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Abstract
In this paper we consider a regression model that allows for time series covariates as
well as heteroscedasticity with a regression function that is modelled nonparametri-
cally. We assume that the regression function changes at some unknown time �ns0�,
s0 ∈ (0, 1), and our aim is to estimate the (rescaled) change point s0. The consid-
ered estimator is based on a Kolmogorov-Smirnov functional of the marked empirical
process of residuals. We show consistency of the estimator and prove a rate of con-
vergence of OP (n−1) which in this case is clearly optimal as there are only n points
in the sequence. Additionally we investigate the case of lagged dependent covariates,
that is, autoregression models with a change in the nonparametric (auto-) regression
function and give a consistency result. The method of proof also allows for different
kinds of functionals such that Cramér-von Mises type estimators can be considered
similarly. The approach extends existing literature by allowing nonparametric models,
time series data as well as heteroscedasticity. Finite sample simulations indicate the
good performance of our estimator in regression as well as autoregression models and
a real data example shows its applicability in practise.

Keywords Change point estimation · Time series · Nonparametric regression ·
Autoregression · Conditional heteroscedasticity · Consistency · Rates of convergence

Mathematics Subject Classification Primary 62G05; Secondary 62G08 · 62G20 ·
62M10

1 Introduction

Change point analysis has gained attention for decades in mathematical statistics.
There is a vast literature on testing for structural breaks when the possible timing of
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1438 M. Mohr, L. Selk

such a break, the change point, is unknown, see for instance Kirch and Kamgaing
(2012) and reference mentioned therein. This paper, however, is concerned with the
estimation of the change point when assuming its existence.

The most simple set of models can be described as follows

Yt = μ1 I {t ≤ �ns0�} + μ2 I {t > �ns0�} + εt , t = 1, . . . , n,

where s0 ∈ (0, 1) is the (rescaled) change point, μ1 and μ2 the signal before and after
the break, respectively, and (εt )t being stationary and centred errors. These models
are often referred to as AMOC-models (at most one change). The problem naturally
moved from the standard case with independent errors (see Ferger and Stute (1992)
among others) to the time series context. Both Bai (1994) and Antoch et al. (1997)
allow for linear processes andHušková andKirch (2008)more generally for dependent
errors.

Additional information on the form of the signal can be expressed through a process
of covariates (Xt )t resulting in linear regressionmodels with a change in the regression
parameter, such as

Yt = β1Xt I {t ≤ �ns0�} + β2Xt I {t > �ns0�} + εt , t = 1, . . . , n,

where β1 and β2 are the regression coefficients before and after the break, respectively.
Bai (1997), Horváth et al. (1997) and Aue et al. (2012) among others consider the
estimation of a change point in (multiple) linear regression models making use of least
squares estimation. Considering Xt = Yt−1 in the linear regressionmodel from above,
one obtains autoregressive models with one change in the autoregressive parameter.
The estimation of the parameters and the unknown change point in AR(1) models
was for instance considered by Chong (2001), Pang et al. (2014) and Pang and Zhang
(2015).

Our aim is to propose an estimator for the change point s0 in a nonparametric
version of the regression model from above, namely

Yt = m(1)(Xt )I {t ≤ �ns0�} + m(2)(Xt )I {t > �ns0�} + εt , t = 1, . . . , n,

for some nonparametric regression functions m(1),m(2) (before and after the break)
and in addition also investigate the autoregressive case where Xt = Yt−1. While
the investigation of points of discontinuity in (nonparametric) regression functions
has been studied to some extend (see for instance Döring and Jensen (2015) for an
overview), not that much research has been devoted to change point analysis in non-
parametric models as the one above, where the change occurs in time. Delgado and
Hidalgo (2000) propose estimators for the location and size of structural breaks in
a nonparametric regression model imposing scalar breaks in time or values taken by
some regressors, as in threshold models. Their rates of convergence and limiting dis-
tribution depends on a bandwidth, chosen for the kernel estimation. Chen et al. (2005)
estimate the time of a scalar change in the conditional variance function in nonpara-
metric heteroscedastic regression models using a hybrid procedure that combines the
least squares and nonparametric methods.
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Estimating change points in nonparametric time series regression models 1439

The paper at hand extends existing literature, on the one hand by allowing for non-
parametric heteroscedastic regression models with a general change in the unknown
regression function where both errors and covariates are allowed to be time series,
and on the other hand by investigating the autoregressive case. The achieved rate of
convergence for the proposed estimator of OP (n−1) is optimal as described in Hariz
et al. (2007).

The remainder of the paper is organized as follows. The model and the considered
estimator are introduced in Sect. 2. Section 3 contains the regularity assumptions
as well as the asymptotic results for the proposed estimator. Section 4 is concerned
with the special case of lagged dependent covariates, that is the autoregressive case.
In Sect. 5 we describe a simulation study and discuss a real data example, whereas
Sect. 6 concludes the paper. Proofs of the main results as well as auxiliary lemmata
can be found in the Appendix.

2 Themodel and estimator

Let {(Yt , Xt ) : t ∈ N} be a weakly dependent stochastic process in R×R
d following

the regression model

Yt = mt (Xt ) +Ut , t ∈ N. (2.1)

The unobservable innovations are assumed to fulfill E[Ut |F t ] = 0 almost surely
for the sigma-fieldF t = σ(Uj−1, X j : j ≤ t). We assume there exists a change point
in the regression function such that

mn,t (·) = mt (·) =
{
m(1)(·), t = 1, . . . , �ns0�
m(2)(·), t = �ns0� + 1, . . . , n

, m(1) �≡ m(2) (2.2)

where �ns0� with s0 ∈ (0, 1) is the unknown time the change occurs. Note that we
keep above notations for simplicity reasons, however, the considered process is in
fact a triangular array process {(Yn,t , Xn,t ) : 1 ≤ t ≤ n, n ∈ N} and will be treated
appropriately.

Assuming (Y1, X1), . . . , (Yn, Xn) have been observed, the aim is to estimate s0. The
idea is to base the estimator on the sequential marked empirical process of residuals,
namely

T̂n(s, z) := 1

n

�ns�∑
i=1

(Yi − m̂n(Xi ))ωn(Xi )I {Xi ≤ z},

for s ∈ [0, 1] and z ∈ R
d , where x ≤ y is short for x j ≤ y j for all j = 1, . . . , d,

ωn(·) = I {· ∈ Jn} being from assumption (V) below and m̂n being the Nadaraya-
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1440 M. Mohr, L. Selk

Watson estimator, that is

m̂n(x) =
∑n

j=1 K
(
x−X j
hn

)
Y j∑n

j=1 K
(
x−X j
hn

) ,

with kernel function K and bandwidth hn as considered in the assumptions below.
Then we want to estimate s0 by

ŝn := min

{
s : sup

z∈Rd
|T̂n(s, z)| = sup

s̄∈[0,1]
sup
z∈Rd

|T̂n(s̄, z)|
}

. (2.3)

Note that ŝn = ⌊
nŝn

⌋
/n.

Remark The advantage of using marked residuals in comparison to using the classical
CUSUM T̂n(s,∞) to estimate the change point is that in the first case the estimator
is consistent for all changes of the form (2.2) whereas there are several examples in
which the use of T̂n(s,∞) leads to a non-consistent estimator. To this end see the
remark below the proof of Theorem 3.1 and compare to Mohr and Neumeyer (2019).

Remark Mohr and Neumeyer (2019) constructed procedures based on functionals of
T̂n , e.g. a Kolmogorov-Smirnov test statistic sups∈[0,1] supz∈Rd |T̂n(s, z)|, to test the
null hypothesis of no changes in the unknown regression function against change
point alternatives as in (2.2). Given that such a test has rejected the null, the use of
an M-estimator as in (2.3) seems natural. Furthermore, Cramér-von Mises type test
statistics of the form sups∈[0,1]

∫
Rd |T̂n(s, z)|2ν(z)d z for some integrable ν : Rd → R

were also considered by Mohr and Neumeyer (2019). Assuming strict stationarity of
the covariates and the existence of a density f such that Xt ∼ f for all t , as in (IX.1)
below, the Cramér-von Mises approach from above with ν ≡ f leads to an alternative
estimator for s0, namely

s̃n := min

{
s :

(∫
Rd

|T̂n(s, z)|2 f (z)d z
)1/2

= sup
s̄∈[0,1]

(∫
Rd

|T̂n(s̄, z)|2 f (z)d z
)1/2

}
.

However, to obtain a feasible estimator one needs to replace the integral
∫
Rd |T̂n(s, z)|2

f (z)d z by its empirical counterpart 1n
∑n

k=1 |T̂n(s, Xk)|2 in practise as f is not known.

3 Asymptotic results

In this section we will derive asymptotic properties for ŝn . To this end we introduce
the following assumptions.

(I) For all t ∈ Z let E[Ut |F t ] = 0 a.s. for F t = σ(Uj−1, X j : j ≤ t) and
E[|Ut |q ] ≤ CU for some CU < ∞ and q > 2.
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Estimating change points in nonparametric time series regression models 1441

(II) For all t ∈ Z let E[|m(1)(Xt ) − m(2)(Xt )|r ] ≤ Cm for some Cm < ∞ and
r > 2.

(III) Let {(Yt , Xt ) : 1 ≤ t ≤ n, n ∈ N} be strongly mixing with mixing coefficient
α(·). For q, r from assumptions (I) and (II) and b := min(q, r) let α(t) =
O(t−ᾱ) with some ᾱ > max

(
(1+ (b− 1)(1+ d))/(b− 2), (b+ 2)/(b− 2)

)
.

(IV) For b from assumption (III) let E[|Yt |b] < ∞ and let Xt be absolutely contin-
uous with density function ft : Rd → R that satisfies supx∈Rd E[|Yt |b|Xt =
x] ft (x) < ∞ and supx∈Rd ft (x) < ∞ for all t ∈ {1, . . . , n} and n ∈ N. Let
there exist some L ≥ 0 such that sup|i− j |≥L supxi ,x j

E[|YiY j ||Xi = xi , X j =
x j ] fi j (xi , x j ) < ∞ for all n ∈ N, where fi j is the density function of
(Xi , X j ).

(V) Let (cn)n∈N be a positive sequence of real valued numbers satisfying cn → ∞
and cn = O((log n)1/d) and let Jn = [−cn, cn]d .

(VI) For some C < ∞ and cn from assumption (V) let In = [−cn − Chn, cn +
Chn]d and let δ−1

n = inf x∈Jn inf1≤t≤n ft (x) > 0 for all n ∈ N. Further, let
for all n ∈ N

pn = max
|k|=1

sup
x∈In

sup
1≤t≤n

|Dk ft (x)| < ∞

0 < qn = max
0≤|k|≤1

sup
x∈In

max
j=1,2

|Dkm( j)(x)| < ∞,

where |i | = ∑d
j=1 i j and D i = ∂ |i |

∂x
i1
1 ...∂x

id
d

for i = (i1, . . . , id) ∈ N
d
0 .

(VII) Let K : Rd → R be symmetric in each component with
∫
Rd K (z)d z = 1 and

compact support [−C,C]d . Additionally let |K (u)| < ∞ for all u ∈ R
d and

|K (u)−K (u′)| ≤ 
‖u−u′‖ for some
 < ∞ and for all u, u′ ∈ R
d , where

‖x‖ = maxi=1,...,d |xi |.
(VIII) With b and ᾱ from assumption (III) let

log (n)

nθhdn
= o(1) for θ = ᾱ − 1 − d − 1+ᾱ

b−1

ᾱ + 3 − d − 1+ᾱ
b−1

.

For δn, pn, qn from assumption (VI) let

(√
log(n)

nhdn
+ hn pn

)
pnqnδn = o(n−ζ )

for some ζ > 0.
(IX.1) For all 1 ≤ t ≤ n, n ∈ N let ft (·) = f (·), for some density f .
(IX.2) For all 1 ≤ t ≤ n, n ∈ N let ft (·) = f(1)(·) for all t = 1, . . . , �ns0� and

ft (·) = f(2)(·) for all t = �ns0� + 1, . . . , n, for some densities f(1), f(2).

Remark The assumptions on the error terms and the mixing assumptions particularly
allow for conditional heteroscedasticity. Assumptions (I), (II) and (III) are a trade off
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1442 M. Mohr, L. Selk

between the existence of moments and the rate of decay of the mixing coefficient.
Assumptions (III), (IV), (VII) and the first part of (VIII) are reproduced from Kris-
tensen (2012). Together with (V) and (VI), they are used to obtain uniform rates of
convergence for m̂n stated in Lemma A.1 in the Appendix. In (IX.1), we assume sta-
tionarity of the covariates for the whole observation period, while in the case of (IX.2)
we assume stationarity before and right after the change occurs. Nevertheless both
assumptions rule out general autoregressive effects such as Xt = (Yt−1, . . . ,Yt−d).
We will address this issue separately in Sect. 4.

Theorem 3.1 Assume (I), (II), (III), (IV), (V), (VI), (VII) and (VIII). Furthermore let
either (IX.1) or (IX.2) hold. Then the change point estimator ŝn is consistent, i. e.

|ŝn − s0| = oP (1).

Theorem 3.2 Under the assumptions of Theorem 3.1 for the change point estimator
ŝn it holds that

|ŝn − s0| = OP (r−1
n ),

where rn = n.

The proofs of the theorems can be found in Appendix A.2. We state both theorems
seperately since we need Theorem 3.1 to prove Theorem 3.2.

Remark To obtain the rates of convergence we make use of the fact that ŝn can be
expressed using the sup norm on l∞(Rd), i.e.

N : l∞(Rd) → R, g → N (g) := sup
z∈Rd

|g(z)|,

where l∞(Rd) is the space of all uniformly bounded real valued functions on R
d .

Note that similarly s̃n can be expressed using the L2(P) norm, when (Xt )t is strictly
stationary with marginal distribution P , namely

Ñ : l∞(Rd) → R, g → Ñ (g) :=
(∫

Rd
|g(z)|2 f (z)d z

)1/2

.

Using Ñ (g) ≤ N (g) for all g ∈ l∞(Rd), corresponding results for s̃n as inTheorem3.1
and Theorem 3.2 can be proven in a similar matter.

4 The autoregressive case

In this section wewill consider the case where the exogenous variables include finitely
many lagged values of the endogenous variable, we will refer to this model as the
autoregressive case. Wewill focus on one dimensional covariates, however, the results
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Estimating change points in nonparametric time series regression models 1443

do not depend on the dimension and can also be formulated for higher order autore-
gression models. Consider the nonparametric autoregression

Yt = mt (Yt−1) +Ut , t = 1, . . . , n, (4.1)

with unobservable innovationsUt and one change in the regression function occurring
at some unknown time �ns0� as in (2.2).

Furthermore assume the following.

(IX.3) For all 1 ≤ t ≤ n, n ∈ N let Xt := Yt−1 be absolutely continuous with
density ft . Let there exist densities f(1) and f(2) such that ft (·) = f(1)(·) for
all t = 1, . . . , �ns0� and Rn(x) := 1

n

∑n
j=�ns0�+1 f j (x)− n−�ns0�

n f(2)(x) → 0
for all x ∈ R and n → ∞.

Remark Note that (IX.3) requires on the one hand strict stationarity up to the time of
change �ns0�. On the other hand the time series needs to reach its (new) stationary
distribution fast enough after the change. This is a generalization of (IX.2) where we
assumed stationarity both before and right after the change point, which can not be
fulfilled in the model (4.1). A necessary condition then is that there exists a stationary
solution of equation (4.1) under both m(1)(·) and m(2)(·) as regression functions.
Example Consider the AR(1)-model

Yt = at · Yt−1 + εt

with standard normally distributed innovations (εt )t and at = a ∈ (−1, 1) for t ≤
�ns0�, at = b ∈ (−1, 1) for t > �ns0�, a �= b. Then assumption (IX.3) is fulfilled.
Note to this end that Xt := Yt−1 ∼ N (0, 1/(1 − a2)) for t ≤ �ns0�. The distribution
after the change point is given by X�ns0�+1+k ∼ N (

0, b2(k+1)/(1 − a2) +∑k
i=0 b

2i
)

for all k > 0. Thus with σ 2
j := b2( j−�ns0�)/(1 − a2) + ∑ j−�ns0�−1

i=0 b2i by the mean

value theorem it holds for some ξ j between σ 2
j and (1 − b2)−1 that

Rn(x) = 1

n

n∑
j=�ns0�+1

⎛
⎝ 1√

2πσ 2
j

exp

(
− x2

2σ 2
j

)
− 1√

2π(1 − b2)−1
exp

(
− x2

2(1 − b2)−1

)⎞⎠

= 1

n

n∑
j=�ns0�+1

(
σ 2
j − 1

1−b2

)
exp

(
− x2

2ξ j

)⎛⎝−1

2
· 1
√
2πξ

3
2
j

+ 1

(2πξ j )
1
2

· x2

2ξ2j

⎞
⎠

≤ C
1

n

n∑
j=�ns0�+1

∣∣∣∣σ 2
j − 1

1 − b2

∣∣∣∣
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1444 M. Mohr, L. Selk

for some constant C < ∞ for all x ∈ R. Further we can conclude

1

n

n∑
j=�ns0�+1

∣∣∣∣σ 2
j − 1

1 − b2

∣∣∣∣ = 1

n

n∑
j=�ns0�+1

∣∣∣∣∣b
2( j−�ns0�)

1 − a2
+ 1 − b2( j−�ns0�)

1 − b2
− 1

1 − b2

∣∣∣∣∣
=
∣∣∣∣ 1

1 − a2
− 1

1 − b2

∣∣∣∣ 1n
n∑

j=�ns0�+1

b2( j−�ns0�)

and thus Rn(x) −−−→
n→∞ 0 for all x ∈ R.

In general verifying assumption (IX.3) for model (4.1) means to compare the distri-
bution of a stochastic process that is not yet in balance with its stationary distribution.
Awell known technique to deal with this task is coupling, see e. g. Franke et al. (2002).

Under (IX.3) we get the following consistency result for our change point estimator
in the autoregressive case.

Theorem 4.1 Assume model (4.1) under (I), (II), (III), (IV), (V), (VI), (VII), (VIII) and
(IX.3). Then the change point estimator ŝn is consistent, i. e.

|ŝn − s0| = oP (1).

The proof can be found in Appendix A.2.

Remark Another possibility to handle the autoregressive case would be to model the
change in a different way, namely

Yt =
{
Y (1)
t = m(1)

(
Y (1)
t−1

)+U (1)
t , t = 1, . . . , �ns0�

Y (2)
t = m(2)

(
Y (2)
t−1

)+U (2)
t , t = �ns0� + 1, . . . , n

, m(1) �≡ m(2),

for two stationary processes
(
Y (1)
t
)
t ,
(
Y (2)
t
)
t , see e. g. Kirch et al. (2015). In this case

assumption (IX.2) is fulfilled and thus Theorems 3.1 and 3.2 apply.

5 Finite sample properties

5.1 Simulations

To investigate the finite sample performance of our estimator, we generate data from
two different basic models, namely

(IID) Yt = mt (Xt ) + σ(Xt )εt , where the observations (Xt )t are i.i.d., univariate
and standard normally distributed, just as the errors (εt )t .

(TS) Yt = mt (Xt ) + σ(Xt )εt , where (εt )t i.i.d. ∼ N (0, 1) and the univariate
observations (Xt )t stem from a time series Xt = 0.4Xt−1 + ηt with standard
normal innovations (ηt )t .

123



Estimating change points in nonparametric time series regression models 1445

)ST()DII(

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

s0

M
S

E

n=100
n=500
n=1000

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

s0

M
S

E

n=100
n=500
n=1000

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

s0

M
S

E

n=100
n=500
n=1000

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

s0

s0 s0

M
S

E

n=100
n=500
n=1000

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

M
S

E

n=100
n=500
n=1000

0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

M
S

E
n=100
n=500
n=1000

Fig. 1 Simulation results for model (IID) (left), model (TS) (right) and change point scenario (C1) (top),
change point scenario (C2) (middle), change point scenario (C3) (bottom)

For both models we generate data both for the homoscedastic case σ ≡ 1 as well as
for the heteroscedastic case σ(x) = √

1 + 0.5x2. The results for both are very similar
in all situations, thus we only present the results for the heteroscedastic case. To model
the change in the regression function we use three different scenarios

(C1) mt =
{

−0.5x, t = 1, . . . , �ns0�
0.5x t = �ns0� + 1, . . . , n,

(C2) mt =
{
0.1x, t = 1, . . . , �ns0�
0.9x t = �ns0� + 1, . . . , n,

(C3) mt =
{
0.5x, t = 1, . . . , �ns0�
(0.5 + 3 exp(−0.8x2))x t = �ns0� + 1, . . . , n,

where we let s0 range from 0.1 to 0.9. In Fig. 1 the results for 1000 replications and
sample sizes n = 100, 500, 1000 are shown, where we plot s0 against the estimated
mean squared error of our estimator ŝn . The kernel for m̂n is chosen as the Epanech-
nikov kernel of order four and the bandwidth is determined by a cross-validation
method. It can be seen that our estimator performs quite well even for the smallest
sample size n = 100 when s0 is 0.5 or close to it whereas for a change point that lies
closer to the boundaries of the observation interval a larger sample size is needed to
get satisfying results. This is due to the fact that if s0 = 0.1 or s0 = 0.9 there are
only 10 observations before and after the change point respectively for n = 100 and
thus the estimation of m(1) and m(2) respectively are poor. Moreover an asymmetry
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Fig. 2 Simulation results for model (IID) (left) and model (TS) (right) with change point scenario (C1) and
an additional change in the variance function
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Fig. 3 Simulation results for model (AR) and change point scenario (C1) (left), change point scenario (C2)
(right)

in the results is striking. This stems from the CUSUM type statistic that our estimator
is based on. For s0 = 0.1 e. g. the sum consists of only 0.1n summands and thus the
estimation of e. g. E[Ut ] is worse than if s0 = 0.9 and the estimation is based on 0.9n
summands. The effect of a decreasing performance of the estimators the closer s0 gets
to the boundaries is typical for change point estimators based on CUSUM statistics
and can be antagonized by the use of appropriate weights, see e. g. Ferger (2005).

To stress our estimator a little further we simulate the scenario that there is also
a change in the variance function σ at a different time point than the change in the
regression function m. In this situation the estimator should still be able to detect s0,
the change point in the regression function. The results are shown in Fig. 2 for model
(IID) and model (TS) with change point scenario (C1) where σt (x) = √

1 + 0.1x2 for
t ≤ 0.4n and σt (x) = √

1 + 0.8x2 for t > 0.4n. They confirm the good performance
of our estimator even in this more difficult situation.

As discussed in Sect. 4 our estimator can also be applied to the autoregressive
case. To investigate the finite sample performance in this situation we generate data
according to the model

(AR) Yt = mt (Yt−1) + σ(Yt−1)εt , where (εt )t i.i.d. ∼ N (0, 1).

Forσ ≡ 1 and change point scenario (C1) aswell as (C2) assumption (IX.3) is fulfilled,
see the example in Sect. 4. Simulation results for these cases are shown in Fig. 3 where
the setting is the same as described above. They look very similar to the results of
model (IID) and (TS) and thus confirm the theoretical result of Theorem 4.1. Even
for examples where assumption (IX.3) can not be verified easily the performance of
our estimator is satisfying, see Fig. 4 for model (AR) with σ ≡ 1 and change point
scenario (C3) as well as the heteroscedastic model (AR) with σ = √

1 + 0.5x2 and
change point scenario (C1).
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Fig. 4 Simulation results for homoscedastic model (AR) with change point scenario (C3) (left) and het-
eroscedastic model (AR) with change point scenario (C1) (right)

As stated in the remark in Sect. 2 it is also possible to base the estimator on a
Cramér-von Mises type functional of the marked empirical process of residuals. The
simulation results for this type of estimator are very similar to those presented here
for the Kolmogorov-Smirnov type estimator ŝn and are omitted for the sake of brevity.

5.2 Data example

Finally, we will consider a real data example. The data at hand contains 36 measure-
ments of the annual flow volume of the small Czech river, Ráztoka, recorded between
1954 and 1989 as well as the annual rainfall during that time. It was considered by
Hušková and Antoch (2003) to investigate the effect of controlled deforestation on
the capability for water retention of the soil. To this end it is of interest if and when
the relationship between rainfall and flow volume changes. We set Xt as the annual
rainfall and Yt as the annual flow volume. Mohr and Neumeyer (2019) applied their
Kolmogorov-Smirnov test to this data set, which clearly rejects the null of no change
in the conditional mean function, indicating the existence of a change in the relation-
ship between rainfall and flow volume. Using ŝn to estimate the unknown time of
change suggests a change in 1979. Note that this is consistent with the literature. As
was pointed out by Hušková and Antoch (2003) large scale deforestation had started
around that time. Figure 5 showson the left-hand side the scatterplot Xt againstYt using
dots for the observations after the estimated change and crosses for the observations
before the estimated change. On the right-hand side the figure shows the cumulative
sum, n1/2 supz∈R |T̂n(·, z)|, as well as the critical value of the test used in Mohr and
Neumeyer (2019) (red horizontal line) and the estimated change (green vertical line).
Note that s̃n leads to the same result.

6 Concluding remarks

In this paper we consider nonparametric regression models with a change in the
unknown regression function that allows for time series data as well as conditional
heteroscedasticity. We propose an estimator for the rescaled change point that is based
on the sequential marked empirical process of residuals and show consistency as well
as a rate of convergence of OP (n−1). In an autoregressive setting we additionally give
a consistency result for the proposed estimator.
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Fig. 5 Ráztoka data: scatterplot (left) and CUSUM (right)

If more than one change occurs, the proposed estimator is not consistent for one
of the changes in some situations. For detecting multiple changes we refer the reader
to alternative procedures such as the MOSUM procedure proposed by Eichinger and
Kirch (2018) or the wild binary segmentation procedure by Fryzlewicz (2014) (see
also Fryzlewicz (2019)).

Investigating the asymptotic distribution of the proposed estimator is a subsequent
issue. Certainly, it is of great interest as it can be used to obtain confidence intervals.
However, this subject goes beyond the scope of the paper at hand and is postponed to
future research.
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Appendix: Proofs

A.1 Auxiliary results

Lemma A.1 Under the assumptions (III), (IV), (V), (VI), (VII) and (VIII), it holds that

sup
x∈Jn

|m̂n(x) − m̄n(x)| = OP

((√
log(n)

nhdn
+ hn pn

)
δn pnqn

)
,
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where

m̄n(x) =
∑n

i=1 fi (x)mi (x)∑n
i=1 fi (x)

.

The proof is similar to the proof of Lemma 2.2 in Mohr (2018). The key tool is
an application of Theorem 1 in Kristensen (2009). Details are omitted for the sake of
brevity.

Remark Under (IX.1) we have

m̄n(x) = �ns0�
n

m(1)(x) + n − �ns0�
n

m(2)(x),

under (IX.2) and (IX.3) we have

m̄n(x) =
�ns0�
n f(1)(x)

f̄n(x)
(m(1)(x) − m(2)(x)) + m(2)(x),

where

f̄n(x) := 1

n

n∑
i=1

fi (x) =
{ �ns0�

n f(1)(x) + n−�ns0�
n f(2)(x), for (IX.2)

�ns0�
n f(1)(x) + n−�ns0�

n f(2)(x) + Rn(x), for (IX.3)

with Rn(·) from assumption (IX.3).

Lemma A.2 Under the assumptions of Theorem 3.1 as well as under those of Theo-
rem 4.1 there exists a constant C̄ = C̄(C) < ∞ such that

P

⎛
⎝ sup

s∈[0,1]
sup
z∈Rd

∣∣∣∣∣∣
L+�κns�∑
i=L+1

Uiωn(Xi )I {Xi ≤ z}
∣∣∣∣∣∣ > Cκn

⎞
⎠ ≤ C̄κ

1
q −1
n

for all L = 0, 1, . . . , n−κn, 1 ≤ κn ≤ n, n ∈ N and all C > 0with q from assumption
(I).

Proof of LemmaA.2 The proof follows along similar lines as the proof of Lemma A.3
in Mohr (2018). Throughout the proof the values of C and C̄ may vary from line
to line but they are always positive, finite and independent of n. Further note that
deterministic terms that are of order O(κn) can be omitted as we can choose constants
appropriately. It holds that

sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
L+�κn s�∑
i=L+1

Uiωn(Xi )I {Xi ≤ z}
∣∣∣∣∣∣

= sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
L+�κn s�∑
i=L+1

Uiωn(Xi )I {Xi ≤ z} − E

⎡
⎣L+�κn s�∑

i=L+1

Uiωn(Xi )I {Xi ≤ z}
⎤
⎦
∣∣∣∣∣∣
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≤ sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
L+�κn s�∑
i=L+1

Ui I {|Ui |>κ
1
q
n }ωn(Xi )I {Xi ≤ z}−E

⎡
⎣L+�κn s�∑

i=L+1

Ui I {|Ui |>κ
1
q
n }ωn(Xi )I {Xi ≤ z}

⎤
⎦
∣∣∣∣∣∣

(A.1)

+ sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
L+�κn s�∑
i=L+1

Ui I {|Ui |≤κ
1
q
n }ωn(Xi )I {Xi ≤ z}−E

⎡
⎣L+�κn s�∑

i=L+1

Ui I {|Ui |≤κ
1
q
n }ωn(Xi )I {Xi ≤ z}

⎤
⎦
∣∣∣∣∣∣

(A.2)

where (A.1) is of the desired rate in probability since

P

( L+κn∑
i=L+1

|Ui |I {|Ui | > κ
1
q
n } > Cκn

)
≤ C−1CUκ

1
q −1
n

by Markov’s inequality with

E

[
|Ui |I {|Ui | > κ

1
q
n }
]

= E

[
|Ui |q |Ui |−(q−1) I {|Ui | > κ

1
q
n }
]

≤ κ
− q−1

q
n E[|Ui |q ]

≤ CUκ
1
q −1
n for all i and for CU < ∞ from assumption (I).

Considering the term (A.2) we define the function class

Fn :=
{
(u, x) → uI {|u| ≤ κ

1
q
n }ωn(x)I {x ≤ z} : z ∈ R

d
}

to rewrite the assertion as

P

⎛
⎝ sup

s∈[0,1]
sup

ϕ∈Fn

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣ > Cκn

⎞
⎠ ≤ C̄κ

1
q −1
n .

Now we will cover [0, 1] by finitely many intervals and Fn by finitely many brackets
to replace the supremum by a maximum. Let therefore

0 = s1 < · · · < sKn = 1
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part the interval [0, 1] in Kn subintervals of length ε̄n with ε̄n = κ
− 1

q
n . Then

sup
s∈[0,1]

sup
ϕ∈Fn

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣
= max

k
sup

s∈[0,1]
|s−sk |≤ε̄n

sup
ϕ∈Fn

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣
≤ max

k
sup

ϕ∈Fn

∣∣∣∣∣∣
L+�κnsk�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣
+max

k
sup

s∈[0,1]
|s−sk |≤ε̄n

sup
ϕ∈Fn

L+κn∑
i=L+1

∣∣∣∣ϕ(Ui , Xi ) −
∫

ϕdP

∣∣∣∣︸ ︷︷ ︸
≤2κ

1
q
n

∣∣∣∣I
{
i − L

κn
≤ s

}

−I

{
i − L

κn
≤ sk

}∣∣∣∣
≤ max

k
sup

ϕ∈Fn

∣∣∣∣∣∣
L+�κnsk�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣+ 2κ
1
q
n (κn ε̄n + 1)

and 2κ
1
q
n (κn ε̄n + 1) = 2(κn + κ

1
q
n ) = O(κn). Further let

ϕu
j (u, x) := uI {|u| ≤ κ

1
q
n }I {u ≥ 0}ωn(x)I {x ≤ z j }

+ uI {|u| ≤ κ
1
q
n }I {u < 0}ωn(x)I {x ≤ z j−1}

and

ϕl
j (u, x) := uI {|u| ≤ κ

1
q
n }I {u ≥ 0}ωn(x)I {x ≤ z j−1}

+ uI {|u| ≤ κ
1
q
n }I {u < 0}ωn(x)I {x ≤ z j }

form the brackets [ϕl
j , ϕ

u
j ] j∈×d

i=1{1,...,Ni } of Fn , where z j := (z j1,1, . . . , z jd ,d) and

−∞ = z0,i < · · · < zNi ,i = ∞

gives a partition of R for all i = 1, . . . , d. Then for all z ∈ R
d there exists a j ∈

×d
i=1{1, . . . , Ni } such that z j−1 < z ≤ z j where j −1 := ( j1 −1, . . . , jd −1). Thus

every element ϕ of Fn lies in one of the brackets [ϕl
j , ϕ

u
j ], i. e. ϕl

j (u, x) ≤ ϕ(u, x) ≤
ϕu
j (u, x) for all (u, x). We say a bracket [ϕl

j , ϕ
u
j ] is of size εn if

∫
(ϕu

j − ϕl
j )dP ≤ εn .

The total number of brackets of size εn needed to cover Fn is denoted by Jn :=
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N[ ](εn,Fn, ‖ · ‖L1(P)) and is of order Jn = O(ε−d
n ), which follows analogously to

but easier than the proof of Lemma A.7 in Mohr (2018).
For all ϕ ∈ Fn there exists a j with ϕl

j ≤ ϕ ≤ ϕu
j and thus

ϕ −
∫

ϕdP ≤ ϕu
j −

∫
ϕu
jdP +

∫
(ϕu

j − ϕl
j )dP

and

ϕ −
∫

ϕdP ≥ ϕl
j −

∫
ϕl
jdP −

∫
(ϕu

j − ϕl
j )dP.

Therefore for all s ∈ [0, 1]

sup
ϕ∈Fn

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣
= max

j
sup

ϕ∈[ϕl
j ,ϕ

u
j ]

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕ(Ui , Xi ) −

∫
ϕdP

)∣∣∣∣∣∣
≤ max

j
max

⎧⎨
⎩
∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕu
j (Ui , Xi ) −

∫
ϕu
jdP

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣
L+�κns�∑
i=L+1

(
ϕl
j (Ui , Xi )

−
∫

ϕl
jdP

)∣∣∣∣
}

+κn max
j

∫
(ϕu

j − ϕl
j )dP︸ ︷︷ ︸

≤εn

and κnεn = O(κn) if we choose εn constant. Thus it remains to show that

P

⎛
⎝max

j ,k

∣∣∣∣∣∣
L+�κnsk�∑
i=L+1

(
ϕu
j (Ui , Xi ) −

∫
ϕu
jdP

)∣∣∣∣∣∣ > Cκn

⎞
⎠ ≤ C̄κ

1
q −1
n

and the same with ϕu
j replaced by ϕl

j . Recall that

max
j ,k

∣∣∣∣∣∣
L+�κnsk�∑
i=L+1

(
ϕu
j (Ui , Xi ) −

∫
ϕu
jdP

)∣∣∣∣∣∣
≤ max

j ,k

∣∣∣∣
L+�κnsk�∑
i=L+1

(
Ui I {|Ui | ≤ κ

1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

−E

[
Ui I {|Ui | ≤ κ

1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

] )∣∣∣∣ (A.3)
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+max
j ,k

∣∣∣∣
L+�κnsk�∑
i=L+1

(
Ui I {|Ui | ≤ κ

1
q
n }I {Ui < 0}ωn(Xi )I {Xi ≤ z j−1}

−E

[
Ui I {|Ui | ≤ κ

1
q
n }I {Ui < 0}ωn(Xi )I {Xi ≤ z j−1}

] )∣∣∣∣.
We will only consider the first summand in more detail since the rest works analo-
gously. To prove that (A.3) is stochastically of the desired rate we apply a Bernstein
type inequality forα-mixing processes, see Liebscher (1996) Therorem 2.1. Following
his notation we define

Zi :=
(
Ui+L I {|Ui+L | ≤ κ

1
q
n }I {Ui+L ≥ 0}ωn(Xi+L)I {Xi+L ≤ z}

−E

[
Ui+L I {|Ui+L |≤κ

1
q
n }I {Ui+L ≥0}ωn(Xi+L)I {Xi+L ≤ z}

] )
I

{
i

κn
≤sk

}

for fixed z ∈ R
d and s ∈ [0, 1]. Note that |Zi | ≤ 2κ

1
q
n =: S(κn), Zi is centered and

D(κn, N ) := sup
0≤T≤κn−1

E

⎡
⎢⎣
⎛
⎝(T+N )∧κn∑

j=T+1

Z j

⎞
⎠

2
⎤
⎥⎦ ≤ N 2E[Z2

i ] ≤ CU N 2

by assumption (I). Thus Liebscher’s Theorem can be applied with N = �κ1− 2
q

n �. This
means that

P

(
max
j ,k

∣∣∣∣
L+�κnsk�∑
i=L+1

Ui I {|Ui | ≤ κ
1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

−E

[
Ui I {|Ui | ≤ κ

1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

] ∣∣∣∣ > Cκn

)

≤
∑
j ,k

P

(∣∣∣∣
L+�κnsk�∑
i=L+1

(
Ui I {|Ui | ≤ κ

1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

−E

[
Ui I {|Ui | ≤ κ

1
q
n }I {Ui ≥ 0}ωn(Xi )I {Xi ≤ z j }

] )∣∣∣∣ > Cκn

)

≤ JnKn

(
4 exp

(
− C2κ2

n

64 κn
N D(κn, N ) + 8

3CκnN S(κn)

)
+ 4

κn

N
α(N )

)

≤ JnKn

⎛
⎝4 exp

⎛
⎝− C2κ2

n

64CUκ
2− 2

q
n + 16

3 Cκ
2− 1

q
n

⎞
⎠+ 4κ

2
q
n α(κ

1− 2
q

n )

⎞
⎠

≤ JnKn

(
4 exp

(
−C1κ

1
q
n

)
+ 4κ

2
q
n α(κ

1− 2
q

n )

)
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≤ C2κ
1
q
n

(
(C1κ

1
q
n )−q + κ

2
q −ᾱ+ 2ᾱ

q
n

)

≤ C̄κ
1
q −1
n

for some constants C1,C2, C̄ where the second to last inequality follows from the fact
that exp(−x) < x−kk! for all k ∈ N and x ∈ R+ and the last inequality is true by
assumption (III) which implies ᾱ > (q + 2)/(q − 2). This completes the proof. ��

Lemma A.3 Under the assumptions of Theorem 3.1 as well as under those of Theo-
rem 4.1 there exists a constant C̄ = C̄(C) < ∞ such that

P

(
sup

s∈[0,1]
sup
z∈Rd

∣∣∣∣
(L+�κns�)∧�ns0�∑

i=L+1

(
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

−E
[
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}] )∣∣∣∣ > Cκn

)
≤ C̄κ

1
r −1
n

and

P

(
sup

s∈[0,1]
sup
z∈Rd

∣∣∣∣
L+�κns�∑

i=L∨�ns0�+1

(
(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

−E
[
(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}] )∣∣∣∣ > Cκn

)
≤ C̄κ

1
r −1
n

for all L = 0, 1, . . . , n−κn, 1 ≤ κn ≤ n, n ∈ N and all C > 0with r from assumption
(II).

Proof of LemmaA.3 First we will distinguish between the cases L + �κns� ≤ �ns0�
and L + �κns� > �ns0�. In the first case we can write

L+�κns�∑
i=L+1

(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

=
L+�κns�∑
i=L+1

(
m(1)(Xi ) − m(1)(Xi )

∑�ns0�
j=1 f j (Xi )∑n

j=1 f j (Xi )
− m(2)(Xi )

∑n
j=�ns0�+1 f j (Xi )∑n

j=1 f j (Xi )

)

·ωn(Xi )I {Xi ≤ z}

=
L+�κns�∑
i=L+1

(m(1)(Xi ) − m(2)(Xi ))

∑n
j=�ns0�+1 f j (Xi )∑n

j=1 f j (Xi )
ωn(Xi )I {Xi ≤ z}
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and analogously for the second case

L+�κns�∑
i=L∨�ns0�+1

(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

=
L+�κns�∑

i=L∨�ns0�+1

(m(2)(Xi ) − m(1)(Xi ))

∑�ns0�
j=1 f j (Xi )∑n
j=1 f j (Xi )

ωn(Xi )I {Xi ≤ z}.

We will only examine the case L +�κns� ≤ �ns0� in detail since the other case works
analogously.

The remainder of the proof is similar to the proof of Lemma A.2. With g(Xi ) :=
(m(1)(Xi ) − m(2)(Xi )) and f̄ (s0)

n (Xi ) =
∑n

j=�ns0�+1 f j (Xi )∑n
j=1 f j (Xi )

it holds

sup
s∈[0,1]

sup
z∈Rd

∣∣∣∣∣∣
L+�κns�∑
i=L+1

g(Xi )I {|g(Xi )| > κ
1
r
n } f̄ (s0)

n (Xi )ωn(Xi )I {Xi ≤ z}
∣∣∣∣∣∣

≤
L+κn∑
i=L+1

|g(Xi )|I {|g(Xi )| > κ
1
r
n }

and further

P

( L+κn∑
i=L+1

|g(Xi )|I {|g(Xi )| > κ
1
r
n } > Cκn

)
≤ C−1κ−1

n Cmκnκ
1
r −1
n

by the Markov inequality with

E

[
|g(Xi )|I {|g(Xi )| > κ

1
r
n }
]

= E

[
|g(Xi )|r |g(Xi )|−(r−1) I {|g(Xi )| > κ

1
r
n }
]

≤ κ
− r−1

r
n E[|g(Xi )|r ]

≤ Cmκ
1
r −1
n

for all i and for some Cm < ∞ by assumption (II). Thus we can rewrite our assertion
as

P

⎛
⎝ sup

s∈[0,1]
sup

ϕ∈Fn

∣∣∣∣∣∣
⎛
⎝L+�κns�∑

i=L+1

ϕ(Xi ) −
∫

ϕdP

⎞
⎠
∣∣∣∣∣∣ > Cκn

⎞
⎠ ≤ C̄κ

1
r −1
n ,

with the function class

Fn :=
{
x → g(x)I {|g(x)| ≤ κ

1
r
n } f̄ (s0)

n (x)ωn(x)I {x ≤ z} : z ∈ R
d
}

.
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1456 M. Mohr, L. Selk

To replace the supremum over ϕ by amaximumwe coverFn by finitely many brackets
[ϕl

j , ϕ
u
j ] j∈×d

i=1{1,...,Ni } where

ϕu
j (x) := g(x)I {|g(x)| ≤ κ

1
r
n }I {g(x) ≥ 0} f̄ (s0)

n (x)ωn(x)I {x ≤ z j }
+ g(x)I {|g(x)| ≤ κ

1
r
n }I {g(x) < 0} f̄ (s0)

n (x)ωn(x)I {x ≤ z j−1}

and

ϕu
j (x) := g(x)I {|g(x)| ≤ κ

1
r
n }I {g(x) ≥ 0} f̄ (s0)

n (x)ωn(x)I {x ≤ z j−1}
+g(x)I {|g(x)| ≤ κ

1
r
n }I {g(x) < 0} f̄ (s0)

n (x)ωn(x)I {x ≤ z j }

and j , z j are defined as in the proof of Lemma A.2. The total number of brackets
Jn := N[ ](εn,Fn, ‖ · ‖L1(P)) needed to cover Fn is again of order Jn = O(ε−d

n ),
which follows analogously to but easier than the proof of Lemma A.7 in Mohr (2018).
Now we proceed completely analogously to the proof of Lemma A.2 by replacing the
supremum over s by a maximum as well and applying Liebscher’s Theorem. Since
the arguments are the same as in the aforementioned proof we omit this part for the
sake of brevity. ��

Lemma A.4 Under the assumptions of Theorem 3.1 as well as under those of Theo-
rem 4.1 it holds

P

⎛
⎝ sup

s∈[0,1]
sup
z∈Rd

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(m̄n(Xi ) − m̂n(Xi ))ωn(Xi )I {Xi ≤ z}
∣∣∣∣∣∣ > Cκn

⎞
⎠ ≤ C−1κ−ζ

n

for all L = 0, 1, . . . , n − κn, 1 ≤ κn ≤ n, n ∈ N and all C > 0 with ζ > 0 from
assumption (VIII).

Proof of LemmaA.4 It holds

P

⎛
⎝ sup

s∈[0,1]
sup
z∈Rd

∣∣∣∣∣∣
L+�κns�∑
i=L+1

(m̄n(Xi ) − m̂n(Xi ))ωn(Xi )I {Xi ≤ z}
∣∣∣∣∣∣ > Cκn

⎞
⎠

≤ P

( L+κn∑
i=L+1

|m̄n(Xi ) − m̂n(Xi )|ωn(Xi ) > Cκn

)

≤ P

(
sup
x∈Jn

|m̄n(x) − m̂n(x)| > C

)

≤ C−1E[ sup
x∈Jn

|m̄n(x) − m̂n(x)|]
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Estimating change points in nonparametric time series regression models 1457

by the Markov inequality. Further by Lemma A.1 with assumption (VIII) it holds that

supx∈Jn |m̄n(x) − m̂n(x)|
n−ζ

P−−−→
n→∞ 0

which implies

E[supx∈Jn |m̄n(x) − m̂n(x)|]
n−ζ

−−−→
n→∞ 0

and thus for sufficiently large n

E[ sup
x∈Jn

|m̄n(x) − m̂n(x)|] ≤ n−ζ

≤ κ−ζ
n

for κn ≤ n. This completes the proof. ��

A.2 Proof of main results

We will proof Theorem 3.1 under the assumption (IX.1) and simply make a note on
the parts that change under (IX.2).

Proof of Theorem 3.1 First note that for all s ∈ [0, 1] and z ∈ R
d

T̂n(s, z) = An(s, z) + �n,1(s)�n,2(z), (A.4)

where An(s, z) = An,1(s, z) + An,2(s, z) + An,3(s, z) + An,4(s, z) with

An,1(s, z) := 1

n

�ns�∑
i=1

Uiωn(Xi )I {Xi ≤ z} (A.5)

An,2(s, z) := 1

n

�n(s∧s0)�∑
i=1

(
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

− E
[
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}] ) (A.6)

An,3(s, z) := I {s > s0}1
n

�ns�∑
i=�ns0�+1

(
(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}

− E
[
(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}] ) (A.7)

An,4(s, z) := 1

n

�ns�∑
i=1

(m̄n(Xi ) − m̂n(Xi ))ωn(Xi )I {Xi ≤ z} (A.8)
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1458 M. Mohr, L. Selk

and

�n,1(s) := I {s ≤ s0}n − �ns0�
n

�ns�
n

+ I {s > s0}n − �ns�
n

�ns0�
n

�n,2(z) :=
∫

(−∞,z]
(m(1)(x) − m(2)(x)) f (x)ωn(x)dx,

since by inserting the definition of m̄n we obtain for s ≤ s0

1

n

�ns�∑
i=1

E
[
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}]

= n − �ns0�
n

1

n

�ns�∑
i=1

E
[
(m(1)(Xi ) − m(2)(Xi ))ωn(Xi )I {Xi ≤ z}]

= n − �ns0�
n

�ns�
n

�n,2(z)

and for s > s0

1

n

�ns0�∑
i=1

E
[
(m(1)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}]

+ 1

n

�ns�∑
i=�ns0�+1

E
[
(m(2)(Xi ) − m̄n(Xi ))ωn(Xi )I {Xi ≤ z}]

= n − �ns0�
n

1

n

�ns0�∑
i=1

E
[
(m(1)(Xi ) − m(2)(Xi ))ωn(Xi )I {Xi ≤ z}]

− �ns0�
n

1

n

�ns�∑
i=�ns0�+1

E
[
(m(1)(Xi ) − m(2)(Xi ))ωn(Xi )I {Xi ≤ z}]

= n − �ns�
n

�ns0�
n

�n,2(z).

Note thatweuse the notation
∫
(∞,z] g(x)dx = ∫ zd

−∞ . . .
∫ z1
−∞ g(x1, . . . , xd)dx1 . . . dxd

here. Due to the dominated convergence theorem and assumption (II), it holds that

�n,1(s)�n,2(z) = �1(s)�2(z) + o(1),

uniformly in s ∈ [0, 1] and z ∈ R
d , where

�1(s) := I {s ≤ s0}(1 − s0)s + I {s > s0}(1 − s)s0,

�2(z) :=
∫

(−∞,z]
(m(1)(x) − m(2)(x)) f (x)dx.
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Note that under (IX.2) the same assertion holds with

�n,2(z) :=
∫

(−∞,z]
(m(1)(x) − m(2)(x))

f(1)(x) f(2)(x)

�ns0�
n f(1)(x) + n−�ns0�

n f(2)(x)
ωn(x)dx

and

�2(z) :=
∫

(−∞,z]
(m(1)(x) − m(2)(x))

f(1)(x) f(2)(x)

s0 f(1)(x) + (1 − s0) f(2)(x)
dx.

By Lemmata A.2, A.3 and A.4 with κn = n, it holds that An(s, z) = oP (1) uniformly
in s ∈ [0, 1] and z ∈ R

d . Hence, we have shown that

sup
z∈Rd

|T̂n(s, z)| = �1(s) sup
z∈Rd

|�2(z)| + oP (1)

uniformly in s ∈ [0, 1] under both cases (IX.1) and (IX.2). The assertion then follows
by Theorem 2.12 in Kosorok (2008) as s0 is well-separated maximum of [0, 1] →
R, s → �1(s). ��
Remark Note that there are examples of m(1), m(2) and f resp. f(1), f(2) that lead to
�2(∞) = 0. In those cases a change point estimator based on the classical CUSUM
T̂n(s,∞) is not consistent.

Proof of Theorem 3.2 First note that s0 = �ns0�
n + O(n−1) and ŝn = �nŝn�

n . Thus we

can consider
∣∣∣�nŝn�n − �ns0�

n

∣∣∣ instead of |ŝn − s0|. The proof follows mainly along

the same lines as the proof of Theorem 1 in Hariz et al. (2007). Consider the norm
N : l∞(Rd) → R, g → supz∈Rd |g(z)| and let M > 0. We will show below that for
all η > 0 and b, c > 0 it holds

P

(
rn

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ > 2M
)

= P

(
r−1
n 2M <

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ ≤ η

)

+ P

(∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ > η

)

≤ En,1 + En,2 + En,3 + En,4, (A.9)

where

En,1 := P

(
r−1
n 2M <

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ ≤ η,

N (An(ŝn, ·) − An(s0, ·)) ≥ C

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣
)

En,2 := P(N (An(s0, ·)) > c)
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1460 M. Mohr, L. Selk

En,3 := P(�n,1(s0)N (�n,2(·)) ≤ b)

En,4 := P
(|ŝn − s0| > η

)
,

with C := b − 2c. Now it holds that En,4 → 0 for all η > 0, due to Theorem 3.1.
Further, En,2 → 0 for all c > 0 as An(s0, z) = oP (1) holds uniformly in z ∈ R

d .
Finally choose b > 0 and n′ = n′(b) ∈ N such that En,3 = 0 for all n ≥ n′, which
exists as �1(s0)N (�2(·)) > 0 and �n,1(s0)N (�n,2(·)) = �1(s0)N (�2(·)) + o(1).
We then choose c > 0 such that b− 2c > 0. To see the validity of (A.9) first note that
for all s ∈ [0, 1]

T̂n(s, ·) = An(s, ·) + �n,1(s)�n,2(·)
= An(s, ·) − An(s0, ·) + An(s0, ·)

(
1 − �n,1(s)

�n,1(s0)

)
+ �n,1(s)

�n,1(s0)
T̂n(s0, ·).

Applying the norm and triangular inequality we obtain for all s ∈ [0, 1]

N (T̂n(s, ·)) ≤ N (An(s, ·) − An(s0, ·)) +
(
1 − �n,1(s)

�n,1(s0)

)
N (An(s0, ·))

+
(

�n,1(s)

�n,1(s0)

)
N (T̂n(s0, ·))

which is equivalent to

N (T̂n(s, ·)) − N (T̂n(s0, ·)) ≤ N (An(s, ·) − An(s0, ·))
+
(

�n,1(s)

�n,1(s0)
− 1

)(
N (T̂n(s0, ·)) − N (An(s0, ·))

)
.

Due to the definition of ŝn it holds that N (T̂n(ŝn, ·)) − N (T̂n(s0, ·)) ≥ 0. Additionally
using the specific definition of �n,1 we obtain

N (An(ŝn, ·) − An(s0, ·))
≥
(
1 − �n,1(ŝn)

�n,1(s0)

)(
N (T̂n(s0, ·)) − N (An(s0, ·))

)

≥ min

(
n

�ns0� ,
n

n − �ns0�
)

︸ ︷︷ ︸
>1

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣
(
N (T̂n(s0, ·)) − N (An(s0, ·))

)

≥
∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ (�n,1(s0)N (�n,2(·)) − 2N (An(s0, ·))
)
,
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where we againmake use of the triangular inequality in the last step. Putting the results
together we obtain

P

(
r−1
n 2M <

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ ≤ η

)

≤ P

(
r−1
n 2M <

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣≤η,�n,1(s0)N (�n,2(·))>b, N (An(s0, ·))≤c

)

+ P(�n,1(s0)N (�n,2(·)) ≤ b) + P(N (An(s0, ·)) > c)

≤ P

(
r−1
n 2M <

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣ ≤ η,

N (An(ŝn, ·) − An(s0, ·)) ≥ C

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣
)

+ P(�n,1(s0)N (�n,2(·)) ≤ b) + P(N (An(s0, ·)) > c).

Finally we will investigate En,1. To do this we define shells

Sn,l =
{
t ∈ [0, 1] : 2l < rn

∣∣∣∣t − �ns0�
n

∣∣∣∣ ≤ 2l+1
}

and choose Ln = Ln(η) such that 2Ln < rnη ≤ 2Ln+1 for some η ≤ 1
2 . Then

En,1 ≤
Ln∑

l=M

P

(⌊
nŝn

⌋
n

∈ Sn,l , N (An(ŝn, ·) − An(s0, ·)) ≥ C

∣∣∣∣∣
⌊
nŝn

⌋
n

− �ns0�
n

∣∣∣∣∣
)

≤
Ln∑

l=M

P

⎛
⎜⎝ sup

s:
∣∣∣ �ns�

n −�ns0�
n

∣∣∣≤2l+1r−1
n

N (An(s, ·) − An(s0, ·)) ≥ C2lr−1
n

⎞
⎟⎠

≤
Ln∑

l=M

4∑
i=1

P

⎛
⎜⎝ sup

s:
∣∣∣ �ns�

n −�ns0�
n

∣∣∣≤2l+1r−1
n

N (An,i (s, ·) − An,i (s0, ·)) ≥ C

4
2lr−1

n

⎞
⎟⎠

≤ C̃

((
n

rn

) 1
q −1 Ln∑

l=M

(2
1
q −1

)l +
(
n

rn

) 1
r −1 Ln∑

l=M

(2
1
r −1)l +

(
n

rn

)−ζ Ln∑
l=M

(2−ζ )l

)

for some constant C̃ < ∞ by Lemmata A.2, A.3 and A.4 with κn =
⌊
2l+1 n

rn

⌋
with q

from assumption (I), r from assumption (II) and ζ > 0 from assumption (VIII). Now
choosing rn = n and letting n and thus Ln tend to infinity and then M to infinity, the
assertion of Theorem 3.2 follows. ��
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1462 M. Mohr, L. Selk

Proof of Theorem 4.1 Under (IX.3) we have for all s ∈ [0, 1] and z ∈ R

T̂n(s, z) = An(s, z) + �n,1(s)�n,2(z) + �̃n(s, z),

with An(s, z) and �n,1(s) from the proof of Theorem 3.1, and with

�n,2(z)

:=
∫

(−∞,z]
(m(1)(x) − m(2)(x))

f(1)(x) f(2)(x)
�ns0�
n f(1)(x) + n−�ns0�

n f(2)(x) + Rn(x)
ωn(x)dx

and

�̃n(s, z)

:=
∫

(−∞,z]
(m(1)(x) − m(2)(x))I {s ≤ s0}�ns�

n

· f(1)(x)Rn(x)
�ns0�
n f(1)(x) + n−�ns0�

n f(2)(x) + Rn(x)
ωn(x)dx .

Now it holds that

�n,2(z) →
∫

(−∞,z]
(m(1)(x) − m(2)(x))

f(1)(x) f(2)(x)

s0 f(1)(x) + (1 − s0) f(2)(x)
dx =: �2(z)

and �̃n(s, z) → 0 uniformly in s ∈ [0, 1] and z ∈ R, due to dominated convergence
and assumption (II). Hence we have uniformly in s and z

T̂n(s, z) = An(s, z) + �1(s)�2(z) + o(1),

with �1(s) as in the proof of Theorem 3.1. The rest goes analogously to the proof of
Theorem 3.1. ��
Remark Note that for finite n ∈ N we do not get the decomposition of T̂n as in (A.4)
in the proof of Theorem 3.1. We only obtain this kind of decomposition when letting
n tend to infinity. The decomposition for finite n, however, is essential for the proof
of the rates of convergence in Theorem 3.2.
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