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Abstract
In this paper, we study event-based mixed-integer programming (MIP) formulations for the resource-constrained project
scheduling problem (RCPSP) that represent an alternative to the more common time-indexed model (DDT) (Pritsker et al. in
Manag Sci 16(1):93–108, 1969; Christofides et al. in Eur J Oper Res 29(3):262–273, 1987) for the case when the scheduling
horizon is large. In contrast to time-indexed models, the size of event-based models does not depend on the time horizon.
For two event-based models OOE and SEE introduced by Koné et al. (Comput Oper Res 38(1):3–13, 2011), we first present
new valid inequalities that strengthen the original formulation. Furthermore, we state a new event-based model, the Interval
Event-Based Model (IEE), and deduce natural linear transformations between all three models. Those transformations yield
the strict domination order I E E � SE E � O O E for their respective linear programming relaxations, meaning that the new
IEE model has the strongest linear relaxation among all known event-based models. In addition, we show that DDT can be
retrieved from IEE by subsequent expansion and projection of the underlying solution space. This yields a unified polyhedral
view on a complete branch of MIP models for the RCPSP. Finally, we also compare the computational performance between
all models on common test instances of the PSPLIB (Kolisch and Sprecher in Eur J Oper Res 96(1):205–216, 1997).

Keywords Scheduling · Resource-constrained project scheduling · Mixed-integer programming · Polyhedral study ·
Event-based models · Affine transformations

1 Introduction

In the RCPSP, we are given a set of jobs J = {1, . . . , n}
where every job j must be processed without interruption
for p j time units. Moreover, we are given a set of renewable
resources R where each resource k is given a capacity Rk .
Every job j additionally has a resource demand of r jk units
of resource k that is consumed only during the execution of
job j . Naturally, we assume that r jk ≤ Rk for all jobs j and
resources k. Furthermore, there are precedence constraints
P ⊆ J ×J where (i, j) ∈ P indicates that job i must have
finished before job j starts. The RCPSP aims to compute
a feasible schedule, that is, start times S j for every job j ,
such that the precedence constraints are satisfied and the total
resource demandof each resource at any timedoes not exceed
the available capacity. The objective is to compute a schedule
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ofminimum completion timeCmax = max j∈J (S j + p j ) that
is commonly denoted as the makespan. More formally, the
RCPSP can be described as follows:

min Cmax

S j + p j ≤ Cmax ∀ j ∈ J (1)
∑

j∈J :S j ≤t<S j +p j

r jk ≤ Rk ∀t ∈ [0, T ], k ∈ R (2)

Si + pi ≤ S j ∀(i, j) ∈ P (3)

S j ≥ 0 ∀ j ∈ J

where T is an arbitrary upper bound on the makespan. In the
next section, we give a brief overview on existing work for
the RCPSP.

1.1 Previous work

The RCPSP constitutes a fundamental problem in the field
of discrete optimization because it subsumes and combines
various hard problems, such as partition, packing and color-
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ing, into one common optimization problem. It has extensive
applications in project planning, production industry, supply
chain management, logistics and health care, see, for exam-
ple, Artigues et al. (2013), Cardoen et al. (2010) andWeglarz
(2012). Exact solution methods for the RCPSP, in its general
form, exist since the late 1960s with a first work of John-
son (1967) who proposes a branch-and-bound algorithm for
the RCPSP. Until today, much research has been invested
into solving the RCPSP, its variants and extensions, see,
for example, Herroelen et al. (1998), Brucker et al. (1999),
Stork (2001), Kolisch and Hartmann (2006), Hartmann and
Briskorn (2010).

The RCPSP is also one of the computationally most chal-
lenging combinatorial optimization problems and, in general,
very hard to solve to optimality. One branch of research
studies different MIP models for the RCPSP where each
model has its particular strengths and weaknesses. In gen-
eral, one can distinguish the following MIP model types for
the RCPSP: time-indexed, disjunctive and event-based mod-
els. In the following, we give a brief introduction to each
model type.

Time-indexed models One of the first mathematical pro-
gramming formulations for the RCPSPwas given by Pritsker
et al. (1969). In this model, the scheduling horizon is divided
into discrete time steps T = {0, . . . , T }where decision vari-
ables determine the start time of every job in T . Christofides
et al. (1987) improve their model by stronger precedence
constraints. The resulting model is often denoted as the time-
indexed model (DDT). In its core, DDT is still very popular
today for modeling the RCPSP and related problems because
it provides a decently strong linear relaxation and can be
solved quickly on instances of moderate size, see, for exam-
ple, Bianco and Caramia (2013). Several approaches have
been made for improving the basic DDT formulation, for
example, by extended formulations (Mingozzi et al. 1998),
fast lower bounds frommin-cut computations (Möhring et al.
2003), strong cover cuts (Hardin et al. 2008) and non-singular
transformations (Artigues 2017). The basic modeling idea of
DDT can also be transferred to other variants of the RCPSP
such as the multi-mode case (Zhu et al. 2006) and for flexi-
ble resource profiles (Naber and Kolisch 2014). Despite the
good general performance of DDT, the main drawback is
that the model size scales with the scheduling horizon T .
Thus, for problems where T is large, DDT becomes compu-
tationally intractable. This motivates to study models whose
size is strongly polynomial in the number of jobs, such as
event-based models.

Disjunctive models Alternatively, the RCPSP can be mod-
eled explicitly by start time variables S j for every job j . In
thismodel, resource conflicts are settled bydecision variables
that enforce disjunctions of precedence constraints of either
Si +pi ≤ S j or S j +p j ≤ Si between two jobs i, j .Olaguibel

andGoerlich (1993) study an exponentialmodel that requires
such a disjunction for at least two jobs in every incompat-
ible job set whose jobs cannot all be scheduled in parallel.
Artigues et al. (2003) overcome the exponential number of
inequalities by a continuous resource flowextension that gen-
erates the precedence between the jobs and finally leads to
a compact formulation. In both models, disjunctions are for-
mulated by ‘big-M’ inequalities that lead to very weak linear
relaxations. Therefore, disjunctive models are not preferred
for instances that contain many jobs.

Event-based models Similar to positional assignment for-
mulations for single machine scheduling (Lasserre and
Queyranne 1992; Queyranne and Schulz 1994), in which
every job gets assigned a position in the single machine
sequence, Zapata et al. (2008) use a similar event-based
modeling concept to solve the multi-mode RCPSP. As for
positional assignments, event-based models assign a start
event (or position) to every job but, in contrast, they also
assign an end event for every job since jobs may run in par-
allel. Additional continuous time variables describe the time
when an event occurs. Since every job starts and ends exactly
once, at most 2n events need to be considered that finally
leads to a compact formulation. Koné et al. (2011) revis-
ited this event-based modeling concept and introduced two
newmodels OOE and SEE for the standard RCPSP. Notably,
event-based models do not involve as large constants as the
disjunctive models. However, all known event-based models
still suffer from weak linear relaxations, but they represent
the overall best alternative to DDTwhen the scheduling hori-
zon becomes large.

Other exact solving methods Several other exact solving
approaches exist for the RCPSP, mainly of the branch-
and-bound type, see, for example, Brucker et al. (1998),
Christofides et al. (1987), Demeulemeester and Herroelen
(1997), Dorndorf et al. (2000), Heilmann (2003), De Reyck
and Herroelen (1998), Sprecher and Drexl (1998), Zhu et al.
(2006). These algorithms primarily differ in their branching
rules, branching order, dominance rules, domain propagation
and considered lower bounds. More recently, constraint pro-
gramming (CP) is used to solve the RCPSP that combines
branch-and-bound with strong filtering algorithms (Vilim
2011; Baptiste et al. 2012; Tesch 2018) and lazy clause gen-
eration (Schutt et al. 2013).

1.2 Contribution

In this paper, we investigate the polyhedral relationships
between the event-basedmodels and the time-indexedmodel.
First, we revisit the models OOE and SEE of Koné et al.
(2011), propose stronger valid inequalities and discuss the
impact on their LP-relaxations. Moreover, we introduce a
new event-based model that we call the Interval Event-
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Based Model (IEE) which generalizes the modeling ideas of
OOE and SEE. In particular, we reveal linear transformations
between all three models OOE, SEE and IEE from which we
deduce the strict domination order I E E � SE E � O O E
for their linear programming relaxations, meaning that IEE
has the strongest LP-relaxation followed by SEE and OOE.
Nevertheless, we show that the integrality gap of IEE (thus
for OOE and SEE) is unbounded in general. Next, we inves-
tigate the polyhedral relationship between the event-based
models and the time-indexed model. We show that DDT can
be constructed by subsequent expansion and projection of
the solution space of IEE.

In total, this yields a unified view on the whole class of
event-based and time-indexedmodels for theRCPSP. Finally,
we propose additional preprocessing steps to improve upon
the computational performance of all presented models on
RCPSP instances of the well-known PSPLIB test library
(Kolisch and Sprecher 1997). With this work, we hope to
shed some light on the polyhedral properties and relation-
ships between some of the many formulations for the RCPSP
that exist until now.

1.3 Outline

Our paper is organized as follows. Sections 2 and 3 examine
the models OOE and SEE of Koné et al. (2011) and their
mutual polyhedral relationship. In Sect. 4, we introduce the
new Interval Event-Based Model (IEE) and study its relation-
ship toOOE, SEE andDDT. In Sect. 5, we propose additional
preprocessing steps to improve upon the solving time of the
event-based models. In Sect. 6, we finally compare the com-
putational performance of the presented models and draw a
conclusion in Sect. 7.

2 On–off event-basedmodel

In event-based models, we are given a discrete set of events
E = {1, . . . , n} where each event e is represented by a time
variable te at which jobs can start and end, respectively.
Events appear sequentially, that is, te ≤ te+1 holds for every
event e where the makespan is modeled by a dummy event
at tn+1. Every job has to be assigned one start and one end
event. If job j starts at event e and ends at event f , this
implies S j = te and S j + p j ≤ t f . The second implication
allows us to restrict to only n start events. In general, the
assignment of jobs to start and end events can be done in dif-
ferent ways that will ultimately lead to different event-based
formulations. In this section, we consider the first modeling
variant with on–off assignments.

In the On–Off Event-Based Model (OOE) of Koné et al.
(2011), we determine whether some job is active at an event
(on) or not (off). A job j is active at event e, if it is processed

during the time interval [te, te+1). Let u je ∈ {0, 1} be a deci-
sion variable with u je = 1 if and only if job j is active at
event e and u je = 0 otherwise. For convenience, we also
define u j0 = u jn+1 = 0 for all jobs j ∈ J . In addition, let

A = {(e, f ) ∈ E × E ∪ {n + 1} : e < f }

denote the set of consecutive event pairs. The OOE model
can then be stated as follows:

min tn+1∑

e∈E
u je ≥ 1 ∀ j ∈ J (4)

∑

j∈J
r jk · u je ≤ Rk ∀k ∈ R, e ∈ E (5)

te + p j · (u je − u je−1 + u j f −1 − u j f − 1) ≤ t f

∀ j ∈ J , (e, f ) ∈ A (6)
∑

e′<e

u je′ ≤ (e − 1) · (1 − u je + u je−1)

∀ j ∈ J , e ∈ E (7)
∑

e′≥e

u je′ ≤ (n − e + 1) · (1 + u je − u je−1)

∀ j ∈ J , e ∈ E (8)
∑

e′≤e

u je′ ≤ e · (1 − uie) ∀(i, j) ∈ P, e ∈ E (9)

te ≤ te+1 ∀e ∈ E (10)

te ≥ 0 ∀e ∈ E ∪ {n + 1}
u je ∈ {0, 1} ∀ j ∈ J , e ∈ E .

The objective function minimizes the makespan. Inequali-
ties (4) ensure that every job j is active for at least one event.
Inequalities (5) indicate that the total resource consumption at
every event must not exceed the resource capacities. Notably,
job j starts at event e if and only if u je − u je−1 = 1 and
j ends at event f if and only if u j f −1 − u j f = 1. Hence,
inequalities (6) imply that if job j starts at event e and ends at
event f , then te + p j ≤ t f must hold. Inequalities (7) and (8)
model the non-preemption of the jobs, that is, if job j starts at
event e, then it cannot be active at an event e′ ∈ {1, . . . , e−1}.
Similarly, if job j ends at event f , then it cannot be active at
an event e′ ∈ { f , . . . , n}. Inequalities (9) require for every
precedence pair (i, j) ∈ P that if job i is active at event e,
then job j cannot be active at an event e′ ∈ {1, . . . , e}. Finally,
inequalities (10) state that all events appear sequentially. In
total,OOEhasn2 binary variables andO(n·(|R|+|A|+|P|))
constraints where |A| = 1

2 · n · (n + 1) ∈ O(n2).
In the following, we introduce stronger inequalities for

OOE and discuss their impact on the LP-relaxation.
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2.1 Valid inequalities

We propose stronger non-preemptive, start–end time and
precedence inequalities.

2.1.1 Non-preemptive inequalities

Lemma 1 The following non-preemptive inequalities

u je − u j f + u jg ≤ 1

∀ j ∈ J , e, f , g ∈ E : e < f < g (11)

dominate inequalities (7) and (8).

Proof Inequalities (11) indicate that if job j is active at two
events e and g with e < g, then j must also be active at all
events f with e < f < g, so inequalities (11) are valid. Let
j ∈ J and f , g ∈ E be given with f = g − 1. Summing
up inequalities (11) for e′ = 1, . . . , g − 2 and adding the
trivially valid inequality u jg = u jg−1 − u jg−1 + u jg ≤ 1
yield

∑

e′<g

u je′ + (g − 1) · (−u jg−1 + u jg) ≤ (g − 1)

which is equivalent to (7).Next, let f ∈ E with e = f −1 then
summing up inequalities (11) for all g′ = f + 1, . . . , n and
adding the trivial inequality u j f −1 = u j f −u j f +u j f −1 ≤ 1
yield

∑

g′≥ f

u jg′ + (n − f + 1) · (−u j f + u j f −1) ≤ (n − f + 1)

which is equivalent to (8). This shows the lemma. 
�
While there are 2n2 inequalities of the form (7) and (8), there
aren·(n

3

)
inequalities of the stronger form (11), so the stronger

form implies a factor of O(n2) additional constraints. How-
ever, one can see that even the stronger inequalities (11) are
weak in a polyhedral sense which already indicates that mod-
eling non-preemption in OOE only allows for weak linear
relaxations.

Recently, Nattaf et al. (2017) propose the following gen-
eralization of inequalities (11) by extending them to all event
subsets of odd cardinality:

2l∑

q=0

(−1)q · u jeq ≤ 1 ∀ j ∈ J , {e0, . . . , e2l} ⊆ E . (12)

Notably, they show that inequalities (12) yield a complete
description of the integer polytope that restricts to the non-
preemptive inequalities (7), (8). They even showed that the

associated separation problem can be solved in strongly poly-
nomial time which makes these cuts very interesting to use
inside an LP-based branch-and-bound algorithm. In the LP-
relaxation, however, inequalities (12) do not affect the LP
bound, as we will show in Sect. 2.2. Therefore, we believe
that those inequalities only become tight after the ‘right’
branching decisions have been made. In our implementa-
tion, we focus on reducing the model size and state the
non-preemptive constraints with as few inequalities as pos-
sible, for example, by taking only inequalities (7).

2.1.2 Start time inequalities

Lemma 2 The following start time inequalities

te + p j · (u j f − u je − u jg) ≤ tg

∀ j ∈ J , e, f , g ∈ E ∪ {0, n + 1} : e < f < g (13)

dominate inequalities (6).

Proof Inequalities (13) state that if job j is active at event
f but inactive at events e and g with e < f < g, then
te + p j ≤ tg must hold which is valid. Since u jg−1 ≤ 1, we
obtain

p j · (u jg−1 − u j f −1 − u jg + u j f − 1)

≤ p j · (u j f − u j f −1 − u jg) ≤ tg − t f

for all jobs j ∈ J and events f , g ∈ E with f < g. The last
inequality follows from (13) for e = f − 1. 
�
Again, the stronger versionhas a factor ofO(n)more inequal-
ities and we observe that the stronger inequalities are also
not very strong in a polyhedral sense. Since the start time
inequalities have a great impact on the dual bound (tn+1 is
determined by these inequalities), it suggests that the linear
relaxation of OOE is weak in general. We confirm our suspi-
cion with a more detailed analysis on the dual bound of OOE
in Sect. 2.2.

2.1.3 Precedence inequalities

Lemma 3 The following precedence inequalities

u je′ + uie ≤ 1 ∀(i, j) ∈ P, e′, e ∈ E : e′ ≤ e (14)

dominate inequalities (9).

Proof Inequalities (14) state that for every precedence pair
(i, j) ∈ P , an assignment of job j to an event earlier or equal
to an assigned event of job i is forbidden. For somefixed event
e ∈ E summing up inequalities (14) for all e′ = 1, . . . , e, we
get

∑e
e′=1 u je′ + e · uie ≤ e which is equivalent to (9). This

shows the lemma. 
�
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The stable set structure of these inequalities suggests a
generalization by takingwhole paths in the precedence graph.
Therefore, define the precedence digraph as G = (J ,P) and
let π = { j1, . . . , jm} be a directed path in G. Moreover, let
E ′ = {e1, . . . , em} ⊆ E be a subset of events with eq ≥
eq+1 for all 1 ≤ q < m. By similar arguments, consider the
inequality

m∑

q=1

u jq eq ≤ 1

∀{e1, . . . , em} ⊆ E : eq ≥ eq+1, 1 ≤ q < m (15)

which excludes any invalid assignment of jobs in π to
events in {e1, . . . , em}. Similar to Nattaf et al. (2017), we
can state a separation algorithm for inequalities (15). In
order to compute a maximally violated inequality of (15)
for a given feasible LP solution u∗ of OOE, we need to
find a path π = { j1, . . . , jm} in G and a subset of events
{e1, . . . , em} ⊆ E with eq+1 ≥ eq for q = 1, . . . , m − 1
such that

∑m
q=1 u∗

jq eq
> 1. This can be done as follows. We

create a node for every job–event pair ( j, e), and we add an
arcs from a node (i, f ) to node ( j, e) of length u∗

i f if and
only if (i, j) ∈ P and f > e. Furthermore, we create a
source node and link it to every other node ( j, e) by an arc
of length u∗

je. Similarly, we create a sink node and link it
to every other node ( j, e) by an arc of length zero. A maxi-
mally violated inequality of (15) can be found by computing
a longest path from the source node to the sink node whose
nodes ( j, e) correspond to the variables u∗

je in the inequality.
Since the underlying graph is acyclic, the algorithm can be
implemented in O(|P| · n2).

Even though inequalities (15) provide a theoretically
stronger LP-relaxation, they do not improve the LP bound
as given in the next section. For this reason, we do not use
these inequalities in our computational results.

2.2 LP-relaxation

In this section, we examine the quality of the LP-relaxation
of OOE.

Proposition 1 The LP-relaxation of OOE has an optimal
objective value of zero, even if all stronger inequalities (12),
(13) and (15) are included.

Proof We will construct a feasible LP solution of OOE
including inequalities (12), (13) and (15) with objective
value zero. Define a solution of OOE by u je = 1

n for all
j ∈ J , e ∈ E and te = 0 for all e ∈ E ∪ {n + 1}. All
other variables are assumed to be zero. We show that u is
LP-feasible by showing that it satisfies every inequality of

SEE. For the assignment constraints (4), we have

∑

e∈E
u je = 1 ≥ 1

for every job j ∈ J . The resource constraints (5) satisfy

∑

j∈J
r jk · u je =

∑

j∈J
r jk · 1

n
≤ Rk

for all k ∈ R and e ∈ E where the last inequality holds
because otherwise r jk > Rk for at least one job j ∈ J
and resource k ∈ R which is infeasible. Moreover, for the
stronger start time inequalities (13), we get

p j · (z j f − z je − z jg) ≤ 0 = tg − te

for all j ∈ J and e, f , g ∈ E ∪ {0, n + 1} with e < f < g.
The stronger non-preemptive inequalities (12) satisfy

2l∑

q=0

(−1)q · u jeq = 1

n
≤ 1

for every j ∈ J and event set {e0, . . . , e2l} ⊆ E . Finally, for
the stronger precedence constraints (15), we get

m∑

q=1

u jq eq = m

n
≤ 1

for any path π = { j1, . . . , jm} in the precedence graph G
and any subset {e1, . . . , em} ⊆ E with eq ≥ eq+1 for all
q = 1, . . . , m − 1. Hence, the solution is feasible and has
objective value tn+1 = 0. This shows the proposition. 
�
Corollary 1 The integrality gap of OOE is unbounded.

Despite our strengthening efforts, we believe that it is
not possible to substantially improve upon the general LP-
relaxation of OOE. Therefore, OOE appears to be weak from
a pure polyhedral perspective. We believe that the benefit of
OOE lies rather in its small model size than in the strength of
the formulation. Hence, our computational results consider
the sparsest possible variant of OOE given by inequali-
ties (4)–(7) and (9). Compared to the other models, OOE
has the smallest number of variables, so we can still hope
to achieve good computational results by applying a modern
MIP solver that performs clever branching, see Sect. 6.

3 Start–end event-basedmodel

In this section, we examine the Start–End Event-Based
Model (SEE) of Koné et al. (2011). In contrast to the original
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formulation, we state it in a reduced (but equivalent) form
since a set of continuous variables can be omitted. Again,
there are time variables te ≥ 0 for each event e ∈ E ∪{n +1}
where tn+1 denotes the makespan. The SEEmodel considers
decision variables x je ∈ {0, 1} with x je = 1 if and only if
job j starts at event e and x je = 0 otherwise. Analogously,
there are decision variables y je ∈ {0, 1} with y je = 1 if and
only if job j ends at event f and y je = 0 otherwise. Let
E+ = {2, . . . , n + 1} denote the shifted event set where jobs
are allowed to finish. Then, SEE can be written as:

min tn+1∑

e∈E
x je = 1 ∀ j ∈ J (16)

∑

e∈E+
y je = 1 ∀ j ∈ J (17)

∑

e′≥e

x je′ +
∑

e′≤e

y je′ ≤ 1 ∀ j ∈ J , e ∈ E (18)

∑

j∈J
r jk ·

⎛

⎝
∑

e′≤e

x je′ −
∑

e′≤e

y je′

⎞

⎠ ≤ Rk

∀k ∈ R, e ∈ E (19)

te + p j · (x je + y j f − 1) ≤ t f ∀ j ∈ J , (e, f ) ∈ A (20)
∑

e′≤e

x je′ +
∑

e′>e

yie′ ≤ 1 ∀(i, j) ∈ P, e ∈ E (21)

te ≤ te+1 ∀e ∈ E (22)

te ≥ 0 ∀e ∈ E ∪ {n + 1}
x je ∈ {0, 1} ∀ j ∈ J , e ∈ E
y je ∈ {0, 1} ∀ j ∈ J , e ∈ E+.

The objective function minimizes the makespan. Equa-
tions (16) and (17) state that every job must start and end
at exactly one event, while the start event must be prior to
the end event (18). Moreover, inequalities (19) ensure that
the resource consumption of all jobs that are active at one
event must not exceed the resource capacities. Next, inequal-
ities (20) require that if job j starts at event e and ends at event
f , then te + p j ≤ t f must hold. By inequalities (21), for each
precedence pair (i, j) ∈ P , the end event of job i must be
prior to the start event of job j . In addition, the event times
must be non-decreasing by (22). In total, SEE has 2n2 binary
variables and O(n · (|R| + |A| + |P|)) constraints.

In the next sections, we propose stronger valid inequalities
for SEE and analyze the quality of its LP-relaxation.

3.1 Start time inequalities

In the following, we present a stronger variant of the start
time inequalities (20).

Lemma 4 The following start time inequalities

te + p j ·
⎛

⎝
∑

e′≥e

x je′ +
∑

f ′≤ f

y j f ′ − 1

⎞

⎠ ≤ t f

∀ j ∈ J , (e, f ) ∈ A. (23)

dominate inequalities (20).

Proof Inequalities (23) state that if job j starts at an event
e′ ∈ {e, . . . , n} and ends at an event f ′ ∈ {2, . . . , f } with
e < f , then te + p j ≤ t f must hold. Thus, the inequality is
valid. Obviously, inequalities (23) are stronger than inequal-
ities (20) which proves the lemma. 
�

Since this strengthening comes with no expense of the
model size, we always assume the stronger version of SEE
throughout the rest of the paper.

3.2 LP-relaxation

In the following, we analyze the quality of the linear relax-
ation of SEE. The next result holds for the special case of
no precedence constraints, so it also applies for the general
RCPSP.

Proposition 2 If P = ∅, then the LP-relaxation of SEE has
an optimal objective value of pmax = max j∈J p j .

Proof Inequalities (23) with (e, f ) = (1, n + 1) imply
tn+1 ≥ p j for all j ∈ J ; hence, pmax is a lower bound on the
optimal LP value. In the following, we construct a feasible
LP solution with pmax as an upper bound. Let a fractional
solution of SEE be given by x je = ye+1 = 1

n for all j ∈ J ,
e ∈ E and te = pmax · e−1

n for all e ∈ E . All other variables are
zero. We check LP-feasibility for each constraint separately.
Inequalities (16) and (17) are satisfied since

∑
e∈E x je =∑

e∈E 1
n = 1 and

∑
f ∈E+ y j f = ∑

f ∈E+ 1
n = 1 for every

j ∈ J . For inequalities (18), we have

∑

e′≥e

x je′ +
∑

e′≤e

y je′ = n − e + 1

n
+ e − 1

n
= 1 ≤ 1

for all j ∈ J and e ∈ E . Moreover, for inequalities (19), we
get

∑

j∈J
r jk ·

⎛

⎝
∑

e′≤e

x je′ −
∑

e′≤e

y je′

⎞

⎠ =
∑

j∈J
r jk · 1

n
≤ Rk

for all k ∈ R and e ∈ E where the last inequality holds
because otherwise r jk > Rk for some job j ∈ J and resource
k ∈ Rwhat is infeasible. Next, the start time inequalities (23)

123



Journal of Scheduling (2020) 23:233–251 239

imply

p j ·
⎛

⎝
∑

e′≥e

x je′ +
∑

f ′≤ f

y j f ′ − 1

⎞

⎠

= p j · ( f − e)

n
≤ pmax · ( f − e)

n
= t f − te

for all j ∈ J and (e, f ) ∈ A. Consequently, all inequalities
of SEE are satisfied for the given LP solution that has an
objective value of tn+1 = pmax. Consequently, the optimal
LP value has a lower and upper bound of pmax which proves
the proposition. 
�
Corollary 2 The integrality gap of SEE is unbounded.

Note that if we apply the same LP solution from the proof
of Proposition 2 to the precedence inequalities (21), we get

∑

e′≤e

x je′ +
∑

e′>e

yie′ = e + n − e + 1

n
= n + 1

n
> 1

for every (i, j) ∈ P and e ∈ E which is not LP-feasible.
Loosely speaking, this suggests that the precedence con-
straints are tighter than the other inequalities and allow for a
stronger modeling.

Moreover, it follows that SEE has a strictly stronger LP
bound than OOE. It remains to check whether SEE domi-
nates OOE also on the whole LP-relaxation. This question is
addressed in the next section.

3.3 Relationship to OOE

In this section, we study the polyhedral relationship between
SEE and OOE. Recalling the OOE model from Sect. 2.1,
define

P(O O E) = {(t, u) ∈ R
n+1
≥0 × [0, 1]n2 :

(t, u) satisfies (4), (5), (10), (12), (13), (15)}

as the polyhedron of the linear relaxation of OOE that
includes all stronger inequalities. Analogously, define

P(SE E) = {(t, x, y) ∈ R
n+1
≥0 × [0, 1]2n2 :

(t, x, y) satisfies (16)−(19) and (21)−(23)}

as the polyhedron of the linear relaxation of SEE that includes
the stronger start time inequalities. We want to study the
polyhedral relationship between P(O O E) and P(SE E).

A first important observation is that we can express the
u je variables of OOE in terms of the x je and y je variables
of SEE by the linear transformation:

u je =
∑

e′≤e

x je′ −
∑

e′≤e

y je′ ∀ j ∈ J , e ∈ E (24)

that says that job j is active at event e if and only if j starts
at an event e′ ∈ {1, . . . , e} and ends at an event f ′ ∈ {e +
1, . . . , n + 1}.

Let � : P(SE E) → P(O O E) with (t, x, y) �→ (t, u)

denote the linear transformation that is given by equa-
tions (24) and the identity map for the te-variables. We prove
the following.

Theorem 1 �(P(SE E)) � P(O O E)

Proof Let (t, x, y) ∈ P(SE E) and �(t, x, y) = (t, u). We
have to show that u satisfies every inequality of OOE. First,
for inequalities (4), we get

∑

e∈E
u je =

∑

e∈E

⎛

⎝
∑

e′≤e

x je′ −
∑

e′≤e

y je′

⎞

⎠

=
∑

e∈E

⎛

⎝
∑

e′<e

x je′ −
∑

e′≤e

y je′

⎞

⎠ +
∑

e∈E
x je

(16)=
∑

e∈E

⎛

⎝1 −
∑

e′≥e

x je′ −
∑

e′≤e

y je′

⎞

⎠ +
∑

e∈E
x je

(18)≥
∑

e∈E
x je

(16)= 1

for every j ∈ J . Moreover, for inequalities (5), we have

∑

j∈J
r jk · u je =

∑

j∈J
r jk ·

⎛

⎝
∑

e′≤e

x je′ −
∑

e′≤e

y je′

⎞

⎠ (19)≤ Rk

for all k ∈ R and e ∈ E . Inequalities (10) are the same as
for P(SE E), and for the stronger non-preemptive inequali-
ties (12), it holds

2l∑

q=0

(−1)q · u jeq =
2l∑

q=0

(−1)q ·
⎛

⎝
∑

e′≤eq

x je′ −
∑

e′≤eq

y je′

⎞

⎠

(18)≤
2l∑

q=0

(−1)q = 1

for all j ∈ J and all subsets {e0, . . . , e2l} ⊆ E . Next,
inequalities (13) translate to

p j · (u j f − u je − uig)

= p j ·
⎛

⎝
∑

e′≤ f

x je′ −
∑

e′≤ f

y je′ −
∑

e′≤e

x je′ +
∑

e′≤e

y je′

−
∑

e′≤g

x je′ +
∑

e′≤g

y je′

⎞

⎠
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≤ p j ·
⎛

⎝−
∑

e′≤e

x je′ +
∑

e′≤g

y je′

⎞

⎠

(16)≤ p j ·
⎛

⎝
∑

e′≥e

x je′ +
∑

e′≤g

y je′ − 1

⎞

⎠ (23)≤ tg − te

for all j ∈ J and e, f , g ∈ E ∪ {0, n + 1} with e < f < g.
Furthermore, let π = ( j1, . . . , jm) be a path in the prece-
dence digraph G = (J ,P) and let {e1, . . . , em} ⊆ E be a
subset of events with eq ≥ eq+1 for q = 1, . . . , m − 1. For
the stronger precedence inequalities (15), we get

m∑

q=1

u jq eq =
m∑

q=1

⎛

⎝
∑

e′≤eq

x jq e′ −
∑

e′≤eq

y jq e′

⎞

⎠

=
m−1∑

q=1

⎛

⎝
∑

e′≤eq

x jq+1e′ −
∑

e′≤eq

y jq e′

⎞

⎠ + x j1e1 − y jm em

(17)=
m−1∑

q=1

⎛

⎝
∑

e′≤eq

x jq+1e′ +
∑

e′>eq

y jq e′ − 1

⎞

⎠ + x j1e1 − y jm em

(21)≤ x j1e1 − y jm em ≤ 1.

Consequently, every inequality of P(O O E) is implied by
inequalities of P(SE E) under the linear transformation �.
By Propositions 1 and 2, the LP value of OOE is strictly
smaller than the LP value of SEE. Since both LP values
are determined by tn+1 and � maps tn+1 under identity, we
conclude that the strict inclusion �(P(SE E)) � P(O O E)

holds. 
�

It follows that SEE yields a strictly stronger formulation
thanOOE at the expense of doubling the number of variables.
In the next section,we consider a sparse reformulation of SEE
that has structurally and computationally useful properties.

3.4 Unimodular reformulation

In this section, we study a further linear transformation of
SEE that, in fact, yields an equivalent model, but the obtained
constraint matrix is much more sparse. Reformulations with
sparser matrices can have a huge impact on the solution
time (Bianco and Caramia 2013) since the sparsity can be
exploited by modern MIP solvers. Consider the linear trans-
formation of SEE that is given by the equations

x̃ je =
∑

e′≤e

x je′ ∀ j ∈ J , e ∈ E (25)

ỹ je =
∑

e′≤e

y je′ ∀ j ∈ J , e ∈ E+ (26)

which says that x̃ je = 1 if and only if job j starts not later
than event e and ỹ je = 1 if and only if job j ends not later than
event e. Note that there is also the backward transformation
x je = x̃ je − x̃ je−1 and y je = ỹ je − ỹ je−1. For convenience,
we again assume that x̃ j0 = ỹ j1 = 0.

The new model uses variables x̃, ỹ, and we denote it as
the Revised Start-End Event-Based Model (RSEE) that reads
as follows:

min tn+1

x̃ jn = 1 ∀ j ∈ J (27)

ỹ jn+1 = 1 ∀ j ∈ J (28)

x̃ je ≤ x̃ je+1 ∀ j ∈ J , e ∈ E : e < n (29)

ỹ je ≤ ỹ je+1 ∀ j ∈ J , e ∈ E+ : e < n + 1 (30)

ỹ je+1 ≤ x̃ je ∀ j ∈ J , e ∈ E (31)
∑

j∈J
r jk · (

x̃ je − ỹ je
) ≤ Rk ∀k ∈ R, e ∈ E (32)

te + p j · (ỹ j f − x̃ je−1) ≤ t f ∀ j ∈ J , (e, f ) ∈ A (33)

x̃ je ≤ ỹie ∀(i, j) ∈ P, e ∈ E (34)

te ≤ te+1 ∀e ∈ E (35)

te ≥ 0 ∀e ∈ E ∪ {n + 1}
x̃ je ∈ {0, 1} ∀ j ∈ J , e ∈ E
ỹ je ∈ {0, 1} ∀ j ∈ J , e ∈ E+.

The objective function minimizes the makespan. Equa-
tions (27) and (28) say that every job starts or ends until
event n or n + 1, respectively. Inequalities (29) and (30)
express that if job j starts/finishes until event e, then it also
starts/finishes until event e + 1. Inequalities (31) require that
if job j finishes until event e+1, then it must start until event
e. Inequalities (32) are the resource constraints in which a job
j is active at event e if and only if j starts but does not finish
until event e. The time constraints (33) indicate that if job
j finishes until event f but does not start until event e − 1,
then te + p j ≤ t f must hold. Finally, the precedence con-
straints (34) ensure for each precedence pair (i, j) ∈ P that
if job j starts until event e, then job i finishes until e.

We can observe that the constraint matrix of RSEE has
much less nonzero coefficients than SEE since most rows
contain onlyO(1) entries. This property is rather a technical
improvement because it primarily improves the representa-
tion of the constraint set what affects the performance of the
used MIP solver. However, we can also find substructures in
the constraint matrix that are well-suited for variable propa-
gations, see the following.

A matrix A ∈ R
p×q is called totally unimodular, if

every non-singular square submatrix A′ of A has determinant
det(A′) ∈ {−1, 1}. The importance of totally unimodular
matrices in integer programming is omnipresent, see Schri-
jver (2002) for an overview. In particular, if A is totally
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unimodular and b integer, then the polyhedron {x : Ax ≤
b, x ≥ 0} has only integer vertices. We can find similar prop-
erties in RSEE.

Lemma 5 The transformation matrix of Eqs. (25) and (26) is
totally unimodular.

Proof Equations (25) and (26) can be written in matrix form
as

(x̃
ỹ

) = A·(x
y

)
. Since the columnsof A can easily be arranged

such that A has only consecutive ones in each row, we get a
sufficient condition for A being totally unimodular. 
�
Lemma 5 says that the transformation (25), (26) is unimod-
ular which implies that feasible integer solutions of SEE are
mapped to feasible integer solutions of RSEE that means the
transformation is integer-preserving. This shows the equiva-
lence of integer solutions of SEE and RSEE. Moreover, we
can find components in RSEE with integral properties.

Lemma 6 The constraint matrix defined by inequalities (27)–
(31) and (34) is totally unimodular.

Proof Theconstraintmatrix associatedwith inequalities (27)–
(31) and (34) corresponds to a network matrix that is known
to be totally unimodular, see Schrijver (2002). 
�

It follows that if we restrict RSEE to inequalities (29)–
(31), (34), then solving the corresponding LP yields integer
solutions. An interesting research direction is to combine
this integrality property with Lagrangian relaxation and flow
computations in the underlying job–event network, similar to
Möhring et al. (2003) for the time-indexed model, where we
might approximate feasible integer solutions of RSEE very
quickly.

From this theoretical background, our computational
results reflect the expected improvement and show that the
sparse formulation RSEE clearly improves upon the solution
quality compared to SEE, see Sect. 6.

4 Interval event-basedmodel

In this section, we introduce a new event-based model for the
RCPSP. In contrast to SEE, wemodel the assignment of a job
to a start and end event by one decision variable instead of
two. Hence, we assign every job to a whole interval [e, f ] of
events. Therefore, we call it the Interval Event-Based Model
(IEE).

As before, we consider time variables te for each event
e ∈ E and tn+1 equals the makespan. Next, there are decision
variables z je f ∈ {0, 1} for all j ∈ J and (e, f ) ∈ A where
z je f = 1 if and only if job j starts at event e and ends at
event f , otherwise z je f = 1. Hence, if z je f = 1, then job j
must be processed in the time interval [te, t f ]. The complete

IEE model is stated as:

min tn+1∑

(e, f )∈A
z je f = 1 ∀ j ∈ J (36)

∑

j∈J
r jk ·

∑

e′≤e< f ′
z je′ f ′ ≤ Rk ∀k ∈ R, e ∈ E (37)

te + p j ·
∑

e≤e′< f ′≤ f

z je′ f ′ ≤ t f ∀ j ∈ J , (e, f ) ∈ A (38)

∑

(e′, f ′)∈A: f ′>e

zie′ f ′ +
∑

(e′, f ′)∈A:e′≤e

z je′ f ′ ≤ 1

∀(i, j) ∈ P, e ∈ E (39)

te ≥ 0 ∀e ∈ E ∪ {n + 1}
z je f ∈ {0, 1} ∀ j ∈ J , (e, f ) ∈ A.

The objective function minimizes the makespan. Equa-
tions (36) ensure that every job is assigned to exactly one
event interval. Inequalities (37) require that the resource
demands of all jobs whose assigned event interval [e′, f ′]
overlaps some event e must not exceed the resource capaci-
ties. Moreover, inequalities (38) say that if job j is assigned
an event interval [e′, f ′] ⊆ [e, f ], then te + p j ≤ t f must
hold. Next, inequalities (39) forbid for every precedence pair
(i, j) ∈ P that their assigned event intervals overlap in
some event e. In total, IEE has n · (n+1

2

)
binary variables

and O(n · (|R| + |A| + |P|)) inequalities.
Compared to OOE and SEE, the IEE model requires a

factor ofO(n) additional decision variables. In turn, the num-
ber of inequalities is slightly smaller in practice and it does
not involve any linearization techniques as used in inequali-
ties (13) and (23).

In the next sections, we study the LP-relaxation of IEE
and its polyhedral relationship to OOE, SEE and the time-
indexed model DDT.

4.1 LP-relaxation

In this section, we study the quality of the LP-relaxation of
IEE. Similar to SEE, the following proposition is stated for
the case of no precedence constraints, but therefore it also
applies for the general RCPSP.

Proposition 3 If P = ∅, then the LP-relaxation of IEE has
an optimal objective value of pmax = max j∈J p j .

Proof For inequalities (38) with (e, f ) = (1, n + 1), we get
tn+1 ≥ p j for all j ∈ J . Hence, pmax is a lower bound on the
optimal LP value. Next, we construct a feasible LP solution
that yields pmax also as upper bound. Let an LP solution of
IEE be given by z je f = 1

n for all j ∈ J , (e, f ) ∈ A with
f = e + 1, and let te = pmax · e−1

n for all e ∈ E ∪ {n + 1}.
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All other variables are zero. To show LP-feasibility of the
vector (t, z), we check every inequality of IEE separately.
For inequalities (36), we get

∑

(e, f )∈A
z je f =

∑

e∈E

1

n
= 1

for all j ∈ J . Moreover, for inequalities (38), we get

p j ·
∑

e≤e′< f ′≤ f

z je′ f ′

= p j · f − e

n
≤ pmax · f − e

n
= t f − te

for all j ∈ J and (e, f ) ∈ A. Inequalities (37) yield

∑

j∈J
r jk ·

∑

e′≤e< f ′
z je′ f ′ =

∑

j∈J
r jk · 1

n
≤ Rk

for all k ∈ R and e ∈ E where the last inequality holds
because otherwise there exists a job j ∈ J with r jk > Rk

which implies an infeasible problem. Since tn+1 = pmax, the
optimal LP value has a lower and upper bound of pmax. This
shows the proposition. 
�
Corollary 3 The integrality gap of IEE is unbounded.

Again, the LP solution used in the proof of Proposition 3
is not valid for the precedence inequalities (39) which indi-
cates that the precedence inequalities are slightly stronger in
a polyhedral context.

Next, we show that optimal LP solutions of IEE are char-
acterized by an interesting property that we call the split
property. Namely, there is an optimal LP solution that has
nonzero values z je f > 0 only for event intervals of length
f − e = 1.

Proposition 4 [Split Property] There exists an optimal LP
solution of IEE such that z je f > 0 implies f − e = 1 for all
j ∈ J and (e, f ) ∈ A.

Proof Assume that (t, z) ∈ P(I E E) is an optimal LP solu-
tion of IEE with z je f > 0 for some j ∈ J and (e, f ) ∈ A
with f − e > 1. Let e′ be an event with e < e′ < f . The
idea is to split the interval [e, f ] into two intervals [e, e′]
and [e′, f ]. Then, we add the value te′−te

t f −te
· z je f to z jee′ and

t f −te′
t f −te

· z je f to z je′ f . The original variable is set to z je f = 0.
The new solution still satisfies equalities (36). Moreover, it
weakens inequalities (37) at event e′ and can only weaken the
sequential sums in the precedence inequalities (39) of job j
(either with j as predecessor or successor). The construction
also preserves the values of the te variables. Hence, the new
solution is still LP-feasible. We repeat this procedure for all
jobs j ∈ J until z je f > 0 implies f − e = 1 which shows
the proposition. 
�

The split property has a direct consequence on the solv-
ability of the LP-relaxation of IEE, since we can restrict to
variables z je f where f − e = 1. This reduces the number of
variables and of some inequalities by a factor ofO(n). More-
over, the reduced LP-relaxation has been already studied in
the literature.

Let μ je denote the portion of job j that is executed in the
time interval [te, te+1]. Consider the following linear pro-
gram (LPGS) that was (in a different but equivalent form)
introduced by Carlier and Néron (2003) to compute a lower
bound on the makespan of the RCPSP:

min tn+1∑

e∈E
μ je = 1 ∀ j ∈ J (40)

∑

j∈J
r jk · μ je ≤ Rk ∀k ∈ R, e ∈ E (41)

p j · μ je ≤ te+1 − te ∀ j ∈ J , e ∈ E (42)
∑

e′≤e

μ je′ +
∑

e′≥e

μie′ ≤ 1 ∀(i, j) ∈ P, e ∈ E (43)

μ je ≥ 0 ∀ j ∈ J , e ∈ E
te ≥ 0 ∀e ∈ E ∪ {n + 1}.

From the split property, we obtain a one-to-one correspon-
dence between the optimal LP solutions of IEE and LPGS.

Proposition 5 There exists an optimal LP solution (t, z) of
IEE and an optimal LP solution (t ′, μ) of LPGS such that
te = t ′e for all e ∈ E and z j,e,e+1 = μ je for all j ∈ J , e ∈ E .

Proof By the split property of IEE, z je f > 0 implies f −
e = 1; hence, z je f = 0 for all j ∈ J and (e, f ) ∈ A
with f − e > 1. We directly apply the transformation te =
t ′e for all e ∈ E and μ je = z j,e,e+1 for all j ∈ J , e ∈
E . By doing the calculations, substituting μ je in IEE yields
exactly LPGS (note that inequalities (38) become redundant
for f − e > 1). 
�
As a consequence of Proposition 5, we can solve the LP-
relaxation of IEE by the much more compact LPGS model.
Carlier and Néron (2003) and Haouari et al. (2014) also pro-
posemany additional cutting planes for LPGS.An interesting
future research direction is to solve such a stronger version of
LPGS as an LP subroutine in combination with a branching
rule on the original IEE model. Our computational results
include only the basic IEE formulation.

It still remains to examine the actual strength of the LP-
relaxation of IEE. We address this aspect in the next section.

4.2 Relationship to SEE

In the following, we compare the LP-relaxations of IEE and
SEE. For this, recall the polyhedron P(SE E) as defined in
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Sect. 3.3 and define analogously

P(I E E) = {(t, z) ∈ R
n+1
≥0 × [0, 1]n·|A| :

(t, z)satisfies(36)−(39)}

as the polyhedron of the linear relaxation of IEE. Again, we
can deduce a linear transformation between SEE and IEE
that is given by

x je =
∑

f >e

z je f ∀ j ∈ J , e ∈ E (44)

y j f =
∑

e< f

z je f ∀ j ∈ J , f ∈ E+ (45)

and reformulates the assignment of jobs to start and end
events. Moreover, let � : P(I E E) → P(SE E) with
(t, z) �→ (t, x, y) denote the linear transformation given
by (44), (45) and the identity map for the te-variables. We
show that P(I E E) is contained in P(SE E) under the trans-
formation �.

Theorem 2 �(P(I E E)) � P(SE E)

Proof Let (t, z) ∈ P(I E E), and let �(t, z) = (t, x, y).
We have to show that (t, x, y) ∈ P(SE E). We do this by
checking feasibility for each inequality of SEE separately.
For inequalities (16) and (17), we get

∑

e∈E
x je =

∑

e∈E

∑

f >e

z je f
(36)= 1

∑

f ∈E+
y j f =

∑

f ∈E+

∑

e< f

z je f
(36)= 1

for every j ∈ J . Moreover, for inequalities (18), we have

∑

e′≥e

x je′ +
∑

f ′≤e

y j f ′ =
∑

e′≥e

∑

f ′>e′
z je′ f ′ +

∑

f ′≤e

∑

e′< f ′
z je′ f ′

≤
∑

(e′, f ′)∈A
z je′ f ′

(36)= 1

for all j ∈ J and e ∈ E . Next, inequalities (23) imply

p j ·
⎛

⎝
∑

e′≥e

x je′ +
∑

f ′≤ f

y j f ′ − 1

⎞

⎠

(36)= p j ·
⎛

⎝
∑

e′≥e

∑

f ′>e′
z je′ f ′ +

∑

f ′≤ f

∑

e′< f ′
z je′ f ′

−
∑

(e′, f ′)∈A
z je′ f ′

⎞

⎠

= p j ·
⎛

⎝
∑

e≤e′< f ′≤ f

z je′ f ′ −
∑

e′<e< f < f ′
z je′ f ′

⎞

⎠

≤ p j ·
∑

e≤e′< f ′≤ f

z je′ f ′
(38)≤ t f − te

for all j ∈ J and (e, f ) ∈ A. Furthermore, for inequali-
ties (19), we get

∑

j∈J
r jk ·

⎛

⎝
∑

e′≤e

x je′ −
∑

f ′≤e

y j f ′

⎞

⎠

=
∑

j∈J
r jk ·

⎛

⎝
∑

e′≤e

∑

f ′>e′
z je′ f ′ −

∑

f ′≤e

∑

e′< f ′
z je′ f ′

⎞

⎠

=
∑

j∈J
r jk ·

∑

e′≤e< f ′
z je′ f ′

(37)≤ Rk

for all k ∈ R and e ∈ E . Finally, for inequalities (21), we
obtain

∑

e′≤e

x je +
∑

f ′>e

yi f ′

=
∑

e′≤e

∑

f ′>e′
z je′ f ′ +

∑

f ′>e

∑

e′< f ′
zie′ f ′

=
∑

(e′, f ′)∈A:e′≤e

z je′ f ′ +
∑

(e′, f ′)∈A: f ′>e

zie′ f ′
(39)≤ 1

for every (i, j) ∈ P, e ∈ E . It follows (t, x, y) ∈ P(SE E)

which shows that �(P(I E E)) ⊆ P(SE E).
We still have to show that �(P(I E E)) �= P(SE E). For

this, we give a solution (t, x, y) ∈ P(SE E) for which there
exists no (t, z) ∈ P(I E E) such that �(t, z) = (t, x, y).
Consider two jobs J = {1, 2} with p1 = p2 = 1 and
resource demands r1 = r2 = 2 where the resource capac-
ity is R = 3. Thus, the event sets are given by E = {1, 2}
and E+ = {2, 3}. A feasible LP solution of SEE is given
by x1,1 = y1,2 = 1, x2,1 = x2,2 = y2,2 = y2,3 = 0.5
and t1 = 0, t2 = t3 = 1. All other variables are zero. We
search for (t, z) ∈ P(I E E) such that �(t, z) = (t, x, y).
Since t2 = t3, we have z2,2,3 = 0 by inequalities (38)
and, in turn, z2,1,2 + z2,1,3 = 1. But since z1,1,2 = 1,
the resource constraints (37) of IEE at event e = 1 yield
2·(z1,1,2+z1,1,3)+2·(z2,1,2+z2,1,3) = 4 > 3. It follows that
for the constructed solution (t, x, y) ∈ P(SE E), there exists
no solution (t, z) ∈ P(I E E) such that �(t, z) = (t, x, y).
Consequently, �(P(I E E)) �= P(SE E) which shows the
proposition. 
�

We can now combine the linear transformation �1 given
by (44), (45) from IEE to SEE and the linear transformation
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�2 given by (24) from SEE to OOE to get a nested linear
transformation �̃ = �2◦�1 from IEE to OOE. By doing the
calculations, for (t, z) ∈ P(I E E), the mapping �̃(t, z) =
(t, u) is given by

u je =
∑

e′≤e< f ′
z je′ f ′ ∀ j ∈ J , e ∈ E (46)

and the identity map for the te variables. Equation (46) states
that job j is active at event e if and only if j starts at an
event earlier or equal to e and ends at an event later than
e. Combining Theorems 1 and 2, we obtain the following
corollary.

Corollary 4 �̃(P(I E E)) � P(O O E)

Consequently, IEE strictly dominates SEE and OOE in terms
of their LP-relaxations. This makes IEE the strongest event-
based formulation and leads to the strict domination order
of I E E � SE E � O O E of their respective linear pro-
gramming relaxations. That completes our polyhedral study
of the event-based models. It remains to compare the LP-
relaxations of the event-based models and the time-indexed
model. We approach this problem in the next section.

4.3 Relationship to DDT

TheDDTmodel considers a discrete scheduling horizonT =
{0, . . . , T } where T is an upper bound on the makespan. For
every job j and time t , there is a decision variable x jt ∈ {0, 1}
with x jt = 1 if and only if job j starts at time t and x jt = 0
otherwise. For convenience in writing the model, we assume
that x jt = 0 for all j ∈ J and t < 0 or t > T − p j . Then,
DDT can be stated as:

∑

t∈T
x jt = 1 ∀ j ∈ J (47)

∑

j∈J

t∑

t ′=t−p j +1

r jk · x jt ′ ≤ Rk ∀k ∈ R, t ∈ T (48)

∑

t ′≥t−pi +1

xit ′ +
∑

t ′≤t

x j t ′ ≤ 1 ∀(i, j) ∈ P, t ∈ T (49)

x jt ∈ {0, 1} ∀ j ∈ J , t ∈ T .

Equalities (47) state that every job gets assigned exactly
one start time. Inequalities (48) ensure that the resource
capacities are not exceeded at any time and inequalities (49)
model the precedence constraints that are due to Christofides
et al. (1987). In total, DDT has O(n · T ) variables and
O(n + T · (|R| + |P|)) constraints. Since the model size
scales with T , DDT quickly becomes intractable when T
gets large. For this reason, we need strong event-based mod-
els as alternative.

Note that we do not state the makespan objective for
DDT because it requires to introduce additional variables
and precedence relations. But here, we are only interested in
the basic polyhedral structure of DDT.

To relate IEE and DDT, our general idea is to expand
the event set E to the discrete time set T and analyze the
induced formulations. For this, we parameterize IEE by the
considered event set. For example, IEE(E) denotes the IEE
model with event set E = {1, . . . , n} as used in the paper
before. We finally want to study IEE(T ) where each event
represents a timepoint. In a first step,we address the extended
formulation IEE(E ′) according to some extended event set
E ′ = {1, . . . , n′} with n′ > n. After that, we compare the
linear relaxations of IEE to DDT.

Note that extending the event set cannot strengthen theLP-
relaxation of IEE since any LP solution of IEE(E) remains
feasible for IEE(E ′) on the original event set E ⊆ E ′. In fact,
we show that extending the event set may even weaken the
LP value of IEE.

Proposition 6 Given E, E ′ with |E | < |E ′|, then there exist
instances of the RCPSP where the optimal LP value of
IEE(E ′) is strictly smaller than the optimal LP value of
IEE(E).

Proof Given a set of jobs J = {1, 2, 3} with p j = 1 and
r j = 1 for all j ∈ {1, 2, 3} and R = 2. Moreover, we have
the precedence constraintP = {(2, 3)}. By the split property,
we assume that z je f = 0 for all j ∈ J and (e, f ) ∈ A with
f − e > 1. For the standard event set E = {1, 2, 3}, we get
an optimal LP solution of z1,2,3 = z2,2,3 = z3,1,2 = 0 and
z j,e,e+1 = 1

2 for all other nonzero variables that yields an LP
value of 3

2 . For the extended event set E ′ = {1, 2, 3, 4}, we
get an optimal LP solution of z1,3,4 = z2,3,4 = z3,1,2 = 0
and z j,e,e+1 = 1

3 for all other nonzero variables that yields
an LP value of 4

3 . Hence, extending the event set decreases
the objective value of IEE. 
�
Corollary 5 Given E, E ′ with |E | < |E ′|, then IEE(E) domi-
nates IEE(E ′).

Proposition 6 holds only for P �= 0; otherwise, we can
construct an LP solution of IEE(E ′) as in the proof of Propo-
sition 3 with objective value pmax that matches the lower
bound of IEE(E).

By sufficiently fine discretization of the time horizon, we
assume that |E | ≤ |T | holds without loss of generality. Let
the polytope of the linear relaxation of DDT be given by

P(DDT ) = {x ∈ [0, 1]n·(T +1) : xsatisfies(47)−(49)}.

Additionally, consider the extendedmodel IEE(T ) where the
event set is represented by the discrete time horizon T =
{0, . . . , T }. We can write the variables of IEE equivalently
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as z j,t,t ′ with j ∈ J and (t, t ′) ∈ A. Define N = {z j,t,t ′ :
j ∈ J , (t, t ′) ∈ A : t ′ − t = p j } as the set of variables that
belong to (event) intervals of the form [t, t + p j ] for some
job j . Next, define

P(z,z̄)(I E E(T )) = {(z, z̄) : (t, z, z̄) ∈ P(I E E(T )),

z ∈ N , z̄ /∈ N }
P(z,0)(I E E(T )) = {(z, z̄) : (z, z̄) ∈ P(z,z̄)(I E E(T )),

z̄ = 0}

as the polytopes that are projections onto the z-variables of
IEE. By definition, we immediately see that

P(z,0)(I E E(T )) ⊂ P(z,z̄)(I E E(T ))

holds. Consider further the polytope

Pz(I E E(T )) = {z : (z, 0) ∈ P(z,0)(I E E(T ))}

that equals the projection of P(z,0)(I E E(T )) onto the set of
variables N . Consider the identity transformation

x jt = z j,t,t+p j ∀ j ∈ J , (t, t ′) ∈ A : t ′ − t = p j (50)

that maps between the variable spaces of IEE(T ) and DDT.
Under this identity, it turns out that both polytopes are equal.

Theorem 3 Pz(I E E(T )) = P(DDT )

Proof Let z ∈ Pz(I E E(T )) and x ∈ P(DDT ). We show
that the inequalities that describe P(DDT ) are equal to
those that describe Pz(I E E(T )) under the identitymap (50).
This shows that their induced polytopes must be equal. By
assumption, we have x jt = z j,t,t ′ = 0 for all j ∈ J and
t < 0 or t > T − p j .

First, Eqs. (36) and (47) are equivalent since

∑

t∈T
x jt =

∑

t∈T
z j,t,t+p j =

∑

(t,t ′)∈A
z j,t,t ′

(36),(47)= 1

for all j ∈ J . Furthermore, inequalities (37) and (48) are
equal because

∑

j∈J
r jk ·

t∑

t ′=t−p j +1

x jt ′ =
∑

j∈J
r jk ·

t∑

t ′=t−p j +1

z j,t ′,t ′+p j

=
∑

j∈J
r jk ·

∑

(t ′,t ′′)∈A:t ′≤t<t ′′
z j,t ′,t ′′

(37),(48)≤ Rk

for all k ∈ R and t ∈ T . Finally, for inequalities (39)
and (49), we get

∑

t ′≥t−pi +1

xit ′ +
∑

t ′≤t

x j t ′

IEE(T )

DDT

IEE(E)

SEE RSEE

OOE

Fig. 1 Dominance hierarchy of the presented models: an arc A → B
indicates that model A dominates model B

=
∑

t ′≥t−pi +1

zi,t ′,t ′+pi +
∑

t ′≤t

z j,t ′,t ′+p j

=
∑

(t ′,t ′′)∈A:t ′′>t

zi,t ′,t ′′ +
∑

(t ′,t ′′)∈A:t ′≤t

z j,t ′,t ′′
(39),(49)≤ 1

for all (i, j) ∈ P and t ∈ T . In particular, inequali-
ties (38) do not affect the polytope Pz(I E E(T ))) since for
any z ∈ Pz(I E E(T ))), we can always find values for the te-
variables such that (38) holds. Consequently, Pz(I E E(T ))

and P(DDT ) are described by the same inequalities, and
therefore, both polytopes are equal. 
�
It follows that lifting P(DDT ) by a zero vector yields
P(z,0)(I E E(T )) that is a subset of P(z,z̄)(I E E(T )). Since
the te variables can be neglected, we get the following corol-
lary.

Corollary 6 DDT dominates IEE(T ).

Corollary 6 must still be considered with caution. In terms of
the solution space, DDT dominates IEE(T ) by the statements
made in this section. However, their objective functions are
modeled in different subspaces. In DDT, the objective func-
tion is modeled via the decision variables x jt , see Pritsker
et al. (1969), and in IEE via the continuous tn+1 variable.
Therefore, it is hard to generally compare the LP bounds of
IEE and DDT, even if their solution spaces are comparable.

To summarize, we have shown that DDT can be obtained
from IEE by expansion and restriction of its variable space.
Including all polyhedral results of this paper, we obtain a
complete model hierarchy of the event-based models and its
connection to the time-indexed model, see Fig. 1.

5 Preprocessing

Before we proceed with our computational results, we apply
additional preprocessing steps that reduce the model sizes
and improve the basic formulations of the three models OOE
(u-variables), SEE (x, y-variables) and IEE (z-variables).
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5.1 Reducing the number of events

An optimal solution to any of the event-based models does
not necessarily need all events E = {1, . . . , n} to allocate all
the jobs. Therefore, one approach to reduce the model size of
the event-based models is to decrease the number of events.
Hence, we ask whether there exists an optimal solution to the
RCPSP that uses at most k events or, more generally, if there
exists any solution to the RCPSP that uses at most k events.
Let us denote the latter decision problem as k-EP. We show
that k-EP is already NP-complete by performing a reduction
from the bin packing problem (BPP).

In the BPP, we are given a set of items I where each item i
has aweightwi .Moreover, we are given a set of binsBwhere
each bin b has capacity C . The decision problem k-BPP of
BPP asks whether there exists an assignment of all items to
at most k bins such that the total item weight in every bin
does not exceed the capacity C . The k-BPP is a well-known
NP-complete problem and contains the partition problem as
a special case, see Garey and Johnson (2002). We show the
same for k-EP.

Proposition 7 k-EP is NP-complete.

Proof We perform a reduction from k-BPP. Given a solution
to the RCPSP, the number of used events can be retrieved in
polynomial time, so k-EP is in NP. Assume an instance of k-
BPP and convert it into an instance of k-EP by settingJ = I,
p j = 1 for all j ∈ J and consider one resourcewith capacity
R = C and r j = w j for all j ∈ J . Using this construction,
there exists a feasible bin packing of size at most k if and only
if there exists a feasible RCPSP schedule that uses at most
k events or has makespan at most k, respectively. Hence, k-
BPP yields a ‘yes’ instance if and only if k-EP yields a ‘yes’
instance which shows the proposition. 
�

Proposition 7 reveals that reducing the number of events
is a non-trivial issue. In particular, the actual question of
deciding whether there exists an optimal schedule with at
most k start events is NP-hard because checking whether a
given schedule is optimal cannot be done in polynomial time,
unless P = N P . Note that this does not prevent from finding
polynomial-time certificates for a smaller number of events.
Since we focus on exact solutions to the RCPSP, we use the
complete event set E = {1, . . . , n} for our computational
results.

5.2 Eliminating assignments from precedence
constraints

As pointed out byKoné et al. (2011), the set of feasible events
for a given job can be reduced by integrating the precedence
constraints. Let n−

j be the number of predecessors and n+
j

be the number of successors of job j including all transitive

precedence relations in the precedence graph G = (J ,P).
Since E = {1, . . . , n}, we can assume that every predecessor
or successor of a job j starts at its own event, so we exclude
any assignment of job j to a start event e ∈ {1, . . . , n−

j } and
end event f ∈ {n + 1− n+

j , . . . , n + 1}. Hence, we perform
the reductions

u je = 0 ∀ j ∈ J , e ∈ E : e ≤ n−
j , e ≥ n − n+

j

x je = 0 ∀ j ∈ J , e ∈ E : e ≤ n−
j , e ≥ n − n+

j

y j f = 0 ∀ j ∈ J , f ∈ E+ : f − 1≤n−
j , f ≥n − n+

j +1

z je f = 0 ∀ j ∈ J , (e, f ) ∈ A : e ≤ n−
j , f ≥ n − n+

j +1

in each of the models OOE, SEE and IEE, respectively.
Most current MIP solvers can handle the above equations
efficiently by deleting all implied redundant variables and
constraints in a preprocessing phase.

5.3 Time bound inequalities

In all three models OOE, SEE and IEE, the time con-
straints (6), (23), (38) contain the largest number of inequal-
ities and they are also responsible for the generally weak
LP bounds. In the following, we present two strengthening
approaches.

5.3.1 Integrating time windows

For every job j ∈ J , we compute a time window [E j , L j ] in
which j must be scheduled. This is done as follows. We first
compute an upper bound T on the makespan by applying a
list scheduling algorithm, see Kolisch and Hartmann (1999),
and perform constraint propagation on the eligible time win-
dows as done in Brucker and Knust (2000). In particular,
we perform precedence propagations and energetic reason-
ing propagations, see Baptiste et al. (2012) and Tesch (2018).
Thus, the earliest start times respect at least the inequalities
Ei + p j ≤ E j for all (i, j) ∈ P . Using the time win-
dows [E j , L j ], we derive inequalities that basically require
[te, t f ] ⊆ [E j , L j ] if job j starts at event e and ends at event
f . For OOE, we get the inequalities

E j · u je ≤ te ∀ j ∈ J , e ∈ E (51)

te ≤ T + (L j − T ) · u je ∀ j ∈ J , e ∈ E (52)

which state that E j ≤ te ≤ L j if job j is active at event e.
Similarly, for SEE, we obtain the inequalities

E j ·
∑

e′≤e

x je′ ≤ te ∀ j ∈ J , e ∈ E (53)

(E j + p j ) ·
∑

f ′≤ f

y j f ′ ≤ t f ∀ j ∈ J , e ∈ E+ (54)
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te ≤ T + (L j − p j − T ) · x je ∀ j ∈ J , e ∈ E (55)

t f ≤ T + (L j − T ) · y j f ∀ j ∈ J , f ∈ E+ (56)

which imply that E j ≤ te ≤ L j − p j and E j + p j ≤ t f ≤ L j

if job j starts at event e and ends at event f . Moreover, by
applying the transformations (44) and (45) from SEE to IEE,
we get the equivalent inequalities

E j ·
∑

e′≤e

∑

f ′>e′
z je′ f ′ ≤ te ∀ j ∈ J , e ∈ E (57)

(E j + p j ) ·
∑

f ′≤ f

∑

e′< f ′
z je′ f ′ ≤ t f ∀ j ∈ J , f ∈ E+ (58)

te ≤ T + (L j − p j − T ) ·
∑

f ′>e

z je f ′ ∀ j ∈ J , e ∈ E (59)

t f ≤ T + (L j − T ) ·
∑

e′< f

z je′ f ∀ j ∈ J , f ∈ E+ (60)

for IEE. The basic idea of these inequalities was already
proposed byKoné et al. (2011), but our inequalities dominate
the originally proposed ones. If we add these inequalities, we
get the following better LP bound for SEE and IEE.

Lemma 7 Let L P denote the length of the longest path in
the precedence graph G = (J ,P). Adding the time bound
inequalities for SEE and IEE yields in both models an optimal
LP value of at least L P .

Proof After time window processing, we have that L P ≤
max j∈J (E j + p j ). The added time bound inequalities imply
E j + p j ≤ tn+1 for all jobs j , so we get L P ≤ tn+1 which
shows the statement. 
�

In the next section, we add further inequalities that achieve
an LP bound equal to an energetic lower bound for the
RCPSP.

5.3.2 Energetic time bounds

The next bound relies on the fact that the sum of the energies
r jk · p j of all jobs that are processed in the event interval
[te, t f ]must not exceed Rk ·(t f − te). For SEE, this translates
into the inequality

∑

j∈J
r jk · p j ·

⎛

⎝
∑

e′≥e

x je′ +
∑

f ′≤ f

y j f ′ − 1

⎞

⎠ ≤ Rk · (t f − te)

∀k ∈ R, (e, f ) ∈ A, (61)

while for IEE, this is equivalent to

∑

j∈J
r jk · p j ·

∑

e≤e′< f ′≤ f

z je′ f ′ ≤ Rk · (t f − te)

∀k ∈ R, (e, f ) ∈ A (62)

by (44) and (45). Due to the limited modeling possibilities,
we do not achieve similar strong inequalities for OOE, so we
omit them.

Lemma 8 Let B = maxk∈R
(∑

j∈J r jk · p j

)
/Rk denote

the energetic lower bound for the RCPSP. Adding the ener-
getic inequalities for SEE and IEE yields an optimal LP value
of at least B in both models.

Proof For SEE and IEE, consider the energetic inequality
with (e, f ) = (1, n + 1) which implies

∑
j∈J r jk · p j ≤

Rk · tn+1 for every k ∈ R. 
�
Our computational experience showed that adding all

energetic inequalities does not substantially improve the
solving performance of SEE (RSEE, respectively) and IEE.
Therefore, we add inequalities (61) and (62) only for all
k ∈ R and (e, n + 1) ∈ A in order to only improve upon the
LP bound that is determined by tn+1.

5.4 Maximal interval event length

The IEE model considers binary variables z je f for every job
j and start–end every pair of events (e, f ). Hence, it has a
factor of O(n) more binary variables compared to OOE and
SEEwhich constitutes a potential bottleneck for solving IEE.
However, in most integer solutions of IEE where z je f = 1
for some job j , the distance f − e between the start event
e and the end event f is rather small. Therefore, the idea
is to compute an upper bound δ j ≥ f − e for every job j
such that there exists no feasible schedule with z je f = 1 and
f − e > δ j . In this case, all variables z je f with f − e > δ j

can be eliminated.
Consider a fixed job j and denote δ j as the maximum

number of jobs that can start, while job j is active. Assume
that job j is processed in the time interval [S j , S j + p j ].
To compute δ j , we maximize the number of jobs that can
simultaneously start in the time interval [S j , S j + p j − ε]
(left knapsack) for some small ε > 0 and at time S j + p j

(right knapsack). If we have integer processing times, we
can set ε = 1. To keep the computation efficient, the left
knapsack takes energetic bounds, that is, for every resource
k, it has capacity (Rk − r jk) · (p j − ε) and every job i �= j
has weight rik · pi . In turn, the right knapsack has capacity
Rk −r jk for every resource k and every job i �= j has weight
rik . Moreover, we allow only jobs i with pi < p j to be
assigned to the left knapsack. If pi ≥ p j , then job i is active
at time S j + pi and we could, without loss of generality, shift
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Fig. 2 Maximumnumber of jobs that can start,while job j is active: The
left knapsack contains jobs i1, i2, i3 ∈ J L

j using energetic bounds, and

the right knapsack contains the job i4 ∈ J R
j using a one-dimensional

knapsack bound

i to the right out of the left knapsack to pack more jobs in
total. Let J P

j be the set of predecessors and J S
j the set of

successors of job j . The set of jobs that can be assigned to
the left and right knapsack is then given by

J L
j = {i ∈ J : i �= j, i /∈ J P

j ∪ J S
j , pi < p j },

J R
j = {i ∈ J : i �= j, i /∈ J P

j ∪ J S
j }

where J L
j ⊆ J R

j , see Fig. 2 for an example.
We model the combined knapsack problem as an integer

program with binary variables vL
i , vR

i ∈ {0, 1} that are equal
to one, if job i is assigned to the left or the right knapsack,
respectively. Thus, we solve

δ j = max
∑

i∈J L
j

vL
i +

∑

i∈J R
j

vR
i

vL
i + vR

i ≤ 1 ∀i ∈ J L
j (63)

∑

i∈J L
j

rik · pi · vL
i ≤ (Rk − r jk) · (p j − ε) ∀k ∈ R (64)

∑

i∈J R
j

rik · vR
i ≤ Rk − r jk ∀k ∈ R (65)

vL
i + vL

k ≤ 1

∀(i, k) : i ∈ J L
j , k ∈ J L

j ∩ J S
i : pi + pk ≥ p j (66)

vR
i + vR

k ≤ 1 ∀(i, k) : i ∈ J R
j , k ∈ J R

j ∩ J S
i

vL
i ∈ {0, 1} ∀i ∈ J L

j (67)

vR
i ∈ {0, 1} ∀i ∈ J R

j .

The objective function maximizes the number of assigned
jobs, while every job can be assigned to at most one knapsack
by inequality (63). As introduced, the left and right knapsack
inequalities are given by (64) and (65). Furthermore, inequal-
ities (66) and (67) forbid the assignments of two invalid
precedence-constrained jobs to the same knapsack. Even
though the stated problem is theoretically hard (contains the
knapsack problem), it can be solved very quickly by current
MIP solvers. After computing the values δ j for every job j ,

we eliminate all variables z je f where f −e > δ j .Onpractical
instances, we observe that this reduction approach generally
more than halves the number of variables of IEE. We apply
the preprocessing steps for our computational experiments
of the next section.

6 Computational results

In this section, we analyze the computational performance
of the presented models on the J30 and J60 test sets of the
PSPLIB (Kolisch and Sprecher 1997). Each of the two test
sets consists of 480 instanceswith 30 jobs and60 jobs, respec-
tively. Each instance considers four resourceswith individual
capacities, resource demands and precedence constraints. In
previous works, the instances also have been parameterized
by different parameters such as: order strength, network com-
plexity, resource factor, resource strength, disjunction ratio
and process range, see Artigues et al. (2013) and Koné et al.
(2011).

We implemented the models DDT, OOE, SEE, RSEE and
IEE using the C++ interface of the commercial MIP solver
Gurobi 7.5.1 in default settings. The tests are performed on
an Intel Xeon E5-2680 CPU with 2.7 Ghz using 8 cores for
each instance. The time limit of each instances was set to
600s.

For each of the test sets J30 and J60, we compute two
charts. The first chart displays the number of instances where
the optimality gap is belowor equal to the value on the x-axis.
The optimality gap is defined as 1− lb

ub where lb is the com-
puted dual bound and ub the computed primal bound after
solving each instance. Thus, the first chart shows the real
performance of exact solving the RCPSP. The second chart
shows the number of instances in which the min-primal-dual
gap is below or equal to the value on the x-axis. The min-

primal-dual gap is defined as 1 − max
(

ub∗
ub , lb

lb∗
)
where ub

and lb are defined as before, while ub∗ and lb∗ are the best-
known upper and lower bound of the considered instance.
Hence, the second chart displays the approximation quality
to the lower or the upper bound. This is because we observed
that, in the beginning of the solving process, the MIP solver
often decides to improve either the primal or dual bound,
while the other bound is disregarded during the remaining
solving process. Hence, onmany instances, one criterion out-
performs the other one, especially on the J60 instances.

Before turning to our computational results, we mention
that DDT should be considered separately because the event-
based models are intended to apply for the RCPSP in the
case where the time horizon is large. On the J30 and J60
instances, however, the time horizon has moderate size, so
DDT performs quite well compared to the event-based mod-
els. However, one can easily scale the time horizon and
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Fig. 3 J30 instances: optimality
gap (left) and min-primal-dual
gap (right)
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Fig. 4 J60 instances: optimality
gap (left) and min-primal-dual
gap (right)
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processing times of any instance by a large factor such that
DDT will always be outperformed by the event-based mod-
els as shown in Koné et al. (2011). Nevertheless, to allow a
comparison on commonly known RCPSP instances, we also
show the results of DDT.

For all event-based models, we consider the full event set
E = {1, . . . , n} and apply all preprocessing steps of Sect. 5.
For DDT,we restrict the decision variables of each job j ∈ J
to the time windows [E j , L j ] as given in Sect. 5.3.1.

On the J30 test set, see Fig. 3, all event-based models
show an almost equivalent performance for the optimality
gap. This is mainly due to the strong reductions in the time
window preprocessing on the J30 instances that equalizes
the solving behavior of the event-based models. Similarly,
DDT highly benefits from the time window preprocessing
because the resulting number of variables and constraints is
sufficiently small such that it outperforms the event-based
models. Considering the min-primal-dual gap, we see that
RSEE dominates all other event-based models. That means
RSEE is superior to all other event-basedmodels in the primal
or the dual bound. Furthermore, this shows that the sparse
representation of RSEE has a positive impact on the MIP
solvingperformance.Moreover,RSEEcloses the gap toDDT
which shows that the event-based models can compete with
DDT in the primal or dual bound approximation on instances
where DDT should be highly superior.

On the J60 test set, see Fig. 4, the influence of the timewin-
dow preprocessing decreases and the more model-specific
solving performance comes to light. For the optimality gap,
we observe again that RSEE solves as many instances to
optimality as its polyhedrally equivalent counterpart SEE but
highly dominates all other event-based models on the overall
scale. This shows that the sparsity of RSEE has a high impact
on the solving performance. Moreover, it replaces DDT as
the best model from an optimality gap of 30% where DDT
is not able to make progress on a couple of hard instances.
Despite the stronger formulation and additional preprocess-
ing, the new IEE model underlies SEE in direct comparison.
The main reason is the still large number of variables and
its complex polyhedral structure that causes expensive LP
solving. In contrast to the other models, IEE barely left the
root node of the search tree which lets us believe that IEE
has remaining potential if the LP subproblems can be solved
more efficiently, for example, by exploiting the split prop-
erty as given in Sect. 4.1. Reversely, OOE reflects its proven
theoretical strength and is clearly inferior to all other mod-
els. For the min-primal-dual criterion, we observe again that
RSEE dominates all other event-based models, while SEE
and IEE perform almost identically. The models RSEE, SEE
and IEE are even almost as strong as DDT in the primal or
dual bound. Again, OOE has the worst performance since it
is not able to close both primal and dual gap because of its
weak linear relaxation. Remarkably, the event-based models
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SEE, RSEE and IEE achieve the best-known dual or primal
bound on about 62% of the instances.

In the following, we will give a quick summary of each
model:

– OOE: fast on small instances; poor performance on large
instances; weak linear relaxation

– SEE: decent overall performance; small model size;
decent LP bound

– RSEE:best event-basedmodel; benefits fromsparse con-
straint matrix; decent LP bound

– IEE: strongest event-based model in theory; average
practical performance; large number of variables; expen-
sive LP solving

– (DDT): best model when the time horizon is small; good
LP bounds; inferior to all event-based models for large
time horizons

Comparing our results to Koné et al. (2011), we are able to
considerably improve upon the computational performance
of all event-based models. In Koné et al. (2011), OOE was
declared as the best performing model, while SEE was con-
siderably outperformed. Our theoretical and computational
results show the opposite. While in Koné et al. (2011), SEE
solved 2.9% of all J30 instances to optimality, we achieve
53.5% (SEE) and 82.5% (RSEE) where the lower or upper
bound is optimal. We believe that the main reason is the
stronger event time inequalities (23) that have high impact
on the dual bound duringMIP solving. For the J60 test set, we
can even solve about 44% of the instances to optimality and
for RSEE, almost about 95% of all J60 instances are solved
within 35% of optimality. Hence, being able to approach
the J60 test set with compact formulations constitutes a clear
improvement.Naturally, onehas to incorporate current devel-
opments in MIP solving and computation power, but we
believe the main improvement is made from a theoretical
basis.

7 Conclusion

In this article, we studied the class of event-based mod-
els for the RCPSP and gave a complete characterization
of their mutual polyhedral relationships and their connec-
tion to the common time-indexed formulation. Our proposed
improvements made it possible to approach more difficult
test sets of the PSPLIB by using the event-based models.
It is of interest to further improve upon the solving per-
formance of event-based models. This can be done, for
example, by incorporating more complex on-top algorithms,
such as Lagrangian relaxation that exploits the integrality of
the subproblems (RSEE), or by considering model-specific

properties, such as the split property of IEE, to solve the
LP-relaxations faster.
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