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Abstract
Due to high real estate costs in urban areas, shop floor space is scarce in most

brick-and-mortar stores. Maneuvering newly arrived merchandise through narrow

aisles during shelf replenishment is time-consuming for the sales staff and impedes

customers. Therefore, many retail chains nowadays aim for store-friendly shipments

(SFS). By mirroring the layout of a store in the buildup of its dedicated shipments,

the need for a zigzag movement through the store when replenishing shelves can be

avoided. On the negative side, however, additional effort arises in the distribution

centers. A suitable warehousing system to assemble SFS without excessive effort

is a pocket (or pouch or bag) sorter, where each item is put into its separate bag.

These bags, filled with items, are automatically transported while hanging from an

overhead conveyor and can be sorted into any sequence before being delivered to

the workstations that build SFS. This article investigates the assembly of SFS with

a pocket sorter and presents scheduling procedures to enhance the efficiency of this

process for a given set of store orders. We demonstrate that, despite its notorious

complexity, the problem can be solved by simple decision rules with good perfor-

mance. In a case study, we show that this approach can dramatically reduce the

completion times of store orders, resulting in savings of more than 60% of the total

working hours compared to a simple real-world policy. Another 30% of reduction

can be obtained by standardized store layouts.
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1 INTRODUCTION

In the face of intense e-commerce competition, retail chains

worldwide are striving to streamline their order fulfillment

processes (Melacini et al., 2018). One crucial factor, as

emphasized in a recent survey paper on warehouse operations

for retail chains (Boysen et al., 2021), is the implementation of

store-friendly shipments (SFS), also known as store-specific

shipment buildups. By pre-sorting incoming shipments of

newly arrived merchandise, often stacked in roll cages,

according to the specific store’s layout, sales personnel can

[Correction added on 13 Sep, 2023, after first online publication: Handling

Editor information added.]

avoid zigzagging through the store and instead follow a clear

route from shelf to shelf. Due to the high cost and scarcity

of shop floor space in urban areas (Hübner et al., 2020),

brick-and-mortar stores are typically densely packed with

shelves. Consequently, navigating roll cages through the nar-

row aisles is time-consuming and physically demanding. SFS,

on the other hand, reduce unproductive effort during shelf

replenishment, resulting in savings on wage costs due to

shorter process times and allowing sales personnel to dedi-

cate more time to customer service. Moreover, maneuvering

roll cages in a zigzag pattern during store hours can negatively

impact customers and their shopping experience. A pocket

sorter system is a warehousing solution that facilitates the

assembly of SFS without excessive additional effort.
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1.1 Bulk picking with a pocket sorter

The order fulfillment process described below was observed

at a warehouse operated by a logistics service provider

that handles full-service order fulfillment for a mid-sized

German retailer specializing in hunting equipment and

traditional regional costumes. However, the following

description is applicable to many retail chains that utilize a

pocket sorter to service their stores

Pocket sorter systems, also referred to as bag or pouch

sorter systems, are a relatively new technology used for sort-

ing. In this system, individual items are placed in small bags

that hang from overhead trolley conveyors. The sorter allows

for the resequencing of bags using a complex network of

switches and parallel lanes, enabling the retrieval of spe-

cific item sequences required for assembling SFS. The pocket

sorter is an essential component of a bulk picking system

(see Figure 1), which is also known as batch picking in the

literature (see Boysen et al., 2021).

Initially, all unit loads containing homogeneous items of

a specific stock keeping unit (SKU) are stored in an auto-

mated storage and retrieval system (ASRS). This can be a

lift-and-shuttle system, as shown in Figure 1A, where the unit

loads are bins. Alternatively, crane-operated high-bay racks

(Boysen & Stephan, 2016) and carousel systems (Litvak &

Vlasiou, 2010) can also be utilized as ASRS options. Orders

are processed in waves, which are subsets of the total order

set that are jointly sorted. Typically, each wave comprises

one order per packing station. For a given wave, the unit

loads containing the requested SKUs are retrieved from the

ASRS and delivered to one or multiple parallel loading sta-

tions, as depicted in Figure 1B. In the loading stations, the

current SKU is identified, usually by scanning a bar code, and

the system indicates the total number of items of this SKU

required for the current wave of orders. A human worker at

the loading station retrieves the specified number of items

from the unit load and places each item into subsequent

bags of the sorter. Once all items of the current SKU have

been loaded, the corresponding unit load is returned to the

ASRS, and the loading process repeats with the next SKU.

The loaded items are transported in bags along a trolley con-

veyor. Along the way to the packing stations, the bags pass

an intermediate buffer, which consists of a complex system

of switches and parallel lanes, as shown in Figure 1C. The

buffer is used to redirect bags from the main conveyor, resort

them, and channel them back onto the main conveyor. This

enables sorting the items into the specific sequence required

by each individual store. Therefore, the store’s layout is trans-

lated into a sequence of items, and these items are retrieved

from the pocket sorter system in that sequence. After pass-

ing the intermediate buffer, the main conveyor carries the

bags towards the packing stations, which have a similar setup

to the loading station depicted in Figure 1B. At the pack-

ing stations, another logistics worker sequentially retrieves

the items from their bags in the designated sequence and

places them onto a load carrier. Many retail chains utilize

roll cages, as shown in Figure 1D. With the items already

arriving in the right sequence, the logistics worker only needs

to pack them one after another into the roll cages to obtain

the SFS. Once an SFS is completed, it is delivered to the

shipping area and loaded onto a truck for transportation to

the respective store. For an alternative description of pocket

sorters and their application in bulk picking, refer to Boysen

et al. (2021).

When implementing a pocket sorter in a bulk picking envi-

ronment, it is essential to determine the dimensions of the

main system elements (see Figure 1). Specifically, factors

such as the storage and throughput capacity of the ASRS, the

number of parallel loading stations, the available number of

bags, the capacity of the intermediate buffer, and the num-

ber of packing stations need to be decided upon. Moreover,

all these decisions must be coordinated to prevent bottle-

neck stages that could impede the overall system throughput

capacity. In this article, we assume a predefined system

layout. Our research focuses on addressing the operational

decisions involved in processing a given wave of orders for

different stores. The key decisions include: (i) determining

the loading sequence of SKUs, specifying the order in which

they are retrieved from the ASRS and placed into bags at

the loading station, (ii) managing the buffer operations that

involve exchanging items to and from the intermediate buffer,

resulting in a sequence of items approaching the packing sta-

tions, and (iii) assigning the items approaching the packing

FIGURE 1 Bulk picking process with pocket sorter system.
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stations to specific store orders. In the following section, we

will review the relevant literature on this topic.

1.2 Literature review

Warehousing plays a crucial role in every supply chain, and

it comes as no surprise that research in this field has a

long-standing tradition. Rather than attempting to summarize

the vast body of literature on warehousing, which encom-

passes various picker-to-parts and parts-to-picker systems,

we recommend referring to the most relevant review papers

by De Koster et al. (2007), Gu et al. (2007, 2010), and

Van Gils et al. (2018). These survey papers provide compre-

hensive insights into warehousing in general. Other surveys

focus on specific aspects within this field, such as robotized

warehousing systems (Azadeh et al., 2019), ASRSs (Boy-

sen & Stephan, 2016; Roodbergen & Vis, 2009), automated

sorter systems (Boysen, Briskorn, et al., 2019), warehous-

ing systems for e-commerce (Boysen, de Koster, & Wei-

dinger, 2019), and for brick-and-mortar retail chains (Boysen

et al., 2021). Only the last two surveys mention pocket sorters

and their increasing real-world application in recent years.

However, both surveys note the absence of scientific papers

specifically focusing on pocket sorter systems. This finding

aligns with our own (unsuccessful) literature search. As there

is no existing research on this system, we survey related opti-

mization problems with similar structures: (a) resequencing

mixed-model assembly lines, (b) shunting freight cars in rail-

way shunting yards, and (c) coordinating picking and order

consolidation.

(a) In car manufacturing, production sequences often

become disordered, for example, due to paint

defects in the paint shop, and consequently need

to be reestablished in the original sequence. Rese-

quencing buffers are employed for this purpose.

For a comprehensive overview of this domain,

refer to Boysen, Scholl, and Wopperer (2012);

optimization approaches for this task have been

developed by researchers such as Lahmar and Ben-

jaafar (2007), Lim and Xu (2009), and Boysen

et al. (2011). The main distinction between these

areas lies in the fact that the final item sequence

of the pocket sorter is divided into multiple sub-

sequences, whereas a mixed-model assembly line

requires a single production sequence.

(b) Similar sorting problems also arise in shunting

yards, where inbound freight cars need to be orga-

nized into outbound freight trains. In this context,

inbound trains, with freight cars arranged in a spe-

cific sequence, are maneuvered down a shunting

hill and directed into multiple tracks. This pro-

cess allows the assembly of outbound freight trains

while adhering to sequence restrictions. A survey

paper on shunting processes is available from Boy-

sen, Fliedner, et al. (2012); algorithms for freight

car sorting are presented by researchers such as

Daganzo et al. (1983) and Jacob et al. (2011).

The primary distinction between this domain and

a pocket sorter lies in the absence of a buffer, with

multiple successive movements over a shunting

hill being performed instead.

(c) The optimization problem discussed in this arti-

cle, pertaining to the pocket sorter, encompasses

multiple hardware components (including load-

ing and unloading stations, as well as an inter-

mediate buffer) and involves multiple decisions

(specifically, decisions (i) to (iii) outlined in

Section 1.1). Consequently, it can be categorized

as a combined warehousing problem, which Van

Gils et al. (2018) extensively cover in their survey.

The existing literature on combined problems typ-

ically addresses the coordination between an ini-

tial product retrieval stage and a subsequent order

consolidation stage. Examples of such problems

include batch picking and sorting (e.g., Gallien

& Weber, 2010), order picking and packing (e.g.,

Zhong et al., 2022), as well as order picking and

delivery (e.g., Zhang et al., 2019). Although our

optimization problem falls within this category,

it focuses on a highly specific setup. Instead of

the conventional picker-to-parts order picking pro-

cess in the first stage, we consider a parts-to-picker

bulk picking process. Moreover, the second stage

does not involve a traditional conveyor-based

sorter system (as discussed in Boysen, Briskorn,

et al., 2019), but rather utilizes a pocket sorter to

facilitate SFS. This unique combination has not

been previously addressed in the literature.

In conclusion, it can be inferred that the pocket sorter

scheduling problem (PSS) presented in this article has not

yet been explored in existing literature, and the related opti-

mization problems discussed in previous research exhibit

substantially different structures.

1.3 Contribution and article structure

This article aims to extract the basic decision problem to be

solved when operating a pocket sorter in a bulk picking envi-

ronment. The result is an optimization problem supporting

three interdependent decisions: (i) The loading sequence of

SKUs at a loading station, (ii) the buffer operations exchang-

ing items to and from the intermediate buffer, and (iii)

the assignment of items to store orders. We formulate the

resulting combined optimization problem and prove struc-

tural properties. Furthermore, we derive exact and heuristic

solution methods for solving this optimization problem.

Once these solution methods are available (and proven

to have a good performance), we apply them to investigate

managerial aspects. First, we answer the question whether
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sophisticated optimization of the operational pocket sorter

processes enables considerable performance improvements

compared to simple scheduling policies like they are, for

instance, applied by the warehouse of our case study. Our

results indicate that more than 60% of the total working hours

in the packing stations can be saved. Furthermore, we evalu-

ate the benefit resulting from retail chains with identical (or at

least similar) store layouts on all their brick-and-mortar sales

outlets. Our computational study indicates further potential

performance gains of up to 30%. Finally, we show that the

problem, although involving multiple decisions and being

notoriously complex, can be solved with astonishingly good

performance by a very simple solution approach based on

priority rules.

The remainder of the article is structured as follows. First,

Section 2 defines the basic PSS problem and Section 3

provides a mixed integer program (MIP). Then, Section 4

analyzes the computational complexity and proves several

structural properties for deriving an efficient heuristic solu-

tion procedure. This heuristic is detailed in Section 5 and its

computational performance is investigated in Section 6. The

latter section also investigates the managerial issues outlined

above. Finally, Section 7 concludes the article.

2 PROBLEM DESCRIPTION

For a first more intuitive understanding, we start with a ver-

bal description of the problem, an example, and our basic

assumptions in Section 2.1. A formal problem definition is

given in Section 2.2.

2.1 Problem characterization and assumptions

We have a single loading station, manned with a logistics

worker, where one SKU after another arrives from the ASRS

in unit loads. We call the sequence in which the SKUs are

processed the loading sequence. The worker puts the total

demand for items of each SKU of the current wave into con-

secutive bags. We normalize time to (equidistant) time slots

each representing the (average) time span it takes the logistics

worker to put one item into a bag. Loading an item consists of

retrieving the item from the unit load, scanning the item, and

putting it into a bag. Depending on the specific setup of the

loading station and the characteristics of the SKUs to be han-

dled, the average slot time varies between 10 and 20 s (SSI

Schäfer, 2021).

The items loaded into bags are transported along a trolley

conveyor that connects the loading station with the pack-

ing stations, where store orders are gathered and prepared

for packing. Upon leaving the loading station, we encounter

what we refer to as the before-buffer sequence, where all

the requested items of the first SKU are followed by all the

requested items of the second SKU, and so on (as determined

by the loading sequence). On their way, the bags pass through

a switch that connects to an intermediate buffer area. In this

buffer, bags can be temporarily stored and later reintroduced

into the sequence. When a loaded bag enters the buffer, it

frees up a slot that can be occupied by another item reenter-

ing the trolley conveyor from the buffer. If no empty slot is

available, an item can still be reintroduced, causing a delay

of one slot for all subsequent items. The resulting sequence is

referred to as the after-buffer sequence. This sequence con-

tinues forward and eventually reaches a switch that connects

to parallel packing stations. Each packing station handles a

dedicated store order from the current wave. Each store order

specifies the items to be packed in a specific sequence, known

as the packing sequence. This sequence enables the logistics

worker at the respective packing station to assemble the SFS

according to the layout of the store by placing one item after

another onto the shipping carrier. The process involves three

interdependent decisions, which are illustrated in Figure 2.

Specifically, we need to make decisions regarding:

1. The loading sequence, which determines the order

in which SKUs are retrieved from the ASRS and

incorporated into the before-buffer sequence of

items at the loading station.

2. The buffer operations, which involve determining

whether an item should be moved into the buffer

and, if so, when it should be reintroduced into the

after-buffer sequence.

3. The assignment of items to orders.

Our objective is to minimize the total completion time of

the orders, which is measured by the slot in which the last

item dedicated to each order arrives at the packing station. To

gain a better understanding of our PSS problem, we consider

the example illustrated in Figure 3.

Example: The current wave consists of three store orders

each having a given packing sequence. Store 1, for instance,

requires its items being delivered in packing sequence

(B,B,C,A). In total, the wave of orders requires two items

of SKU A, four items of SKU B, and four items of SKU C.

Solution one in Figure 3A has loading sequence (C,B,A),
so that the first four slots of the before-buffer sequence con-

tain the four demanded items of SKU C. In the before-buffer

sequence, the items approach the switch to and from the

buffer. We have the following buffer operations.

• First, we examine the buffer decisions made in the

red-marked slots of solution one in Figure 3A: (i) The

marked item of SKU C is moved into the buffer, and

(ii) since no other SKU is present in the buffer, this slot

remains empty in the after-buffer sequence. Later on, (iii)

the item of SKU B is moved into the buffer, and (iv)

this empty slot is taken by the item of SKU C that was

previously moved into the buffer.

• If there is no empty slot available to accommodate a rein-

serted item, all subsequent items in the following slots

are delayed by one slot. This buffer operation is demon-

strated by the green-marked slots of solution two depicted
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FIGURE 2 Pocket sorter process and associated decisions.

FIGURE 3 Example instance for our pocket sorter scheduling problem with two alternative solutions.

in Figure 3B: (i) First, the marked item of SKU B is moved

into the buffer, and (ii) its slot cannot be taken by the item

of SKU A in the buffer because this item is required by

Store 1 after SKU C (which has not yet passed the buffer);

hence, the slot remains empty. Later, (iii) this item is rein-

serted into the sequence, but there is no available empty

slot at its original position, resulting in (iv) a delay of one

slot for all subsequent items.

Finally, we have the assignment of items from the

after-buffer sequence to orders, indicated by the gray num-

bers referring to the respective store. The completion time of

an order is reached when the last item of that order arrives.

For example, in Figure 3A, the order for Store 2 is completed

after slot five, resulting in a sum of completion times of 26

for solution one. On the other hand, solution two in Figure 3B

has an objective value of 32.

Our PSS problem is based on several simplifying assump-

tions and prerequisites, which we discuss below.

• We aim to address an elementary operational decision

problem that encompasses all essential problem character-

istics. Therefore, we consider the most basic setup, where

we have a single loading station supplying multiple pack-

ing stations, with each packing station processing exactly

one order. In typical scenarios, the loading process is
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much faster than the packing process, allowing a single

loading station to support multiple packing stations. For

larger systems with a greater number of packing sta-

tions (e.g., 80 packing stations as reported in Boysen, de

Koster, and Weidinger, 2019), multiple parallel loading

stations may be required. This modification slightly alters

the problem but does not change the fundamental objec-

tives and constraints. However, a detailed analysis of the

implications is left for future research.

• We assume that the ASRS supplying the loading sta-

tion is not a bottleneck resource. More complex situa-

tions, where certain loading sequences impose additional

retrieval efforts on the ASRS, leading to waiting times for

the worker at the loading station, are left for future investi-

gation. Furthermore, we assume that the ASRS can retrieve

the SKUs in any sequence and is not restricted by the

loading sequence.

• We assume that the buffer area is empty before and after

processing each wave. There are large-scale pocket sorter

systems with up to 500 000 bags (Boysen, de Koster, &

Weidinger, 2019), where items are stored because they are

anticipated to be ordered in the near future. These systems

are primarily utilized by e-commerce retailers, such as

Germany’s largest online fashion retailer, Zalando. How-

ever, for brick-and-mortar retail chains, which typi-

cally have a smaller product assortment compared to

e-commerce retailers (Boysen et al., 2021), smaller sys-

tems with the bulk picking setup described earlier are more

common. Our focus is on these smaller systems.

• We assume that the buffer size is not a limiting factor

and that there are always enough bags and buffer positions

available. Given the previous assumption, systems with a

few hundred bags should be sufficient. Moreover, bags can

be stored in a compact manner on overhead conveyors,

so the availability of bags and buffer positions is rarely a

concern.

• We do not explicitly model the item movement and sort-

ing process within the buffer. We assume that the system

can efficiently deliver a specific item for a particular slot

whenever needed. Pocket sorters are manufactured by spe-

cialized suppliers such as Dürkopp and psb intralogistics

(see Figure 1), and they also provide the software to control

the movement of bags within the buffer. From the perspec-

tive of distribution centers, the buffer is essentially a black

box with an interface for retrieving items. Therefore, our

problem setting only involves decisions made by the distri-

bution center. Optimizing the flow of bags within the buffer

is an interesting decision task in itself but is not addressed

in this article.

• We measure time in (equidistant) slots, where each slot

represents the average loading time of bags at the loading

station. While the actual loading time may slightly vary

from slot to slot, we use average times since these varia-

tions are difficult to predict when planning the process in

advance.

• Our objective is to minimize the sum of order completion

times. Completing orders as early as possible offers sev-

eral advantages. First, the earlier an order is packed and

ready, the higher the likelihood that it will reach its

store on time. Additionally, logistics workers who have

already completed their orders can be assigned to other

tasks. In our logistics provider’s multi-client warehouse,

for example, idle workers are promptly reassigned to

other duties via a pager once they finish an order (see

Section 6.3).

2.2 Problem definition

We are given a set J = {1, … , |J|} of store orders as input

for our decision process. Each order j ∈ J is defined by a

packing sequence 𝜎j of SKUs and a number nj,s for each SKU

s in 𝜎j. The packing sequence 𝜎j determines the order in which

SKUs are placed on the SFS designated to the store of order

j, with 𝜎j(k) being the kth SKU in 𝜎j. The set Sj comprises the

SKUs required by order j ∈ J, and set S =
⋃

j∈J Sj includes

all the relevant SKUs for the current wave. As an example, we

consider the packing sequence of store 1 shown in Figure 3:

𝜎1 = (B,C,A), n1,B = 2, n1,C = n1,A = 1. The total number

of items of SKU s ∈ S as ns, and the overall number of items

as n. Corresponding to the three aforementioned components

of our decision process, a solution to our problem consists of

three parts.

1. The first component is the loading sequence 𝜎
l

of

SKUs in S, which prescribes the retrieval sequence

of unit loads and the loading of the demanded items

per SKU into bags at the loading station. Note that

loading sequence 𝜎
l

differs from packing sequence

𝜎j, j ∈ J, with the latter being given as an input.

Both 𝜎
l

and 𝜎j, j ∈ J, however, reflect sequences

of SKUs. We refer to the kth SKU in 𝜎
l

by 𝜎
l(k).

Since for each SKU multiple items may be required,

the loading sequence directly translates into the

before-buffer sequence 𝜋

in
, where each sequence

position refers to a single item and all items of the

same SKU occur in direct succession. Note that

the latter is not an artificial add-on assumption to

ease the optimization process but a characteristic

that is inevitable in a bulk picking process (see

Section 1.1).

2. The second component is the after-buffer sequence

𝜋

out
of items after passing the buffer, where buffer

operations (i.e., movements in and out of the buffer

as well as delays of subsequent items) are exe-

cuted. The buffer operations turn the before-buffer

sequence into the after-buffer sequence, where

empty slots can only appear in the latter sequence.

Note that after-buffer sequence 𝜋

out
differs from

before-buffer sequence 𝜋
in

. Both 𝜋
out

and 𝜋
in

, how-

ever, reflect sequences of items.
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3. The third component is an assignment a of slots

of the after-buffer sequence 𝜋
out

to J ∪ {0} signal-

ing that the slot is empty if it is assigned to 0 or

defining the SFS the item in the slot is put on (and,

thus, the order in which it ends up) otherwise. Recall

that an assignment a directly implies the assignment

of items to packing stations, because each order is

processed in its dedicated packing station.

While each component of our solution concept is rather

straightforward, we should argue that we appropriately repre-

sent the buffer operations by having loading sequence 𝜎
l

of

SKUs and after-buffer sequence 𝜋
out

of items. In particular,

we should state necessary and sufficient conditions for 𝜋
out

being obtainable from 𝜎

l
by buffer operations.

Lemma 1. After-buffer sequence 𝜋

out can be
obtained from loading sequence 𝜎l by resequenc-
ing in the intermediate buffer if and only if the
first item of each SKU s, where s = 𝜎l(k) for some
k = 2, … , |S|, is in a slot l ≥ fs =

∑k−1

k′=1
n
𝜎

l(k′)+1

of 𝜋out.

Proof. First, recall that loading sequence 𝜎

l

implies before-buffer sequence 𝜋
in

. Sequence 𝜋
in

contains all items required by orders in J with

items of the same SKU being clustered and items

of SKU 𝜎

l(k) preceding items of 𝜎
l(k+1) for each

k = 1, … , |S| − 1.

If the first item of SKU s with s = 𝜎

l(k) for

some k = 2, … , |S|, is in a slot l < fs of

𝜋

out
, it cannot be achieved from 𝜎

l
since it would

be in an earlier slot in 𝜋

out
than in 𝜋

in
. How-

ever, the pocket sorter cannot accelerate items,

that is, bring them to an earlier slot, during

resequencing.

If the first item of SKU s with s = 𝜎

l(k) for

some k = 2, … , |S|, is in a slot l ≥ fs, then there

are at most min{ns, l′ − l + 1} items of SKU s in

slots l, … , l′, l′ = l, … , n, of 𝜋
out

. In 𝜋
in

, there

are min{ns, l− fs + (l′ − l+ 1)} items of SKU s in

slots 1, … , l′. Clearly,

min{ns, l′ − l + 1} ≤ min{ns, l − fs + (l′ − l + 1)},

since l ≥ fs. So, for each slot l′, l′ = 1, … , n,

there are at least as many items of each SKU s ∈
S in slots 1, … , l′ of 𝜋

in
as in slots 1, … , l′ of

𝜋

out
.

It remains to argue that the resequencing oper-

ations can actually arrange 𝜋
out

from 𝜎

l
. It is not

hard to see that we can simply process 𝜋
in

slot by

slot and

• keep the current slot l as is, if an item of the

same SKU occupies both, the lth slots of 𝜋
in

and 𝜋
out

,

• remove the item from the current slot l of 𝜋
in

and leave the slot empty in 𝜋
out

, if the lth slots

of 𝜋
out

is empty, or

• remove the item from the current slot l of 𝜋
in

and fill it with an item of the SKU in the lth
slot of 𝜋

out
if both, the lth slots of 𝜋

in
and 𝜋

out

are occupied but differ in the SKU.

While the first two cases can unconditionally

be implemented, replacing items in the third case

relies on an item of the replacing SKU to be in

buffer. However, we can take this for granted due

to the above. ▪

We say a solution is buffer-feasible, if the condition stated

in Lemma 1 is satisfied. That is, the first item of each SKU

s = 𝜎l(k) ∈ S, k = 2, … , |S|, is in a slot l ≥ fs of 𝜋
out

.

Also, after-buffer sequence 𝜋
out

and the assignment a of

slots to orders need to be geared to each other. We will say

in the following that both, a non-empty slot and the item in

the slot, are assigned to an order. First, each order j ∈ J must

get assigned exactly nj,s items of each SKU s ∈ Sj. Further-

more, the sequence of SKUs in 𝜎j has to be respected. For each

k = 1, … , |Sj|− 1, all items of SKU 𝜎j(k) assigned to j must

precede all items of SKU 𝜎j(k+1) assigned to j in 𝜋
out

. If both

conditions are satisfied, we call a solution order-feasible.

Definition 1. A solution is called feasible if it is

buffer-feasible and order-feasible.

For a feasible solution the completion time Cj of order

j ∈ J equals the slot number of the last item in 𝜋
out

assigned

to store order j. The sum of order completion times amounts

to
∑

j∈J Cj.

Definition 2. The PSS is to determine, among

all feasible solutions, one that minimizes the sum

of order completion times.

Finally, we prove an optimality property.

Lemma 2. In an optimal solution to PSS, every
slot of the after-buffer sequence that is larger
than n − mins∈S{ns} contains an item unless all
subsequent slots are empty.

Proof. Consider a solution to PSS where the

after-buffer sequence 𝜋
out

contains an empty slot

at a position k ≥ n − mins∈S{ns} + 1, which is

followed by a slot that is occupied by an item.

We define an alternative after-buffer sequence

𝜋

out
by deleting the empty slot k (i.e., by shift-

ing all subsequent items one slot to the front).

Obviously, 𝜋
out

still meets the feasibility criterion

of Lemma 1 and results in a smaller objective

value than 𝜋
out

. Thus, the initial solution cannot

be optimal. ▪



BOYSEN ET AL. 865

3 A MIXED INTEGER PROGRAM

This section develops a MIP for PSS. Since PSS is a challeng-

ing problem including three interdependent decisions, solving

even small-sized instances with a few dozen items turns

out as a challenging task for an off-the-shelf solver. There-

fore, we present some further ideas on how to streamline the

solution process. Specifically, we introduce a preprocessing

step (see Appendix A), the MIP model itself, which we dub

PSS-MIP (see Section 3.1), valid inequalities to strengthen

the MIP (see Section 3.2), and an approach to reduce the

time horizon to be considered by the MIP (see Section 3.3).

The notation applied throughout this section is summarized

in Table 1.

3.1 Mixed integer model PSS-MIP

Applying the notation summarized in Table 1, PSS-MIP con-

sists of objective function (1) and constraints (2) to (18). We

employ three types of binary variables. Binary variable 𝜎
l
s,k,

reflects whether SKU s is the kth SKU in the loading sequence

(𝜎
l
s,k = 1) or not (𝜎

l
s,k = 0). The after-buffer sequence is rep-

resented by binary variable 𝜋
out

s,l signaling whether an item of

SKU s is in the lth slot of the after-buffer sequence (𝜋
out

s,l = 1)

or not (𝜋
out

s,l = 0). Finally, binary variable aj,l, represents

whether the lth slot of the after-buffer sequence is assigned

to order j (aj,l = 1) or not (aj,l = 0). In total, we have

O(|S|2+(|S|+ |J|) ⋅L) binary variables with L being the max-

imum length of the after-buffer sequence. Additionally, we

employ continuous variable Cj representing the completion

time of order j.

Minimize Z(𝜎l
, 𝜋

out
, a,C) =

∑

j∈J
Cj. (1)

Objective function (1) represents the goal to minimize the

sum of completion times and is subject to the following

constraints, which we introduce in segments.

∑

s∈S
𝜎

l
s,k = 1 ∀ k = 1, … , |S|, (2)

|S|∑

k=1

𝜎

l
s,k = 1 ∀ s ∈ S, (3)

∑

s∈S
𝜋

out

s,l ≤ 1 ∀ l = 1, … ,L, (4)

L∑

l=1

𝜋

out

s,l = ns ∀ s ∈ S, (5)

∑

j∈J
aj,l ≤ 1 ∀ l = 1, … ,L, (6)

L∑

l=1

aj,l = 𝜂j ∀ j ∈ J. (7)

Constraints (2) to (7) ensure a well-defined loading sequence

𝜎

l
(constraints (2) and (3)), after-buffer sequence 𝜋

out
(con-

straints (4) and (5)), and assignment a (constraints (6)

and (7)).

k−1∑

k′=1

∑

s′∈S
ns′ ⋅ 𝜎l

s′,k′ + 1 − L ⋅ (2 − 𝜎l
s,k − 𝜋

out

s,l ) ≤ l

∀ l = 1, … ,L; s ∈ S; k = 1, … , |S|. (8)

Inequalities (8) ensure that the feasibility criterion according

to Lemma 1 is satisfied. Retrieving an SKU s at position k of

the loading sequence and simultaneously using it in slot l of

the after-buffer sequence (which implies L ⋅ (2−𝜎l
s,k−𝜋

out

s,l ) =
0) is only possible, if l is sufficiently large, that is, if l allows

TABLE 1 Notation for PSS.

J Set of orders (index j)

S Set of SKUs (index s)

Sj Set of SKUs required by order j (index s)

L Maximum length of the after-buffer sequence

ns Total number of items of SKU s ∈ S

n Total number of items over all SKUs: n =
∑

s∈S ns

nj,s Number of items of SKU s ∈ Sj that are required by order j

𝜂j Number of items that are required by order j

𝜎j Packing sequence of SKUs required by order j

𝜎j(k) The kth SKU of order j’s packing sequence

𝜎

−1

j (s) Position where SKU s occurs in the packing sequence 𝜎j of order j

l(𝜎j) Number of different SKUs required by order j

sj,k The SKU of the kth item required by order j

𝜎

l
s,k Binary variable: 1, if SKU s is the kth SKU in the loading sequence; 0, otherwise

𝜋

out

s,l Binary variable: 1, if an item of SKU s is in the lth slot of the after-buffer sequence; 0, otherwise

aj,l Binary variable: 1, if the lth slot of the after-buffer sequence is assigned to order j; 0, otherwise

Cj Continuous variable: completion time of order j
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for feeding all items of the first k − 1 SKUs of the loading

sequence into the sorter before processing the first item of

SKU s.

aj,1 ≤ 𝜋
out

sj,1,1
∀ j ∈ J, (9)

1−

big M

⏞⏞⏞⏞⏞⏞⏞

(l − k + 1) ⋅ (1 − aj,l)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term (i)

+

( l−1∑

l′=1

aj,l′ − (k − 1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term (ii)

≤ 𝜂j⋅ (10)

𝜂j∑

k′=k
𝜋

out

sj,k′ ,l
∀

j ∈ J;
l = 2, … ,

⌊
L
2

⌋

;

k = 1, … ,min{l, 𝜂j},

1−

big M

⏞⏞⏞

k ⋅ (1 − aj,l)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term (i)

−

( l−1∑

l′=1

aj,l′ − (k − 1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

term (ii)

≤ 𝜂j⋅

k∑

k′=1

𝜋

out

sj,k′ ,l
∀

j ∈ J;
l = 2, … ,

⌊
L
2

⌋

;

k = 1, … ,min{l, 𝜂j}.

(11)

Inequalities (9) to (11) link the entries of assignment vector a
to after-buffer sequence 𝜋

out
for the small sequence positions

l = 1, … ,

⌊
L
2

⌋

. Whenever an order j ∈ J occurs at position l
of assignment vector a for the kth time (for k = 1, 2, … , 𝜂j),

these constraints make sure that after-buffer sequence 𝜋
out

contains an item of SKU sj,k at position l. Constraints (9)

force the foremost item sj,1 of order j to the first position of

𝜋

out
, whenever aj,1 = 1 holds. For the following sequence

positions l = 2, … ,

⌊
L
2

⌋

, constraints (10) and (11) establish

the link between a and 𝜋
out

as follows. Due to term (i), they

impose a restriction for order j ∈ J and sequence position

l = 2, … ,

⌊
L
2

⌋

only if j is assigned to l. Term (ii) evaluates

the number of occurrences of j in a up to position l− 1 minus

k − 1.

If aj,l = 1 and the left hand side of (10) has a value of at

least 1, that is if j has at least k occurrences in a up to position

l, then constraints (10) enforce the lth entry of 𝜋
out

to be in

{sj,k, sj,k+1, … , sj,𝜂j}. If the left hand side has a value of at

most 0, that is if j has at most k − 1 occurrences in a up to

position l (or aj,l = 0), then (10) does not restrict 𝜋
out

.

If aj,l = 1, the left hand side of (11) evaluates k minus

the number of occurrences of j in a up to position l − 1. If

the left hand side has a value of at least 1, that is if j has

at most k occurrences in a up to position l, then constraints

(11) enforce the lth entry of 𝜋
out

to be in {sj,1, … , sj,k}. If

the left hand side has a value of at most 0, (11) does not

restrict 𝜋
out

.

Note that the only case in which both, (10) and (11), restrict

𝜋

out
is the case in which both left hand sides have a value of 1.

In this case, constraints (10) and (11) enforce the lth entry of

𝜋

out
to be in {sj,1, … , sj,k} ∩ {sj,k, sj,k+1, … , sj,𝜂j} and, thus,

equal to sj,k.

aj,L ≤ 𝜋
out

sj,𝜂j ,L
∀ j ∈ J, (12)

1 − (L − l − k + 2) ⋅ (1 − aj,l)+
( L∑

l′=l+1

aj,l′ − (k − 1)

)

≤ 𝜂j⋅

𝜂j−k+1
∑

k′=1

𝜋

out

sj,k′ ,l
∀

j ∈ J;
l =

⌊
L
2

⌋

+ 1, … ,L − 1;

k = 1, … ,min{L − l, 𝜂j},

(13)

1 − k ⋅ (1 − aj,l)−
( L∑

l′=l+1

aj,l′ − (k − 1)

)

≤ 𝜂j⋅

𝜂j∑

k′=𝜂j−k+1

𝜋

out

sj,k′ ,l
∀

j ∈ J;
l =

⌊
L
2

⌋

+ 1, … ,L − 1;

k = 1, … ,min{L − l, 𝜂j)}.

(14)

Inequalities (12) to (14) link the entries of assignment vec-

tor a to after-buffer sequence 𝜋

out
for sequence positions

l =
⌊

L
2

⌋

+ 1, … ,L using the same ideas as in (9) to (11).

Cj ≥ l ⋅ aj,l ∀ j ∈ J; l = 1, … ,L, (15)

aj,l ∈ {0, 1} ∀ j ∈ J; l = 1, … ,L, (16)

𝜎

l
s,k ∈ {0, 1} ∀ s ∈ S; k = 1, … , |S|, (17)

𝜋

out

s,l ∈ {0, 1} ∀ s ∈ S; l = 1, … ,L. (18)

Constraints (15) bound the completion times of the orders

from below. Finally, constraints (16) to (18) set the domains

of the binary variables. In total, we have O(|S|2 ⋅L+ |J| ⋅L ⋅n)
constraints.

3.2 Valid inequalities

To strengthen our MIP, we introduce the following valid

inequalities.

(i) Completion time Cj for each order j ∈ J can

be bounded from below by

Cj ≥

l(𝜎j)∑

k=1

n
𝜎j(k) − max

k=1,… ,l(𝜎j)

{
n
𝜎j(k) − nj,𝜎j(k)

}
.



BOYSEN ET AL. 867

For each order j ∈ J, all items of all but

one required SKU need to be retrieved com-

pletely, and from the remaining SKUs at

least the items that are required by j itself

need to be retrieved before j can be com-

pleted. Note that the l(𝜎j) − 1 SKUs that

are retrieved completely, are not necessar-

ily equal to the first l(𝜎j) − 1 SKUs of

order j.
(ii) The following inequalities enforce a to not

assign an empty slot in 𝜋
out

for any order.

∑

j∈J
aj,l =

∑

s∈S
𝜋

out

sl ∀ l = 1, … ,L.

Although this constraint does not cut any

solutions, it improved the solver’s perfor-

mance nevertheless.

(iii) We can exclude after-buffer sequences

where an item of SKU s is scheduled

directly after an empty slot (i.e., where

𝜋

out

s,l = 1 and
∑

s′∈S 𝜋
out

s′,l−1
= 0 hold for some

l ∈ {3, … ,L}), unless SKU s occurs there

for the first time (i.e., unless
∑l−2

l′=1
𝜋

out

s,l′ =
0):

ns ⋅

(

1 +
∑

s′∈S
𝜋

out

s′,l−1
− 𝜋out

s,l

)

≥

l−2∑

l′=1

𝜋

out

s,l′

∀ s ∈ S; l = 3, … ,L.

Starting from a solution violating this

inequality, we could shift the item in slot l to

an earlier slot without increasing the objec-

tive value. These constraints reduce sym-

metry by eliminating feasible solutions,

where a slot in the after-buffer sequence

is left empty although the next item in the

after-buffer sequence is available.

(iv) If two SKUs s, s′ ∈ S jointly occur in

at least one order and if s′ neither occurs

without s nor before s in any order, we can-

not profit from retrieving SKU s′ before

SKU s unless s′ requires fewer items than

s (i.e., unless ns′ < ns). Thus, we can add

the following constraints, which prohibit

retrieving s′ before s in such cases:

|S|∑

k=1

k ⋅ (𝜎l
s′,k − 𝜎

l
s,k) ≥ 1

∀ s, s′ ∈ S ∶ ns ≤ ns′ ∧
{

j ∈ J ∶ ∃k′

∈ {1, … , l(𝜎j)} ∶

s′∈
k′⋃

k′′ =1

{𝜎j(k′′)} ∋ ∕s
}

= ∅.

Note that having s′ preceding s in the

loading sequence does not necessarily

increase the objective value, for example, in

instances where neither s nor s′ is the last

SKU in any order’s packing sequence.

(v) Due to Lemma 2, we can add the following

constraints, which prohibit empty slots fol-

lowed by non-empty slots in the rear part of

𝜋

out
(and therefore also in a):

(L − l) ⋅
∑

j∈J
aj,l ≥

∑

j∈J

L∑

l′=l+1

aj,l′

∀ l = n −min
s∈S
{ns} + 1, … ,L − 1.

(19)

These constraints cut non-optimum solu-

tions where some orders have unnecessarily

large completion times since late slots in

the after-buffer sequence are occupied.

Note that we also tested some more valid inequalities,

but this is the subset of rules that noticeably improves the

performance of the standard solver Gurobi (see Section 6).

3.3 Reducing the length of the after-buffer sequence

As our computational tests in Section 6 will show, solving

our MIP with a default solver profits from a tight approxi-

mation of the maximum possible length L of the after-buffer

sequence. According to our ideas presented in the preprocess-

ing step (see Appendix A), L is yet slightly smaller than 2 ⋅ n,

with n being the overall number of items to be processed.

However, with a feasible (and near-optimal) solution to PSS

on hand, for example, provided by our heuristic solution pro-

cedure described in Section 5, we are (potentially) able to

further reduce L. Specifically, we aim to identify slots at the

end of the after-buffer sequence that cannot be occupied by

items in an optimal solution. Let sol be a feasible solution and

Zsol the related objective value. In the following, we describe

how to employ solution sol for bounding the maximum

possible length L of the after-buffer sequence in optimum

solutions.

According to inequalities (19), the final slot L can only be

occupied by an item, if each slot l ∈ {n − mins∈S{ns} +
1, … ,L} is occupied by an item. Thus, if the after-buffer

sequence 𝜋
out

of an arbitrary solution contains an item at

position L, then 𝜋

out
terminates with L − n + mins∈S{ns}

occupied slots. The after-buffer sequence, then, contains only

2n−L−mins∈S{ns} items in the slots 1, … , n−mins∈S{ns}.
With this information about the location of items within 𝜋

out

on hand, we are able to derive a lower bound LB(L) for the

sum of the order completion times under the condition that

𝜋

out(L) is not empty. Let 𝜔 ∶ J → {1, … , |J|} be a per-

mutation of order set J, such that for all j, j′ ∈ J we have

𝜔(j′) < 𝜔(j) whenever 𝜂j′ < 𝜂j (i.e., a nondecreasing order-

ing of order set J according to the number of items required

by the orders). In the best case, the orders of J are completed

according to the ordering 𝜔 (i.e., according to the shortest
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processing time (SPT) rule), such that the majority of orders

is finished in slots l ∈ {1, … , 2n − L − mins∈S{ns}} and

only a few orders (i.e., the largest ones) are finished in slots

l ∈ {n −mins∈S{ns} + 1, … ,L}. LB(L) then amounts to

LB(L) =
∑

j∈J

∑

j′∈J∶
𝜔(j′ )≤𝜔(j)

𝜂j

⏟⏞⏞⏞⏟⏞⏞⏞⏟

lower bound for the sum of completion times

assuming that all orders can be finished with

the first n slots of the after-buffer sequence

+ (L − n) ⋅ xL
⏟⏞⏞⏞⏟⏞⏞⏞⏟

correction term:

at least xL orders are

each delayed by L−n slots

(20)

with

xL = |J| −min

⎧
⎪
⎨
⎪
⎩

k ∈ {1, … , |J|} ∶
∑

j∈J∶
𝜔(j)≤k

𝜂j > 2n − L −min
s∈S
{ns}

⎫
⎪
⎬
⎪
⎭

+ 1,

(21)

being the number of many-item orders that are completed in

slots n − mins∈S{ns} + 1, … ,L. If LB(L) exceeds Zsol, we

can conclude that in an optimal solution to PSS the Lth slot

of the after-buffer sequence cannot be occupied by an item,

so that we are able to reduce L by one. The computation of

LB(L) (with a reduced L) and the comparison with Zsol can

then be restarted until L cannot be further reduced. Obviously,

reducing L leads to lower numbers of variables and constraints

in our MIP formulation.

4 ANALYSIS OF THE PROBLEM
STRUCTURE

In this section, we investigate the problem structure of PSS

and provide an in-depth analysis of computational complex-

ity. First, we show that PSS is strongly -hard. Then,

we investigate what happens with the complexity status

of the problem, if we fix parts of the solution. Here, we

aim to identify levers for decomposition approaches, for

example, based on an efficient neighborhood structure, so

that some metaheuristic can evaluate the remaining sub-

problem for a given partial solution in polynomial time.

We first report on some subproblems remaining -hard,

before we come to promising subproblems solvable in

polynomial time.

We start with an expected result: not only PSS itself but

also variants where parts of the solution are predetermined

are complex optimization problems.

Theorem 1. The following variants of PSS are
strongly-hard:

1. PSS,
2. PSS with given after-buffer sequence 𝜋out,

and
3. PSS with given loading sequence 𝜎

l and
after-buffer sequence 𝜋out.

Proof. See Appendix B. ▪

Now, we turn our attention to subproblems of PSS that

can be solved in polynomial time. First, however, we present

an auxiliary result (Lemma 3) which will help us prove

Theorem 2 and will support the development of our meta-

heuristic approach in Section 5. We refer to the subse-

quence 𝜋
sig

of after-buffer sequence 𝜋
out

starting and end-

ing with the first and the last item in 𝜋
out

as the signature

of 𝜋
out

.

Lemma 3. For a given signature 𝜋sig, we can
determine in polynomial time the after-buffer
sequence 𝜋out of minimum length such that 𝜋sig is
the signature of 𝜋out and a loading sequence 𝜎l

ensuring buffer-feasibility with 𝜋out exists.

Proof. Let lsig
be the length of signature 𝜋

sig
.

We construct 𝜋
out

and 𝜋
in

(implying 𝜎
l
) as fol-

lows. We consider an after-buffer sequence 𝜋
out

with n leading empty slots before signature 𝜋
sig

.

We construct a before-buffer sequence 𝜋
in

of the

same length n + lsig
with a maximum number of

leading empty slots such that the first item of each

SKU appears in 𝜋
in

not later than in 𝜋
out

. Note

that this ensures buffer-feasibility, see Lemma 1.

Finally, we drop leading slots that are empty in

both, 𝜋
in

and 𝜋
out

, and empty slots after the last

item in 𝜋
in

.

It remains to detail how 𝜋

in
is constructed. For

each SKU s ∈ S the rearmost feasible position

𝜋

in(s) in 𝜋
in

for the last item of s is determined

as f out
s + ns − 1 where f out

s is the first slot in

𝜋

out
where an item of SKU s occurs. Now, we

start with an empty loading sequence 𝜎

l
and

repeatedly choose among SKUs not in 𝜎
l

yet the

SKU s with largest value of f out
s + ns − 1 (using

an arbitrary tie breaker). We assign the items

of s to the latest empty slots in 𝜋

in
but not to

slots larger f out
s + ns − 1. After dropping lead-

ing slots that are empty in both, 𝜋
in

and 𝜋

out
,

but before removing empty slots from the end

of 𝜋
in

we can measure the length of 𝜋
out

as the

number of empty slots in 𝜋
in

plus n. Note that

the number of empty slots is minimum since we

minimize the number of empty slots after the

items of the kth SKU, k = 1, … , |S|, in 𝜎
l

by

choosing in each step the SKU with maximum

f out
s + ns − 1. ▪
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Theorem 2. For a given loading sequence 𝜎l or
a given after-buffer sequence 𝜋out PSS can be
solved in polynomial time, if the number of orders
|J| is bounded by a constant.

Proof. See Appendix C. ▪

Unfortunately, the result in Theorem 2 relies on a

fixed number |J| of orders. In real-life applications, how-

ever, this number can be large. The pocket sorter system

reported by Boysen, de Koster, and Weidinger (2019),

for instance, applies 80 packing stations each process-

ing an order in parallel. Thus, using decomposition

approaches utilizing this theorem seems only reasonable

for small-sized systems. In the following, however, we

present a polynomially solvable subproblem of PSS for

arbitrary |J|.

Theorem 3. PSS can be solved in polynomial
time, if the assignment a is given.

Proof. See Appendix D. ▪

The following can be concluded from our analysis of com-

putational complexity: PSS is a very complex optimization.

However, a decomposition approach (e.g., a metaheuristic

framework) iterating through different assignments a could be

a promising solution approach, because once an assignment a
is given the remaining subproblem of PSS can efficiently be

evaluated in polynomial time. For a proof of concept, we will

show that a metaheuristic such as simulated annealing (SA)

can successfully apply this approach.

5 A METAHEURISTIC APPROACH FOR
SOLVING PSS

In this section, we utilize the insights gained from our problem

analysis to develop a suitable heuristic solution approach.

We demonstrate that a straightforward metaheuristic like SA

can effectively solve the PSS problem by operating on an

appropriate neighborhood structure. SA is a simple stochastic

local search metaheuristic that accepts modified neighboring

solutions based on a probabilistic scheme inspired by ther-

mal processes used to achieve low-energy states in heat baths

(see Kirkpatrick et al., 1983; Van Laarhoven & Aarts, 1987).

In the following, we outline the key components of our SA

approach, including the solution encoding, the neighborhood

structure, the generation of initial solutions, and the general

procedure.

Solution encoding: Theorem 3 provides us with crucial

information for efficiently deriving a complete solution from

a concise (partial) solution encoding. Based on this theorem,

we determine that the metaheuristic search process should

operate on the assignment of slots in the after-buffer sequence

to the orders. We define this assignment by a vector a with

a(k) =
⎧
⎪
⎨
⎪
⎩

j if the after-buffer sequence

contains an item for order j ∈ J in slot k

− if the kth slot of the after-buffer sequence is empty.

In a feasible assignment vector a, encoding a feasible solu-

tion to PSS, |{k ∈ {1, … ,L} ∶ a(k) = j}| = 𝜂j necessarily

holds for each order j ∈ J. A feasible assignment vector, thus,

contains exactly L − n empty slots (i.e., |{k ∈ {1, … ,L} ∶
a(k) = −}| = L − n). The sequence 𝜋

out
of items (and empty

slots) in the after-buffer sequence then trivially follows from

a. With 𝜋
out

on hand, a buffer-feasible loading sequence 𝜎
l

and before-buffer sequence 𝜋
in

can be determined in poly-

nomial time (if they exist) by applying the approach used in

the proof of Lemma 3. If buffer-feasible loading sequence 𝜎
l

and before-buffer sequence 𝜋
in

do not exist for (assignment

vector a and) after-buffer sequence 𝜋
out

, then the approach

used in the proof of Lemma 3 adds leading empty slots into

a and 𝜋
out

in order to ensure buffer-feasibility. Note that 𝜎
l

is not unique, if 𝜋
in(s1) = 𝜋

in(s2) (as defined in Lemma 3)

holds for at least one pair of SKUs s1, s2 with s1 ≠ s2. To

not systematically exclude parts of the solution space, we thus

apply a random SKU (sub)sequence among those SKUs with

identical values for 𝜋
in

. The leading empty slots in a and

𝜋

out
are then postponed as far as possible without violating

buffer-feasibility.

Note that an assignment vector a, thus, potentially car-

ries a lot of empty slots and still requires a repair scheme

for finding a feasible solution. If we allow, however, for a

repair scheme, then it seems promising to omit empty slots,

because this allows for a much more compact encoding.

Thus, we restrict the solution encoding of our SA approach

on no-empty-slots assignment vectors ã ∶ {1, … , n} →
J, that is, on assignment vectors without any empty slots.

Vector ã, thus, has length n and describes the succession

in which the orders of J are supplied with an item of the

after-buffer sequence. To derive after-buffer sequence 𝜋
out

,

we feed ã into the repair scheme described above. This rather

complex formal description of the solution encoding in our

SA can easily be explained with the help of the following

example.

Example: We have two orders with given packing

sequences 𝜎1 = (A,B) and 𝜎2 = (A,C) with n1,A =
n1,B = n2,A = n2,B = 1. An iteration of our SA obtains a

no-empty-slots assignment vector ã = (1, 1, 2, 2) defining the

orders to which items arriving in the after-buffer sequence

are dedicated. To ensure buffer-feasibility, the approach of

Lemma 3 integrates one leading empty slot, so that we obtain

a = (0, 1, 1, 2, 2) and 𝜋
out = (0,A,B,A,C). Simultaneously,

𝜎

l
and 𝜋

in
are set to (A,B,C) and (A,A,B,C), respectively.

The empty slot in a and 𝜋
out

is then postponed by one unit

which changes a and 𝜋
out

to a = (1,−, 1, 2, 2) and 𝜋
out =

(A,−,B,A,C). This translates into completion times 3 and 5
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for orders 1 and 2, respectively, and a sum of order completion

times of 8.

Neighborhood structure: To modify a current solution of

our SA into a neighboring solution, we apply swap moves.

That is, we randomly determine two distinct sequence posi-

tions within no-empty-slots assignment vector ã and swap

the orders specified at the selected positions. In this way, we

obtain neighboring solution ̃a′. Whether we accept ̃a′ and

make it to the starting point of our further search is decided by

the standard probabilistic acceptance scheme of SA, see Van

Laarhoven and Aarts (1987):

Prob

(
̃a′ is accepted

)

=
⎧
⎪
⎨
⎪
⎩

1, if Z(̃a′) ≤ Z(ã)
exp

(
Z(ã)−Z(̃a′)

Ts

)

, otherwise,
(22)

where Z(ã) and Ts
refer to the sum of completion times result-

ing from a no-empty-slot assignment vector ã and a steering

parameter called temperature (see below), respectively.

Initial solutions: To efficiently utilize our computer envi-

ronment, we implemented a multi-threaded SA that runs

in parallel on all available cores. Since the related sin-

gle machine scheduling problem [1||
∑

Cj] (see Graham

et al., 1979) is well known to be solvable to optimality in poly-

nomial time with the shortest-processing time rule (e.g., see

Smith, 1956), we initialize the SA process on one core with

a solution derived from this rule. Specifically, we sequence

all orders according to increasing numbers of demanded

SKUs. Then, we start with the first SKU within the packing

sequence of the first order. We fix the first positions within

no-empty-slot assignment vector ã according to this order’s

item demand for the active SKU. Afterwards, we switch to

the next order in our order sequence and fix all following

item demands within ã to the current order’s demand for the

active SKU (if any). In this way, we iterate through the order

sequence. Once this is done, we switch to the next SKU of

the packing sequence of the first order and repeat the previous

procedure. Once all SKUs of the first order are satisfied, we

switch to the next order of our order sequence and continue

the process with all SKUs not already addressed. The proce-

dure stops once all order demands are fulfilled. All other cores

are initialized with no-empty-slot assignment vectors ã gained

from random order sequences. In this case, the only adaption

of the previous procedure is that we initiate the process with

a random order sequence.

General procedure: Starting with an initial solution, we

generate neighboring solutions iteratively and determine

whether to accept a solution based on the probability defined

in (22). To control our SA, we apply the straightforward static

cooling scheme proposed by Kirkpatrick et al. (1983). As

values for the control parameters initial temperature Ts
, stop

temperature Te, and decrease rate dr, we apply min{0.4 ⋅
Z( ̃a∗); 100}, 1, and 0.999, respectively. Here, Z( ̃a∗) refers to

the objective value of initial assignment vector ̃a∗. Note that

preliminary tests, not included in this article, have shown that

this parameter setting delivers reasonably good results. After

each swap move, the temperature is updated by multiplying it

with the decrease rate: Ts ∶= Ts ⋅ dr. As a result, the accep-

tance of worse solutions becomes less likely as more storage

assignment vectors are evaluated. The procedure terminates

when temperature Ts
reaches stop value Te. We implemented

our SA in a multi-threaded manner, where each available

processor core initializes an independent SA. Finally, the

best solution found during the search process on all cores is

returned.

6 COMPUTATIONAL STUDY

This section focuses on our computational study, where all

procedures have been implemented in Visual Basic based on

Microsoft’s .NET Framework 4.7.1. The computations were

performed on a personal computer equipped with an Intel

Core i7-3770 processor running at a clock speed of 4 × 3.4

GHz, and with 8 GB DDR-3 RAM. We utilized Gurobi

Optimizer 9.0 as our standard solver.

Initially, we provide details about our data instances, which

are discussed in Section 6.1. Subsequently, we assess the com-

putational performance of our solution approaches. Specifi-

cally, we compare the performance of a default solver solving

our MIP with the SA heuristic presented in Section 6.2. Lastly,

in Section 6.3, we address the managerial issues outlined in

Section 1.3.

6.1 Data instances

For our computational study, we apply both systematically

generated random data and a case study obtained from the

warehouse that brought the need to schedule a pocket sort-

ing process to our attention. The artificial data set is applied

to systematically explore the performance of our solution

approaches and the case study to investigate the managerial

issues.

We begin with the generation procedure for our artificial

data. Our instance generator takes the parameter values listed

in Table 2 as its input data. We differentiate between small
instances that can still be solved by our default solver for the

MIP, and large instances that can only be solved using our

heuristic approaches. The values for the number of orders

(|J|), the number of SKUs (|S|), and the interval ([𝛾; 𝛾])
from which the number of demanded SKUs per order are

randomly drawn are combined in a full factorial manner for

both cases. This results in four unique parameter settings for

small instances and 27 unique parameter settings for large

instances. Instance generation has been repeated 25 times for

each setting, yielding a total of 100 small instances and 675

large instances. Note that the number of orders (|J|) speci-

fies the sizes of the wave being processed concurrently and

does not indicate the total number of orders processed in the
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TABLE 2 Parameter values for instance generation.

Values

Parameter Description Small Large

|J| Number of orders 4, 5 10, 30, 50

|S| Number of SKUs 4, 5 10, 30, 50

[𝛾; 𝛾] Interval of SKUs per order [1; 4] [1; 3], [7; 10], [1; 10]

nj,s Number of items per SKU [2; 4] [2; 4]

warehouse. The wave size is typically determined by the

number of parallel packing stations. Therefore, systems with

up to |J| = 50 orders per wave represent relatively large

warehouses with 50 parallel stations. Similarly, the number

of SKUs (|S|) does not refer to the total number of SKUs

stored in a warehouse, but rather the total number of SKUs

demanded by the current wave of orders. The total number of

SKUs stored in the warehouse can be much larger.

Specific instances are obtained as follows: first, for each

order j ∈ {1, 2, … , |J|}, a number of demanded SKUs is

drawn from interval [𝛾; 𝛾]. According to this random number,

each order obtains its respective randomly chosen (but pair-

wise different) SKUs from {1, 2, … , |S|}. For each SKU a

random number nj,s is drawn from [2; 4] to determine the num-

ber of items per SKU. A random permutation of the SKUs in

j determines the packing sequence 𝜎j.

Furthermore, we apply a second data set obtained from

the logistics provider that operates a pocket sorter system for

our German retailer specializing in hunting equipment. The

retailer operates 25 brick-and-mortar stores located through-

out Germany and offers online shopping through internet

and print catalogs. The central warehouse stocks approxi-

mately 45 000 SKUs, with additional SKUs drop-shipped

from suppliers. Most of these SKUs are exclusively available

to online customers, while only about 6000 SKUs are offered

in the relatively smaller brick-and-mortar stores. Unfortu-

nately, we were not granted permission to conduct our tests

using actual order data. Instead, the logistics provider’s man-

agers provided us with the necessary aggregate information,

and we randomly generated store order data based on actual

orders.

The order sizes of the stores roughly follow a truncated

normal distribution with a mean (𝜇) of 150 and a standard

deviation (𝜎) of 100, from which we draw the number of

SKUs per order. The SKU activity profile is skewed, with the

top 10% of SKUs accounting for 85% of the demand. The

average number of items demanded per SKU is 2.2, so we

draw the number of items per SKU from a truncated normal

distribution with a mean of 2 and a standard deviation of 2,

rounding to the nearest integer. Since no information on the

store layout was available, we randomly generated the pack-

ing sequences unless otherwise specified. The warehouse’s

pocket sorter system is connected to nine packing stations,

so we set the wave size (|J|) to 9. The logistics service

provider’s managers have agreed upon an average loading

time of 12 s per item into a bag, in consultation with the

local union representatives. The workers at the packing sta-

tions are not exclusively assigned to fulfill store orders. When

a packing station completes its current store order but other

stations are still processing the current wave, idle workers

are redirected to various other duties within the multi-client

warehouse. Therefore, once a store order is completed, the

remaining time is effectively utilized for other tasks, aligning

with the objective of minimizing the total completion time.

We repeat the instance generation process ten times and report

the average solution values when referring to the results of our

case study.

6.2 Computational performance

In an initial test, we assess the computational performance of

the default solver Gurobi when solving our MIP formulated

in Section 3. Unfortunately, the default solver can only han-

dle the small instances of our artificial dataset, as defined in

Section 6.1. For the large instances, Gurobi failed to return

a feasible solution within a runtime of one hour. Even when

we applied our best model version, PSS-MIP-EXT-WS-RL

(described in Section 3 and Appendix E), where we warm-

start Gurobi with the feasible SPT solution, no improvement

was achieved before reaching the timeout after one hour. Note,

however, that our small instances result in a total of up to

45 demanded items, so that these instances are already pretty

challenging. We also implemented a straightforward MIP, that

does not exploit any structural properties, and in these tests

our instances were already beyond reach. Since PSS is an

operational problem requiring fast solutions, we limited the

runtime of Gurobi to 300 CPU seconds. Note, however, that

with a runtime of 1 h all small instances are solved to proven

optimality.

To evaluate whether our extensions to the basic MIP, as

defined in Section 3.1, contribute to streamlining the solution

process, we tested various configurations of our MIP using the

off-the-shelf solver Gurobi. These configurations included

the preprocessing described in Appendix A, the valid inequal-

ities from Section 3.2, the warm start of Gurobi with the

heuristic solution obtained by our SA (described in Section 5),

and the reduction of the length L of the after-buffer sequence

for the solution obtained by SA (as defined in Section 3.3).

The detailed results of this test are reported in Appendix E. It

can be concluded from these tests that each of our extensions

contributes to improving Gurobi’s solution process. While the

basic MIP without any extensions could only solve 56% of all

small instances to proven optimality before reaching the time-

out, the MIP with all extensions improved this fraction to 86%

and reduced the solution time by almost half.

Therefore, solving PSS-MIP with all the extensions intro-

duced in Section 3 yields the best performance results. This

configuration is also used to benchmark our SA approach

from Section 5 on the same instances. The detailed results
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of this test are also reported in Appendix E. These results

demonstrate that SA finds optimal solutions for 59% of the

tested instances and achieves an average gap of just 1.26%

compared to the solutions obtained by the best MIP version,

with an average solution time of 5.84 seconds. Based on

these findings, we conclude that our SA approach produces

competitive results for the small instances.

Due to the computational limitations of the standard solver

Gurobi, we cannot solve our large test instances (as described

in Section 6.1). Therefore, we benchmark our SA approach

against the following two simple solution approaches for the

large instances:

1 RWP: The real-world policy RWP repre-

sents the observed scheduling procedure at

the warehouse that brought the PSS problem

to our attention. Unaware of the signifi-

cant influence that different SKU processing

sequences and buffer operations can have

on throughput performance, they applied the

following decision rules at each decision

point when considering the subsequent slots

of the item sequence:

(a) At the loading station: If the

current slot of the before buffer

sequence is empty, load all

items of a random SKU that

is still demanded by the cur-

rent wave of store orders.

Thus, we have a random load-

ing sequence that implies the

before-buffer sequence.

(b) At the buffer entrance: If the

current item is required next by

at least one store order, assign

it to a random one among them

and let it pass the buffer, other-

wise move it into the buffer.

(c) At the buffer exit: If the cur-

rent slot is empty, remove a

random item from the buffer

among those required next by at

least one store order and assign

it randomly to an appropriate

order. If no such item is in the

buffer, the slot remains empty.

2 SPT: Since the SPT rule is well known

to solve related single machine scheduling

problem [1||
∑

Cj] to optimality in poly-

nomial time (Smith, 1956), we evaluate an

adaption of the SPT rule for our PSS. Note

that we apply a similar procedure to initial-

ize our SA procedure (see Section 5). How-

ever, this version of SPT is more application

oriented and comes by with a simple set of

decision rules at each decision point:

(a) At the loading station: If no order

is referred to as the current order

(i.e., at the start of the proce-

dure) or if all SKUs of the cur-

rent order have already been sent,

select the (not already completed)

order with the fewest open SKU

demands as the current order.

Load all demanded items (i.e., of

the complete wave) of the SKU

at the next open position of the

current order’s packing sequence.

(b) At the buffer entrance: If the

current item is demanded at the

next open position of the packing

sequence of one or multiple store

orders, assign it to the one among

them with the fewest open SKUs

and let it pass the buffer, other-

wise move the item into buffer.

(c) At the buffer exit: If the cur-

rent slot is empty, add an item

that is the first open item of an

order. If there are multiple orders

for which the first open item can

be covered by an item in buffer,

choose the order with the fewest

open SKUs. If no such item is

available, the slot remains empty.

Note that ties among orders are broken

arbitrarily. The motivation for SPT lies in

its optimality for [1||
∑

Cj]. This machine

scheduling problem is to minimize the sum

of completion times of a set of jobs that

need to be processed consecutively on a sin-

gle machine. The analogy to PPS can be

seen when inspecting how the after-buffer

sequence delays the completion of orders.

When we imagine an idealized after-buffer

sequence with all items of each order

assigned to consecutive slots and no empty

slots, then the after-buffer sequence in PPS

corresponds to the time horizon in [1||
∑

Cj]
and each order with 𝜂j items in PPS cor-

responds to a job with processing time 𝜂j
in [1||

∑
Cj]. The sum of completion times

of orders, then, reflects the sum of comple-

tion times of jobs (plus a constant). Hence,

although we will usually not be able to reach

such an idealized after-buffer sequence, the

intuition is to have orders with small num-

bers of items packed first, since their items
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occupy only few slots in the after-buffer

sequence and, therefore, delay completion of

other orders only to a small extent.

Applying the performance criteria listed in Table 3, the

results of the benchmark test among RWP, SPT, and SA on

the large instances of our artificial data set are reported in

Table 4. Note that the lower bound to derive performance

measure “∅gLB” is derived by Gurobi solving the special

lower bound MIP introduced in Appendix F. These results

suggest the following findings:

• SA: Our metaheuristic approach achieves the

best solutions for each individual instance.

For the largest instances with |J| = 50 orders,

the average runtime of SA increases to 570.2

s. Note, however, that these instances have

sequences with up to 2.000 items. Consider-

ing a typical average slot duration between

10 and 20 s (as mentioned in Section 2.1),

work schedules spanning several hours are

thus obtained. Additionally, it is difficult to

derive strong lower bounds on optimal PSS

objective values. Since the large instances

in our artificial dataset are too large to be

solved using PSS-MIP-EXT-WS-RL, the per-

formance measure “∅gLB” reports the aver-

age gap of the SA solution compared to a

theoretical lower bound obtained by solving

an auxiliary MIP that relaxes the buffer oper-

ations and the assignment of items to orders

(see Appendix F for more details). Unfortu-

nately, even the remaining optimization task

of SKU sequencing is strongly-hard. As

a result, Gurobi struggles with solutions for

instances with |J| ≥ 30, and the obtained

bounds are not tight enough to make a final

judgment on the solution quality of our meta-

heuristic.

• SPT: The straightforward priority-rule-based

approach SPT surprisingly yields excellent

results. The solution time never exceeds 0.1

CPU-seconds. The average gap (documented

in the column “∅gB”) from the best solu-

tions obtained by SA is only 2.18% across all

instances. Moreover, in 325 instances (48%),

SPT is able to achieve the same objective

values as SA.

• RWP: Neglecting the optimization task of

PSS, as done in our example warehouse,

comes at a significant cost. Random solutions

obtained by real-world policy RWP result in

gaps well above 50%, compared to both SPT

and SA.

These results lead to the following important conclusions

of this article: PSS is a complex and challenging optimization

TABLE 3 Performance criteria.

Criteria Description

#b Number of instances where the solution method found the best solution among its competitors

∅gLB Average gap to the best lower bound obtained by Gurobi in % for the MIP of Appendix F

∅gB Average gap to best solution among all approaches in %

∅impRWP Improvement over real-world policy RWP in %

∅sec Average computational time in CPU seconds

TABLE 4 Computational performance of simple priority rule-based approach SPT compared to our SA heuristic and real-world policy RWP.

SPT SA

|J| |S| ∅gB ∅impRWP #b ∅gLB ∅impRWP ∅sec

10 10 3.3 47.92 32 20.42 52.71 5.84

10 30 1.67 59.77 46 56.12 62.14 25.45

10 50 1.22 62.86 49 59.66 64.62 66.54

Total 2.06 56.85 127 45.4 59.82 32.61

30 10 3.92 48.57 27 28.38 54.45 111.79

30 30 1.49 54.01 42 84.05 56.17 207.57

30 50 1.08 58.51 40 92,79 60.08 344.51

Total 2.16 53.7 109 68,41 56.9 221.29

50 10 4.33 47.62 10 30.27 53.96 444.8

50 30 1.9 50.88 29 89.70 53.63 529.15

50 50 0.73 55.02 50 96.54 56.06 736.65

Total 2.32 51.17 89 72.17 54.55 570.2
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problem. However, our computational results demonstrate

that a straightforward heuristic based on the SPT rule yields

remarkably small gaps. Therefore, for real-world warehouses,

applying SPT should be sufficient. However, completely

neglecting the optimization task is not advisable. Random

solutions, such as those obtained by real-world policy RWP,

lead to substantial gaps of 50% or more. Gaps in this range

result in a significant loss of performance, which will be

further investigated in the following section.

6.3 Managerial issues

In this section, we examine our case study and the dataset

obtained from a third-party warehouse responsible for fulfill-

ing store orders for hunting equipment. By solving this dataset

using the real-world policy RWP and the simple rule-based

approach SPT, we demonstrate that the significant gaps of

50% or more reported in the previous section result in substan-

tial performance improvements. Workers stationed at packing

stations, who have already completed their store orders for

the current wave, do not need to wait for the final order’s

completion. The next wave for additional stores can only

commence once the last station has finished its order; the

loading station and the main conveyor line, which passes

through the buffer, are still occupied processing items for the

stations that have not yet finished. However, workers from

completed stations can be reassigned to other tasks in the

meantime. In our case study’s multi-client warehouse, for

example, workers are transferred to other areas of the ware-

house and receive notifications via pagers when the next wave

is about to commence. The benchmark results for RWP and

SPT when solving the data instances from our case study are

presented in Table 5. To calculate the “average time saving

per worker in h,” we determine the difference between each

worker’s completion time and the maximum completion time,

and then average these values across all workers. On the other

hand, the performance measure “total time saving as a per-

centage of wave time” sums up the time savings of all workers

and divides it by the maximum completion time, which cor-

responds to the wave time. These results yield the following

findings:

We observe that an optimized pocket sorter schedule, even

when employing a simple approach like SPT, leads to a

significant improvement in workforce capacity utilization.

TABLE 5 Computational performance of priority rule-based approach SPT

and real-world policy RWP.

RWP SPT

Gap to best solution 65.58% 0%

Average completion time in h 16.03 9.72

Minimum completion time in h 15.89 2.92

Maximum completion time in h 16.11 16.32

Average time saving per worker in h 0.08 6.6

Total time saving in % of wave time 0.51 62.4

Although both policies exhibit similar maximum completion

times until the wave is completed after approximately 16

h, there is a substantial variation in average and minimum

completion times. Under the RWP policy, workers remain

occupied throughout the entire processing time of the wave,

while the first worker is released after only 2.92 h under

the SPT policy. Additionally, the average completion time is

reduced to 9.72 h under SPT, allowing idle workers to be

assigned to other tasks. In our case study, a total of 62.4%

of the total working hours of the packing workforce for wave

processing is saved by applying SPT, compared to only 0.51%

when using the real-world policy RWP.

In another experiment, we investigate the impact of store

layout standardization on the distribution center’s effort in

assembling the SFS. It is expected that similar store layouts

will reduce the resequencing effort through the buffer, lead-

ing to a decrease in the sum of completion times and an

improvement in fulfillment performance. In the most extreme

scenario, where all stores have identical layouts and demand

products in the same packing sequence, no intermediate

buffer is required to alter the item sequence. To explore the

effect of different levels of store layout standardization and

the resulting variation in packing sequences among stores, we

set up the following experiment.

We utilize the data instances from our case study and ini-

tially assume that all stores within a wave have identical lay-

outs. In terms of packing sequences, this implies that if prod-

uct A precedes product B in one store’s packing sequence,

it will also precede it in all other packing sequences. After

solving the resulting data instance using our SPT approach,

we introduce increasing levels of divergence among store lay-

outs by randomly swapping pairs of items in the packing

sequences of randomly selected stores. As more swaps are

performed, the variation among store layouts and their pack-

ing sequences increases. By solving the case study instances

using SPT for different numbers of swaps, we can evaluate the

performance at different levels of store layout standardization

when using a pocket sorter to process the same set of orders.

Figure 4 (left) illustrates the percentage increase in the maxi-

mum completion time compared to the default case where all

store layouts are identical. The maximum completion time is

reached when the last station is released, indicating the com-

pletion of the current wave of store orders and the readiness of

the pocket sorter system for the next wave. Figure 4 (right) dis-

plays the sum of completion times across all packing stations,

representing the total working hours the packing workforce is

engaged when processing the current wave. These results lead

to the following findings:

• Identical versus completely different layouts:

Standardizing store layouts offers significant

potential for improving both the maximum

and sum of completion times. The former,

illustrated on the left of Figure 4, allows for

faster completion of waves, enabling quicker
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FIGURE 4 Consolidation performance for real-world data set depending on a higher (i.e., after fewer swaps) or lower (i.e., after more swaps) level of store

layout standardization.

release of subsequent waves. This improves

throughput and optimizes the capacity uti-

lization of the pocket sorter system. When

workers at packing stations finish their cur-

rent orders but still have to wait for other

stations, they can be assigned to other tasks,

leading to better utilization of the workforce.

The reductions in the sum of completion

times, depicted on the right of Figure 4,

indicate substantial potential for improving

workforce utilization. The potential gains

from completely identical store layouts (i.e.,

with 0 swaps) compared to completely dif-

ferent layouts (i.e., 400 swaps or more)

exceed 30%.

• Impact of some standardization: Unfortu-

nately, our results also indicate that these

gains diminish as differences in store layouts

increase, resulting in greater variation among

the packing sequences of stores. In most retail

chains, different store sizes, constructional

and organizational aspects, and the evolution

of store layouts over time make some degree

of variation unavoidable. Our results indicate

that, given some level of inevitable differ-

ence to begin with, serious effort is required

to achieve positive effects through standard-

izing store layouts.

In conclusion, our managerial findings can be summarized

as follows: both optimizing pocket sorter processes, even with

simple decision rules, and standardizing store layouts show

significant potential for streamlining the assembly of SFS

with a pocket sorter.

7 CONCLUSION

This article is the first to address the operational decision

problems that arise when utilizing a pocket sorter for assem-

bling store orders in a retail chain. With the implementation of

a pocket sorter, individual products requested by store orders

are loaded into bags, transported on a trolley conveyor, rese-

quenced by exchanging bags using an intermediate buffer, and

delivered to packing stations. At these stations, the products

are retrieved from the bags and packed onto load carriers,

such as roll cages, following the specific packing sequence

that corresponds to the store layout. This enables more effi-

cient shelf replenishment processes, eliminating the need for

zigzagging through the stores. We formulate the operational

decision problem to optimize this process, focusing on deter-

mining the loading sequence of SKUs into bags, the buffer

operations, and the assignment of items to store orders at

each packing station. We define the resulting optimization

problem, analyze its computational complexity, and propose

appropriate exact and heuristic solution approaches. In our

computational study, we utilize these algorithms to obtain the

main findings of our article, which are as follows:

• First, we demonstrate that optimization can

significantly enhance the efficiency of the

order fulfillment process with a pocket

sorter. By solving our dataset inspired by

a real-world warehouse, we find that even

a simple heuristic based on the SPT rule

can reduce workforce utilization by over 60%

compared to the solutions applied in our case

study.

• Although our operational optimization

problem involves multiple interdependent
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decisions and is known to be challenging to

solve (especially in terms of computational

complexity), a decision rule-based heuristic

using the SPT rule produces remarkably good

results that are not far behind those achieved

by sophisticated optimization techniques.

• Lastly, standardizing store layouts to ensure

consistent packing sequences across all sales

outlets of a retail chain has the potential to

streamline order fulfillment. However, our

results indicate that achieving these benefits

requires more than just partial standardiza-

tion. Only when all store layouts are highly

similar can we achieve gains of up to 30%.

Pocket sorters offer more than just a promising ware-

housing technology for SFS. They also enable a flexible

and fully automated retrieval process once the products are

loaded into bags. When combined with automated packing

devices, pocket sorters can become a crucial component of

future fully-automated fulfillment factories. Currently, pocket

sorters are used not only for fulfilling store orders in a

bulk picking environment but also for handling small-sized

e-commerce orders with tight time constraints (Boysen, de

Koster, & Weidinger, 2019). Therefore, pocket sorters and

their impact on order fulfillment deserve further scientific

attention in the future. There are several fruitful research

tasks that should be addressed, such as exploring alternative

objectives (e.g., minimizing the maximum completion time to

accelerate wave succession) and investigating more complex

setups involving multiple parallel loading stations. Addition-

ally, analyzing the inner-buffer sortation processes would be

valuable.
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