (2011) investigated this idea for cuckoo search, but to our knowledge, no in-depth

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



3378 M. Sarhani et al. / Intl. Trans. in Op. Res. 30 (2023) 3361-3397

studies have been conducted to evaluate this approach. Nonetheless, we note that the approach
shares similarities with LHS, which is gaining more attention.

On the other hand, we note that the concept could be indirectly incorporated in different
population-based algorithms. For evolutionary algorithms, Samorani et al. (2019) proposed a clus-
tering strategy that aims to isolate promising regions of the search space, and then to select parents
in different promising regions in order to generate new solutions. Additionally, the concept is mostly
exploited in swarm intelligence as it is based on the cooperation between different individuals, which
ideally explores the search space in a divided way.

5.3. Cooperative approaches

The aim of this section is to give insights on how to generate and design the initial population
of swarm intelligence approaches in such a way that the individuals cover the search space in the
best manner. In swarm intelligence, the concept of clustering is often presented under the term of
cooperation or cooperative optimization (or learning).

First, a typical approach is to divide it into subpopulations. Such an approach is frequently
used for the parallelization of algorithms. In fact, Przewozniczek (2020) claimed that the random
initialization of some population-based metaheuristics may lead to what he called Long-Way-To-
Stuck. Moreover, the author proposed to divide the population into subpopulations. However, it
was affirmed that some subpopulations will be unable to contribute to the improvement of the
solution if they are randomly initialized.

A classical multipopulation strategy is problem-oriented in the sense that each subpopu-
lation independently optimizes a part of the problem (e.g., Sarhani and Vof3, 2022). Other
advanced multipopulation optimization methods are used to improve the search diversity by
splitting the entire population into groups, in which each one has a specific role. But it is
important that the split of the population will result in a guaranteed improvement in diversity.
Moreover, the concept could also be used to achieve both diversity and quality. This was inves-
tigated, for example, in Zhan et al. (2009), in which each particle’s group has its specific mathe-
matical formula (e.g., velocity update) depending on its positioning in the exploration—exploitation
dilemma. We can conclude that the proposition of different initialization formulas for each sub-
population is a promising area that could be further explored and benefit from recent advanced
approaches.

Second, the concept of cooperation is explicitly implemented in ACO (Dorigo and Gambardella,
1997; Sondergeld and VoB3, 1999). In ACO, the pheromone trail is associated with elements of the
solutions (e.g., edges for the case of the TSP). One typical approach is to initialize pheromone
trails at random. However, some studies have shown that other approaches may be more effective.
According to Blum and Dorigo (2004), it is customary to initialize pheromone trails, when dealing
with problems such as the TSP, at small numerical values. According to the authors, this is the case
with most ACO variants. But Stiitzle and Hoos (2000) recommended to initialize the pheromone
trails to the maximum value available, thus achieving a higher exploration of solutions at the start
of the algorithm. Other papers were rather interested in the improvement of the exploitation of
the algorithm. Indeed, Bellaachia and Alathel (2014) and Dai et al. (2009) proposed two different
initialization strategies to improve ACQ’s ability to convergence.
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Table 4
Studies of sampling and decomposition approaches
Author(s) Methodology Contributions and/or findings Alg.
Leung and Wang Uniform design Propose initial solutions that are uniformly GA
(2000) scattered toward the Pareto frontier in the
MOQO space (diversity)
Stiitzle and Hoos Randomization Recommend to initialize the pheromone trails ACO
(2000) to the maximum available value (quality)
Leung and Wang Orthogonal design Select solutions that are uniformly scattered GA
(2001) over the feasible solution space (diversity)
Dai et al. (2009) Minimum Improve the convergence of the algorithm and ACO
spanning tree its fitness values (quality)
Gong et al. (2009) Orthogonal design Locate good points (diversity) AIS
Muelas et al. (2010) VT The partition of the search space reduces the EDA
modality of the constrained regions
de Melo and Delbem Smart sampling Finds regions with high possibility of DE
(2012) containing a global optimum (diversity)
Bellaachia and Local pheromone Use information available locally for ants to ACO
Alathel (2014) initialization calculate the initial pheromone level on
uninitialized edges. Improve the convergence
(quality)
Poikolainen et al. Clustering, local Sample solutions from clusters to identify the DE
(2015) search most promising basins of attraction
(diversity)
Mahdavi et al. (2016) LHS Generate points around a central point with COCO
different schemes (quality)
Bajer et al. (2016) Clustering Increase the convergence rate of the solutions DE
(quality)
Elsayed et al. (2017) Clustering Cover the search space uniformly (diversity) DE
Liet al. (2020) LHS, PRNGs LHS is recommended for PSO PSO
Przewozniczek (2020) Linkage Show the negative influence of the GA
learning-driven Long-Way-To-Stuck effect. Propose new
subpopulation subpopulation initialization procedure

ACO, ant colony optimization; AIS, artificial immune system; COCO, cooperative co-evolution; DE, differential evolution;
EDA, estimation of distribution algorithm; GA, genetic algorithm; LHS, Latin hypercube sampling; PRNGs, pseudo-random
number generators; PSO, particle swarm optimization; VT, Voronoi tessellations.

In Table 4, we summarize the works described in this section in the same manner as for the

previous works.

6. Constrained optimization

We note that the methods outlined in the previous sections are generally applicable to constrained
optimization. However, many of them need to be adapted to ensure the feasibility of the solutions
generated. Indeed, randomly generated solutions are unlikely to provide feasible solutions for most
constrained problems because, in general, the feasible domain is tiny, especially for combinatorial
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optimization problems. Our aim in this section is to shed light on specific techniques and tricks that
can be used to initialize constrained problems in the best and most efficient manner.

6.1. Generation of initial solutions

First, we are interested in how to ensure the feasibility of the generated initial solutions. In fact,
there are few papers that have addressed the problem of constraint handling in the initialization
process. For example, in Sacco and Henderson (2011), as an alternative to random initialization, the
authors used the Luus—Jaakola algorithm (a kind of heuristic) to generate an initial sampling with
points belonging to the feasible region. Another idea that could be adopted is inverse optimization.
This approach is often used to infer unknown problem parameters such as constraints. In Ghobadi
and Mahmoudzadeh (2021), the authors adopted it to infer linear feasible solutions and to provide
a baseline for the initial filtering of future solutions based on their feasibility.

Despite keeping the feasibility of the solutions is the obvious approach for effective generation
of initial solutions, the relaxation of some problem constraints is a promising concept. The idea is
to stipulate that X represents a set of solutions derived from a problem relaxation. This problem
can be taken as a starting point for metaheuristics that generate fully feasible solutions (Glover
and Hao, 2019). The most challenging issue is to drive the search to feasibility when it is lost. A
common approach for this is to use a penalty function. Tometzki and Engell (2011) adopted a
positive penalty coefficient that guides the search in infeasible regions toward a feasible region.
In that paper, in case of infeasible initialization, the population is driven toward feasibility by a
penalty function. Also, Dengiz et al. (1997) embraced a repair function as well as a stochastic
depth-first algorithm to generate the initial population. However, such an approach could involve
problem knowledge, and more research is needed on how to guide initial solutions to the feasible
area in the least costly manner.

For constrained optimization, an important question that arises is the impact of the feasibility of
the initial solutions on the outcome of the methods. According to Azad (2017), metaheuristics with
randomly initialized solutions failed in most cases to locate feasible solutions in the early stages
of the optimization. The authors then proposed to seed the initial population with feasible solu-
tions. However, the authors did not take into account the relaxation approaches outlined above.
Oliker and Bekhor (2020) proposed an approach for the transit route network design problem. It
first starts from infeasible solutions that assign all transit routes with the maximal frequency, and
then eliminates routes and decreases frequencies of the less attractive solutions. Elsayed et al. (2012)
attempted to analyze the effect of the number of feasible individuals, in the initial population, on
the performance of a DE algorithm. Their analysis aims to help judge both whether the initial pop-
ulation should include feasible individuals and also whether to increase the number when there are
very few. However, work on this issue is still insufficient and further studies are needed to validate
and extend previous work.

6.2. Diversification of solutions

Another important issue is how to generate diverse solutions for constrained optimization. In this
case, the initial population needs to be uniformly scattered over the feasible solution space, so that
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the algorithm can explore the entire solution space evenly. Clustering could also be an option to
select diverse solutions for mixed-integer programming problems (Danna and Woodruff, 2009).
However, the relationship between clustering methods and the formation of sets of diverse solution
vectors is a rich area for further exploration.

Moreover, experimental design could also be customized for constrained optimization. In Leung
and Wang (2001), the authors’ approach consists of dividing the feasible search space into a number
of subspaces based on a defined formula. The next step is to quantize each subspace and select the
best solutions.

Another way to generate initial feasible solutions is to adopt approaches beyond metaheuris-
tics. Indeed, finding good feasible initial solutions is an even more general issue in operations
research and a common problem addressed in different optimization methods. For instance, the
classical transportation problem is one of the most considered problems in operations research,
and a large number of papers are devoted to finding initial feasible solutions (e.g., Juman and
Hoque, 2015; Karagul and Sahin, 2020) that are then possibly improved. Often, however, a solid
evaluation whether and how the initial feasible solutions improve the overall time-to-target qual-
ity is occasionally missing. More in-depth studies need to consider specific problem settings and
related solution approaches to be evaluated. For example, we refer to the case of transit network
design (and frequency assignment), where a classical idea is to apply a route construction as a
seed for improvement and then to apply some sort of route repair; see, for example, Iliopoulou
et al. (2019). Similar ideas also come up in case of problem settings, where disturbances need to be
considered and related repair mechanisms might be applied, where a given (disturbed) solution is
taken as initialization for the subsequent optimization process; see, for example, Ge et al. (2022) for
some references.

We note that the use of relaxation is particularly interesting for combinatorial optimization prob-
lems (Glover and Hao, 2019). Next we provide a suggestion on how to deal with such a problem.

6.3. Initialization using single solution based metaheuristics for combinatorial optimization

In the metaheuristics community, single-solution metaheuristics are widely used to initialize
population-based metaheuristics. In other words, when researchers and practitioners want to im-
plement the initial values of algorithms, they often adopt rapid local searches as alternatives to
randomly generated solutions. The reason is often to supply them with good feasible solutions. The
contribution of these approaches is appealing in combinatorial optimization as they are associated
with the notion of a neighborhood. That is, a local search approach usually involves choosing the
best solution in a neighborhood. The question that may arise in this context is what local search
approach should be considered in order to generate a diverse population of solutions. Although it
is not straightforward to provide affirmative options due to the free lunch theorem for optimization
(Wolpert and Macready, 1997), the literature could provide rules of thumb that could be useful in
practice. More concretely, multiple papers have shown that GRASP may be an appropriate tool
to initialize population-based methods for combinatorial optimization. In Ahuja et al. (2000), a
GRASP heuristic is applied to generate the initial population for a GA. Moreover, it was con-
sidered as a typical example for the diversification-based learning scheme (Section 4.4) proposed
in Glover and Hao (2019) and was incorporated into the first design of SC. That paper refers to

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.



3382 M. Sarhani et al. / Intl. Trans. in Op. Res. 30 (2023) 3361-3397

Table 5
Studies of constrained and combinatorial optimization approaches

Author(s) Methodology Potential and/or findings Alg.
Ahuja et al. (2000) Single-solution Generate diversified solutions using GRASP GA
approach
Danna and Woodruff A local search & Suggest ideas to generate a small subset of solutions -
(2009) Sequential that maximizes their diversity (diversification)
screening
Tometzki and Engell Mixed-integer Drive the population toward feasibility, in case of GA
(2011) program infeasible initializations, by a penalty function
Elsayed et al. (2012) Chaos maps Analyze the effect of the number of feasible DE

individuals, in the initial population, on the
algorithm’s performance
Juman and Hoque Heuristic Adopt approaches beyond metaheuristic literature -
(2015) for initialization. Develop a heuristic technique for
obtaining initial feasible solutions to the
transportation problem

Ghobadi and Inverse Inform the desirable properties of the feasible region -
Mahmoudzadeh optimization based on user preference and historical data
(2021)

DE, differential evolution; GA, genetic algorithm; GRASP, greedy randomized adaptive search procedure.

Campos et al. (2001), where the authors developed and tested several diversification generation
methods (most of them are based on GRASP variants). The reason of these selections is that
GRASP has shown effectiveness in providing diverse solutions compared to simple local searches
such as TS. For example, Aringhieri et al. (2007) found that GRASP is better at solving the maxi-
mum diversity problem. The problem, which was defined in Glover et al. (1998), consists of selecting
a number of elements in a set so as to maximize the sum of the distances between the chosen el-
ements. The reason could be due to its sampling capacity. Indeed, according to Feo and Resende
(1995), GRASP construction can be seen as a repetitive sampling technique, in which each itera-
tion produces a sample solution from an unknown distribution; see also Hart and Shogan (1987)
for a related discussion of the repetitive nature of the approach (though not yet using the notion
of GRASP). It is of interest that the pilot method also, to a large extent, relies on repetition; see
Duin and Vo (1999). GRASP was by design used in the initialization of the recently proposed
fixed set search metaheuristic (Jovanovic et al., 2019), which has shown favorable results in quite a
few problems (e.g., Jovanovic and Vof3, 2021).

In Table 5, we summarize the work corresponding to both constrained and combinatorial opti-
mization approaches.

7. Single-solution metaheuristics

The aim of this section is to give some helpful insights, which can be used to generate the sequence
of initial solutions in the best way for the next iterations of a multistart single-solution metaheuris-
tic. In fact, from the previous sections, it is clear that the interest in metaheuristic initialization is
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dedicated to population-based methods, and that this issue is rarely addressed for single-solution
methods. The reason is that it appears to be illogical to search for the best first single solution when
no knowledge is available on the search space. Nevertheless, initialization can be incorporated here
using multiple runs or a sequence of solutions as described next. We start with motivation before
delving into specific approaches.

7.1. Motivation and contextualization

In this section, we are interested in how to design the sequence of initial solutions as it has an
impact on the outcome of the algorithm and its diversification. The aim of this part is then to give
an overview on how to generate a diverse sequence of initial solutions instead of a simple local
search. In other words, rather than proposing a local search that works in the same way for the
whole process, we propose insights on the first iterations that can be exploited later regardless of
the local search adopted.

In general, local search algorithms have a good intensification capacity, while their drawbacks are
mainly due to their lack of capacity to diversify the search. In fact, local searches typically focus on
the exploration of the neighbors of the previously visited solutions, and therefore the exploration
of new regions requires several iterations and needs the handling of different local optima (Hao
and Solnon, 2020). Nevertheless, the algorithms presented in Section 2.3 provide mechanisms to
maintain the diversity of the search. Moreover, several improvements have been proposed in this
regard. The hybridization with population-based metaheuristics is a suitable option for this pur-
pose. In Lozano and Garcia-Martinez (2010), several examples were reviewed. Other approaches
are based on tuning the algorithms in an intelligent and adaptive way. An example for the case of
TS was proposed in Neveu et al. (2004). As before, our objective is to project these tools for the
initialization phase of local searches and to highlight those that are suitable for this phase. Such
approaches often need to diversify the search and obtain (possibly in a multiobjective setting) as
much information as possible in a very short time, by improving and extending the ideas presented
in Section 2.3.

Next, we focus on the generation of the sequence of initial solutions in the best informative way
for the next iterations. The issue is often addressed in the literature by the terms reinitialization,
restart, bet and run, or multistart (the latter is the most generic and encompasses the different
approaches depicted in Section 7.2).

We should note in passing that many of these methods may use some random restart. In this
section, we formalize approaches used for such repeated runs that are in essence related to initial-
ization. Many of these metaheuristics do not have multiple starts per se as part of their definition
but that is how they are often used.

7.2. Multistart approaches

One promising way to escape a local optimum when using a local search is to generate a new start-
ing solution and then reinitiate the process. This approach, exploited in ILS, consists in restarting
the algorithm when no progress is observed, which reflects that the algorithm is stuck in a local
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optimum. This idea has been integrated in different algorithms to avoid premature convergence.
For example, Alfonzetti et al. (2006) adopted it for the case of an SA when facing a local opti-
mum. The typical way to do it is through randomization. However, randomized approaches could
be questioned, as outlined next.

First, as indicated in Charon and Hudry (2001), the efficiency of ignoring the previous solutions
when building a new, entirely random initial solution is questionable. The authors recommended
generating new starting solutions for local search in a smart way rather than just providing random
restart solutions.

Second, from a computational perspective, the random reinitialization often needs a consider-
able amount of time to reach a good solution. Another approach that could be used to enhance
solution’s diversity is to apply a local search multiple times in parallel, with initial solutions chosen
arbitrarily. The initialization phase in this case is to perform a random search several times in par-
allel. For large-scale optimization, some advanced approaches could be introduced. For instance,
Tseng and Chen (2008) used a multiple trajectory search, which adopts multiple agents to search the
solution space concurrently and where each agent adopts an ILS. Clustering is also an option to di-
vide the search space before applying single-based solutions in parallel, as investigated, for example,
in Oliveira and Lorena (2007). However, we note that this approach is similar to the case of having
a population of solutions. Despite being able to exploit parallel computing, its computational time
needs to be further improved.

Moreover, multistart strategies could aggregate different hybridization of metaheuristics, which
use them sequentially as investigated, for instance, in Fuad (2013). However, the first algorithm
must often be fast and help increase the diversity of the latter. Multistart approaches may also
utilize the previously determined search history so as to avoid revisiting already known solutions in
a TS as proposed and applied by Sondergeld and Vo3 (1996).

Also, another crucial issue concerns the selection of exploitable solutions among those gener-
ated. In fact, the basic approach consisting in retaining the solution corresponding to the best local
minimum obtained does not often lead to the overall best solution. For this purpose, an alterna-
tive option, which was proposed in Fischetti and Monaci (2014), is to provide several random runs
to explore the search space and select the most promising one. The contribution of this approach
compared to those above is that it aims to limit the use of local search on only promising areas
and to explore only their neighborhoods. The authors affirmed that the approach was able to find
good solutions. Their motivation is that local searches are sensitive to initial solutions (erraticism)
and that the selection of good runs can have a significant impact on the performance of the al-
gorithm. But the authors stressed the importance of generating diversified runs and selecting the
most promising. We have covered the first problem above and will focus on the second problem
next.

7.3. Intelligent and adaptive approaches

First, we note that Marti et al. (2013) divided multistart methods into memory-based and mem-
oryless procedures, which are described in this part and the previous part, respectively. Regarding
memory, the aim of intelligent and adaptive approaches is to exploit memory to restart the process
in the most efficient way. In the literature, the implementation of intelligent and adaptive multistart
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strategies is often achieved either by generating new starting solutions for the local search in an
intelligent way instead of randomization, or allowing worsening moves.

The first approach has been incorporated in the literature in GRASP and ILS, as highlighted
next. For example, Boese et al. (1994) proposed a multistart method where the starting points for
greedy descent are deceptively derived from the best local optimum previously found. Another
approach that can be used for GRASP is the pilot method (Duin and Vof3, 1999). In fact, the
authors noted that the big mistakes in the optimization process are usually done in the initialization
phase, and proposed the pilot method to address this issue. Related results for the pilot method can
be found, for example, in VoB3 et al. (2005).

Weise et al. (2019) incorporated the notion of performance prediction. The authors adopted a
method that aims to predict the future performance of the initial runs in order to select the most
promising while considering the corresponding time budget. Brandao (2006) adopted an intelligent
technique that generates initial solutions from pseudo-lower bounds. Their approach consists in
restarting the search from the best-known feasible (or even infeasible if none is feasible) solution.

The second approach could be incorporated in SA and TS by tuning the corresponding param-
eter, shown in Table 1. Another promising idea is to adaptively generate the sequence of solutions.
One approach that could be exploited in this regard is the reactive TS (Battiti and Tecchiolli, 1994).
Reactive TS aims at the automatic adaptation of the tabu list length. The idea is to increase the tabu
list length when the tabu memory indicates that the search is revisiting previously visited solutions.
A similar idea, which was named prohibition-based diversification in Battiti and Brunato (2018),
consists of prohibiting previously visited solutions and guiding the search space beyond them. We
note here that the integration of other algorithms such as SA could provide a better diversifica-
tion strategy for reactive TS, as shown, for example, in VoB3 and Fink (2012). In this case, if the
search seems to repeat an excessive number of solutions too often, then the search is diversified by
performing a number of random movements proportional to a moving average of the cycle length.
Moreover, the aforementioned distances for combinatorial optimization can also be adopted to
diversify the solutions, in an adaptive manner, as proposed for example in Vo3 (1995).

We note that, although these approaches are not limited to the initialization phase, they are
particularly interesting for guiding the search in the most efficient way at this stage. An interesting
deviation from these ideas may be to use the same starting solution in a repetitive way; however,
with different information about parameters or the history of the search. For instance, Sondergeld
and VoB (1996) propose to restart a TS (more specifically, the reverse elimination method) with
modified lists representing the search, actually guiding toward diversified solutions.

On the other hand, we note that these restart strategies could also be incorporated into
population-based metaheuristics. For example, in Tian et al. (2020), the authors proposed a reini-
tialization strategy based on the maximal focus distance, which can generate uniformly distributed
initial particles (for a PSO). Simon et al. (2014) proposed a reinitialization technique for another
swarm intelligence algorithm. An adaptive strategy was proposed for ACO in Birattari et al. (2007),
which suggested that an effective initialization strategy of pheromone for ACO could be inversely
proportional to the cost of the solution obtained by the nearest neighbor heuristic. Moreover, the
authors proposed to seed the algorithm with a solution based on previous knowledge and observe
its impact.

At the end of this part, we note that Marti et al. (2010) proposed another categorization, based
on three elements, to classify multistart methods that are randomization, memory, and the degree
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of rebuilding. In Sections 7.2 and 7.3, we discussed randomization and memory issues, respectively.
The degree of rebuilding reflects the number or proportion of solutions that remain fixed. This issue
is addressed in Section 7.4.

7.4. Measuring modification costs

The aim of this part is to introduce an issue that must be dealt with in the initialization phase. The
problem is to specify what is the appropriate cost, in time and/or number of iterations, to allocate
to the initialization phase. For example, for population-based methods, an important issue is to
choose the population size, which is often a parameter that needs to be tuned. This problem could
be addressed in a similar manner and in combination with the other parameters (e.g., Aoun et al.,
2018). However, we note a lack of connection of this issue with the strategies presented above.

Another issue is the comparison between sequential and simultaneous generation of initial solu-
tions, and we argued that the former is more suitable for their diversification. Nevertheless, there
is a need to embrace the issue while also considering the computational time. Greistorfer et al.
(2008) asserted that sequential generation frequently needs less computational time and produces
solutions that are at least as good as those produced by simultaneous generation. Further research,
which considers both recent algorithms and computational advances (e.g., parallelization), is re-
quired to obtain a unified assessment of the approaches.

In particular, this issue is crucial for multistart approaches. It was addressed in Weise et al. (2019),
which extended Fischetti and Monaci (2014). The paper discussed the issue of effective management
of the time budget and in particular the selection of the time required for initialization. As indicated
previously, their approach, applied to a stochastic local search (SLS), intends to allow for each run
a corresponding time according to its expected performance. A fairly similar idea was proposed in
Gyorgy and Kocsis (2011), which suggested to start multiple instances of a local search algorithm,
and to allocate processing time to them depending on their behavior.

For sequential initialization methods, and in particular for constrained and combinatorial op-
timization problems, it is essential to evaluate the cost of generating and updating a solution. In
Duin and Volgenant (2006), the authors sought to evaluate the modifications of the cost function
adopted to generate a feasible solution and to find the cheapest adaptation of the cost. The objec-
tive is to optimize the difference between the initial solution and the following solutions.

Additionally, we refer to Watson (2010) who pointed out that sampling the search space should
attempt to provide as wide a coverage of the search space as possible within the limits of an ac-
ceptable computational cost. For a recent approach to restrict the sampling to a subspace, see,
for example, Li et al. (2021a). Watson (2010) asserted that the computational cost of sampling
should be significantly lower than the cost of solving the problem with randomly generated indi-
viduals. The assessment of the needed cost depends on each algorithm and problem. But, as a rule
of thumb, we can expect that single-solution approaches require more diverse initial solutions than
population-based methods. Indeed, in general, population-based methods have better diversifica-
tion mechanisms than simple local searches. Hence, local searches generally require more diverse
initial solutions to address this limitation.

At the end, we note that Watson (2010) also emphasized the promises of the fitness landscape
analysis (FLA), which is a next.
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7.5. Fitness landscape analysis

Finally, we aim to highlight a concept that can be exploited in defining initial solutions, which is
FLA (Reeves, 1999). FLA aims to characterize optimization problems and improve knowledge of
their properties (also called functionalities or characteristics). Its motivation in our context is that
the characterization of a problem could lead to a better understanding of it and a better choice
of initial solutions for each instance of the problem. More specifically, FLA makes it possible to
sample the search space and extract the relevant and available features that could drive the search
and reinitialize it based on feature values. For example, if the sample suggests a rugged landscape
(which corresponds to a large number of local optima), the algorithm should accept worsening
moves or exploring the different regions. The initialization strategy could also leverage specific
findings, such as Ochoa and Veerapen (2017) who suggested a big-valley structure for typical TSP
instances. The TSP is the best-known combinatorial optimization problem, and in this case local
optima are clustered around one central global optimum.

For a comprehensive review of the different features that could be exploited, we refer to Malan
and Engelbrecht (2013). In this paper, we are particularly interested in how to generate a represen-
tative sample allowing to guide the search space according to the extracted characteristics. Next,
we highlight some works on this issue.

For example, in Muioz et al. (2014), LHS was used to generate a sample. In Malan and En-
gelbrecht (2014), multiple random walks starting in different zones on the boundary of the search
space were used as a basis for obtaining sufficient information. Jana et al. (2016) adopted random
walks as a technique to characterize the features of an optimization problem such as ruggedness
and smoothness. We note that the calculation of the aforementioned features differs according to
the problem and the nature of the variables. Nevertheless, the same methodology could be adopted.
Also, there are specific features for each kind of problem such as the basins of attractions for com-
binatorial optimization problems.

In fact, for local searches, a fruitful approach to generate a good solution is to target basins of
attraction. These are the areas that lead to a certain local optimum. Indeed, it has been shown, for
example, in Traonmilin and Aujol (2020), that their identification is useful for local searches. To
achieve this goal, initial solutions should be diversified and uniformly distributed over the search
space in order to sample basins of attraction of all local optima (Mehdi et al., 2010). Compared
to the randomized multistart approaches, this is more computationally efficient because it restricts
the adoption of local searches in their promising areas. A more in-depth and generic study was
proposed in Prugel-Bennett and Tayarani-Najaran (2012), which focused on this issue and on the
analysis of other features. FLA can improve the computational time also using an empirical hard-
ness model as in Malone et al. (2018).

In Table 6, we summarize the work corresponding to single-solution approaches. In this table, as
in the previous tables, we have not shown all of the above papers and chosen a representative article
for papers with similar ideas.

At the end, we note that the approaches outlined above for FLA are also of interest for
population-based methods. In particular, inspired from evolutionary biology, several features have
been proposed to quantify the population of evolutionary algorithms through FLA (e.g., Wang
et al., 2018), and sampling approaches have been adopted to measure these features.
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Table 6
Studies of single-solution approaches

Author(s) Methodology Potential and/or findings Alg.
Boese et al. (1994) Adaptive Underline that random multistart approaches are GRASP
multistart insufficient in high-dimensional problems. Propose an

adaptive approach that uses best-known locally
minimum solutions to generate subsequent starting

points
Alfonzetti et al. Restart Propose an improvement to prevent the algorithm from SA
(2006) becoming trapped in local minima (diversity)
Tseng and Chen Multistart Adopt multiple agents to search the solution space ILS
(2008) concurrently
Mehdi et al. (2010) FLA Propose an initial population that aims to sample basins GA, DE
of attraction of all local optima (diversity)
Marti et al. (2010) Multistart Classify multistart methods based on randomization, -
memory, and degree of rebuild
Watson (2010) FLA Motivate the use of FLA to improve the theoretical -

understanding of local search. Point out that sampling
the search space should attempt to provide as wide a
coverage of the search considering the allowed
computational cost

Malan and Random walks Propose a progressive random walk algorithm to sample -
Engelbrecht (2014) neighborhood structure (diversity)
Fischetti and Monaci Restart Coin the concept of erraticism. Exploit that concept to SLS
(2014) make a number of short sample runs with randomized
initial conditions (diversity)
Weise et al. (2019) Bet and run Predict the future performance of the initial runs in SLS

order to select the most promising. Allow for each run
a corresponding time according to its expected
performance

DE, differential evolution; FLA, fitness landscape analysis; GA, genetic algorithm; GRASP, greedy randomized adaptive search
procedure; ILS, iterated local search; SA, simulated annealing; SLS, stochastic local search.

8. Conclusion

The initialization of metaheuristics is a crucial topic that lacks a comprehensive and systematic
review of the state of the art. The reason for the lack of such a review is that it requires an in-depth
study of various related topics. In fact, it is not enough to search only the papers that focus com-
pletely on the initialization. Indeed, it is also needed to extract insightful ideas that can be found
in papers which are interested in the initialization phase while proposing their metaheuristics (e.g.,
Georgieva and Jordanov, 2009) and on generic approaches for diversification that are useful for
initialization (e.g., Glover and Hao, 2019). In this paper, we conducted a literature review on this
subject, which made the connection between the work proposed for the initialization of metaheuris-
tics and the broader advances in the fields of metaheuristics and optimization. In other words, in
this paper we have reviewed the current literature on metaheuristic initialization, and analyzed and
evaluated it based on its contribution to the algorithms, particularly with respect to enhancing the
capacity of diversification and/or intensification.
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More concretely, we began by showing in Section 2 the needed background of the topic. In that
part, we have focused on the dilemma of diversification/intensification and highlighted how the
main metaheuristics handled it, with the aim of drawing inspiration from it in the initialization
phase. Next, we reviewed the current state of the art of metaheuristic initialization taking into ac-
count the advances in the field. In particular, in Section 3, we reviewed the approaches that are based
on randomization techniques. In Section 4, we were interested in learning methods. In Section 5, we
focused on the other generic methods based mainly on sampling, clustering and cooperation. Then
we switched to one of the most challenging types of optimization problems, namely constrained
optimization, covered in Section 6. Particular interest was devoted to combinatorial optimization
in that section. In Section 7, we projected the topic of initialization onto local search approaches
and provided information on how to design a diverse and informative sequence of initial solutions.
Next, we highlight some paper findings and issues that should be noted.

First, as we mentioned earlier, random initialization is the classical way for initialization. This is
due to the fact that it is a widespread opinion in the metaheuristic community that randomization
is associated with diversification. That is, to improve the diversification capacity of a particular
algorithm, the most common approach is to add a random operation. However, the notion of
diversification is different from randomization. In fact, the goal of diversification is to produce
solutions that differ significantly from each other (Glover and Hao, 2019).

In particular, we note that learning-based methods are getting a lot of attention these days. We
advocate that the use of learning-based methods should not be conducted arbitrarily and should
be consistent with the proper handling of the dilemma.

Second, according to Kazimipour et al. (2014), the role of this step is to provide an initial guess of
solutions. We have argued in this paper that the initial phase should primarily aim at diversifying the
solutions in order to explore the different regions of the search space. We can, therefore, conclude
that the measure of the quality of the initial solutions should not be associated with the objective
or fitness function value. In our paper, we adopted the term quality, for example, in the tables, for
the sake of simplicity but we recommend that it should be used differently and be associated with
diversity in practice.

Particularly, we underline that depending on each metaheuristic, different diversification ap-
proaches have been proposed. While providing a literature review on this subject is beyond the
scope of this paper, we suggest, as in Glover and Hao (2019), that more theoretical studies are
needed in this regard, and the adoption of advanced diversity control techniques (e.g., Park and
Ryu, 2010) can be beneficial for the initialization phase.

Third, an important issue is to assess the advantages and disadvantages of different approaches
based on the time required for initialization. In particular, advanced approaches, such as clustering
and learning, are useful for high dimensional problems. For these problems, simple randomization
and sampling approaches are unable to cover the search space appropriately, as noted, for example,
in Maaranen et al. (2006) for the case of a GA. Also, as a complement to the second point, we
note that the quality can be associated with the fitness value in a particular case. That is, if the
generation and evaluation of a solution is expensive, it is important to have a good objective value
for the initial population, albeit at the expense of diversity, because few solutions can be evaluated.

Fourth, we have highlighted similarities between the initialization of single-solution metaheuris-
tics and population-based metaheuristics. In general, in both cases, the goal is to provide diversi-
fied solutions. For population-based approaches, we have argued that the generation of solutions in
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sequence is a suitable way for initialization. This motivates the use of single-solution approaches.
But, in the literature, the algorithms are mostly initialized using an arbitrary algorithm without
convincing justification. In Section 6.3, we have provided an example study in this regard. Likewise,
population-based methods can be used to initialize single-solution approaches (e.g., by clustering
the solution space, as mentioned in Section 7.2). The number of hybrid approaches that combine
the two types in the literature is countless. However, most of them are not based on actual evidence.
In this paper, we have provided food for thought and we advocate for more practical research.

Fifth, in Tables 2-4, we summarized the approaches that have been used for algorithm initial-
ization. We note that most of these approaches have been applied to one of the three algorithms,
namely GA, DE, and PSO. In this paper, we also looked at ACO, which is a widely used algorithm,
and SC because it has a different inspiration. The other population-based algorithms mentioned in
this paper can be derived or share similar components with the algorithms described in Section 2.3,
as indicated in de Armas et al. (2022) and Molina et al. (2020). Therefore, the results obtained can
be projected onto typical algorithms and vice versa by examining the similarities between the algo-
rithms.

Sixth, in this paper, we reviewed and provided insights that will help research in constrained
and discrete (especially combinatorial) optimization problems. We can see that there is an overlap
between the work on these two problem types. Additionally, the research on initialization of meta-
heuristics for MOO problems is very limited, some examples can be found in Zhou et al. (2007),
Rahnamayan et al. (2007), and Friedrich and Wagner (2015). Due to the high computational cost
of solving such problems, metaheuristics are extensively used with great success. Because of this,
this problem type needs further attention. In particular, more research effort should be dedicated
to finding diversified initial solutions for it. This issue was not considered in the existing papers.
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