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Abstract
Spotters (also denoted as switchers) are specialized terminal tractors, which are 
dedicated to the rapid maneuvering of semitrailers between parking lot and dock 
doors in large trailer yards. This paper is dedicated to spotter scheduling, i.e., the 
assignment of predefined trailer movements to a given fleet of spotters. The limited 
number of dock doors for loading and unloading is often the scarce resource dur‑
ing trailer processing, so that idle time of the bottleneck, e.g., caused by unfore‑
seen delay in the yard, is to be avoided. In this setting, we aim to insert time buff‑
ers between any pair of subsequent jobs assigned to the same spotter, so that small 
delays are not propagated and subsequent jobs can still be executed in a timely man‑
ner. We formalize two versions of the resulting robust spotter scheduling problem 
and provide efficient algorithms for finding optimal solutions in polynomial time. 
Furthermore, we simulate delays during the execution of spotter schedules and show 
that the right robustness objective can greatly improve yard performance.

Keywords Yard operations · Truck scheduling · Terminal tractor scheduling · 
Robustness

 * Nils Boysen 
 nils.boysen@uni‑jena.de
 http://www.om.uni‑jena.de

 Giorgi Tadumadze 
 giorgi.tadumadze@tu‑darmstadt.de
 http://www.or.wi.tu‑darmstadt.de

 Simon Emde 
 siem@econ.au.dk
 https://pure.au.dk/portal/en/siem@econ.au.dk

1 Fachgebiet Management Science/Operations Research, Technische Universität Darmstadt, 
Hochschulstraße 1, 64289 Darmstadt, Germany

2 Lehrstuhl für Operations Management, Friedrich‑Schiller‑Universität Jena, Carl‑Zeiß‑Straße 3, 
07743 Jena, Germany

3 Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, 
8210 Aarhus V, Denmark

http://orcid.org/0000-0002-1681-4856
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00599-5&domain=pdf


996 G. Tadumadze et al.

1 3

1 Introduction

Increasing freight traffic in many regions of the world (e.g., in Europe Statista 2018) 
does not only burden the edges (streets) of road networks but also many nodes. 
Examples of huge terminals where up to several hundred trucks are to be loaded and 
unloaded each day are cross docks (Ladier and Alpan 2016), automobile plants (Bat‑
tini et al. 2013), distribution centers of food retailers (Bodnar et al. 2015), freight 
airports (Ou et al. 2010), and hub terminals in the postal service industry (Boysen 
et  al. 2017). In many of these nodes, especially during peak hours, considerable 
waiting times for an (un‑)loading of trucks occur. The large German transport coop‑
erative Elvis with 10,643 trucks, for instance, reports that their average daily waiting 
times of 3.5 h per truck accumulate to yearly waiting costs of about €400 million 
(VRS 2012). In an empirical study, 45.9% of the surveyed German truck drivers 
quantify their average waiting time per stop to exceed 1 h (VRS 2011). Existing 
ideas on how to resolve this problem mainly address the demand side. Novel soft‑
ware solutions propagate an internet‑based booking of time windows, so that truck 
arrivals can be spread out over the day (Descartes 2019), and the current scientific 
research aims at a coordination via auction mechanisms (Karaenke et  al. 2019). 
We, however, address the internal processes and show that robust schedules for the 
movement of semitrailers within yards also have the potential to considerably reduce 
waiting times.

1.1  Trailer yard operations and literature review

An important decision to make in the aforementioned nodes is to either let the trucks 
transporting semitrailers to and from the terminal directly approach the dock doors 
or to apply dedicated spotters for the intra‑terminal trailer movement. Spotters (also 
denoted as switchers Yano et al. 1998 or terminal tractors Berghman and Leus 2015) 
are specialized truck tractors which are exclusively applied for the rapid maneuver‑
ing of semitrailers between their parking positions and the dock doors where trailers 
are loaded and unloaded. A spotter is depicted in Fig. 1a.

Fig. 1  Spotter (a is published under the Creative Commons Attribution Share Alike 3.0 Unported 
License. The author of the picture is Exit2DOS2000)
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Applying extra spotters allows accelerated maneuvering and earlier release of the 
trucks. Spotters are more agile than conventional trucks, specifically designed for a 
rapid (un‑)coupling process of semitrailers, and due to learning effects, their driv‑
ers are much better trained in backing into a dock. A terminal manager of a large 
German trailer yard we visited told us that spotters cut transportation time in the 
yard at least in half. Moreover, spotters allow for a decoupling of trailer processing 
at the dock doors and trailer transportation (beyond the yard). Inbound trucks can 
leave their trailer on some open parking space in the trailer yard and can directly 
head toward their successive appointment. They need not wait for the processing 
time window of their trailer, which may considerably improve truck utilization. On 
the outbound side, dock doors are not blocked by already loaded trailers waiting for 
a delayed truck to pick them up. On the downside, spotters incur additional invest‑
ment and operational costs.

When applying spotters for trailer movement, the yard processes are organized 
as follows. On the inbound side, an incoming truck reaching a trailer yard is regis‑
tered at the terminal gate and appointed an open parking space in the parking lot of 
the yard. Figure 1b depicts the schematic layout of a trailer yard. Once the trailer is 
positioned and uncoupled, the truck can directly leave the terminal. The arrival of 
the loaded trailer is registered in the yard’s information system, e.g., by a yard oper‑
ator controlling the parking lot with video surveillance. Then, the trailer is assigned 
a dock door and a processing time window. In the literature, the decision on the 
where and when of (un‑)loading a given set of trailers is denoted as truck schedul‑
ing. A survey on the numerous solution procedures for this decision task is provided 
by Boysen and Fliedner (2010). Once such a schedule is available, loaded trailers 
need to be delivered in a timely manner to their dedicated docks by spotters. The 
spotter drivers are informed either via radio communication by the yard operator or 
via a display mounted on the dashboard. Once docked, trailers are unloaded, e.g., by 
forklifts or directly onto a telescopic conveyor, while the spotter heads to the next 
trailer on its list. When a trailer is completely unloaded, the status is transferred to 
the information system and a new transport request is generated as well as assigned 
to a spotter, which is to return the empty trailer to a parking space. On the outbound 
side, these steps are analogously executed in reverse order.

This paper is dedicated to spotter scheduling. A given set of trailer movements 
either from the parking lot to some dock door (i.e., loaded inbound trailers or 
empty outbound trailers) or vice versa (i.e., empty inbound trailers or loaded out‑
bound trailers) are to be assigned to a given fleet of spotters. Truck scheduling 
problems from the literature almost without exceptions typically ignore the work‑
force scheduling aspect. However, Tadumadze et  al. (2019) propose integrated 
truck and workforce scheduling problem but their workforce is dedicated to the 
intra‑terminal operations (i.e., unloading goods from trailers at dock door) while 
spotter scheduling treats operations in the yard, i.e., outside of the terminal. The 
only other papers treating spotter scheduling are the ones by Berghman et  al. 
(2014) and Berghman and Leus (2015). Both papers integrate truck scheduling, 
i.e., the decision on the where and when of truck processing, with spotter sched‑
uling and model the complete process as a three‑stage flexible flow shop prob‑
lem. On the first stage, spotters deliver trailers to docks, where they are processed 
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(stage two) and finally delivered back to the parking lot (stage three). A peculiar‑
ity is that stages one and three share resources, i.e., the spotter fleet. Mixed inte‑
ger models for the resulting problem are provided in Berghman et al. (2014) and 
heuristic solutions for a real‑world case at a Toyota warehouse in Belgium are 
presented in Berghman and Leus (2015).

Clearly, truck and spotter scheduling are heavily interdependent, so that integrat‑
ing both planning tasks into a holistic problem seems a good choice for many set‑
tings. However, the resulting problem is quite bulky and difficult to solve. Therefore, 
it may be convenient to decompose it if a single stage of the three‑stage process 
is the main bottleneck. This is, for instance, the case at the aforementioned yard 
of a large German postal service provider we visited. Over the years especially the 
increasing volumes of e‑commerce have led to a much higher workload to be pro‑
cessed at the terminal. While the spotter fleet can conveniently be adapted to chang‑
ing capacity situations, the terminal cannot be expanded that easily, so that (espe‑
cially during peak hours) the dock doors are the unique bottleneck resource. In such 
a setting, truck schedules can be derived independently of the spotters, such that the 
docks are efficiently utilized. Once such a truck schedule is given, the aim of the 
spotter schedule reduces to realizing the given trailer transports in a timely manner 
such that the docks never run idle.

Instead of tightly coupling trailer processing and spotter scheduling, which may 
lead to a propagation of delays whenever unforeseen events occur during plan exe‑
cution, the focus should rather be on robustness. Although the spotter fleet is suf‑
ficiently large per se, from time to time unforeseen delays occur in our terminal. For 
instance, unloading a trailer may take a little bit more time than expected or some 
trucks may arrive late at the terminal. These unforeseen events that regularly occur 
in any terminal lead to an idle time of the actual bottleneck resource, i.e., the dock 
doors. Therefore, we aim to determine, for the given truck schedules, spotter sched‑
ules that are robust in the face of unforeseen disturbances.

Although robust optimization is a wide and ever‑expanding field of research 
and there exist quite a few (partially conflicting) definitions, a general and widely 
accepted description goes like this (Briskorn et al. 2011): Robust optimization is the 
task of finding a feasible solution to an optimization problem that is not necessar‑
ily optimal but remains feasible (solution‑robustness) and has a good performance 
(quality‑robustness) if parameter values of the problem change. Surveys on the 
vast amount of literature on robust optimization are, for instance, provided by Ben‑
Tal and Nemirovski (2002), Ben‑Tal and Nemirovski (2008) and Kouvelis and Yu 
(1997). Robust scheduling in particular is surveyed by Aytug et al. (2005). Among 
the manifold approaches to reach robust schedules, a convenient way, which often 
leads to still comparatively compact problems, is the insertion of time buffers. A 
buffer between two jobs executed by the same resource protects the start time of 
the latter job against delays of the completion time of the former one. Time buffers 
have, for instance, been considered in project scheduling (e.g., Herroelen and Leus 
2004; Van de Vonder et al. 2005) and machine scheduling (e.g., Leus and Herroelen 
2007; Briskorn et al. 2011). We, however, have fixed execution intervals for our jobs 
(i.e., trailer movements), so that time buffers are only influenced by their assign‑
ment to resources (i.e., spotters). Fixed processing intervals are the topic of interval 
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scheduling (see Kolen et al. 2007 for a survey), where to the best of our knowledge 
robustness and time buffers have not been considered yet.

The resulting robust interval scheduling problems are general problems, which 
are not bound to spotter scheduling, but can be applied whenever predefined (trans‑
port) jobs with given processing intervals have to be executed in a timely manner by 
a given set of machines (or vehicles). However, in the following, we stick to the case 
of spotter scheduling because in this area of application the need to derive robust 
plans was brought to our attention.

1.2  Contribution and paper structure

This paper treats robust spotter scheduling by inserting time buffers between job 
pairs successively executed by the same spotter. Specifically, we assign transport 
jobs with given processing intervals to a fixed fleet of spotters under two robustness 
objectives: (i) maximize the minimum time buffer and (ii) maximize the sum of time 
buffers. The resulting two optimization problems are defined in Sect. 2. Polynomial‑
time algorithms for solving both problems to optimality are provided in Sect. 3. Our 
computational study (Sect.  4) simulates different disturbances during plan execu‑
tion and evaluates the ability of our two robustness approaches to avoid turmoil in 
the yard. Our results show that robust schedules, especially if optimized according 
to objective (i), can successfully avoid that delays of single trailer movements or 
delayed external trucks lead to a propagation effect causing further delays for subse‑
quent yard processes. In this way, the average waiting time per truck and the average 
idle time per dock door reduces by more than 1 and 5 h, respectively, compared to 
non‑robust solutions. Finally, Sect. 5 concludes the paper.

2  Problem description

Consider a set J = {1,… , n} of jobs, each representing a fixed transport request 
defined by its completion time Cj , a processing time pj , and a weight wj . Jobs rep‑
resent transport requests either from a parking position to a dock or vice versa. The 
input parameters of our problem can directly be derived from the output of truck 
scheduling problem, which we assume to be pre‑defined. The truck schedule for 
each truck determines when and where it has to be (un‑)loaded, i.e., it assigns each 
trailer to a  specific dock door and fixed processing time interval. As we assume 
that the parking positions for all trailers are also given, we can preprocess the travel 
time it takes a spotter to transport the trailer between the given dock and the respec‑
tive parking position (i.e., pj ). A transport job of a trailer toward a dock consists of 
coupling a trailer to a spotter at the initial parking position and moving it toward 
the dock, where it is uncoupled. A retrieval of the same trailer after its processing 
reverts this flow: a spotter is coupled to the trailer at its dock, moves it toward the 
parking position, and uncouples it. It is thus easy to derive the processing time pj 
and the completion time Cj of each job j so that it is executed in a timely manner 
in order to meet the fixed predefined (un‑)loading time intervals. The weights wj 
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denote the importance of a job being processed on time. E.g., an important truck 
that is fully loaded with high‑priority freight may receive a greater weight than 
non‑urgent deliveries. Furthermore, we have sequence‑dependent setup times �jj′ , 
which represent the deadheading time it takes a spotter to move from the target posi‑
tion of job j to the start position of job j′ . Note that we assume that the first job of 
each spotter can be processed without any driving time. As a matter of conveni‑
ence, we assume jobs being numbered according to non‑decreasing start times, i.e., 
C1 − p1 ≤ C2 − p2 ≤ ⋯ ≤ Cn − pn.

Given job set J and a fixed fleet of spotters S = {1,… ,m} , a schedule is defined 
by a partition {R1,… ,Rm} of J and a permutation �s of Rs , ∀s ∈ S , specifying the 
order in which the jobs assigned to spotter s are executed. Let �s(l) ∈ Rs denote the 
l‑th job of spotter s, i.e., �s = ⟨�s(1),… ,�s(l),… ,�s(�Rs�)] . Moreover, let �(j) ∈ S 
be the spotter job j ∈ J is assigned to, and let �(j) ∈ {1,… , |R�(j)|} be the sequence 
position of job j. Then, we define the buffer time b(j) as the amount of idle time 
between job j and its predecessor ��(j)(�(j) − 1) . If j is the first job executed by a 
spotter (i.e., �(j) = 1 ), it does not have a predecessor, therefore we set the buffer time 
to the start time of that job. Hence, we have

∀j ∈ J.
For simplicity’s sake, we neglect the spotters’ initial driving times ahead of their 

first job. Thus, we assume that each spotter is initially directly available at its first 
job at the beginning of the planning horizon. Note that if for each spotter s ∈ S a 
specific initial state (i.e., an earliest availability time es and an initial driving time �s

0j
 

toward each job j ∈ J ) has to be considered, the buffer time of each initial job j (i.e., 
if �(j) = 1 ) can be computed as b(j, s) = Cj − pj − �s

0j
− es for each spotter s ∈ S . 

Such a setup would allow multiple schedule updates throughout the day, e.g., when 
planning on rolling planning horizons. In our baseline model, however, we do not 
explicitly take the spotters’ initial states into account which remains a valid task for 
future research.

We say that a schedule is feasible if it satisfies the following conditions. 

1. Each spotter is assigned at least one job, i.e., Rs ≠ ∅ , ∀s ∈ S . Note that it can 
obviously not be optimal with regard to robustness to have unused spotters. Also 
note that this presupposes that n ≥ m , which can always be imposed by “culling” 
excess spotters from the instance if necessary.

2. The buffer time between any two jobs must not be negative (no spotter can per‑
form two jobs at the same time), i.e., b(j) ≥ 0 , ∀j ∈ J.

The main idea of a buffer time b(j) between job j and its predecessor 
j� = ��(j)(�(j) − 1) is to protect the start time of j. If an unforeseen prolongation of 
unloading some truck leads to a delay of job j′ , then the start time of its successor 

b(j) =

{
Cj − pj, if �(j) = 1

Cj − pj − ���(j)(�(j)−1),j
− C��(j)(�(j)−1)

, else
,
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j is not affected if the delay is not greater than b(j). Otherwise, j cannot start as 
planned but is delayed less than it would be without a buffer. This way, a diffu‑
sion effect, i.e., the propagation of a delay at one dock to other docks via delayed 
spotters, is avoided or at least mitigated. Specifically, we consider the time buff‑
ers in two different robustness objectives.

• Objective max‑
∑

 maximizes the total weighted buffer time, i.e., 
Fsum =

∑
j∈J wj ⋅ b(j).

• While the former objective maximizes the overall buffer time, it does not pre‑
clude individual buffers from being small (or even zero). To afford each job some 
level of protection, objective max–min maximizes the minimum buffer size, i.e., 
Fmin = min{b(j)∕wj ∣ j ∈ J;𝜃(j) > 1} . Note that, for this objective, only the buffer 
times between jobs (as opposed to the start time of the first job) are considered 
because the buffer before the first job only depends on its given start time and 
thus should not influence the objective.

Example: Consider an example problem with n = 4 transport jobs to be processed 
by m = 2 spotters. The processing ( pj ) and completion ( Cj ) times as well as the 
weights ( wj ) of each job are in Table  1a. The driving time from the end point 
of some job j to the starting point of any other job j′ , i.e., �jj′ , can be found in 
Table  1b. For this problem, the optimal solution with regard to objective max

‑
∑

 is �1 = ⟨1, 2, 3] and �2 = ⟨4] , that is, one spotter performs job 1, then job 
2 and job 3, while the other spotter handles job 4. This leads to buffer times 
of b1 = 3 , b2 = 0 , b3 = 0 , and b4 = 11 , and hence to a total objective value of 
Fsum = 1 ⋅ 3 + 2 ⋅ 0 + 1 ⋅ 0 + 3 ⋅ 11 = 36 . The solution is depicted as a Gantt chart 
in Fig. 2a. Using the max–min objective, the optimal solution becomes �1 = ⟨1, 3] 
and �2 = ⟨2, 4] , implying buffer times of b1 = 3 , b2 = 6 , b3 = 1 , and b4 = 2 , and 
hence, an objective value of Fmin = min{1∕1, 2∕3} = 2/3. Figure  2b shows the 
corresponding Gantt chart.

Table 1  Example problem: input parameters

j 1 2 3 4

(a) Jobs’ characteristics
pj 2 2 6 3
Cj 5 8 15 14
wj 1 2 1 3

�jj′ 1 2 3 4

(b) Driving times
1 – 1 3 2
2 1 – 1 1
3 3 1 – 4
4 2 1 3 –
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3  Algorithms

In this section, we will present polynomial‑time exact algorithms for the robust 
spotter scheduling problem (RSSP), both under the max‑

∑
 as well as the max

–min objective.

3.1  Objective max–
∑

Maximizing the total buffer time, RSSP can be reduced to maximum weight per‑
fect matching in a bipartite graph.

Let G(U ∪ V ,E, c) be a bipartite graph, where U and V are two disjoint ver‑
tex sets, E is a set of edges, with each edge connecting one vertex in U to one 
vertex in V, and c ∶ E → ℝ+ is a weight function. U = {u1,… , un, ∫1,… , ∫m} and 
V = {v1,… , vn, ⌉1,… , ⌉m} each contain one vertex for each of the n elements 
in job set J and m additional “dummy” vertices. We say that vertices vj and uj 
correspond to job j, ∀j = 1,… , n , and vertices ∫l and ⌉l correspond to spotter l 
(note that spotters are homogeneous and the indices for the latter are therefore 
interchangeable).

Each “dummy” vertex ∫l in set U is connected to each job vertex vj in set V by 
an edge (∫l, vj) ∈ E , ∀l = 1,… ,m;j = 1,… , n . Edge (∫l, vj) indicates that job j is 
the first job to be performed by spotter l. Consequently, the weight of that edge is 
c(∫l, vj) = wj ⋅ (Cj − pj).

Each job vertex uj in set U is connected to a job vertex vj′ in set V by an 
edge (uj, vj� ) ∈ E if and only if job j′ can be performed after job j by the same 
spotter, i.e., if Cj� − pj� − �j,j� − Cj ≥ 0 . Such an edge stands for one spot‑
ter performing job j′ immediately after job j. In that case, the edge weight is 
c(uj, vj� ) = wj� ⋅ (Cj� − pj� − �j,j� − Cj) , i.e., the weighted time buffer between jobs j 
and j′ , given that they are processed in direct succession by the same spotter.

Finally, each job vertex uj in set U is connected to each “dummy” vertex ⌉l 
in set V by an edge (uj, ⌉l) ∈ E , ∀j = 1,… , n;l = 1,… ,m , indicating that job 

Fig. 2  Example problem: optimal solutions
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j is the last job performed by a spotter. The corresponding edge weight is then 
c(uj, ⌉l) = 0.

This definition of G allows stating the following proposition.

Lemma 3.1 A maximum weight perfect matching in graph G corresponds to a fea-
sible RSSP solution which is optimal with regard to the max‑

∑
 objective and vice 

versa.

Proof A feasible RSSP solution can easily be constructed from a perfect matching in 
G: If some edge (∫l, vj) is part of the matching, it means that spotter l starts off with 
job j. If then there is an edge (uj, vj� ) in the matching, that means that job j′ is the 
direct successor of j. Finally, if there is an edge (uj, ⌉l� ) , it means that job j is the last 
job of spotter l. Note that l′ need not necessarily be equal to l. Also, note that every 
job must be performed by exactly one spotter, and each spotter must perform at least 
one job, else the matching would not be perfect. Finally, seeing that edge weights 
correspond to weighted buffer times, it is clear that a maximum weight matching 
implies optimality with regard to Fsum.

By the same logic, this transformation can also be applied in reverse to create 
a maximum weight perfect matching in G from a feasible RSSP solution which is 
optimal with regard to Fsum .   ◻

Example (cont.): The maximum weight matching for our example is graphically 
depicted in Fig. 3, corresponding to the same solution presented in Fig. 2a.

As the number of (potentially useful) spotters m is bounded by the number of jobs 
n, the total number of vertices in G is bounded by O(n) and the total number of edges 
by O(n2) . Consequently, using, for example, the improved Hungarian algorithm [e.g., 
Burkhard et al. 2009, Ch. 4], we get the following proposition.

Proposition 3.1 RSSP with max‑
∑

 objective can be solved in O(n3) time.

3.2  Objective max–min

We split solving RSSP with Fmin objective into two parts. First, we will discuss how 
to find a feasible solution to RSSP (if one exists) for some given minimum time buffer 
F
min , i.e., a feasible solution where b(j)∕wj ≥ F

min
 , ∀j ∈ J;𝜃(j) > 1.

This problem can again be reduced to finding a perfect matching in a bipartite graph. 
Let G(U ∪ V , E) be a bipartite graph, where U and V are two disjoint vertex sets and E 
is a set of edges, each connecting a node in U to a node in V. Sets U and V are set up 
exactly as described in Sect. 3.1.

Fig. 3  Optimal maximum 
weight matching in the example
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Set E contains edges (∫l, vj) as well as (uj, ⌉l) , ∀l = 1,… ,m;j = 1,… , n , indicat‑
ing that job j is the first or last job executed by a spotter, respectively. Moreo‑
ver, there is an edge (uj, vj� ) if and only if (Cj� − pj� − �j,j� − Cj)∕wj� ≥ F

min
 , mean‑

ing that job j′ can only be performed right after job j by the same spotter if the 
weighted time buffer between these two jobs is not below the given minimum 
F
min.

Lemma 3.2 There is a perfect matching in G if and only if there is a feasible RSSP 
solution where b(j)∕wj ≥ F

min
 , ∀j ∈ J;𝜃(j) > 1.

Proof If there is a perfect matching in G , it can be transformed to a feasible 
RSSP solution exactly as explained in the proof of Lemma 3.1. In such a solution 
b(j)∕wj ≥ F

min
 , ∀j ∈ J;𝜃(j) > 1 , must hold because of the way set E is constructed.

Conversely, if there is a feasible solution where b(j)∕wj ≥ F
min

 , ∀j ∈ J;𝜃(j) > 1 , 
holds, there must also be a perfect matching in the corresponding graph G . In 
such an RSSP solution, every job must clearly be the first or the last job of exactly 
one spotter, and/or it must be the successor of exactly one other job, such that the 
weighted time buffer between those jobs does not fall below F

min . In either case, the 
corresponding edge is part of E . Since this holds for every job in the RSSP solution, 
G must permit a perfect matching.   ◻

Solving the matching problem as it is outlined above allows constructing a fea‑
sible solution for a given objective value of F

min . If the optimal objective value 
Fmin∗ was known, it would, therefore, be possible to generate a corresponding 
optimal solution. To find the optimal objective value, we propose the scheme out‑
lined in Algorithm 1. This procedure is essentially a binary search scheme: The 
optimal max–min objective value must be one of the possible weighted time buff‑
ers between jobs, i.e., Fmin∗ = (Cj� − pj� − �j,j� − Cj)∕wj� , for some j, j� ∈ J;j� > j . 
In Algorithm 1, the set of these potentially optimal F

min values is denoted as B. 
Sorting these values in ascending order (list ⌊ in Algorithm 1), finding the great‑
est feasible and hence optimal F

min can be implemented as a binary search on ⌊ . 
If a given F

min value does not permit a feasible solution, the F
min value must be 

too ambitious and is lowered in the next iteration. On the other hand, if a feasi‑
ble solution can be constructed, then the current F

min may be too low and it is 
increased in the next iteration. 
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Example (cont.): The potentially optimal values, sorted in ascending order, for 
F
min are ⌊ = ⟨0, 2∕3, 1, 4∕3] . The greatest feasible value from ⌊ is 2/3. The perfect 

matching for F
min

= 2∕3 is depicted in Fig. 4, corresponding to the same solution 
presented in Fig. 2b.

This leads us to the following proposition.

Proposition 3.2 RSSP with max–min objective can be solved in O(n3 log n) time.

Proof The set of possible F
min values, B, can contain at most O(n2) distinct values. 

Since binary search halves the search space in each iteration, it can sift through these 
values in O(log n2) iterations, and in each iteration, a perfect matching problem in a 
bipartite graph has to be solved, which can be done in O(n3) time. Consequently, the 
total asymptotic runtime comes to O(n3 log n).

Fig. 4  Perfect matching for 
F
min

= 2∕3
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4  Computational study

The objective of our computational study is to answer the following research 
questions. First, what is the computational performance of our proposed solution 
methods with regard to both objectives and different yard sizes (Sect. 4.2)? Sec‑
ond, do our surrogate objectives indeed promote robustness to operational distur‑
bances in a yard terminal? Since no established testbed for RSSP instances exists, 
we describe how our test instances are generated in Sect. 4.1. To address the sec‑
ond research question, we apply a terminal simulation, whose setup is described 
in Sect. 4.3. In the simulation study, we investigate the robustness of RSSP solu‑
tions in case of unexpected disturbances (Sect.  4.4). Specifically, we observe 
the effects of internal delays, i.e., unexpectedly prolonged (un‑)loading times at 
docks, and external delays, i.e., delayed arrivals of trailers at the terminal.

4.1  Instance generation

Our instance generation scheme is geared to the hub terminal of the aforemen‑
tioned postal service provider. Specifically, we first generate realistic truck sched‑
ules, and then, based on those truck schedules, the corresponding RSSP instances 
are derived.

RSSP is an operational planning problem, which has to be solved once truck 
schedules (i.e., the where and when of trailer processing at the dock doors) are 
known. The typical planning horizon for the truck scheduling problem is one day 
(Boysen et al. 2017). Thus, it is typically pointless to plan spotter schedules more 
than one day in advance. Moreover, to reduce forecasting errors of input parame‑
ters (e.g., truck arrival times, amount, and type of trailer loads, and their (un‑)load‑
ing durations), it may be advisable to schedule spotters for an even shorter plan‑
ning horizon (e.g., one or even half a work‑shift). Given the operational character 
of RSSP, we aim to generate precise spotter schedules. Therefore, to avoid rounding 
errors, a time unit in an RSSP instance corresponds to one second of realtime.

Our trailer yard consists of a terminal and a parking lot. The terminal contains 
a set D of dock doors where the goods are to be unloaded from incoming trailers 
and/or loaded into outgoing trailers. The parking lot is divided into L parking 
lines, each of which is located parallel to the docking wall and contains |D| park‑
ing positions. Thus, a set Π of parking positions in the terminal yard consists of 
|Π| = |D| ⋅ L positions. Our instance generator receives the number of dock doors 
|D| and the number of parking lines L as input parameters that define the trailer 
yard size according to the dimensions of our real‑world terminal.

We assume that there are two‑way roads in the whole yard so that spotters can 
move in both directions everywhere. This way, we can easily derive the distance 
d�,� between any pair of positions � and � in the trailer yard ( �, � ∈ {D ∪ Π} ). The 
schematic layout of a trailer yard with |D| = 5 dock doors and L = 3 parking lines 
is depicted in Fig. 5. Note that a detailed description of how the distances in the 
yard are calculated is given in the "Appendix".
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In line with the planning parameters applied at our real‑world case, we assume 
that a spotter without attached semi‑trailer moves with a constant speed of vf = 5 
m/s (i.e., 18 km/h) while the speed of a spotter coupled with a semi‑trailer is 
assumed to be vb = 3 m/s (i.e., 10.8 km/h). Furthermore, we assume that semi‑
trailer coupling and uncoupling (including parking and pulling out) always last 
Δc = 30 and Δu = 20 s, respectively.

As a first step, to generate a feasible truck schedule for a given set of trucks I, 
for each truck i ∈ I we randomly determine its arrival time ai , parking position 
�i in the yard, and handling time hi at the dock door (i.e., duration of the (un‑)
loading of the trailer). For the sake of simplicity, we assume that the number of 
trucks |I| in the planning horizon is equal to the total number of parking positions 
in the parking lot ( |I| = |Π| ). This way, each truck i ∈ I is associated with exactly 
one parking space and vice versa. Note that most large trailer yards are located 
in rural areas where land is not that costly. Thus, this simplifying assumption 
should seldom be a shortcoming. We assign each trailer i to a parking position �i 
randomly while taking into account that to each parking position �i exactly one 
trailer is assigned ( �i ≠ �i� |∀i, i� ∈ I;i ≠ i�).

It is well‑known that the truck scheduling problem can be modeled as a paral‑
lel machine scheduling problem (Tadumadze et al. 2019, 2020). Thus, we gener‑
ate arrival times and (un‑)loading times of trucks similarly to the instance genera‑
tion scheme proposed by Hall and Posner (2001). Specifically, handling time hi 
for each trailer i ∈ I is drawn from a normal distribution with an expected han‑
dling time of 30 min and variance of 6 min (i.e., � = 1800, �2 = 6 ). Furthermore, 
to generate arrival times ai for each truck i ∈ I , the inter‑arrival times of two suc‑
cessive trucks are randomly drawn from an exponential distribution with mean 
� =

�

|D| (starting at a1 = 1800 ). Note that all input parameters are assumed to have 
deterministic values.

To derive a truck schedule, we first sort trailers according to their arrival times ai 
and then assign each trailer i ∈ I to the next free dock door gi ∈ D and (un‑)loading 

Fig. 5  Schematic layout of the trailer yard for instance generation
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time window “first come first serve.” As a result, for each truck i ∈ I start ( si ) and 
end ( ei = si + hi ) of (un‑)loading is determined.

Finally, for each trailer i ∈ I , the relative importance ri of its truckload is drawn 
randomly with a uniform distribution from the interval [1, 5].

Each trailer i is associated with exactly two jobs for spotters j and j′:

• j: transport of trailer i from parking position �i to dock door gi with process‑
ing time pj = Δc +

d�i ,gi

vb
+ Δu (i.e., transport time of the trailer from the parking 

position to the dock door) and completion time Cj = si (i.e., the trailer transport 
job is completed when the trailer has been set down at the door and its (un‑)load‑
ing starts),

• j′ : return the trailer from gi to �i with p�
j
= Δc +

dgi ,�i

vb
+ Δu and C�

j
= ei + p�

j
.

Setup times �jj′ for each pair of jobs j, j� ∈ J are determined by dividing d�j,�j′ (the 
distance between the end position �j of job j and the start position �j′ of job j′ ) by 
constant speed vf  of an empty spotter, i.e., �jj� =

d�j ,�j�

vf
 . The weight of each job j ∈ J 

is derived as wj = ri ⋅ rnd[0.5, 2] where rnd denotes a uniformly distributed random 
number from the interval in the argument. This way, the weight of the job on the one 
hand depends on the relative importance of the corresponding trailer and, on the 
other hand, it is randomly re‑weighted in respect of some other job‑specific issues 
(e.g., urgency at the corresponding dock door, or a pressing truck departure time).

We have implemented our algorithms, including the shortest augmenting path 
algorithm by Jonker and Volgenant (1987) for finding a (maximum weighted) per‑
fect matching in a bipartite graph, as well as the simulation model in C# 6.0. All 
tests have been executed on an x64 PC with an Intel Core i7‑8700K 3.70 GHz CPU 
and 64 GB RAM. The generated RSSP instances are available and can be down‑
loaded using the following DOI: 10.5281/zenodo.3925356.

4.2  Computational performance

In this section, we investigate and compare the computational performance of the 
proposed algorithms (i.e., max‑

∑
 and max–min ). To do so, we generate RSSP 

instances with our instance generator. Specifically, we assume three differently sized 
terminals consisting of |D| = 20 , |D| = 50 , and |D| = 200 doors (in the rest of the 
text the three different terminal sizes are dubbed S, M, and L). For each terminal 
size, we presuppose four different numbers L ∈ {2, 3, 4, 5} of parking lines, which 
together with |D| determine the size of the parking yard |Π| , the number of trucks |I|, 
and the number of transport jobs n = 2 ⋅ |I| in the planning horizon. Furthermore, 
for each terminal size, we assume three different spotter fleet sizes m. The applied 
input parameters are summarized in Table 2. For each parameter combination, our 
instance generator generates 10 RSSP instances, so that in total there are 360 RSSP 
instances for the computational performance test.

Table 3 summarizes the aggregated computational results of the algorithmic per‑
formance test. Each row in Table 3 contains the results averaged over the 10 prob‑
lem instances of the same size. For each algorithm (i.e., max‑

∑
 and max–min ), we 
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report the average computational time that is required to obtain the optimal solu‑
tion (column “CPU sec”). For comparison, we also evaluate both objective values 
Fmin and Fsum (columns “ Fmin ” and “ Fsum ,” respectively), even if the other objective 
function is pursued. Thus, we solve RSSP under the max‑

∑
 objective and evaluate 

the resulting optimal solution with the objective function of the max–min problem 
(and vice versa). Note that the Fmin values are only optimal when the max–min prob‑
lem is solved; analogous for Fsum and max‑

∑
.

Our experiment shows that both algorithms are well suited for solving RSSP 
to optimality in short computational time. Even in the most extreme cases, the 
computational times of the hardest problem instances for the large terminal yard 
(scheduling n = 2, 000 jobs on m = 300 or m = 400 spotters) do not exceed 1 
min when total weighted buffer time (i.e., objective max‑

∑
 ) is maximized and 

8 min in case of objective max–min , respectively. For all problem instances, the 
computational times under the max‑

∑
 objective are always shorter compared to 

the max–min case. On the other hand, maximizing the total weighed buffer time 
apparently comes at the cost of low‑weighted jobs receiving very short or even 
no buffer times. This can be seen in the Fmin values of the solutions where the 
min−

∑
 objective is applied, which are always close to zero (column “ Fmin ” for 

max‑
∑

 objective). This may damage the robustness of solutions, because in case 
of unforeseen events during plan execution delays can propagate. We investigate 
this further in Sect. 4.4.

Unsurprisingly, the terminal size strongly affects the computational times of 
both algorithms. The average computational times of both algorithms for the 
three terminal sizes (i.e., S, M, and L) are depicted in Fig. 6. We further observe 
the impact of n (i.e., the number of transport jobs) and m (i.e., the number of 
spotters) on problem complexity. According to the experimental results, the spot‑
ter fleet size m has only a negligible impact on the problem complexity, while the 
number of transport jobs n seems to have a considerable influence on the compu‑
tational time. Figure 7 depicts the average computational times for instances with 
varying numbers of jobs n for each terminal size. In all cases, with the increase in 
parameter n the average computational times of both algorithms increase super‑
linearly, although max‑

∑
 scales better than max–min. 

It can be concluded from the performance test that our solution algorithms 
seem well suited for practical applications. They deliver optimal solutions quickly 

Table 2  Parameters for instance generation of computational performance test

Parameter Terminal size

S M L

|D| 20 50 200
L (2, 3, 4, 5) (2, 3, 4, 5) (2, 3, 4, 5)
|I| (40, 60, 80, 100) (100, 150, 200, 250) (400, 600, 800, 1000)
n (80, 120, 160, 200) (200, 300, 400, 500) (800, 1200, 1600, 2000)
m (20, 30, 40) (50, 75, 100) (200, 300, 400)
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Table 3  Results of computational performance test

Instance size max–
∑

max–min

m n CPU sec Fsum Fmin CPU sec Fsum Fmin

Terminal size: S
20 80 0.01 673,732.80 0.10 0.02 529,380.10 109.30
30 80 0.01 887,759.20 0.20 0.02 754,772.10 259.33
40 80 0.01 1,067,874.70 2.50 0.02 976,983.00 284.50
20 120 0.02 957,800.50 0.03 0.05 688,786.00 107.75
30 120 0.02 1,363,439.70 0.00 0.05 1,071,680.30 221.38
40 120 0.02 1,616,270.30 0.00 0.06 1,333,432.80 278.46
20 160 0.04 1,130,077.30 0.00 0.12 777,390.70 90.10
30 160 0.04 1,640,356.70 0.00 0.12 1,194,765.80 210.72
40 160 0.04 2,065,274.30 0.00 0.13 1,617,540.10 277.67
20 200 0.06 1,316,235.40 0.00 0.24 834,793.70 61.13
30 200 0.07 2,030,708.50 0.00 0.26 1,442,855.30 213.05
40 200 0.07 2,577,453.60 0.00 0.27 1,947,120.30 281.76
Mean (S) 0.03 1,443,915.25 0.24 0.11 1,097,458.35 199.60
Terminal size: M
50 200 0.08 2,801,623.40 0.35 0.27 2,234,450.30 271.04
75 200 0.08 3,384,937.90 0.65 0.29 2,958,384.40 261.79
100 200 0.08 3,999,989.70 1.68 0.32 3,732,210.60 286.27
50 300 0.22 3,895,340.30 0.00 0.95 2,843,258.20 268.39
75 300 0.24 5,458,433.00 0.18 1.07 4,367,426.00 288.90
100 300 0.25 6,300,740.30 0.33 1.09 5,420,223.30 280.31
50 400 0.46 5,142,676.80 0.00 2.41 3,567,202.20 277.59
75 400 0.49 7,124,042.70 0.03 2.53 5,354,420.40 285.28
100 400 0.53 8,992,119.00 0.00 2.70 7,223,840.40 298.59
50 500 0.83 6,435,699.20 0.00 4.97 4,265,949.10 251.84
75 500 0.90 9,238,427.70 0.08 5.28 6,603,872.90 266.86
100 500 0.96 11,516,821.00 0.08 5.56 8,846,761.80 297.87
Mean (M) 0.43 6,190,904.25 0.28 2.29 4,784,833.30 277.89
Terminal size: L
200 800 4.09 32,045,392.00 0.00 26.34 25,975,279.00 272.16
300 800 4.40 38,253,184.00 0.13 27.60 34,427,745.00 278.55
400 800 4.54 46,529,532.00 0.25 30.00 44,087,069.00 266.96
200 1200 11.97 53,432,412.00 0.00 93.21 39,669,969.00 274.18
300 1200 13.21 68,786,194.00 0.00 97.63 56,381,906.00 276.93
400 1200 14.17 79,158,212.00 0.00 100.31 69,536,510.00 265.67
200 1600 26.16 73,286,205.00 0.00 226.35 51,825,850.00 265.62
300 1600 29.02 102,827,090.00 0.00 241.58 79,509,343.00 286.44
400 1600 30.82 119,421,480.00 0.00 246.04 98,797,397.00 263.93
200 2000 48.74 96,623,679.00 0.00 456.86 65,889,463.00 264.14
300 2000 52.79 132,979,290.00 0.00 473.17 97,712,393.00 284.98
400 2000 56.47 158,843,290.00 0.00 481.95 125,592,390.00 269.38



1011

1 3

Robust spotter scheduling in trailer yards  

even for very large yards, and the solution times are short enough to promptly 
return solutions whenever a replanning may be required during daily operations.

4.3  Setup of simulation study

In this section, we investigate whether RSSP solutions are actually robust against 
unforeseen delays that may occur during the execution of spotter schedules. To do 
so, we build a simulation model where some random events are simulated and the 
robustness of the solutions is evaluated. In the following, we describe the setup of 
our simulation model.

As a prototype terminal of our simulation model we select a medium‑
sized terminal with |D| = 50 doors, |Π| = 300 parking positions, and |I| = 300 
trucks leading to n = 600 transport jobs. Furthermore, we vary parameter 
m (i.e., the number of spotters) between the following nine different values: 
m ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100} . Again for each fleet size, we generate ten 
RSSP instances, so that for the simulation study we generated 90 RSSP instances in 
total.

Table 3  (continued)

Instance size max–
∑

max–min

m n CPU sec Fsum Fmin CPU sec Fsum Fmin

Mean (L) 24.70 83,515,496.67 0.03 208.42 65,783,776.17 272.41

Fig. 6  Impact of terminal size 
on computational times

Fig. 7  Impact of n on computational times
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We aim to observe the robustness of both objectives against unexpected distur‑
bances. Therefore, for each generated instance we simulate some random delays. In 
particular, we consider the following two kinds of disturbances:

• External disturbance a+ : Some trucks may arrive later at the terminal yard 
than expected. The original arrival time ai of delayed truck i is modified to 
a�
i
= ai + a+

i
 , where a+

i
 denotes the amount of delay of truck i.

• Internal disturbance h+ : The (un‑)loading of some semitrailers may last longer 
than expected so that the handling time of such a trailer i at the dock is prolonged 
h�
i
= hi + h+

i
 with h+

i
 defining the amount of delay.

For both kinds of disturbances our simulation model receives two predefined input 
parameters:

• the probability that a disturbance for a truck occurs: p(a+) and p(h+) as well as
• the maximal amount of delay [in min] that can occur: max(a+) and max(h+).

Given these parameters, for each truck i the simulation model first randomly decides 
whether or not it arrives with delay. If so, the amount of delay a+

i
 is drawn randomly 

from a uniform distribution in the interval [0,max(a+
i
)] . Internal delays are deter‑

mined analogously. To observe the effects of delays, we vary the input parameters in 
the following ranges p(a+) ∈ {5, 10, 20} [%] and max(a+) ∈ {10, 20, 30, 40, 50, 60} 
[min] as well as p(h+) ∈ {5, 10, 20} [%] and max(h+) ∈ {10, 20, 30, 40, 50, 60} 
[min]. The input parameters of our simulation study are summarized in Table 4.

After generating these random disturbances, an original RSSP instance P can 
be modified to P′ . To do so, we reassign each truck i ∈ I to the new (un‑)load‑
ing time window according to the modified parameters a′

i
 and h′

i
 . Note, however, 

that we keep the door assignment of each truck as derived in the original truck 
schedule. This is because changing the door assignment on short notice triggers 
new problems inside the terminal. For instance, the goods dedicated to a specific 
outbound trailer are typically assembled (e.g., picked from a warehouse) over a 
longer period of time and placed in the outbound area directly in front of the 

Table 4  Parameters for instance 
generation of simulation study

Parameter [unit] Value(s)

|D| 50
L 6
|I| 300
n 600
m (20, 30, 40, 50, 60, 70, 80, 90, 100)
p(a+) [%] (5, 10, 20)
max(a+) [min] (10, 20, 30, 40, 50, 60)
p(h+) [%] (5, 10, 20)
max(h+) [min] (10, 20, 30, 40, 50, 60)
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respective dock door. Changing the dock door on short notice would require to 
move these goods to the new dock, which produces double handling and increases 
the probability of misplaced shipments.

Once our instance generator has produced an RSSP instance P, we solve it with 
regard to both objectives and store the corresponding optimal spotter schedules 
Ω(P)∗

sum
 and Ω(P)∗

min
 . Moreover, to benchmark our robust spotter schedules against 

non‑robust schedules, we additionally solve P to feasibility (by finding a perfect 
matching in the corresponding initial bipartite graph without considering any 
objectives) and store the resulting solution Ω(P)feas too. Subsequently, our (simu‑
lated) disturbances occur, which leads to the modified RSSP instance P′ . We eval‑
uate the modified instance P′ with the three fixed schedules (i.e., Ω(P)∗

sum
 , Ω(P)∗

min
 , 

and Ω(P)feas ) and observe whether the new job completion times C′
j
 of P′ are vio‑

lated. Specifically, each spotter s ∈ S executes the transport jobs in the given 
sequence �s according to the fixed spotter schedule ( Ω(P)∗

sum
 , Ω(P)∗

min
 , or Ω(P)feas ), 

which represent the schedules derived prior to the occurrence of disturbances. 
Given these fixed spotter schedules originally determined for P, we can derive 
whether our two robustness measures protect us against the disturbances of P′.

To compare the robustness of the schedules, we compute the lateness 
lj = max{0;

C�
j
−tj

60
} of each job j ∈ J [measured in min], where tj denotes the actual 

execution time of job j (i.e., the execution time of job j when P′ is evaluated 
according to original spotter schedule Ω(P)∗

sum
 , Ω(P)∗

min
 , or Ω(P)feas ). Then, based 

on the lateness of the job, we derive the following three performance measures, 
which evaluate the solution quality (i.e., robustness):

• Average weighted lateness: We define the average weighted lateness AWL of 
all jobs as the weighted sum of every jobs’ lateness divided by the total num‑
ber of jobs n: AWL =

∑
j∈J wj⋅lj

n
.

• Truck-related lateness: To reduce the delay of goods, terminal yards aim to 
provide (external) trucks with their (loaded or empty) semitrailers in a timely 
manner just as agreed. Thus, our external performance measure, average 
truck‑related lateness TRL, calculates the total lateness of those jobs that are 
associated with bringing trailers from the terminal back to their parking posi‑
tion divided by the number of trucks |I|.

• Dock-related lateness: While the previous performance measure is geared to 
the external stakeholders of the yard, our third performance measure, aver‑
age dock‑related lateness DRL, is primarily relevant for the internal processes 
within the terminal. Specifically, DRL measures the total lateness of those 
transport requests whose target position is a dock door divided by the number 
of dock doors |D|. Such lateness leads to unforeseen waiting times at the dock 
doors and delays the processing of incoming goods inside the terminal.

The lower these three lateness measures for the schedules, the larger their protection 
level against unforeseen disturbances, which is evaluated in the following section.
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4.4  On the impact of robust spotter scheduling

In this section, we benchmark the robustness of our two objectives max‑
∑

 and max

–min if unforeseen disturbances occur during the execution of a spotter schedule. To 
do so, we solve the 90 generated RSSP instances to feasibility as well as with regard 
to both objectives and store the solutions. Then, we simulate disturbances, evaluate 
the modified data with the original spotter schedules derived for the initial (undis‑
turbed) problem instance, and calculate our three lateness measures.

First, we observe robustness in case of only external disturbances, i.e., when 
some trucks arrive later than expected. For this, we simulate each problem instance 
in 18 different scenarios, where the values of external disturbance parameters, p(h+) 
and max(h+) are varied in the ranges given in Table 4. Recall that the higher the for‑
mer (latter), the more often external disturbances occur (the larger the delay of a late 
truck). Afterward, we address exclusively internal disturbances, i.e., some semitrailers 
require a longer processing time than expected. Here, we vary the probability p(h+) 
of the prolongation of a trailer’s handling time at a dock and the maximal duration 
max(h+) of the delay. Finally, we investigate the most realistic scenario when both 
kinds of disturbances—i.e., internal and external delays—occur simultaneously. Spe‑
cifically, we simulate both kinds of delays at the same time by varying all parameters 
p(a+) = p(h+) , and max(a+) = max(h+) in the ranges given in Table 4. As a result, 
each of the generated 90 instances is simulated in 54 different scenarios, each of which 
is solved and evaluated three times (to feasibility and with regard to both objectives).

Aggregated results of our simulation study are visualized in Figs.  8, 9 and 10. 
Specifically, Figs. 8 and 9 display the results for exclusively external and internal 

Fig. 8  Comparison of solution robustness in case of external delays
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Fig. 9  Comparison of solution robustness in case of internal delays

Fig. 10  Comparison of solution robustness in case of internal and external delays



1016 G. Tadumadze et al.

1 3

disturbances, respectively, while Fig. 10 shows the results when both kinds of distur‑
bances occur simultaneously.

Compared with non‑robust solutions, applying the right robustness measure, i.e, the 
max–min objective, allows to protect against disturbances, and the lateness can be almost 
completely avoided (see slightly rising slopes of all three performance measures using 
the max–min objective). The optimal schedules with regard to our max‑

∑
 objective do 

not deliver results as good as those optimized using the max–min objective. This is due 
to objective max‑

∑
 generally favoring solutions where high‑priority jobs (i.e., those with 

large weight wj ) receive generous buffers, while some or many other transport jobs have 
(almost) no buffer. Since any delay of a single job—even if it is a low‑priority job—can 
lead to cascades of further delays of successive jobs, it is helpful to protect all jobs with 
buffer time, which is what the max–min objective promotes.

In general, the rising curves in all figures indicate that the robustness of initial sched‑
ules gets worse when the expected delay duration increases. Furthermore, the steeper 
slopes of the curves in scenarios with higher delay probabilities show deteriorating ini‑
tial schedules when delays occur more frequently. Improvements of the robust schedules, 
i.e., optimized with regard to the max–min objective, compared with non‑robust sched‑
ules are more remarkable for the scenario when both kinds of disturbances occur rather 
than when either exclusively internal or external delays are simulated. This can be seen 
in the steeper slopes of the curves in Fig. 10 than the slopes from Figs. 8 and 9. Note that 
the different graphics apply varying scaling factors and bounds on the y‑axis.  

Spotter schedules optimized with regard to the max−min objective can effectively 
protect the terminal from dramatic cascades of delays. Even for the most extreme 
scenario, i.e., when both kinds of disturbances occur with the largest probability and 
the longest delay duration ( p(h+) = p(a+) = 0.2 , and max(h+) = max(a+) = 60 ), the 
average weighted lateness is still reasonable when spotter schedules are optimized 
according to the max–min objective: AWL ≤ 44 . Thus, in spite of the disturbances, 
external trucks can be processed almost always on time as planned ( TRL ≤ 15 
min) and our bottleneck resource, the dock doors, do not suffer considerably from 
delayed jobs ( DRL ≤ 63 min). Non‑robust random solutions, however, lead to con‑
siderable delays. For the same scenarios, our lateness measures exceed AWL ≥ 277 , 
TRL ≥ 81 , and DRL ≥ 376 . In other words, the average waiting time of trucks can 
be reduced by about 80% (from more than 81 min to less than 15 min) and the aver‑
age waiting time of a dock door can be reduced by more than 83% (from more than 
376 min to less than 63 min) if instead of non‑robust schedules a suited robustness 
measure (i.e., the max–min objective) is applied.

Moreover, we explore the impact of the spotter fleet size m on robustness. In 
particular, we observe the average values of our three performance measures when 
executing the spotter schedules derived for the original instances P on the disturbed 
instances P′ with different fleet sizes. The aggregate results are displayed in Fig. 11. 
We would expect additional spotters to make it easier to increase buffer times since 
there is more flexibility to shift jobs among the vehicles. And indeed, this is what 
the results indicate. The decreasing curves of all three charts show an improve‑
ment of solution quality (i.e., less lateness) when the spotter fleet size grows. Note 
that this observation is clearly visible for the robust schedules (i.e., max−min and 
max−

∑
 ), while the spotter fleet sizes seem to have less impact on non‑robust (i.e., 
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random) schedules. These results can be helpful from a managerial viewpoint at the 
tactical planning level when deciding on the fleet size. For larger trailer yards, which 
require a greater spotter fleet anyway, the additional flexibility of swapping jobs 
among spotters enables sufficient protection against disturbances (when planning 
with the right robustness objective). For smaller yards and smaller spotter fleets, the 
pooling effect is much smaller, so that additional stand‑by spotters should be pro‑
cured to support the permanent fleet during peak‑hours.

To get a better idea of how objectives max−
∑

 and max−min are interrelated, we 
maximize the weighted sum of buffer times for a given aspiration level of Fmin . Spe‑
cifically, we first forbid all solutions with an Fmin value of less than the given aspira‑
tion level, deleting the matching edges from the corresponding graph as described in 
Sect. 3.2. Then, we solve the RSSP instance with regard to our max−

∑
 objective.

To illustrate this approach, we solve a random RSSP instance with n = 500 
jobs, m = 150 spotters, and D = 50 dock doors. The aspiration level Fmin is itera‑
tively increased from 0 by 10, until it reaches the point where the RSSP instance 
cannot be solved to feasibility. Further, we simulate internal and external distur‑
bances with our simulation model using the parameters p(h+) = p(a+) = 0.2 , and 
max(h+) = max(a+) = 60 and evaluate robustness by measuring AWL, DRL, and TRL.

Figure 12 visualizes the Pareto frontier for the RSSP instance (i.e., optimal objec‑
tive values Fsum for given aspiration levels Fmin ) and the robustness measures of 
each Pareto optimal solution. As expected, Fsum and Fmin are inversely correlated: 
the higher Fmin , the lower Fsum because a high minimum buffer constrains the fea‑
sible search space among which to pick the best Fsum solution. However, although a 

Fig. 11  Impact of spotter fleet size on solution quality

Fig. 12  Simulation results using max−
∑

 objective with given aspiration level for Fmin
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higher value of Fmin leads to lower (i.e., worse) Fsum values, it promises better scores 
on each of three performance measures AWL, TRL, and DRL. These results support 
the previous findings that our max−min objective yields spotter schedules that are 
more robust than those of the max−

∑
 objective.

5  Conclusion and future research

This paper aims to reduce turmoil in large trailer yards resulting in considerable 
waiting times for the trucks up to several hours in many real‑world applications (for 
examples see Sect. 1). Existing solution approaches primarily address the demand 
side and aim to spread out truck arrivals over the day, e.g., by applying internet 
booking platforms. We, however, show that robust internal schedules can success‑
fully avoid that unforeseen delays propagate among successive jobs and consider‑
able waiting times accumulate. We specifically address the assignment of transport 
jobs (i.e., semitrailers to be moved between the trailer yard and the dock doors of a 
terminal) to a fleet of spotters. By introducing time buffers among successive jobs 
assigned the same vehicle, our computational study shows that waiting times of 
trucks and idle times at the dock doors of the terminal can be reduced considerably. 
Within a simulation study, especially the max–min objective, which maximizes the 
minimum time buffer among all successive job pairs, is shown to successfully pro‑
tect schedules against unforeseen delays. We present a solution procedure for the 
resulting robust optimization problem that is solvable in polynomial time so that 
even for very large trailer yards and long planning horizons optimal solutions can be 
obtained quickly.

Our robust solution approaches are not bound to spotter scheduling in trailer 
yards, so that future research should evaluate other applications of our robust inter‑
val scheduling. A systematic benchmark study including multiple applications 
and alternative robustness measures would be a valid contribution to further pro‑
mote the integration of time buffers to protect against uncertainty in a simple and 
straightforward manner. Thanks to the short computational times of the proposed 
algorithms, they can also be applied in a dynamic environment where unforeseen 
events require a repeated (re‑)planning on rolling horizons. The only adaption of our 
solution approaches for such an application is that some spotters are still blocked 
at the beginning of the current planning horizon by jobs not yet completed. While 
the algorithmic adaption is truly straightforward, future research should evaluate 
our solution approaches when planning on rolling horizons. Further computational 
tests should also compare the proposed approaches with online scheduling, stochas‑
tic optimization, and alternative robust optimization techniques. Another impor‑
tant future research task may integrate spotter scheduling with truck scheduling in 
a holistic approach since these two problems are clearly heavily interdependent. 
Recall that the proposed algorithms solve the spotter scheduling problem in polyno‑
mial time and may thus be part of a decomposition scheme.

Acknowledgements Open Access funding provided by Projekt DEAL.



1019

1 3

Robust spotter scheduling in trailer yards  

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com‑
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

Appendix: Distance calculations in the trailer yard

This appendix provides a more detailed explanation of how the distances in the yard 
within our test instances are calculated. It, thus, complements Sect. 4.1.

Table 5  Input (safety) 
parameters for trailer yard

Parameter Values

Foot (’)/inch (”) Meter

Trailer length (with tractor) 53’ 16.1544
Trailer width 96” 2.4384
Trailer center distance (docked) 12’ 3.6576
Trailer center distance (parked) 12’ 3.6576
One‑way access road width 13’ 3.9624
Two‑way access road width 26’ 7.9248
Apron space docked trailer 159’ 48.4632
Apron space parked trailer 88’ 26.8224
Distance parking‑terminal 328.084’ 100

Fig. 13  Yard layout with safety parameters and distance calculations

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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When calculating distances, we take into consideration dock and yard safety dis‑
tances, apron spaces between docked and parked trailers, minimum road widths, and 
parking angles as defined by the widespread dock planning standards elaborated in 
Nova Technology (2013). Table 5 summarizes the values of the applied safety dis‑
tances in the yard, which are visualized for an example layout in Fig. 13. We derive 
the shortest distances between any pairs of positions in the trailer yard as the sum 
of total horizontal and vertical distances including the (un‑)parking buffers. Fig‑
ure 13 includes some example distance calculations between four selected positions 
�, �, � , � ∈ {D ∪ Π}.
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