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Abstract
Deferred-acceptance auctions can be seen as heuristic algorithms to solve NP-hard 
allocation problems. Such auctions have been used in the context of the Incentive 
Auction by the US Federal Communications Commission in 2017, and they have 
remarkable incentive properties. Besides being strategyproof, they also prevent col-
lusion among participants. Unfortunately, the worst-case approximation ratio of 
these algorithms is very low in general, but it was observed that they lead to near-
optimal solutions in experiments on the specific allocation problem of the Incen-
tive Auction. In this work, which is inspired by the telecommunications industry, we 
focus on a strategic version of the minimum Steiner tree problem, where the edges 
are owned by bidders with private costs. We design several deferred-acceptance 
auctions (DAAs) and compare their performance to the Vickrey–Clarke–Groves 
(VCG) mechanism as well as several other approximation mechanisms. We observe 
that, even for medium-sized inputs, the VCG mechanisms experiences impracti-
cal runtimes and that the DAAs match the approximation ratios of even the best 
strategy-proof mechanisms in the average case. We thus provide another example 
of an important practical mechanism design problem, where empirics suggest that 
carefully designed deferred-acceptance auctions with their superior incentive prop-
erties need not come at a cost in terms of allocative efficiency. Our experiments pro-
vide insights into the trade-off between solution quality and runtime and into the 
additional premium to be paid in DAAs to gain weak group-strategyproofness rather 
than just strategyproofness.
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1 Introduction

There is a significant literature in the design of approximation algorithms for 
computationally hard problems (Vazirani 2013). Algorithmic mechanism design 
extends this literature in an important way (Nisan and Ronen 1999). The goal of 
approximation mechanisms is the design of computationally efficient algorithms 
which take into account the incentives of participants as well. These mecha-
nisms should run in polynomial time and satisfy strong game-theoretical equi-
librium solution concepts such that bidders have incentives to reveal their valu-
ations truthfully and the auctioneer can determine the optimal allocation or one 
that approximates the optimal solution. This has led to a rich literature study-
ing approximation mechanisms for different types of NP-hard resource alloca-
tion problems. Typically, designers of approximation mechanisms aim for domi-
nant-strategy incentive-compatibility or strategyproofness. Such mechanisms are 
prior-free, and truthful bidding is a dominant strategy for individual bidders.

Network procurement is a prime application where auction mechanisms play 
an important role in business practice. A telecom is interested in connecting sev-
eral sites or terminals via a cost-minimal set of edges connecting vertices in a 
network. The terminals constitute a subset of all vertices in the network, and sup-
pliers can provide individual edges in the network at a certain cost. The mini-
mum Steiner tree problem is a well-known model of this network procurement 
problem, and even with complete information about suppliers’ costs, finding a 
cost-minimal solution is NP-hard. The minimum Steiner tree problem on graphs 
is one of the most well-known NP-complete problems (Karp 1972), and central 
in various types of network design problems, which have received significant 
attention in operations research (Xu et al. 1995; Öncan et al. 2008; Contreras and 
Fernández 2012).

In the procurement environment, the cost of establishing a link is the private 
information of its supplier. Each supplier wants to maximize her payoff, i.e. her 
bids minus their private costs for setting up the connection. In such an auction, 
the auctioneer wants to set incentives for bidders to reveal their costs truthfully. 
It is well known that the Vickrey–Clarke–Groves (VCG)  (Vickrey 1961; Clarke 
1971; Groves 1973) mechanism is the only quasi-linear mechanism which max-
imizes social welfare and is strategyproof (Green and Laffont 1977). Still, the 
resulting discounts can be manipulable by coalitions of suppliers, a property 
which can well be a problem in procurement. This means the VCG mechanism 
is not group-strategyproof. In addition, the VCG mechanism is no longer strat-
egyproof if the allocation does not maximize social welfare, i.e. if the allocation 
cannot be solved exactly. Since the minimum Steiner tree problem is NP-com-
plete, its optimal solution, which corresponds to the maximally achievable social 
welfare, cannot be expected to be obtained in reasonable time.

If the allocation cannot be computed optimally, but only approximately, then 
the VCG mechanism loses this strong game-theoretical property (Lehmann et al. 
2002). This paper analyzes several well-known approximation algorithms for the 
minimum Steiner tree problem with respect to their implementability in settings 
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where the edges of the graph are strategic agents. Based on well-known theory 
from mechanism design, we verify that some of these approximation algorithms 
can be extended to strategyproof mechanisms, while others are not.

Motivated by the Incentive Auction of the US Federal Communications Commis-
sion (FCC), Milgrom and Segal (2019) and Leyton-Brown et al. (2017) recently pro-
posed deferred-acceptance auctions (DAAs), a class of greedy algorithms which are 
weakly group-strategyproof for bidders with single-dimensional types. This means 
even a coalition of bidders cannot manipulate profitably via deviations from truthful 
bidding, which makes them robust against collusive bidding strategies. This is a very 
desirable property in many applications. Also, a deferred-acceptance auction can be 
implemented both as a sealed-bid and as a clock auction.

An important question is whether these strong incentive properties are at the expense 
of solution quality, i.e. they might lead to low allocative efficiency. Dütting et al. (2017) 
derived worst-case approximation ratios for two important problem classes. Still, for 
most problems no worst-case approximation ratios have been proven. Interestingly, 
experimental analysis of the specific allocation problem in the US FCC Incentive Auc-
tion showed very high solution quality on average (Newman et al. 2017). In their simu-
lations, which focused on the efficiency of the reverse auction, the reverse clock auc-
tion achieved highly efficient solutions. The specific scoring rule by the FCC played an 
important role in the solution quality and the payments computed. The allocation prob-
lem in the Incentive Auction is special, and it is not clear whether one could achieve 
high average efficiency with a DAA also for other problems.

We perform a thorough computational study in which we compare DAA variants to 
more sophisticated approximation mechanisms for the Steiner minimum tree problem. 
The results show that in general, the DAA (with an adequately chosen scoring function) 
results in high solution quality, but that in environments with a very sparse network and 
few terminals, primal-dual algorithms or Mehlhorn’s algorithm is better. All approxi-
mation algorithms and heuristics were computed within only two minutes on average, 
while the computation times for exact solutions with a Vickrey–Clarke–Groves pay-
ment rule are extensive and took more than 18 hours on average for the larger instances. 
The revenue is lowest in the Vickrey–Clarke–Groves mechanism. The DAA variants 
led to higher payments for the buyer, which can be seen as a premium paid for group-
strategyproofness, i.e. its robustness to collusion. Our empirical results illustrate the 
order of magnitude of these trade-offs.

In Sect. 2, we introduce related literature, before we introduce the minimum Steiner 
tree and relevant definitions in Sect. 3. In Sect. 4, we analyze the implementability of 
well-known approximation algorithms for the minimum Steiner tree problem, and a 
critical payment scheme, before we introduce deferred-acceptance auctions. Then, in 
Sect. 6 the results of numerical experiments based on the SteinLib are presented.

2  Related literature

The minimum Steiner tree problem has many important applications in a variety 
of fields. Examples include biology (phylogenetic trees), the design of integrated 
circuits, and it occurs as a special case or subproblem in many other problems in the 
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field of network design (single-sink rent-or-buy, prize-collecting Steiner tree, single-
sink buy-at-bulk). Due to its relevance, the problem received a lot of attention and 
different classes of algorithms emerged.

Approximation algorithms based on distance networks were proposed by Taka-
hashi and Matsuyama (1980) and Kou et al. (1981). Mehlhorn (1988) developed a 
faster variant of the latter algorithm. All algorithms in this class achieve an approxi-
mation ratio of 2, which is also achievable by means of primal-dual algorithms, see 
e.g. Goemans and Williamson (1995). Loss-contracting approximations are another 
class of algorithms studied in the context of the minimum Steiner tree problem. 
This approach has been improved in a series of papers. The algorithm due to Rob-
ins and Zelikovsky (2005) currently reaches the best approximation ratio of 1.55. 
Byrka et al. (2010) proposed a randomized technique that achieves an approximation 
ratio of ln(4) + � , i.e. 1.39 in the limit. While the algorithm can be derandomized 
to obtain a deterministic approximation algorithm with polynomial time complex-
ity, the polynomial and constants required to reach the approximation factor of 1.39 
result in a runtime which is not feasible in practice. In our analysis, we start with the 
best known approximation algorithm by Robins and Zelikovsky (2005), before we 
analyze the approach by Mehlhorn (1988), and primal-dual algorithms (Goemans 
and Williamson 1995). These are arguably the most prominent approaches to the 
minimum Steiner tree problem in the literature.

We focus on the design of approximation mechanisms, i.e. approximation algo-
rithms that can be implemented in dominant strategies. The field of algorithmic 
mechanism design has made substantial progress in the past years, and there are 
general frameworks to achieve truthfulness with randomized approximation mech-
anisms, and deterministic approximation mechanisms for specific problems. For 
example, a well-known black-box method to convert approximation algorithms for 
any packing problem into strategyproof mechanisms is the framework by Lavi and 
Swamy (2011), which is a randomized approximation algorithm.

Yet randomized approximation algorithms are often not acceptable in industrial 
procurement. Unfortunately, as of now there is no general framework to transform 
deterministic approximation algorithms into strategyproof mechanisms. However, 
there exist quite general approaches when additional conditions on bidders’ valu-
ations are met. Single-mindedness has received most attention in the literature on 
combinatorial auctions (Lehmann et al. 2002). It means that bidders are only inter-
ested in one specific subset of items (package). This can be a reasonable assumption 
for many real-world markets, and it is a very good starting point for our analysis of 
strategyproof approximation mechanism for the minimum Steiner tree problem on 
graphs. In the context of network procurement, we talk about bidders with single-
dimensional types, which means each supplier only having access to a single link 
which she can sell.

Mu’alem and Nisan (2008) extended the framework of Lehmann et  al. (2002) 
and presented conditions for approximately efficient and strategyproof mechanisms 
and single-minded bidders. Apart from this, numerous approximation mechanisms 
have been developed for specific algorithmic problems such as parallel scheduling 
and maximum flow problems (Archer and Tardos 2001), or graph traversal prob-
lems (Bilò et  al. 2007). Interestingly, in spite of the importance of the minimum 
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Steiner tree problem, it has received very little attention in the literature on algorith-
mic mechanism design so far, with the only prior work being due to Gualà and Proi-
etti (2005). They present a distance-network-based approximation mechanism which 
draws on the ideas of Takahashi and Matsuyama (1980).

We are particularly interested in the new class of deferred-acceptance auctions, 
which were introduced by Milgrom and Segal (2019) in the context of the Incentive 
Auction design for the US Federal Communications Commission (Leyton-Brown 
et  al. 2017). Little is known so far about the solution quality deferred-acceptance 
auctions as compared to other deterministic and strategyproof approximation mech-
anisms in general. Dütting et al. (2017) is an exception, and they discuss approxima-
tion ratios of deferred-acceptance auctions for knapsack auctions as well as general 
combinatorial auctions with single-minded bidders. Recently, deferred-acceptance 
auctions have been generalized by Gkatzelis et  al. (2017) for non-binary settings 
in which bidders do not simply win or lose but receive some level of service (e.g. a 
number of items awarded in a multi-item auction).

3  Notation and definitions

Let G = (V ,E, c) be a weighted, connected graph, where ce is the cost of each edge 
e ∈ E . For a subset of edges F ⊆ E , the cost of the edge-induced subgraph is defined 
by c(F) =

∑
e∈F ce . A spanning tree of G is a subset of edges of E such that the 

resulting edge-induced subgraph is connected, cycle-free and contains all vertices V. 
The minimum spanning tree, denoted by MST(G), is a spanning tree where the sum 
of the costs of its edges is minimal in comparison with all other spanning trees.

The minimum Steiner tree problem on a connected graph G = (V ,E, c) is defined 
as follows. For a subset of vertices K ⊆ V  called terminals, any tree spanning K is 
called a Steiner tree. Any vertex in a Steiner tree which is not a terminal is called a 
Steiner point. We refer to the set of all Steiner trees over G as StT(V, E). The objec-
tive then is to find a minimum cost Steiner tree.

Let GV be the complete graph induced by the vertex set V, i.e., a complete 
weighted graph GV = (V ,EV , cV ) , where each edge cost equals the cost of the short-
est path in G between the two adjacent vertices of that edge. GV is then a metric 
graph satisfying the triangle inequality. We call GV the distance network of the 
graph G. Likewise, GK denotes the distance network induced by the terminal set K, 
GK = (K,EK , cK) . Note that GK ⊆ GV , as K ⊆ V .

In the following, we describe the design of mechanisms for the minimum Steiner 
tree problem. We consider a set of bidders N, where bidders i ∈ N have single-
dimensional types, i.e. each bidder i only provides one specific single edge ei . With 
slight abuse of notation, we denote with ci the true cost of bidder i while c refers to 
the corresponding tuple (ci)i∈N taken over all bidders. Denote with Bi the domain 
of bids, i can report as her cost for edge ei , e.g. Bi = R≥0 . B is defined as the Car-
tesian product 

∏
i∈N Bi . For a single-dimensional bidder i, there is a unique and 

publicly known edge ei ∈ E such that her true private cost is ci only for edge ei , 
while for all other edges ej ≠ ei her true private cost is ∞ . Given a vector of reported 
bids b ∈ B with b = (bi) , the expression b−i denotes the bid tuple without the i-th 
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entry, b−i = (bj)j∈E⧵{i} , and (ci, b−i) denotes the bid tuple where the i-th entry of b is 
replaced by ci , i.e., bidder i reports her true cost.

A deterministic mechanism M = (f , p) for the minimum Steiner tree prob-
lem over vertices V and edges E is defined by a deterministic allocation function 
f ∶ B → StT(V ,E) and a payment scheme pi ∶ B × StT(V ,E) → ℝ for each bidder 
i. Given the bidders’ reported bids b ∈ C , the mechanism M = (f , p) computes a 
Steiner tree f(b) and pays each bidder i a payment of pi(b, f (b)) . In an approximation 
mechanism, the allocation function f is implemented via a deterministic approxima-
tion allocation algorithm A . A mechanism with an approximation allocation algo-
rithm A achieves an approximation ratio of r for minimum Steiner tree if

where OPT(b) denotes a welfare-maximizing allocation (i.e. an optimal minimum 
Steiner tree given costs b), c(OPT(b)) the corresponding social welfare (i.e. cost of 
the Steiner tree), and c(A(b)) the welfare achieved with the approximation algorithm 
A.

Since bidders are self-interested, their reported bids b do not necessarily reflect 
their true costs c. Instead, bidders try to maximize their quasi-linear utilities ui , i.e., 
payment received minus true cost: ui(b) = pi(b, f (b)) − ci . As a result, a strategy-
proof mechanism must offer bidders some incentives to reveal their true costs.

Definition 1 (Strategyproofness) A mechanism M = (f , p) is strategyproof if for 
all bidders i ∈ E and all reported bid tuples b ∈ B it holds that bidder i has a weakly 
higher payoff by telling the truth:

Then, a bidder cannot make herself better off by not telling the truth about her 
costs. We also consider the stronger criterion of weak group-strategyproofness, 
where groups of bidders cannot make themselves better off by colluding.

Definition 2 (Weak Group-Strategyproofness) A mechanism M = (f , p) is weakly 
group-strategyproof if for every set of bidders I ⊆ E and all reported bid tuples 
b ∈ B it holds that at least one bidder i ∈ E has a weakly higher payoff by telling the 
truth:

In other words, in a weakly group-strategyproof mechanism it is impossible for a 
group of bidders to find alternative (non-truthful) bids that make all members of the 
group strictly better off.

We assume w.l.o.g. that for any two bidders i, j with i ≠ j , it is ei ≠ ej . If there are 
multiple bidders providing the same edge, we only consider the lowest reported bid 
for the allocation algorithm (though, of course, we consider all bids for the payment 
scheme). So from now on, we assume i=̂ei . To avoid monopoly, we restrict G to be 
2-edge-connected, i.e., G remains connected even if any single edge is removed.

max
b∈B

c(OPT(b))

c(A(b))
≤ r

ui(ci, b−i) ≥ ui(b)

ui(cI , b−I) ≥ ui(b)
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With this, we can now formulate the minimum Steiner tree problem as a mecha-
nism design problem: Let G = (V ,E, b) be a 2-edge-connected graph. |V| is the num-
ber of vertices, |E| is the number of edges/bidders, and b is the vector of reported bid 
prices. Let K ⊆ V  be the set of terminals. Then, the objective is to design a poly-
nomial time approximation mechanism which computes an approximately efficient 
allocation A, and a payment scheme p which makes truthful bidding a dominant 
strategy, such that p and A form a strategyproof mechanism.

Definition 3 (Monotonic allocation rule) An allocation rule f of a mechanism 
M = (f , p) is monotonic if a bidder i who wins with bid bi keeps winning for any 
lower bid b′

i
< bi (for any fixed settings of the other bids).

Definition 4 (Critical payment scheme) A payment scheme p of a mechanism 
M = (f , p) is critical if a winning bidder i receives payment p∗

i
 , which is her maxi-

mum bid allowed for winning: p∗
i
∶= sup{b�

i
∈ Bi ∶ i ∈ A(b�

i
, b−i)} , where A(b�

i
, b−i) 

denotes the set of bidders that would have won if the reported bids were (b�
i
, b−i)

Intuitively, a monotonic allocation ensures that a winner remains winning with 
any better bid, while the critical payment for a winning bidder is the highest cost 
that she may declare and still win. In his seminal paper, Myerson (1981) showed that 
an allocation rule f is implementable (i.e., there exists a payment vector p such that 
M = (f , p) is strategyproof) if and only if the allocation rule is monotonic. Moreo-
ver, if the allocation rule is monotonic and losing bidders pay 0, a critical payment 
scheme is the unique payment rule p such that M = (f , p) is strategyproof. Hence, 
with single-dimensional types and monotonic approximation algorithms, we can 
implement an outcome in dominant strategies, if we compute critical payments.

4  Approximation mechanisms for single‑dimensional bidders

In this section, we briefly introduce important approximation algorithms for the 
minimum Steiner tree problem. A more extensive discussion can be found in the 
appendix. For the algorithms which can be extended to approximation mechanisms, 
we provide a corresponding critical payment scheme in Sect. 4.2, which then yields 
a strategyproof approximation mechanism. Finally, in Sect. 5 we design a deferred-
acceptance auction for the minimum Steiner tree problem and discuss the worst-
case approximation ratio of the deferred-acceptance auction and general greedy 
algorithms.

4.1  Approximation algorithms for the Steiner minimum tree

Table  1 lists the approximation algorithms for the minimum Steiner tree that we 
compare to the greedy approximation algorithms used in the deferred-acceptance 
auctions. These algorithms are representatives of very different approaches to 
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approximation. While two of them are monotonic, the one by Robins and Zeliko-
vsky (2005) with the best approximation ratio so far is not.

We only provide an overview with a classification of whether these algorithms 
are monotonic or not. While this is fairly straightforward to answer for most approx-
imation algorithms in the literature, the currently best class of algorithms for the 
minimum Steiner tree problem, the loss-contraction algorithms, are challenging to 
analyze. In the appendix we provide a detailed description of these algorithms and 
proofs of their monotonicity.

4.1.1  Loss‑contracting algorithms

Loss-contracting algorithms have been the most successful approach to the design 
of approximation algorithms for the minimum Steiner tree on graphs so far. Any 
Steiner tree S(G, K) of G is either a full Steiner tree, i.e., all its terminals are leaves, 
or can be decomposed into a forest of full Steiner subtrees (full components) by 
splitting all the non-leaf terminals (splitting a terminal results in two copies of the 
same terminal). The algorithm by Robins and Zelikovsky (2005) builds an MST on 
the subgraph GK induced by the terminal set K and repeatedly adds full components 
to improve the temporary solution. In each iteration, full components are ranked 
according to their gain (by how much the component improves the current tempo-
rary solution) divided by their loss (i.e., the cost committed by adding a component 
or more precisely its Steiner points). After a full component is added, the tempo-
rary solution is improved. This step also involves loss-contracting, a method to make 
components which are in conflict with added ones less appealing. By these means, 
the algorithm by Robins and Zelikovsky (2005) achieves an approximation ratio of 
1.55 if k → ∞ and it is computable in O(|K|k ⋅ |V − K|k−2 + k ⋅ |K|2k+1 log |K|) . 
This is the best approximation algorithm so far, but unfortunately it is not monotonic.

Proposition 1 Allocation algorithm ARZ is not monotonic.

4.1.2  Distance‑network‑based approximations

Similarly to the loss-contracting approximation, the general idea of distance-net-
work-based approximation algorithms is to build a MST on a complete subgraph GK 
in the first phase. In the second phase, edges in MST(G) are re-transformed back 
to edges in G, and an MST is computed on the resulting graph to remove possible 
cycles. Finally, in the third phase, non-terminal leaves are deleted. This algorithm 

Table 1  Selected approximation algorithms for the minimum Steiner tree problem on graphs

Year Approx. ratio Authors Monotonic? Paradigm

1988 2.00 Mehlhorn Yes Distance network
1997 2.00 Goemans, Williamson Yes Primal-dual
2005 1.55 Robins, Zelikovsky No Loss-contracting
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was proposed by Kou et al and runs in O(|K||V|2) . However, due to the cycles that 
can occur in the first phase, this standard variant is not monotonic. Mehlhorn (1988) 
designed an algorithm which differs in phase 1. Here, the algorithm first partitions G 
into Voronoi regions, which are then utilized to construct a subgraph of GK , called 
G . It then proceeds with phase 2 and phase 3. This leads to a worst case runtime of 
O(|V| log |V| + |E|) and achieves an approximation ratio of 2(1 − 1∕l) where l is the 
minimal number of leaves in any minimum Steiner tree (which is naturally bounded 
above by the number of terminals). This algorithm is monotonic.

Proposition 2 The allocation algorithm AMH by Mehlhorn is monotonic.

4.1.3  Primal‑dual approximation algorithms

The approximation algorithm for the minimum Steiner tree problem by Goemans 
and Williamson (1995) follows a primal-dual approach in which the minimum 
Steiner tree problem is transformed into a hitting set problem and modeled as an 
integer linear program (IP). By relaxing the IP and considering its dual, Goemans 
and Williamson (1995) where able to propose an approximation algorithm that 
requires a runtime of O(|V|2 log |V|) and also has an approximation ratio of 2.

Proposition 3 The allocation of the primal-dual-based minimum Steiner tree 
approximation APD is monotonic.

4.2  Payment schemes

Since the allocations of the algorithms AMH by Mehlhorn (1988) and the primal-
dual algorithm APD by Goemans and Williamson (1995) are monotonic, they meet 
the first requirement to be extendable to a strategyproof approximation mechanism. 
For the second requirement, the payment scheme p needs to find the critical payment 
p∗
i
 for any winner i, such that every reported bid bi with bi ≤ p∗

i
 is guaranteed to win, 

while every reported bid bi with bi > b∗
i
 is guaranteed to lose.

We first discuss a payment scheme for distance-network-based approximation 
algorithms initially introduced by Gualà and Proietti (2005) which can be computed 
in O((|V| + |K|2)|E| ⋅ log �(|E|, |V|)) . For this, consider the basic structure of an 
algorithm based on the distance network. Each winning edge e lies on at least one 
path connecting two terminals (v1, v2) . If we now increase the cost of e, there are 
two possible causes that lead to e getting excluded from the solution. Either, there 
might be a shorter path between v1 and v2 that e is not part of. Apart from this, even 
if e is still on the shortest path between v1 and v2 , the edge (v1, v2) might be replaced 
by some other edge (v�

1
, v�

2
) in the MST of distance network for which e is not on the 

resulting shortest path. The critical payment for e is then calculated by adding the 
difference between the original cost of the shortest path including e and the mini-
mum cost of one of these alternatives without e.

The corresponding values can be calculated similar to (Gualà and Proietti 2005): 
First, the all-to-all distances problem is solved. Then, for every winning edge e on 
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a shortest path between terminals v1, v2 , an alternative shortest path between v1 and 
v2 that does not contain e can efficiently be computed using several tweaks (Buchs-
baum et al. 1998; Gualà and Proietti 2005; Pettie and Ramachandran 2002). Compu-
tation of an alternative path in the distance network between two different terminals 
v′
1
, v′

2
 can also be done efficiently by standard sensitivity analysis (Tarjan 1982).

While the previous approach can be used for distance-network-based approxima-
tion, there is no efficient scheme for calculating the payments for the primal-dual 
approach and the loss-contraction algorithm by Robins and Zelikovsky (2005). In 
this case, another possibility to obtain critical payments is to find them through 
binary search. For a winning bidder i, a starting interval [bi, sp(b−i)] , and first provi-
sional payment pi

0
∶=

⌊
bi+sp(b−i)

2

⌋
 , the binary search recursively computes a sequence 

of payments (pi
j
):

where Gpi
j−1

= (V ,E, (pi
j−1

, b−i)) is the original graph G with the only change being 
that the reported bid price of bidder i for his edge ei has now become pi

j−1
 instead of 

bi , and A is the corresponding approximation algorithm. So ei ∈ A(Gpi
j−1
,K) means 

that reporting pi
j−1

 , bidder i still wins with all other bids fixed. This means that each 
computed payment pi

j
 is tested by the respective allocation algorithm.

Since the payments described above are critical, they can be used in combination 
with their corresponding approximation algorithm to yield a strategy-proof approxi-
mation mechanism for single-dimensional bidders due to the results of Nisan et al. 
(2007).

5  Deferred‑acceptance auctions

Greedy algorithms are an important class of approximation algorithms. A greedy-
in algorithm iteratively chooses the best available option based on the current state 
(i.e., the previous iterations) and adds it to the solution. Contrarily, in the deferred-
acceptance auction (DAA), a greedy-out algorithm is used which removes the least 
favorable alternative from the solution in every iteration. A greedy-in procedure 
which greedily accepts edges is not suitable for constructing a Steiner tree, since 
greedily accepting edges leads to being forced to ’correct’ the structure afterwards 
(e.g. assuring that Steiner points do not end up as leaves), while within a greedy-out 
procedure one only needs to assure that it is still possible to construct a Steiner tree 
based on the remaining edges (i.e. all terminals are still connected). Thus, this sec-
tion describes a greedy-out approximation for the Steiner tree problem implemented 
as a DAA (Milgrom and Segal 2019). The DAA is not only strategyproof but also 

pi
j
=

⎧
⎪⎨⎪⎩

�
1

2
pi
j−1

�
if ei ∉ A(Gpi

j−1
,K)�

3
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�
if ei ∈ A(Gpi

j−1
,K)
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weakly group-strategyproof and therefore provides a form of protection against bid-
der collusion.

The DAA greedily excludes the least desirable option from the solution until 
further removal would lead to an infeasible solution. To decide which option 
should be excluded in each iteration a scoring function is used. A scoring func-
tion assigns a value of at least 0 to an option i based on the cost of i and the 
remaining options. It is important to note that only the presence of remaining 
options, not their cost, may be considered in the scoring function as otherwise 
the mechanism might lose its incentive properties. Also, a scoring function needs 
to be non-decreasing in the first argument (cost of i). In each iteration, the option 
with the highest assigned score is removed from the allocation, options that can-
not be removed without making the resulting solution infeasible receive a score 
of 0. All remaining edges with a score of 0 are accepted in the end. Hence, the 
algorithm always returns a feasible Steiner tree at the end. A representation of the 
algorithm is given below (Algorithm 1).

Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V , a scoring
function s

Result: A Steiner tree in G spanning K.
1 while true do
2 for each edge e do
3 assign score s(e) to e
4 if s(e) = 0 then
5 compute payment p(e)
6 end
7 end
8 if highest score equals 0 then
9 return remaining edges (Steiner tree)

10 end
11 remove e with highest score
12 end

Algorithm 1: Deferred-acceptance auction (DAA)

The payment p(e) for an alternative e is calculated the moment we cannot 
exclude e from the solution any more, i.e. the moment we assign a score of 0 to 
it. The payment is equal to the bid e could have stated such that her score would 
have been equal to the one removed in the last iteration.

In a network procurement context, the set of options is the set of edges E. An 
edge cannot be excluded from the solution if its removal would lead G to decay 
into two connected components each of which contains at least one terminal. To 
account for the specific requirements of the network procurement context, we 
analyze three scoring functions in our experimental analysis: 

1.  the weight of the edge
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2.  the weight of the edge divided by the number of adjacent edges
3.  the weight of the edge divided by the betweenness centrality of the edge, where 

the betweenness centrality for each edge is defined by the number of shortest 
paths within the graph that use this edge

 We calculate betweenness centrality by using the algorithm by Kourtellis et  al. 
(Kourtellis et  al. 2015) on a variant Gu of G where all edges have weight 1, i.e. 
Gu is the unweighted version of G. This is necessary, since due to incentive rea-
sons a scoring function may only take the respective bid and the underlying graph 
structure into account, not the bids of other active bidders. Since in our environment 
bids are the cost of edges, when calculating the score of an edge e, we must ignore 
the costs of all other edges e′ ≠ e in our calculations. In the following, let DAAw 
( DAAa;DAAc ) denote the DAA with scoring by weight (divided by adjacent edges; 
betweenness centrality).

Proposition 4 The DAA for the minimum Steiner tree problem runs in 
O(|E|2 + |E||V| + t) including payment calculation where t is the time necessary to 
update the scores.

Proof In each iteration, at most |E| scores need to be updated. This takes |E| + |V| 
operations once to check for connectivity by Tarjan’s bridge finding algorithm (Tar-
jan 1974) and constant time to update the score. Since there are at most |E| itera-
tions, this leads to a total runtime of O(|E|2 + |E| ⋅ (|E| + |V|)) ⊆ O(|E|2 + |E||V|) 
for DAAw and DAAa . For DAAc betweenness centrality has to be calculated. This 
can be done in O(|E||V|) for each removal, i.e. in each iteration, using Kour-
tellis’ algorithm (Kourtellis et  al. 2015). Hence, the total runtime for DAAc is 
O(|E|2 + |E||V| + |E|2|V|) ⊆ O(|E|2|V|) . In all variants, payments need to be cal-
culated for at most |E| edges in constant time each. Thus, the runtime complexity is 
dominated by score updates.   ◻

Greedy algorithms are usually fast, but can lead to arbitrarily bad results com-
pared to an optimal solution for some problems. For instance, consider the three 
weight functions discussed above and a network as shown in Fig. 1. The network 
consists of n nodes v1,… , vn , two of which ( v1 and vn ) are terminals. The opti-
mal Steiner tree consists of only keeping edge (v1, vn) , but under DAA this edge is 
rejected first under all weight functions, forcing the algorithm to accept all other 
n − 1 edges in order to remain connected. This leads to an approximation ratio of 

Fig. 1  An example where DAA leads to an approximation ratio of (n − 1)∕2
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(n − 1)∕2 proving the impossibility of a constant-factor approximation ratio. It 
remains an open question whether there exists a weight function that allows for such 
an approximation ratio.

6  Experimental evaluation

In the following, we present a thorough analysis of the different mechanisms dis-
cussed in this paper. For the approximation mechanism based on Mehlhorn (1988) 
and the primal-dual algorithm of Goemans and Williamson (1995), we computed 
the payments as described in Sect. 4.2. For the former, we employed the payment 
scheme for distance-network-based approximation algorithms by Gualà Proi-
etti, and for the latter, we calculated the payments based on binary search. For the 
DAA, we use the threshold payments which are dynamically updated throughout 
the run of the algorithm as described in Sect. 5. Finally, we also included the Vick-
rey–Clarke–Groves mechanism as a baseline. We used the send-and-split method 
(Erickson et al. 1987) as implemented by Iwata and Shigemura (2018) to determine 
optimal solutions. All algorithms were implemented in Java. The experiments were 
executed on a laptop with Intel core i5-6600k (4 cores, 3.5 GHz) and 8GB RAM. We 
first describe the data set in Sect. 6.1 before we presenting our results in Sect. 6.2.

6.1  Data

Experiments are conducted on set I080 of the SteinLib Testdata Library (Koch et al. 
2000).1 Instances which are not 2-edge-connected are not considered since a monop-
oly edge would be worth infinite amounts of money. Thus, instances with names 
ending on 0x or 3x are not included. The remaining instances covered graphs with 4, 
8, 16, and 20 terminals and densities of 11, 20, and 100 percent (very sparse as well 
as complete graphs). For each combination of terminal and density, the SteinLib 
test set contained 5 instances, i.e. a total of 60 instances. In order to investigate the 
effect of a graph’s density on the performance of algorithms, we created additional 
instances with more diverse density values. Based on complete instances in I080, 
we created instances with densities between 0.3 and 0.9 (in increments of 0.1) by 
deleting edges randomly. For each combination of number of terminals and density, 
we generated 5 instances, for a total of 140 additional instances. Overall, we have an 
extensive set of 200 instances and 6 algorithms, resulting in 1200 experiments.

6.2  Results

Let us now summarize the results with respect to allocative efficiency, runtime, and 
revenue. We conclude this section with a short discussion of the results, comparing 
the different mechanisms.

1 http://stein lib.zib.de/shows et.php?I080.

http://steinlib.zib.de/showset.php?I080
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6.2.1  Allocative efficiency

In Fig. 2, we illustrate the efficiency of the five algorithms considered in our experi-
mental evaluation for different levels of density. For each level of density, we show 
the mean efficiency of the algorithm for 20 instances (5 instances each for 6, 8, 16, 
and 20 terminals). While the approximation algorithm by Robins and Zelikovsky 
(2005) is not monotonic and thus cannot be extended to an approximation mecha-
nism, it is still interesting to compare its allocation efficiency to the other algorithms 
in a complete information setting. Overall, DAAc and DAAa were the best perform-
ing algorithms and the scoring function based on the betweenness centrality came 
out to be the best scoring function for DAAs.

With a paired Wilcoxon rank-sum test, the differences in efficiency between MH 
and PD ( p = 0.059 ) were not significant at p < 0.0001 , while all other pairwise 
comparisons were significant at this level. We also analyze differences in efficiency 
using a linear regression with efficiency as dependent variable, the algorithm, the 
number of edges and terminals as covariates. With the DAAc as baseline, the dif-
ferences to this greedy algorithm were positive and significant at the following lev-
els: DAAw ( p < 0.0001 ), MH ( p < 0.0001 ), PD ( p < 0.0001 ), RZ ( p < 0.0001 ), and 
DAAa ( p < 0.01 ). The estimated coefficients further allow us to order the algorithm 
with respect to efficiency. Since we used the DAAc as the baseline and all estimated 
coefficients are positive, we see that this approach provides the best results. The 
DAAa (coefficient: 0.04) and the algorithm by Robins and Zelikovsky (coefficient: 
0.14) follow closely, while both Mehlhorn’s algorithm and the primal-dual approach 
exhibit a coefficient of 0.22. Finally, the DAAw has the highest coefficient of 0.92.

Let us now report averages for different subgroups of the experiments in more 
detail. The algorithm by Robins and Zelikovsky performs best for sparse instances, 
on average finding a solution only 25% worse than the optimum and even solutions 
as good as 1.01 times the optimum (instance I080-015 of SteinLib). Moreover, it 
performs well for complete graphs, too (1.3 approximation ratio). Mehlhorn’s algo-
rithm and the primal-dual algorithm achieve similar results (130–140% of the opti-
mum). The performance of these approximation algorithms gets slightly worse the 
denser the graph is.

Fig. 2  Average efficiency over all instances
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The performance of the DAA heavily depends on the scoring function. Using 
only the weight of an edge ce as a score, allocative efficiency is never better than 
1.48 times of the optimum, usually worse than 1.6 times of the optimum. It seems 
clear that without taking into account the structure of the graph, the greedy algo-
rithm employed in DAAw cannot compete with more sophisticated methods. Even in 
later stages of the DAA, edges are only selected based on their individual cost with-
out considering the possible paths this edge is a part of. DAAc (and especially, for 
smaller densities, DAAa ) generally provides better results on average than the more 
sophisticated approximation mechanisms. Only on very sparse instances, the algo-
rithm by Robins and Zelikovsky can keep up with the performance of the DAA vari-
ants DAAa and DAAc . If we use edge weight divided by number of adjacent edges as 
scoring function, DAAa performs better than the primal-dual algorithm for most sets 
of instances and even achieves results that are better than the results of the algorithm 
by Robins and Zelikovsky, except for the instances with 100 percent density.

The performance of DAAa decreases significantly between a 90 percent density 
and 100 percent density. We generated further instances, increasing the density by 
a single percentage point between 90 and 100 percent. The efficiency ratio steadily 
increases between 90 and 100 percent. While DAAa is equivalent to DAAw in the 
first stages in very dense graphs (since every edge has the same number of adja-
cent edges), this effect does not come into play except for very dense graphs. Over-
all, DAAa performs significantly better than DAAw (on a significance level of 0.1% ). 
Moreover, it can be seen that efficiency of DAAa and DAAc is nearly identical for 
sparse graphs and even up to a density level of 90 percent. In sparse graph, the num-
ber of possible paths between two nodes is more limited. Since an edge e with a 
lot of adjacent edges naturally allows for more paths (and hence also more shortest 
paths) to pass through e, the betweenness centrality of e is very dependent on its 
adjacent edges. Therefore, the DAAs with the corresponding scoring functions per-
form very similarly.

Figure  3 shows the average performance of the algorithms depending on the 
number of terminals (averaged over all densities, i.e. 50 instances per number of ter-
minals). It can be seen that performance of all DAA variants improves as the num-
ber of terminals grows. This is to be expected since a greedy-out procedure actually 
solves MST optimally and the Steiner minimum tree problem becomes more like the 
MST problem for an increasing number of terminals (in the limit, when all vertices 
are terminal, they are identical). In contrast, all other approximation algorithms per-
form worse the more terminals are present in the graph.

In the following, we discuss the efficiency of the algorithms for fixed number 
of terminals. Since results for 6 and 8 as well as for 16 and 20 terminals, respec-
tively, are very similar, we consider instances with a small number (6) and large 
number (20) of terminals. To improve readability, in the following we excluded 
DAAw from the graphs and discussion as it was performing worse than all other 
mechanisms, in general. For 6 terminals, the density appears not to have a signifi-
cant impact for MH, the primal-dual approach, and DAAa (Fig. 4). This can easily 
be seen by means of linear regression where the p-value of density is > 0.1 for all 
of them. The algorithm by Robins and Zelikovsky performs worse the denser the 
graph is ( p < 0.001 ), an effect easily observable in Fig. 4. In contrast, the DAAc 
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reveals favorable behavior if the graph is denser ( p < 0.01 ). We can clearly see 
that independent of the number of terminals, DAAa performs well for density lev-
els up to 90 percent and then becomes significantly worse for very dense graphs.

This is in line with the results for 20 terminals where the density leads to better 
efficiency of the DAAa for density values in [0.11, 0.9] ( p < 0.001).

Figures 4 and 5 show that the MH and PD find very similar solutions that are 
below 1.4 times the optimal solution. The denser the graph, the worse the solu-
tions these algorithms find. The algorithm by Robins and Zelikovsky finds even 
better solutions, but its performance decreases not only with increasing density 
but also as the number of terminals grows. Only for sparse instances with few ter-
minals, it finds more efficient solutions than the more sophisticated DAA variants. 
DAAa and the DAAc find similarly efficient solutions for sparse graphs, where no 
significant difference was observed. The solutions found by the DAAc are never 
worse than 1.09 times the optimum and in eight out of ten instances at most 6% 
worse than the optimal value for complete graphs with 16 or 20 terminals.

Fig. 3  Average efficiency 
depending on number of 
terminals

Fig. 4  Efficiency for 6 terminals



981

1 3

Strategyproof auction mechanisms for network procurement  

6.2.2  Runtime

In the following, we discuss the combined runtime required for the approximation 
mechanism to obtain both allocation and payments. Since the relative runtimes 
between mechanisms show a continuous pattern when incrementing the number of 
terminals and density, we only discuss extreme cases. Table 2 depicts the runtimes 
for the smallest and highest densities, as well as the smallest and largest numbers 
of terminals. Over all instances and densities, pairwise differences between two 
algorithms are significant at a level of p < 0.0001 using a Wilcoxon rank-sum test 
with the difference between the mechanism based on Mehlhorn’s algorithm and the 
DAAw being the only exception ( p = 0.026 ). All mechanisms are significantly dif-
ferent from VCG ( p < 0.0001 ). Our experiments show that MH, DAAw , and DAAA 
are the fastest group with PD following closely for instances with 6 or 8 terminals. 
Runtimes observed for the fastest group are lower than 4s on average on the set of 
instances with high numbers of both terminals and edges. Performance for lower 
numbers of terminals or edges is even better. Within the fastest group, the mecha-
nism by Mehlhorn takes less time on complete graphs but is usually outperformed 
by the faster DAA variants for sparse graphs with more than 6 terminals.

Arguably, the more advanced payment computation used within MH leads 
to faster completion than calculating prices for PD, although we observed higher 

Fig. 5  Efficiency for 20 terminals

Table 2  Runtime combined 
means (in seconds)

Density 6 Terminals 20 Terminals

11% 100% 11% 100%

MH 0.24 0.46 0.33 1.26
PD 0.28 3.14 1.93 12.97
DAA

w
0.33 2.55 0.14 2.52

DAA
a

0.71 3.03 0.28 3.25
DAA

c
5.82 109.11 4.50 95.14

VCG 2.05 1.80 67544.54 58556.20
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allocation runtime of the primal-dual algorithm when prices were not considered. 
The runtime required by all DAA variants is very dependent on the density of the 
graph, while it scales very well with the number of terminals. In our test instances, 
the computation time even slightly decreases with an increasing number of terminals 
in contrast to all other mechanisms. VCG in particular is very sensitive to higher 
number of terminals. Calculating exact solutions for minimum Steiner tree problems 
in the case of 20 terminals proved to be computationally inefficient, requiring a fac-
tor of up to 370.000 of the runtime as compared to the best performing DAA vari-
ants. Differences between the simpler scoring functions DAAw and DAAa are very 
small, while the calculation of betweenness centrality leads to higher runtimes for 
the DAAc.

6.2.3  Revenue

Table  3 shows the extreme cases with the lowest density and highest density as 
well as the lowest and largest number of terminals. We have decided on this type of 
report, because again the developments between the extremes are smooth. In gen-
eral, the payment increases with the number of terminals (since more edges need to 
be bought) and decreases with the density (since more competition between bidders 
allows for selecting cheaper options). The only exception is DAAa with 100 percent 
density due to the bad (and hence more expensive) outcome that is obtained by the 
algorithm. Overall, the payments are lowest for VCG and the more sophisticated 
approximation algorithms yield a lower payment than the DAA variants (except for 
DAAa for very sparse graphs).

The differences between DAAw and DAAc , MH and DAAw , MH and DAAc , PD 
and DAAw , PD and DAAc and VCG and all other algorithms are significant at a 
p < 0.0001 level using a Wilcoxon rank-sum test. The other pairs were not signifi-
cantly different at this level, and their revenues are close. A regression with the sum 
of payments as the dependent variable and the number of edges, the number of ter-
minals, and the algorithm as predictor variables shows that there are significant dif-
ferences in revenue among most mechanisms. With PD as a baseline, we find that 
this approach yields lower payments than DAAw ( p < 0.0001 ), DAAa ( p < 0.0001 ), 
and DAAa ( p < 0.0001 ). No significant difference to the payments computed for the 
mechanism based on Mehlhorn’s algorithm was found at this level. Using the VCG 

Table 3  Revenue combined 
means (in arbitrary bid’s 
currency)

Density 6 Terminals 20 Terminals

11% 100% 11% 100%

MH 2004.40 1496.00 6569.80 5580.00
PD 1920.40 1493.40 6654.80 5578.20
DAA

w
3376.60 2703.00 7393.60 6822.80

DAA
a

2152.27 2937.95 6133.26 9561.76
DAA

c
2735.85 2708.28 7404.98 6904.70

VCG 1644.80 1191.60 5078.80 4170.20
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mechanism as a baseline, all other algorithms yield significantly higher payments 
( p < 0.0001).

We also report results on the mean total utility calculated as the difference of total 
cost and total payments as percentage of total cost in Table 4. For MH and PD, the 
payments offered to winners of complete instances are low compared to their costs 
leading to low payoffs. For the DAAa and DAAc , sellers get a much higher payoff in 
all settings. The costs using the VCG mechanism are lowest.

Overall, we observe that the DAA mechanisms require significantly higher pay-
ments than VCG or the two approximation algorithms. While all of the mechanisms 
are strategy-proof, the allocation and payments are computed very differently. To 
see this, consider the example in Fig.  6 with two nodes A and B connected via a 
direct edge whose cost is $10. There is another path between these two nodes with 
9 edges with a cost of $1 each. With threshold payments in a DAA, each of the win-
ning edges gets $10 when the direct edge is removed, and the overall revenue of the 
bidders on the 9 winning edges is $90. With critical payments as they were used for 
MH and PD, the payments on each edge would be the maximum bid that would have 
still made the specific bidder winning (i.e., 2 − � ), and the resulting revenue would 
be less than $18.

7  Conclusions

In this paper, we showed which approximation algorithms can be extended to 
approximation mechanisms for the Steiner minimum tree problem with single-
minded bidders. We proved that the best known algorithm by Robins and Zeliko-
vsky violates monotonicity, a necessary condition for implementability. However, 

Fig. 6  An example where DAA leads to high payments

Table 4  Average seller utility 
(in % of their cost)

Density 6 Terminals 20 Terminals

11% 100% 11% 100%

MH 19.87 1.33 11.55 1.05
PD 15.15 1.25 12.64 1.02
DAA

w
2.65 1.69 2.71 1.45

DAA
a

22.46 70.41 22.01 106.54
DAA

c
46.22 103.66 48.08 65.70

VCG 13.65 1.85 12.51 6.00
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the algorithms by Mehlhorn (1988) and the primal-dual algorithm by Goemans and 
Williamson (1995) are monotonic and could be extended to strategyproof approxi-
mation mechanisms. Further, we designed a deferred-acceptance auction for the 
minimum Steiner tree problem and analyzed several scoring functions.

While the worst-case approximation ratio of deferred-acceptance auctions can 
be very low, the average-case solution quality is remarkably high, as shown in our 
numerical experiments. The results show that the group-strategyproof DAA with a 
scoring function based on betweenness centrality ( DAAc ) yields very high allocative 
efficiency at low computation times in most environments (characterized by density 
and the number of terminals). DAAa with a scoring function based on the number 
of adjacent edges performs similarly well (and even better for graphs with a higher 
number of terminals). Only for very dense graphs, the algorithm’s solution quality 
declines.

Obviously, in terms of allocative efficiency, the exact VCG mechanism is best, 
but runtime can be prohibitive as the number of terminals grows. The runtime of all 
other algorithms is less than two minutes even for the large instances. MH exhibits 
a very low runtime over all instances and lower payments than DAA variants. Its 
allocative efficiency is significantly worse than that of DAAa and DAAc except for 
very sparse graphs with a low number of terminals. Overall, DAAa has the best solu-
tion quality for density levels between 20 and 90 percent.

A number of questions are left for future research. The group-strategyproofness 
and the high average solution quality of the DAA variants come at the cost of higher 
payments for the buyer and higher profit for the sellers. This interesting trade-off for 
procurement managers requires further analysis to better understand which condi-
tions justify the additional payment.

Another extension is to consider cases where bidders not only provide single 
edges, but packages of multiple edges. Unfortunately, this extension towards multi-
dimensional mechanism design is far from trivial. One of the main problems is that 
bidders might not only lie about the cost of their edges but also about which edges 
they possess. This considerably complicates the construction of truthful mecha-
nisms, such that we cannot rely on critical payments and monotonicity any more. In 
general, the design of deterministic approximation mechanisms for hard computa-
tional problems with multi-minded bidders remains a challenge.
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Appendix: Approximation algorithms for the minimum Steiner tree

In Section  “Loss-contracting approximation: the algorithm by Robins and Zeliko-
vsky,” we discuss loss-contraction algorithms on the basis of the algorithm by Rob-
ins and Zelikovsky (2005), in Section “Distance-network-based approximations,” we 
consider distance-network-based approaches, and in Sect. 1, the approximation by a 
primal-dual algorithm.

Loss‑contracting approximation: the algorithm by Robins and Zelikovsky

Any Steiner tree S(G, K) of G is either a full Steiner tree, i.e., all its terminals are 
leaves, or can be decomposed into a forest of full Steiner subtrees (full components) 
by splitting all the non-leaf terminals (splitting a terminal results in two copies of the 
same terminal). The algorithm builds a MST on the subgraph GK induced by the ter-
minal set K and repeatedly adds full components to the temporary solution. In each 
iteration, full components are ranked according to their gain (by how much the com-
ponent improves the current temporary solution) divided by their loss (i.e. the cost 
committed by accepting a component or more precisely its Steiner points). After a 
full component is chosen, it is added to GK . The full component is also added to the 
temporary solution in loss-contracted form. This ensures that components which are 
in conflict with accepted ones are less appealing subsequent iterations. Finally, a 
MST is built on the union of GK and all chosen full components. By these means, the 
algorithm achieves an approximation ratio of 1.55 if k → ∞ and is computable in 
O(|K|k ⋅ |V − K|k−2 + k ⋅ |K|2k+1 log |K|) (Robins and Zelikovsky 2005).

A k-restricted full component F is a full component with k ≥ 3 terminals. By 
Cl[F] , we denote the loss-contracted full component of F. We define the gain and 
loss of a full component F formally and then describe the execution of Algorithm 2.

Definition 5 (Gain and Loss of a Full Component (Robins and Zelikovsky 2005)) 
Let T be a tree spanning K and F be an arbitrary full component of G given K.

Let T[F] be a minimum cost graph in F ∪ T  which contains F completely and 
spans all terminals in K. This means T[F] is the result of replacing a part of the tree 
T with the full component F.

Then, the Gain of F w.r.t. T is the cost difference between T and T[F]:

The loss of F is a minimum-cost subforest of F containing a path from each Steiner 
point in F to one of its terminals: Loss(Ft) = MST

(
Ft ∪ E0(Ft)

)
�E0(Ft) , where 

E0(F) denotes a complete graph containing all terminals of F, with all edge costs 
being 0. It follows that

gainT (F) = cost(T) − cost(T[F])

loss(F) = cost
(
MST

(
F ∪ E0(F)

)
�E0(F)

)
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Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V , an integer k with
3 ≤ k ≤ |K|

Result: A k-restricted Steiner tree S(G) in G spanning K.
1 Compute GV and GK

2 T = MST(GK)
3 repeat
4 Find a k-restricted full component F maximizing
5 r = gainT (F )/loss(F )
6 GK = GK ∪ F
7 T = MST(T ∪ Cl[F ])
8 until r ≤ 0;
9 S(G,K) = MST(GK)

10 Replace artificial edges in S(G,K)
11 Cut Steiner point leaves of S(G,K)
12 return S(G,K)

Algorithm 2: Approximation Allocation Algorithm ARZ

The algorithm starts by computing GV , its subgraph GK (Line 1) and the MST on 
GK (Line 2). Afterwards, the gain-over-loss ratios for all k-restricted full components 
are computed. It is sufficient to consider k-restricted full components consisting of k 
terminals and between 1 and k − 2 Steiner points since every component is uniquely 
identified by its Steiner points of degree larger than 2 (Fig. 7a). Note that the gain of 
a full component F is dependent on T, while the loss is not. After choosing the full 
component with the highest gain-over-loss ratio, the selected component is added to 
GK (Line 6). The component is also added to T in loss-contracted form Cl[F] (Line 
7).

To contract the loss of a full component F, we merge every connected tree of the 
forest Loss(F) into a single vertex, the respective terminal of the component. Two 
terminals are connected in Cl[F] if their respective components in Loss(F) have an 

(a) (b) (c)

Fig. 7  Full components
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adjacent edge in F (Fig. 7b) and the cost of the edge in Cl[F] is equal to the cost of 
the respective edge in F (Fig. 7c).

After Cl[F] was added to T, an MST is built on T ∪ Cl[F] . By improving T, the 
gain-over-loss ratio for the remaining full components is decreasing. Eventually, 
all components will have a gain-over-loss ratio of at most zero. At this point, the 
algorithm computes the MST(GK) (Line 9), transforms all its artificial edges back 
into original edges, i.e. replaces artificial edges by the respective shortest path, 
and cuts leaves which are Steiner points (Line 11).

Proposition 5 Allocation algorithm ARZ is not monotonic.

Proof The proof is by counter example. Consider graph G (Fig.  8) with termi-
nal set K = {v1, v2, v4, v5, v6, v7, v9, v11} (round nodes) and the non-terminals 
{v3, v8, v10, v12, v13} (rectangular nodes). The owner of e = {v4, v13} bids 3.15.

The computed solution of cost 22.85 can be seen in Fig. 9a. Note that e = {v4, v13} 
is part of the solution.

Fig. 8  G 

(a) (b)

Fig. 9  RZ: solutions a solution for G where the owner of {V4,V13} bids 3.15 b solution for G′ where the 
owner of {V4,V13} bids 3.11
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However, if the owner of e reduces her bid to 3.11, the solution does not include 
e any more (Fig. 9b). Thus, monotonicity is violated and we cannot hope to achieve 
strategyproofness by using a critical payment scheme.   ◻

So, the algorithm by Robins and Zelikovsky (2005) based on loss-contraction 
cannot easily be extended to a strategyproof mechanism. Let us next analyze approx-
imation algorithms based on the distance network.

Distance‑network‑based approximations

Similarly to the loss-contracting approximation, the general idea of distance-net-
work-based approximation algorithms is to build a MST on a complete subgraph GK 
in the first phase. In the second phase, edges (shortest paths) in the MST are decom-
posed into edges in E, and a MST is computed on the resulting graph to remove 
possible cycles. Finally, in the third phase, non-terminal leaves are deleted. This 
algorithm was proposed by Kou et al. and runs in O(|K||V|2) . However, due to the 
cycles that can occur in the first phase, this standard variant is not monotonic. To 
see this, consider the graph G in Fig. 10 with its relevant edges of the respective dis-
tance network GK . If the bid for e = {v9, v10} is 4, e is part of the solution (Fig. 11a). 
However, if the bid was only 3, e might be removed from the solution (Fig. 11b). 
Hence, monotonicity is violated.

(a) (b)

Fig. 10  G and distance network G
K

(a) (b)

Fig. 11  MST-based solutions. a Solution for G where the owner of {V9,V10} bids 4 b solution for G 
where the owner of {v9, v10} bids 3
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Gualà and Proietti (2005) change the algorithm in its second phase when the 
MST on the subgraph GK is replaced by the corresponding shortest paths. Instead 
of adding all shortest paths and afterwards calculating the MST on the result-
ing graph to remove the cycles, in the extended algorithm the shortest paths 
are inserted iteratively in a way such that no cycles are introduced. The authors 
show that such an acyclic expansion is always possible. The resulting algorithm 
requires a runtime of O((|V| + |K|2)|E| ⋅ log �(|E|, |V|)) where �(., .) is the clas-
sic inverse of the Ackermann’s function as defined in Tarjan (1982) and yields a 
2(1 − 1∕|K|)-approximation.

Mehlhorn (1988) designed an algorithm which differs in phase 1. Here, the 
algorithm first partitions G into Voronoi regions, which are then utilized to con-
struct a subgraph of GK , called G . It then proceeds with phase 2 and phase 3 as 
described above. This leads to a worst case runtime of O(|V| log |V| + |E|) and 
achieves an approximation ratio of 2(1 − 1∕l) where l is the minimal number of 
leaves in any minimum Steiner tree (which is naturally bounded above by the 
number of terminals). In the following, we discuss Mehlhorn’s algorithm and 
show that the allocation is monotonic. Hence, the algorithm is also suitable to 
be extended to an approximation mechanism with a slightly better runtime and 
approximation ratio than other algorithms based on distance-network-based 
approximation algorithms.

Definition 6 (Voronoi Regions V(s) ) Given a general graph G = (V ,E, b) and the 
set of terminals K ⊆ V  , the Voronoi region V(s) of a terminal s ∈ K contains all ver-
tices v ∈ V  for which the shortest path sp(s, v) ≤ sp(t, v) for all t ∈ K . We break ties 
randomly, such that each vertex v uniquely belongs to one such region.

Definition 7 (Distance network based on V ) Let Ḡ = (K,EḠ, bḠ) be the distance 
network with edges and weights as follows:

Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V
Result: A Steiner tree S(G,K) in G spanning K

1 Compute Voronoi regions of G and generate Ḡ;
2 S(G,K) = MST(Ḡ)
3 Replace artificial edges in S(G,K)
4 Cut non-terminal leaves of S(G,K)

return S(G,K)

Algorithm 3: Approximation Allocation Algorithm AMH

(s, t) ∈ EḠ ⇔ ∃ (u, v) ∈ E such that u ∈ V(s) and v ∈ V(t)

bḠ(s, t) = min{sp(s, u) + b(u, v) + sp(v, t) ∶ u ∈ V(s), v ∈ V(t), (u, v) ∈ E}
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Similar to the algorithm by Gualà and Proietti (2005), the algorithm by Mehlhorn is 
also monotonic.

Proposition 6 The allocation of Mehlhorn’s algorithm is monotonic.

Proof Suppose there is a graph G, an allocation A computed by Mehlhorn’s algo-
rithm and an edge e ∈ A . Further assume that the owner of e lowers her bid. Reduc-
ing a bid for an edge e can only mean that e is now part of at least as many shortest 
paths as before. In general, this may change the allocation. However, only shortest 
paths which contain e are cheaper after the changed bid. Hence, e will remain part of 
the solution even though it might be chosen in another path. It remains to be shown 
that a changed allocation cannot lead to cycles in the solution and thus to the pos-
sible exclusion of e.

Suppose there is a cycle between two Voronoi regions. This would mean that two 
paths between the respective regions have been chosen. Since an MST is built on the 
subgraph induced by the Voronoi regions, this can never happen during Mehlhorn’s 
algorithm. A similar argument holds for cycles in more than two Voronoi regions. 
Finally, there can be no cycles inside a single Voronoi region (by definition). Since 
no cycle can occur, no edge that has been added to the solution will be removed 
from the solution at a later point and therefore e is in the final solution. Thus, the 
allocation computed by Mehlhorn’s algorithm is monotonic.   ◻

Primal‑dual approximation algorithms

This section describes the general approach for primal-dual approximations and the 
approximation algorithm for the minimum Steiner tree problem by Goemans and Wil-
liamson (1995) which requires a runtime of O(|V|2 log |V|) and also has an approxima-
tion ratio of 2.

Many problems in graph theory can be reduced to the hitting set problem. For a 
ground-set E with cost ce ≥ 0 for every element e ∈ E and subsets T1, T2 …Tn ⊆ E , 
the hitting set problem is to find a subset A ⊆ E of minimal cost such that A ∩ Ti ≠ � 
for all subsets i = {1,… n} . The primal integer program for the hitting set problem can 
be formulated as follows:

To obtain the relaxation, simply the constraint xe ∈ {0, 1} needs to be relaxed to 
xe ≥ 0 . The corresponding dual program is stated below:

Min
∑
e∈E

cexe

subject to
∑
e∈Ti

xe ≥ 1, ∀i

xe ∈ {0, 1}.
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To obtain an �-approximation, we compute a solution x to the primal integer pro-
gram and a solution y to the dual of the relaxed primal program such that ∑
e∈E

cexe ≤ �
n∑
i=1

yi.

Data: ground-set E, subsets T1, T2, . . . Tn ⊆ E
Result: allocation A

1 y = 0 ∀y
2 A = ∅
3 while A not feasible do
4 Find violated Tk (Tk ∩A = ∅)
5 Increase yk until ∃e ∈ Tk s.t.

∑
i:e∈Ti

yi = ce

6 A = A ∪ {e}
7 end
8 return A

Algorithm 4: Approximation Algorithm for the hitting set problem

Algorithm 4 describes the necessary steps to compute A. During the initializa-
tion, A is empty and all dual variables y are set to 0. In each iteration, a violated set 
Tk is chosen. Afterwards, the corresponding dual variable yk is increased (loaded) 
until one of the constraints holds with equality (it goes “tight,” Line 5). The corre-
sponding element e is then added to the solution. If the allocation A is feasible, the 
algorithm stops and returns A.

Mapping the hitting set problem to the minimum Steiner tree problem is straight-
forward: The ground-set is given by the edges E of the graph and ce is the cost of the 
respective edge e ∈ E . Let Si be a subset of vertices that contains at least one, but 
not all terminals, i.e. a cut. When all cuts are crossed, the solution is a feasible allo-
cation for the minimum Steiner tree problem. By definition, the edges adjacent to 
exactly one vertex v ∈ Si are the edges crossing the cut Si . Let �(Si) denote the set of 
these edges. Let Ti = �(Si) . The adapted algorithm can be seen below (Algorithm 5). 
It achieves an approximation ratio of 2 (Goemans and Williamson 1995).

Max
∑
i

yi

subject to
∑
i∶e∈Ti

yi ≤ ce, ∀e ∈ E

yi ≥ 0, ∀i.
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Data: 2-connected graph G = (V,E, b), terminal set K ⊆ V
Result: A Steiner tree S(G) in G spanning K

1 y = 0 ∀y
2 A0 = ∅
3 i = 0
4 while Ai not feasible do
5 Choose violated sets U
6 Increase yk uniformly for all Tk ∈ U until ∃ei �∈ Ai s.t.

∑
i:ei∈Ti

yi = cei

7 Ai = Ai ∪ {ei}
8 i = i+ 1
9 end

10 A′ = Ai−1
11 for i; i ≥ 0; i = i− 1 do
12 if A′ \ {eti} still feasible then
13 A′ = A′ \ {eti}
14 end
15 end

Algorithm 5: Approximation Allocation Algorithm APD

Two modifications can be seen in Algorithm 5 in comparison with the basic 
primal-dual algorithm (Algorithm  4). Firstly, load is not increased on one, but 
multiple (minimal) unsatisfied components Tk ∈ U  . U  contains all Tk that are 
unsatisfied and minimal, i.e. there is no unsatisfied set Tj with Tj ⊂ Tk . Secondly, 
after computing the allocation A a reverse deletion is conducted. In this phase, 
edges are assessed in regard to their necessity in reversed order (LIFO). Unneces-
sary edges either connect a Steiner point as a leaf or close a cycle. In either case, 
the edge is not contributing to the solution (apart from inflicting costs).

Proposition 7 The allocation of the primal-dual based minimum Steiner tree 
approximation is monotonic.

Proof Suppose there is a graph G, an allocation A computed by the primal-dual 
approximation algorithm for Steiner trees and an edge e ∈ A whose cost has been 
truthfully stated by its owner. Further assume that the owner of e lowers her bid to 
c′
e
 . Due to the lower cost, e can go tight only sooner. Since e was part of the first 

allocation, we know that conflicting edges have been removed before e was candi-
date for removal. Since e is now cheaper and was thus added to the solution earlier 
or at the same point, it still is considered for removal later than the conflicting edges. 
Hence, when e is assessed for necessity, the conflicting edges have already been 
removed. The allocation computed by the primal-dual approximation algorithm for 
Steiner trees is thus monotonic.   ◻
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