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Abstract
In oligopoly models with differentiated products, producers face a market demand 
function that reflects the preferences of consumers. However, typical assumptions 
on preferences place only weak restrictions on the shape of aggregate demand. This 
may result in profit functions that are not strictly quasiconcave, in best-reply corre-
spondences that are not differentiable, and in equilibria that are not robust to pertur-
bations. This paper establishes differentiability and robustness as a generic property: 
for an open, dense set of economies, best replies are differentiable in a neighborhood 
of equilibria, which is a precondition for comparative statics. All these economies 
have a finite number of equilibria in pure strategies.

Keywords Comparative statics · Imperfect competition · Cournot–Walras 
equilibrium · Regular production economy

JEL Classification D43 · D50 · D51

1 Introduction

Comparative statics based on differential calculus is the predominant technique in 
the study of economic equilibria. It reveals how the outcome of economic activity 
responds to changes in exogenous variables, and generates testable predictions from 
economic theory. Yet, it hinges on two preconditions: differentiability and robust-
ness of equilibria. An equilibrium is considered robust if it does not disappear nor 
multiply after a small change in parameters. In exchange economies neither of the 
two preconditions is too demanding: In a noted article, Debreu (1970) parameter-
ized economies by endowments and showed that equilibria are generically robust, 
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locally unique, and finite in number.1 As a consequence, each equilibrium changes 
continuously and determinately when parameters are varied, and these changes can 
be linearly approximated by first-order differentials.

The present paper asks whether these results can be extended to production econ-
omies in which producers compete in a differentiated product oligopoly. The param-
eters of a production economy are the characteristics of its population: Each con-
sumer is represented by an endowment vector and a utility function; each producer 
is represented by a production set and a profit function. While market demand is dif-
ferentiable under typical assumptions on consumer characteristics, there are no natu-
ral assumptions on producer characteristics that guarantee differentiable best replies. 
The crux of the problem is that the optimal strategy of each producer depends on the 
shape of the market demand function. As shown by Sonnenschein (1973), Mantel 
(1974), and Debreu (1974), consumers may generate market demand of almost any 
functional form—homogeneity and Walras’ law are the only restrictions.

The consequences are studied in the framework of Cournot–Walras equilibrium, 
originally introduced by Gabszewicz and Vial (1972). The focus is on two-date 
finance economies: There is a single input good today, production takes time, and 
the quantity of future output is uncertain and depends on the state of the world. All 
producers sell a claim to their output as an asset in the financial market. Assets are 
differentiated products since the state-dependent output varies across producers. 
Consumers behave as price-takers, producers choose quantities strategically, and 
prices are determined by market clearing.2

Typical assumptions on consumer characteristics are too weak to rule out set-
valued or discontinuous best replies: Set-valued best replies occur when producer 
payoff functions have flat segments. This case is illustrated in the left panel of Fig. 1. 
Three sections are shown, each one for a different production level of the other pro-
ducers. The resulting best-reply correspondence of the producer is depicted in the 
right panel. At level a , there is a unique profit maximum and the best-reply corre-
spondence is locally differentiable. However, as the other producers increase their 
output toward level b and beyond, the profit maximum degenerates and the best-
reply correspondence is no longer single-valued. If b were an equilibrium strategy, 
differentiability would fail at the equilibrium.

The problem in the preceding example is the lack of strict quasiconcavity. The 
emphasis is on strict: all sections are quasiconcave and even approach a concave 
function beyond level c , but at the same time the flat segment grows larger and 
larger. This problem shall be contrasted with an example that puts the emphasis 
on quasi: Even if all critical points are nondegenerate, lack of quasiconcavity may 
entail sections with multiple peaks. This issue is illustrated in Fig. 2. At a low output 

2 Cournot–Walras equilibrium is a sound concept in finance economies only. If there were multiple 
goods, the choice of price normalization would have real effects. Results by Böhm (1994) suggest that a 
large set of allocations can be attained in equilibrium by varying the normalization rule.

1 Debreu (1970) shows that these properties are generic in a measure-theoretic sense: They hold for all 
economies except a (closed) subset of Lebesgue measure zero. In the present paper, the space of econo-
mies is infinite-dimensional and genericity is understood in a topological sense: The properties hold for 
an open, dense set of economies.
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level of other producers, such as level a there is a unique maximum at the right peak. 
At a high output level of other producers, such as level c , the left peak is the higher 
one. By continuity, there must be an intermediate level, say b , at which the left peak 
surpasses the right one. At this level, there are two global maxima and the resulting 
best-reply correspondence exhibits a discontinuity. If b were an equilibrium strategy, 
robustness would fail at the equilibrium.

The earliest discussion of this issue goes back to Roberts and Sonnenschein 
(1977), who stress the implications for the existence of equilibrium in pure strate-
gies. By means of two examples the authors demonstrate that the model lacks an 

Fig. 1  Profit of producer k as a function of his production scale �k for different scales of other producers 
�
¬k (left panel). The flat segment results in a set-valued best-reply correspondence �k∗ (right panel)

Fig. 2  Profit of producer k as a function of his production scale �k for different scales of other producers 
�
¬k (left panel). At b there are two maxima and the best-reply correspondence �k∗ is discontinuous (right 

panel)
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equilibrium for certain parameter ranges.3 Sufficient conditions for equilibrium 
existence are the subject of more recent research: Shirai (2010) shows that if pref-
erences can be aggregated in the form of a representative consumer with a well-
behaved, additively separable utility function, equilibria exist generally. Another 
promising source of existence conditions is the recent literature on non-quasicon-
cave and discontinuous games, which is surveyed by Reny (2016).

The present paper concentrates on regularity: An equilibrium is regular if it is dif-
ferentiable and robust. If this were not the case, the model would only have limited 
predictive power. The following results are obtained: 

1. For an open, dense set of economies all equilibria are regular (Theorem 1).
2. Each economy has a finite number of isolated equilibria (Corollary 3).

Contrary to Debreu (1970), who takes C1 demand functions as the primitive objects, 
utility functions are used to represent the preferences of consumers. It is known 
that generic regularity of exchange economies can be obtained for C2 utility func-
tions that have well-behaved derivatives up to the second order and satisfy a bound-
ary condition. The assumptions necessary to obtain generic regularity in produc-
tion economies are only slightly stronger: Utility functions must be of class C3 but 
restrictions on third-order derivatives are not necessary.

Debreu’s original regularity result has motivated a large number of more or less 
substantial extensions in exchange economies. The closest one is that of Smale 
(1974a), who chooses to parameterize economies by utility functions instead of 
endowments. Utility functions are also used in the parameterization of Dierker 
(1975), who permits a continuum of consumers. Several variations of the economic 
environment have been considered: Incomplete markets are covered by Geanakop-
los and Polemarchakis (1986). Restrictions on portfolios and consumption are con-
sidered by Cass et al. (2001) and Bonnisseau and del Mercato (2008), respectively. 
Economies with a public good are the subject of Villanacci and Zenginobuz (2005). 
Nonstandard preferences are the focus of Bonnisseau (2003), who considers con-
sumers without ordered preferences, Biheng and Bonnisseau (2015), who consider 
ambiguity-averse consumers, and Bonnisseau and del Mercato (2010), who consider 
consumption externalities.

As regards production economies, most previous results are based on narrow con-
cepts of production. In Fuchs (1974), producers are represented by supply functions, 
which rules out natural cases such as constant returns to scale technologies. In Fuchs 
(1977), the setting is generalized to supply correspondences, but the assumptions are 
still too strong to permit constant returns to scale. By contrast, Mas-Colell (1975) 
and Kehoe (1980) focus exclusively on technologies with constant returns and the 
special case of linear activity models, respectively. An extension by Kehoe (1982) 
permits primary and intermediate goods. First hints of generic regularity with more 
general production sets are given in Smale (1974b). The necessary arguments for 

3 In particular, it is shown that the problem occurs under Bertrand and Cournot competition alike.
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a rigorous proof in general economies with price-taking firms are for the first time 
presented in Geanakoplos et al. (1990), and proofs of this kind are now part of text-
book treatments such as Chapter 9 in Villanacci et al. (2002).

A notable recent contribution is the regularity result of del Mercato and Platino 
(2017) for production economies with externalities. Conceptually, their equilibrium 
concept is different from Cournot–Walras equilibrium: All producers are price-tak-
ers and do not mind the shape of market demand. Therefore, set-valued or discon-
tinuous best replies, which are the focus of the present paper, do not occur. However, 
the two models share one technical aspect: The decision problems of all produc-
ers are interdependent, and the solution concept is Nash equilibrium in pure strate-
gies. In this case, perturbations of consumers’ endowments, as in Debreu (1970), are 
not sufficient to restore regularity. To overcome this difficulty, the authors put more 
structure on producers and introduce perturbations of the supply side of the econ-
omy. This additional structure is optional: The present paper shows that regularity 
can be obtained in two ways. One way is indeed to perturb producers through their 
cost functions. The other way is to perturb consumers through their utility functions.

The remainder of this paper is structured as follows: Sect. 2 introduces the model, 
its assumptions, and the concept of regular production economy. In Sect.  3, the 
main results are derived and discussed. In Sects. 4 and 5, these results are extended 
to economies with quasilinear utility and unbounded endowments. Section  6 
concludes.

2  Model

Consider a two-date finance economy with a finite number of consumers and a finite 
number of producers. Production takes time: The input is required at the present 
date (date 0); the output becomes available at the future date (date 1). The future 
is uncertain and the output quantity depends on the state of the world. At date 0, 
producers choose their production plans. Each producer sells a claim to his state-
dependent output in the form of a financial asset. Consumers trade these assets in the 
financial market. At date 1, all assets pay off.

The following notation is used throughout: If x is a vector in Euclidean space, 
x ≥ 0 means all components are nonnegative, x > 0 means at least one component 
is greater than zero, and x ≫ 0 means all components are greater than zero. Moreo-
ver, ‖x‖ denotes the Euclidean norm, x ⋅ y is the usual inner product, I is the identity 
matrix, and �r(x) is the open ball with radius r and center x . The topological bound-
ary of a set X is denoted by bdry(X) = cl(X)�X . By contrast, if X is a manifold, its 
manifold boundary is denoted by �X and its interior by int(X) = X��X . Prices and 
gradients are viewed as row vectors while all other variables are viewed as column 
vectors.

For a Cs function f ∶ X → Z between two Cs manifolds X, Z and n ≤ s , 
dnf [x] ∶

⨉n

m=1
TX[x] → TZ[z] denotes the nth order differential of f  at x ∈ X , which 

is the symmetric n-linear map that represents the collection of all nth order partial 
derivatives at x , and TX[x] is the tangent space to X at x . Since dnf [x] can be rep-
resented in (dim(X)ndim(Z))-dimensional Euclidean space, the norm ‖dnf [x]‖ is 
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well-defined. In the case of n = 1 , the notation is simplified to df [x] , and the dif-
ferential can be represented in local coordinates by the Jacobian matrix Df [x] . In the 
case of Z = ℝ , d2f [x] is a symmetric bilinear form, and its local representation is the 
Hessian matrix D2f [x] . Brackets may be omitted whenever the point of evaluation is 
clear from the context.

2.1  Commodities, uncertainty, and markets

There is a single input good at date 0, which serves as the numéraire. The uncer-
tainty at date 1 is represented by a finite state space � . There is one output good for 
each state of the world. The financial market opens only at date 0: K ≥ 2 assets are 
traded at prices p ∈ ℝ

K . Their state-dependent payoffs at date 1 are collected in an 
|�| × K payoff matrix A . It is assumed that K ≤ |�| ; thus, all results hold both for 
complete and for incomplete markets. There are no short-sale constraints.

2.2  Consumers

There are I ≥ 1 consumers, indexed by superscripts i ∈ {1,… , I} . All consumers 
have identical consumption sets Ci = ℝ

|�|+1
+

 . The consumption preferences of con-
sumer i are represented by a utility function Ui

∶ Ci → ℝ . The endowment of the 
consumer is ei ∈ Ci . Whenever consumer-specific variables are joined in a single 
vector, the superscript is omitted; e.g., e = (e1,… , eI) . Whenever consumer-specific 
variables are aggregated, a bar is put on top; e.g., ē =

∑I

i=1
ei . Consumers behave 

as price-takers: Each consumer i chooses a consumption plan ci ∈ Ci and a portfo-
lio � i

∈ ℝ
K from his budget correspondence Bi

∶ ℝ
|�|×K

×ℝ
K
⇉ Ci ×ℝ

K , which is 
defined as

The asset demand correspondence � i∗
∶ ℝ

|�|×K
×ℝ

K
⇉ ℝ

K maps tuples (A, p) of 
payoffs and prices to solutions of the utility maximization problem

Demand of all consumers is joined in the correspondence � ∗
= (�

1∗,… ,� I∗
).

2.3  Producers

There are K ≥ 2 producers, indexed by superscripts k ∈ {1,… ,K} . The production 
set of each producer k is decomposed into a choice set Ak

⊂ ℝ
|�|
+

 , which contains all 
feasible output vectors, and a cost function �k

∶ A → ℝ
+
 , in which A =

⨉K

k=1
Ak . 

Producers do not consume at date 1 and their only concern is present profits. Each 
producer k sells the entire output as an asset with payoffs Ak

∈ Ak . The production 

(1)Bi
(A, p) =

{
(ci,� i

) ∈ Ci ×ℝ
K
|||||
ci ≤ ei +

(
−p

A

)
⋅ �

i

}
.

(2)max
ci,� i

Ui
(ci) subject to (ci,� i

) ∈ Bi
(A, p).
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preferences of producer k are represented by a profit function �k
∶ A ×ℝ

K
+
→ ℝ , 

defined as revenue minus costs:

Producers behave strategically: They choose their plans conditional on an inverse 
demand function p∗ ∶ A → ℝ

K . The payoff function of producer k can be written as

and depends on strategy combinations A = (A
k,A¬k

) . In this tuple, Ak represents his 
own choice, whereas the collection A¬k represents the choices of the other K − 1 
producers. The best-reply correspondence Ak∗

∶ A ⇉ Ak of producer k associates 
with each candidate strategy combination A# ∈ A the solution set to his profit maxi-
mization problem

2.4  Economies

The economy is defined by the characteristics of its consumers and producers. Con-
sumers are described by their utility functions and endowments, which satisfy the 
following assumptions.

Assumption 1 (Preferences) For each consumer i and ci ∈ Ci , 

1. Ui is continuous and of class C3 on ℝ|�|+1
++

2. dUi
[ci](v) ≫ 0 ∀v > 0

3. d2Ui
[ci](v, v) < 0 ∀v ≠ 0

4. dUi
[ci](I

�
) → ∞ as ci

�
→ 0 for any � ∈ � ∪ {0}.

Assumption 2 (Endowments) Endowments satisfy e ≫ 0 and they are contained 
in an open, bounded set � ⊂ C.

The points of Assumption  1 guarantee that indifference sets are hypersurfaces 
with convex upper countours that do not intersect the boundary of Ci (in exactly that 
order). Since endowments are strictly positive under Assumption  2, such prefer-
ences result in a unique, interior solution to the utility maximization problem (2). 
The boundedness assumption ensures that the space of economies can be modeled 
as Banach manifold and should not be viewed as restrictive since � may be a large 
set.4 Producers are described by their choice sets and cost functions, which satisfy 
the following assumptions.

(3)�
k
(A, p) = pk − �

k
(A).

(4)�
k∗
(A) = �

k
(A, p∗(A)),

(5)max
A
k
�

k∗
(A

k,A¬k
#
) subject to A

k
∈ Ak.

4 For modeling economies as elements of a mere topological space, boundedness is not necessary. This 
case is discussed in Sect. 5.



348 M. Zierhut 

1 3

Assumption 3 (Production possibilities) For each producer k,

in which Yk
≫ 0 and rank(Y) = K.

Assumption 4 (Production costs) For each producer k and v > 0 , 

1. �
k is continuous and of class C2 on ℝ|�|×K

++

2. �
k
(0) = 0

3. d
A
¬k�

k
[A](v) = 0 ∀A ≥ 0

4. d
A
k𝜅

k
[A

k,A¬k
](v) > 0 ∀A

k
> 0

5. d
A
k�

k
[A

k,A¬k
](v) → 0 as Ak

→ 0.

Under Assumption  3, the mapping Y(�) =
(
�
1Y

1,… , �KYK
)
 from production 

scales to output combinations is homogeneous of degree 1, each set Ak is a ray in 
ℝ

|�|
+

 , and all k rays are linearly independent. Such production technologies, origi-
nally introduced by Diamond (1967), guarantee that the dimension of the asset span 
does not change as long as no producer is inactive. This corresponds to Cournot 
competition in its purest form, in which producers choose a single output quantity. 
Since output is positive in all states of the world, share prices must be positive under 
Assumption 1.

In addition to differentiability, Assumption 4 incorporates four properties of cost 
functions: First, there are no fixed costs of production. Second, costs are independ-
ent of the production choices of other producers. This is a natural property in the 
present setting with a single input good. By contrast, if there were multiple input 
goods, their relative prices should be affected by the choices of producers. Third, 
costs are strictly increasing in production scales. As a consequence, profits are 
bounded from above, and the optimal production scale of any producer k is finite. 
Fourth, costs are not prohibitively high. At least for small scales, profits are posi-
tive, such that no producer is squeezed out of the market. Like the last condition of 
Assumption 1 guarantees an interior optimum for consumers, the last condition of 
Assumption 4 guarantees an interior optimum for producers.

The space of economies is defined as follows: Denote by � the convex cone of 
functions in C3

(Ci,ℝ) that satisfy Assumption 1. In order to equip this space with a 
topology, consider the semimetric

in which X ⊂ C is a compact set, yet to be specified. Note that �
�
 controls the dis-

tance of utility functions up to the third derivative. It defines equivalence classes 
of utility functions that ceteris paribus result in the same equilibria and the same 
comparative statics: Regardless of how small X  is, 𝛿

�
( ̃Ui,Ui

) = 0 implies identical 
levels and slopes of the consumer’s demand (first and second derivative) as well as 
identical levels and slopes of producers’ best replies (second and third derivative). 

Ak
=

{
�
k
Y
k ||| �

k
∈ ℝ

+

}
,

(6)𝛿
�
( ̃Ui,Ui

) = max
c∈X

� ̃Ui
(ci) − Ui

(ci)� +
3�

n=1

max
c∈X

‖dn ̃Ui
[ci] − dnUi

[ci]‖,
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For completeness it should be noted that the converse is not true: Demand is invari-
ant to positive affine transformation of utility functions, but �

�
(a + bUi,Ui

) ≠ 0 if 
a ≠ 0 or b > 1.

Assumptions 1 through 4 ensure that optimal consumption and production plans 
do not approach infinity. Therefore, the economically relevant range of consumption 
plans is contained in some open, bounded set. Define X  as its closure. In the usual 
notation, let Xi be the projection of X  onto Ci . Since there is no need to distinguish 
elements of C3

(Ci,ℝ) that differ only outside Xi , the cone � is treated as a subset of 
C3

(Xi,ℝ) , which is but the quotient space under �
�
 . On this space, �

�
 becomes a 

metric which induces the C3 compact-open topology. The family of Cs compact-open 
topologies is treated in detail in Hirsch (1994), Chapter 2. The present paper makes 
use of the following property: By compactness of X  , it is equivalent to the (strong) 
C3 Whitney topology and the resulting space is a Banach space. As an open sub-
set of this space, � is a smooth Banach manifold. The product space �I

=

⨉I

i=1
� , 

equipped with the metric ̄𝛿
�
( ̃U,U) = maxi 𝛿�(

̃Ui,Ui
) , is again a Banach manifold.

The space of cost functions is constructed in a similar fashion. Let Y ⊂ A be 
a compact set that contains all affordable production plans. Consider the space 
C2

(Y,ℝ) , equipped with the metric

which induces the C2 compact-open topology. Denote by � the convex cone of all 
functions that satisfy Assumption  4. It is open in the subspace � − � under the 
induced topology. By compactness of Y and by the same arguments as above, the 
product space �K

=

⨉K

k=1
� , equipped with the metric ̄𝛿

�
(�̃�, 𝜅) = maxk 𝛿�(�̃�

k, 𝜅k
) , 

is a smooth Banach manifold. Under Assumption  3, each set A corresponds to 
one point on a submanifold of the smooth manifold of |�| × K matrices with full 
rank. Let � be the space of all sets as in Assumption 3 equipped with the topology 
induced by A ↦ Y.

Definition 1 An economy is a tuple (U, e,A, �) ∈ �
I
× � × � × �

K such that 
Assumptions 1, 2, 3, and 4 are satisfied.

Note that the space of economies is a product of smooth Banach manifolds and 
thus a smooth Banach manifold itself. It is implicitly understood that all endog-
enous objects depend on the economy, and in the interest of a compact notation, 
economies are omitted as arguments; for example, � ∗

(A, p) is written instead of 
�

∗
(A, p,U, e,A, �).

2.5  Cournot–Walras equilibrium

The economy is in equilibrium if all consumers choose portfolios and consumption 
optimally, all producers play best replies, and prices are such that markets clear. For 
arbitrary choices of A ≫ 0 , Assumption  3 ensures that no asset is redundant and 

(7)𝛿
�
(�̃�

k, 𝜅k
) = max

A∈Y
��̃�k

(A
k
) − 𝜅

k
(A

k
)� +

2�
n=1

max
A∈Y

‖dn�̃�k
[A

k
] − dn𝜅k

[A
k
]‖,



350 M. Zierhut 

1 3

rank(A) = K . Due to constant rank, Assumptions 1 and 2 guarantee that the demand 
correspondence � i∗ is single-valued, and that it can be represented by a C2 function 
�

i∗ . Define the C2 function

then, ci∗(A, p) and � i∗
(A, p) solve the utility maximization problem (2). The supply 

of all assets is normalized to one, such that a price vector p clears the market when-
ever it solves

In this case, one speaks of a Walrasian exchange equilibrium. Under the above 
assumptions, exchange equilibria exist for any choice of A (see Magill and Quinzii 
1996, p. 87, Theorem 10.5), but they need not be unique. The exchange equilibrium 
manifold is the set 𝛩 = (�̄�

∗
)
−1
(�) that consists of all tuples (A, p) of asset payoffs 

and corresponding Walrasian equilibrium prices.5 The inverse demand function p∗ 
is a selection from the exchange equilibrium manifold. In general, such a selection 
need not be continuous. The equilibrium concept is based on an exogenous choice of 
selection from the set

The regularity condition for local maxima is not too restrictive: The set P∗ is generi-
cally nonempty (see Appendix, Proposition 3). In particular, P∗ is a singleton if there 
exists a unique exchange equilibrium for all strategy combinations. This is the case 
studied by Gabszewicz and Vial (1972), and it can be ensured by imposing fur-
ther restrictions on �I

× � . Otherwise, P∗ permits a large variety of selections. One 
example is the selection introduced by Roberts (1980), which picks the exchange 
equilibrium closest to a reference point. This selection naturally leads to the equilib-
rium concept of Bonanno (1988), in which firms have only local knowledge of the 
market demand function. The following definition of equilibrium is more general, 
and permits the full variety of price selections.

Definition 2 A Cournot–Walras equilibrium for economy (U, e,A, �) and price 
selection p∗ ∈ P∗ is a tuple (A, p, c,�) such that A = A∗

(A) , p = p∗(A) , c = c∗(A, p) , 
� ∈ �

∗
(A, p) , and �̄� = �.

Several aspects of Definition 2 are worth noting: Since p∗ is exogenous, the solution 
concept of the Cournot game boils down to Nash equilibrium in pure strategies. This 
is in contrast to solution concepts with endogenous selections, in the spirit of Simon 

ci∗(A, p) = ei +

(
−p

A

)
⋅ �

i∗
(A, p) ;

(8)�̄�
∗
(A, p) = �.

P∗
=

{
p∗ ∶ A → ℝ

K
|||| (A, p

∗
(A)) ∈ � ∧

p∗ is C2 in a neighborhood

of local maxima of (5)

}
.

5 Under Assumptions 1 and 2, � is indeed a C2 manifold for A ≫ 0 ; see Balasko (2009), p. 28, Proposi-
tion 2.4.1.
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and Zame (1990). In particular, p∗ is deterministic, which is in contrast to the solution 
concept of Allen (1994), in which exchange equilibria are picked at random. A random 
selection can be constructed provided that the number of critical exchange equilibria is 
finite, and this is generically the case, as shown by Mas-Colell and Nachbar (1991). An 
exchange equilibrium is called critical if it is a critical point of the projection prA of � 
onto A . The opposite of critical equilibria are regular equilibria.

2.6  Regularity

An equilibrium is called regular if it is differentiable and robust. While differentiability 
of prices, consumption, and portfolios is implicitly guaranteed by the above assump-
tions, differentiability of best replies appears explicitly in the following definition.

Definition 3 A Cournot–Walras equilibrium is regular if 

1. dp�̄�
∗
[A, p] is surjective

2. A∗ is continuously differentiable at A
3. dA∗

[A] − idA is surjective.

An economy is regular if all its Cournot–Walras equilibria are regular. Consider the 
properties of regular production economies implied by Definition 3: The first condition 
ensures, via the implicit function theorem, that the induced exchange economy is regu-
lar in the sense of Debreu (1970). The second and third conditions rule out malforma-
tions as in Figs. 1 and 2,  respectively.

2.7  Reduced‑form equilibrium

Strategy combinations A are defined as matrices in ℝ|�|×K . However, under Assump-
tion 3, such production plans are completely summarized by the vector � ∈ ℝ

K
+
 of pro-

duction scales. It is analytically convenient to view payoffs �∗ as a function of � rather 
than as a function of A : Since � is a vector, the derivative d�∗

[�] can be represented 
by the Jacobian matrix D�∗

[�] . Let T  be the preimage of Y under the bijective, linear 
mapping Y ; then, the reduced-form profit maximization problem

gives rise to a best-reply correspondence �k∗(�) that is equivalent to Ak∗
(A) in the 

sense that Y(�∗(�)) = A∗
(Y(�)) . Therefore, a fixed point of �∗ can always be trans-

lated into a fixed point of A∗ and vice versa. Suppose A is replaced with � as an argu-
ment of p∗(�) , c∗(�, p) , and �∗

(�, p) ; then, equilibrium can be redefined as follows:

Definition 4 A reduced-form equilibrium for economy (U, e,A, �) and price selec-
tion p∗ ∈ P∗ is a tuple (�, p, c,�) such that � = �

∗
(�) , p = p∗(�) , c = c∗(�, p) , and 

� = �
∗
(�, p).

(9)max
�
k
�

k∗
(�

k, �¬k) subject to � ∈ Tk
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Following Definition 3, a reduced-form equilibrium is called regular if the Jaco-
bian Dp�̄�

∗
[𝜏, p] has full rank, �∗ is continuously differentiable at � , and the Jacobian 

D�∗[�] − I has full rank. By construction, all reduced-form equilibria of an econ-
omy are regular if and only if all Cournot–Walras equilibria are regular. Therefore, 
to verify generic regularity of economies, it is sufficient to study reduced-form equi-
libria. This strategy is pursued in the following analysis. Payoffs �∗

(�) and thus its 
components �(�) and �(�, p) are viewed as having � as an argument. This has the 
advantage of shorter and more transparent proofs.

3  Results

In order to establish generic regularity, it must be shown that two particular man-
ifolds are generically well-behaved. The first condition of Definition  3 is a prop-
erty of the exchange equilibrium manifold � . This manifold can be embedded in 
ℝ

2K : each point can be described by a tuple (�, p) . The remaining two conditions of 
Definition 3 are properties of a different manifold, the profit manifold � , which is 
defined as the image of � under the C2 function h ∶ � → �,

This function is a homeomorphism: by Eq. (3), its derivative is everywhere repre-
sented by a Jacobian of the form

As a consequence, h has no critical points and there exists a C2 inverse. Since p∗ is 
a selection from � , it follows from Eq. (4) that �∗ is a selection from � . Perturba-
tion of the economy change the shape of � and can be used to control the shape of 
�

∗ . It can be shown that graph(�∗
) is a manifold with boundary with charts inher-

ited from � . The boundary can be disregarded because it contains no local profit 
maxima; otherwise, p∗ would not be a member of P∗ . The focus is therefore on the 
boundaryless manifold int(graph(�∗

)) , which has a well-behaved atlas. This atlas 
consists of charts that map open subsets On of the manifold to open balls around 
some strategy combination � ∈ T  in Euclidean space. If � ∈ �

∗
(�) , it is referred to 

as an equilibrium strategy combination, and in that case (�,�∗
(�)) is an equilibrium 

point on � . The atlas is constructed as follows.

Lemma 1 For any scalar s > 0 , there are a finite sequence {�n}Nn=1 and N charts 
�
−1

∶ On → �r(�n) with the following properties: 

1. 0 < q < r < s

2. any two members of {�q(�n)}
N
n=1

 are disjoint
3. there is some M < N  such that all of {�m}Mm=1 are equilibrium points
4. there are no equilibrium points outside {�r(�m)}

M
m=1

5. {�
−1
n
}
N
n=1

 is a C2 atlas of int(graph(�∗
)).

(10)h(�, p) = (�,�(�, p)).

(11)Dh[�, p] =

(
I 0

−D�[�] I

)
.
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Proof Consider the set T∗ = {� ∈ T | � ∈ �
∗
(�)} of equilibrium points. Since q can 

be chosen arbitrarily small, any finite sequence {�m}Mm=1 in T∗ has the property that 
�q(��) ∩ �q(�m) is empty ∀� ≠ m for some q > 0 . Since T  is bounded, cl(T∗) is com-
pact, and there is a finite number M such that {�r(�m)}

M
m=1

 is a cover of T∗ for any 
choice of r such that q < r < s . Now consider the set T∗∗ = {� ∈ T |�∗ is C2 at �} 
and the sequence {�n}Nn=M+1

 in T∗∗�T∗ having the property that �q(��) ∩ �q(�n) is 
empty ∀� ≠ n and �q(�m) ∩ �q(�n) is empty ∀(m, n) . Since cl(T∗ ∩ T∗∗) is compact, 
there is a finite number N such that {�r(�m)}

N
m=1

 is a cover. This collection of open 
balls satisfies properties 1 through 4.

To construct an atlas, choose r sufficiently small such that the injective function 
� ↦ (�,�∗

(�)) is C2 on �r(�n) for any �n in the sequence. Identify On with the image 
of �r(�n) under this function. Then, the function �n ∶ �r(�n) → On defined as

is a C2 homeomorphism. It serves as a local parameterization of int(graph(�∗
)) . The 

collection of all inverses {�−1
n
}
N
n=1

 is the desired atlas, which is of class C2 because 
all charts are.   ◻

Note that the atlas from Lemma  1 varies continuously in an open neighbor-
hood of the reference economy: Since the space of economies is a smooth Banach 
manifold, the transversality isotopy theorem (see Abraham 1967,  p. 51, Theo-
rem 20.2) implies that each nearby economy has an atlas with charts 𝜒−1

n
 isotopic 

to �−1
n

 . It can be shown that each chart can be controlled independently: It is pos-
sible to perturb the reference economy in such a way that the shape of a single 
chart changes, while all other charts remain the same. These perturbations are so 
small that the perturbed economy lies in a neighborhood of the reference econ-
omy. The following propositions go one step further: For any reference economy, 
regular or not, there is a perturbation that modifies multiple charts simultaneously 
in such a way that the perturbed economy is regular.

There are two candidates for perturbations: the producer side and the consumer 
side of the economy. On the producer side, consider local perturbations of cost 
functions � . Such perturbations leave � as it is, but modify locally the homeo-
morphism h by Eqs. (3) and (10). On the consumer side, consider local perturba-
tions of utility functions U . Such perturbations have no effect on h , but transform 
the exchange equilibrium manifold � . The purpose of the following two proposi-
tions is to show that both types of perturbations of the economy translate into the 
desired perturbations of the atlas. The producer side is a natural starting point as 
it lends itself to a simple proof. It is therefore well-suited for the exposition of the 
perturbation technique employed.

Proposition 1 For any fixed (U, e,A, �) there is a set of perturbed cost functions 
̃�
K
(𝜅) and an open, dense subset ̃�K

∗
⊆

̃�
K
(𝜅) such that (U, e,A, �̃�) is a regular 

economy for any �̃� ∈ ̃�
K
∗

.

(12)�n(�) = (�,�∗
(�))
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The Proof of Proposition  1 follows a simple logic: It defines a subset 
Z ⊂ �

I
× � ×� × �

K that consists of (U, e,A, �) and all profit-perturbed econo-
mies, and it constructs a function f ∶ Z → C1

�⨉N

n=1
𝔹r(�n),ℝ

NK
�
 that generates 

for each economy a C1 test function. This test function is designed in such a way 
that z ∈ Z is a regular economy if f (z) is transverse to zero, written f (z) ⋔ {0} . 
By means of the parametric transversality theorem, it is shown that an open, 
dense subset of Z is indeed regular.

Proof For the reference economy (U, e,A, �) , consider an atlas as in Lemma  1. 
Choose s small enough such that each ball �r(�m) does not contain multiple nonde-
generate critical points of �k∗, k = 1,… ,K . Subscripts m and n are normally inter-
changeable. Only when both appear in the same expression, m is used for charts 
that cover an equilibrium point while n is used for other charts. From each chart 
�
−1
m

 one can derive a function �m ∶ 𝔹r(�m) → ℝ
K that is defined as follows: For 

each producer k , let �k
m
(�

k
) = �

k∗
(�

k, �¬k
m
) and join these component functions as 

𝛱m(𝜏) = (𝛱
1
m
(𝜏

1, 𝜏¬1
m
),… ,𝛱K

m
(𝜏

K , 𝜏¬K
m

))
⊤ . By construction, D�m shares its main 

diagonal with D�∗:

This derived function can be used to check whether the reference economy fulfills 
all three conditions of Definition 3. Note that Condition 1 is fulfilled at any reduced-
form equilibrium. Suppose not; then p∗ would not be differentiable at � , but then 
it could not be a member of P∗ , which contradicts Definition  4. It remains to be 
checked whether Conditions 2 and 3 are also satisfied. For an equilibrium strat-
egy combination �m , the following three conditions are jointly sufficient: 1) all best 
replies to �m are contained in �r(�m) ; 2) �m is a nondegenerate critical point for all 
payoff functions; 3) �∗ intersects �m transversally. To express all three conditions in 
the language of transversality, three claims are made.

Claim 1 If (xm, xn) ↦ �m(xm) −�n(xn) ⋔ {0} for any m = 1,… ,M and 
n = M + 1,… ,N , then 𝜏∗(𝜏m) ⊆ �r(𝜏m) for any m = 1,… ,M . To see this, note that 
by Lemma  1, �m is an equilibrium strategy combination, and thus, a profit maxi-
mum for all producers. The set inclusion can only be violated if some producer has 
another profit maximum outside �r(�m) ; that is to say, there is some strategy combi-
nation xn ∈ �r(�n) with �m(�m) = �n(xn) . But in that case, the first-order condition 
of the profit maximization problem (5) would imply that D�m[�m] = D�n[xn] = 0 . 
As a consequence, d�m[�m] + d�n[xn] would not be surjective, which would con-
tradict the transversality condition. Therefore, all best replies must be contained in 
�r(�m).

Claim 2 If 𝜏∗(𝜏m) ⊆ �r(𝜏m) and � ⋅ D�m ⋔ {0} , then �∗ is C1 on �r(�m) . To see this, 
note that

D�m =

⎛⎜⎜⎝

D
�
1�

1∗ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ D
�
K�

K∗

⎞⎟⎟⎠
.
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This matrix is surjective at �m if and only if the above transversality condition holds. 
It can only be surjective if D2

�
k
�

k∗
[�m] ≠ 0 ∀k . It follows from the implicit func-

tion theorem applied to D
�
k�

k∗
[�

k, �¬k] = 0 that �k∗ is C1 on an open set. Lemma 1 
ensures that this open set contains �r(�m) for a sufficiently small choice of s.

Claim 3 If the matrix in (13) has full rank (and thus �∗ is locally of class C1 ) and 
(D

�
1�

1∗,… ,D
�
K�

K∗
) ⋔ {0} , then D�∗[�m] − I has full rank. To see this, note that 

by the chain rule

in which the division is well-defined since the diagonal elements in (13) are nonzero. 
Note that D(D

�
1�

1∗,… ,D
�
K�

K∗
) has exactly the same main diagonal. By the 

above transversality condition, the matrix has full rank, and this rank is preserved 
if each row is divided by minus the diagonal element. After this normalization each 
row has a form like

and thus the matrix is equal to D�∗[�m] − I.

Now consider the subset of economies Z = {U} × {e} × {A} × ̃�
K
(𝜅) , in which 

̃�
K
(𝜅) is the space of parameterized cost functions �̃� ∶ ℝ

K
× Z → ℝ

K of the form

in which � ∶ ℝ → [0, 1] is a smooth function defined as

in which q and r are the radii of the open balls from Lemma 1. By Eqs. (3) and (4), a 
parameterized payoff function ̃𝛱∗

∶ T × Z → ℝ
K is induced:

(13)D(� ⋅ D�m) =

⎛
⎜⎜⎝

D2

�
1
�

1∗ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ D2
�
K
�

K∗

⎞
⎟⎟⎠
.

D�1∗ =

(
0,−

D
�
¬1�

1∗

D2

�
1
�

1∗

)
,

D(D
�
1�

1∗
) =

(
−1,−

D
�
¬1�

1∗

D2

�
1
�

1∗

)
,

(14)�̃�
k
(𝜏, z) = 𝜅

k
(𝜏) +

N�
m=1

𝜌

�‖𝜏 − 𝜏m‖
��
𝛼
k
m
+ (𝜏

k
− 𝜏

k
m
)𝛽

k
m

�
,

(15)�(s) =

⎧
⎪⎪⎨⎪⎪⎩

1 if s ≤ q

exp

���
s−q

r

�2

− 1

�
−1
�

if s ∈ (q, r)

0 if s ≥ r

,
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Perturbed versions of �k
m
 are defined as ̃𝛱k

m
(𝜏, z) = ̃

𝛱
k∗
(𝜏

k, 𝜏¬k
m
, z) . By construction, 

̃�
K
(𝜅) can be identified with a neighborhood of zero in ℝ2NK that consists of param-

eter tuples (�, �) , in which �k
m
 and �k

m
 are scalars. Since {U} , {e} , and {A} are smooth 

manifolds, the entire product space Z is a smooth manifold.
Finally, consider a function f ∶ Z → C1

�⨉N

n=1
𝔹r(�n),ℝ

NK
�
 with the property 

that z ∈ Z is a regular economy if f (z) ⋔ {0} . Such a function can be constructed as 
follows. Let the components of its evaluation mapping f ev be defined in the follow-
ing way: If m = n ≤ M , i.e., �m is an equilibrium strategy combination, then

All rows in (17) can be perturbed independently through �k
m
 . If n > M and there 

exists some xn ∈ �r(�n) such that �m(�m) = �n(xn) for some m ≤ M , then

All rows in (18) can be perturbed independently through �k
n
 . In all other cases, per-

turbations of charts are not necessary and the corresponding rows can be defined as

All rows in (19) can be perturbed directly through xn . Since independent perturba-
tions of all rows are possible, df ev is surjective and f ev ⋔ {0} . Since cl

�⨉N

n=1
�r(�n)

�
 

is compact, continuity of f  under the C1 compact-open topology implies continuity 
under the C1 Whitney topology. It follows from the parametric transversality theo-
rem (see Hirsch 1994, pp. 79–80, Theorem 2.7) that f (z) ⋔ {0} for any z in an open, 
dense subset of parameters Z

∗∗
⊆ Z . The conscious reader will have noticed that 

f (z) ⋔ {0} implies only the transversality conditions from Claims 1 and 3 directly. 
However, perturbations through � that restore the condition from Claim 3 but not the 
one from Claim 2 are negligible: To see this, replace (17) with

The rows in (20) are jointly perturbed with those in (17). Another application of the 
parametric transversality theorem shows that there is a different open, dense subset 
of parameters Z

∗
⊆ Z such that the modified f (z) ⋔ {0} for any z ∈ Z

∗
 . The inter-

section Z
∗
∩ Z

∗∗
 is an open, dense subset of {U} × {e} × {A} × ̃�

K
(𝜅) , which con-

cludes the Proof of the Proposition.   ◻

(16)̃
𝛱

k∗
(𝜏, z) = 𝛱

k∗
(𝜏) −

N�
m=1

𝜌

�‖𝜏 − 𝜏m‖
��
𝛼
k
m
+ (𝜏

k
− 𝜏

k
m
)𝛽

k
m

�
.

(17)f ev
m
(x, z) =

⎛
⎜⎜⎝

D
𝜏
1
̃
𝛱

1∗
[xm, z]

⋮

D
𝜏
K
̃
𝛱

K∗
[xm, z]

⎞
⎟⎟⎠
.

(18)f ev
n
(x, z) = ̃

𝛱m(xm, z) −
̃
𝛱n(xn, z).

(19)f ev
n
(x, z) = xn − �n.

(20)f ev
m
(x, z) =

⎛⎜⎜⎝

D
𝜏
1
̃
𝛱

1
m
[xm, z]

⋮

D
𝜏
K
̃
𝛱

K
m
[xm, z]

⎞⎟⎟⎠
.
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Proposition 1 is a local result: It considers a family of subspaces of economies, 
one for each reference economy, and shows that regular economies are open and 
dense within each subspace. As regards any of these subspaces, the proposition is 
read as follows: Market demand may have any shape, but even ill-shaped demand 
does not translate to an ill-shaped payoff function for the generic producer. The 
types of malformations discussed in the introduction do not survive small pertur-
bations of the cost function. Half of this local result, namely the density of regu-
lar economies, can be translated directly into a global result for the entire space 
of economies:

Corollary 1 Every open neighborhood of (U, e,A, �) in �I
× � ×� × �

K contains 
a regular economy (U, e,A, �̃�) with �̃� ∈ ̃�

K
(𝜅).

Proof It must be shown that for any 𝜀 > 0 there exists a �̃� ∈ ̃�
K
(𝜅) with ̄𝛿

�
(�̃�, 𝜅) < 𝜀 

such that (U, e,A, �̃�) is a regular economy. For any m , define Tm = cl(�r(�m)) such 
that the maximum operator max

�∈T  can be equivalently written as maxm max
�∈Tm

 . 
Denote by �k

m
(�

k
) = �

k
m
+ (�

k
− �

k
m
)�

k
m
 the perturbation term in (14). This function 

and its differentials d�k
m
[�

k
](x) = �

k
m
x and d2�k

m
[�

k
](x, y) = 0 are linear in (�, �) . 

Written out, with all parentheses and brackets omitted for clarity, the metric is of the 
form

All maximands are linear in (�, �) . Thus, for any 𝜀 > 0 , there is some 𝜀′ > 0 suf-
ficiently small such that all perturbations with ‖(𝛼, 𝛽)‖ < 𝜀

� satisfy ̄𝛿(�̃�, 𝜅) < 𝜀 . It 
remains to be verified, that there exists such a small perturbation that restores regu-
larity, but since ‖(𝛼, 𝛽)‖ < 𝜀

� defines an open subset of ̃�K
(𝜅) this is a direct conse-

quence of the density part of Proposition 1.   ◻

Corollary 1 shows that perturbations of production technologies can be used 
to cancel out the effects of ill-shaped demand. However, it does not answer the 
question of whether ill-shaped demand is a frequent phenomenon. This question 
is addressed in the next proposition. Even if producer characteristics are fixed, 
perturbations of utility functions are sufficient to restore regularity. A precondi-
tion for this result is that the mapping from strategy combinations to equilibrium 
consumption must be injective. The following lemma shows that Assumptions 1 
and 3 are jointly sufficient.

Lemma 2 For each consumer i , the function � ↦ ci∗(�, p∗(�)) is injective.

̄
𝛿
�
(�̃�, 𝜅) = max

k

(
max
m

max
𝜏∈Tm

𝜌 |𝜐k
m
| +max

m
max
𝜏∈Tm

‖‖‖d𝜌 𝜐
k
m
+ 𝜌 d𝜐k

m

‖‖‖
+ max

m
max
𝜏∈Tm

‖‖‖d
2
𝜌 𝜐

k
m
+ 2 d𝜌 d𝜐k

m

‖‖‖
)
.
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Proof Suppose not; then, ci = ci∗(𝜏, p∗(𝜏)) = ci∗(𝜏, p∗(𝜏)) has a solution other than 
𝜏 = 𝜏 for some consumer i . Since ci∗ satisfies the first-order condition of the utility 
maximization problem (2), this implies that

Since Y  is homogeneous of degree 1 under Assumption 3, this equation only holds 
if pk∗(𝜏)𝜏k = pk∗(𝜏)𝜏k for each producer k . But then (21) holds true for all consum-
ers; that is, each of them consumes the same quantities under the two strategy com-
binations � and 𝜏 . However, Ui is strictly increasing under Assumption 1, and thus 
all budget constraints hold with equality. Summing them up over all consumers and 
substituting the market clearing condition (8) leads to

but the only solution to this equation is 𝜏 = 𝜏 since Y  is homogeneous of degree 1.  
 ◻

Lemma 2 guarantees that the effects of utility perturbations on the exchange 
equilibrium manifold are local. This leads to the second proposition:

Proposition 2 For any fixed (U, e,A, �) there is a set of perturbed utility functions 
̃�
I
(U) and an open, dense subset ̃�I

∗
⊆

̃�
I
(U) such that ( ̃U, e,A, 𝜅) is a regular econ-

omy for any ̃U ∈ ̃�
I
∗
.

The Proof of Proposition 2 follows the same logic as the one of Proposition 1: 
Instead of cost functions, utility functions are equipped with a finite-dimensional 
parameterization. This results in a subspace of utility-perturbed economies, for 
which all charts can be controlled independently. The parametric transversality 
theorem ensures that an open and dense set of utility perturbations lead to a regu-
lar economy. This result can be obtained under great parsimony: To restore regu-
larity it is sufficient to perturb the utility function of a single consumer.

Proof Many arguments are identical to the ones used in the Proof of Proposition 1. 
For brevity, these arguments are not repeated, but the focus is on those parts that 
are different. Again (U, e,A, �) is taken as the reference economy, but now utility 
functions are perturbed instead of cost functions. For this purpose Eq. (16) has to be 
replaced with

in which p̃∗ is a parameterized version of p∗ . This parameterization is 
induced by parameterized utility functions. Consider a subset of economies 
Z = ̃�

I
(U) × {e} × {A} × {𝜅} , in which ̃�(U) is the space of utility functions 

̃Ui
∶ Ci × Z → ℝ of the form

(21)DUi
[ci] ⋅

(
−p∗(𝜏)

Y(𝜏)

)
= DUi

[ci] ⋅

(
−p∗(𝜏)

Y(𝜏)

)
= 0.

c̄ = ē +

(
−p∗(𝜏)

Y(𝜏)

)
⋅ � = ē +

(
−p∗(𝜏)

Y(𝜏)

)
⋅ �,

(22)̃
𝛱

k∗
(𝜏, z) = p̃k∗(𝜏, z) − 𝜅

k
(𝜏),
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in which ci
m
= ci∗(�m, p

∗
(�m)) . The smooth function � i

m
 is constructed with the same 

properties as � in Eq.  (16): Let {Qi
m
}
N
m=1

 and {Ri
m
}
N
m=1

 be sequences of open sub-
sets Qi

m
⊂ Ri

m
 of Ci such that Qi

m
 and Ri

m
 contain the images of �q(�m) and �r(�m) 

respectively, under the function � ↦ ci∗(�, p∗(�)) . Since this function is injective by 
Lemma 2, the sets Qi

m
 and Ri

m
 can be chosen small enough such that each sequence 

has disjoint members. There exist smooth functions � i
m
∶ Ci → [0, 1] that assume 1 

on cl(Qi
m
) and 0 on the complement of Ri

m
 . The set ̃�I

(U) can be identified with a 
neighborhood of zero in the space of tuples (�,� ) that are composed of (|�| + 1)

-dimensional vectors � i
m
 and of (|�| + 1) × (|�| + 1) matrices � i

m
.

The proposition is proven if all rows in (17) and (18) can be perturbed indepen-
dently. By Equation (22), a sufficient condition is that p̃∗ and dp̃∗ can be perturbed 
independently. Since p̃∗ may have discontinuities, consider domain restrictions 
p∗
m
∶ 𝔹r(�m) × Z → ℝ

K . At z = 0 , these functions solve

Since h and �m are C2 homeomorphisms, the differential d
�
p∗
m
[�, 0] is surjec-

tive. As p∗
m
 is of class C2 , d

�
p∗
m
[�, z] is surjective for any z in a neighborhood of 

zero in Z . Prices are connected to utility functions through market demand. Let 
�

∗

m
∶ 𝔹r(�m) ×ℝ

K
++

× Z → ℝ
K describe demand locally; then, p∗

m
 solves the market 

clearing equation

In order to control prices and their derivatives locally, it is sufficient to perturb the 
utility function of a single consumer. First, it must be shown that p∗

m
 can be per-

turbed arbitrarily through � i
m
 . Applying the chain rule to (24) leads to

in which dp�̄�∗

m
 is bijective since critical exchange equilibria are never optimal by 

construction of P∗ . It remains to be proven that d
𝛽m
�̄�

∗

m
(b) is surjective. For this pur-

pose, note that individual demand � i∗
m

 solves the equation bi
m
(�, p, z,� i∗

m
(�, p, z)) = 0 

that represents the first-order conditions of the utility maximization problem (2); i.e.,

By the chain rule, d
�
i
m
�

i∗
m
(b) = −(d

�
i bim)

−1
(d

�
i
m
bi
m
(b)) , and since both of

(23)

̃Ui
(ci, z) = Ui

(ci)

+

N∑
m=1

𝜍
i
m
(ci)

(
(ci − ci

m
)
⊤

⋅ 𝛽
i
m
+ (ci − ci

m
)
⊤

⋅ �
i
m
⋅ (ci − ci

m
)

),

�m(�) = h(�, p∗
m
(�, 0)).

(24)�̄�
∗

m
(𝜏, p∗

m
(𝜏, z), z) = �.

d
𝛽m
p∗
m
(b) = −(dp�̄�

∗

m
)
−1
(
d
𝛽m
�̄�

∗

m
(b)

)
,

(25)bi
m
(𝜏, p, z,𝜓 i

) = dci
̃Ui

[
ei +

(
−p

Y(𝜏)

)
⋅ 𝜓

i, z

]((
−p

Y(𝜏)

))
.

(26)D
𝜓

i b
i
m
=

(
−p

Y(𝜏)

)
⊤

⋅ D2
ci
̃Ui

⋅

(
−p

Y(𝜏)

)
, D

𝛽
i
m
bi
m
=

(
−p

Y(𝜏)

)
⊤
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have full rank K by Assumptions 1 and 3, d
�
i
m
p∗
m
 is indeed surjective.

Second, it must be shown that d
�
p∗
m
 can be perturbed independently through � i

m
 . 

Note that changes in � i
m
 have no first-order effect on p∗

m
 at the point of evaluation 

(�m, 0) : It follows from (23) that

To identify the second-order effects, apply the chain rule to (24), which yields

in which the second equality follows from the previously established fact 
that d

�m
p∗
m
= 0 . Thus, a sufficient condition for surjectivity is indeed that 

d
�m

d
�
�

i∗
m
+ d

�m
dp�

i∗
m
◦(d

�
p∗
m
, id)) is surjective for the perturbed consumer i . One 

additional application of the chain rule reveals that

in which the last equality is obtained by using the previously established fact that 
d
�

i
m
�

i∗
m
= 0 at the point of evaluation. To see that this term is indeed surjective, note 

that

and after setting v = d
�
p∗
m
(t) and yi = d

�
�

i∗
m
(t) + dp�

i∗
m
(d

�
p∗
m
(t)) one arrives at

As the matrix G can be chosen freely, surjectivity could only fail if the differential 
to the right were zero. But then the mapping � ↦ ci∗(�, p∗(�)) could not be injective, 

D
� m

̃Ui
[ci

m
, 0] = 0 , which implies

D
� m

bi[𝜏m, p
∗
(𝜏m), 0,𝜓

i∗
(𝜏m, p

∗
(𝜏m))] = 0 , which implies

D
� m

𝜓
i∗
m
[𝜏m, p

∗
(𝜏m), 0] = 0 , which implies

D
� m

p∗
m
[𝜏m, 0] = 0.

d
� m

d
𝜏
p∗
m
(t,G) = −(dp�̄�

∗

m
)
−1
(
d
� m

d
𝜏
�̄�

∗

m
(t,G) + d

� m
dp�̄�

∗

m
(d

𝜏
p∗
m
(t),G)

+ d2
p
�̄�

∗

m
(d

𝜏
p∗
m
(t), d

�m
p∗
m
(G))

)

= −(dp�̄�
∗

m
)
−1
(
d
� m

d
𝜏
�̄�

∗

m
(t,G) + d

� m
dp�̄�

∗

m
(d

𝜏
p∗
m
(t),G)

)
,

d
�

i
m
d
�
�

i∗
m
(t,G) + d

�
i
m
dp�

i∗
m
(d

�
p∗
m
(t),G)

= −(d
�

i b
i
m
)
−1
(d

�
i
m
d
�
bi
m
(t,G)

+ d
�

i
m
dpb

i
m
(d

�
p∗
m
(t),G)

+ d
�

i
m
d
�

i b
i
m
(d

�
�

i∗
m
(t) + dp�

i∗
m
(d

�
p∗
m
(t)),G))

+ d2
�

i b
i
m
(d

�
�

i∗
m
(t) + dp�

i∗
m
(d

�
p∗
m
(t)), d

�
i
m
�

i∗
m
(G)))

= −(d
�

i b
i
m
)
−1
(d

�
i
m
d
�,p,� i b

i
m
(t, d

�
p∗
m
(t), d

�
�

i∗
m
(t) + dp�

i∗
m
(d

�
p∗
m
(t)),G)),

d
�

i
m
d
𝜏,p,𝜓 i b

i
m
(t, v, yi,G) =

(
−p

Y(𝜏)

)
⊤

⋅ G ⋅

((
−v

Y(t)

)
⋅ 𝜓

i
+

(
−p

Y(𝜏)

)
⋅ yi

)
,

d
�

i
m
d
𝜏,p,𝜓 i b

i
m
(⋯) =

(
−p

Y(𝜏)

)
⊤

⋅ G ⋅ d
𝜏

(
ci∗(𝜏, p∗(𝜏))

)
(t).
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which would contradict Lemma 2. As both p∗
m
 and d

�
p∗
m
 can be perturbed indepen-

dently, f ev ⋔ {0} and by the same arguments as in the Proof of Proposition 1, there 
is an open, dense subset Z

∗
⊆ Z of regular economies.   ◻

Proposition 2 is, just like Proposition 1, merely a local result. The following cor-
ollary extends its density part to the entire space of economies:

Corollary 2 Every open neighborhood of (U, e,A, �) in �I
× � ×� × �

K contains 
a regular economy ( ̃U, e,A, 𝜅) with ̃U ∈ ̃�

I
(U).

Proof It must be shown that for any 𝜀 > 0 , there is some ̃U ∈ ̃�
I
(U) with 

̄
𝛿
�
( ̃U,U) < 𝜀 such that ( ̃U, e,A, 𝜅) is a regular economy. In the Proof of Proposi-

tion 1, only the utility function of one consumer, say i , is perturbed. In this case, 
̄
𝛿
�
( ̃U,U) = 𝛿

�
( ̃Ui,Ui

) . The perturbation term from Eq. (23) and its derivatives,

are all linear in (�,� ) . Omitting parentheses and brackets, the metric is of the form

in which all maximands are linear in (�,� ) . Thus, there is always some 𝜀′ > 0 suf-
ficiently small such that ‖(𝛽,� )‖ < 𝜀

� implies ̄𝛿( ̃U,U) < 𝜀 . Since ‖(𝛽,� )‖ < 𝜀
� 

defines an open subset of ̃�I
(U) , the corollary follows from the density part of Prop-

osition 2.   ◻

Now that density is established, openness follows in the next step. The generic 
regularity theorem is the main result.

Theorem 1 �I
× � ×� × �

K has an open and dense subset of regular economies.

Proof Let W denote the subset of economies with nonempty P∗ , which is open 
and dense by Proposition 3. As an open subset of a smooth Banach manifold, W 
is itself a smooth Banach manifold. Let V = T ×ℝ

K
× C ×ℝ

IK denote the domain 
of the equilibrium variables (�, p, c,�) . Let W

∗
⊆ W be the set of economies regu-

lar in the sense of Debreu (1970) (i.e., fulfilling Condition 1 in Definition 3) and 
let W

∗∗
⊆ W

∗
 be the set of regular economies as defined in the present paper (i.e., 

𝜙
i
m
(ci) = (ci − ci

m
)
⊤

⋅ 𝛽
i
m
+ (ci − ci

m
)
⊤

⋅ �
i
m
⋅ (ci − ci

m
)

d𝜙i
m
[ci](x) = (𝛽

i
m
+ (ci − ci

m
)
⊤

⋅ �
i
m
) ⋅ x

d2𝜙i
m
[ci](x, y) = y ⋅ � i

m
⋅ x

d3𝜙i
m
[ci](x, y, z) = 0,

𝛿( ̃Ui,Ui
) = max

m
max
ci∈X

�𝜍 i
m
𝜙
i
m
�

+max
m

max
ci∈X

‖d𝜍 i
m
𝜙
i
m
+ 𝜍

i
m
d𝜙i

m
‖

+max
m

max
ci∈X

‖d2𝜍 i
m
𝜙
i
m
+ 2d𝜍 i

m
d𝜙i

m
+ 𝜍

i
m
d2𝜙i

m
‖

+max
m

max
ci∈X

‖d3𝜍 i
m
𝜙
i
m
+ 3d2𝜍 i

m
d𝜙i

m
+ 3d𝜍 i

m
d2𝜙i

m
‖,
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fulfilling all of Definition 3). It has been shown that W
∗∗

 is dense in W (see Corol-
lary 1 or Corollary 2). It remains to be shown that it is also open. For this purpose, 
fix some w ∈ W

∗∗
 and consider a function gw ∶ V → ℝ

(I+2)K+I(|�|+1) that satisfies 
gw(�, p, c,�) = 0 at any equilibrium, defined as

In general, gw need not be C1 since �
∗ may exhibit discontinuities. How-

ever, regularity guarantees that gw is C1 on an open, bounded set S ⊂ V that 
contains all equilibria (see Condition 2 in Definition  3). On this basis, con-
struct a function g ∶ W → C1

(S,ℝ(I+2)K+I(|�|+1)
) with evaluation mapping 

gev(w, �, p, c,�) = gw(�, p, c,�) . If w ∈ W
∗
 , then regularity (i.e., membership in 

W
∗∗

 ) is equivalent to g(w) ⋔ {0} : The Jacobian of gw in local coordinates has the form

Conditions 2 and 3 in Definition 3 imply that Dgw exists and that the upper left block 
is invertible. In this case, Dgw is a lower triangular matrix with invertible blocks 
along the main diagonal. As a consequence, Dgw is invertible, dgw is surjective, and 
gw ⋔ {0} . The converse holds as well: If g(w) ⋔ {0} , then Dgw exists and the upper 
left block must be invertible, which implies Conditions 2 and 3 in Definition 3. Note 
that gw and dgw are continuous in w : Their components depend only on the market 
clearing condition (8) and on the first-order conditions of utility maximization (5) 
and profit maximization (2), which all have the desired continuity properties. Fur-
ther, note that cl(S) is compact. By the transversality openness theorem for Banach 
manifolds (see Abraham 1967, p. 47, Theorem 18.2), the set W

∗∗
 of economies that 

satisfy the transversality condition is open in W . As an open, dense subset of W , the 
set W

∗∗
 is also open and dense in the whole space of economies.   ◻

Regularity implies that equilibria are locally unique and Theorem  1 leads to a 
generic determinacy result:

Corollary 3 Generically, equilibria are isolated and finite in number.

Proof By Theorem 1, the generic economy w is regular. In a regular economy, each 
equilibrium (�, p, c,�) solves the equation gw(�, p, c,�) = 0 , as defined in (27), 
which is locally of class C1 . By the regular value theorem (see Villanacci et  al. 
2002, p. 84, Theorem 9), the set of equilibria is a 0-dimensional manifold, and thus 
each equilibrium is isolated. Moreover, under Assumption 3, all assets have positive 

(27)

Dgw =

⎛⎜⎜⎜⎝

D
�
�
∗
− I 0 0 0

D
�
p∗ − I 0 0

D
�
c∗ Dpc

∗
− I 0

D
�
�

∗ Dp�
∗ 0 − I

⎞⎟⎟⎟⎠
.
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payoffs. In this case, Assumptions 1 and 2 imply that prices are bounded and con-
tained in some compact set P ⊂ ℝ

K
+

 . Therefore, when the 0-dimensional manifold is 
embedded in ℝ2K , it is contained in the compact set T × P and thus has a finite num-
ber of elements.   ◻

As Theorem 1 can be derived on the basis of both Corollary 1 and Corollary 2, 
it can be viewed as a statement about the generic producer or as a statement about 
the generic consumer. Both of these approaches are worth separate discussion. If 
producer characteristics are fixed, regularity depends on the third-order derivatives 
of utility functions. This is a parallel to the discussion on strictly concave payoff 
functions. Regarding their concavity, Roberts and Sonnenschein (1977) assess that, 
“Short of separability or restrictions on the third-order partial derivatives of the util-
ity function, it is not at all clear it can be assured even in a one consumer world” (p. 
105). It should be noted, though, that Assumption 1 places no restrictions on third-
order derivatives of utility functions except at the boundary. Nevertheless, these 
higher-order derivatives are generically well-behaved. This is still true if attention 
is restricted to economies with a representative consumer since perturbations of a 
single consumer are sufficient to obtain the result.

It should be noted, however, that even if there is a representative consumer, 
equilibria need not exist. Contrary to exchange economies, equilibrium existence 
is a more demanding concept than regularity in the present setting. Assumptions 1 
through 4 are not sufficient for (generic) existence of Cournot–Walras equilibrium. 
Therefore, Corollary 3 should not be misinterpreted as implying a number of equi-
libria greater than zero. The potential cause of nonexistence is discontinuities: one 
the one hand, discontinuities in best replies that may arise if payoffs are not concave; 
on the other hand, discontinuities in the price selection p∗ , which are inevitable if 
there are multiple exchange equilibria.6 Stronger assumptions on utility functions 
are necessary to avoid these problems. For example, Shirai (2010) proves general 
existence in representative consumer economies with additively separable utility. 
Even though Corollary 2 is no longer applicable in this case because utility pertur-
bations would destroy additive separability, Theorem 1 continues to hold.

This is where Corollary 1 turns out to be more than a redundant exercise. As long 
as demand is of class C2 , perturbations of producers are always sufficient to restore 
regularity. This result is obtained under the strong Assumption 3, under which out-
put sets are independent rays. The critical part of the assumption is not rays: They 
are convenient because of the equivalence between Cournot–Walras equilibrium and 
reduced-form equilibrium. If this assumption is relaxed, for example by replacing 
the family of rays with a family of cones, the equivalence breaks down. This results 
in more laborious proofs but need not invalidate the regularity result. The critical 
part of the assumption is independence: If any two cones meet only at the origin, 
all results go through, provided cost functions are of class C2 and satisfy a boundary 
condition that guarantees interior optima. However, if two cones have a larger inter-
section, Lemma 2 breaks down and Proposition 2 is no longer valid. In this case, 

6 Dierker and Grodal (1986) show that the latter nonexistence problem even occurs in the mixed exten-
sion of the Cournot game.
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perturbations of utility functions are no longer effective, and perturbations of cost 
functions become the only method of restoring regularity.

It should be emphasized, though, that the meaning of regularity changes when 
the rank of the asset payoff matrix is not constant. If markets are complete at a 
Cournot–Walras equilibrium, the concept of regularity is still the same: The equi-
librium is differentiable, robust to perturbations, and locally unique. In other word, 
the main insights from Corollary 3 are still valid. This changes when markets are 
endogenously incomplete: In this case, the method of comparative statics is still 
applicable on the basis of directional derivatives, but Cournot–Walras equilibria are 
no longer locally unique. There is a real indeterminacy that grows with the degree 
of market incompleteness. Thus, the properties of Cournot–Walras equilibrium are 
substantially different in a setting with strategic asset structure choice. This setting is 
studied in a companion paper, Zierhut (2020), and the interested reader is referred to 
the analysis therein, as well as to Carvajal et al. (2012) for related result. Since those 
models of Cournot competition with strategic asset choice are based on quasilinear 
economies, the following section provides a complementary derivation of generic 
regularity under quasilinear utility as a corollary to Theorem 1.

4  Quasilinear utility

The perturbation technique introduced in Sect. 3 can be modified in order to estab-
lish generic regularity in quasilinear economies. Such economies are particularly 
tractable, and the equilibrium concept becomes independent of price selections 
because the cardinality of P∗ is at most one. For the purpose of extending Theorem 1 
to such economies, replace Assumption 1 with the following variant:

Assumption 1′ For each consumer i,

for some function ui ∶ ℝ
|�|
+

→ ℝ that satisfies for each ci
1
∈ ℝ

|�|
++

 , 

1. ui is continuous and of class C3 on ℝ|�|
++

2. dui[ci
1
](v) ≫ 0 ∀v > 0

3. d2ui[ci
1
](v, v) < 0 ∀v ≠ 0

4. dui[ci
1
](I

�
) → ∞ as ci

�
→ 0 for any � ∈ �.

Denote by ̂� the space of all utility functions that satisfy Assumption 1′, and let 
its topology be induced by the same metric �

�
 as on � . Under Assumption 1′, con-

sumers always demand strictly positive consumption at date 1. However, at some 
prices the non-negativity constraint ci

0
> 0 for consumption at date 0 may become 

binding. At such points, demand � i∗ , optimal consumption ci∗ , and prices p∗ fail 
to be differentiable. This is not a problem per se, unless the constraints become 
binding simultaneously for all consumers. Therefore, two types of economies 

Ui
(ci) = ci

0
+ ui(ci

1
)
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must be distinguished: The first type is economies in which all consumers have 
binding constraints. Such economies do exist: It is possible to construct sequences 
of economies whose unique equilibria converge to a point where the entire date 
0 endowment ē0 is used up for production. Such economies are problematic in 
their own right because p∗ fails to be differentiable in the limit of the equilibrium 
sequence. As a consequence, P∗ is empty, and no equilibrium exists. At the same 
time, such economies are trivially regular: If the set of equilibria is empty, all its 
members are in line with Definition 3. Therefore, the focus must be on the second 
type of economy, namely economies where P∗ is nonempty. The following lemma 
verifies that these economies form an open set.

Lemma 3 The subset of ̂�I
× � ×� × �

K with nonempty P∗ is open.

Proof Let W ∶ ℝ
K
++

⇉ ℝ
K be the equilibrium-set correspondence,

which maps production scales to (exchange) equilibrium prices. Under Assumptions 
1′ and 2, W is single-valued (see Hens and Pilgrim 2002, Theorem 6.9, p. 143) and 
upper hemicontinuous, not only in � but also in (U, e) (see Hildenbrand and Mertens 
1972, p. 103, Corollary 2). These two properties jointly imply that W is continuous. 
Suppose not; then, there would be two sequences {�n}∞n=1 and {𝜏n}∞n=1 that both con-
verge to the same production scale � , but limn→∞

W(𝜏n) ≠ limn→∞
W(𝜏n) . By upper 

hemicontinuity, limn→∞
W(�n) ∈ W(�) and limn→∞

W(𝜏n) ∈ W(𝜏) , but then W(�) 
must have two distinct members, which contradicts single-valuedness. The same 
arguments work for sequences of consumer characteristics (U, e) . Continuity of W in 
producer characteristics (A, �) is easy to see: Under Assumption 3, A is represented 
by Y , which enters (28) only on the right-hand side while � does not enter at all.

Since � = graph(W) , nonemptiness of P∗ implies that P∗
= {W} . Thus, it follows 

from the properties of P∗ that W must be of class C2 on some open neighborhood 
N ⊂ ℝ

K
++

 of the local maxima of (9). Every local maximum is a maximum of the 
domain restriction of (9) to some compact subset of Tk . Since Tk is bounded, the set 
of local maxima can be covered by a finite number of such compact sets. Moreover, 
since the payoff functions

are continuous in (U, e,A, �) because W is, all solution mappings to the domain 
restricted problems are upper hemicontinuous in (U, e,A, �) by Berge’s maximum 
theorem (see Aliprantis and Border 2006, p. 570, Theorem 17.31). The union of all 
these solution mappings is the correspondence L ∶ ̂�

I
× � ×� × �

K
⇉ T  , which 

maps economies to the set of local maxima of (9). It is upper hemicontinuous as a 
finite union of upper hemicontinuous correspondences. Thus, given the open neigh-
borhood N ⊂ ℝ

K
++

 , there is an open set of economies W ⊂
̂�
I
× � × � × �

K such 
that L(w) ⊂ N  for any w ∈ W . Since W is of class C2 on N  , the set P∗ is nonempty 
for each economy in this open set W .   ◻

(28)W(𝜏) =

{
p ∈ ℝ

K ||| c̄
∗

1
(𝜏, p) = ē

1
+ Y ⋅ 𝜏

}
,

�
k∗
(�) = Wk

(�) − �
k
(�)
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In the economies from Lemma  3, there is at least one consumer without a 
binding constraint at any locally optimal production level. This consumer is the 
subject of all utility perturbations, and the perturbed consumer may change from 
level to level. The following result is a weaker version of Lemma 2 that holds in 
quasilinear economies.

Lemma 4 Under Assumption 1′, the function � ↦ c∗
1
(�, p∗(�)) is injective.

Proof Suppose not; then, c
1
= c∗

1
(𝜏, p∗(𝜏)) = c∗

1
(𝜏, p∗(𝜏)) for some 𝜏 ≠ 𝜏 . However, 

Ui is strictly increasing under Assumption 1′, and thus all budget constraints hold 
with equality. Summing the date 1 budget constraints over all consumers and apply-
ing the market clearing condition (8) leads to

but since Y  is homogeneous of degree 1, the only solution to this equation is 𝜏 = 𝜏 .  
 ◻

By means of Lemma 4, it is possible to construct a family of bump functions 
�
1
m
,… , �I

m
 analogous to the ones used in the Proof of Proposition 2, but with ci

1
 

instead of ci as the argument, such that 𝜍 i
m
(ci

1
) > 0 for at most one consumer i at 

any c
1
= (c1

1
,… , cI

1
) . That is to say, perturbations of different consumers do not 

interfere. The next result is a direct consequence of Lemma  4 and ensures that 
there is always at least one candidate for perturbations.

Lemma 5 Let c∗
1
(�, p∗(�)) be continuously differentiable at � . Under Assumption 1′, 

d
�
(ci∗

1
(�, p∗(�)))[�] is injective for some consumer i.

Proof Suppose no such consumer exists; then, � ↦ ci∗
1
(�, p∗(�)) is not locally injec-

tive for any i . Then, however, � ↦ c∗
1
(�, p∗(�)) fails to be locally injective, and there-

fore cannot be (globally) injective, which contradicts Lemma 4.   ◻

The following variant of Theorem 1 holds when Assumption 1 is replaced with 
Assumption 1’. It establishes generic regularity in quasilinear economies.

Corollary 4 ̂�I
× � ×� × �

K has an open and dense subset of regular economies.

Proof Let {W0,W} be a partition of ̂�I
× � ×� × �

K in which W0 consists of all 
economies where P∗ is empty. All members of W0 are regular economies because 
the set of equilibria is empty. This set is closed because its complement W is open 
by Lemma 3. Provided Corollary 2 holds, the remainder of the Proof of Theorem 1 
goes through without modification and establishes that a set W

∗∗
 , which consists of 

regular economies, is open and dense in W . As a consequence, W
∗∗

 is also open in 
the entire space ̂�I

× � ×� × �
K . There are two possible cases.

Case 1: The topological interior of W0 is nonempty. In this case, bdry(W0) is 
closed and nowhere dense in the space of economies. Recall that W�W

∗∗
 is closed 

c̄
1
= ē

1
+ Y(𝜏) ⋅ � = ē

1
+ Y(𝜏) ⋅ �
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and nowhere dense in W and thus closed and nowhere dense in the space of econo-
mies. Thus, the union bdry(W0) ∪W�W

∗∗
 is closed and nowhere dense. Its comple-

ment is an open and dense set that consists of regular economies.
Case 2: The topological interior of W0 is empty. In this case, W is not only open 

but also dense. Its subset W
∗∗

 is therefore open and dense in the entire space of 
economies.

As either case results in an open and dense set of regular economies, Corollary 4 
is established once Corollary 2 is shown to hold for the alternative space of econo-
mies ̂�I

× � ×� × �
K . Since ̂� and � share the same metric, it is sufficient to con-

sider a modification of Proposition 2. The perturbed utility functions are now of the 
form

in which � i
m
 is a |�|-dimensional vector and � i

m
 is a |�| × |�| matrix. Replace (25) 

with the first-order condition of a consumer i whose date 0 consumption constraint 
is not binding:

Consequently, replace (26) with

in which both matrices have full rank K under Assumptions 1′ and 3, which is suffi-
cient for the surjectivity of d

�
i
m
p∗
m
 . Regarding the surjectivity of d

�
i
m
d
�
p∗
m
 , replace the 

two final equations in the Proof of Proposition 2 with

and

Recall that Y(�) has full rank, G can be chosen freely, and � ↦ ci∗
1
(�, p∗(�)) is 

nonzero for at least one consumer by Lemma 5. This completes the modification of 
Proposition 2 and thus the entire proof.   ◻

5  Larger space of economies

The main result of this paper, Theorem  1, is derived under an upper bound on 
endowments: Assumption 2 requires that endowments are contained in some open, 
bounded set. The effect of this assumption is that all attainable consumption and 

̃Ui
(ci, z) = ci

0
+ ui(ci

1
)

+

N∑
m=1

𝜍
i
m
(ci

1
)

(
(ci

1
− ci

m1
)
⊤

⋅ 𝛽
i
m
+ (ci

1
− ci

m1
)
⊤

⋅ �
i
m
⋅ (ci

1
− ci

m1
)

)
,

bi
m
(�, p, z,� i

) = dui
[
ei
1
+ Y(�) ⋅ � i

]
(Y(�)) − p

D
𝜓

i b
i
m
= Y(𝜏)⊤ ⋅ D2ui ⋅ Y(𝜏), D

𝛽
i
m
bi
m
= Y(𝜏)⊤,

d
�

i
m
d
𝜏,p,𝜓 i b

i
m
(t, v, yi,G) = Y(𝜏)⊤ ⋅ G ⋅

(
Y(t) ⋅ 𝜓 i

+ Y(𝜏) ⋅ yi
)

d
�

i
m
d
𝜏,p,𝜓 i b

i
m
(⋯) = Y(𝜏)⊤ ⋅ G ⋅ d

𝜏
(ci∗

1
(𝜏, p∗(𝜏)))(t).
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production plans are contained in compact sets X  and Y , which turns the space of 
economies �I

× � ×� × �
K into a Banach manifold. This is a consequence of the Cs 

compact-open topology when functions are restricted to compact sets. However, the 
Cs compact-open topology is also well-defined on noncompact domains, and since 
genericity is defined as a topological property, the upper bound may seem arbitrary 
or unnecessary. Indeed, if one is willing to give up the structure of a Banach mani-
fold, generic regularity can also be established if Assumption 2 is replaced with a 
weaker version:7

Assumption 2′ Endowments satisfy e ≫ 0.

Denote by �
∗
 the set of endowments that satisfy Assumption 2. This set can 

be constructed as a countable union of open, bounded sets {En}∞n=1 . For each n , 
the boundedness of En implies that attainable consumption and production plans 
are contained in compact sets Xn and Yn . These can be chosen in such a way that ⋃

∞

n
Xn = ℝ

���+1
+

 and 
⋃

∞

n
Yn = ℝ

���
+

 . All results so far are established for an arbitrary 
fixed (�,X,Y) . As a consequence, these results hold locally for any (En,Xn,Yn) in 
the sequence. For each n , the topologies on the function spaces are induced by the 
semimetric �n

�
 over Xn defined as in (6), and the semimetric �n

�
 over Yn defined as 

in (7). A larger space of economies can be defined as follows: Let �
∗
 be the set of 

all functions in C3
(ℝ

|�|+1
++

,ℝ) that satisfy Assumption 1. Equip this space with the 
metric

In the same fashion, define �
∗
 as the set of all functions in C2

(ℝ
|�|
++

,ℝ) that satisfy 
Assumption 4. Equip this space with the metric

Let �I
∗
× �

∗
× � × �

K
∗

 be the enlarged space of economies, equipped with the prod-
uct topology, which boils down to the box topology because the product is finite. Its 
basic sets are defined by taking products of basic sets of all component spaces. The 
following generic regularity result holds under Assumptions 1,  2′, 3, and 4.

Corollary 5 �I
∗
× �

∗
× � × �

K
∗

 has an open and dense subset of regular economies.

Proof Openness: Fix some � = En . Every open subset of the Banach manifold 
�
I
× � ×� × �

K is a product of open sets of all component spaces by construction. 
Therefore, it is also open in the larger space �I

∗
× �

∗
× � × �

K
∗

 if the basic sets of � 

𝛿
∗

�
( ̃Ui,Ui

) =

∞∑
n=1

2−n
𝛿
n
�
( ̃Ui,Ui

)

1 + 𝛿
n
�
( ̃Ui,Ui

)

.

𝛿
∗

�
(�̃�

k, 𝜅k
) =

∞∑
n=1

2−n
𝛿
n
�
(�̃�

k, 𝜅k
)

1 + 𝛿
n
�
(�̃�

k, 𝜅k
)

.

7 I am grateful to an anonymous referee for pointing this out.
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(reps. � ) contain basic sets of �
∗
 (resp. �

∗
 ). The basic sets of these spaces are the 

open balls under their respective metric. Note that for any n,

and thus balls in �
∗
 with arbitrarily small radius 𝜀 > 0 fit into any open ball in � . 

The arguments for �
∗
 are identical. As a consequence, the set of regular economies 

for En from Theorem  1 is also open in the larger space �I
∗
× En ×� × �

K
∗

 . There 
is one such open set for each En . The union of all these sets is again open and 
�
∗
=

⋃
∞

n=1
En . This concludes the proof of openness.

Density: In the Proof of Corollary  1, it has been shown that the (semi)metric 
from (7), i.e., �n

�
 , is continuous in the perturbation parameters (�, �) . Moreover, in 

the Proof of Corollary 2, it has been shown that the (semi)metric from (6), i.e., �n
�
 , 

is continuous in the perturbation parameters (�,� ) . By construction, �∗
�

 and �∗
�
 are 

continuous in the perturbation parameters as well. Density is therefore implied by 
the local results of Propositions 1 and 2.   ◻

6  Conclusion

Results of the Sonnenschein-Mantel-Debreu type are often viewed as a weakness in the 
foundation of oligopoly theory. Cournotian oligopoly models tend to place assumptions 
on the shape of market demand, but these assumptions are too strong to be rational-
ized by consumer choice under customary preferences. This raises concerns about the 
existence and regularity of equilibria in absence of ad hoc assumptions on demand. As 
regards regularity, the present results show that these concerns are unfounded: Generi-
cally, market demand is well-behaved. Moreover, even in cases of ill-behaved demand, 
small perturbations of production technologies restore regularity. Therefore, compara-
tive statics can be applied in the generic economy.
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�
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�
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⟺ 𝛿
n
�
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Appendix

The purpose of this appendix is to prove the following generic existence result. The 
proof uses the full machinery of perturbation techniques introduced in Sect. 3. Since 
identical arguments are not repeated, reading Sect. 3 before the appendix is strongly 
recommended.

Proposition 3 P∗ is nonempty for an open and dense set of economies.

Since �̄�∗ is of class C2 , the inverse function theorem guarantees a C2 inverse in 
a neighborhood of every regular exchange equilibrium. However, complications 
arise if profit is maximized at a critical exchange equilibrium. The following lemma, 
which is the first step toward proving Proposition 3, shows that such cases hardly 
occur. A point (�, p) ∈ � on the exchange equilibrium manifold is called critical-
profit exchange equilibrium if (Ik, 0) ∈ T

�
[h(�, p)] for some producer k ; that is to 

say, a change in production scale �k has no first-order effect on profits. All local 
optima of the profit maximization problem (5) are critical-profit exchange equilibria.

Lemma 6 For an open and dense set of economies, every critical-profit exchange 
equilibrium is regular.

Proof Recall that dh , as defined in (11), is a bijective mapping from T
�
 to T

�
 ; that 

is, y ∈ T
�
[�, p] if any only if dh[�, p](y) ∈ T

�
[h(�, p)] . Accordingly, the condition 

(Ik, 0) ∈ T
�
[h(�, p)] is equivalent to dh−1[h(�, p)](Ik, 0) ∈ T

�
[�, p] . To represent 

this inclusion as a linear equation, recall that the manifold � is defined as a preim-
age under �̄�∗ ; thus, T

𝛩
[𝜏, p] = Ker(d�̄�∗

[𝜏, p]) . The inclusion is therefore satisfied if 
there is a solution (�, p) ∈ � to the linear equation

A point (�, p) ∈ � that solves (29) is said to have the critical-profit property, not to 
be confused with the critical-equilibrium property that dp�̄�∗

[𝜏, p] is not surjective. 
In the generic economy, there are no points on the exchange equilibrium manifold 
that have both the critical-profit property and the critical-equilibrium property. To 
prove this formally, let �K−1 be the unit sphere in ℝK and consider a family of K 
mappings �k ∶ 𝕌

I
× 𝔼 ×𝔸 × 𝕂

K
→ C1

(ℝ
K
++

×ℝ
K
× 𝕊

K−1,ℝ3K
) whose evaluation 

mappings are defined in the following way:

Any solution to �ev
k
(�, p, v) = 0 consists of a vector v on the unit sphere and a tuple 

(�, p) . Such a tuple is an exchange equilibrium (by the first block of K rows in (30)). 
It has the critical-profit property because it satisfies (29) with (11) substituted (by 
the second block of K rows in (30)). Additionally, it has the critical-equilibrium 

(29)d�̄�∗
[𝜏, p](dh−1[h(𝜏, p)](Ik, 0)) = 0 for some k.

(30)
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property because Dp�̄�
∗
[𝜏, p] does not have full rank (by the third block of K rows in 

(30)). All rows in (30) can be perturbed independently. To see this, take any solution 
to �ev

k
(�, p, v) = 0 , and consider perturbations of cost functions in a neighborhood of 

� through a parameter �k
m
 as in (14) together with perturbations of utility functions 

in a neighborhood of c∗(�, p) through a parameter � i
m
 as in (23). The three blocks in 

(30) can be perturbed as follows.
The first block is perturbed through the endowment ei of an arbitrary consumer i : 

For any 𝜀 > 0 , an increase in ei
0
 by �pk jointly with a decrease in ei

1
 by �Ak leads to a 

change in the demand for asset k (and only for asset k ) � i∗
k
(�, p) by �.

The third block is perturbed through one column of � i
m
 of a suitable consumer i : 

Recall from the Proof of Proposition 2 that such perturbation work if the right term 
in

is not zero when yi = dp�
i∗
(v) . This term is only zero if both � i

= 0 and 
dp�

i∗
(v) = 0 , but the former must be violated for at least one consumer: The point 

of evaluation is an exchange equilibrium and market clearing would be violated if 
�

i
= 0 for each consumer i . Even though G can be chosen freely, only one column is 

necessary for this kind of perturbation.
The second block is perturbed through some other column of � i

m
 jointly with �k

m
 . 

Now the arguments are t = Ik , v = D� ⋅ Ik , and yi = d
�,p�

i∗
(Ik,D� ⋅ Ik) and it is nec-

essary to verify the surjectivity of

which can only fail if

but this equation only holds if production scale and price of asset k grow proportion-
ally; that is to say, if 1 = D

�
k�

k . However, if �k is replaced with �̃�k from (14), this 
condition does not survive any perturbation through �k

m
≠ 0 . Since Yk

≫ 0 under 
Assumption 3 and Dk

𝜏
𝜅
k
> 0 under Assumption 4, any column of G can be used for 

the final perturbation of the second block. Since all blocks in (30) can be perturbed 
independently, the evaluation mapping is transverse to zero. Following the argu-
ments from Sect. 3, there is an open and dense subset Wk ⊂ �

I
× � × � × �

K , such 
that 𝓁k(w) ⋔ {0} for each w ∈ Wk . But since �k(w) is a mapping from a (3K − 1)

-dimensional manifold to a 3K-dimensional manifold, the preimage theorem 
(see Villanacci et al. 2002, p. 125, Theorem 49) implies that �k(w)

−1
(0) is empty. 

Thus, there is no solution to �ev
k
(�, p, v) = 0 for any w ∈ Wk . This argument can be 

repeated for each k = 1,… ,K , to obtain a set W =

⋂K

k=1
Wk of economies for which 

all critical-profit exchange equilibria are regular. Since W is a finite intersection of 
open and dense sets, it is itself open and dense.   ◻

d
�

i
m
dp,𝜓 i b

i
m
(v, yi,G) =

(
−p

Y(𝜏)

)
⊤

⋅ G ⋅

((
−v

0

)
⋅ 𝜓

i
+

(
−p

Y(𝜏)

)
⋅ yi

)

(
−p

Y(𝜏)

)
⊤

⋅ G ⋅

((
−D

𝜏
k𝜅

k

Y
k

)
𝜓

i
k
+

(
−p

Y(𝜏)

)
⋅ D

𝜏
k ,pk𝜓

i∗
⋅

(
1

D
𝜏
k𝜅

k

))
,

D
�
k ,pk�

i∗
⋅

(
1

D
�
k�

k

)
= −Ik�

i
k
,
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By Lemma 6, critical-profit exchange equilibria are generically regular. The main 
part of the Proof of Proposition 3 is based on properties of the equilibrium-set corre-
spondence W ∶ ℝ

K
++

⇉ ℝ
K , which maps production scales � to (exchange) equilib-

rium prices p . Under Assumptions 1 through 3, W(�) is always nonempty, but need 
not be a singleton. Moreover, W is compact-valued and upper hemicontinuous (see 
Hildenbrand and Mertens 1972, p. 103, Corollary 2). Furthermore, regular exchange 
equilibria can be locally represented by C2 functions:

Lemma 7 If p ∈ W(�) is a regular exchange equilibrium, there is a radius r > 0 
and a C2 function � ∶ 𝔹r(�) → ℝ

K such that p = �(�) and 𝜁(𝜏) ∈ W(𝜏) for each 
𝜏 ∈ �r(𝜏).

Proof By regularity dp�̄�∗
[𝜏, p] is surjective. Since �̄�∗ is of class C2 under Assump-

tion  1, the existence of a C2 local solution mapping to �̄�∗
(𝜏, 𝜁(𝜏)) = � is guaran-

teed by the implicit function theorem. Since it solves the market clearing equation, 
p = 𝜁(𝜏) implies 𝜁(𝜏) ∈ W(𝜏) . Its domain can be restricted to any open ball with 
sufficiently small radius r > 0 .   ◻

These C2 functions exhibit the desired behavior around local maxima of (5). To 
prove the proposition, it must be shown that these functions can be connected in the 
form of a selection of W.

Proof of Proposition 3 Consider the open, dense set of economies from Lemma 6, 
in which all critical-profit exchange equilibria are regular. For any such economy, 
consider the set

of production scales that give rise to critical-profit exchange equilibria. Since T  
is compact, T∗∗∗ can be covered with a finite collection of open balls {�q(�m)}

M
m=1

 
such that the sequence {�m}Mm=1 is contained in T∗∗∗ . Note that �m ∈ T∗∗∗ implies that 
W(�m) contains at least one regular exchange equilibrium. The radius q < r can be 
chosen small enough such that Lemma 7 is applicable for each element �m in the 
sequence. For each m , let �m ∶ 𝔹q(�m) → ℝ

K represent the function from Lemma 7. 
To obtain a selection, these C2 functions can be connected as follows. Define a cor-
respondence F ∶ T ⇉ ℝ

K as

Note that F has a closed graph, and recall that W is upper hemicontinuous and 
compact-valued. Therefore, the intersection F ∩W is upper hemicontinuous (see 
Aliprantis and Border 2006,  p. 567, Theorem  17.25). Recall that under Assump-
tions  1, 2, and 3, all equilibrium prices are contained in a compact set P . Since 
W(𝜏) ⊂ P for any � ∈ T  , F ∩W is a correspondence between two compact sub-
sets of ℝK , namely T  and P . Thus, it has a closed graph and is measurable (see 

T∗∗∗ =
{
� ∈ T | (Ik, 0) ∈ T

�
[h(�, p)] for some k and p ∈ W(�)

}

F(�) =

{
�m(�) if � ∈ 𝔹q(�m) for some m ∈ {1,… ,M}

ℝ
K otherwise .
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Aliprantis and Border 2006,  p. 561, Theorem  17.11 and p. 606, Theorem  18.20). 
By the Kuratowski–Ryll–Nardzewski selection theorem (see Aliprantis and Border 
2006, p. 600, Theorem 18.13) there exists a measurable selection of F ∩W , which 
is in fact a selection of W because W(𝜏) ⊆ F(𝜏) for any � ∈ T  . By construction, this 
selection is of class C2 in a neighborhood of any critical-profit exchange equilibrium 
it passes through. As a result, it is a member of P∗ .   ◻
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