
Debener, Jörn; Heinke, Volker; Kriebel, Johannes

Article  —  Published Version

Detecting insurance fraud using supervised and
unsupervised machine learning

Journal of Risk and Insurance

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Debener, Jörn; Heinke, Volker; Kriebel, Johannes (2023) : Detecting insurance
fraud using supervised and unsupervised machine learning, Journal of Risk and Insurance, ISSN
1539-6975, Wiley, Hoboken, NJ, Vol. 90, Iss. 3, pp. 743-768,
https://doi.org/10.1111/jori.12427

This Version is available at:
https://hdl.handle.net/10419/288122

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1111/jori.12427%0A
https://hdl.handle.net/10419/288122
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 2 September 2022 | Revised: 21 January 2023 | Accepted: 3 April 2023

DOI: 10.1111/jori.12427

OR IG INAL ART I C L E

Detecting insurance fraud using supervised
and unsupervisedmachine learning

Jörn Debener | Volker Heinke | Johannes Kriebel

Finance Center Münster, University of
Münster, Münster, Germany

Correspondence
Johannes Kriebel, Finance Center
Münster, University of Münster,
Münster, Germany.
Email: johannes.kriebel@wiwi.uni-
muenster.de

Abstract

Fraud is a significant issue for insurance companies,

generating much interest in machine learning solutions.

Although supervised learning for insurance fraud detec-

tion has long been a research focus, unsupervised learning

has rarely been studied in this context, and there remains

insufficient evidence to guide the choice between these

branches of machine learning for insurance fraud detec-

tion. Accordingly, this study evaluates supervised and

unsupervised learning using proprietary insurance claim

data. Furthermore, we conduct a field experiment in

cooperation with an insurance company to investigate the

performance of each approach in terms of identifying new

fraudulent claims. We derive several important findings.

Unsupervised learning, especially isolation forests, can

successfully detect insurance fraud. Supervised learning

also performs strongly, despite few labeled fraud cases.

Interestingly, unsupervised and supervised learning

detect new fraudulent claims based on different input

information. Therefore, for implementation, we suggest

understanding supervised and unsupervised methods as

complements rather than substitutes.
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1 | INTRODUCTION

Fraud is a major issue for insurance companies. Insurance Europe (2019), the European
insurance and reinsurance federation, estimates that total fraudulent claims in Europe in 2017
amounted to approximately €13 billion. These massive costs affect not only insurance
companies but also honest policyholders via their impact on insurance premiums (Viaene
et al., 2007). Beyond the cost savings associated with identifying fraudulent claims, effective
detection of insurance fraud also acts as a deterrent that is critical to the insurance market
(Picard, 1996; Tennyson & Salsas‐Forn, 2002). Therefore, from the perspective of insurance
companies and honest policyholders alike, it is important to investigate which method can best
detect insurance claim fraud.

Insurance claim fraud is a complex and multifaceted phenomenon, and detecting it is
typically very time‐ and cost‐intensive (Viaene et al., 2007). Therefore, an active strand of
literature aims to detect insurance claim fraud more efficiently using statistical methods.
Until recently, the vast majority of these studies used methods based on supervised
learning, such as logistic regressions and artificial neural networks (e.g., Caudill
et al., 2005; Viaene et al., 2002; Wang & Xu, 2018). Supervised learning methods use
labeled data to learn to distinguish between fraudulent and nonfraudulent claims.
Although these methods are generally very efficient when given a sufficient amount of
labeled data, they face some challenges in the context of insurance fraud detection, as
recently emphasized by Gomes et al. (2021). First, few insurance claims are typically
identified as fraudulent due to the substantial effort required to manually detect fraud and
fraud being relatively rare. This can make robust estimation a problem. Second, the
training data likely contains fraudulent claims that were not detected (see also Brockett
et al., 2002), making supervised learning methods prone to replicating existing fraud
identification mechanisms. This means new and unknown fraud patterns potentially
remain undetected. A remedy could be using methods from the unsupervised learning
domain, that is, methods that identify patterns and anomalies in the data without
requiring labels. However, thus far, relatively few studies have investigated the potential
of unsupervised learning methods for detecting claim fraud. In a very recent example,
Gomes et al. (2021) promote a more comprehensive discussion of unsupervised learning
by providing important arguments for using unsupervised deep learning in fraud
detection and also proposing a corresponding variable importance measure. This
emphasizes the need for more evidence to guide the choice between unsupervised and
supervised learning.1

Thus, consideration of the vivid extant literature surrounding insurance fraud detection
reveals three important research gaps. First, there remains limited research on unsupervised
learning for insurance fraud detection. Second, modern unsupervised and supervised learning
methods have not been directly compared in terms of detecting insurance claim fraud.

1Although a comparison is outside the scope of Gomes et al. (2021), the study does compare unsupervised and supervised learning in the
context of detecting credit card fraud. However, it is not clear ex ante whether the observations from this comparison are transferable to
insurance fraud detection because the patterns and mechanisms of credit card fraud and insurance fraud may differ substantially.
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Although the scarcity of available labels could advantage unsupervised learning, findings
from credit card fraud detection as another fraud detection task favor supervised learning.
Third, given that insurance companies will usually miss some fraud cases based on their
existing processes, such a comparison would ideally also be based on an experiment using
previously unsuspected cases that are then assessed based on model predictions, a research
setting that remains unexplored. From a theoretical perspective, unsupervised learning and
supervised learning could both have strengths: When the problem of new, unknown fraud
patterns dominates, unsupervised learning could be advantageous; when fraud patterns are not
detected comprehensively enough by existing fraud detection mechanisms, supervised learning
could offer the benefit of rigorously identifying such claims.

We address these issues using different unsupervised and supervised learning methods
to detect insurance fraud. Our main unsupervised learning method is isolation forests, a
state‐of‐the‐art unsupervised method that efficiently detects anomalies in data while
maintaining relatively low complexity (Hariri et al., 2019; Liu et al., 2008). Our main
supervised method is extreme gradient boosting (XGBoost), a modern classifier that
performs strongly in many different applications (Shwartz‐Ziv & Armon, 2022). We use
these methods to analyze a proprietary data set from a German insurance company
comprising 7750 automobile insurance claims from 2020 to 2021. After training the
machine learning models on the data, we use three steps of analysis to evaluate their
insurance fraud detection performance. First, we use regression analysis to investigate the
overall discriminatory power of the machine learning‐based fraud scores for identifying
fraudulent claims. Second, we use precision@k, a measure typically used in the domain of
information retrieval (Metzler & Bruce Croft, 2007), to specifically identify what share of
the claims with the highest fraud scores are actually fraudulent. Precision@k reflects
particularly well the special situation of insurance companies, which usually have only
limited resources available for the in‐depth investigation of claims (Dionne et al., 2009).
Third, we conduct a field experiment to investigate whether the machine learning
approaches identify new fraud cases. In the experiment, the insurance company examines
those claims assigned a high fraud score by our machine learning methods that the
insurance company did not previously suspect to be fraudulent.

The first two steps of our analysis reveal that unsupervised isolation forests have high
predictive power for insurance claim fraud. Supervised XGBoost also performs strongly,
despite few claims being labeled as fraudulent. Among the claims with the highest fraud
scores, both methods feature a substantial share of detected fraudulent claims.
Interestingly, the isolation forests outperform unsupervised neural networks based on
deep learning and clustering‐based anomaly detection. XGBoost outperforms supervised
neural networks. Meanwhile, the field experiment reveals that both the unsupervised and
supervised learning methods identify previously undetected fraudulent claims. However,
the supervised XGBoost outperforms the unsupervised isolation forests. Studying the
claims detected by each model in more detail reveals that supervised and unsupervised
learning identify different cases to some extent. An analysis of the most important
features of each model using SHapley Additive exPlanations (SHAP) provides insight into
the mechanics of these machine learning models, showing that both approaches
emphasize different input information.

We contribute to the literature in three important ways. First, we extend the sparse
literature on unsupervised learning for insurance fraud detection by demonstrating the
usefulness of isolation forests, a powerful yet straightforward unsupervised machine learning
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method. Beyond Gomes et al. (2021), who highlight the usefulness of unsupervised deep
learning for fraud detection in general, modern unsupervised learning has only rarely been
studied in this important context. Second, we compare the performance of unsupervised
learning and supervised learning methods in terms of detecting insurance fraud using
proprietary insurance claim data. While the usefulness of supervised learning for insurance
fraud detection has recently been questioned by Gomes et al. (2021), who make a good
argument given the few labels that are characteristic for the task, its performance on insurance
data has not yet been directly compared with unsupervised learning. Therefore, the literature
leaves it unclear whether unsupervised or supervised learning is better‐suited performance-
wise. Third, we use a field experiment to assess the performance of machine learning models
for fraud detection on new claims. Although the strong results for unsupervised learning align
with the expectation for unsupervised learning to identify new fraud patterns, supervised
learning generates even stronger results, supporting arguments that supervised learning can
contribute to the rigorous identification of common fraud patterns, which existing detection
mechanisms tend to overlook. Therefore, supervised and unsupervised methods should be
considered complements rather than substitutes.

The remainder of this paper is structured as follows. Section 2 provides a brief overview of
the existing literature on insurance fraud and its detection using statistical methods. Section 3
introduces the data set. Section 4 presents our methodological approach for detecting insurance
fraud using unsupervised and supervised machine learning and introduces our threefold
evaluation approach. Section 5 presents the results from our evaluation approach. Section 6
concludes the paper.

2 | LITERATURE REVIEW

2.1 | A theoretical view on insurance fraud

Fraud is an important social issue that has received a lot of attention from academic
researchers. It can be defined as “obtaining something of value or avoiding an obligation by
means of deception” (Duffield & Grabosky, 2001). In general, fraud results from the interplay of
two factors: the motivation of a perpetrator to defraud and an opportunity for the perpetrator to
do so (Viaene & Dedene, 2004). The motivation to defraud can be separated into, for example,
criminal energy, prestige and greed, and the (economic) situation of the perpetrator (Duffield &
Grabosky, 2001). The opportunity to defraud can be considered a combination of a suitable
target and the absence of effective protection mechanisms (Cohen & Felson, 1979; Duffield &
Grabosky, 2001; Viaene & Dedene, 2004).

Insurance companies are particularly susceptible to fraud, especially in their processing of
claims (Viaene & Dedene, 2004). This is due to the asymmetry of the information available to
the insurer and the insured. The insured typically have private information, giving them an
information advantage over the insurer (Derrig, 2002). This makes insurers a suitable target for
motivated perpetrators. Notably, many studies have recognized that claim fraud is a
particularly pressing problem in the context of automobile insurance (Picard, 1996; Viaene &
Dedene, 2004; Weisberg & Derrig, 1991).

To mitigate this information asymmetry, insurance companies implement audit strategies,
according to which they decide whether or not a claim should be investigated. Because
investigating whether a claim is legitimate is cost‐ and time‐intensive, this process is a form of
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costly state‐verification (e.g., Dionne et al., 2009; Picard, 1996; Viaene et al., 2007). The process
of claim handling in insurance companies typically starts with an early screening of the claim.
This screening determines whether the claim will be processed routinely or handed over to a
special investigation unit. The special investigation unit comprises experts who examine the
claim in detail before deciding whether the claim should be paid or whether negotiations or
legal proceedings should be initiated.2 However, given the need to process claims as quickly as
possible, insurance companies often lack the time and resources required to investigate a lot of
cases intensively, which results in the absence of an effective protection mechanism (Viaene
et al., 2007). Therefore, insurance fraud is typically regarded as a low‐risk, high‐reward game
(Derrig, 2002; Viaene & Dedene, 2004). This problem also highlights the importance of an
efficient early screening that can identify cases with a high likelihood of fraud so that the
special investigation unit can allocate its valuable resources to these cases. Our paper addresses
this problem by evaluating and comparing the performance of state‐of‐the‐art unsupervised and
supervised machine learning methods for identifying fraudulent claims. Using artificial
intelligence to more rigorously detect fraud can help deter fraud, benefiting insurers and their
honest customers (Tennyson & Salsas‐Forn, 2002).

To further disentangle the complex phenomenon of insurance fraud, a typical classification
separates soft and hard fraud (Derrig, 2002). Soft fraud, or build‐up, reflects situations in which
policyholders take advantage of an opportunity (e.g., an unplanned accident) by misrepresent-
ing and inflating claims (Crocker & Morgan, 1998; Picard, 1996; Viaene & Dedene, 2004).
Meanwhile, hard fraud describes situations in which policyholders deliberately plan and
execute their actions by, for example, staging or inventing accidents (Crocker & Morgan, 1998;
Picard, 1996; Viaene & Dedene, 2004). This sort of criminal behavior is characterized by a
particularly strong motivation that could result from financial strain or psychological elements,
such as perceived power or ego (Duffield & Grabosky, 2001).

2.2 | A methodological view on insurance fraud

Detecting claim fraud in domains such as automobile insurance and healthcare insurance
using statistical methods has long been the subject of academic research (e.g., Artís
et al., 1999, 2002; Caudill et al., 2005; Johnson & Nagarur, 2016; Riedinger & Major, 2002;
Viaene et al., 2007, 2002; Weisberg & Derrig, 1991). Although many studies have used
traditional linear approaches, applying machine learning methods to detect insurance claim
fraud has become increasingly popular. Current literature argues that this will play an
important role in creating more efficient fraud detection mechanisms (Bauer et al., 2021),
which could increase the market value of insurance companies (Fritzsch et al., 2021). Machine
learning can be defined as a process in which “a computer observes some data, builds a model
based on the data, and uses the model as both a hypothesis about the world and a piece of
software that can solve problems” (Russell & Norvig, 2020). It generally allows more flexibility
in modeling relationships, making it particularly well suited to application in a complex
domain, such as insurance fraud detection.

Many studies that use machine learning to detect insurance fraud focus on methods from the
domain of supervised learning (e.g., Johnson & Khoshgoftaar, 2019; Liang et al., 2019;

2See Viaene et al. (2007) for more details and a graphical representation of this process.
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Óskarsdóttir et al., 2022; Sundarkumar et al., 2015; Wang & Xu, 2018). In supervised learning,
algorithms learn about the relationship between variables using labeled observations. In contrast,
unsupervised learning algorithms learn about patterns in the data without requiring labels
(Dixon et al., 2020). In theory, both approaches have advantages and disadvantages with respect
to identifying insurance claim fraud. When a lot of labeled data is available (i.e., the insurance
company has identified and recorded a lot of fraudulent claims in the past), supervised learning
should be able to detect suspicious claims efficiently. However, in the context of insurance claim
fraud, there are often only very few detected fraud cases in the data because detecting fraudulent
claims requires manual verification and is cost‐ and time‐intensive (Gomes et al., 2021; Viaene
et al., 2007), potentially hindering robust model estimations. Furthermore, the data likely contain
fraudulent claims that have not been detected as such by the insurance company (Brockett
et al., 2002; Gomes et al., 2021). Therefore, supervised learning algorithms might primarily
identify fraudulent claims that are similar to previous fraudulent claims, thereby overlooking as‐
yet undetected fraud. Unsupervised learning addresses these challenges by not requiring labels.
However, unsupervised learning has the disadvantage of discovering patterns in the data that are
not automatically meaningful in terms of detecting fraud. Therefore, selecting variables that enter
unsupervised learning models requires domain knowledge (Stripling et al., 2018).

Surprisingly, unsupervised learning methods have been largely overlooked for a long time in the
context of insurance fraud detection. In an early study, Brockett et al. (1998) use Kohonen's self‐
organizing feature maps, a rather complex unsupervised clustering algorithm, to detect fraudulent
automobile insurance claims. Brockett et al. (2002) suggest a principal component analysis of RIDIT
scores (PRIDIT) and test this approach again on automobile insurance claims. However, PRIDIT
requires strict assumptions regarding predictor variables, namely, a monotonically positive
relationship between predictor variables and fraud (Brockett et al., 2002). More recently, Nian et al.
(2016) propose unsupervised spectral ranking to detect anomalies in automobile insurance claims
and test their approach on data from the years 1994 to 1996. Stripling et al. (2018) use isolation
forests—an unsupervised anomaly detection method that will be introduced in more detail in
Section 3—to generate features for detecting worker's compensation fraud. Jiang et al. (2021) use
isolation forests to tackle the problem of drug reselling as a type of healthcare insurance fraud.
Bauder et al. (2018) also focus on healthcare insurance fraud detection and compare the performance
of different unsupervised learning methods. More broadly, Gomes et al. (2021) propose an approach
to detect fraud in various domains such as insurance claims and credit card payments based on
unsupervised deep learning. Their approach further allows identifying the most important variables
for this task. Most recently, Vosseler (2022) suggests a Bayesian histogram anomaly detector for fraud
detection in general and tests this approach on insurance claim data. Duval et al. (2023) further use
unsupervised learning, including isolation forests, to derive anomaly profiles of driving behavior and
identified a predictive relationship to the probability of automobile insurance claims. Tumminello
et al. (2023) develop filter rules to identify the criminal infrastructures of fraudsters in extensive
networks.

3 | DATA

To investigate how state‐of‐the‐art unsupervised and supervised learning models detect
insurance claim fraud, we use a proprietary data set obtained from a German insurance
company. The data include 7750 automobile insurance claims placed between January 2020
and April 2021. The claims concern damages to the policyholders' cars resulting from collisions
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with objects (e.g., road signs and parking garages) other than cars.3 To fit the supervised and
unsupervised machine learning models, we use a training sample that contains 60% of the data.
Then, we use the test sample containing the remaining 40% of the data to evaluate the
usefulness of the fraud detection approaches.

Studying prediction methods on proprietary insurance claim data is very useful. Publicly
available data on insurance claim fraud is rare. Empirical studies on insurance fraud detection
often refer to the same data sets. For example, Artís et al. (2002), Caudill et al. (2005), and Ai
et al. (2013) analyze a small Spanish data set comprising 1995 claims, and Viaene et al. (2002)
and Ai et al. (2013) analyze a small US data set featuring 1399 claims. Therefore, our data set
offers a particularly interesting new perspective on investigating the potential of using machine
learning methods for insurance claim fraud detection. Summary statistics of the variables in
our data set that are used as machine learning features and the dependent variables that are
used for performance evaluation are presented in Table 1.

The data set contains the following variables: The policyholder's Claimed amount, the Age
of the car at the time of the claim, the Power of the engine of the car, theMileage of the car at the
time of the claim, the monthly Premium for the car paid by the policyholder for insuring the
car, the Dunning level of the policyholder (ranging from 0 for no dunning to 1 for payment
reminder to 3 for dunning), whether the insurer has identified potential Misconduct by the
policyholder (where 1 indicates misconduct and 0 indicates no misconduct), the No‐claim class
of the policyholder (ranging from −1 for the lowest no‐claim class, which indicates not much
driving experience and/or recently filed claims, to 50, the highest no‐claim class, which
indicates no previously filed claims over a long period), the Deductible of the policyholder, the
Age of the contract between the insurance company and the policyholder at the time of the
claim, and whether there is a Fraud record entry for the policyholder at the time of the claim
(ranging from 1 for no entry to 2–6 for different kinds of entries).4

To evaluate the machine learning models, we use two dummy variables from the data
set that address two different stages of the aforementioned fraud detection process used by
insurance companies (see Section 2.1). First, we use a variable indicating whether the
early screening by a fraud coordinator has evaluated the claim as highly suspicious and
the insurance company's special investigation unit has then investigated the claim (susp).
Second, we use a variable indicating whether the special investigation unit has
successfully shown that the claim was fraudulent (fraud). The reason for using susp as
a dependent variable in addition to fraud is that insurance companies often lack the
resources to prove that a claim is fraudulent or even decide that the potential benefit of
proving the claim fraudulent will not exceed the legal costs. These legal and economic
considerations affect the labeling of claims, making the inclusion of highly suspicious
claims in the validation analysis common in studies that investigate the potential for
statistical methods to detect insurance claim fraud (Stripling et al., 2018).

3In a robustness check, we later also present analyses for two additional data sets from the same insurance company. The first additional
data set contains claims related to damages resulting from collisions with other cars, and the second additional data set contains claims
related to glass damage. Because the fraud patterns likely differ between these claim types, we investigate the data sets separately. In our
main analysis, we focus on claims from collisions between cars and objects because the insurance company has indicated the particular
potential for fraud detection within this claim type and the desire to conduct the field experiment with this claim type.
4Unavailable variable values have been replaced with high negative values to allow for imputation to avoid missing any data. However,
the machine learning methods can distinguish that values were not provided in the data initially in the case that this information is
important.
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In our data, 162 claims were marked as highly suspicious (training data, 103; test data, 59)
and 34 were proven cases of fraud (training data, 21; test data, 13). The number of actual
fraudulent cases (including unidentified cases) may be much higher. These low numbers reflect
how difficult it is for insurance companies to identify claim fraud and indicate the potential
challenges associated with training supervised learning algorithms to detect insurance claim
fraud.

4 | METHODOLOGY

4.1 | Unsupervised fraud detection

Our analysis uses isolation forests as an unsupervised learning method for insurance fraud
detection. Isolation forests, especially extended isolation forests, are a novel tree‐based
ensemble method that aims to detect anomalies in data (Hariri et al., 2019; Liu et al., 2008).
Compared with isolation forests, other methods that aim to detect anomalies typically define a
normal observation before identifying anomalies as anything that deviates from that normality
(Chandola et al., 2009). The problem with this approach is that the methods used are optimized
to detect normal observations rather than anomalies, which makes them less efficient in their
actual intent (Liu et al., 2008). In contrast, isolation forests are designed to directly identify
anomalies, even using higher‐dimensional data (including textual data). Thus, the concept is

TABLE 1 Summary statistics.

Variable N Mean SD Min Median Max

Machine learning features

Claimed amount (in EUR) 6603 3129.806 2844.511 1 2700 54,000

Age of the car (in days) 7733 1643.940 1418.302 4 1190 14,154

Mileage of the car (in km) 7750 48,027.570 59,996.390 0 26,000 569,202

Power of the engine (in kW) 7679 123.991 67.117 10 110 2240

Premium for the car (in EUR) 7720 278.843 517.400 0.083 93.667 11,634

Age of the contract (in days) 7653 2907.401 3380.896 0 1776 18,221

Dunning level (in categories) 7750 0.498 0.832 0 0 3

No‐claim class (in categories) 7683 14.284 12.322 −1 10 50

Deductible (in EUR) 7352 219.189 102.848 0 225 1325

Misconduct (in categories) 7750 0.630 0.483 0 1 1

Fraud record entry (in categories) 7750 1.064 0.437 1 1 6

Dependent variables

susp (in categories) 7750 0.021 0.143 0 0 1

fraud (in categories) 7750 0.004 0.066 0 0 1

Note: This table reports summary statistics for the input variables used in the machine learning models and the variables used
for evaluating the machine learning models. “N” denotes the number of nonmissing values, “Mean” the mean, “SD” the
standard deviation, “Min” the minimum, “Median” the median, and “Max” the maximum.
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built on an explicit definition of anomalies. According to Liu et al. (2008), anomalies have two
key characteristics: namely, they are few and different. “Few” means that anomalies are the
minority in the data. “Different” means that anomalies typically differ substantially in
appearance from the rest of the observations.

Isolation forests incorporate these two characteristics to describe an ensemble of specific
decision trees (so‐called isolation trees) in which every tree hosts an iterative process (see Liu
et al., 2008 for a more detailed description). The first step in this process involves the random
selection of a characteristic of the data. In the case of automobile insurance claim fraud, this
could be, for example, the mileage of the car at the time of the accident. Next, a value between
the maximum and the minimum for the characteristic in the sample is randomly selected.
According to this random value, all observations are split. This process is repeated until all
observations are separated (or the predefined maximum number of splits is reached). The more
anomalous the case, the faster the isolation. Thus, the length of the isolation process is used as
an anomaly score. This process is depicted in Figure 1.

As proposed by Hariri et al. (2019), extended isolation forests offer the novelty of also using
hyperplanes, which are not orthogonal with regard to a single characteristic. When using the
example of two characteristics, as plotted in Figure 1, the extended isolation forest would
mostly include lines with varying slopes for separation (in addition to horizontal and vertical
lines). This makes the extended isolation forest more flexible in terms of separating anomalies
from normal cases. Where the traditional isolation forest proposed by Liu et al. (2008) featured
more edgy separations between normal and anomalous areas, the extended isolation forest
separates these areas more smoothly, enabling it to more powerfully identify anomalies. This
work uses the terms extended isolation forests and isolation forests to refer to extended
isolation forests.

Developing unsupervised machine learning methods for fraud detection is implicitly based
on the assumption that anomalous cases are more likely to be fraudulent. However, in the
context of insurance claim fraud, anomalous cases may not automatically be informative of
fraud. As such, unsupervised learning approaches to fraud detection need to incorporate
characteristics that have meaningful anomalies. Consequently, developing unsupervised

FIGURE 1 Visualization of an isolation forest. This figure displays how isolation forests identify anomalies
in data sets based on a two‐dimensional example.
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prediction models must be informed by domain knowledge that enables the developed model to
identify meaningful anomalies (Stripling et al., 2018). The models that we develop are based on
these considerations. Additionally, to produce a single anomaly score, the mean of the two
model outcomes is used in the analyses.

The first isolation forest aims to detect whether the combination of the claimed amount and
the characteristics of the car is anomalous. This specifically addresses cases of inflated reported
damage (Picard, 1996). We include as important input variables the Claimed amount together
with variables that relate to the true financial size of the claim to identify inflated claims.
Because the financial size of the claim depends on the value of the car, we include as further
variables the Age of the car, Mileage of the car, and Power of the engine as well as the insurance
Premium for the car paid by the policyholder, all of which closely relate to the car's value
(Lessmann et al., 2010).

The second isolation forest aims to identify claims where the policyholder has an
anomalously high economic motivation for fraud or demonstrates signs of criminal behavior.
For this model, we include the following variables: Age of the contract as an indicator of intent
because a claim soon after a contract's initiation potentially generates positive net income for
the policyholder (Grabosky & Duffield, 2001); the Dunning level as a measure of the financial
strain of the policyholder, which is also a common driver of criminal behavior (Duffield &
Grabosky, 2001); the No‐claim class and the Deductible as further indicators of economic
incentive for the policyholder to defraud; and, as indicators of criminal energy, whether there
was potential Misconduct (e.g., the driver was not allowed to drive the car under the insurance
contract) and a Fraud record entry reported for the policyholder. Figure 2 presents both models
and their associated variables. To find even more meaningful anomalies, we use the lower half
of the age of the contract, deductibles, and the no‐claim class by winsorizing these values at
50% to set higher values to the 50% quantile. Accordingly, the model focuses on newly entered
contracts, low no‐claim classes, and low deductibles, which reflect circumstances with higher
economic motivation for fraud.

4.2 | Supervised fraud detection

To compare the performance of unsupervised learning with that of supervised learning,
we implement XGBoost. XGBoost is a tree‐based method (like the isolation forest), but it
is designed to be trained on labeled data. XGBoost reflects the idea of gradient‐boosted

FIGURE 2 Overview of isolation forest models. This figure displays the variables used in the two isolation
forest models developed in this study.
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decision trees with a focus on speed and performance. XGBoost has recently been shown
to perform favorably on similar classification tasks, such as default prediction
(Gunnarsson et al., 2021). XGBoost has also recently been observed to perform strongly
on tabular data, even compared with state‐of‐the‐art deep learning models (Shwartz‐Ziv &
Armon, 2022).

The individual trees of the XGBoost are based on the idea of classification and regression
trees proposed by Breiman et al. (1984), a machine learning algorithm that iteratively splits data
into smaller subsets based on characteristics in the data during training. In the case of
automobile insurance claim fraud, an example characteristic might be the mileage of a car. The
algorithm begins with a single node that contains all observations. The classification trees (such
as trees for identifying insurance claim fraud) select characteristics that produce the largest
reduction in some measure of purity in the nodes of the tree aimed at producing nodes that
ideally comprise only one class. The selected characteristic is used to split the observations into
two groups. Then, the process is repeated recursively for the two new nodes until arriving at a
stopping rule. The prediction of the method is derived by the node the observation is finally
moved into. In classification problems, this is given by the class frequency across the
observations within the node.

Similar to methods such as bagging (Breiman, 1996) and random forests
(Breiman, 2001), XGBoost is also based on the idea of ensemble learning. Ensemble
learning is a technique for creating multiple models and combining them to produce a
final model that is more accurate than the individual models. The ensemble is created by
training multiple models on subsamples of the data and then combining the predictions of
the individual models. Ensemble learning is particularly common for tree‐based methods
as it can reduce overfitting and smoothen predictions over the space of characteristics. As
suggested in Chen and Guestrin (2016), XGBoost also represents an ensemble of trees. The
algorithm sequentially builds trees that address specific errors of trees earlier in the line.
The algorithm offers further regularization to ultimately perform strongly. Meanwhile,
the XGBoost features several tunable hyperparameters. We tune as hyperparameters the
maximum depth of the trees, the subsample size used for each tree, the learning rate, the
number of characteristics used by each tree, the regularization, and the number of trees.5

Regarding the task at hand, we use all input variables for the XGBoost. We build two
XGBoost models. The first is trained to detect highly suspicious claims. The second is trained to
detect proven fraudulent claims.6

4.3 | Fraud scores

Table 2 displays summary statistics on the fraud scores obtained from the machine learning
models described in Sections 4.1 and 4.2. if score if score. , .1 2, and mean if score_ . , respectively,
represent the fraud scores from isolation forest 1, isolation forest 2, and the aggregate isolation
forest model. Values range from 0 to 1, with values exceeding 0.5 indicating more anomalous
claims and higher values generally indicating stronger anomalies.7 xgb score. susp and

5Before training the supervised models, we randomly separate a validation sample comprising 33% of the observations in the training
sample. We use this validation sample to find the hyperparameters (e.g., the maximum depth of trees for the XGBoost model) that best
allow the supervised models to detect insurance fraud.
6The first model is trained using susp as the dependent variable. The second model is trained using fraud as the dependent variable.
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xgb score. fraud represent the fraud scores from the first XGBoost, trained on susp as the
dependent variable, and the second XGBoost, trained on fraud as the dependent variable.
Values range from 0 to 1, and higher values indicate a higher likelihood of fraud.

4.4 | Evaluation approach

4.4.1 | Regression analysis

Our threefold procedure for evaluating the performance of the methods is described in the
following paragraphs. The first evaluation step assesses the informativeness of the fraud scores
for discriminating between fraudulent and nonfraudulent claims in the overall test data. For
this, we use a logistic regression of the derived fraud scores to assess their correlation with the
presence of fraud cases. We consider logistic regression models that employ two previously
introduced dependent variables: susp, indicating whether claims are considered as highly
suspicious of fraudulence and fraud, indicating whether claims are proven fraudulent.

The model that uses susp as a dependent variable identifies whether the fraud detection
score ml score. i, derived from a machine learning model for claim i, provides insight into
whether domain experts are more likely to decide to send the claim to the special investigation
unit, as indicated in Equation (1). The domain experts' decision is based on two criteria: their
own consideration of the claim and a fraud score derived from the insurance company's expert
system.

P susp ml score
exp β β ml score

exp β β ml score
( = 1 . ) =

( + . )

1 + ( + . )
.i i

i

i

0 1

0 1

(1)

Next, the second regression model regresses a dummy indicating whether a claim was later
proven fraudulent by the special investigation unit, fraud, as shown in Equation (2). In this

TABLE 2 Summary statistics—Fraud scores.

Variable N Mean SD Min Median Max

Fraud scores

if score. 1 7750 0.428 0.066 0.356 0.406 0.730

if score. 2 7750 0.470 0.060 0.369 0.472 0.657

mean_if.score 7750 0.449 0.045 0.363 0.444 0.672

xgb score. susp 7750 0.024 0.037 0.007 0.014 0.723

xgb score. fraud 7750 0.004 0.026 0.001 0.001 0.758

Note: This table reports summary statistics for the fraud scores resulting from the machine learning models. “N” denotes the
number of nonmissing values, “Mean” the mean, “SD” the standard deviation, “Min” the minimum, “Median” the median, and
“Max” the maximum.

7Anomaly scores from the isolation forests are a function of the number of splits necessary to isolate a case. Values around 0.5 represent
the length of the isolation process that is expected for a normal observation in the data.
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analysis, the coefficients for the machine learning‐based fraud scores should be positive and
significant when they contain information pertinent to detecting insurance fraud.

P fraud ml score
exp β β ml score

exp β β ml score
( = 1 . ) =

( + . )

1 + ( + . )
.i i

i

i

0 1

0 1

(2)

4.4.2 | Precision@k

Although the regression analysis in the first evaluation step assesses the general informative-
ness of fraud scores for identifying claim fraud, the processes for identifying claim fraud that is
embedded in insurance operations can naturally only examine a limited number of potentially
fraudulent claims. To further evaluate the machine learning methods for fraud detection, we
next conduct an analysis using precision@k, a measure of prediction quality designed
specifically for such situations and typically employed in the domain of information retrieval
(Metzler & Bruce Croft, 2007). The measure evaluates the quality of an algorithm by
aggregating how many of the k first cases ranked highest were actually positive, that is, in our
study context, how many claims were highly suspicious or proven fraudulent. Accordingly, the
measure reflects how many proven fraudulent claims will be identified by including machine
learning‐based fraud scores in the fraud detection process and investigating the top‐ranked
claims.

We evaluate the fraud scores again using the two dependent variables susp and fraud. For
the k used in the precision@k measure, we use 100, 200, and 500, meaning that 100, 200, and
500 claims would hypothetically be delivered to the special investigation unit. To assess the
statistical significance of the individual precision@k values, we utilize the fact that the number
of successfully identified claims within k draws is binomially distributed for a given proportion
of highly suspicious and actual fraudulent claims in the test sample. As such, a significance
level can be specified for the likelihood that the determined number of correctly identified
claims occurred by chance.

4.4.3 | Field experiment

The first two evaluation steps are generally appropriate for determining how well the machine
learning‐based fraud scores can identify previously detected fraudulent claims. However, the
nature of fraud makes it most likely that not all fraudulent claims will be identified by
the existing fraud detection process. This makes it particularly interesting to consider the
performance of machine learning methods in the context of revealing fraudulent claims not yet
identified as such. This crucial assessment of the quality of predictions is obviously not possible
using only observational data. Accordingly, as a third evaluation step, we conduct a field
experiment in collaboration with the insurance company responsible for the study data. This
also represents a unique opportunity to explore the success of the machine learning methods
for fraud detection in a realistic operational environment.

The design of the field experiment is such that we are able to select the 100 claims from our
existing data set that are neither proven fraudulent nor deemed highly suspicious at the time of
data provision but which receive the highest fraud scores from the machine learning models.
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Meanwhile, to compare the supervised and unsupervised learning approaches, we submit 50
claims from each type of machine learning method (isolation forests as the unsupervised
method and XGBoost as the supervised method) to the insurance company, which does not
know which claims are identified by the unsupervised method and which claims are identified
by the supervised method. The 100 claims are presented in a randomly sampled order for
examination by the insurance company's special investigation unit. The special investigation
unit is asked to evaluate whether the claims are highly suspicious and demand further
examination based on the communication that this assessment is designed to be consistent with
the classification of a highly suspicious claim (susp) used in the previous steps of the validation
analysis. The field experiment is conducted with a 9‐month lag to data provision. The number
of claims correctly identified as highly suspicious is used here to measure the quality of the
machine learning methods.

It is ex ante not clear whether supervised or unsupervised learning is superior in this
setting. When there are many new and unknown fraud patterns present, such claims are likely
best detected by unsupervised learning because unsupervised learning is not trained on labels
produced by existing fraud detection mechanisms. However, when the fraud patterns present
are predominantly not entirely new but have been overlooked by existing fraud detection
mechanisms, supervised learning is likely superior due to having been trained to identify such
claims rigorously.

4.5 | Benchmark methods

To check whether our results are unique to isolation forests and XGBoost, we compare the
results of these methods to results from benchmark machine learning methods. For this
comparison, we use state‐of‐the‐art autoencoders and more traditional k‐medoids clustering as
alternative unsupervised machine learning methods and feed‐forward artificial neural
networks as an alternative supervised machine learning method.

Autoencoders are based on deep learning. While training, they encode input variables—
meaning they reduce their dimensionality—before decoding the encoded variables again to
reproduce the inputs.8 This can be used to detect anomalies. Observations that differ strongly
from the decoded output of the autoencoder are anomalous, which can be considered
informative of fraud. The autoencoders used for comparison contain three hidden layers of
which the first hidden layer contains 15 neurons, the second hidden layer with a lower
dimensionality contains 10 neurons, and the third hidden layer contains 15 neurons. The
hidden layers have a hyperbolic tangent activation function and the output layer has a linear
activation function. The autoencoders are trained using an Adam optimizer and a mean
squared error loss. The usefulness of autoencoders for fraud detection has recently been
highlighted by Gomes et al. (2021). For comparison with the isolation forests, we train two
distinct autoencoder models to obtain fraud scores before combining these scores using the
mean (mean ae score_ . ).

We further apply k‐medoids clustering—a widely used clustering algorithm introduced by
Kaufman and Rousseeuw (1990). We use k‐medoids clustering in combination with the Gower
distance (Gower, 1971), which can deal with categorical variables. As common in anomaly

8For a detailed discussion of autoencoders, see, for example, Baldi (2012).

756 | DEBENER ET AL.



detection studies using clustering, fraud scores are derived as the distance of a claim to the
center of its nearest cluster (Chandola et al., 2009). The optimal number of clusters for each
model, which is two in our case, is selected based on the Silhouette coefficient suggested by
Rousseeuw (1987). Again, we train two distinct models and combine the obtained fraud scores
using the mean (mean km score_ . ).

With respect to the benchmark method for supervised learning, we use artificial neural
networks. Neural networks comprise layers of neurons, with the weights determined based on
the training data to fit the binary classification of a claim being or not being highly suspicious of
fraud (ann score. susp) or fraudulent (ann score. fraud). The networks have the number of layers, the
number of neurons, the dropout rate, the extent of l1l2‐regularization, and the batch size as
hyperparameters. The artificial neural networks use rectified linear unit activation functions in
the hidden layers and a sigmoid activation function in the output layer. The artificial neural
networks are trained using an Adam optimizer and a binary cross entropy loss.

5 | RESULTS

5.1 | Regression approach

This section presents the empirical results evaluating the performance of the machine learning
methods. The results of our first evaluation step, in which we investigate the informativeness of
the machine learning‐based fraud scores for detecting automobile insurance claim fraud,
appear in Table 3.

Where highly suspicious claims represent the dependent variable (upper panel in Table 3),
columns one and two reveal that the fraud scores from both isolation forests (if score. 1 and if score. 2)
are strongly significant predictors of highly suspicious claims. Combining the two isolation‐forest‐
based fraud scores into one score (mean_if.score) increases the McFadden pseudo‐R2 compared with
using only one of the two fraud scores (column three). Turning to the fraud score produced by an
XGBoost model trained to identify highly suspicious claims (xgb score. susp), this supervised learning
approach also generates fraud scores that are strongly significant predictors (column four).

When using the proven fraudulent claim as the dependent variable (lower panel in Table 3),
if score. 1 and mean_if.score maintain their level of statistical significance (columns one and
three). if score. 2 remains a significant predictor, but its significance drops to the 10% level
(column two). Interestingly, the same holds for xgb score. fraud, the fraud score produced by an
XGBoost trained on the variable fraud (column four).9

Overall, the regression analysis identifies that fraud scores generated from both
unsupervised and supervised machine learning models are predictors of insurance fraud,
meaning that higher fraud scores are typically associated with a higher likelihood of fraud.
These results are supported when examining two other classes of automobile insurance claims,
namely, claims associated with collisions with other cars and claims associated with glass
damage. The results for these claim types appear in the Supporting Information.

9We note that the logistic regression makes the implicit assumption that the logarithm of the odds for being a fraudulent claim is a
univariate linear function of the scores. This assumption could possibly be more beneficial for the isolation forest compared with the
XGBoost. To compare the relation of their scores with the fraud variables, we calculated nonparametric Spearman and Kendall
correlations. The relation to the occurrence of proven fraudulent claims is similar for both methods. The relation to the occurrence of
highly suspicious claims is stronger for the XGBoost than for the isolation forest. We refrain from further analyzing the comparative
strength of the methods in this step and refer the reader to the results using the precision@k and the field experiment for comparison.
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The results for the benchmark methods appear in Table 4. The autoencoder produces fraud scores
that are significant predictors of highly suspicious claims (mean ae score_ . ), but the predictive power
for proven fraudulent claims is not significant anymore. Autoencoders likely performmore weakly on
this task because the large amount of data that autoencoders typically require may not be available in
contexts such as that of our analysis. This problem has also been discussed by Gomes et al. (2021).
k‐Medoids clustering, as a second and more traditional unsupervised learning method, produces

TABLE 3 Performance evaluation: Regression analysis.

Highly suspicious claim (susp)

(1) (2) (3) (4)

if score. 1 8.894***

(1.401)

if score. 2 13.951***

(2.407)

mean_if.score 18.721***

(2.213)

xgb score. susp 15.002***

(1.806)

Constant −7.959*** −10.826*** −12.753*** −4.474***

(0.688) (1.247) (1.105) (0.165)

Observations 3099 3099 3099 3099

McFadden pseudo‐R2 0.051 0.056 0.101 0.083

Proven fraudulent claim (fraud)

(1) (2) (3) (4)

if score. 1 11.935***

(2.704)

if score. 2 9.220*

(4.836)

mean_if.score 19.948***

(4.221)

xgb score. fraud 6.469*

(3.433)

Constant −11.026*** −9.955*** −14.942*** −5.515***

(1.424) (2.444) (2.164) (0.283)

Observations 3099 3099 3099 3099

McFadden pseudo‐R2 0.096 0.022 0.108 −0.014

Note: This table displays the results for running a logistic regression of susp and fraud, respectively, on if score if score. , . ,1 2

mean if score xgb score_ . , . susp, and xgb score. fraud for claims resulting from collisions. The table reports standard errors in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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fraud scores that are significant predictors of highly suspicious and proven fraudulent claims
(mean km score_ . ). In the case of supervised neural networks, their fraud scores are significant
predictors of highly suspicious claims (ann score. susp) but, similarly to autoencoders, not significant
predictors of proven fraudulent claims (ann score. fraud).

5.2 | Precision@k approach

While the general informativeness of machine learning‐based fraud scores is a good indication
of their usefulness for detecting claim fraud, insurance companies typically face a situation in
which they only have the resources to investigate a few claims, which are naturally those that

TABLE 4 Performance evaluation: Regression analysis (benchmark methods).

Highly suspicious claim (susp)

(1) (2) (3)

mean ae score_ . 4.422***

(1.140)

mean km score_ . 10.781***

(1.270)

ann score. susp 90.207***

(10.953)

Constant −5.195*** −8.529*** −4.433***

(0.368) (0.626) (0.180)

Observations 3099 3099 3099

McFadden pseudo‐R2 0.023 0.124 0.108

Proven fraudulent claim (fraud)

(1) (2) (3)

mean ae score_ . 3.031

(2.214)

mean km score_ . 10.290***

(2.552)

ann score. fraud 42.119

(65.845)

Constant −6.313*** −9.855*** −11.909

(0.710) (1.272) (10.094)

Observations 3099 3099 3099

McFadden pseudo‐R2 0.008 0.073 −0.021

Note: This table displays the results for running a logistic regression of susp and fraud, respectively, on mean ae score_ . ,

mean km score ann score_ . , . susp, and ann score. fraud for claims resulting from collisions. The table reports standard errors in
parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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are most likely to be fraudulent. The savings from identifying fraud should ideally exceed the
cost necessary to investigate the claims. Therefore, assessing the number of fraudulent claims
among those claims that receive the highest fraud scores from machine learning‐based methods
is particularly interesting for real operations. The precision@k‐derived results that reflect these
considerations appear in Table 5.

We present results for three different variants of k (100, 200, and 500 in columns one, two,
and three) and for the two variables of interest, susp (highly suspicious claims) and fraud
(proven fraudulent claims). Randomly drawing and investigating 100 claims would have
produced two highly suspicious claims. However, investigating the top 100 claims according to
the isolation‐forests‐based fraud scores reveals 15 claims labeled highly suspicious (upper panel
in Table 5). This number (15 claims) is highly statistically significant. Furthermore, increasing
the number of identified highly suspicious claims in comparison to randomly drawing claims
by factor 7.5 (for mean_if.score) is also economically significant. Investigating the top 100
XGBoost claims reveals 16 highly suspicious claims. For k= 200 and 500, xgb score. susp is
superior to mean_if.score by two and six claims. Therefore, the supervised model slightly
outperforms the combined isolation forest, despite the small number of claims labeled as
suspicious in the training data. For proven fraudulent claims (lower panel in Table 5),
randomly drawing and investigating 100 claims would have resulted in an average number of
proven fraudulent claims below one. When investigating the top 100 claims, the isolation
forest‐based fraud score mean_if.score is on par with xgb score. fraud. This is similar for k= 200
and 500. However, if score. 2 only detects a significant amount of proven fraudulent claims
for k= 500.

TABLE 5 Performance evaluation: Precision@k.

Highly suspicious claim (susp)

if score. 1 7*** 15*** 26***

if score. 2 8*** 11*** 25***

mean_if.score 15*** 23*** 33***

xgb score. susp 16*** 25*** 39***

Random selection 2 4 10

k 100 200 500

Proven fraudulent claim (fraud)

if score. 1 3*** 4** 8***

if score. 2 0 1 5*

mean_if.score 3*** 5*** 8***

xgb score. fraud 3*** 5*** 7***

Random selection 0 1 2

k 100 200 500

Note: This table displays the precision@k results for k= 100, 200, and 500 using susp and fraud as target variables, respectively,
and if score if score mean if score xgb score. , . , _ . , . susp1 2 , and xgb score. fraud as ranking variables for claims resulting from collisions.
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Overall, these results demonstrate that the upper tail of the distributions of fraud scores
generated by both unsupervised and supervised learning methods contain important
information for identifying fraudulent claims. Analyzing the other claim types presented in
the Supporting Information reveals that these results are largely qualitatively unchanged, with
XGBoost performing particularly strongly for claims from glass damage.

Turning to the benchmark methods (Table 6), the autoencoder‐based fraud score is very
helpful for detecting highly suspicious claims but less helpful for detecting proven fraudulent
claims. Although the results for identifying highly suspicious claims are nearly on par with the
results produced by isolation forests, substantially worse results are observed in the context of
identifying proven fraudulent claims. Again, this is likely due to the large amount of data that
autoencoders require. k‐Medoids clustering provides slightly stronger results than autoencoders
for both variables of interest but still falls behind the isolation forest. With respect to supervised
learning, XGBoost performs slightly better than the supervised neural network‐based model.

While precision@k represents a particularly appropriate evaluation measure in the context
of insurance claim fraud, it is worth also considering other performance measures that are
typically used to assess classification methods. These results appear in the Supporting
Information. Here, isolation forests and XGBoost again show strong results, with a slight
advantage observed for XGBoost.

The analysis then also investigates how a combination of the isolation forest and the
XGBoost performs. For this step, we calculate the mean rank of mean_if.score and xgb score. susp

(if xgb score_ . susp) and xgb score. fraud (if xgb score_ . fraud), respectively. The precision@k‐results are
presented in Table 7. Most interestingly, the new measure exceeds the quality of predictions of
the individual models in Table 5 in almost all cases. Regarding the detection of highly
suspicious cases, the combined measure detects more highly suspicious cases than the isolation
forest for all three levels of k (17 > 15, 25 > 23, and 40 > 33). The combined measure detects
more cases than the XGBoost for k equal to 100 and 500 (17 > 16 and 40 > 39) and is on the

TABLE 6 Performance evaluation: Precision@k (benchmark methods).

Highly suspicious claim (susp)

mean ae score_ . 13*** 17*** 32***

mean km score_ . 12*** 21*** 35***

ann score. susp 14*** 17*** 32***

Random selection 2 4 10

k 100 200 500

Proven fraudulent claim (fraud)

mean ae score_ . 2* 2 5*

mean km score_ . 1 3* 8***

ann score. fraud 3*** 3* 4

Random selection 0 1 2

k 100 200 500

Note: This table displays the precision@k results for k= 100, 200, and 500 using susp and fraud as target variables, respectively,
and mean ae score mean km score ann score_ . , _ . , . susp, and ann score. fraud as ranking variables for claims resulting from collisions.
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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same level for a k of 200 (25 cases). Regarding proven fraud cases, the combined measure
consistently outperforms the individual fraud scores (isolation forest: 4 > 3, 6 > 5, and 10 > 8;
XGBoost: 4 > 3, 6 > 5, and 10 > 7). These results suggest to use the scores produced from
supervised learning and unsupervised learning in combination. This idea will be further
investigated in Section 5.3.

5.3 | Field experiment

The first two steps of our performance evaluation approach have usefully demonstrated that
both machine learning methods (i.e., unsupervised isolation forests and supervised XGBoost)
can detect fraudulent claims. However, the previous analyses likely underestimate the true
number of fraudulent claims that can be detected using machine learning methods because the
observational data available (and, in fact, any observational data on insurance claims) likely
contains fraudulent claims undetected as such by the insurance company. Therefore, we now
provide the field experiment results, in which the insurance company examines the 100 claims
from collisions with objects that have been assigned the highest fraud scores by an
unsupervised isolation forest model and a supervised XGBoost model trained on susp. The
experiment uses the 50 claims with the highest isolation forest scores and the 50 claims with
the highest XGBoost scores, considering only claims not previously identified as highly
suspicious by the insurance company. These claims are then evaluated by the special
investigation unit. The results from this field experiment are summarized in Table 8 and
Figure 3.

The results from our field experiment show that both machine learning models have been
able to detect a high number of claims not previously identified as highly suspicious but
evaluated as highly suspicious during the field experiment by the special investigation unit. The
numbers are quite strong. Among 50 claims identified by the isolation forest model as
anomalous, 22 claims have been assessed as highly suspicious of fraud. Interestingly, XGBoost
demonstrates an even better performance: among 50 claims identified by the XGBoost
approach as anomalous, 29 claims have been evaluated as highly suspicious of fraud. Thus, a

TABLE 7 Performance evaluation: Precision@k (combined measures).

Highly suspicious claim (susp)

if xgb score_ . susp 17*** 25*** 40***

Random selection 2 4 10

k 100 200 500

Proven fraudulent claim (fraud)

if xgb score_ . fraud 4*** 6*** 10***

Random selection 0 1 2

k 100 200 500

Note: This table displays the precision@k results for k= 100, 200, and 500 using susp and fraud as target variables, respectively,
and the mean rank of mean_if.score and xgb score. susp (if xgb score_ . susp) and xgb score. fraud (if xgb score_ . susp), respectively, as
ranking variables for claims resulting from collisions. *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively.
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total of 51 of the 100 submitted claims have been found to be highly suspicious by the special
investigation unit. These results generally indicate the considerable potential of using machine
learning methods for insurance claim fraud detection and further confirm the results of the
previous two evaluation steps. Moreover, the strong performance of XGBoost on new claims
gives it a greater advantage over isolation forests compared with the first two steps of the
evaluation.

It is of considerable interest to investigate whether the two methods identify similar fraud
patterns—and therefore detect the same highly suspicious claims—or whether the methods
differ in this regard. This inquiry is depicted in the final row of Table 8 and in Figure 3 in the
form of a Venn diagram. Among the 51 claims found to be highly suspicious by the special
investigation unit, 16 claims were identified by both machine learning methods. However, the
unsupervised approach detected six highly suspicious claims that were not detected by the
supervised approach, and the supervised approach detected 13 claims that were not detected by
the unsupervised approach.10 Thus, the fraud patterns identified by the two machine learning
approaches are apparently dissimilar. To more deeply understand this finding, we consider two
possible explanations for why additional highly suspicious claims have been detected in the

TABLE 8 Performance evaluation: Field experiment.

Overall Isolation forest XGBoost

Submitted claims 100 50 50

Highly suspicious claims 51 22 29

Unique highly suspicious claims – 6 13

Note: This table displays the results from the field experiment. Fifty claims that were initially labeled as not highly suspicious
but judged as highly suspicious by the isolation forest and 50 claims that were initially labeled as not highly suspicious but
judged as highly suspicious by the XGBoost were submitted to the special investigation unit of the insurance company to assess
whether these claims are indeed highly suspicious of fraud.

FIGURE 3 Venn diagram field experiment. This figure displays the results from the field experiment, that
is, the new claims detected by the isolation forest and the XGBoost, in the form of a Venn diagram. XGBoost,
extreme gradient boosting.

10Thus, 16 claims were identified by both methods, six only by the isolation forest, and 13 only by the XGBoost, resulting in a total of 51
detected highly suspicious claims.
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field experiment. The first possibility is that new fraud patterns detected by the machine
learning models are outside the scope of the insurance company's fraud detection mechanism.
The second possibility is that highly suspicious claims have been detected by the machine
learning models that did not differ completely from already known fraud patterns but were
simply overlooked by the insurance company's existing fraud detection mechanism due to the
limited available resources. In this context, it is likely that the XGBoost has identified highly
suspicious claims that have avoided the scrutiny of the existing mechanism, while the isolation
forest has identified highly suspicious claims with novel fraud patterns. This important finding
indicates that the two machine learning approaches (i.e., supervised and unsupervised) are not
substitutes but instead complementary approaches that can be combined to increase the
efficiency of insurance claim fraud detection.

5.4 | Explaining machine learning models for fraud detection

To further understand how the fraud patterns identified by the two machine learning
approaches differ, we investigate which machine learning features were most important for
each approach in terms of identifying fraudulent claims in the field experiment. To make
transparent the mechanics of the processes employed by these approaches (i.e., the commonly
criticized black box of machine learning), we use a state‐of‐the‐art explainable artificial
intelligence technique called SHAP (Lundberg & Lee, 2017). SHAP values provide insight into
how much a certain feature contributes to a particular prediction made by a machine learning
model. To derive the contribution of a feature for a particular prediction, SHAP calculates how
much the predicted value changes if a feature is added to the model. The resulting SHAP values
can also be aggregated over many predictions to obtain insights into how the model works in
general. We calculate SHAP values for the 50 claims identified as suspicious by the isolation
forests and for the 50 claims identified as suspicious by the XGBoost and present the results of
this analysis in Figure 4.

As the top left corner of the figure shows, the amount claimed by the policyholder and the
premium paid by the policyholder for insuring a car are the most important features for the first
isolation forest in its detection of the 50 most highly anomalous claims. The power of the
engine of the car is also an important feature for the algorithm. This indicates that anomalous
combinations of these three features are particularly informative of fraud. For the second
isolation forest, the deductible, the dunning level, and the age of the contract are particularly
important features for identifying fraudulent claims. The no‐claim class and the previous fraud
record entries are also important features. Overall, the second isolation forest suggests that
indicators of intent, economic incentives, and financial strain are particularly informative for
identifying fraud and may be even more relevant than indicators of criminal energy.

For the XGBoost, the premium of the car, the claimed amount, and the mileage of the car
are the three most important features. Although the first two features are also most important
for the first isolation forest, the mileage of the car plays a much bigger role for the XGBoost.
Furthermore, the deductible, the most important feature for the second isolation forest, has
almost no importance for the XGBoost. Furthermore, the dunning level, the second most
important feature for the second isolation forest, is of rather low importance for the XGBoost.

Overall, the SHAP analysis confirms that supervised and unsupervised learning approaches
emphasize different features when detecting claim fraud. This aligns with the field experiment
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finding that the two approaches did not identify the same fraudulent claims, instead acting as
complementary fraud detection mechanisms.

6 | CONCLUSION

Given the economic value associated with preventing fraud, it is important for insurance
companies to implement efficient and effective processes to identify fraudulent claims. Besides
being in the financial interest of insurance companies, this also benefits honest insurance
holders by lowering insurance premiums. The extant literature has often assessed supervised
learning methods to detect insurance fraud. Supervised learning has several potential
shortcomings: There are usually few labeled cases, and unknown fraud patterns could remain
undetected. Unsupervised learning, especially anomaly detection, addresses these issues.
However, while unsupervised learning has been studied in several other fraud detection
contexts, the literature on insurance fraud detection has paid relatively little attention to
unsupervised learning. Moreover, there is little empirical evidence that can guide the decision
between using supervised and unsupervised learning for insurance fraud detection. Because
insurance companies are particularly interested in detecting new cases, in addition to using
observational data, it is important to also study nonobservational data to understand the
differences between unsupervised and supervised learning in this context. For example, more
comprehensive detection of partially known patterns could benefit supervised learning, and the
detection of new patterns could benefit unsupervised learning.

FIGURE 4 Feature importance via SHAP. This figure displays the variable importance for the isolation
forests and the XGBoost using SHAP. SHAP, SHapley Additive exPlanations; XGBoost, extreme gradient
boosting.
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This study has considered the application of isolation forests, a convenient but effective
unsupervised learning algorithm that can be used for fraud detection, and XGBoost, a fast and
effective current supervised machine learning algorithm. We further compared these
approaches to neural‐network‐based and clustering‐based fraud detection algorithms. We
have considered how the supervised and unsupervised learning methods perform in terms of
identifying insurance fraud in a large proprietary data set and in terms of identifying insurance
fraud in a field experiment. Our results generally emphasize the usefulness of unsupervised
learning for insurance companies (particularly when no labeled data are available). However,
even when limited labeled data are available, the supervised learning approach performs
strongly, on par with the unsupervised learning approach. Our results further suggest that both,
supervised learning and unsupervised learning methods detect fraud cases that have not been
identified by existing mechanisms so far and that the detected cases partly differ. Moreover,
explainable artificial intelligence methods reveal that the supervised and unsupervised learning
methods use different input information. As such, our results indicate that supervised and
unsupervised learning methods should be considered complements rather than substitutes.
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