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Abstract
The paper describes a long-term scheduling problem for thermal power plants and 
energy storages. In addition, renewable energy sources are integrated by consider-
ing the residual demand. Besides the classical minimization of the production costs, 
emission-related costs are taken into account. Thereby, emission costs are deter-
mined by market prices for CO

2
 emission certificates (i.e., using the EU emissions 

trading system). For the proposed unit commitment problem with hydrothermal 
coordination for economic and emission control, an enhanced mixed-integer linear 
programming model is presented. Moreover, a new heuristic approach is developed, 
which consists of two solution stages. The heuristic first performs an isolated dis-
patching of thermal plants. Then, a re-optimization stage is included in order to 
embed activities of energy storages into the final solution schedule. The considered 
approach is able to find outstanding schedules for benchmark instances with a plan-
ning horizon of up to one year. Furthermore, promising results are also obtained 
for large-scale real-world electricity systems. For the German electricity market, the 
relationship of CO

2
 certificate prices and the optimal thermal dispatch is illustrated 

by a comprehensive sensitivity analysis.
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1 Introduction

In the electricity industry, a challenging problem deals with the economic schedul-
ing of generating plants, where several plant-specific aspects and technical require-
ments have to be taken into account. System-wide constraints such as a steady equi-
librium between electricity provision and consumption are of great importance. 
Hence, a sufficient amount of electricity to cover the customer demands at any point 
in time must be ensured for a prescribed planning horizon. The corresponding opti-
mization problem is known as unit commitment problem (UCP); see e.g., Soliman 
and Mantawy (2012).

Definition 1 The UCP determines the production levels of generating plants with 
different characteristics over a prescribed planning horizon in order to meet the elec-
tricity demands of customers. These demands may vary over time. Possible objec-
tive functions are the minimization of operating costs or the maximization of profit 
(cf. Wood et al. 2013).

The problem is not only of considerable interest from a theoretical perspective, 
but also from a practical point of view. A solution can help to find a cost-efficient 
energy schedule which avoids deficits in energy supply.

Most research on the UCP focuses on short-term planning horizons (e.g., 1 day up 
to 1 week). In short-term, production control activities are performed, where shifts 
of demands or unexpected outages are included in real time (cf., e.g., Bartsch et al. 
2008). In contrast, long-term problems aim at production planning, where plant per-
formances concerning full-load hours, fuel demand, or operating costs are analyzed. 
In what follows, we consider long-term planning horizons (e.g., 1 year) in order to 
provide tactical and strategic information for supervisory institutions like, e.g., sys-
tem operators and generating companies. Those institutions are then in a position to 
estimate fuel demands and maintenance activities as well as to determine the eco-
nomic and environmental performance of the whole generation portfolio.

The increasing share of renewable energies (e.g., in Germany about 35 % of the 
gross electricity consumption is supplied by renewables) leads to new challenges 
for generating companies and system operators. Due to the volatile characteristic 
of renewable feed-ins, highly flexible but cost-efficient power plant operations are 
required. The power output for these plants must be determined in the scheduling 
process (cf. Definition  1). Energy storages, mainly hydro storages, are promising 
means to support the flexible requirements and to level the remaining (i.e., the resid-
ual) demand for thermal power plants. Both, storage activities and the sharp rise of 
the renewable feed-in lead to clean energy solutions ensuring great progress toward 
the European energy and climate objectives. Hence, the scheduling of generating 
plants should be enhanced by energy storages (and their coordination with gener-
ating plants) as well as renewable sources. Moreover, it should not only address 
economic goals. In addition, a minimization of the emission of harmful substances 
such as CO2 is necessary. In this way, the trade-off between production costs and 
emissions, e.g., for the German electricity market, can be analyzed. The resulting 
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problem may be described as a UCP with hydrothermal (HT) coordination (i.e., the 
UCP–HT, cf. Wood et al. 2013) and environmental aspects (e.g., Raglend and Padhy 
2006; Saravanan et al. 2014).

Definition 2 The UCP-HT is an UCP in which not only power plants, but also 
energy storages are taken into account in order to meet customer demands. In addi-
tion, environmental aspects may be considered in the objective function through a 
combined minimization of operating and emission costs.

Generally, an exact solution of the proposed problem can be obtained (particu-
larly for small-scale instances) by using mixed-integer linear programming (MILP). 
However, practitioners require fast algorithms for long-term, large-scale, volatile, 
and non-convex electricity systems in order to solve various scenarios dealing with, 
e.g., different renewable feed-ins (cf. Viana 2004). Hence, heuristics are necessary 
to provide near-optimal solutions in reasonable time. Simple procedures are based 
on priority lists or truncated dynamic programming. In recent years, Lagrange relax-
ation or fix-and-optimize methods based directly on the mathematical model of the 
problem have become standard (e.g., Ongsakul and Petcharaks 2004; Gollmer et al. 
1999; Franz et  al. 2019). Metaheuristics have also been developed for UCPs, but 
typically without pump storages (e.g., Kazarlis et al. 1996; Viana et al. 2008). A sur-
vey of solution methods for the UCP can be found, e.g., in Padhy (2004).

Within this article, we consider a heuristic approach for large-scale UCP–HT 
applications with environmental aspects. Our heuristic is characterized, in particu-
lar, by its fast solution finding. A two-stage hierarchical methodology is used in con-
trast to the often monolithic solution methods for pure UCPs (e.g., Kazarlis et  al. 
1996; Carrión and Arroyo 2006; Delarue et al. 2013; Morales-España et al. 2013, or 
the survey in Saravanan et al. 2013). The problem is divided into the optimization of 
thermal plants as well as the planning and coordination of hydro storages (see Franz 
and Zimmermann 2018b).

The remainder of this paper is organized as follows. In Sect.  2, we propose a 
mixed-integer linear programming formulation for the UCP–HT in order to describe 
the problem structure. Moreover, an approach for the extension toward emission 
minimization is treated. The novel two-stage heuristic approach for the UCP–HT 
with and without emission costs is explained in detail in Sect. 3. Section 4 is devoted 
to the results of an experimental performance analysis. In addition, a sophisticated 
case study for the German electricity market is presented. Finally, conclusions are 
given in Sect. 5.

2  Specification of the problem

The aim of planning and scheduling thermal, renewable, and storage units is to 
determine the operation status of each unit in order to meet a given demand over 
a prescribed planning horizon at minimum total production costs (e.g., Wood et al. 
2013). Due to substantially low marginal costs (compared to thermal electricity 
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provision), renewable feed-ins are typically prioritized (e.g., Delarue et al. 2013).1 
Hence, without any loss of generality, we consider the residual demand instead of 
the real customer demand while solving the problem at hand.

Definition 3 The residual demand is the energy demand minus the volatile feed-in 
of renewables.

As a consequence, only thermal plants and energy storages have to be tackled. In 
Sect. 2.1, a mixed-integer linear model for the UCP–HT is presented, where the eco-
nomic goal of minimizing the operating costs is considered. In Sect. 2.2, the objec-
tive function is extended by environmental aspects.

2.1  Unit commitment problem with hydrothermal coordination

The basic idea of our model formulation comes from Carrión and Arroyo (2006), 
Ostrowski et al. (2012) and Morales-España et al. (2013), who formulated the prob-
lem without energy storages. Particularly, the latter model is characterized as tight, 
due to a relatively small integrality gap, i.e., the LP relaxation is close to the con-
vex hull of the feasible integer solutions. Therefore, we extended this tight model in 
order to manage the coordination between thermal and storage units (cf. Franz et al. 
2019, where also explanations for the tightness of the described model are given). 
Furthermore, a reformulation and an adjustment of constraints (i.e., constraints for 
start-up processes and reserve capacity) are performed so that the resulting model 
provides near-optimal solutions significantly faster than the model formulation pre-
sented by Morales-España et al. (2013).

Let I  be the set of thermal plants and J  be the set of energy storages. For each 
thermal plant i ∈ I  , we define the continuous power generation level pit as well as 
the binary on/off status uit at each point in time t ∈ T  , where T  represents the set of 
hourly time periods  (T ∶= {1, 2, … , T}) . The power generation level  pit denotes 
the power level above the minimum power output P

i
 . For each energy storage  j ∈ J  , 

we specify the continuous power generation level  pg
jt
 as well as the continuous 

pumping level  pp
jt
 . We assume that  p ≥ 0 is satisfied for all power-related decision 

variables.
The objective function of the problem is firstly chosen as the minimization of 

total operating costs, which covers thermal production costs, thermal start-up costs, 
and non-served energy costs. The thermal production cost for each unit i ∈ I  and 
point in time t ∈ T  is typically modeled using the convex heat consumption function 
Q(⋅) for the overall power output p�

it
= pit + P

i
 , e.g., as

(1)c
pc

i
Qit

(
p�
it
, uit

)
with Qit

(
p�
it
, uit

)
=

{
qa
i
+ qb

i
p�
it
+ qc

i
p�
it

2
, if uit = 1

0, otherwise.

1 Furthermore, the renewable energy law (EEG) regulates the priority feed-in of electricity from renew-
able energy sources in Germany.
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c
pc

i
 represents a unit-specific fuel cost coefficient and qa

i
 , qb

i
 as well as qc

i
 are nonneg-

ative heat coefficients relating to the respective technical efficiency of unit i. Please 
note that no further cost additives (e.g., for maintenance, lubricants etc.) are taken 
into account.

Function (1) can be linearized, where fixed operation costs cfix and variable pro-
duction costs cvar in accordance to the power output are used. A sophisticated line-
arization approach is, e.g., presented by Carrión and Arroyo (2006). In our study, we 
set qc

i
∶= 0 for all plants i ∈ I  , similar to Gollmer et al. (2000) and Martinez Diaz 

(2008), since the curvature of function (1) is typically quite small. As costs for gen-
erating the minimum power level can be integrated in the fixed costs (they always 
occur if a generator is running), function (1) simplify to

where variable costs cvar
i

 have to be considered for each megawatt pit that is delivered 
above the minimum power level P

i
 [cf. constraints (6)]. Therefore, the variable and 

fixed cost components can be defined as cvar
i

∶= c
pc

i
qb
i
 and cfix

i
∶= c

pc

i
(qa

i
+ qb

i
P
i
) , 

respectively.
The thermal start-up costs usually vary between warm and cold starts (cold starts 

of i ∈ I  are necessary after a downtime of at least �i time periods). We introduce 
binary decision variables indicating whether or not plant i is started (us

it
= 1) and 

performs a cold start (ucs
it
= 1) in t ∈ T  . Then, start-up costs may be formulated as 

cws
i
us
it
+ c�

i
ucs
it
, where cws

i
 indicates warm start costs and c�

i
 represents additional 

costs for a cold start. Both cost components result from reheating the plant’s boiler. 
An extension to continuously modeled start-up costs using an exponential heat con-
sumption approach instead of the two-piece linearized one can be found in Wood 
et al. (2013).

A feasible solution must ensure that the net energy provision delivered by thermal 
plants and storages is equal to the (residual) demand Dt , t ∈ T  [cf. constrains (4)]. 
In order to relax the demand balance conditions, a demand overfulfillment is permit-
ted but penalized by higher production costs. Furthermore, non-served energy (e.g., 
in case of undercapacity of all units) is allowed by introducing nonnegative slack 
variables nt . Particularly for long-term planning horizons, nt > 0 can be allowed for 
some t, since the resulting schedule is used for production planning purposes and 
not for real-time production control activities. The non-served energy is penalized 
in the objective function by cnon nt, with a penalty cost factor cnon (its value must be 
higher than the most expensive plant). Due to this trick, a first feasible solution (with 
nt = Dt + Rt) can be found immediately by a standard solver like CPLEX or Gurobi 
that will have a positive impact on the computation time.

The entire UCP with hydrothermal coordination may now be formulated as 
follows

(2)cfix
i
uit + cvar

i
pit,

(3)Min.
∑

t∈T

∑

i∈I

(cfix
i
uit + cvar

i
pit + cws

i
us
it
+ c�

i
ucs
it
) +

∑

t∈T

cnon nt
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In objective function (3), total operating costs are minimized. The fulfillment of 
energy demands either by thermal or by hydro storages is ensured with system con-
straints (4). Let Pi be the maximum power level of thermal plant i ∈ I  and let P

g

j
 be 

the maximum hydropower output by turbining at storage j. Then, system constraints 
(5) provide a sufficient spinning reserve (in the event of an unpredictable failure) for 
each point in time. Constraints (6) ensure that power outputs can only be determined 
between a minimum and a maximum level. Once a thermal plant i ∈ I  is started 
(decommitted), it has to be online (offline) for at least its minimum uptime �i (mini-
mum downtime �i ), which is guaranteed by inequalities (7) and (8). Binary decision 

(4)s.t.
∑

i∈I

(P
i
uit + pit) +

∑

j∈J

(p
g

jt
− p

p

jt
) + nt ≥ Dt (t ∈ T )

(5)
∑

i∈I

Pi uit +
∑

j∈J

P
g

j
+ nt ≥ Rt + Dt (t ∈ T )

(6)pit ≤ (Pi − P
i
) uit (t ∈ T, i ∈ I )

(7)
t∑

�=t−�i+1

us
i�
≤ uit (i ∈ I,�i ≤ t ≤ T)

(8)
t∑

�=t−�i+1

ud
i�
≤ 1 − uit (i ∈ I, �i ≤ t ≤ T)

(9)uit − ui,t−1 = us
it
− ud

it
(i ∈ I, 2 ≤ t ≤ T)

(10)ucs
it
+

�i−1∑

�=1

ud
i,t−�

≥ us
it

(i ∈ I, �i ≤ t ≤ T)

(11)ejt = ej,t−1 + p
p

jt
�
p

j
− p

g

jt
∕�

g

j
(j ∈ J, 2 ≤ t ≤ T)

(12)E
j
≤ ejt ≤ Ej (j ∈ J, t ∈ T )

(13)p
g

jt
≤ P

g

j
; p

p

jt
≤ P

p

j
(j ∈ J, t ∈ T )

(14)ejt, nt, pit, p
g

jt
, p

p

jt
≥ 0 (i ∈ I, j ∈ J, t ∈ T )

(15)uit, u
cs
it
, ud

it
, us

it
∈ {0, 1} (i ∈ I, t ∈ T ).
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variables ud
it
 indicate whether a plant i is decommitted in period t or not. Then, logi-

cal constraints (9) and (10) guarantee that all binary variables u ∈ {0, 1} take appro-
priate values. For hydro storages, energy flow conservation constraints (11) are to be 
considered to determine the amount of energy ejt maintained in each storage  j in 
period t. The maintained energy ejt corresponds to the maintained energy in period 
t − 1 plus the energy obtained by pumping and minus the power output for turbining, 
where respective efficiencies �p

j
 and �g

j
 are taken into account. Inequalities (12) refer 

to a lower E
j
 and an upper level Ej in energy storage j ∈ J  . Moreover, inequali-

ties (13) restrict the technical limits of generation and pumping levels. Finally, con-
straints (14) and (15) define feasible domains for all continuous and binary decision 
variables. For the sake of simplicity, constraints affecting the initial operating status 
are omitted. However, they can easily be added (cf., e.g., Morales-España et  al. 
2013) and are considered within our performance analysis (cf. Sect. 4).

2.2  Unit commitment problem with production and emission costs

A UCP–HT which addresses a minimization of costs and emissions can be formu-
lated using the principle of the European Union Emissions Trading System (EU 
ETS). The EU ETS was established in 2005 to manage a systematic reduction in 
greenhouse gases. Particularly, it aims at limiting the overall CO2-production (cap 
principle).2 Therefore, each CO2-emitting plant (i.e., thermal power plants for the 
electricity industry) has to buy allowances for the emission of each produced ton of 
CO2 by bidding on an auction infrastructure (trade principle). The resulting “cap-
and-trade” mechanism provides time-dependent market clearing prices cCO2

t  [ C
t CO2

] , 
t ∈ T, for emission certificates (cf., e.g., Ellermann et al. 2010 or Kruger and Pizer 
2010).

In order to enhance objective function (3) of the UCP–HT by environmental 
aspects, CO2-related costs have to be added. These costs comprise emission costs for 
steady-state operations

and emission costs caused by start-up procedures

where �i represents the carbon dioxide content [ t CO2

MWhth
] of each produced mega watt 

by power plant i. Please note that the emission factor �i is mainly influenced by the 
fuel (e.g., lignite, hard coal, gas), its quality and plant parameters. As in Sect. 2.1, 
we again choose qc

i
∶= 0 for all plants i ∈ I  within heat consumption function Q(⋅) . 

Consequently, expression (16) simplifies to cCO2,fix

it
�i uit + c

CO2,var

it
�i pit , similar to 

expression (2).

(16)c
CO2

t �i Qit(pit, uit) (t ∈ T, i ∈ I )

(17)c
CO2

t �i
(
qws
i
us
it
+ q�

i
ucs
it

)
(t ∈ T, i ∈ I ),

2 For prior and current U.S. efforts in emission trading see, e.g., Tietenberg (2010).
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The resulting objective function

of the UCP–HT with economic and emission aspects contains two conflicting tar-
gets. Typically, gas-fired (e.g., combined cycle) power plants have high production 
costs and low CO2 emissions (since the emission factor �i is small), whereas lignite 
fired power plants offer low production costs, but high CO2 emissions. Therefore, a 
highly cost-efficient dispatch increases the usage of emission-intensive power plant 
activities. For a more sustainable and environmentally friendly electricity provision, 
gas-fired plants should be preferred. The market price cCO2

t  for emission certificates 
in expressions (16) and (17) weights the two preferences, where cCO2

t  is exogenously 
given by the EU ETS and hence driven by market processes.

3  Two‑stage heuristic approach

The problem of finding an optimal production schedule for all involved thermal, 
renewable, and storage units represents an NP-hard optimization problem, which 
means that no polynomial time algorithm exists that will generally solve instances 
of the problem in reasonable time (cf., e.g., Garey and Johnson 1979 and for general 
UCPs, see, e.g., Tseng 1996 and Bendotti et al. 2017). However, heuristic algorithms 
provide valuable alternatives. In order to find a feasible as well as near-optimal solu-
tion for our considered UCP–HT quickly, we present a two-stage heuristic approach. 
Please note that a two-stage approach for the problem variant without explicit emis-
sion costs has already been outlined in previous conference proceedings (Franz et al. 
2017; Franz and Zimmermann 2018a, b). These basics were fine-tuned and provided 
with further performance increasing features (e.g., smart choice of solution repre-
sentation, Fig. 3, as well as the concept of shift demand step, Fig. 5). In the paper 
under consideration, a detailed description of the resulting algorithm is presented for 
the first time. Accordingly to our explanations in Sect. 2.2, we consider the objective 
function (18), where economic and emission aspects are involved.

The starting point of our approach is the fact that an isolated scheduling of all 
thermal plants i ∈ I  generally provides a possibility to fulfill the energy demands 
described in constraints (4) and the spinning reserve in constraints (5). To be more 
precise, a feasible solution for the problem under consideration can be found without 
using any energy storages if the overall thermal capacity is sufficient, i.e.,

is satisfied. Once a feasible solution is found by dispatching thermal plants, the 
solution can be enhanced using energy storages in order to reduce the total costs in 
objective function  (3). These thoughts lead to the basis of our two-stage heuristic 
approach, which is illustrated in Fig. 1.

(18)(3) + (17) +
∑

t∈T

∑

i∈I

c
CO2,fix

it
�i uit + c

CO2,var

it
�i pit

(19)
∑

i∈I

Pi ≥ max
t∈T

(
Dt + Rt

)
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In the first stage (cf. Sect. 3.1), a thermal plant optimization is performed and 
in the second stage (cf. Sect. 3.2) energy storages are considered, i.e., the hydro-
thermal coordination is implemented. In addition, a preprocessing step is included 
(prior to the first stage) to ensure the following conditions required for a successful 
execution of the algorithm. Particularly, in case of missing total thermal capacity, of 
high gradients of residual demands, or of negative residual demands (i.e., in situa-
tions of high renewable feed-in), the preprocessing is necessary (cf. Fig. 1). In order 
to avoid thermal undercapacity (if inequality (19) is not fulfilled), a fictitious plant 
with high operating costs (significantly higher than those of all other units) is added 
to set I  . For treating, e.g., high demand gradients, a highly flexible fictitious plant 
must be introduced. Furthermore, in case of time intervals with negative residual 
demands, wind and solar infeed have to be throttled and consequently limited (e.g., 
to zero or to the overall capacity of the pumped storages). It must be ensured that at 
the end of the algorithm the inserted fictitious plant has to be eliminated (cf. “final-
ize solution” step, p. 16).

3.1  Thermal plant optimization: first stage of the heuristic approach

The thermal plant optimization preselects certain plants to fulfill the fluctuating 
residual demand as well as the spinning reserve requirements without using the 
energy storage operations of turbining or pumping. In detail, the following three 
steps are executed within the first stage (cf. Fig. 1):

Create start solution An initial solution is obtained by applying a greedy algo-
rithm, assuming �i = �i = 1 , i ∈ I  . Thereby, all plants are sorted and ranked accord-
ing to non-decreasing marginal costs (i.e., to their merit order). Then, for each point 
in time  t ∈ T  , a subset of plants is committed, i.e., plants are stepwise activated 

Fig. 1  Concept of the two-stage heuristic approach for the UCP–HT
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in the sequence of their merit order until the demand and reserve requirements ∑
i∈I Pi uit ≥ Dt + Rt are satisfied. Some plants might be skipped in the considered 

order to fulfill the following inequalities 
∑

i∈I Pi
uit ≤ Dt which are necessary due 

to the power output specifications of all plants  i. Within this first step, the power 
outputs  pit of all committed plants i ∈ I  (with uit = 1, t ∈ T) are always set to the 
maximum value Pi − P

i
 , except for the last committed plant i′ . This plant is typi-

cally characterized by high marginal costs and has to be operated at part-load to bal-
ance the demand. In the event that the part-load operation of plant i′ is not sufficient 
for demand balancing, the power of the second last committed plant must also be 
reduced, and so on.

Repair infeasible solution Typically, the initial solution of the first step is infeasi-
ble and needs to be repaired with respect to the minimum up- and downtime require-
ments. In general, a fulfillment of minimum up- and downtime requirements of a 
unit i ∈ I  can be achieved by enlarging the corresponding operating phases or idle 
phases until constraints (7) and (8) are satisfied. This procedure is similar to that one 
in Delarue et al. (2013). An operating phase indicates that plant i is active ( uit = 1 , 
t ∈ T  ), whereas idle phases denote that plant i is inactive ( uit = 0 , t ∈ T ).

Let �up
i,t1

 be the duration of an operating phase of some unit  i ∈ I  that starts at 
uptime t1 . Moreover, let  �down

i,t2
 be the duration of the following idle phase that starts 

at time t2 (cf. Fig. 2). In the case of a violation of the minimum uptime requirements 
[cf. constraints (7)], the duration �up

i,t1
 may be extended to the right or left as long as 

the time boundaries of T  are observed. We first consider the extension of �up
i,t1

 to the 
right (cf. Fig. 2a). This extension may only be performed if 

(i)  the additional uptime 𝜋i − 𝜏
up

i,t1
> 0 needed to fulfill constraints  (7) is smaller 

than �down
i,t2

 and
(ii)  the remaining downtime duration  �down

i,t2
− (�i − �

up

i,t1
) satisfies the minimum 

downtime �i.

In the event that the extension to the right is not sufficient to fulfill constraints (7), 
we extend the operating phase according to items (i) and (ii) as much as possible. 
Additionally, the repair procedure is carried out to the left. Thereby, the downtime 
duration of the previous idle phase must be taken into account [similar to (i) and 
(ii)]. Furthermore, if both attempts fail (and thus are not realized), the operating 

(a) (b)

Fig. 2  Repairing the solution schedule in terms of minimum uptimes �
i
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phase between t1 and t2 is connected to the successive operating phase, that starts at 
time t3 (i.e., the idle phase is eliminated, cf. Fig. 2b). In case the minimum uptime is 
still not fulfilled, the already extended operating phase is merged with the previous 
operating phase. This procedure will finally lead to an operating phase that is at least 
equal to the required minimum uptime.

Similar repair steps have to be executed for violations against the minimum 
downtime �i . In contrast to the repair procedure described above, an enlargement of 
an idle phase is only possible if constraints (4) and (5) are still satisfied. Otherwise, 
the idle phase must be eliminated.

Once a solution schedule is repaired, the power output of all active plants has 
to be adjusted. For this purpose, the plants’ power outputs are set according to the 
merit order. This means that the most expensive, active plants are operated at part-
load again (cf. the first step of our heuristic). However, it might happen that the 
demand is overfulfilled [possible due to constraints (4)] and redundant plants exist 
which are decommitted within the next steps.

To economize plant operations in terms of start-up and fixed operation costs, 
quite short operating and idle phases are canceled, before the repair step is con-
sidered. In order to identify such a short operating or idle phase, it is reasonable 
to use the minimum uptime or downtime as a reference value, i.e., �up

it
≤ � ⋅ �i and 

�down
it

≤ � ⋅ �i . Please note that a cancelation applies for the whole algorithm. A 
canceled operating phase can result in an energy shortage and a canceled idle phase 
in an energy overfulfillment. In the case of an energy shortage, additional plants 
(e.g., flexible peak plants) must be committed according to their minimum uptime 
and downtime requirements. In general, this action is significantly cheaper than a 
comprehensive enlargement of the current operating phase (which would be neces-
sary while executing the repair step). In preliminary studies, � ∶= 0.2 produces the 
best results.

Improve feasible solution Further improvements with respect to the objective 
function value of the constructed feasible solution can be achieved by local search-
based algorithms. The basic idea here is to swap operating phases of one plant by a 
set of operating phases of other plants (i.e., to search in a neighborhood of the cur-
rent solution). Thereby, a possible overfulfillment of demand caused by our repair 
step may be reduced which results in lower production and emission costs. Within 
the improvement step, the feasibility of the solution is always maintained.

Let Sthermal be the current solution that considers thermal plants. The schedule 
is encoded in a binary |I| × |T|-matrix, where for each plant  i ∈ I  and point in 
time t ∈ T  the status variables uit are included (cf. Fig. 3). All other relevant infor-
mation like power outputs pit and the amount of time periods operated in the current 
operating status (particularly �up

it
 , cf. Fig.  2) can be calculated on the basis of the 

matrix entries (cf. “start solution” step).
For applying a neighborhood movement, a unit  i ∈ I  (iteratively chosen in 

accordance to the merit order) and the first suitable operating phase of this unit 
are selected. Please note that it is generally not advantageous (in terms of solu-
tion time and quality) to swap plants with long operating phases. Therefore, we 
denote a plant with an operating phase that is smaller than a multiple � of the mini-
mum uptime as suitable for swapping. For our purposes, � ∶= 3 performs best. If 
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the operating phase of plant  i is redundant (i.e., the demand can be fulfilled even 
without  i), then, the operating phase is decommitted by updating the status vari-
ables within schedule Sthermal . Otherwise, unit i is temporarily decommitted, where 
the decommitment of i has to be compensated by operating phases of one or several 
plants i� ∈ I� ⊂ I ⧵{i} . Generally, several subsets I′ can be chosen that result in dif-
ferent objective function values determined by objective function  (3). In order to 
limit the number of subsets, we generate all subsets I′ with a prescribed maximal 
cardinality k (e.g., k ≤ 3 ) consisting of units i′ , where

• i′ is positioned after i in the merit order and
• i′ is decommitted so far.

When all subsets are created, a subset I′ is further investigated in our neighborhood 
search if constraints  (4) are satisfied without slack as well as constraints  (5), (7), 
and  (8) are fulfilled. Due to a best improve hill climbing approach, the (feasible) 
neighbor solution with the best objective function value replaces the current solution 
(in case it is better). Once the analysis of the current operating phase of plant  i is 
completed, Sthermal is updated and the next suitable operating phase is selected.

Figure  3 shows the solution representation of a schedule  Sthermal on the left-
hand side. Moreover, the neighborhood movement for unit i = 2 is demonstrated, 
where the second operating phase starting at  t = 8 is considered. We assume that 
the chosen operating phase is not redundant. Therefore, unit  i is decommitted and 
subsets I� = {3} , I� = {4} , I� = {3, 4} are investigated. Each of them leads to a ful-
fillment of the demand. The relevant excerpts of the three neighborhoods (a)–(c) are 
given on the right-hand side of Fig. 3. Please note that the current schedule Sthermal 
is feasible in our simple example and contains no overfulfillment. Therefore, the 
demand requires a commitment of at least two units in t ∈ {8, 9} . Hence, the dura-
tion of the new operating phase of unit i = 4 in neighbor (b) is two periods (although 
�4 = 1 ). In contrast, the operating phase of unit i = 4 in neighbor (c) equals the min-
imum uptime, as unit i = 3 fully covers the demand in t ∈ {8, 9} . Since neighbor (c) 
results in an overfulfillment, the objective function values of (a) and (b) are always 

Fig. 3  Solution representation and possible neighborhood movements
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better. The solution with the best objective function values is considered as a new 
starting point for further neighborhood search steps.

3.2  Hydrothermal coordination: second stage of the heuristic approach

The second stage in Fig. 1 improves the solution Sthermal determined in the first stage 
by implementing the “hydrothermal coordination” problem for pumped storages. 
Besides Sthermal , a second schedule Shydro for the hydro storage activities is introduced 
(i.e., generating electricity or retaining energy back to the storages). Analogous to 
the thermal schedule, Shydro is encoded in a |J| × |T|-matrix and contains informa-
tion about energy levels ejt for all  j ∈ J  and t ∈ T  . Please note that the correspond-
ing power levels pg

jt
 and pp

jt
 can always be derived using constraints (11). In detail, 

the following two steps are executed in the second stage:
Shift demand using energy storages Energy storages represent a way to decou-

ple the interdependency of demand and supply by shifting demands of one or sev-
eral periods to other points in time. They can be operated in the state of generat-
ing energy due to turbining (generating phase), retaining energy due to pumping 
(retaining phase), and maintaining energy in the storage (cf. Fig. 4).

In our demand shift step, an allocation of energy storages is found by stepwise 
replacing operating phases of thermal plants by storage operations, i.e., by gener-
ating and retaining phases in order to achieve cost reductions. Typically, generat-
ing phases (starting at tgen,s and ending at tgen,d ) can be identified in high energy 
demand intervals and retaining phases (starting at tret,s and ending at tret,d ) in low 
energy demand intervals (cf. Fig.  4). Therefore, our basic idea is to search for 
demand maxima and minima. In a demand maximum, possible candidate plants 
for a decommitment are positioned (i.e., candidates for generating phases). More-
over, the already committed plants in a demand minimum may run at higher-
power levels, i.e., these are possible candidates for retaining energy (an additional 

Fig. 4  Demand shift due to generating and retaining
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commitment of plants is usually connected with high fixed costs and therefore not 
suitable).

The principle of our algorithm is demonstrated in Fig. 5, where we select can-
didates of generating and retaining phases (referred to as turb and pump ) in the 
identification part and suitably match them in the coordination part.

In the identification part, we move along the time-axis and search for situa-
tions in which Dt−1 < Dt ≥ Dt+1 (generating phase) or Dt−1 > Dt ≤ Dt+1 (retaining 
phase) hold. Once such a point in time t ∈ T  is identified, a differentiated proce-
dure is required for demand maxima and minima.

For a demand maximum (e.g., at time tmax ), all at tmax ∈ T  committed plants 
have to be taken into account. An operating phase of a committed plant  i ∈ I  
(i.e., a phase between tgen,s and tgen,d , see Fig. 4) is identified as a candidate for a 
generating phase if

– cost savings may occur (i.e., total costs of operating phase of i are larger than 
additional costs for operating the cheapest thermal plant in order to refill the 
hydro storage with the highest efficiency, assuming that this storage is used to 
compensate the operating phase of i),

– the power level of i during its whole operating phase is lower or equal to the 
total generating capacity of all hydro storages,

– the duration tgen,d − tgen,s + 1 of the generating phase is limited to a thresh-
old �max (e.g., �max ∶= 12 h), since hydro storages are typically operated only 
hours not days.

Fig. 5  Concept of the shift demand step
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For a demand minimum (e.g., at time  tmin ), all at tmin ∈ T  committed plants 
have to be taken into account. A committed plant i ∈ I  is identified as a candi-
date for a retaining phase if the power level  pi,tmin in tmin is lower than Pi . Then, 
Pi −

(
pi,tmin + P

i

)
 can be utilized to retain energy in hydro storages. Furthermore, 

all time periods on the left- and on the right-hand side of tmin within the operating 
phase of i are also considered for retaining energy.

Within the identification part, the generating and retaining phases found pre-
viously are stored in separated lists (namely, Lgen and Lret ). Prior executing the 
coordination part, candidates in list Lgen are sorted according to non-increasing 
cost reductions and candidates in Lret are sorted according to non-decreasing vari-
able operating costs. Both costs relate to the changed use of thermal power plants 
through the incorporation of hydro storages. In the case of a generating phase, 
there are cost reductions in the amount of fixed and variable costs incurred if the 
thermal plant is possibly shutdown. In retaining phases, the higher-power output 
results in additional costs in the amount of variable operating costs. Algorithm 1 
depicts the subsequent coordination part, where iteratively generating and retain-
ing phases are selected and matched.

The first line of Algorithm 1 shows that we iterate over all elements in list Lgen . 
Assuming that generating phase turb in Lgen is considered, which belongs to the 
operating phase of plant i with a start in time period tgen,s and an end in tgen,d (see 
also Fig. 4). In accordance to line 2, the realization of turb , i.e., the decommit-
ment of i and the compensation with hydro storage energy, has to be verified by 
ensuring the following prerequisites for each t ∈ {tgen,s, tgen,d} : 

(i)  The energy level in each hydro storage  j ∈ J  in t must not fall below E
j
 if 

additional generating power is provided. Please note that we first suppose 
fully filled hydro storages in tgen,s (a sufficient storage level will be guaranteed 
in later steps).

(ii)  The additional generating power of all hydro storages (under consideration of 
already existing power levels) must compensate the power level of i in t with-
out exceeding the maximum power of the respective turbines.
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(iii)  Constraints (4) and (5) are satisfied in t.

 If the prerequisites are fulfilled only until a time t′ < tgen,d with t� ∈ T  , turb is short-
ened and realized in tgen,s,… , t�.

In order to compensate an energy removal �Egen,tot according to turb (cf. Fig. 6a), 
suitable retaining phases pump have to be selected in compliance with the sequence 
in list Lret (lines 3 and 4 of Algorithm 1). Please note that according to item (i) (cf. 
previous enumeration) fully filled hydro storages were assumed in period  tgen,s , 
which is not guaranteed in any case. Therefore, a specific amount  �Egen,pre 
( 0 ≤ Egen,pre ≤ �Egen,tot , cf. Fig. 6b) has to be retained before period tgen,s in order to 
guarantee that the level of no hydro storage falls below E in t ∈ {tgen,s, tgen,d} or any 
other period. Using a specific phase pump in list Lret , a hydro storage  j ∈ J  is filled 
as long as 

(i)  the surplus Pi −
(
pit� + P

i

)
 of committed plant i ∈ I  connected to the current 

pump is depleted ( t� ∈ {tret,s,… , tret,d}),
(ii)  the maximal pumping capacity of j is observed,
(iii)  constraints (12) are satisfied or
(iv)  Egen,pre is reached.

 We start the procedure with the most efficient hydro storage  j ∈ J  . Once the sec-
ond or third condition is satisfied for storage j, the next efficient storage is selected. 
If the first condition is fulfilled, the next period t� + 1 (in case t� < min{tret,d, tgen,s} ) 
or the next  pump in list Lret (in case t� = min{tret,d, tgen,s} ) is chosen. In the event 
that the fourth condition occurs, the procedure terminates. The remaining 
energy �Egen,tot − �Egen,pre (under consideration of efficiencies) can then be retained 
before time tgen,s or after time tgen,d in an analogous way to (i)–(iv).

After the selecting and matching step, all schedules must be updated if the 
energy removal �Egen,tot can be compensated and cost savings can be achieved (cf. 
line 5 in Algorithm 1). The update (line 6) is performed as follows: unit i that cor-
responds to the selected phase turb has to be decommitted, i.e., we set uit ∶= 0 for 
t ∈ {tgen,s,… , tgen,d} in Sthermal . Furthermore, according to the designated additional 
pumping power and the designated generating power (due to the selected and used 
pump and turb phases), the energy levels ejt , j ∈ J  (if used) and t ∈ T  are adjusted. 

(a) (b)

Fig. 6  Concept of the shift demand step
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We use the updated (and feasible) schedules Sthermal and Shydro in order to start a new 
coordination iteration. Hence, the next phase turb in list Lgen is selected and matched 
with other phases pump (cf. Algorithm 1), where list Lret has to be updated accord-
ing to the already selected pump phases.

Finalize solution A last finalizing step is performed to replace or decommit 
(redundant) operating phases of thermal plants if cost savings are thereby achiev-
able. The procedure is similar to the local optimization steps in the first stage of 
the algorithm visualized in Fig.  1. However, in addition to thermal plants, hydro 
storages for the provision of spinning reserve have to be taken into account. If exces-
sive spinning reserve is provided (due to the updated schedules), further decommit-
ments of thermal plants can be performed, always maintaining solution feasibility. 
Additionally, the provided energy of the fictitious plant that was introduced in the 
preprocessing (cf. Fig. 1) is replaced by variable nt in each period t. Please note that 
the usage of the fictitious plant is reduced significantly due to the shift demand and 
improve/finalize steps.

4  Experimental performance analysis

Within the performance analysis (cf. Sect. 4.1), we compared the results obtained 
by our two-stage heuristic approach to CPLEX results using our MILP formu-
lation (cf. Sect.  2.1). We initially assume that emission penalty costs are zero 
( cCO2

t ∶= 0, t ∈ T  ); therefore, only thermal production costs are to be minimized. 
Further results analyzing production and emission costs in the UCP–HT can be 
found in Sect. 4.2.

4.1  Performance results of the two‑stage heuristic approach

The following study makes use of two test sets T1 and T2 , where each set consists of 
50 instances. Test set T1 was first introduced by Kazarlis et al. (1996), and it is com-
monly used for analyzing short-term UCP models (e.g., Ongsakul and Petcharaks 
2004; Viana et al. 2008; Delarue et al. 2013, and Morales-España et al. 2013). All 
instances in T1 are based on the same plant system with 10 thermal units. Then, this 
10-plant system is exactly replicated in order to obtain a system with 20,30,…,100 
plants. Moreover, demand values for a planning horizon of 24 h are adopted by 
Kazarlis et al. (1996) and proportionally adjusted relatively to the total capacity of 
the replicated plant system. Since we need planning horizons for investigating our 
long-term problem, we copied the 24-h horizon in order to get instances of 1, 4, 
12, and 20 weeks as well as 1 year (i.e., 24 to 8760 hourly time periods). Please 
note that on weekends only 80  % of the demand is chosen. The spinning reserve 
requirements are set to 10 % of the corresponding demand in each period. Test set 
T2 is derived from T1 by replacing the demand by a highly volatile residual demand 
that appeared in Germany in 2015 (relatively adjusted to the total thermal capacity). 
Furthermore, hydro storages are added to each instance of T1 and T2 . Thereby, hydro 
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storages had a share of about 7 % of the total thermal capacity (as it was the case in 
Germany in 2015).

All optimization runs are performed on an Intel i7-2760QM with 2.7 GHz and 
16  GB RAM. The mixed-integer linear models were solved with CPLEX 12.6 
(using GAMS) applying an optimality gap of 1 % and a time limit of 5 h. Under pre-
liminary tests, we found out that flow-cover, Gomory fractional, and mixed-integer 
rounding cuts provided by CPLEX perform best and should be used (all other cuts 
are excluded). Our two-stage heuristic approach proposed in Sect. 3 has been imple-
mented in C# (.NET 4.0).

Computational results for test sets T1 and T2 with 10–100 plants and planning 
horizons ranging from one week to one year are presented in Table 1.3 Columns 2–5 
refer to test set T1 and columns 6–9 to test set T2 . “Gap” displays the average gap 
[%] between the best integer solution found and the best lower bound obtained by 
CPLEX. The worst-case gap values are written in parentheses. “ tcpu ” shows the aver-
age computation times in seconds [s].

Applying the MILP model, all instances in test set T1 with a planning horizon of 
up to 20 weeks are solved to (near-)optimality (i.e., a gap ≤ 1 % is reached) within 
the specified time limit of 5 h. For instances with a one-year planning horizon, the 
time limit often prevents good outcomes in terms of gap values. Instances in T2

-instances seem to be more difficult to solve, since the gap values are larger com-
pared to the gaps of T1-instances. Here, only instances with a planning horizon of 
up to 12 weeks can be tackled with gap values lower than 1 %. Moreover, average 
gaps for instances with a one-year planning horizon are quite high (approx. 63 %). 
The solution quality of the two-stage heuristic approach is comparable to MILP for 
all medium-term instances in T1 and T2 , as gap values are lower or equal to 1 %. 
For long-term instances, that are mainly focused in this article, great differences 
between heuristic approach and MILP can be observed. The heuristic approach is 
always able to find significantly better solutions (even worst-case gap values are ≤ 
1 % in contrast to the respective MILP gaps that are < 100 %) within considerable 
less computation time ( tcpu < 2 minutes in contrast to MILP tcpu ≤ 5 h). Due to the 

Table 1  Computational results for T1 - and T2-instances

Horizon MILP ( T1) Heuristic ( T1) MILP ( T2) Heuristic ( T2)

Gap (%) tcpu (s) Gap (%) tcpu (s) Gap (%) tcpu (s) Gap (%) tcpu (s)

1 week 0.2 (0.8) 11 0.8 (0.9) 0.1 0.3 (0.6) 31 0.8  (1.0) 0.1
4 weeks 0.5 (0.9) 177 0.8 (0.9) 0.5 0.6 (1.0) 198 0.6  (0.8) 0.3
12 weeks 0.7 (0.9) 558 0.9 (1.0) 4.2 0.5 (0.9) 3406 0.7  (0.9) 2.4
20 weeks 0.6 (0.9) 1103 0.9 (1.0) 10.6 7.4 (68.9) 3586 0.8  (1.0) 5.9
1 year 6.3 (48.4) 14,245 0.9 (1.0) 72.1 62.8 (99.8) 14,167 0.9  (1.0) 58.7

3 Test sets and detailed results can be downloaded from http://www.wiwi.tu-claus thal.de/abtei lunge n/
unter nehme nsfor schun g/forsc hung/bench mark-insta nces/.

http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/
http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/
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fast run times (within which outstanding solutions are generated), the two-stage heu-
ristic seems to be a good choice for practitioners.

A detailed analysis of the two-stage heuristic approach is illustrated in Table 2. 
Each optimization step (cf. Fig. 1) is evaluated individually using a third test set T3 
with long-term instances. T3 consists of the ten one-year problem instances of T1 , 
where the recurrent demand is again replaced by volatile residual demands. We here 
use the six yearly residual demands occurred in Germany from 2010 to 2015 (cf. 
ENTSO-E and German TSOs) and adjusted them proportionally to the total capac-
ity of the respective plant system. Thus, 60 long-term instances are obtained with 
a 10 to 100 plant system. In Table 2, average solution times tcpu and average rela-
tive improvements � , compared to the respective previous optimization step, are pre-
sented. Hence, for the first step, i.e., the creation of a start solution, improvements do 
not exist. Negative improvements indicate a deterioration of the objective function 
value. In the transition from a created to repaired solution negative improvements 
occur. From there to the finalized solution, positive improvements are realized. 
Additionally, solution times given in milliseconds [ms] are negligibly small in all 
steps of the thermal plant optimization stage (cf. Sect. 3.1). Most of the overall solu-
tion time is spent within the integration of energy storages, in particular for larger 
systems. Performance gains, that are achieved within this hydrothermal coordination 
stage (cf. Sect. 3.2), strongly depend on the characteristics of the problem instances. 
More precisely, for instances with high demand differences, improvements are 
increasing. For instances with primarily base load situations (e.g., due to a low vola-
tility or a low feed-in of the renewable sources), the smoothing effect of energy stor-
ages are negligible and only small improvements could be reached. Furthermore, the 
demand shifting offers the overall best improvements. Further improvements within 
the last step are generated by avoiding an excessive spinning reserve.

Table 2  Relative improvements � and solution times tcpu for each step of the heuristic approach (for one-
year instances)

#Plants Thermal plant optimization Hydrothermal coordination

Create 
Sol.

Repair Sol. Improve Sol. Shift Demand Finalize Sol.

tcpu (s) � (%) tcpu (ms) � (%) tcpu (ms) � (%) tcpu(ms) � (%) tcpu (ms)

10 7 − 2.50 9 2.27 47 3.04 695 1.23 49
20 11 − 2.63 11 2.18 72 3.39 2481 1.02 120
30 17 − 4.15 13 3.53 107 3.98 4290 1.09 121
40 21 − 3.37 15 2.75 147 3.97 6780 1.01 155
50 25 − 4.15 17 3.15 185 3.72 8591 1.36 212
60 31 − 4.11 18 2.98 233 3.36 12,062 1.44 303
70 34 − 4.08 21 2.95 282 3.95 15,205 1.45 366
80 40 − 4.44 22 3.12 339 4.09 18,831 1.64 619
90 44 − 4.49 24 3.08 406 4.09 20,764 1.73 831
100 49 − 4.53 27 3.09 482 3.19 26,444 1.75 1102

avg 28 − 3.84 18 2.91 230 3.68 11,614 1.37 388
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To further assess the solution quality of the heuristic approach, we isolated its 
first stage (cf. Sect.  3.1) and compared the objective function values to results of 
procedures devised by Kazarlis et  al. (1996), Morales-España et  al. (2013), and 
Ongsakul and Petcharaks (2004). Hence, a feasible production schedule for thermal 
plants is determined. The computational results of the wildly used Kazarlis et  al. 
(1996) test set (for a 24 h planning horizon without hydro storages) are given in 
Table 3. For the solver solution process, a gap of less than or equal to 1% is chosen 
as a stopp criterion. Columns 2 and 3 state the objective function values generated 
by our procedures, whereas “MIP-MOR” illustrates the results using the mixed-
integer linear programming approach by Morales-España et  al. (2013). Column 
“DPLR” displays the results for a Lagrange relaxation combined with a dynamic 
programming approach for the economic dispatch problem given by Ongsakul and 
Petcharaks (2004). Finally, column “GA” represents objective function values using 
the genetic algorithm presented by Kazarlis et al. (1996). Since “DPLR” and “GA” 
use squared production costs [cf. Eq. (1)], we also considered those costs in our pro-
cedures (“MIP” and “Heuristic”) as well as in our implementation of “MIP-MOR” 
(same settings as in “MIP”) to facilitate comparability. Please note that due to the 
quadratic objective, our mixed-integer programming model is named “MIP” (in con-
trast to the “MILP” model in Table 1). Line “avg. gap” represents the average gap 
between the objective function values obtained by the respective procedure and the 
best-known objective function values (within this paper). Overall, the models “MIP” 
and “MIP-MOR” give the best results in terms of average gap, followed by the two-
stage heuristic, which also provides a significantly lower computation time. Please 
note that only “MIP”, “MIP-MOR”, and “Heuristic” are comparable with respect to 
CPU-times, since “DPLR” and “GA” are solved on different computers (Ongsakul 
and Petcharaks 2004 present solution times of 2–3 minutes for “DPLR” and “GA” 
vs. less than a second for our “Heuristic”). To sum up, the first three steps within the 
first stage (cf. Sect. 3) seem to provide a quite good basis for our two-stage heuristic 
approach solving the UCP–HT.

Table 3  Objective function values and gaps compared to the best-known solutions for |T| = 24 h

#Plants MIP Heuristic MIP-MOR DPLR GA

10 563,938 565,278 566,218 564,049 565,825
20 1,123,871 1,128,200 1,128,558 1,128,098 1,126,243
40 2,243,270 2,249,814 2,245,746 2,256,195 2,251,911
60 3,361,998 3,372,620 3,370,333 3,384,293 3,376,625
80 4,482,358 4,495,092 4,485,972 4,512,391 4,504,933
100 5,600,181 5,617,841 5,611,847 5,640,488 5,627,437

avg 0.00 % 0.33 % 0.24 % 0.50 % 0.39 %
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4.2  Case study for the German electricity market

The numerical results obtained in Sect. 4 make the heuristic procedure highly suit-
able for solving real-world energy problems. The following case study is based on 
the characteristics of the German electricity market that comprises of nearly 300 
large-scale power plants with about 91 GW of thermal power in 2015. Moreover, 
126.4 GW of volatile renewable units, 6.5 GW of pumped storages, and a cumulated 
net demand of 550 TWh are used. Furthermore, in 2015 the average price for CO2 
emissions was cCO2 ∶= 7.94 € per ton CO2 (since cCO2 is an average price, period t in 
c
CO2

t  is eliminated). We choose a long-term planning horizon of one year. In order to 
extensively assess the capability of the proposed heuristic for real-world instances, 
a scaling factor � is introduced. Thereby, the total thermal capacity 

∑
Pmax
i

 [GW], 
the yearly demand 

∑
Dt [TWh], as well as the renewable feed-in 

∑
windt and 

∑
pvt 

[TWh] are multiplied by � ∈ {0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 3.00, 5.00} . Based 
on the scaled values, the thermal plant portfolio is derived such that it represents a �
-adjusted electricity system of Germany. The portfolio of hydro storages comprises 
only storages that participate on the wholesale market (here, 6.5 GW of generating 
power) and is scaled accordingly. Realistic hourly values for the demand and for 
renewable feed-ins are derived by the methodology in Wagner (2014) applying the 
calibration data from 2010 to 2015 (cf. ENTSO-E and German TSOs). The stochas-
tic Ornstein–Uhlenbeck process of Wagner (2014) is used to generate three scenar-
ios for the demand as well as three scenarios for wind and solar infeeds, respectively. 
Consequently, 27 possible combinations are considered, with the residual demand 
specified in each combination (see Definition  3). This might have some small 
impacts on the results compared to a detailed modeling of renewable sources, where, 
e.g., each wind farm is considered individually. However, these small differences 
seem to be negligible against the background of the underlying long-term planning 
horizon and the fact that according to Wagner (2014), the behavior of the modeled 
renewable feed-ins is quite realistic. For run-of-river and biomass provided electric-
ity, a constant monthly profile given by the ENTSO-E is utilized.

Table 4  Results for different  � for the German electricity market for one year (#instances: 27 for 
� ∈ {0.25, 0.5,… , 5.00})

Bold values indicate the benchmark value

� (-) #Plants (-)
∑

i P
max
i

 (GW)
∑

t Dt (TWh)
∑

t windt (TWh)
∑

t pvt (TWh) tcpu (s) Gap (%)

0.25 80 22.8 138.1 22.0 9.6 23.5 0.98
0.50 148 45.6 276.2 44.0 19.2 52.7 1.22
0.75 221 68.4 414.3 66.0 28.8 28.8 1.04
1.00 289 91.3 552.4 88.0 38.4 150.6 1.46
1.50 436 136.9 828.6 132.0 57.6 186.3 (6.13)
2.00 595 182.5 1104.8 176.0 76.8 369.0 (5.59)
3.00 870 273.8 1657.2 264.0 115.2 805.8 (6.08)
5.00 1467 458.4 2762.1 440.0 192.0 1711.5 n.a.
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Results of our two-stage heuristic are depicted in Table 4. As expected, instances 
with a low scaling factor � are solved quite fast, but also for the entire German 
electricity system ( � = 1 ), solutions can be generated in about 2.5 min. Moreover, 
a feasible hourly production schedule for a system with a scaling of � = 5 (with 
almost 1500 plants and in terms of the demand nearly comparable to the system of 
the EU-28) is received in less than half an hour. Within the test set with one scaling 
factor, only small solution time variations are observed. The related solution quality 
is represented by gap values that are determined using the best MILP solution found 
within a time limit of 48 h. Here, gap values are always below 1.5 %, which results 
again in quite high solution qualities. For higher scaling factors (� ≥ 1.50 ) no fea-
sible MILP-solutions can be achieved in 48 h due to the rapidly increasing model 
size. Therefore, the LP-relaxations of our MILP-model are used to assess the solu-
tion quality. Note that the resulting gap values are not as tight as the previous values 
and are hence written in parentheses. However, they indicate the maximal deviation 
to the optimum (all deviations are lower than 7 %). For � = 5 , “n.a.” means that 
CPLEX cannot provide solutions within the prescribed time limit. Considering the 
results, it can be concluded that the two-stage heuristic procedure provides not only 
outstanding results for theoretical test instances, but is also excellently for compre-
hensive practical purposes.

Furthermore, the proposed heuristic approach can be applied in order to receive 
trade-off results between the minimization of emission costs and the minimiza-
tion of production costs. In what follows, the weighted-sum method is used (cf. 
Sect. 2.2), where weighting factors for CO2 emissions are set according to the mar-
ket price cCO2 . Trade-offs are approximated by varying the weight cCO2 from zero 
emission costs to high costs (e.g., 200  €/t CO2 ). Figure  7 illustrates the resulting 
trade-off curve for the German electricity market with raising market prices cCO2 . 

Fig. 7  Impact of CO
2
 market prices cCO2
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Please note that the corresponding solution times and solution gaps are comparable 
to the results in Table 4 for � = 1.00.

It might be deduced from Fig. 7 that a shift from coal- to gas-fired plants (with 
less CO2 emissions) appears with increasing CO2 prices and thereby CO2 emissions 
are reduced. Therefore, the principle of the EU ETS can generally be used to control 
the management of CO2 emissions. Reductions in CO2 emissions are only achieved 
by accepting much higher production costs. In our case study, a reduction of nearly 
15 % due to increase in cCO2 from 7.94 to 140 € per ton CO2 results in a rise in total 
production cost of 350 % (from ca. 17 to 60 billion €). All in all, the presented tech-
nique offers a possibility to evaluate the effectiveness of the EU ETS.

5  Conclusion

In this paper, we considered the UCP with hydrothermal coordination, i.e., the 
UCP–HT. In order to meet recent challenges of reducing emissions, particularly CO2 
emissions, we enhanced the UCP–HT to a UCP–HT with production and emission 
costs. The emission costs are included on the basis of the cap-and-trade principle 
of the EU ETS. Nowadays, the trend to low-carbon electricity supply prefers units 
with less emissions (e.g., gas-fired plants); consequently, cost-efficient power plants 
(e.g., coal-fired plants) are no longer prioritized at all. In the presence of (high) mar-
ket prices for CO2 allowances, units with low emissions may achieve superior posi-
tions in the merit order and thereby higher utilizations. In contrast, carbon-intensive 
plants move significantly down in the merit order.

For the proposed UCP–HT with and without emission costs, a MILP formulation 
as well as a new and fast two-stage heuristic approach are presented. The proposed 
approach significantly outperforms the MILP as well as other tested techniques for 
long-term planning horizons. Particularly, real-world instances on the basis of the 
German electricity market can be solved in minutes, where an outstanding solution 
quality is realized. Furthermore, the two-stage heuristic allows sophisticated analy-
ses of trade-off situations between thermal production costs and emission costs, e.g., 
to determine suitable CO2 prices for an effective reduction in the overall emissions. 
Our case study emphasizes that current low market prices for CO2 allowances are 
quite effectless, which goes in line with most other studies.

It can be concluded that with regard to the need of fast scheduling procedures for 
the operational planning of thermal power plants, renewable sources, and storages, 
the two-stage heuristic approach is highly suitable for real-world applications and 
their analysis. In order to further improve the presented approach, it can be embed-
ded into a multi-start scheme, where different solutions are generated and the best 
solution found is returned. Future research might also observe plant availabilities, 
combined heat-and-power techniques for thermal plants or electricity trading with 
foreign countries. These aspects extend either the constraint set or the objective 
function and could affect the targets of different decision makers (e.g., system opera-
tors, generating and industrial companies). Generally, the two-stage approach would 
be a good basis for those extensions due to its modular architecture.
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