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Abstract

In this paper we provide a general two-step framework for linear projection estimators
of impulse responses in structural vector autoregressions (SVARs). This framework is
particularly useful for situations when structural shocks are identified from information
outside the VAR (e.g. narrative shocks). We provide asymptotic results for statistical
inference and discuss situations when standard inference is valid without adjustment for
generated regressors, autocorrelated errors or non-stationary variables. We illustrate how
various popular SVAR models fit into our framework. Furthermore, we provide a local
projection framework for invertible SVAR models that are estimated by instrumental
variables (IV). This class of models results in a set of quadratic moment conditions
used to obtain the asymptotic distribution of the estimator. Moreover, we analyse
generalized least squares (GLS) versions of the projections to improve the efficiency
of the projection estimators. We also compare the finite sample properties of various
estimators in simulations. Two highlights of the Monte Carlo results are (i) for invertible
VARs our two-step IV projection estimator is more efficient compared to existing
projection estimators and (ii) using the GLS projection variant with residual augmentation
leads to substantial efficiency gains relative to standard OLS/IV projection estimators.

I. Introduction

The analysis of dynamic effects in vector autoregressive (VAR) models by means of
impulse responses has become a standard tool in empirical macroeconomics (cf. Kilian
and Lütkepohl, 2017). Following Sims (1980) the dynamic effects of shocks are typically
measured by the moving average (MA) coefficients derived from the finite-order VAR
representation of the time series. In recent years it has become popular to estimate the
effects of structural shocks by ‘local projections’ (e.g. Jordà, 2005; Jordà, Schularick,
and Taylor, 2015; Ramey and Zubairy, 2018; Jordà, Schularick, and Taylor, 2020). This
method is based on a direct representation of the time series vector shifted h periods
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ahead, whereas the traditional method traces out the impulse responses iteratively from
the first up to the hth period.

The use of (local) projection estimators in structural VAR (SVAR) applications has
been motivated by different arguments. First, local projection estimators are more robust
against model misspecification. Second, in some applications there may not exist a suitable
VAR framework (e.g. if shocks are determined outside the VAR models). Third, the VAR
model may not be invertible with respect to the structural shocks (see e.g. Stock and
Watson, 2018). Furthermore, asymptotic inference on structural impulse responses based
on iterated VARs may be inaccurate as the quantity of interest is a highly nonlinear
transformation of the VAR parameters. Inference for projection estimators, which are
linear in the parameters, may be easier to implement and statistical inference is typically
more accurate in small samples. Consequently, despite being potentially less efficient than
iterated response estimators, local projections are nowadays a popular tool in empirical
economics (for a review of the earlier literature see Ramey, 2016).

Our paper considers a general modelling framework for linear projection estimators
of impulse responses in SVAR models and makes the following contributions: First,
we adapt a two-step framework for shock identification and response estimation. This
generalizes the VAR approach and can incorporate structural shocks that stem from a
different information set (e.g. narrative or high-frequency shocks). Second, we provide an
asymptotic framework for statistical inference on the projection estimator, which takes into
account that the structural shocks are estimated in the first step. Third, we propose a new
local projection estimator (2S-IV) for invertible SVARs identified by instrumental or proxy
variables and compare it to existing methods. Although not robust against non-invertibility,
our simulations indicate that in invertible settings this estimator provides substantial
efficiency gains over existing projection estimators. Based on our approach, we derive a
test for non-fundamental shocks that is similar to the test proposed by Plagborg-Møller and
Wolf (2022). Fourth, we characterize applications where standard regression inference
applies no matter of serial correlation, generated regressors or non-stationary time series.
Fifth, we provide guidance on how to adapt projection estimators to various popular
identification schemes. Sixth, we argue that the iterative VAR approach is asymptotically
equivalent to a particular GLS version of the projection estimator. Finally, we compare
the small sample properties of various estimators and of tests for non-fundamental shocks.

We stress that our paper does not offer any new reasons for preferring local projections
over iterated VARs in empirical practice. Rather we start from the fact that many empirical
economists apply this methodology in order to assess the effects of macroeconomic shocks.
Therefore, we analyse popular strategies for identifying structural shocks such as recursive
(Cholesky) schemes, proxy-VARs, narrative shocks, systems of simultaneous equations
(the AB-model) and shocks identified by long-run restrictions. We show how all these
popular variants of SVARs can be cast into a general framework consisting of two separate
steps, the identification of shocks and the estimation of impulse responses. More formally
the analysis can be characterized by two different steps (e.g. Ramey, 2016, Sec. 2.4):

εj,t = f (xj,t, βj), (1)

yi,t+h = θh
ijεj,t + z′

j,tπ
h
ij + eh

ij,t , (2)
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where εj,t denotes the jth structural shock (j ∈ {1, . . . , k}), xj,t is a vector of time series
used to identify the shocks, f (·) is a (possibly nonlinear) function, βj is a vector of
structural parameters, yi,t denotes the target variable and zj,t is a vector of additional
control variables, included to improve the efficiency of the estimator for θh

ij . The control
variables should (i) have predictive power for yi,t+h, (ii) be uncorrelated with the error
eh

ij,t, and (iii) be uncorrelated with the structural shock εj,t, because otherwise some part of
the impulse response would be assigned to the control variables.

Equation (1) is used to identify the shocks based on a set of economic time series
such that (i) the shock is unpredictable with respect to the relevant information set It that
typically includes the past of xj,t and zj,t and (ii) εj,t is orthogonal to all other shocks.
Equation (2) is called the projection step, where the parameter θh

ij measures the effect of
the jth shock on the ith variable h steps ahead.

It is important to notice that the projection step (2) requires an estimate of the structural
shock. If the shock is identified as a linear combination of the VAR residuals, it is
assumed that the corresponding MA representation is invertible. Assume in contrast that
the information sets employed in (1) and (2) are different. For example, the shock may be
identified by using a high-frequency identification scheme (e.g. Wright, 2012; Matheson
and Stavrev, 2014; Gertler and Karadi, 2015; Nakamura and Steinsson, 2018), whereas
the projection step involves low-frequency variables only. It is well known (e.g. Leeper,
Walker, and Yang, 2013) that if the shock is constructed from a different information set
than the one used in the VAR for tracing out the impulse responses, then the moving
average representation with respect to the structural shock may become non-invertible. In
our framework this is not a serious problem as long as we correctly specify the shock in the
identification step by using the suitable information set. For the projection step we do not
require invertibility of the VAR representation. If the structural shock can be expressed as
a linear combination of the VAR innovations, then the shock is called fundamental. Our
framework gives rise to the simple test procedure of Plagborg-Møller and Wolf (2022)
that allows us to indicate whether the shock is fundamental or not.

Our paper is related to previous work on projection estimators. Jordà (2005), for
example, treats the structural shocks as given and focuses on the projection step only.
For statistical inference, however, it is important to consider both estimation steps
simultaneously. Our framework is also related to Plagborg-Møller and Wolf (2021),
who consider a shock that is represented as a change in some observed variable xj,t

when controlling for some other (potentially confounding) variables.1 Montiel Olea and
Plagborg-Møller (2021) propose lag augmentation for inference in the projection step (2)
but again treat the structural parameters in the identification step as given. In contrast,
we consider estimation and inference of the parameters in both the identification and
projection step based on a method of moments framework.

Furthermore, we offer some theoretical and practical guidance for incorporating some
popular structural VAR specifications in the framework characterized by (1) and (2). In

1Since their paper focuses on the identification of impulse responses rather than statistical inference in finite samples,
their paper treats the structural parameters βj in (1) as given. In equation (8) of Plagborg-Møller and Wolf (2021)
the vector b is assumed to be known, whereas in equation (1) of their paper it is assumed that the shock can
be represented by an observable variable that is not correlated with the error term. This is the case for recursive
structural identification schemes.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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particular we discuss how valid inference is achieved if the structural shock is estimated
from the structural model (1). In many cases the estimator can be interpreted as a
(nonlinear) method of moments estimator, where the asymptotic distribution follows from
the asymptotic analysis of (G)MM estimators. We first discuss OLS projections, the case
where equation (1) and (2) are both estimated by OLS. Then, we consider instrumental
variable (IV) projections, that is, we explain how the framework can be employed when
(1) is estimated by IV methods. Furthermore, we introduce different variants of GLS
projection estimators that are all tailored to improve the efficiency and compare their
asymptotic properties.

The remainder of this paper is structured as follows: section II discusses OLS
projections and their asymptotic properties and section III considers IV projections.
Section IV suggests refinements leading to GLS projections. Section V presents Monte
Carlo evidence on the relative performance of different projection estimators and
invertibility tests. Section VI concludes.

II. OLS projections

In this section we analyse strategies, where the structural shock can be identified from
OLS regressions. After briefly reviewing the iterated VAR framework, we compare our
projection estimator to the original projection estimator of Jordà (2005) in the recursive
(triangular) identification scheme (‘Cholesky VAR’). We then illustrate how ‘narrative’
structural shocks obtained as residuals from OLS regressions fit into our framework
and discuss conditions that allow us to adopt standard OLS inference to the response
estimator.

The iterated approach is based on the VAR(p) model yt = A1yt−1 + · · · + Apyt−p + ut,
where yt is a k-dimensional vector of time series and ut is a k × 1 vector of white noise
innovations with E(ut) = 0 and E(utu′

t) = � (positive definite). The inclusion of further
deterministic regressors like constants, trends or dummy variables is unproblematic and
is therefore suppressed. If all roots of the lag polynomial A(L) = I − A1L − · · · − ApLp

are outside the unit circle, the MA representation of the VAR system is given by
yt = ut + �1ut−1 + �2ut−2 + · · ·, where the k × k matrices �i result from the inverse
A(L)−1 = I + �1L + �2L2 + · · · (e.g. Lütkepohl, 2005). In structural VARs, one often
assumes εt = �ut and using the iterated approach obtains the responses to structural
shocks εt from �i�

−1, i = 0, 1, . . . . In the case of unit roots or cointegration, the
structural impulse responses from the iterated approach can still be obtained from �i�

−1

but the �i can no longer be interpreted as MA coefficients (Lütkepohl and Reimers, 1992).
The unrestricted estimator of VAR coefficients and any (nonlinear) functions (such as
iterated impulse responses) at finite horizons are consistent. As shown by Phillips (1998),
however, estimated impulse responses in an unrestricted VAR with unit roots may be
inconsistent if the horizons increase with the sample size. Reduced rank regressions
render consistent estimates of the impulse responses, provided the co-integrating rank is
correctly specified or estimated by a consistent selection rule. In contrast, the projection
estimators discussed below do not require the correct specification of the co-integrating
rank.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Our analysis of projection estimators starts by comparing the estimator based on (1)
and (2) to the original projection approach of Jordà (2005) in a recursive (Cholesky)
VAR. As above, we use εt = �ut, but assume that � is a lower triangular matrix and unit
diagonal elements (because of a unit-effect normalization). To illustrate the difference of
estimators, we use a bivariate VAR(1) and consider the response of the first variable y1,t

to the second shock ε2,t at horizon h. For this DGP, it is easy to see (section A.1 in Data
S1), that (1) and (2) result in

ε2,t = y2,t − β1y1,t − β2y1,t−1 − β3y2,t−1,
y1,t+h = θh

12ε2,t + π∗
1 ε1,t + π∗

2 y1,t−1 + π∗
3 y2,t−1 + eh

12,t.

The shock ε2,t can be estimated as the residual from an OLS regression of y2,t on y1,t

y1,t−1, and y2,t−1. The control variable are y1,t−1, y2,t−1 and ε1,t. Since the shock ε1,t

is a linear combination of y1,t, y1,t−1 and y2,t−1, one may equivalently use the controls
z2,t = (y1,t, y1,t−1, y2,t−1)

′. Furthermore, since ε2,t is a linear combination of y2,t and the
vector z2,t, we may estimate the response θh

12 by running the regression

y1,t+h = θh
12y2,t + π1y1,t + π2y1,t−1 + π3y2,t−1 + eh

12,t. (3)

A generalization of this projection approach to higher-dimensional models with a triangular
identification schemes is presented below.

The projection estimator based on (3) is similar but not identical to the estimator
suggested by Jordà (2005), which is based on the direct h-step ahead forecast regression.
We show in section A.1 of Data S1 that by using y∗

t = (y∗
1,t, y∗

2,t)
′ = �yt, the projection

equation in our bivariate recursive VAR(1) for y1,t from Jordà’s approach can be
written as

y1,t+h = θh
11y∗

1,t + θh
12y∗

2,t + e1,t+h. (4)

Comparing (3) and (4) it turns out that the former approach decomposes y∗
t = �Ayt−1 + εt

into the vector of structural shocks εt and a linear combination of the control variables
in z2,t. In other words, (4) results from (3) by imposing the restrictions π1 = θh

11 + θh
12γ21

and π2 = π3 = 0, where γ21 is the (2, 1) element of �. Therefore, if � is known, the
estimate of θh

12 from (4) is more efficient than estimating the impulse response from (3).
In practice the matrix � is unknown and has to be replaced by a consistent estimator.
Then it is no longer clear whether Jordà’s estimator is more efficient than using (3).
The reason is that the estimation error ̂� − � increases the asymptotic variance when
using ŷ∗

t = ̂�yt instead of y∗
t in (4), see also Kilian and Kim (2011). Indeed, simulation

results (cf. section V and Montiel Olea and Plagborg-Møller, 2021) suggest that both
approaches often have similar small sample properties and for some specifications
the augmented regression (3) possesses superior sampling properties. Furthermore, as
we discuss below, using (3) for estimating the impulse response facilitates statistical
inference, as no corrections for generated regressors, autocorrelation or unit roots are
required.

In the example above, the structural shocks εt can be represented as a linear combination
of VAR innovations ut. In such cases the shocks are labelled as fundamental or internal

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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(e.g. Kilian and Lütkepohl, 2017). If, on the other hand, the shocks involve variables that
are not included in the VAR system, we refer to the shocks as external shocks. A typical
example is the construction of ‘narrative’ shocks, which are obtained from a different
information set than the VAR system. We analyse the case where the shock is determined
outside the VAR system next and note that in most empirical applications the function
f (xj,t, β) is linear. For example, the narrative shocks of Romer and Romer (2004) are
obtained as the residuals from a linear regression of a set of external variables:

x0,t = β ′x1,t + εt, (5)

where we drop the index j for notational convenience. In this regression the vector x1,t is
assumed to be uncorrelated with shock εt. For instance, in Romer and Romer (2004) x0,t is
the change in the intended federal funds rate and the vector x1,t comprises the Greenbook
forecast of real output growth, inflation, and unemployment. In a second step, Romer and
Romer (2004) estimate an autoregressive distributed lag regression for the target variable
yt of the form

α(L)yt = φ(L)̂εt + νt, (6)

with the lag polynomials α(L) = 1 − α1L − α2L2 − · · · − αpLp and φ(L) = φ0 + φ1L +
· · · + φqLq and ε̂t denotes the residual from the OLS regression (5). The impulse response
function is obtained from θ(L) = φ(L)/α(L) where the lag polynomials φ(L) and α(L)

are estimated by least-squares using (6). As this method inverts the AR polynomial when
computing the MA representation with respect to εt, this estimation procedure corresponds
to the iterative approach in VAR models. A projection analog of this approach is

yt+h = θhε̂t + π1yt−1 + π2yt−2 + · · · + πp∗yt−p∗ + ẽt+h, (7)

where p∗ denotes the suitable lag length for approximating the infinite polynomial
α(L)/φ(L) in (6). It is important to note that standard regression inference on θh

is invalid due to the generated regressor problem analysed in Pagan (1984). As the
following proposition shows, this problem may easily be sidestepped by including
the variables x1,t in the vector of control variables for the projection step such that
zt = (x′

1,t, yt−1, . . . , yt−p)
′.

Proposition 1. Assume that εj,t and yi,t+h can be represented as in (1) and (2), where
eh

ij,t is a stationary and ergodic process obeying E(z′
j,te

h
ij,t) = 0 and E|eh

ij,t|4+δ < ∞ for
some δ > 0. The shock εj,t is an i.i.d. sequence with E(z′

j,tεj,t) = 0 and E(eh
ij,tεj,t) = 0. Let

ε̂j,t = f (xj,t, ̂βj), where ̂βj − βj = Op(T−1/2). The derivative

gj,t(βj) = ∂f (xj,t, βj)

∂βj
,

exists with a constant M such that E(||gj,t(βj)||) < M < ∞. If there exists a matrix C
such that

gj,t(βj) = Czj,t,

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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then (i) the OLS estimator ̂θh
ij of θh

ij in the regression

yi,t+h = θh
ij ε̂j,t + z′

j,tπ
h
ij + ẽh

ij,t, (8)

is consistent and asymptotically normally distributed. (ii) The usual OLS estimator of the
standard error (SE) of ̂θh

ij is consistent no matter of the serial correlation of ẽh
ij,t.

A proof is given in the Data S1 (section A.2). This proposition shows that augmenting
the regression by suitable control variables, zj,t, escapes the error-in-variables problem
involved by working with estimated shocks. For the case that the estimated shock is
a regression residual, our result (i) can be anticipated by the analysis of Pagan (1984)
who studies a related situation (his model 4). Furthermore, the proposition shows that
inference on the parameter θh

ij is not affected by the autocorrelation of ẽh
ij,t. For a structural

identification where the structural parameters are known, Montiel Olea and Plagborg-
Møller (2021) obtain a result similar to (ii) using a more general set of assumptions
on the VAR innovations, whereas we consider estimated structural shocks that are not
necessarily linear combinations of VAR innovations.

It is interesting to note that we do not require yt and zt to be stationary. Instead we only
need to assume that the error eh

ij,t and the shock εj,t is stationary. Accordingly, whenever
zt is non-stationary then there exists a co-integration relationship among the elements
of the vector (yt, z′

t). Provided that the impulse response coefficient is attached to the
stationary variable εj,t, standard inference applies to the estimator ̂θh

ij , see Sims, Stock,
and Watson (1990).

Example 1: Narrative shocks. Following Romer and Romer (2004) assume that the
shock results from the OLS regression (5). The uncertainty about the shock is represented
by the estimation error x′

1,t(
̂β − β). Accordingly, by augmenting the projection with the

derivative gt = x1,t solves the generated regressor problem and standard OLS inference
applies to the estimator of ̂θh

ij .
Example 2: Cholesky VARs. We illustrate the usefulness of Proposition 1 in our earlier

example of a triangular identification scheme but with an arbitrary number of time series.
The jth structural shock results as

εj,t = γ ′
j (yt − A1yt−1 − · · · − Apyt−p) = β ′

0yt + β ′
1yt−1 + · · · + β ′

pyt−p,

where γ ′
j is the jth row of � and β ′

� is the jth row of −�A� for � = 1, . . . , p and
β0 = γj. Denote by β0,r the rth element of β0. For a triangular identification scheme
we set β0,r = 0 for r > j. Furthermore, the unit effect normalization implies that the
diagonal elements of � are equal to unity which implies β0,j = 1. Accordingly, the
derivative with respect to the remaining parameters β̃ = (β0,1, . . . , β0,j−1, β ′

1, . . . , β ′
p)

′

is given by gj,t(β) = ∂f (xj,t, βj)/∂β̃ j = zj,t, where zj,t = (y1,t, . . . , yj−1,t, y′
t−1, . . . , y′

t−p)
′.

Accordingly, the matrix C is the identity matrix, E(εj,tzt) = 0 and, therefore, Proposition
1 applies. Thus, the OLS estimator for θh

ij in the projection step results from
yi,t+h = θh

ij ε̂j,t + z′
j,tπ

h
ij + eh

ij,t or

yi,t+h = θh
ij yj,t + z′

j,tπ̃
h
ij + eh

ij,t, (9)

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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where ε̂j,t is the residual from a regression of yj,t on zj,t. Proposition 1 implies that inference
on θh

ij is not affected by the autocorrelation of eh
ij,t and the estimation error in ε̂j,t. Using

the results of Sims et al. (1990) it follows that the OLS estimator θ̂
h
ij is asymptotically

normal even if some control variables are non-stationary. This is due to the fact that
the coefficient of interest θh

ij is attached to the stationary variable ε̂j,t in (8), whereas
in Jordà’s (2005) version of the projection estimator, the coefficient of interest may be
attached to a non-stationary variable, see also Montiel Olea and Plagborg-Møller (2021).
As mentioned above, Proposition 1 may also be used to find suitable control variables
in the case of external (narrative) shocks. Furthermore, Proposition 1 may also be
applicable for estimating the impulse response of some shocks in a proxy/IV SVAR,
which is considered in the section III. A nonlinear example is discussed in section A.3
of Data S1 .

III. IV projections

The structural parameters in many empirical models used to analyse the effects of structural
shocks can often be estimated by using (internal or external) instrumental variables. In
other cases the structural model is estimated by maximum likelihood (ML). If the structural
model is just-identified, the ML estimator can alternatively be obtained by applying a
particular IV estimation scheme. Thus, IV methods have a wide range of applications
within structural VAR studies. In this section, we therefore discuss how to apply projection
methods in combination with an IV approach for estimating structural impulse responses.
We first illustrate how IV projections fit into our general framework. In particular we
consider a projection estimator that relies on the assumption of a fundamental shock
and we derive a Hausman type test of the hypothesis that the shock can be represented
as a linear combination of the VAR innovations. The details on statistical inference are
presented at the end of this section.

To introduce alternative IV projection estimators, assume without loss of generality
that we want to identify the first structural shock ε1,t. As above, we drop the index j (= 1)

and write the structural equation for linear models as x0,t = β ′x1,t + εt, where x1,t is a
vector of exogenous variables not correlated with εt. Inserting the structural equation in
the projection equation (2) yields

yt+h = θhx0,t + π ′zt + et+h, (10)

where zt = (x′
1,t, z0′

t )′, and the vector z0
t collects any (exogenous) control variables not

correlated with εt and et+h. Notice that x0,t may be correlated with other shocks that also
enter et+h and, therefore, we cannot estimate (10) by OLS. Stock and Watson (2018)
assume that there exists a valid instrumental variable wt with the usual properties:
E(wtεt) �= 0, E(wtet+h) = 0, and wt is uncorrelated with any other structural shock in
the system. The relationship between the instrument (also called proxy variable) and the
shock εt can be represented as wt = φεt + ηt which illustrates that the instrument is a
measurement error contaminated (noisy version) of the underlying structural shock and
thus wt should not be used in the projection equation directly. To simplify the introduction
of the IV approach, let us ignore the control variables in zt. Since they are assumed to

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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be uncorrelated with εt and ηt they do not affect the probability limit of the IV estimator
which is given by

E(wtyt+h)

E(wtx0,t)
= E(wtx0,tθ

h)

E(wtx0,t)
= θh .

In other words, a simple IV estimator can be used to estimate the structural response
coefficient θh. This approach can easily be extended to the case with additional
control variables, see Stock and Watson (2018). For practical implementation, Stock
and Watson (2018) suggest to estimate the projection equation

yt+h = θhx0,t + π ′zt + et+h, (11)

by an IV estimator using the proxy variable wt as an instrument for x0,t. They call this the
LP-IV estimator if no controls zt are present and LP-IV+ if additional control variables are
used. It is important to notice that this approach does not provide estimates of the structural
shock εt without further assumptions (like the invertibility of the VAR representation).
Next, we therefore consider a local projection version of the SVAR-IV approach proposed
by Stock and Watson (2012) and Mertens and Ravn (2013).

The 2S-IV approach

In this subsection, we outline a two-step estimation procedure that allows us to estimate
the structural shocks and thereby provide a framework for statistical inference based on
the representation (1) and (2). Earlier literature including Stock and Watson (2012) and
Mertens and Ravn (2013) consider the so-called SVAR-IV method, which does not rely
on projection methods, see also Stock and Watson (2018). In contrast, the SVAR-IV
approach estimates the relevant column of the impact matrix by IV, which is in turn
multiplied by the MA matrices obtained from inverting the VAR polynomial.

In this section we consider a local projection variant of the SVAR-IV approach, which
is based on a two-stage estimation procedure (2S-IV) by using our framework in (1) and
(2). To focus on the main issues we consider a simple bivariate structural model for the
VAR innovations with

u1,t = α1ε2,t + ε1,t, (12)

u2,t = α2ε1,t + ε2,t . (13)

Note for this structural model we assume that the underlying VAR model is invertible as
the structural shocks are assumed to be linear combinations of the VAR innovations. As
before the external instrument is connected to the first structural shock. Let us first assume
that ε2,t was observed. Inserting ε1,t = u1,t − α1ε2,t in the projection equation (2) for the
first shock yields

yi,t+h = θh
i1u1,t + π ′

i zt + eh
i1,t = θh

i1y1,t + π̃ ′
izt + eh

i1,t, (14)
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where zt = (ε2,t, y′
t−1, . . . , y′

t−p)
′. Accordingly, estimating (14) by OLS yields a consistent

estimator for θh
i1.

In empirical practice ε2,t is not observed and needs to be replaced by a suitable
estimator. To this end we again insert ε1,t = u1,t − α1ε2,t yielding

u2,t = α2u1,t + α3ε2,t , (15)

where α3 = (1 − α2α1). By estimating this equation using wt as instrument for u1,t we
obtain a consistent estimator for α2 and the residual of this IV regression serves as an
estimator for α3ε2,t. Note that the scaling factor α3 does not matter for estimating θh

i1 when
ε2 is replaced by the residual of (15) in the set of control variables. Furthermore, it is easy
to see that this estimator is equivalent to an IV estimator of

yi,t+h = θh
i1y1,t + φ̃

′
i1yt−1 + · · · + φ̃

′
ipyt−p + eh

i1,t for i = 1, 2

by using ε̂1,t (the residual from a regression of u1,t on the residual of (15), see equation 12)
as instrument for y1,t.

The relationship between the LP-IV and 2S-IV estimators

For the 2S-IV approach we need to assume invertibility of the MA representation with
respect to the structural shocks. This assumption is not required for the original LP-IV
approach of Stock and Watson (2018). As mentioned in the previous subsection, the main
difference between the LP-IV and the 2S-IV approach is that the former estimator employs
the external instrument wt, whereas the latter estimator uses ε̂1,t as instrument, which
relies on the assumption that the shock ε1,t is fundamental. If this assumption is fulfilled,
then the 2S-IV estimator is equivalent to the (Gaussian) ML estimator, see section B.2
in Data S1. Accordingly, for fundamental shocks the 2S-IV estimator is asymptotically
more efficient than the LP-IV estimator, in particular if the parameter φ gets small and the
instrument wt is a poor proxy for ε1,t.

These results suggest a test of the hypothesis that the shock ε1,t is fundamental by
comparing the two estimators via the Hausman test. A related test was suggested by Stock
and Watson (2018), which compares the LP-IV and the SVAR-IV estimators. Our simple
alternative test procedure that avoids the possibility of a negative Hausman statistic
is obtained by just augmenting the h-step ahead forecasting equation by the external
instrument wt

yi,t+h = ψihwt + ϕ′
0yt + ϕ′

1yt−1 + · · · + ϕ′
pyt−p + ẽi,t+h (16)

and testing the hypothesis ψih = 0 by the ordinary two-sided t-statistic. This test is
similar to the one proposed by Plagborg-Møller and Wolf (2022), which checks for
Granger causality of the external instrument to the target variables (see also Giannone
and Reichlin, 2006; Forni and Gambetti, 2014). The main difference is that the Granger
causality tests may be viewed as joint tests for all horizons h = 1, 2, . . . , whereas our test
focuses on a particular horizon h. The notion behind this test is that whenever wt contains
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a relevant shock that cannot be represented by a linear combination of the innovations,
then adding the external instrument to the direct forecasting regression should help to
forecast yi,t+h. Since y1,t and wt are correlated, the 2S-IV projection is different from
LP-IV estimator whenever ψih �= 0. In the section B.1 in Data S1, we derive the test
statistic and argue that this simple test is related to the Hausman test.

Long-run restrictions

(Internal) instrumental variables are also useful for estimating more general SVARs. In
section B.2 in Data S1 we discuss non-recursive AB-type models, while we focus on long-
run restrictions here. The structural VAR with long-run restrictions is typically estimated
by using a Cholesky factorization of the model’s long-run solution (e.g. Blanchard
and Quah, 1989). In this section we follow Shapiro and Watson (1988) and Fry and
Pagan (2005) in employing a simple IV estimator for the columns of �. Note that in
just-identified models the IV estimator is equivalent to the ML estimator of the structural
parameters in �. Thus, the IV estimator on the identification step together with a projection
step provides a computationally convenient alternative to the ML estimator suggested by
Blanchard and Quah (1989).

Let yt = (y1t, y2t)
′ denote a bivariate vector of stationary time series with

VAR(p) representation. The structural shocks εt = �ut have long-run effects given by
∑∞

h=0 �h = ∑∞
h=0 �h�

−1 = A(1)−1�−1, where A(1) = Ik − ∑p
i=1 Ai. The identifying

restriction is that ε2,t has a zero long-run effect on the first variable, that is,
A(1)−1�−1 is lower-triangular. We re-write the VAR in error correction format
�yt = −A(1)yt−1 + � lags + ut, where ‘�lags’ represents a linear combination of
the lagged differences �yt−1, . . . , �yt−p+1. Next we multiply the system by the
matrix � yielding ��yt = −�A(1)yt−1 + � lags + εt. From the identifying assumption,
A(1)−1�−1 is lower triangular and so is its inverse �A(1). By normalizing the diagonal
elements of the matrix � to unity, the two equations of the system result as

�y1,t = −γ12�y2,t + ψ11y1,t−1 + �lags + ε1,t, (17)

�y2,t = −γ21�y1,t + ψ21y1,t−1 + ψ22y2,t−1 + �lags + ε2,t, (18)

where ψij denotes the (i, j) element of the matrix −�A(1). Note in the system (17) and
(18) the error ε1,t is the permanent shock and ε2,t is the transitory shock. Furthermore, the
transitory (permanent) shock has a positive and unit impact effect on y1,t (y2,t), which is
easier to understand than the normalization of the shocks in the original Blanchard–Quah
framework.

By imposing the restriction that both shocks are orthogonal, the system is just identified
and can be estimated efficiently by IV methods. Equation (17) is estimated by using y2,t−1

as an instrument for �y2t. For the second equation (18) the residual of (17) (the estimated
permanent shock) can be used as an instrument for �y1,t. This provides us with the
estimated shocks of the identification step that can in turn be used in the projection step (2).2

2It should be noted that the instruments may be weak resulting in poor small sample properties of the estimator,
compare Chevillon, Mavroeidis, and Zhan (2020).
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In a recent paper Plagborg-Møller and Wolf (2021) propose an alternative way to
estimate structural VARs with long-run restrictions. Consider the cumulative impulse
responses up to horizon H :

H
∑

�=0

y1,t+� = β ′
H yt + z′

tπ
H + ẽH

t , (19)

where y1,t denotes the differenced variable (�gdp in study of Blanchard and Quah (1989))
and zt = (y′

t−1, . . . , y′
t−p+1)

′. Let ε1,t = γ ′
1ut denote the permanent shock, where γ ′

1 is
the first row of the matrix �. Plagborg-Møller and Wolf (2021) show that if H tends to
infinity, then βH → cγ1, where c is some non-zero factor. Accordingly, we can estimate
the permanent shock as ε̂1,t = ̂β ′

H ût, where ̂βH is the OLS estimator of βH in (19) and H
is sufficiently large to ensure that the transitory effect vanishes. The estimated shock can
be used in the projection regression and the unit impact normalization can be imposed by
dividing ̂θh

i1 by ̂θ0
11.

There are several drawbacks with using this approach. First, by estimating (19) we
loose H observations when estimating the structural parameters. Second, it is not clear
whether ̂βH converges to βH . The problem is that if H gets large, then the error ẽH

t
approaches a non-stationary process and the regression may become spurious. Finally,
statistical inference is complicated by the fact that the impulse response estimator is a
ratio of estimated coefficients from two regressions that are not independent of each other.
Note also that the denominator ̂θ0

11 may be small resulting in poor small sample properties.

Statistical inference

In all applications discussed above, the projection estimator can be characterized by
solving a set of moment equations derived from the structural equations in (1) and
the projection step (2). Let ϕ = (β ′, θh

ij , π
h′
ij )′ denote the vector of all coefficients

involved, where β = (β ′
1, . . . , β ′

k)
′. The moment vector of the system (1) and (2) can be

represented as

m(ϕ) =
(

T−1∑T
t=1m1,t(β)

T−1∑T
t=1m2,t(β, θh

ij , π
′
ij)

)

.

In our previous examples the moments in the identification step have the generic form

m1,t(β) = w′
t(x0,t − β ′

j x1,t),

where the vector of regressors x1,t and the vector of instruments wt may contain estimated
elements, typically structural shocks estimated from other structural equations. For
example, estimating the transitory shock in the previous subsection employs the residual
from the first structural equation (17) as an instrument. Accordingly, the parameter vector
β may involve parameters from different structural equations which implies that the
respective moments are a quadratic function of the structural parameters.
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The moments of the projection step have the generic form m2,t(β, θh
ij , π

′
ij) =

w̃′
j,t(yi,t+h − θh

ijεj,t − π ′
ijzj,t), where εj,t = (x0,t − β ′

j x1,t) and w̃j,t = (εj,t, z′
j,t)

′. Again this
moment condition is a quadratic function of the parameters, in general.

As all examples considered above result in a set of just-identified moment conditions
we focus on the simple method of moments (MM) estimators,3 where the set of moment
equations can be estimated sequentially. First, we solve T−1 ∑

m1,t(̂β) = 0 (that is, we
estimate the structural model (1)) and given ̂β the second set of moments results as a linear
function of θh

ij and πij. If the moment equations of the structural model have a unique
solution, then also the projection step yields a unique solution no matter of the fact that
the moments may be a quadratic function of the parameters.

If all variables yt, zt, wt, and xt are stationary, the asymptotic distribution of the MM
estimator results from standard theory on (G)MM estimators (e.g. Hayashi, 2000, chapter
7). Since in general mt(θ) is a quadratic function, the derivative required for computing
the asymptotic covariance matrix is a linear function of the parameters.

IV. GLS projections

As the error of the projection is autocorrelated for h > 1, the projection estimators are not
efficient in general. In order to analyse the asymptotic properties of different estimators let
us first consider the univariate AR(1) model, yt = αyt−1 + ut, which is used to estimate
the response θ2 = α2 to the shock ut, h = 2 steps ahead. The direct two-period ahead
representation is

yt+2 = θ2yt + vt+2, t = 1, 2, . . . , T − 2, (20)

where vt+2 = (1 + αL)ut+2. Ignoring the serial correlation of the error vt+2, the projection
estimator estimates θ2 by OLS (labelled as ‘OLS-proj’). We provide the asymptotic
distribution of this estimator in section C.1 of Data S1.

To account for the serial correlation, we may adopt the GLS approach and
transform the regression equation as zt+2 = θ2zt + vt+2, where zt = (1 + αL)−1yt =
yt − αyt−1 + α2yt−2 − α3yt−3 + · · ·. In C.1 (online) we present the asymptotic distribution
of this GLS estimator, and of the variant which estimates the covariance parameter α

and the impulse response θ2 jointly by ML. A common feature of the GLS variants
is that they ignore the relationship between the covariance parameter α and the
conditional mean parameter θ2. It turns out, however, that the main improvement in
efficiency is achieved by imposing the relationship θ2 = α2. Note that the iterated
estimator is equivalent to a (conditional) ML estimator that relies on this restriction.
A natural approach for imposing the particular covariance structure is to estimate the
parameters from the autoregression with h = 1 and including the one-step-ahead residual
as an additional regressor yt+2 = θ2yt + αût+1 + ν̃t+2, where ν̃t+2 = ut+2 + α(̂α − α)yt

and, therefore, if the estimation error is small, the error ν̃t+2 is approximately
white noise. A similar approach was suggested by Lusompa (2019). Unfortunately,
since the residual ût+1 is orthogonal to the regressor yt the augmentation has a

3The MM estimator is simpler than the GMM estimator as it does not require estimating some weight matrix.
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negligible effect and the resulting estimator is asymptotically equivalent to the OLS-proj
estimator.4

Another possibility to eliminate the autocorrelation from the multistep projection error
is to subtract ût+2 from the equation yielding

ŷt+2|t+1 = yt+2 − ût+2 = θ2yt + ṽt+1, (21)

where ṽt+1 = αut+1 + (̂α − α)yt+1. Note that the error ṽt+1 is approximately white noise
for large T so that this approach is also considered to be a GLS variant. The OLS
regression of ŷt+2|t+1 on yt yields

˜θ2|1 =
∑T−2

t=1 α̂yt+1yt
∑T−2

t=1 y2
t

= α̂

(

∑T−1
t=1 yt+1yt
∑T−1

t=1 y2
t

+ Op(T
−1)

)

= α̂2 + Op(T
−1).

The resulting estimator differs from the iterative estimator α̂2 by an asymptotically
negligible term that is due to the fact that the direct regression (21) is based on T − 2
observations instead of T − 1 observations used for the iterated estimator α̂2. Since α̂2 is
the ML estimator for θ2 it turns out that this estimator is asymptotically efficient if the
innovations are normally distributed.

In section C.2 in Data S1, we argue that for h ≥ 2 the asymptotic equivalence
holds whenever all residuals ût+h, . . . , ût+2 are employed to remove the autocorrelation.
Reducing the lag length to q < h − 2 lags, ût+h, . . . , ût+h−q may be useful in practice
for larger VARs and h, as it limits the number of additional regressors. In section C.3 in
Data S1, we present Monte Carlo results comparing various GLS variants for the univariate
AR model studied above. The general conclusion is that only the residual-augmented GLS
estimator (res-aug) yields a uniform improvement of the standard OLS-proj estimator,
whereas all other variants perform substantially worse. Therefore, we focus on this GLS
variant in the remainder of the paper.

In particular, the residual-augmented GLS approach can be extended to VAR
systems for estimating impulse responses. Denoting the vector of innovations by
ut = yt − E(yt|yt−1, . . . , yt−p), the res-aug GLS-type projection estimator is obtained
from the regression

(yi,t+h − ui,t+h) = θh
ijεj,t + z′

j,tπ
h
ij + γ ′

1ut+h−1 + · · · + γ ′
h−2ut+2 + vh

ij,t, (22)

where in practice the unknown innovations are replaced by their sample analogs (VAR
residuals) and the parameters γ1, . . . , γh−2 are additional coefficient vectors. The error
term vh

ij,t is a linear combination of all shocks in period t that are not included as regressors
and ut+1. Accordingly, the error term has an MA(1) representation. To remove this
autocorrelation, all shocks at time t can be included in the vector of control variables,

4More precisely, the OLS estimation implies
∑T−1

t=1 ût+1yt = 0, whereas the regression involves the observations
t = 1, . . . , T − 2 only. It is not difficult to see that the difference between the Lusompa (2019) GLS estimator and
the OLS estimator without ût+1 as additional regressor is Op(T−1). Since the estimation error is Op(T−1/2) it follows
that both estimators are asymptotically equivalent and this estimator does not improve asymptotic efficiency of the
projection estimator.
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which makes the GLS approach more efficient but inference is more complicated as the
set of moment conditions becomes larger.

Replacing the innovations ut−� by ût−� in (22) involves an additional estimation
error that affects statistical inference. In order to derive the asymptotic distribution
of the resulting estimator we characterize the estimator by the following (just-
identified) set of moment conditions: E (m1t(θ1)) = E

(

∂f (xj,t ,βj)

∂βj
εj,t

)

= 0, E (m2t(θ2)) =
E

(

Y+
t−1u′

t

) = 0, E (m3t(θ3)) = E

(

Ztvh
ij,t

)

= 0, where Y+
t−1 = (y′

t−1, . . . , y′
t−p)

′ and Zt =
(εj,t, z′

j,t, ui,t+h, u′
t+h−1, . . . , u′

t+2)
′. Compared to the set of moment conditions considered

in section III we add the moment conditions m2t(θ2) for estimating the innovations
of the VAR system that enter vh

ij,t. In empirical practice it may be more convenient
to apply a suitable (sieve) bootstrap method for statistical inference (cf. Bruns and
Lütkepohl, 2022).

Note also that the three sets of moment conditions are recursive in the sense that the
parameters of the previous moments may enter the subsequent moments but not vice
versa. Hence we can solve the moment conditions by first solving

∑

tm1,t(̂θ1) = 0 and
∑

tm2,t(̂θ2) = 0 and inserting the resulting expressions ε̂j,t and ût in m3t(̂θ3|̂θ1,̂θ2) = 0.
As in section III, the asymptotic covariance matrix follows from adapting standard MM
results accordingly.

V. Monte Carlo evidence

We investigate the finite sample properties of the alternative estimators discussed in the
previous sections by Monte Carlo simulations. We focus on multivariate settings and
explore the relative performance of alternative structural impulse response estimators.

Simulation results for OLS and GLS projections

We have conducted a large number of Monte Carlo experiments from different recursive
VARs as data generating processes (DGPs) and looked at the bias, standard deviation (SD),
empirical coverage and average lengths of confidence intervals for the structural impulse
responses θh

ij . To keep the paper short, we only briefly summarize the main findings here and
refer to the detailed description of the Monte Carlo setup and results in the section D.1 in
Data S1.

We find (in line with the literature) that in small samples and at larger horizons h,
Jordà’s (2005) projection estimator tends to be less efficient than those from iterated
VARs. Second, the two-step estimator and Jordà’s projection estimator perform quite
similarly in terms of bias and SDs. Again, the main advantage of the two-step estimator
is that SEs and confidence intervals can be computed without any correction for
generated regressors and serial correlation. Third, the OLS projections lead to much
wider confidence intervals at larger horizons h. Fourth, the GLS refinement (in the form
of residual-augmentation) leads to substantial improvements bringing GLS projections
on par with iterated VAR results. Finally, using the more parsimonious GLS with less
than h − 2 terms in residual augmentation is typically not associated with a large loss
of efficiency.
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Results for IV projections

To investigate the properties of IV projection estimators, we focus on a model where
we identify the first structural shock ε1t by a single external instrument wt. To keep
the exposition concise, we only discuss the basic Monte Carlo setup here and refer to
section D.2 in Data S1 for more details. To mimic an external instrument setup, we
simulate data for the instrument wt from wt = φε1t + σηηt, where φ, ση are scalar-valued

and ηt
iid∼ N(0, 1). This setup has a measurement interpretation (see e.g. Braun and

Brüggemann, 2022). We set φ = 0.5 and the choice of ση determines the correlation ρw,ε1

between wt and the ε1t (IV strength). We use ρw,ε1 = 0.5 in our baseline setup.
In the simulations, we first focus on yt obtained from an invertible VAR(1) with

medium persistence and study the properties of estimators of θh
21, the response of the

second variable to the first structural shock in the system. Table 1 and Figure 1 report
results for T = 200 and the following five alternative response estimators: SVAR-IV,
LP-IV and LP-IV+ are the estimators described in Stock and Watson (2018). 2S-IV
denotes the two-step IV projection estimator introduced in section III and 2S-IV-GLS is
the corresponding GLS version by adding future reduced form residuals to the projection
equation. Intervals for impulse responses are obtained by using HAC SEs for LP-IV and
LP-IV+ and a parametric bootstrap (with B = 499 bootstrap replications) for SVAR-IV,
2S-IV and 2S-IV-GLS following appendix A.2 of Stock and Watson (2018).

We observe from Table 1 that LP-IV has a comparably large bias at very low and high
horizons. Adding control variables as in LP-IV+ decreases the bias somewhat at shorter
horizons. Nevertheless, we observe the familiar pattern that for large h the projection
based methods lead to larger biases than SVAR-IV, which is based on an iterated estimator
for the impulse responses. Similar to the OLS projections considered above, we again
find that the two-step GLS projection estimator (2S-IV-GLS) performs very much like
the SVAR-IV method. The differences between the two groups is also evident from the
standard deviations: All projection methods without GLS refinement lead to substantially
higher SDs compared to SVAR-IV and 2S-IV-GLS at all horizons. Interestingly, within
the group of projection estimators without GLS refinement, we find that the two-step IV
method often performs somewhat better in terms of bias and SD. Note again, that the

TABLE 1

Bias and SD of impulse response estimators for θh
21

Bias SD

h LP-IV LP − IV+ 2S-IV 2S-IV-GLS SVAR-IV LP-IV LP − IV+ 2S-IV 2S-IV-GLS SVAR-IV

T = 200 0 −0.029 −0.003 −0.003 −0.003 −0.003 0.208 0.146 0.141 0.141 0.143

1 −0.021 −0.007 −0.006 −0.006 −0.005 0.187 0.175 0.102 0.102 0.096

2 −0.024 −0.017 −0.014 −0.016 −0.017 0.195 0.197 0.102 0.093 0.088

3 −0.017 −0.015 −0.017 −0.017 −0.021 0.213 0.218 0.106 0.086 0.082

4 −0.015 −0.014 −0.017 −0.015 −0.019 0.219 0.227 0.107 0.075 0.072

5 −0.019 −0.018 −0.016 −0.012 −0.015 0.223 0.231 0.113 0.061 0.059

6 −0.021 −0.020 −0.018 −0.009 −0.010 0.215 0.226 0.108 0.048 0.046

Notes: Results show bias and SD of different structural impulse response estimators using the IV approach. DGP: 2-variable
VAR(1) with medium persistence. Population correlation of instrument and structural shock is ρ = 0.5. Estimated models use lag
length p = 1. Results are based on M = 1,000 Monte Carlo replications.
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Figure 1. Coverage and average length of confidence intervals impulse response estimators of θh
21 identified

by IV. DGP: Two-variable VAR(1) with medium persistence. Population correlation of instrument and
structural shock is ρ = 0.5. Estimated models use lag length p = 1. Results are based on M = 1,000 Monte
Carlo replications

DGPs used to produce the results in Table 1 and Figure 1 are invertible and thus all
estimators are consistent. In this setting, using our 2S-IV estimator leads to substantial
efficiency gains relative to LP-IV and LP-IV+.

Panel A of Figure 1 shows the response coefficient interval coverage. At larger horizons
h, the SVAR-IV method and 2S-IV-GLS show a somewhat lower coverage compared to
the other projection methods. Panel B shows that this is mostly due to the much wider
confidence intervals (especially for LP-IV and LP-IV+). The length of intervals produced
by 2S-IV is much smaller than those from LP-IV and LP-IV+. It seems that within the
group of projection estimators without GLS refinement, 2S-IV with bootstrap intervals
has the best trade-off of coverage and interval length. In section D.2 of Data S1, we report
additional results for T = 500 and also discuss simulations obtained from varying the
persistence of the VAR and the correlation ρw,ε1 . For parameter combinations that imply
a reasonable instrument strength, the conclusions above do not change.

In the second part of our simulation exercise, we analyse the role of invertibility on the
estimation performance and investigate the finite sample properties of the Hausman tests
for invertibility. To this end, we generate data yt from a possibly non-invertible vector
MA (VMA) representation yt = �0εt + �1εt−1, where

�0 =
(

1 0
0.5 1

)

and �1 =
(

r 0
0.5 0.3

)

. (23)

The crucial parameter for the invertibility of the process is r, which is identical to the
largest root of the process whenever r > 0.3. If r ≥ 1, then the VMA process is not
invertible as the first shock is not fundamental. Within this setup, we report the precision
(as measured by the RMSE) of the alternative estimators of θh

21 for h = 1 in invertible
and non-invertible settings by varying r. Moreover, we look at rejection frequencies of
the Hausman test discussed in section III and compare it against the invertibility test
of Stock and Watson (2018). Table 2 shows the results for T = 200 and T = 500 with
IV/shock correlations ρw,ε1 = 0.5 and ρw,ε1 = 0.7. We find from columns (1) to (4) that for
invertible models, 2S-IV and SVAR-IV have smaller RMSE errors throughout. Comparing
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LP-IV and 2S-IV for invertible models, we find again a relative advantage for our 2S-IV
especially for lower IV/shock correlation (ρw,ε1 = 0.5). Note that the relative efficiency
gain of 2S-IV over LP-IV+ depends on instrument strength and is particularly large for
lower IV/shock correlations. Interestingly, even for non-invertible models (especially for
r = 1), the inconsistent estimators 2S-IV and SVAR-IV produce often smaller or at least
very comparable RMSEs indicating a favourable bias-variance trade-off for the latter
methods. Only with larger r, that is, an ‘increasing degree of non-invertibility’, LP-IV
and LP-IV+ show superior behaviour illustrating that these estimators are still consistent.
Overall, these simulation results provide useful insights on the issue of robustness versus
efficiency. Columns (5) and (6) show the rejection frequencies of the Hausman tests.
We find that both tests have power against the alternative and hence are able to detect
situations where 2S-IV and SVAR-IV are inconsistent. For large T and with strongly
correlated IVs, there is not much to choose between the two tests. In contrast, in smaller
samples and with instruments that are not very strongly correlated with the structural
shock, the test suggested in section III tends to be more powerful. Thus, in empirical work
using our test may be a good and simple alternative.

Finally, we refer readers interested in the effect of neglecting the generated regressor
problem in the context of IV projections to the simulation results in the section D.2.3 of
Data S1.

The main findings from the simulations are (i) that standard projection estimators
of structural responses at long response horizons are less efficient than those from
iterated VARs, (ii) using GLS projections (in the form of residual-augmentation) leads
to substantial improvements, bringing GLS projections on par with iterated VAR results,
(iii) using the more parsimonious GLS with less than h − 2 terms in residual augmentation
is typically not associated with a large loss of efficiency, (iv) for invertible VARs our two-
step IV projection estimator (2S-IV) is more efficient than existing projection estimators,
(v) the simple Hausman type test of III has good power properties and can be used to
detect non-invertibility and (vi) ignoring the generated regressor problem may understate
the true uncertainty around response estimates substantially.

VI. Conclusion

In this paper we consider projection estimators for impulse responses in a structural VAR
framework. In the identification step the structural shock is estimated within an adequately
identified structural model. In the projection step, the impulse response is estimated from
a regression of the future variable of interest yi,t+h on the estimated shock ε̂j,t and a vector
of control variables zj,t. The control variables are included for improving the efficiency
but they may also be used to eliminate the estimation error from the first estimation step.
We provide conditions that ensure the asymptotic negligibility of the estimation error
from the identification step. Furthermore, standard OLS inference applies even if the
projection residuals are autocorrelated. Another advantage is that inference is valid no
matter whether the variables are stationary or non-stationary (integrated).

In many empirical applications the structural model is estimated by using instrumental
variables. We show how the projection approach can be adapted for estimating popular
SVAR models like the proxy-VAR, the AB-model and the SVAR model with long-run
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restrictions. In particular we propose a projection estimator for invertible proxy-VARs
which allows us to test the hypothesis that the structural shock is fundamental. The
asymptotic distribution of all projection estimators can be derived from the method-of-
moment representation. Finally, we point out that the OLS and IV projection methods are
inefficient as the projection residuals are correlated up to h − 1 lags. In order to improve
the efficiency we propose a GLS projection that removes the serial correlation from the
projection equation. We show that GLS projections are closely related (but not identical)
to the iterative method of estimating impulse responses from the MA representation of a
finite order VAR.

Using Monte Carlo simulations we compare the small sample properties of various
estimators for impulse responses. While different variants of OLS projections perform
quite similar, our two-step IV projection estimator VARs (2S-IV) turns out to be more
efficient than the LP-IV estimator of Stock and Watson (2018) whenever the invertibility
assumption is fulfilled. We also find that our simple Hausman test for non-invertible
shocks tends to be slightly more powerful than the test based on the SVAR-IV estimator.
Applying the GLS refinement we observe substantial efficiency gains relative to OLS (or
IV) projections.

Final Manuscript Received: November 2020
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