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Abstract Research has shown that aggregation of inde-

pendent expert judgments significantly improves the qual-

ity of forecasts as compared to individual expert forecasts.

This ‘‘wisdom of crowds’’ (WOC) has sparked substantial

interest. However, previous studies on strengths and

weaknesses of aggregation algorithms have been restricted

by limited empirical data and analytical complexity. Based

on a comprehensive analysis of existing knowledge on

WOC and aggregation algorithms, this paper describes the

design and implementation of a static stochastic simulation

model to emulate WOC scenarios with a wide range of

parameters. The model has been thoroughly evaluated: the

assumptions are validated against propositions derived

from literature, and the model has a computational repre-

sentation. The applicability of the model is demonstrated

by investigating aggregation algorithm behavior on a

detailed level, by assessing aggregation algorithm perfor-

mance, and by exploring previously undiscovered suppo-

sitions on WOC. The simulation model helps expand the

understanding of WOC, where previous research was

restricted. Additionally, it gives directions for developing

aggregation algorithms and contributes to a general

understanding of the WOC phenomenon.

Keywords Simulation � Forecasting � Expert judgment �
Expert aggregation � Wisdom of crowds

1 Introduction

High-quality forecasts are essential for informed decision-

making (Sanders 1997). As such, they play an important

role in areas such as sales, product development, finance,

and operations management (Dalrymple 1975; Mahajan

and Wind 1988; Fildes and Hastings 1994; Urban et al.

1996; Slack et al. 2007). In contrast to the traditional

approach of relying on single forecasts, research suggests

combining multiple forecasts to improve accuracy (Clemen

1989). This applies to forecasts based on statistical models

(Bates and Granger 1969; Winkler and Makridakis 1983)

and forecasts drawn from human judgment (Ashton and

Ashton 1985; Lawrence et al. 2006). The aggregation of

multiple judgments is an important area in decision anal-

ysis research (Hurley and Lior 2002) and strongly impacts

IS research (Winter 2009; Bichler et al. 2014).

As early as 1785, the Marquis de Condorcet researched

the probability of a group of individuals arriving at a cor-

rect judgment and identified competence and diversity of

group members as important prerequisites (de Condorcet

1785). In 1907, Galton studied aggregating judgments to
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exploit the individual efforts of a crowd of people (Galton

1907; Surowiecki 2005). While individual judgments

might be biased (Tversky and Kahneman 1974; Hogarth

and Makridakis 1981) and individuals typically lack

expertise required for making informed judgments (Van

Wesep 2016), the aggregation of multiple judgments can

alleviate these issues. The effects of aggregation, with the

goal of outperforming individual judgments, are commonly

referred to as the wisdom of crowds (WOC; see Appendix

for abbreviations) phenomenon (Budescu and Chen 2015;

Larrick et al. 2011). In this paper, we follow the definition

of Davis-Stober et al. (2014), defining a crowd as wise if a

linear combination of individual judgments is on average

more accurate than the judgment of a randomly selected

individual.

The aggregated judgment from a crowd can be derived

via group decision processes (e.g., Kittur and Kraut 2008;

Leimeister 2010; Woolley et al. 2010) or by aggregating

judgments (e.g., Bates and Granger 1969; Einhorn et al.

1977; Ashton and Ashton 1985; Clemen and Winkler

1999). Looking at the latter, mathematically aggregating

judgments (aggregation algorithms; also termed aggrega-

tion models) becomes an important driver of the WOC

phenomenon. When examining aggregation algorithms in

the context of WOC, data availability plays an important

role. Performance-based algorithms (e.g., history-based

algorithms as suggested by Budescu and Chen 2015)

require information (e.g., previous predictions) to calculate

performance measures for experts. Those information

sources are so-called seed variables (Cooke and Goossens

2008). Thus, we look at a crowd of people who individu-

ally provide judgments over multiple periods and the

individual judgments of the target period are aggregated

into one combined judgment.

Consequently, the evaluation of aggregation algorithms

places high demands on corresponding data. To fully

understand the mechanics of WOC, data on internal expert

characteristics (e.g., expertise, biases) as well as external

context factors (e.g., volatility of the forecasted event in

general and over time) is needed. These areas are partly or

fully unobservable or can only be examined in laboratory

settings (e.g., Palley and Soll 2019). Thus, only few

researchers use empirical data (e.g., Herzog and Hertwig

2011; Wagner and Suh 2014; Budescu and Chen 2015).

They focus on niche domains instead of providing domain-

spanning insights due to low generalizability and compa-

rability of results. To overcome this inadequacy of

empirical data, researchers use simulation (e.g., Hastie and

Kameda 2005; Hammitt and Zhang 2013; Keuschnigg and

Ganser 2017). Via simulation, alternating characterizations

of the crowd and the environment (i.e., scenarios) are

recreated and the performance of aggregation algorithms

can be studied. Although simulation-based research has

been employed sparsely in the IS discipline, it has recently

gained traction (Beese et al. 2019). Simulation models, like

all models, are simplifications of reality. They abstract

from parts of the context that is present in empirical work.

This is both a strength as it enables generalization and a

weakness as context is important (Davison and Martinsons

2016; Sarker 2016). Compared to theoretical and empirical

analysis, simulation is recognized as a third way of doing

science (Harrison et al. 2007). We see these ways as

complementary and take the third way to overcome the

problem of data availability in empirical investigations.

Discrete density judgments have been addressed in

research (Hora et al. 2013; Park and Budescu 2015) and are

used by institutions such as the European Central Bank, the

Bank of England, and the Federal Reserve Bank of

Philadelphia (Tay and Wallis 2000). To our knowledge,

only Hammitt and Zhang (2013) have addressed the sim-

ulation of discrete density judgments. Nevertheless, the full

potential of simulation of discrete density judgments has

not been reached yet: There exists no simulation model

providing a general framework for modeling experts with

all necessary characteristics (e.g., expertise, access to

information, biases, uncertainty, …) as well as events with

all necessary characteristics (e.g., cues, volatility, observ-

ability, …) which can be used to implement and examine

existing and new aggregation algorithms.

Guided by WOC theory and simulation-based research,

we aim to close this gap and thus promote research on

judgment aggregation algorithms. Specifically, based on

existing models, we provide a novel model to simulate

discrete expert density judgments that (1) is flexible and

generalizable, (2) allows for detailed expert and event

modeling along the abovementioned characteristics, and

(3) can, therefore, be applied independently of domain,

context, or used aggregation algorithms. The model can

cope with large crowds and provides the flexibility to

design versatile scenarios of experts and events. Beyond

that, we compile relevant literature on the subject into

propositions of the WOC effect and provide an instantia-

tion of our model as an open-source software prototype,

which is thoroughly evaluated and can be used for further

research. We derive new insights into WOC in the process

of evaluating the model.

Section 2 outlines the research method. Section 3

introduces the judgment setting at hand, elaborates on

performance measures for evaluating judgments, describes

aggregation algorithms, and closes the theoretical back-

ground by deriving propositions from WOC literature.

Section 4 describes the conceptual simulation model.

Sections 5 and 6 follow the evaluation process by Sargent

(1987, 2005). First, we compare our conceptual model to

the propositions derived from literature. Second, we verify

the computerized model. Third, we validate the operational
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model by demonstrating that the model leads to new

research insights. Finally, Sect. 7 outlines major theoretical

and managerial implications as well as limitations.

2 Research Method

Simulation is the concept of using computerized repre-

sentations of processes, systems, or events to generate

insights into their inner workings (Law and Kelton 2007).

It has gained support as a means of generating new theory

(Davis et al. 2007) and is used in WOC as well as in OR

and IS in general (Harling 1958; Petrovic et al. 1998; Law

and Kelton 2007; Beese et al. 2019).

The modeling process involves three components: the

problem entity, the conceptual model, and the computer-

ized model (Sargent 1987, 2005). As the correctness of the

model and its results are of great concern, verification and

validation play important roles (Beese et al. 2019). Sargent

(1987, 2005) propose three steps: (1) conceptual model

validation, (2) computerized model verification, and (3)

operational validation.

We conduct the conceptual model validation by

extracting relevant theory in the form of propositions on

WOC and aggregation algorithms from relevant literature

(Sect. 3.4). Propositions represent conceptual truths about

the field of study and allow us to assess whether our con-

ceptual model is a reasonable representation of the problem

entity (Sargent 2005). Propositions described in this work

are not an exhaustive list of WOC phenomena, but rather a

set of properties that our model needs to possess.

Subsequently, we derive our model for static stochastic

(Monte Carlo) simulation (Banks et al. 2010) in Sect. 4. We

finalize the conceptual model validation by evaluating whe-

ther our simulation model behaves according to presented

propositions (Sect. 5). This includes the validation techniques

of predictive validity, event validity, extreme condition tests,

and internal validity (Beese et al. 2019). We do this based on

analytical and logical reasoning and only use simulation when

necessary. Consequently, we simultaneously conduct the

computerized model verification, which provides strong evi-

dence that the implementation adequately represents the

conceptual model. Thus, simulation can be utilized for vali-

dation purposes since the technical implementation is ade-

quate. With the goal of creating a correct implementation, we

utilize established program design and development approa-

ches (modular programming, object orientation, detailed

documentation, etc.) as well as the application of a well-suited

programming language (Python; Oliphant, 2007). Addition-

ally, we conduct test simulations and compare them to

manually computed results from the model (Kleijnen 1995).

The software code is provided open-source to allow for

inspection and reuse.

Finally, the operational validation aims to determine

whether the model’s behavior has the accuracy required for

the model’s purpose (Sargent 1987, 2005). Most of the

elements in the problem entity are non-observable (i.e.,

empirical data on expert characteristics or rarely occurring

circumstances is difficult or impossible to gather). Hence,

the comparison to results from empirical data is not fea-

sible in our case. However, the purpose of this model is not

to create a detailed replica of the problem entity, but rather

an emulation to facilitate data acquisition for scenarios

where data is unavailable. We, therefore, assess operational

validity by exploring the model behavior in-depth and

showing that its results provide new insights into aggre-

gation algorithms and WOC (Sect. 6). This includes the

validation techniques of parameter variability, sensitivity

analysis, and operational graphics (Beese et al. 2019).

Through evidence for applicability and usefulness, opera-

tional validity is accepted. In detail, we do this by shedding

light on three sets of experimental conditions, namely by

(1) exploring how aggregation algorithms weight experts,

by (2) exploring the performance of aggregation algorithms

under changing conditions and by (3) identifying new

suppositions through experimentation.

3 Theoretical Background on the Aggregation

of Expert Judgments

There are multiple terms for statements regarding unknown

entities, e.g., judgments, predictions, and forecasts. While

there are differences (e.g., forecasts are predictions of

future entities, judgments are subjective opinions or pre-

dictions), we use judgments as the term in our paper since,

for the purpose of WOC, the differences are negligible.

Expert judgments and their aggregation can be carried out

under different circumstances, and the dimensions in which

judgment methods can be evaluated are versatile (Carbone

and Armstrong 1982). Therefore, a well-defined setting

(Sect. 3.1), and an adequate performance measure

(Sect. 3.2) must be described. Furthermore, we present an

overview of aggregation algorithms (Sect. 3.3). Finally, we

derive propositions on WOC and aggregation algorithms

from existing literature (Sect. 3.4).

3.1 Judgment and Aggregation Setting

The judgment task, as described in the introduction,

involves a crowd of experts who individually provide

judgment on a particular event. Following the origin of the

WOC phenomenon (Galton 1907), we consider individual

judgments (such as in Davis-Stober et al. 2014; Lee et al.

2011; Mannes et al. 2014) and do not account for group

dynamics. Experts form their judgment about the event
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based on their observation of cues. Experts have access to

different cues of potentially different quality (based on

Brunswik’s lens model as in Karelaia and Hogarth 2008).

Existing literature that applies simulation in the context

of WOC primarily focuses on point estimates (Hastie and

Kameda 2005; Wagner and Vinaimont 2010; Mannes et al.

2014; Keuschnigg and Ganser 2017). Further approaches

include rankings of alternatives (Hurley and Lior 2002) or

probability judgments on binary events (Budescu and Chen

2015). Experts may also choose to provide information on

the certainty of their judgment. Generally, the incorpora-

tion of this probability component is favorable in uncertain

environments (Fischer 1981) and has gained popularity

(Bröcker and Smith 2007). Density judgments bear the

most such information as they include probabilities for all

potential values of the variable in question and are, there-

fore, one of the most general forms of judgment (Tay and

Wallis 2000). Therefore, we focus our work on discrete

density judgments. An illustrative example is predicting

inflation rates, e.g., next year’s inflation rate for the

Eurozone: A possible well-ordered and ordinal set of future

values is f �1;�0:03ð �; �0:03; 0ð �; 0; 0:03ð �; 0:03;1ð Þg.
Experts provide their judgment by assigning a probability

to each interval.

To our knowledge, only Hammitt and Zhang (2013)

have addressed discrete density judgments. Within their

simulation model, Hammitt and Zhang (2013) assume

experts to be perfectly calibrated, meaning that their indi-

vidual error terms are unbiased. This assumption is con-

trary to established theory, stating that even experts are

biased and rely on heuristics to provide judgments under

uncertainty (Tversky and Kahneman 1974). For example,

there is strong evidence for overconfidence in probability

judgments, which interferes with the assumption of perfect

calibration (e.g., Brenner et al. 1996; McKenzie et al.

2008). In addition, Hammitt and Zhang (2013) only sim-

ulate two experts, which is restrictive, as aggregation

becomes especially interesting with bigger crowds.

At the point of judgment, the realization of the event

cannot be witnessed. After some time, the realization

becomes observable and can be compared to expert judg-

ments for ex-post performance measurement (Hammitt and

Zhang 2013). Via performance measures, quality differ-

ences between experts can be derived. If an expert has

already provided previous judgments, the performance of

these judgments can be considered when aggregating new

judgments (e.g., as in Budescu and Chen 2015).

3.2 Performance Measurement

Judgments can be evaluated via criteria such as accuracy,

ease of interpretation, cost, time, and robustness. As

accuracy is the most important (Carbone and Armstrong

1982), we take a look at performance in terms of judgment

accuracy. The accuracy of a judgment defines how close its

estimate lies to the realized value. It can only be assessed

ex-post. In most situations, decision makers may not only

be interested in mean accuracy, but also in the corre-

sponding variance. Thus, besides mean accuracy, variance

is a secondary performance criterion. For density judg-

ments, accurate judgment centers much of the probability

on the realization and shows low dispersion. In decision

theory, a scoring rule measures the accuracy of such

probabilistic judgments (Gneiting and Raftery 2007). In

general, scoring rules penalize deviations from the true set

of probabilities (Bickel 2007) and can thus be used as

performance measures for judgments. In this context, a

proper scoring rule assigns the best score to the true

probability distribution (Murphy 1970).

The Ranked Probability Score (RPS; Epstein 1969) is a

commonly used proper scoring rule for measuring simi-

larity of discrete probability distributions. To assess judg-

ment accuracy, the RPS measures the mean squared

difference between the cumulative distribution functions of

the judgment and realization. Therefore, the better the

prediction’s calibration, the lower the RPS. Formally, it is

defined as:

RPS ¼ a� b �
X

i2I
Fi � Oið Þ2 ð1Þ

where I defines the ordered set of possible outcomes of the

event, Fi represents the value of the cumulative distribution

function of the prediction for outcome i, and Oi indicates

the corresponding cumulative distribution function of the

true observation (step function with 0 for values less than

the realization and 1 for values equal to or greater than the

realization). Without transformation, the RPS assigns zero

to the best prediction (cumulative function equals step

function), and Ij j � 1 to the worst one. Via a and b, the

score can be linearly transformed to a defined value range.

This paper uses the RPS on a scale of 0 to 100.

3.3 Aggregation Algorithms

Galton (1907) used the median judgment to aggregate

opinions of the crowd. This approach is often seen as the

origin of aggregation algorithms (also known as aggrega-

tion models or aggregation rules). We differentiate

approaches by three basic characteristics. First, does the

algorithm rely on past predictions from each expert or other

external information (history-based) or can it be used ad-

hoc? Second, does the algorithm include all members of

the crowd in the weighting and aggregation, or does it

select a sub-set of experts from the crowd? Third, does the

weighting of the selected crowd deviate from an equal

weighting? While the characteristics touch upon different
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aspects of aggregation algorithms, they are not indepen-

dent. Weighting will typically require historical informa-

tion to determine weights. Likewise, requiring historical

information but not using it for selection or weighting is

not sensible. Further, selection can be seen as assigning

weights of zero. Despite these interdependencies rendering

some combinations (namely Yes–Yes–Yes, Yes–No–Yes,

No–No–No) irrelevant, we believe that these perspectives

help characterize aggregation algorithms.

With the goal of selecting algorithms with differing

characteristics, we selected six aggregation algorithms

from literature (Table 1). Additional algorithms such as

Copula algorithms (Jouini and Clemen 1996), Cooke’s

model (Cooke and Goossens 2008; Colson and Cooke

2017), or the newly developed pivoting (Palley and Soll

2019) could be included in the future.

Following Budescu and Chen (2015), the simple average

of all expert judgments is termed Unweighted Model

(UWM). In literature, names like ‘‘equally weighted mean’’

or ‘‘simple average’’ are used. For every possible outcome

of an event, the UWM computes the mean of probabilities

pi assigned to it by the experts:

UWM : pi ¼
1

Nj j
X

n2N
pi;n; 8i 2 I ð2Þ

where pi;n is the probability assigned by expert n to the

event outcome i; and N is the set of all experts. Based on

the UWM, other algorithms have been developed that

weight experts by including a measure of the experts’ past

performance. The Brier Weighted Model (Budescu and

Chen 2015; Chen et al. 2016), e.g., computes the Brier

Score (Brier 1950) for every expert, averaging it over all

historical events. Based on this, weights (wn) are allocated

to the experts. The sum of all weights is equal to 1. The

better an expert’s average BS, the higher his proportionate

weight. We consider the Performance Weighted Model

(PWM) a generalization of the Brier Weighted Model. To

use it with ordinal data, the algorithm is based on the RPS

as a scoring rule for past performance.

PWM : pi ¼
X

n2N
wn � pi;n; 8i 2 I; with

wn ¼

RPSnP
m2N RPSm

if
P
m2N

RPSm 6¼ 0

1

Nj j otherwise

8
>><

>>:

ð3Þ

The PWM only considers the absolute historical per-

formance of expert n, described by RPSn. As an enhance-

ment to this, Budescu and Chen (2015) developed the

Contribution Weighted Model (CWM), also known as

attractivity-based weighting in philosophy (Schurz 2008).

In the CWM definition by Budescu and Chen (2015), an

expert’s contribution is defined as the difference in

aggregated performance with and without said expert.

Here, the performance measure is the BS of the simple

average of the crowd. The change in the crowd’s perfor-

mance is the difference in the BS of the crowd with and

without the target expert. This difference is averaged over

all historical events for each expert n, resulting in CONn. A

positive value means a positive contribution of the expert

and therefore induces a positive weight, whereas a negative

contribution induces a weight of 0, because the expert in

question is expected to impair the judgment. We describe

this with the use of the characteristic function 1½� which is

set to 1 if the condition in the subscript is satisfied, or to 0 if

otherwise. Budescu and Chen (2015) also argue that apart

from the BS, other scoring schemes can also be applied,

which enables the application of the RPS in our paper.

Table 1 Overview of aggregation algorithms

Model name Ad-

Hoc

Selec-

tion

Weigh-

ting

Description Source

Unweighted Model

(UWM)

Yes No No Simple average of all judgments Clemen and Winkler (1986), Budescu

and Chen (2015)

Random Expert Model

(REM)

Yes Yes No Random selection of one expert via

prob. distribution

Davis-Stober et al. (2014)

Performance Weighted

Model (PWM)

No No Yes RPS-based weighting Budescu (2006)

Best Expert Model

(BEM)

No Yes No Selection of the best (in terms of RPS)

expert(s)

Hammitt and Zhang (2013)

Contribution Model

(CM)

No Yes No Contribution-based selection Budescu and Chen (2015)

Contribution Weighted

Model (CWM)

No Yes Yes Contribution-based weighting and

selection

Budescu and Chen (2015)
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CWM : pi ¼
X

n2N
wn � pi;n; 8i 2 I; with

wn ¼

CONn � 1 CONn [ 0½ �P
m2N CONm � 1 CONm [ 0½ �

if 9m 2 N : CONm [ 0

1

Nj j otherwise

8
>><

>>:

ð4Þ

The CWM will ensure that experts who judged well on

past events – while the rest of the crowd judged poorly –

will receive high weights. The weighting in the CWM can

thus be described as a measure of the relative performance

of an expert in a crowd.

The so-called Contribution Model (CM) is also based on

the principle of contribution as a relative performance

measure. It weights all experts with a positive contribution

score equally (Budescu and Chen 2015). Consequently, it

produces less extreme weights compared to the CWM and

does not depend as strongly on individual experts.

CM : pi ¼
X

n2N
wn � pi;n; 8i 2 I;

withwn ¼

1 CONn [ 0½ �P
m2N 1 CONm [ 0½ �

if 9m 2 N : CONm [ 0

1

Nj j otherwise

8
>><

>>:

ð5Þ

An algorithm using more extreme weights is the Best

Expert Model (BEM), also described as ‘‘imitate the best’’

(Schurz 2008). It only selects the expert(s) with the highest

historical performance. Oftentimes this will be a single best

expert obtaining weight 1 (Hammitt and Zhang 2013).

BEM : pi ¼
X

n2N
wn � pi;n;

8i 2 I; with wn ¼
1

j argmax
m2N

RPSmð Þj
ð6Þ

For evaluation purposes, we also include the Random

Expert Model (REM; Davis-Stober et al. 2014) as a

benchmark. The algorithm randomly selects one expert n

from the crowd via a probability distribution and weights

them with 1. While Davis-Stober et al. (2014) allow for

multiple distributions to be used, we use a uniform distri-

bution to reduce complexity.

REM : pi ¼ pi;n; 8i 2 I ð7Þ

Literature has not settled on one superior aggregation

algorithm and instead promotes the application of multiple

algorithms (Hammitt and Zhang 2013). Opinions about the

degree to which a specific weighting outperforms the

unweighted mean vary. On the one hand, there is evidence

that the performance of the UWM is often relatively close

to that of a comparable benchmark using a non-equal

weighting (e.g., Clemen and Winkler 1986; Einhorn et al.

1977; Flandoli et al. 2011). On the other hand, studies also

support the superior performance of weighting-based

algorithms (Cooke and Goossens 2008; Hammitt and

Zhang 2013; Budescu and Chen 2015; Chen et al. 2016).

Consequently, aggregation algorithms leave room for

exploration.

3.4 WOC in Expert Aggregation

To build and evaluate the conceptual model, the problem

entity must be understood. For that purpose, we derive

propositions from literature on the behavior of WOC and

corresponding aggregation algorithms. Propositions repre-

sent conceptual truths about the field of study and allow us

to assess whether the conceptual model is a reasonable

representation of the problem entity (Sargent 2005). In

order to build a general simulation model for WOC, it is

important to recreate a general understanding of the phe-

nomenon via propositions that represent the common

knowledge on WOC. Proposition 1 defines the character-

istics and quality of a single expert, the basic element of

WOC. Proposition 2 postulates the existence of WOC,

while Propositions 3 to 5 examine the WOC effect in more

detail. Finally, Propositions 6 and 7 focus on aggregation

algorithms.

Proposition 1 The optimal expert possesses all informa-

tion, no bias, and no individual uncertainty.

Experts can differ in the amount of relevant information

they possess and in their ability to infer useful judgments

from information. Hammitt and Zhang (2013) define expert

quality with two key figures: informativeness and calibra-

tion. Experts with high informativeness form judgments

with a comparatively low variance around a mean value.

Calibration describes the extent to which realizations from

an expert’s probability distribution occur with the implied

frequency (i.e., the extent to which p % of realizations

actually fall within the p-percentile). A bias is a systematic

displacement of the mean value and can, e.g., express

extreme optimism or pessimism. Experts with a high bias

are poorly calibrated. Thus, an expert’s performance

depends on the amount and quality of information, as well

as a potential bias and variance.

Proposition 2 The wisdom of crowds exists and is robust

to the application in different scenarios and aggregation

algorithms.

Abstracting from single experts, the essential charac-

teristic of WOC lies in improving overall judgment per-

formance by aggregating multiple judgments and thus

reducing the influence of incomplete information and bia-

ses (Surowiecki 2005). Even when members of a crowd are
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biased, the aggregation of multiple judgments can make the

crowd wise. Based on Davis-Stober et al. (2014) we define

a crowd as wise if a linear combination of individual

judgments is on average more accurate than a randomly

selected individual. This holds true even for the UWM, and

under unfavorable conditions, such as correlated judgments

or highly and unidirectionally-biased crowds. Apart from

its robustness to various scenarios (e.g., highly biased

crowds), the existence of WOC is robust to different kinds

of judgment aggregation approaches (Davis-Stober et al.

2014). Consequently, an aggregated judgment should, on

average, be superior to a random one.

Proposition 3 There is a linear combination of expert

judgments that, on average, performs at least as good as

the deterministic best expert.

Even under extreme circumstances, it is nearly always

favorable to rely on the weighted crowd or selected sub-

crowd than the single best individual. Davis-Stober et al.

(2014) show that a linear combination of judgments is, on

average, at least as good as the selection of one expert,

even if this is the best expert. One explanation can be found

in the bias/variance trade-off. By averaging multiple

judgments, the variance of the predictions is reduced to a

level that compensates for the potentially induced bias.

Another reason for this is the probability of including more

expertise in the judgment by aggregating multiple opinions.

Proposition 4 On average, the performance of aggrega-

tion algorithms increases with crowd size.

Crowd size influences the performance of aggregation

algorithms. Thinking of an unbiased expert judgment as the

true value plus a random error (as done by Hammitt and

Zhang, 2013), according to the law of large numbers, an

increasing number of experts will stabilize the aggregated

judgment around the true value and decrease variance

(Einhorn et al. 1977). The effect of increasing aggregation

performance with increasing crowd size has been shown

analytically (Hogarth, 1978), empirically (Chen et al.

2016), and via simulation (Wagner and Vinaimont 2010).

However, it is important to assume that the increase in

crowd size originates from randomly selected experts and

not from specifically characterized experts (e.g., unquali-

fied ones). This means that their errors are randomly dis-

tributed, i.e., there is no systematic bias in the expert

population.

Proposition 5 The more similar experts are, the harder it

is to create a wise crowd.

Apart from crowd size, other characteristics also play

substantial roles. The best performance of WOC can be

achieved when judgments systematically differ as much as

possible (Davis-Stober et al. 2014) because this maximizes

available information (Budescu 2006). Systematically dif-

fering judgments are a result of experts having access to

different information sources or having different charac-

teristics such as biases. Even if each expert holds only little

information, the overall crowd might have access to all

sources (Herzog and Hertwig 2011). This characteristic is

called information diversity and partly explains the WOC

effect. As a result, when adding a new expert to a crowd, it

is on average best to choose the maximally different one

from the existing crowd. This implies that experts’ judg-

ments should be collected independently (i.e., without

communication between experts). Budescu and Chen

(2015) have shown that the higher the similarity between

experts in a crowd, the more experts are necessary to

achieve the same level of judgment accuracy. Taking this

to the extreme, the wisest crowd contains negatively cor-

related experts (Davis-Stober et al. 2014).

Proposition 6 Much ([ 50%) of the advantage of

weighting algorithms can be attributed to the initial

selection of experts and only subordinately to subsequent

weighting.

Many aggregation algorithms (e.g., PWM, CM, CWM)

use external information to impose a selection or weighting

of experts. Their advantage lies in their ability to identify

knowledgeable experts (Budescu and Chen 2015). A larger

unweighted crowd, including good and bad experts, might

be outperformed by the selection and weighting of good

ones (Einhorn et al. 1977; Dana et al. 2015). That being

said, Budescu and Chen (2015) remark that the quality of

the CWM’s performance is predicated on its efficiency in

selecting the important experts in a crowd (removing all

other experts from the crowd). The subsequent weighting

of remaining experts only accounts for about 40% of the

advantage over other algorithms.

Proposition 7 History-based weighting profits from a

large amount of seed events. The performance converges

asymptotically.

Budescu and Chen (2015) state that the CWM performs

better, the more historical events are available to evaluate

historical performance. This assumption also applies to

other history-based algorithms (e.g., PWM, BEM). Adding

past events decreases the error rate of algorithms trying to

identify historical expert performance. However, perfor-

mance of history-based algorithms will not increase sig-

nificantly when provided with more than * 25 historical

events (Budescu, Chen, Lakshmikanth, Mellers, & Tetlock,

2016).
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4 Simulation Model

Data availability plays an important role in WOC research.

This makes applying simulation models particularly inter-

esting. When examining WOC, data on the judgment of

experts and the corresponding realization of the judged

event are required. Consequently, our simulation model is

static and stochastic (Banks et al. 2010) – also known as

Monte Carlo simulation – and contains two key elements:

stochastic events (which are to be judged) and experts (who

provide those judgments). To simulate circumstances

(called scenarios), stochastic events as well as experts are

characterized by adjustable parameters, which influence the

quality of the judgment and the volatility of the events. The

simulation of events and expert judgments is conducted for

multiple points in time to acquire the necessary history of

predictions and realizations for history-based algorithms. A

representation of the simulation model is depicted in

Fig. 1.

An event is described as a probabilistic future incident

or state. Typical examples are future stock prices, future

sales of a new product, or next year’s inflation rate. All

these are not directly observable ex ante, but their future

value is influenced by a multitude of factors. Following

Hastie and Kameda (2005), we call factors that hint at the

future event value cues. Examples of cues impacting the

above events could be a firm’s historical profits and busi-

ness plan, results from a market survey, or a recent decision

in monetary policy. Thus, we model an event X at time t as

the weighted average of a set J of different cues Ct;j with

corresponding weights vt;j [ 0:

Xt ¼
1P

j2J vt;j
�
X

j2J
vt;j � Ct;j; Ct;j �N lt;j; r

2
t;j

� �
ð8Þ

Following Hastie and Kameda (2005) and Keuschnigg

and Ganser (2017), we model the relation between cues and

event X as a weighted average. Cues are random variables

which, in our instance of the model, are normally dis-

tributed. By differing in their lt;j, cues can be more or less

representative of the underlying event (i.e., more or less

close to the expected value of the event) and hence differ in

quality. While cues and experts in reality are – more often

than not – somewhat correlated (Broomell and Budescu

2009), we model cues as independent variables since inter-

expert correlation can also be achieved via access to the

same cues (Morris 1986).

We assume that there is one event per time step. The set

of all events is thus defined as X ¼ X�T ;X�Tþ1; . . .;X0f g.
The events are not correlated. The events X�T to X�1 are

called seed events and represent events that have already

occurred in the past. Their realizations and judgment data

are already fully available. Target event X0 is to be judged.

In general, there are three possible ways of how experts

make judgments. Experts can provide point estimates (de

Menezes et al. 2000), interval estimates (e.g., confidence

intervals; McKenzie et al. 2008), or a discrete probability

distribution (Yates et al. 1991). We apply the latter, which

is extensively addressed in research (e.g., Clemen and

Winkler 1999; Genest and Zidek 1986; Hammitt and

Zhang 2013), or practical forecasting applications (e.g.,

European Central Bank 2017). Consequently, we select the

RPS as an adequate scoring rule for measuring judgment

performance.

The second key model component are experts. Let N

denote the set of experts. Our simulated experts can differ

in three aspects: whether or not they have access to some or

all cues related to an event, their individual uncertainty,

determining the width of the individual probability distri-

bution, and a bias, which affects the mean of the distri-

bution. Access to cues means that experts know about the

realized value of cue Ct;j. Hence, experts form judgments

by calculating the weighted average of all realized cues

Fig. 1 Overview of event and

expert simulation model for

time t

123

336 P. Afflerbach et al.: A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon, Bus Inf Syst Eng 63(4):329–348 (2021)



known to them, while ignoring cues they do not know

about. Experts might not accurately perceive or process the

informational cues, thereby adding a random error

parameterized by bias (mean = 0) and uncertainty (vari-

ance[ 0). Access to a cue is described by an;t;j. If expert n
observes cue Ct;j, an;t;j defines the weight the expert allo-

cates to the cue. Otherwise, it is 0. The random error can be

modeled with a probability distribution. Following Ham-

mitt and Zhang (2013), we use normal distributions as an

example: The uncertainty is described by variance r2n of the
distribution, while the bias is the offset ln. Adding up these

requirements to a stochastic formula, the judgment En;t of

expert n for the event at time t is modeled as follows:

En;t ¼
1P

j2J an;t;j
�
X

j2J
an;t;j � Ct;j

 !
þ en;

withen �N ln; r
2
n

� �
ð9Þ

The set I of numerical intervals is defined freely within

the range of possible outcomes. To simulate a discrete

probability distribution (probabilities for a well-ordered set

of intervals), we draw multiple times upon the expert’s

probabilistic judgment En;t and calculate the relative fre-

quency of a hit in an interval.

As in all Monte Carlo simulations, the procedure of

deriving judgments must be repeated multiple times per

scenario in order to create a sufficiently stable probability

distribution that can be used to assess the outcome.

A common empirical analysis would consider effect size

and statistical significance to appraise statistical relation-

ships. While effect size is important in our model, statis-

tical significance is less so. The methods of frequentist

statistical hypothesis testing were designed for low-repli-

cation empirical data – they are inappropriate when com-

paring outputs of simulation models (White et al. 2014).

One reason is that, for a given effect size, p-values depend

on the number of replications under analysis, which can be

arbitrarily high in simulation. This can produce minuscule

p-values regardless of the effect size (White et al. 2014).

Excessive sample size increases ‘‘the sensitivity of statis-

tical tests possibly to the point of absurdity’’ and surfaces

statistically significant results on contextually inconse-

quential differences (Lee et al. 2015, paragraph 2.2). Thus,

we suggest setting the number of simulation runs per sce-

nario sufficiently large for obtaining meaningful estimates

of outcome distributions and effect sizes but to refrain from

significance testing (Lee et al. 2015). Different metrics for

variance stability may be employed for determining mini-

mum sample sizes, that is, the number of required simu-

lation runs – e.g., confidence interval bound variance (Law

and Kelton 2007), coefficient of variation (Lorscheid et al.

2012), or windowed variance (Lee et al. 2015). These

procedures may be applied to all scenarios under

consideration and the required number of simulation runs is

the maximum deriving from any of these scenarios. Once

this minimum number of simulation runs is determined,

one should not test for significance of results but merely

interpret the contextual significance of differences.

In the following, if not specifically stated otherwise, we

reduce the degrees of freedom in our model to limit the

complexity of the simulation: (1) we do not change events

or the experts’ access to information over time, meaning

that the an;t;j and vt;j stay constant with changing t, (2) we

use unweighted averages of cues both for events and

experts, meaning that all vt;j are 1 and all an;t;j are either 0

or 1. In other words, experts do not learn over time and do

not weight cues.

For evaluation, we focus on three types of scenarios that

represent different stylized configurations of crowds. For

illustration, we use the notation of a Nj j � Jj j matrix At

containing the an;t;j:

At ¼
a1;t;1 � � � a1;t;j
..
. . .

. ..
.

an;t;1 � � � an;t;j

0

B@

1

CA8t ð10Þ

The first symbolic scenario contains experts that all have

access to different cues. They do not share access to cues.

Instead, each expert owns a different piece of information.

In matrix notation, this generates a diagonal matrix ( Nj j
experts, Jj j ¼ Nj j cues). Our second scenario represents

experts with varying levels of expertise. The best-informed

expert has access to all cues, while the worst-informed

expert has no cues. This manifests in a triangular matrix

with an additional row of zeros for the uninformed expert

( Nj j ¼ Jj j þ 1). Finally, we consider so-called information

clusters: We assume that groups of several experts share

the same cues and therefore form clusters of similar

knowledge. A matrix representation of this case would

contain several well-defined areas of ones and zeros and

will henceforth be called cluster matrix.

5 Conceptual and Computerized Model Validation

Validating the conceptual model involves comparing it to

the corresponding problem entity in order to determine

whether the model adequately represents commonly

accepted characteristics. To answer this, we show that the

propositions derived from literature (Sect. 3.4) hold within

our model. We partially validate the conceptual model via

analytical reasoning, and indirectly via simulation. This

will show that the simulation model is valid as a repre-

sentation of the problem entity and as a means of under-

standing the characteristics of aggregation algorithms and

WOC in general. In the following, we assume for ease and
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brevity that events are unweighted averages of cues

(vt;j ¼ vt;k8j; k 2 J) and that experts are aware of this (i.e.,

they only estimate unweighted averages). This reduces the

number of scenarios and hence limits computational com-

plexity while allowing us to vary the expert’s information

level via access to the cues.

Proposition 1 states that the optimal expert possesses all

information, no bias, and no uncertainty. An expert is

considered optimal if he always allocates a 100% proba-

bility to the interval containing the future realization of the

event. Consider two experts: A and B, who have complete

information (an;t;j ¼ 1) and no bias (lA ¼ 0; lB ¼ 0Þ. The
uncertainty of A is lower than that of B (r2A\r2B). From
lower uncertainty, it follows that on average, A’s allocated

probabilities will scatter less, and A will assign more

probability to intervals close to the mean (i.e., the real-

ization of the event). Consequently, A is better than B.

Now consider new characteristics for A and B: Both have

no bias and uncertainty, but A has access to more cues than

B. Since the realization of the event is the average of all

cues, access to more cues increases the probability of being

close to the realization. Therefore, A is better than B.

Finally, consider A and B as experts with all information

and no uncertainty. When A is less biased than B, A will be

closer to the realization. Again, A is better than B. We can

conclude that an expert with less uncertainty, less bias, and

access to more information is generally better. Proposition

1 holds for our model since the optimal expert must possess

all available cues (an;t;j ¼ 1), no bias (l ¼ 0), and no

individual uncertainty (r ¼ 0).

Proposition 2 does not focus on individual expertise, but

rather on the existence of crowd wisdom. Based on Davis-

Stober et al. (2014) we define a crowd as wise if a linear

combination of individual judgments is, on average, more

accurate than randomly selected individuals. We want to

show that aggregation algorithms (like UWM, PWM,

CWM, and CM) are, on average, more accurate than ran-

domly drawn experts from the crowd (REM). Looking at a

crowd of N experts, it is fair to assume that they infer their

judgment based on at least partly different cues

(9an;t;j ¼ 0). Thus, by aggregating judgments of multiple

experts, more cues are considered than for a single ran-

domly selected expert, and the overall judgment becomes

more informed. Similar effects are caused by the expert-

specific error term. By aggregating judgments of multiple

experts and thus aggregating their error terms, the overall

deviation from the value implied by the cues is reduced

because the standard deviation of an average of indepen-

dently distributed random variables is smaller than that of a

single random variable. As a result, in our model, the

aggregation of multiple experts improves judgment accu-

racy and leads to wise crowd-based judgments. We can

demonstrate the validity and robustness of this property by

simulating several different scenarios, measuring the

average RPS performance of aggregation algorithms. We

use scenarios where we vary expertise, uncertainty or bias.

Aggregation algorithm performances in exemplary sce-

narios are depicted in Fig. 2. The RPS scores for all

algorithms that aggregate multiple experts (UWM, PWM,

CWM, and CM) are, on average, higher than that of a

random expert (REM). Thus, we can show that the wisdom

of crowds exists in our model and is robust in a wide range

of scenarios and aggregation algorithms. However, extreme

scenarios do exist where the REM outperforms other

aggregation algorithms.

A stronger assumption is formulated in Proposition 3,

which suggests that for every scenario, there is some linear

aggregation of judgments that, on average, performs at

least as good as not only a random expert, but as the

deterministic best expert. Via Jensen’s inequality, Davis-

Stober et al. (2014) have proven that this proposition holds

in theory. To test it for our simulation, we specify w ¼
w1;w2; . . .;wnð Þ as the vector of weights assigned to

experts N while linearly aggregating their judgments.

Without loss of generality, we assume the deterministic

best expert to be weighted with w1. Then, the selection of

the best expert results in wBEM ¼ 1; 0; . . .; 0ð Þ. Consider an
extreme scenario where one expert holds all information

while all other experts are badly calibrated and unin-

formed. Here, using wBEM as aggregation will, on average,

outperform all other aggregation algorithms. However, this

is an artificial scenario. It is reasonable to assume that a

best expert in a realistic scenario is not holding all infor-

mation and is therefore not judging perfectly, as this is

highly unlikely in the real world. Such scenarios contain no

perfect experts and more than one expert holds relevant

information. Optimal weights will deviate from wBEM

towards a more equal weighting, thus outperforming the

deterministic best expert.

Proposition 4 assumes that increasing crowd size

impacts the performance of WOC positively. Imagine a

scenario with Nj j randomly characterized experts and Jj j
cues. Independently of all other Jj j � 1 cues, the proba-

bility pj of having access to one particular cue j is the same

for every expert and greater than zero. Therefore, with

probability 1� pj
� � Nj j

, the overall crowd does not have

access to the cue. If we now add another randomly char-

acterized expert, the probability of adding that particular

cue to the pool of available information for the first time is

1� pj
� � Nj j�pj [ 0. This implies that with positive proba-

bility a new expert is valuable to the crowd since he might

add new cues to the crowd’s knowledge base. If not, he is

not useful as a carrier of new information but can still

reduce overall variance of the aggregated judgment since
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we assume no systematic bias in the expert population. In

extreme cases only, experts can decrease the crowd’s

performance (e.g., by being heavily biased). Altogether, a

new expert generally increases crowd performance by

adding new information or reducing judgment variance.

The effect diminishes with increasing crowd size.

Proposition 5 describes the assumption that WOC is

based on maximizing available information; it suggests that

aggregation algorithm performance is better when acting

on heterogeneous crowds. A heterogeneous crowd contains

differently characterized experts (i.e., experts that have

access to different cues). This means that the crowd has

access to more cues overall, while a homogeneous crowd

only has access to a limited information pool. As in

Proposition 4, we reason that every expert added to the

crowd has a positive probability of adding new cues to the

crowd and thus increasing performance if not all cues are

already available in the crowd. If all cues are available,

new experts might still diversify the crowd’s error.

Proposition 6 suggests that weighting algorithms benefit

primarily from selecting knowledgeable experts and only

subordinately from subsequent weighting. As such,

selecting experts is generally more important than trying to

additionally weight them according to their level of

expertise. Via simulation, we can confirm that the perfor-

mance advantage of weighting algorithms can largely be

attributed to the selection of experts. We look at many

different scenarios where there is heterogeneity of exper-

tise in the crowd and use the CM as a modification of the

CWM with equal weights for the selected experts. The

CM’s performance is, on average, closer to the CWM’s

performance than to the UWM’s (Fig. 2). From this, we

conclude that selection is more important than the actual

weighting of remaining experts. Therefore, the proposition

holds.

Fig. 2 Aggregation algorithm performance in different scenarios
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Finally, Proposition 7 focuses on the algorithms’ ability

to extract information on expert performance from histor-

ical events. We assume that the performance of history-

based algorithms generally increases with the amount of

available seed events (i.e., the mean RPS will increase, or

the variance will decrease). Additionally, we expect the

performance to converge asymptotically with increasing

seed events because the measurement of an expert’s his-

torical performance will stabilize. We test scenarios with 5,

15, 25, and 50 seed events and compare the CWM’s

resulting performance measurements (Table 2). In partic-

ular, the decreasing and simultaneously converging vari-

ance of the performance supports our assumption.

In sum, all WOC propositions hold true within our

model. Therefore, it is reasonable to assume that the con-

ceptual model is valid.

Validating the correctness of the computerized model

requires assurance that the programming and implementa-

tion of the conceptual model are correct (Sargent

1987, 2005; Kleijnen 1995). The computerized imple-

mentation of the model has been designed and imple-

mented in a top-down approach using standard software

design and development procedures. It is implemented in

the general-purpose programming language Python, which

is often used in statistics and simulation (Oliphant 2007).

Every component and function of the conceptual model has

been mapped to separate modules in the computerized

model, thereby ensuring program modularity. Every mod-

ule has been tested: First, all necessary simulation func-

tions have been executed with dummy scenarios.

Afterward, individual modules and the whole model have

been tested using static as well as dynamic testing

approaches. Their output was compared to manually

computed results of the conceptual model. We can con-

clude from positive results that the computerized model is

representing the conceptual model correctly. All informa-

tion has been documented to assert future expandability.

The use of the computerized model for evaluating the

conceptual model with respect to selected propositions

further supports the validity of the computerized model.

The software is provided as open-source code to allow for

further validation and reuse of our computerized model1.

6 Operational Model Validation

Operational validity is concerned with examining the

model’s applicability by ensuring that it creates accurate

results that are useful for the intended purpose. This section

provides evidence for applicability and usefulness. We

show that the simulation model can be used to investigate

the behavior of aggregation algorithms (Sect. 6.1), to

assess the performance of aggregation algorithms under

circumstances that are hard to investigate empirically

(Sect. 6.2), and to explore suppositions for further research

(Sect. 6.3).

We use the simulation model to conduct experiments by

constructing scenarios and measuring the behavior of

aggregation algorithms. For this purpose, we define a ref-

erence setting for experimental scenarios consisting of seed

variables, outcome intervals I, and the number of simula-

tion runs; it defines the basic setting that we use for all

experiments (unless specified otherwise), which ensures

comparability of different scenarios. The algorithms can

rely on 25 seed variables for each expert. We derive

selectable intervals from the range of the event distribution

Xt �N lt; r
2
t

� �
. Of all possible intervals, Ij j � 2 intervals

are equidistantly distributed within lt � 2rt; lt þ 2rt½ �, and
two remaining intervals are open intervals towards �1
and þ1, respectively. Again, we assume events to be

unweighted averages of cues. We determine the minimum

number of necessary simulation runs to obtain sufficiently

stable distributions with the windowed variance method

(Lee et al. 2015). If results are compared between different

scenarios, 10,000 cycles are sufficient; if not, 3000 cycles

are sufficient. The event specifications, the size of the

crowd, and individual characteristics are defined per sce-

nario, as they fundamentally define experiments. This

allows us to create a range of scenarios to examine WOC

and, with it, the simulation model’s ability to derive new

research findings.

6.1 Understanding Aggregation Algorithms in Depth –

Expertise Diversity and Seed Events

One application of simulation is to further understand the

particulars of aggregation algorithms. As the inner work-

ings of aggregation algorithms are difficult to understand

from the outside, a deeper analysis is required (Clemen and

Winkler 1986). When creating decision models based on

aggregation algorithms and scenarios, it is crucial to

understand which algorithm will work best (e.g., Hammitt

and Zhang 2013).

We create two scenarios, fashioned to illustrate dis-

crepancies in the aggregation algorithms’ weighting. Each

scenario consists of ten experts who only differ in their

Table 2 Mean and variance of RPS scores for the CWM in scenarios

with different seed amounts

Number of seeds 5 15 25 50

Mean RPS 96.459 96.830 96.875 96.904

Variance RPS 4.957 3.323 2.964 2.871

1 https://github.com/chaOtis/simulating-woc/
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access to cues. The information matrix of one scenario is

triangular (i.e., expert n 2 1; . . .; 10f g has access to exactly

n out of ten cues) while the matrix of the second scenario is

diagonal (i.e., each expert has access to a different one of

the cues). The triangular matrix portrays a heterogeneous

distribution of expertise in the crowd, while the diagonal

matrix depicts similar experts in terms of expertise. Fig-

ure 3 shows the cumulative average weights for both sce-

narios as a function of the share of experts. For example,

20% of experts in the triangular scenario possess * 70%

of weights when using the CWM. A steep incline in the

curve signals the allocation of substantial weight to few

experts.

Since the UWM distributes equal weights to experts

independent of scenario characteristics, the cumulative

weights always proceed linearly. The PWM assesses his-

torical performance based on the RPS and assigns weights

accordingly. Under heterogeneous expertise, this leads to a

slightly unequal weighting. The CWM and CM both select

experts. Thus, the full weight is allocated to a subset of

experts. This effect is stronger for the CWM than for the

CM since it also weights the selected experts. The BEM is

not displayed here as it only selects one expert in every

application. Figure 4 shows the corresponding performance

scores. As high performance and low variance are desir-

able, it suggests a clear ranking of aggregation algorithms

for the triangular matrix scenario with BEM being best,

followed by CWM, CM, PWM, and UWM as worst. In

other words: The more unequal the weighting, the better

the performance in this scenario.

Expertise and experts’ weights are clearly heteroge-

neous in the triangular scenario. However, in the diagonal

scenario, on average, all experts show equal performance,

and no superior one can be found. Consequently, weighting

algorithms (PWM, CWM, CM) compute an equal

weighting for all experts (Fig. 3) and achieve mean per-

formance scores similar to the UWM (Fig. 4). However,

while performance is comparable, the variance of weight-

ing algorithms is higher in scenarios with little differenti-

ation in the expertise.

We conclude that the performance of weighting algo-

rithms depends on a certain variation in a crowd’s exper-

tise. For similar experts, aggregation algorithms using

performance measures can even perform worse than

equally weighting algorithms since they falsely introduce

weighting, despite no expert having superior expertise.

Furthermore, the performance of the CM is strongly related

to that of the CWM. Both algorithms benefit from diverse

crowds and will generally outperform the UWM if there is

special expertise within the crowd. The BEM performs

strongly for crowds including well-informed experts and

poorly otherwise.

In a second step, we inspect aggregation algorithms’

dependence on seed events. Apart from the U21WM, all

selected algorithms depend on identifying good experts

based on historical performance. Consequently, the number

of observable seed events influences algorithm perfor-

mance (Cooke and Goossens 2008; Eggstaff et al. 2014,

Budescu 2006). However, a deeper understanding of the

coherences, especially concerning the CWM, still needs to

be obtained.

We investigate the necessary number of seed variables

by analyzing the standard deviation of the CWM’s

weighting in scenarios where different amounts of seed

events are available. We define the standard deviation of

the weighting as the standard deviation of an expert’s

weight across simulation runs, averaged across experts.

Low standard deviation signals that aggregation algorithms

reliably calculate almost the same weights in every run.

This indicates that enough seed events are present for

algorithms to form a stable weighting. We focus on two

scenarios, each containing five experts: a diagonal matrix

and a matrix with two fully informed and three uninformed

experts (cluster matrix). To limit complexity, we use

powers of 2 as seed amounts: 4, 8, 16, 32, 64, 128, and 256.

Higher numbers will seldomly occur in a real-world

context.

Table 3 shows the standard deviation of the CWM’s

weighting for each scenario and seed amount. The standard

deviations are generally lower for the cluster matrix

because the uninformed experts are mostly deselected by

the CWM, and their weights seldomly deviate from zero.

The data shows that quadrupling the number of seed

variables decreases the standard deviations by at least 30%,

on average even by 45%. Not surprisingly, more seed

events are better for the CWM.

Even for 256 seed events, the weights calculated by the

CWM in the diagonal matrix scenario vary substantially

more than for only 4 seed events in the block matrix sce-

nario. Thus, when judging the reliability of weights, the

diversity of expertise appears more important than the

number of seed events.

The results indicate that diversity of expertise is essen-

tial for weighting aggregation algorithms to work, that

more seed events are better, but that diversity trumps

number of seed events.

6.2 Evaluating Algorithm Performance – Structural

Breaks

The aggregation of judgments is concerned with improving

judgment accuracy. In general, literature on WOC and

aggregating judgments is mostly concerned with quantita-

tively assessing the aggregation algorithms’ performance

(Clemen 1989). This assessment is foremost conducted
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empirically (e.g., Budescu 2006; Clemen and Winkler

1999; Cooke and Goossens 2008). This is reasonable for

evaluating performance under externally given circum-

stances. However, when measuring performance of algo-

rithms for specific circumstances, this approach reaches its

limits. A general example for such circumstances are

structural breaks in time series, i.e., situations where

underlying characteristics (e.g., that describe an industry)

change fundamentally and remain in this new state. With

quickly changing technological landscapes, fast-moving

industries and volatile global financial markets, structural

breaks are especially relevant in practice.

The underlying assumption of history-based aggregation

algorithms is that experts who performed well in the past

are likely to perform well in the future. With structural

breaks, this hypothesis might not be true. Consider experts

providing judgments on which technology will emerge as

new market leader. Experts in this market might be clus-

tered in groups: Experts in group 1 bet on the success of the

incumbent technology, while experts of group 2 bet on the

emerging technology’s success. While the emerging tech-

nology is still a niche product, experts favoring the

incumbent will deliver accurate judgments. Yet as soon as

the emerging technology has its breakthrough, it rapidly

gains market share and eventually replaces the incumbent.

This break can be simulated by changing cue properties.

Since this usually happens quickly and experts tend to stick

to their judgments, group 1 will now deliver inaccurate

Fig. 3 Cumulative weighting in

two different scenarios

Fig. 4 Boxplot of RPS values

for two different scenarios

Table 3 Standard deviation of the CWM’s weighting, depending on the number of seeds available

Number of seeds 4 8 16 32 64 128 256

Diagonal Matrix 0.168 0.147 0.112 0.081 0.060 0.050 0.042

Cluster Matrix 0.025 0.020 0.006 0.004 0.003 0.002 0.002
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judgments, while group 2 delivers accurate ones. A famous

example for such a structural break was the rise of digital

photography (Lucas and Goh 2009).

Since history-based aggregation algorithms use existing

seeds to weight experts, the point in time of the structural

break impacts aggregated judgments. We evaluate algo-

rithm performance depending on the time of the structural

break. Figure 5 shows the mean RPS of the algorithms as a

function of the break’s time when simulating a scenario

such as the one described above.

The first structural break (at t ¼ �25) is equivalent to

the information switch before the first period of the simu-

lation model’s history; thus, algorithms only observe

experts providing their post-structural-break estimates.

Thus, the algorithms behave as if there were no structural

break. On the other side of the spectrum (break at t ¼ �1),

the algorithms only observe one historical period that

occurs after the structural break.

Figure. 5 clearly shows that the performance of the

history-independent UWM remains constant over time. As

expected, history-dependent algorithms show a decrease in

performance the later the structural break takes place.

Among these algorithms, the point in time and the extent of

the impact on the performance substantially differ. The

BEM is the first algorithm to show a substantial drop in

performance, followed by CWM and CM. The PWM

performs similar to the UWM and is characterized by a

constant decrease. Comparing the algorithms to the UWM

as benchmark, the performance increase of history-based

algorithms in case of an early structural break is far lower

than the performance decrease in case of a late structural

break. Furthermore, for early structural breaks, the history-

based algorithms seem to be very close to each other, and

the CWM can hold its performance advantage against the

UWM longest.

The performance decrease of history-based algorithms is

tied to their weighting. The later the structural break takes

place, the more pre-structural break information is included

in the weights. Since the experts’ performance switches,

the included information is flawed, and the algorithms

allocate above-average weights to experts who perform

worse. This leads to a decrease in performance. The extent

to which algorithms react to structural breaks thus depends

on the strength of their weighting. Depending on the

algorithms’ specific weighting logic, the intensity of the

weighting differs substantially.

Moreover, the simulation brought unexpected behavior

of the CWM to light. Looking at periods t = - 25 to

t = - 19, the RPS increases. This behavior is unexpected

since the algorithm can access the most representative data

on the experts if the structural break takes place at

t ¼ �25; thus, one would expect performance to be highest

there. The later the structural break takes place, the more

flawed information is incorporated into the calculations of

the weights. Taking a closer look at the weights supports

the assumption that flawed information leads to less

extreme weighting which results in more moderate judg-

ments and increases the average performance. Thus, it

appears that in periods t ¼ �25 to �19, the CWM suffers

from overfitting and benefits from a slight reversal.

Generally, history-based weighting allows for a high

possibility of long-term success, coupled with risk of short-

term errors in volatile scenarios. These findings have not

yet been established empirically, presumably as structural

breaks only occur seldomly, especially in combination with

available judgement data. Future research should address

the underlying question of how to balance short-term ver-

sus long-term success.

6.3 Exploring New Suppositions

Experimentation is a core application of simulation mod-

els. Effective experimentation supports discovering new

theory (Davis et al. 2007). Simulation methods enable

Fig. 5 Impact of structural

breaks on the performance of

aggregation algorithms

123

P. Afflerbach et al.: A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon, Bus Inf Syst Eng 63(4):329–348 (2021) 343



experimentation across a wide range of conditions. By

varying assumptions and values in our model, we identified

two new suppositions that demand further exploration.

These suppositions are a first step in establishing new

theory in the WOC field and focus on the optimal com-

position and characterization of expert crowds. We pur-

posefully call them suppositions to set them apart from

aforementioned propositions and from hypotheses as these

are typically used in empirical analyses. First, we address a

specific issue of the CWM, which can lead to flawed

assessments of expert performance and impair the CWM’s

judgment performance. Second, we examine the expert-

specific as well as the crowd’s overall uncertainty and try

to identify conditions for optimality.

The CWM measures expert performance relative to the

crowd’s performance. Therefore, even reasonably good

experts can be deselected. Also, a reasonably uninformed

expert can increase the crowd’s performance by balancing

a bias held by the majority of experts (i.e., by bracketing

the true value; Larrick and Soll 2006; Herzog and Hertwig

2009) and might, therefore, be selected. Imagine a scenario

with five experts and three cues ct;1; ct;2; ct;3
� �

. Let one

expert have access to ct;1. The other four experts are rea-

sonably well-informed, but similar to one another (access

to ct;2 and ct;3 each). Thus, the first expert has exclusive

access to ct;1. In such a scenario, we expect the CWM to

distribute much of the weight among the four well-in-

formed experts, but still select the first expert because of

his access to a cue that is rarely observed. However, sim-

ulation results in CWM weights and performance scores as

depicted in Fig. 6.

In 84% of runs, the CWM allocates a weight of 1 to

expert 1, while well-informed experts (experts 2-5) are

weighted with 0. Consequently, we see that the perfor-

mance of the CWM and CM is considerably lower than that

of other algorithms, as it mostly only considers the unin-

formed expert’s judgment (Fig. 6).

This might happen for two reasons. First and foremost,

the contribution score of expert 1 to the crowd is extremely

positive as he adds information about a rare cue. This

makes selecting him and allocating a relatively high weight

reasonable. Secondly, the contributions of experts 2–5, as

calculated by the CWM formulation of Budescu and Chen

(2015), are mostly negative. Since they are similar to each

other, excluding one of them from the crowd will consid-

erably increase crowd performance because it will lower

the excess weight of said experts in an unweighted mean. A

negative contribution leads to the deselection of the

respective expert. Thus, the effect appears due to the iso-

lated perspective of the CWM on a single expert’s per-

formance relative to the crowd. It becomes stronger the

more similarly experts are characterized and the stronger

groups of similar experts are in a crowd. Simultaneously,

when experts are characterized diversely, the effect will

disappear. Of course, we show an artificial scenario with

only five experts. However, the effect holds true to a

somewhat lesser extent in scenarios with additional

experts. We therefore state our first supposition as follows:

Supposition 1: High similarity of experts in a crowd can

lead to the CWM deselecting said experts which in turn

leads to an unfavorable forecasting performance.

In a second experiment, we inspect the experts’ indi-

vidual uncertainty rn and how it affects judgment perfor-

mance. We focus on the optimal individual uncertainty

(i.e., the uncertainty value that maximizes an expert’s

individual judgment performance). First, which factors

influence the value of the optimal uncertainty, and how

strong is the impact of deviating from the optimal value on

expert performance? We build a scenario with three cues

(ct;j �N 0; 1ð Þ8j 2 J ¼ 1; 2; 3f g). We use a brute-force

approach to compute the optimal individual uncertainty for

an expert while varying the expert-specific bias ln and the

number of available cues as described by
PJj j

j¼1

an;t;j. Subse-

quently, we let the expert deviate from this optimal value to

see how strong the impact of uncertainty is on expert

performance. The optimal uncertainty values for each set

of parameters as well as the performance scores are shown

in Fig. 7. ln is defined within reasonable borders.

Optimal uncertainty become lower the better the expert

is calibrated. An expert with access to all cues and no bias

will perform best if his uncertainty is 0, as this will nullify

his error term (see Proposition 1). When deviating in both

parameter dimensions (bias, cue access), the optimal

uncertainty values become higher. In scenarios where an

expert’s stochastic judgment is far from the event realiza-

tion through bias or missing cues, the expert benefits from

variance in the error term. This is explained by the nature

of the error term: It scatters in both directions. Thus, it

might cancel out the deviation from the real value. With the

complementary probability, it will increase the deviation.

However, the impact of this complementary event is lim-

ited as the last interval in each direction is open towards

infinity, and thus does not penalize extreme deviations. The

negative impact of deviation from the optimal uncertainty

on performance becomes stronger, the better an expert is

otherwise calibrated.

Supposition 2: Well-calibrated experts perform best if

their individual uncertainty is low, while badly calibrated

experts can profit from a higher individual uncertainty that

can cancel out their bias.

As before, these effects have not yet been described in

empirical data, presumably because it is difficult or
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impossible to disentangle justified judgment form

idiosyncratic error in real-life settings.

7 Discussion and Conclusion

Simulation is an important toolkit in WOC research as data

availability is a limiting factor. We propose a novel model

to simulate expert density judgments, with the aim of

shedding light on expert judgment, aggregation algorithms

and WOC in general. To do so, we first deduct propositions

on WOC from literature and design a model to simulate

WOC scenarios. After completing all verification steps, we

conclude that the model and its implementation are valid

representations of the real-world problem entity. With its

help, we gain exemplary new insights into WOC.

This paper contributes to WOC research with four major

aspects. First and foremost, the conceptual simulation

model is a novel representation of experts providing dis-

crete density judgments. While institutions like the Euro-

pean Central Bank are using density judgments as

forecasting input, there is currently no simulation model

available for this form of judgment. Our model sets itself

apart from judgment models such as Hammitt and Zhang

(2013) who have only incorporated two experts with dis-

tinct characteristics.

Second, we compile relevant literature into propositions

on WOC. With their help, it is possible to reach a deeper

understanding of WOC and its characteristics. The propo-

sitions are designed to act as a foundation for further

research and can be utilized as verification criteria for

models with similar backgrounds.

We show that the model is applicable and valid by

creating a computerized implementation and conducting

validation and verification steps based on an established

framework. Researchers can employ the instantiation to

produce findings in the field of WOC. For example, the

model supports iteratively specifying and testing new

aggregation algorithms under a variety of potential

circumstances. It enables researchers who want to under-

stand and compare existing algorithms as it breaks

boundaries imposed by empirical data.

Lastly, we conduct experiments to assess the operational

validity of the model by deriving new insights. The find-

ings from these experiments build a deeper understanding

of the judgment and aggregation process. We list aggre-

gation algorithms, both established (e.g., UWM, PWM)

and relatively newly designed (e.g., CWM, CM), and

identify their drivers for weighting and performance, such

as diversity of expertise or availability of seed events.

When comparing performances in a range of scenarios,

strengths and weaknesses in special situations (e.g., struc-

tural breaks) become noticeable. The degree to which

aggregation algorithms are influenced by structural breaks

varies substantially. The more extreme aggregation algo-

rithms weight crowd members, the higher the performance

decrease in structural breaks. Additionally, the observed

scenario implies greater damage for weighting-based

algorithms in case of recent structural breaks in comparison

to benefits in case of a very distant structural break. This

analysis demonstrates that simulation of scenarios and

algorithms can trigger unexpected findings (e.g., potential

overfitting by the CWM) and suggest routes for improve-

ments. We also conduct experiments to create suppositions

on select WOC elements. For example, we demonstrate the

CWM’s difficulties in scenarios with similar experts.

Under certain conditions, knowledgeable experts are

excluded from the crowd, while most of the weight is

assigned to an unknowledgeable expert. In addition, we

elaborate on the concept of individual uncertainty and

measure its impact on performance. Depending on expert

characteristics, the optimal individual uncertainty differs.

The less informed an expert is, the higher the ideal indi-

vidual uncertainty.

We show that the choice of aggregation algorithm

depends highly on the underlying scenario. Factors include

expert characteristics (such as individual uncertainty),

crowd characteristics (such as diversity of expertise), and

Fig. 6 Weighting phenomenon

of the CWM
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event characteristics (such as availability of seed events or

probability of structural breaks). These considerations, in

combination with our simulation model, can help practi-

tioners choose the right algorithm for a specific scenario.

Furthermore, we have highlighted practical risks of

weighting algorithms. While weighting can improve per-

formance, events such as structural breaks may have rad-

ical consequences.

The results in this paper are beset by limitations. As with

all simulations, our model is a less complex representation

of the real world and therefore simplifies certain aspects of

it. For experimentation, we chose normal distributions for

individual uncertainty and cues. Furthermore, our model

assumes all cues to be equally important and that an expert

either has full or no access to a cue. Experts do not learn

from their mistakes and do not switch the cues their

judgment is based on. Both the probability distribution of

the expert judgments and events are symmetrical normal

distributions. The simulation of density judgments via

multiple drawings from normal distributions implies high

computational complexity, which also limits the intricacy

of the model. In some experiments, we use extreme sce-

narios that are unlikely to occur in reality and might limit

the explanatory power of the results. In summary, our

simulation model is part of a distinct third way comple-

menting theoretical analysis and empirical analysis. We

believe that the complementary strength of these three

approaches can jointly contribute to understanding WOC

and aggregation algorithms.

Future work should, therefore, focus on comparing

empirical and simulated data and strive towards further

theorizing. Subsequently, researchers can use the simula-

tion model for experimentation to broaden our knowledge

base of WOC and aggregation algorithms. In addition, the

simulation model can be enhanced and expanded to

achieve a more sophisticated view of the real world. To

enhance the model’s practical applicability, it may be

parameterized with common expert and crowd character-

istics. This includes learning experts that adjust their

behavior over time based on their historical performance,

which could substantially change the performance of all

aggregation algorithms.
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See Table 4.

Fig. 7 Optimal individual

uncertainty and its implications
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