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Abstract
Enhanced machine learning methods provide an encouraging alternative to forecast asset prices by extending or general-
izing the possible model specifications compared to conventional linear regression methods. Even if enhanced methods of 
machine learning in the literature often lead to better forecasting quality, this is not clear for small asset classes, because in 
small asset classes enhanced machine learning methods may potentially over-fit the in-sample data. Against this background, 
we compare the forecasting performance of linear regression models and enhanced machine learning methods in the market 
for catastrophe (CAT) bonds. We use linear regression with variable selection, penalization methods, random forests and 
neural networks to forecast CAT bond premia. Among the considered models, random forests exhibit the highest forecasting 
performance, followed by linear regression models and neural networks.

Keywords  CAT bond · Machine learning · Linear regression · Risk premium

JEL Classification  C45 · C58 · G12 · G17 · G22

Introduction

Empirical models to forecast the future price of financial 
assets are predominantly based on linear regression models 
(Campbell and Thompson 2007; Rapach et al. 2010; Thorn-
ton and Valente 2012). A key strength of linear regression 
models is that the economic relationships between the vari-
ables in the model can be understood and interpreted with 
relatively low effort. Interpretability is important for devel-
oping a forecasting model because the modeler can identify 
the causes for the poor performance of the model relatively 
easily. However, a model to forecast asset prices must fulfill 
further requirements and should (1) provide precise esti-
mates over the respective forecasting horizon, (2) be robust 
toward outliers and (3) build a stable relationship between 

the dependent and explanatory variables throughout the cali-
bration and forecasting horizon (to be robust toward chang-
ing market conditions). In order to fulfill these requirements, 
an asset pricing model should be based on both statistically 
and economically significant price determinants and avoid 
over-fitting issues. Besides, a good forecasting framework 
relies on the correct specification of the functional relation-
ship between the dependent and explanatory variables and a 
suitable choice of the underlying conditions of the prediction 
(Gu et al. 2020). Therefore, the development of an appropri-
ate forecasting model is evidently a complex problem, and 
linear regression models may not always provide the best 
solution to that problem.

Thus, enhanced machine learning methods provide a 
potentially valuable tool to accomplish the above-men-
tioned modeling challenges by allowing a rich set of possi-
ble model specifications compared to conventional methods 
(Khandani et al. 2010; Mullainathan and Spiess 2017; Gu 
et al. 2020). While linear regression methods and the types 
of methods introduced throughout this article all belong to 
the same model family, we will subsequently use the term 
“enhanced machine learning method” to describe methods 
that either extend or generalize linear regression methods. 
The rich set of model specifications that can be obtained 
with enhanced machine learning methods also makes these 
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methods susceptible to over-fitting, especially when they 
are applied to relatively small data sets. As over-fitting may 
result in poor out-of-sample forecasts, a genuine question 
that arises is whether enhanced machine learning methods 
can be designed by applying hyperparameter tuning methods 
to exhibit better forecasting performance than linear regres-
sion models. This research question motivates the primary 
objective of our study: assessing the potential of enhanced 
machine learning methods in comparison with linear regres-
sion models for forecasting asset prices of a small asset class. 
Therefore, we develop both linear regression- and enhanced 
machine learning-based forecasting models for risk premia 
in the market for CAT bonds.

Following the continuous increase in both the frequency 
and damage intensity of natural catastrophes over the past 
few decades, the risk for (re-)insurance companies seems 
to have increased and, in turn, triggered higher prices and 
capacity constraints for the traditional (re-)insurance mar-
ket (Gron 1994; Froot 2001; Cummins and Weiss 2009). 
Therefore, CAT bonds have demonstrated growing utiliza-
tion as an alternative instrument to conventional reinsur-
ance contracts (Cummins and Weiss 2009). From an investor 
perspective, CAT bonds are attractive because their returns 
exhibit a relatively small correlation with other asset classes 
(Froot 2001; Cummins and Weiss 2009). For the reasons 
mentioned, pricing of CAT bonds is an increasingly impor-
tant subject in the literature on insurance and asset pricing.

For two reasons, CAT bonds form an interesting asset 
class for testing enhanced machine learning methods. First, 
the CAT bond universe is relatively small, which implies 
a limited size of training and test data sets and creates a 
particularly challenging environment for enhanced machine 
learning methods. Second, scientific literature has already 
established a good understanding of the major determi-
nants of CAT bond risk premia (Braun 2016; Gürtler et al. 
2016). Hence, the in-sample variance of premia over time 
and across the cross section of CAT bonds can be explained 
with relatively high precision based on well-known influenc-
ing factors. In addition, linear regression models are shown 
to perform relatively well in the out-of-sample forecast of 
CAT bond premia (Galeotti et al. 2013; Braun 2016; Trottier 
et al. 2018) and thus provide a high-performance benchmark 
for enhanced machine learning methods. The risk of CAT 
bonds is assessed in an explicit third-party analysis by spe-
cialized risk modeling companies that contains a modeled 
distribution of bond losses and expected loss (EL) as the 
most characteristic parameter (Lane 2018). The availabil-
ity of a modeled loss distribution and EL suggests that it 
should be relatively easy to derive precise price estimates 
for CAT bonds compared to other asset classes, where risk is 
represented by a potentially less accurate and more opaque 
rating (Lane 2018).1 The availability of risk assessment is 
among the potential causes for the good performance of 

linear regression models; consequently, linear regression 
models are expected to provide a satisfying forecast of CAT 
bond premia. For the reasons mentioned, it is even more 
interesting to test whether forecasting models for CAT bond 
premia can be improved through enhanced machine learning 
methods.

Our study is based on a data set comprising nearly all 
CAT bond issues conducted in the time period between 2002 
and 2017. Apart from CAT bond data referring to issue vol-
umes, insured peril types and locations, trigger types, matu-
rity terms and sponsors, we incorporate macroeconomic data 
including the returns of the S&P500, risk premia of corpo-
rate bonds, returns on the reinsurance market and a CAT 
bond price index. We use these data to develop a series of 
forecasting models for CAT bond premia, which we test in a 
rolling sample forecast. As the existing empirical literature 
already provides a good understanding of the determinants 
of CAT bond premia, our initial selection of potentially rel-
evant variables is based on Braun (2016) and Gürtler et al. 
(2016).2 The models introduced subsequently can be distin-
guished according to the variable selection method. First, 
we establish a linear regression model and then reduce its 
complexity by selecting variables based on statistical and 
economic significance. Second, we adopt variable selection 
methods, namely forward, backward and stepwise selec-
tion. All three methods select variables based on iterative 
cross-validation and are applied to a linear regression model. 
Third, we introduce penalization methods (Lasso and Ridge 
regression methods), which select variables through the 
introduction of a constraint in the optimization problem of 
a linear regression model.3 Finally, we introduce random for-
ests and neural network models. Both methods select model 
variables implicitly based on the so-called model hyperpa-
rameters and the respective optimization algorithms.

In terms of forecasting performance, our results show that 
the performance of different linear regression models is rela-
tively similar, and the full linear regression model based on 
Braun (2016) and Gürtler et al. (2016) provides the best 
forecasting performance in our data set. When we introduce 
random forests and neural networks, we find that random 
forests improve the mean (median) forecasting performance 

1  Among others, the studies of Cantor and Packer (1997), Boot et al. 
(2005), Skreta and Veldkamp (2009) and Bongaerts et  al. (2012) 
show that the rating of a security can be influenced by other factors 
than only its actual risk.
2  The focus of our study is the out-of-sample forecast of CAT bond 
premia. Consequently, we abstain from an in-depth discussion of 
our in-sample results. For such a discussion, see Braun (2016) and 
Gürtler et al. (2016).
3  Precisely, only the Lasso method selects variables from a linear 
regression model. The Ridge method only shrinks model coefficients 
toward zero.
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in comparison with linear regression in the rolling forecast. 
Additionally, random forests show a smaller variance in 
forecasting performance over time than the linear regression 
models. We believe that this result is especially important for 
forecasting models because the uncertainty of future mar-
ket conditions implies high relevance of stable performance 
over time. In contrast, the neural network’s performance 
depends on the applied test specification and lags both the 
linear regression models and the random forests.

Our study contributes extensively to the literature on 
asset pricing and empirical studies on machine learning. 
This paper is the first to compare different machine learning 
methods for forecasting CAT bond premia and to provide an 
approach for tuning hyperparameters in enhanced machine 
learning methods. Besides these novelties, it can be empha-
sized that the CAT bond market is much smaller than other 
asset markets and, therefore, provides a more challenging 
environment for the application of machine learning meth-
ods (Khandani et al. 2010; Gu et al. 2020). Our analysis may 
help practitioners to assess the potential of machine learning 
methods for asset pricing in general and, more specifically, 
in the context of pricing CAT bonds. An important find-
ing we obtain in this context is that machine learning can 
already perform quite well on a relatively small data set.

The article is structured as follows. “CAT bond pric-
ing and machine learning methods”  section provides an 
overview of the existing CAT bond pricing methods and 
the enhanced machine learning methods used in our study. 
“Data” section describes our sample selection, introduces 
the variables used in the analysis and exhibits descriptive 
statistics of the data set. “Empirical analysis” section com-
prises the empirical analysis including an overview of the 
model comparison procedure, hyperparameter tuning, the 
results of the out-of-sample forecasts and a graphical model 
analysis. “Conclusion” section concludes.

CAT bond pricing and machine learning 
methods

CAT bond pricing methods

The literature has developed a range of different models to 
forecast the premia of CAT bonds. In one of the first stud-
ies, Lane (2000) models the expected excess return from CAT 
bonds as a log-linear function of the probability of first loss 
(PFL) and the conditional expected loss (CEL). Wang (2000, 
2004) applies a probability transformation to CAT bonds’ 
loss exceedance curve and uses the transformation to pre-
dict premia. Galeotti et al. (2013) compare different uni- and 
multivariate linear regression models to forecast CAT bond 
premia. In terms of out-of-sample performance, the differ-
ences between these models are rather small. Interestingly, the 

authors find that the inclusion of further explanatory variables, 
apart from CAT bonds’ EL, does not yield large increases in 
forecasting performance. Furthermore, model comparison 
indicates that the transformation introduced by Wang (2000, 
2004) performs relatively well. Braun (2016) proposes a lin-
ear regression model that outperforms existing benchmark 
models in the forecast of CAT bond premia. Apart from the 
EL, this model includes indicator variables for multi-territory 
bonds, bonds that cover US risks, bonds sponsored by Swiss 
Re, and bonds with an investment grade rating as well as the 
rate-on-line index of CAT bond returns, and the risk premium 
of BB-rated corporate bonds. Thus, Braun (2016) suggests that 
factors, apart from the EL, are relevant for CAT bond pricing. 
Gürtler et al. (2016) are the first to consider the secondary 
market for CAT bonds and reach a similar conclusion as Braun 
(2016) by showing that secondary market premia vary depend-
ing on bond-specific and macroeconomic factors. Trottier et al. 
(2018) forecast premia based on nonlinear utility functions 
with hyperbolic (constant) absolute risk aversion. Although 
they thereby provide a theoretically substantiated model of the 
relationship between risk premium and EL, their model does 
not outperform existing out-of-sample benchmarks.

Lane (2018) and Makariou et al. (2020) are the first to use 
the random forests approach to forecast CAT bond premia. 
Both authors compare a linear regression model to their 
random forests model, but do not consider other enhanced 
machine learning models. In addition, Lane (2018) does not 
perform systematic hyperparameter tuning, which is a central 
aspect for using enhanced machine learning models to reduce 
over-fitting problems. While Lane (2018) considers the time 
structure when splitting his data into training and test data, the 
analysis of Makariou et al. (2020) is limited to random sub-
sampling. By excluding the time structure of the data, much of 
the actual information in an out-of-sample forecasting model 
is lost because the model cannot be tested for its robustness 
toward time-based shifts in the data set (Braun 2016). Addi-
tionally, Makariou et al. (2020) disregard macroeconomic 
variables in their model, even though the literature shows the 
relevance of macroeconomic variables in terms of CAT bond 
pricing (Braun 2016; Gürtler et al. 2016). Our study considers 
all the mentioned limitations.

An overview of the literature suggests that (linear) regres-
sion models are already well-established in the context of pric-
ing CAT bonds. Therefore, the benchmark model that we intro-
duce for our model comparison is based on a linear regression 
in which the premium premi of CAT bond i is modeled using 
the following equation:

where CAT bond i = 1,… , n .  �  is an intercept, 
Xi = (xi1,… , xip)

� is a vector of explanatory variables with 

(1)premi = � + ��Xi + ui,
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the coefficient vector � = (�1,… , �p)
� , and ui is a random 

error term.

Enhanced machine learning methods

This section provides an overview on four different groups 
of enhanced machine learning methods already mentioned 
in Introduction. First, we introduce variable selection meth-
ods (forward, backward and stepwise selection). Second, we 
describe penalization methods (Lasso, Ridge and elastic net 
regression methods). Third, we explain the random forests 
method. Fourth, we introduce neural networks.

Variable selection

Variable selection4 comprises the process of automatically 
selecting a subset of relevant variables in a data set. The 
main objective of variable selection methods is eliminat-
ing irrelevant or nearly redundant variables without losing 
too much information. Thereby, variable selection improves 
linear regression models by specifying a criterion to decide 
which variables should be included in or excluded from the 
model and helps to simplify forecasting models, thereby 
reducing their susceptibility to over-fitting problems. Fur-
thermore, variable selection has a positive effect on training 
times, which is especially relevant in large data sets, and 
improves the interpretability of forecasting models. Variable 
selection is often used in data sets with multiple variables 
and comparatively few observations. The commonly used 
variations of this method in the literature are forward, back-
ward and stepwise variable selection, which will, respec-
tively, be introduced subsequently.

Forward variable selection starts with a model without 
any predictor and iteratively adds the most contributive pre-
dictors to the model. The algorithm stops when the improve-
ment in the fit is no longer statistically significant. Forward 
selection is a greedy algorithm and does not reevaluate past 
solutions. An advantage of forward variable selection is that 
it can be applied even if the number of variables exceed the 
number of observations in a data set.

Backward selection starts with a model that contains all 
available variables and iteratively eliminates predictors with 
the smallest contribution to the fit of the model. Unlike for-
ward selection, it can only be applied when the number of 
observations in the data set exceeds the number of variables. 

The algorithm terminates with a model when all the predic-
tors are statistically significant.

Forward and backward selection can be combined to a 
hybrid stepwise selection algorithm. This algorithm starts 
with an initial model without any predictor variables and, 
like forward selection, sequentially adds the variable that 
yields the highest improvement in the model fit. After adding 
a new variable, the already included variable is reevaluated 
for removal from the model. Any variable that no longer 
provides an improvement in the model fit is deleted, as in 
backward selection.

For all three methods, the maximum number of variables 
pmax included in the model must be specified. Based on this 
specification, the algorithms, respectively, identify pmax dif-
ferent best models of different sizes. Subsequently, tenfold 
cross-validation is used to estimate the average root mean 
squared error (RMSE) for each of the pmax models. The 
RMSE is a commonly used measure of the forecast error. 
A mathematical definition follows in  “Model comparison 
procedure” section. A tenfold cross-validation splits the data 
set into ten subsamples of approximately equal size. Sub-
sequently, the model is fitted in-sample using nine of the 
subsamples as training data, and the RMSE is calculated for 
an out-of-sample forecast with the tenth subsample as the 
test data. This procedure is executed ten times and each sub-
sample k ( k = 1,… , 10 ) is used once for the out-of-sample 
forecast. The repetition of the out-of-sample forecast with 
each of the ten subsamples as test sample and the remaining 
subsamples as training samples results in ten RMSE esti-
mates, which are averaged. The average RMSE is used to 
compare the pmax models, and the model that minimizes the 
RMSE is selected as the forecasting model.

Penalized regression

Subsequently, we give a brief overview on penalized regres-
sion methods,5 which are used to improve the forecasting 
accuracy of linear regression models that reveal a high vari-
ance of the model estimators. The problem of high variances 
of model estimators is the typically resulting high forecast-
ing error of the model. Such problems are especially relevant 
in complex models that contain multiple variables and are 
susceptible to over-fitting. To reduce parameter variances, 
penalized regressions introduce constraints for limiting the 
model parameters. Lasso, Ridge and elastic net regressions 
are the three variations of penalized regression models that 
can all be used for this type of shrinkage of parameter vari-
ance. If � = (�1,… , �p)

� defines the coefficient vector of the 
regression model, Lasso and Ridge regression restrict the 

4  Even though it often seems that enhanced machine learning meth-
ods have only been developed recently, variable selection was first 
introduced by Efroymson (1960). Also refer to Kuhn and Johnson 
(2016) and Hastie et  al. (2017) for a comprehensive description of 
variable selection methods.

5  Refer to Kuhn and Johnson (2016), Hastie et  al. (2017) and Gu 
et al. (2020) for more information on penalized regression methods.
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norm ||�|| of � by a pre-specified tuning parameter t > 0 , 
where t controls the amount of shrinkage that is applied to 
the estimates. The only difference between these two penal-
ized regression models is the specific choice of the applied 
norm ||.||. Lasso (least absolute shrinkage and selection oper-
ator) is based on the L1-norm ||.||1 , that is, the sum of abso-
lute values of the regression coefficients �j . Ridge regression 
applies the L2-norm ||.||2 , namely the root of sum of squares 
of the regression coefficients �j.6

The elastic net approach combines the constraints of 
Lasso and Ridge regression by using a linear combination 
q ⋅ ||.||2 + (1 − q) ⋅ ||.||2

2
 of the L1-norm and the squared L2

-norm. Consequently, parameter estimations of the penalized 
regression models result from the following optimization 
problems7:

where y stands for the dependent variable and xj for the 
explanatory variables of the penalized regression model. 
N describes the number of observations, p the total num-
ber of explanatory variables, and q is a weighting param-
eter. All three optimization problems can be rewritten in 
the Lagrangian form, where the respective Lagrangian 
parameter � = �(t) depends on the tuning parameter t and, 

(2)

𝛽Lasso = argmin
𝛽

N∑
i=1

(
yi −

p∑
j=1

𝛽jxij

)2

s.t.

p∑
j=1

|𝛽j| ≤ t,

(3)

𝛽Ridge = argmin
𝛽

N∑
i=1

(
yi −

p∑
j=1

𝛽jxij

)2

s.t.

p∑
j=1

𝛽2
j
≤ t,

(4)

𝛽elastic = argmin
𝛽

N∑
i=1

(
yi −

p∑
j=1

𝛽jxij

)2

s.t. q ⋅

p∑
j=1

|𝛽j| + (1 − q) ⋅

p∑
j=1

𝛽2
j
≤ t,

consequently, can also be interpreted as a tuning parameter 
controlling the degree of shrinkage8:

It is noteworthy that Ridge regression shrinks all uncon-
strained coefficients �j by a uniform factor, while Lasso 
shrinks some coefficients and sets other coefficients to zero 
(Tibshirani 1996). Thus, in addition to shrinkage, Lasso is a 
tool to select the relevant variables and drop the unimportant 
ones.

Random forests

The following section contains a short description of the 
random forests method.9 Random forests can be used both 
for classification problems, that is, the prediction of discrete 
or categorical variables and for regression problems, namely 
the prediction of continuous variables.10 For our empirical 
analysis, we focus on the random forests regression method. 
A random forest is a combination of de-correlated decision 
trees. The structure of a binary decision tree is exhibited in 
Fig. 1.

A decision tree consists of a root node and several interior 
and leaf nodes. Starting at the root node and continuing in 
the interior nodes, the tree establishes a decision logic that 
splits the data set into several subsets. Each split represents a 
yes–no question based on a single variable or a combination 

(5)𝛽Lasso = argmin
𝛽

⎧
⎪⎨⎪⎩
1

2

N�
i=1

�
yi −

p�
j=1

𝛽jxij

�2

+ 𝜆

p�
j=1

�𝛽j�
⎫
⎪⎬⎪⎭
,

(6)𝛽Ridge = argmin
𝛽

⎧
⎪⎨⎪⎩

N�
i=1

�
yi −

p�
j=1

𝛽jxij

�2

+ 𝜆

p�
j=1

𝛽2
j

⎫
⎪⎬⎪⎭
,

(7)

𝛽elastic = argmin
𝛽

⎧⎪⎨⎪⎩

N�
i=1

�
yi −

p�
j=1

𝛽jxij

�2

+ 𝜆1

p�
j=1

�𝛽j� + 𝜆2

p�
j=1

𝛽2
j

⎫⎪⎬⎪⎭
.

6  Typically, the constraint ||�||
2
≤ � (with 𝜏 > 0 ) of the Ridge regres-

sion is written as ||�||2
2
≤ �2 =∶ t (with t > 0 ). Consequently, the con-

straint of the Ridge regression is based on the squared L
2
-norm ||.||2

2
.

7  We assume xij to be standardized and without loss of generality 
ȳi = 0 [see, (Tibshirani 1996)]. Thus, the intercept of the regression 
can be neglected.

8  The optimal value � is computed via cross-validation (Karabatsos 
2014).
9  Please refer to Kuhn and Johnson (2016), Hastie et al. (2017) and 
Gu et al. (2020) for a more comprehensive description of the random 
forests method.
10  Note that in the literature on machine learning, the term “regres-
sion problem” is frequently used to describe the problem of forecast-
ing a continuous dependent variable (Kuhn and Johnson 2016; Hastie 
et  al. 2017). This term must not be confused with the term “linear 
regression model” that describes some of the models used in the pre-
sent article.
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of variables. The objective of the yes–no question in each 
node is to divide the data set into two subsets, which consist 
of observations that are more similar among themselves and 
different from the ones in the other subset, respectively. A 
central characteristic of a decision tree is the importance of 
the variables used in the tree. The impurity decrease that is 
reached through the division of the data into two subsets in 
a tree node is an indicator for the variable importance and, in 
regression trees, the impurity decrease can be measured by 
the variance of the dependent variable. The tree construction 
is stopped when the number of observations in a leaf node 
reaches a pre-specified minimum value. Generally, variables 
that are selected in the root node or in the upper interior 
nodes of the tree are more important than variables that are 
selected in the lower interior nodes of the tree because the 
upper splits lead to a greater decrease in impurity.

Decision trees can be advantageous over linear regression 
models because they allow non-parametric representations 
of the relationships between the dependent and explana-
tory variables. However, as linear regression models, deci-
sion trees pursue partially conflicting objectives. On the 
one hand, decision trees aim to minimize omitted variable 
biases, which can be achieved by trees that are grown very 
deep and are able to learn highly irregular patterns in a data 
set. On the other hand, deep grown trees tend to overfit the 
training data set, which can result in poor out-of-sample per-
formance. The random forest algorithm introduced by Brei-
man (2001) intends to overcome this challenge. Therefore, it 
builds several de-correlated decision trees. Each tree is built 
over a random subsample drawn from a data set by itera-
tively selecting a random subset of the variables contained 
in that data set as described below. After the random forest 
algorithm has grown an ensemble of decision trees, an aver-
age is formed over all the decision trees to establish the ran-
dom forest forecasting model. The out-of-sample forecast f̂ B

rf
 

of a random forest at a point x results as an average of all the 
individual forecasts from the single trees Tb (b = 1,… ,B):

When constructing a random forest, one must determine the 
optimal number of trees B and the number of variables prf 
that are randomly selected and considered for each split in 
a tree. In the context of machine learning methods, such 
parameters are also referred to as hyperparameters. Typi-
cally, the optimal number of variables prf used in each tree is 
said to be p/3 for regression problems, where p is the overall 
number of explanatory variables (Probst et al. 2019).

A disadvantage of random forests is that the averaging over 
noisy but approximately unbiased trees introduce additional 
bias into the model and reduce the interpretability of results. 
However, a benefit of training the trees on different subsets 
of the training data set and selecting a random subsample of 
variables guarantees that the trees are de-correlated and, there-
fore, less prone to over-fitting. Through averaging across trees, 
the variance is also reduced, which generally leads to better 
forecasting performance. Therefore, random forests are one 
of the most popular machine learning algorithms. Addition-
ally, random forests are invariant to scaling and various other 
transformations of variable values and robust to the inclusion 
of irrelevant variables. Furthermore, unlike linear regression, 
random forests do not require separate and prior variable selec-
tion, because their tree-based strategies automatically rank 
variables by their contribution to the decrease in impurity.11

Neural networks

Neural networks12 comprise a large class of models that can 
be used for classification and regression problems. A neural 

(8)f̂ B
rf
(x) =

1

B

B∑
b=1

Tb(x).

Fig. 1   A decision tree

11  In random forests, the decrease in impurity resulting from each 
variable can be averaged across the individual trees to determine the 
overall importance of that variable.
12  Kuhn and Johnson (2016), Hastie et al. (2017) and Gu et al. (2020) 
provide a more detailed description on neural networks.
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network consists of an input layer, one or more hidden layers 
and an output layer. Each layer has a set of nodes, which are 
called neurons. The nodes of the input layer represent the 
input variables of the model, whereas the nodes of the output 
layer represent the outputs. Empirical studies, such as the 
present study, usually aim to forecast the value of a depend-
ent variable so that only one output is generated ( K = 1 ). A 
set of edges connect the neurons of each layer are connected 
with the neurons of the subsequent layer. This structure is 
illustrated in Fig. 2, which shows a typical network with a 
single hidden layer.13

The values of the neurons in the hidden layer are calcu-
lated based on a function of the linear combinations of the 
input variable values, and the output value is generated as a 
linear combination of the neuron values in the hidden layer. 
More specifically, the values of the neurons in the hidden 
layer and the output layer are described by the following 
two equations:

with x = (x1,… , xp) and z = (z1,… , zM) . The parameters 
w
(1)

i,m
 and w(2)

m,k
 on the edges indicate the weight of neuron 

i from the input layer on neuron m in the hidden layer and 
neuron m from the hidden layer on neuron k in the output 

(9)
zm = �(w0,m + w

(1)�

i,m
x), m = 1,… ,M, i = 1,… , p,

yk = w0,k + w
(2)�

m,k
z, k = 1,… ,K, m = 1,… ,M,

layer, respectively. Additionally, a bias node feeds into every 
node in the hidden layer and output layer, respectively. The 
bias nodes are captured by the intercepts w0,m and w0,k . The 
so-called activation function � is used to compute the values 
of the neurons in the hidden layer and to determine whether 
a neuron is activated or not. Commonly used activation func-
tions are the sigmoid function �(x) = 1∕(1 + e−x) and the 
hyperbolic tangent �(x) = (ex − e−x)∕(ex + e−x) . Activated 
neurons in the hidden layer, which take a value in the inter-
val [0, 1] (for the sigmoid activation function), respectively 
[−1, 1] (for the hyperbolic tangent activation function), 
represent the inputs of the output layer. To obtain the final 
output—the dependent variable to be predicted—the acti-
vated neurons are multiplied by their respective weights and 
summed.

Following random initialization, the weights are itera-
tively adjusted through an algorithm minimizing the sum 
of squared errors. Various approaches can be used in this 
context; the most popular is the so-called backpropaga-
tion, which updates weights based on the gradient descent 
method. Therefore, the algorithm uses the partial deriva-
tives of the sum of squared error function with respect to the 
weights. First, backpropagation determines a forecast of the 
output based on the initial weights. Subsequently, the error 
in the output layer is calculated and passed back through the 
hidden layer(s) to the input layer. In each layer, the errors 
are calculated with respect to the current weights. Based 
on the partial derivatives, the weights are updated through 
the gradient descent. This procedure guarantees approxima-
tion of the actual output through iterative model updates. 
An advantage of neural networks over linear models is their 
ability to describe (in coefficients) nonlinear relationships. In 
the empirical analysis, the sigmoid function is used for acti-
vation and a variation of the backpropagation algorithm14 is 
used to fit the neural network.

Data

This section describes the data used in the empirical analy-
sis. First, we explain the sample and the sample selection 
procedure. Second, we introduce the variables used in the 
analysis; third, we present descriptive statistics of the data.

Fig. 2   A neural network

13  The exhibited network is a fully connected neural network, which 
means that a neuron of a certain layer is connected to all the neurons 
of the previous layer and vice versa. In applications, neural networks 
are usually fully connected (Hastie et al. 2017).

14  We use the resilient backpropagation to fit our neural network 
models. This algorithm is similar to the common backpropagation 
algorithm described in “Neural networks” section  but is usually 
faster and does not require a fixed learning rate (Naoum et al. 2012).
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Sample selection

We use data on 597 CAT bonds issued between January 
2002 and December 2017 for which we observe the premium 
at issue. The premia, which form the dependent variable 
in our analysis, can be described as yield spreads over the 
LIBOR. The data, which also include the bond ELs, issue 
volumes, and terms, are obtained from Aon Benfield. Data 
on the trigger mechanism, insured peril types, and locations 
are obtained from the Artemis Deal Directory and from Aon 
Benfield. Data on the bonds’ sponsors are obtained from 
Lane Financial LLC and macroeconomic data are extracted 
from Bloomberg and Thomson Reuters.

We exclude all observations with missing or implausible 
data (e.g., observations where the EL does not equal the 
product of the PFL and the CEL). The final data used in the 
empirical analysis consist of 580 CAT bonds.

Variables

The set of variables included in the empirical analysis is 
based on the studies of Braun (2016) and Gürtler et al. 
(2016). We introduce both bond-specific variables and mac-
roeconomic variables, which are described as follows.

Bond‑specific variables

The set of bond-specific variables comprises the EL, which 
has the most important effect on premia. In addition, we 
establish the variable Log(Volume), which represents the 
natural logarithm of a bond’s issue volume and is a poten-
tial proxy for bond liquidity. The variable Maturity captures 
the impact of a bond’s maturity on premia. Furthermore, to 
control for the effects of different trigger types on CAT bond 
premia, we establish a dummy variable Trigger Indemnity, 
which takes the value of one if the bond’s trigger type is 
indemnity, and zero otherwise. The impact of the sponsor 
type on premia is modeled by introducing dummy vari-
ables for the sponsor types Insurer, Reinsurer, and Other. 
We control for a CAT bond’s complexity by introducing the 
variables No. of Locations and No. of Perils, which meas-
ure the number of different insured locations/perils. Finally, 
we establish a series of dummy variables for different peril 
types, peril locations and bond rating categories, all of which 
are presented in Table 2.

Macroeconomic variables

Macroeconomic variables are used to consider the overall 
market development in our models. First, we measure the 
impact of the general development of prices on the CAT 
bond market. Therefore, we observe the volume-weighted 
mark-to-market price (weighted price) of outstanding CAT 

Table 1   Summary statistics: cardinal CAT-bond-specific and macro-
economic variables

Statistics for all the variables are reported at the issue level

Obs. Mean SD Min. Max.

CAT-bond-specific variables
   Premium (in %) 580 7.66 5.07 0.41 39.25
   EL (in %) 580 2.57 2.56 0.00 17.35
   Volume (in USD mil-

lion)
580 132.45 122.01 1.80 1,500.00

   Maturity (in month) 580 36.61 11.93 3.32 64.56
   No. perils 580 1.85 1.12 1.00 5.00
   No. locations 580 1.29 0.62 1.00 3.00

Macroeconomic variables
   Reins. Index 580 0.01 0.14 − 0.11 0.37
   S&P500 580 0.01 0.03 − 0.11 0.12
   Corp. spread 580 0.05 0.02 0.00 0.16
   CAT bond Index 580 − 0.00 0.01 − 0.03 0.02

Table 2   Summary statistics: nominal and ordinal CAT bond-specific 
and macroeconomic variables

Statistics for all the variables are reported at the issue level. Since it 
is possible that multiple types of perils and locations are assigned to 
one bond, the category percentages do not add up to 100% for these 
groups of variables

Obs. Percentage

Trigger
   Indemnity 223 38.45
   Non-indemnity 357 61.55

Peril type
   EQ 378 65.17
   HU 375 64.66
   Wind 227 39.14
   Other 35 6.03

Peril location
   EU 133 22.93
   JP 89 15.34
   NA 457 78.79
   Latin America 46 7.93
   Asia/Australia 23 3.97

Sponsor
   Insurer 258 44.48
   Reinsurer 285 49.14
   Other 37 6.38

Rating
   AA 4 0.69
   A 4 0.69
   BBB 19 3.28
   BB 228 39.31
   B 122 21.03
   No rating 203 35.00
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bonds on the secondary market. We then determine the rela-
tive change of that price on a monthly basis and label our 
variable CAT Bond Index. Note that CAT bonds are a poten-
tial substitute for traditional reinsurance, which suggests that 
the prices for those two types of risk transfer instruments 
show some co-movement (Braun 2016; Gürtler et al. 2016). 
For this reason, we incorporate the annual relative change 
in the Guy Carpenter Global Property Catastrophe Rate-
on-Line Reinsurance Price Index (Reins. Index), which is 
described in more detail in Carpenter (2012). We use the 
change in that price index as a proxy for the reinsurance 
price cycle. Furthermore, we include the variable Corporate 
Credit Spread (Corp. Spread), which is based on the credit 
spreads of US corporate bonds of different rating classes and 
maturities between one and 3 years, obtained from Bank of 
America Merrill Lynch. The variable Corp. Spread is con-
structed by matching the spreads with bonds in the identical 
rating class. Finally, we include the monthly return on the 
S&P500 to model the development of equity markets.15

Descriptive statistics

This section presents descriptive statistics for the depend-
ent and explanatory variables used for model construction. 
Table 1 presents the summary statistics on the cardinal 
variables applied in the empirical analysis. The variables 
are reported at the issue level. The mean of the premium is 
7.66% and is almost three times greater than the mean of the 
EL. A bond has an average volume of 133 USD million and 
an average maturity of 37 months. On average a CAT bond 
insures 1.85 perils and 1.29 locations.

Table 2 shows the summary statistics of the nominal and 
ordinal variables used in the empirical analysis. Almost 40% 
of CAT bonds in our data set contain an indemnity trigger. 
Most bonds insure perils such as earthquakes (EQ) and hur-
ricanes (HU). The most prevalent peril location is North 
America (NA). The sponsor type is “Reinsurer” for around 
50% of the bonds, whereas the sponsor type is “Insurer” 
for 44% of the bonds. About 40% of the bonds have a “BB” 
rating.

Empirical analysis

In this section, we describe the procedure and the results of 
our empirical analysis. First, we outline our model compari-
son procedure and provide an overview of the considered 
models. Second, we present the hyperparameter tuning strat-
egies applied to identify the best-performing models among 

the considered methods, respectively. Third we describe the 
out-of-sample results obtained with the different models and 
present a graphical analysis of the best-performing model 
subsequently.

Model comparison procedure

In the empirical analysis, we first establish a forecasting 
model for CAT bond premia using a linear regression based 
on the results obtained in the literature (Braun 2016; Gürtler 
et al. 2016). Apart from being more established in the asset 
pricing literature, a linear regression model has the advan-
tage in that it enables us to assess whether the model struc-
ture and variables used are reasonable from an economic 
perspective, that is, more easily compared to random forests 
and neural network models. We use a three-step procedure to 
construct the linear benchmark model. First, we conduct an 
in-sample linear regression on the overall set of explanatory 
variables. Second, we eliminate statistically or economically 
insignificant variables from the model. The elimination is 
based on the variables’ p values ( p > 0.1 for statistical sig-
nificance) and standardized effects ( 𝛽 < 0.1 for economic 
significance). Third, we conduct the out-of-sample forecast 
using both the full and reduced linear models. To test the 
performance of our linear models and the subsequently 
introduced models, we conduct a rolling sample forecast, 
where we model the data in-sample over a 5-year period, 
and then use the model to conduct an out-of-sample forecast 
for the next year. After each forecast, we move forward the 
in-sample and out-of-sample periods by 1 year. As a result, 
we obtain a forecast for eleven periods over the time horizon 
in our data set.16

Next, we add the variable selection algorithms, namely 
forward, backward and stepwise variable selection and 
penalized regressions (Lasso, Ridge and elastic net) to the 
set of considered linear models. We compare the results 
obtained with the different linear models to the results 
obtained with a random forests model and a neural network 
model in terms of out-of-sample forecasting performance, 
based on the subsets described above. All out-of-sample 
forecasts obtained during the analysis are compared based 
on the RMSE as goodness-of-fit measure, which is defined 
as follows (Campbell and Thompson 2007; Xu and Taylor 
1995):

(10)RMSE =

√√√√ 1

N�

N�∑
i=1

(premi − p̂remi)
2,

15  The macroeconomic variables are matched to the CAT bond data 
set based on the issue month of the respective bond.

16  In additional analyses, we consider alternative lengths for the in-
sample and out-of-sample periods.
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where N′ corresponds to the number of observations in the 
out-of-sample data, premi is the observed risk premium of 
bond i, and p̂remi denotes the premium forecasted by the 
respective model.17

Hyperparameter tuning

Enhanced machine learning methods typically comprise 
one or multiple so-called hyperparameters, which prevent 
the machine learning algorithm from over-fitting the train-
ing data (Mullainathan and Spiess 2017). In order to find 
a model that provides good out-of-sample forecasts, it is 
necessary to first determine a suitable set of hyperparameter 
values, a process that is referred to as hyperparameter tuning 
(Mullainathan and Spiess 2017). There are two approaches 
to hyperparameter tuning. The first approach is to split the 
observed data set into three parts: training, validation and 
test sample. The considered model is then fit to the training 
sample with a specific set of hyperparameters. Subsequently, 
the validation set is used to tune the hyperparameters based 
on a suitable evaluation criterion. Finally, the optimal set of 
hyperparameters are used to test the actual out-of-sample 
performance in the test data set. The mentioned approach 
has the drawback of further reducing the size of data sets 
that are already small. A second alternative hyperparameter 
tuning approach is based on cross-validation in the train-
ing data set (Mullainathan and Spiess 2017). This approach 
provides a remedy for problems related with small sample 
size by using the training data more efficiently. Since we use 
a relatively small sample to conduct our analysis, we use 
tenfold cross-validation to tune the hyperparameters.

The determination of a well-performing set of hyperpa-
rameters requires a method to sample hyperparameter values 
and an objective function criterion for the model evaluation. 
Grid search and random search are the two most common 
approaches to sample hyperparameters. Grid search evalu-
ates a predetermined set of hyperparameter values that result 
from the applied search grid. In comparison, random search 
chooses a random set of hyperparameter values to be evalu-
ated at each cross-validation iteration. In our study, we sam-
ple hyperparameter values with grid search, in order to have 
control over the considered sets of hyperparameters. For 
each combination of hyperparameter values, we determine 
the average RMSE resulting from the cross-validation and 
subsequently select the hyperparameter set with minimum 
average RMSE.

Table 3 presents an overview of the hyperparameter tun-
ing process for all the enhanced machine learning methods 
considered. Columns 1 and 2 show the method and the 
corresponding hyperparameters. Column 3 shows the grid 
search interval over which the hyperparameter values are 
tested. Column 4 presents the search increments applied to 
test the hyperparameter values within the search intervals. 
Column 5 exhibits the hyperparameter values chosen in the 
cross-validation procedure for the respective method.

For the variable selection methods (forward, backward 
and stepwise variable selection), we must specify the maxi-
mum number of variables pmax as described in “Variable 
selection” section. We test this parameter on the interval [1, 
26] with an increment of 1. The lower bound of the inter-
val would result in a model containing only one explana-
tory variable while its upper bound would result in a model 
containing all the explanatory variables in our data set. 
Depending on the variable selection method and the con-
sidered rolling sample period, the values selected for pmax 
range between 8 and 24. The three penalized regression 
methods (Ridge, Lasso and elastic net) require tuning for 
the shrinkage parameter � , as described in “Penalized regres-
sion” section.  We test the shrinkage parameters on the inter-
val [x1 = 100,… , xn = 0.0001, 0] and iteratively determine 

Table 3   Hyperparameter choice for enhanced machine learning methods

This table presents the results of the hyperparameter tuning performed for the enhanced machine learning methods

Method Hyperparameters Grid search interval Search increments Cross-validated 
hyperparameter values

Linear regression with 
variable selection

Max. # variables pmax [1, 26] 1 [8, 24]

Penalized regression Shrinkage parameter � [x1 = 100,… , xn = 0.0001, 0] xi+1 =
1

10
⋅ xi

[0, 0.001]

RF # split variables ( prf) [1, 22] 1 [13, 21]
# trees (B) [100, 1000] 100 [100, 400]

NN # hidden layers [1, 3] 1 [2, 3]
# neurons per hidden layer [1, 26], [0, 26], [0, 26] 1 [1, 26], [1, 25], [0, 15]

17  The RMSE is conventionally used as measure of the forecast error. 
This paper focuses on improving the forecasting performance for 
CAT bond premia on the primary market. To assess the performance 
of portfolio strategies on the secondary market, other measures, as for 
example the Sharpe ratio, could be taken into account.
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the increments according to Table 3. For all three methods 
and the considered rolling sample periods, the parameter 
� = [0, 0.001] is optimal, in which � = 0 only is optimal for 
a few rolling sample periods.18

In the random forests model, the number of variables prf , 
which are randomly sampled as candidates for each split and 
the number of trees B must be tuned. Probst et al. (2019) 
state that selecting an optimal parameter for the number of 
split variables is a trade-off between stability and accuracy 
of each tree. This is attributed to the fact that lower values of 
prf produce more de-correlated trees, which, aggregated to 
a random forest, lead to better stability. On the other hand, a 
higher value of prf may lead to trees that perform better on 
average, since trees with a low prf value are built on a pos-
sibly suboptimal set of variables. Dealing with this trade-off, 
we start with the default value of prf = p∕3 for the regression 
and iteratively raise prf by 1 until the cross-validated value 
of prf for each rolling sample interval is smaller than the 
maximum grid search interval value. This procedure results 
in a test interval of split variables between 1 and 22 with an 
increment of 1, the optimal specification lies between 13 and 
21 depending on the considered rolling sample period. For 
the number of trees, we test the interval [100, 1000] with 
an increment of 100, and the optimal specification—again 
independence of the considered rolling sample period—lies 
between 100 and 400.

For the neural network, the number of hidden layers and 
neurons in each hidden layer must be tuned. For the number 
of neurons, the interval [1, 3] is tested, because the literature 
suggests that performance of the neural network declines 
with more than 3 hidden layers in small data sets (Gu et al. 
2020; Arnott et al. 2019). Our tuning suggests that 3 hidden 
layers provide the optimal specification for all the considered 
rolling sample periods, except the fifth rolling sample period 
where 2 hidden layers turn become the optimal model speci-
fication. For the number of neurons per hidden layer, the 
intervals [1, 26] (first hidden layer), [0, 26] (second hidden 
layer) and [0, 26] (third hidden layer) are tested. Depending 
on the considered rolling sample period, the optimal network 
designs differ widely over the intervals [1, 26] (first hidden 
layer), [1, 25] (second hidden layer) and [0, 15] (third hid-
den layer).

Out‑of‑sample results

In this section, we present the results of our empirical analy-
sis. Table 4 shows the performance of the considered linear 
regression and enhanced machine learning models in the 
out-of-sample forecast.19 Columns 1 and 2 report the con-
sidered in-sample and out-of-sample periods of the rolling 

Table 4   Out-of-sample forecasts

This table reports the RMSE of the out-of-sample estimation for the full linear regression model, which is based on Braun (2016) and Gürtler 
et  al. (2016), the reduced model after the three-step selection, linear regression with variable selection, penalized regression, random forests 
(RF) and neural network (NN) models. The results, in terms of the RMSE, are presented for each rolling sample period. Additionally, the mean, 
median and standard deviation of the RMSE across all rolling sample periods are shown

IS OOS Full Reduced Forward Backward Stepwise Lasso Ridge Elastic net RF NN

2002–2006 2007 0.0171 0.0250 0.0179 0.0180 0.0178 0.0217 0.0181 0.0217 0.0157 0.0203
2003–2007 2008 0.0154 0.0246 0.0155 0.0152 0.0156 0.0154 0.0146 0.0154 0.0090 0.0154
2004–2008 2009 0.0184 0.0238 0.0194 0.0178 0.0194 0.0191 0.0188 0.0191 0.0075 0.0209
2005–2009 2010 0.0243 0.0286 0.0253 0.0245 0.0254 0.0263 0.0248 0.0263 0.0107 0.0246
2006–2010 2011 0.0156 0.0159 0.0160 0.0156 0.0156 0.0147 0.0153 0.0147 0.0068 0.0169
2007–2011 2012 0.0167 0.0242 0.0168 0.0167 0.0167 0.0168 0.0166 0.0177 0.0095 0.0205
2008–2012 2013 0.0200 0.0222 0.0219 0.0220 0.0227 0.0220 0.0206 0.0220 0.0101 0.0126
2009–2013 2014 0.0141 0.0153 0.0141 0.0203 0.0202 0.0155 0.0141 0.0155 0.0068 0.0119
2010–2014 2015 0.0118 0.0116 0.0126 0.0122 0.0127 0.0118 0.0115 0.0118 0.0051 0.0075
2011–2015 2016 0.0148 0.0166 0.0149 0.0149 0.0138 0.0145 0.0141 0.0145 0.0071 0.0092
2012–2016 2017 0.0111 0.0104 0.0113 0.0110 0.0167 0.0101 0.0109 0.0101 0.0071 0.0103
Mean 0.0163 0.0198 0.0169 0.0171 0.0179 0.0171 0.0163 0.0171 0.0087 0.0155
Median 0.0156 0.0222 0.0160 0.0167 0.0167 0.0155 0.0153 0.0155 0.0075 0.0154
SD 0.0037 0.0061 0.0041 0.0040 0.0038 0.0048 0.0041 0.0048 0.0029 0.0056

18  The range chosen for the grid search interval in our analysis is 
inspired by Zou and Hastie (2003).

19  In-sample results are available with the authors and can be pro-
vided on request.
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sample analysis. The following columns show the perfor-
mance of all the models considered in terms of RMSE.20

The full linear regression model based on Braun (2016) 
and Gürtler et al. (2016) has a mean RMSE of 0.0163. In 
comparison, the reduced model has a higher RMSE of 
0.0198 and a considerably higher standard deviation. All 
three variable selection models presented in the following 
columns exhibit similar means, medians and standard devia-
tions of the RMSE. Forward selection exhibits the lowest 
mean (median) RMSE but has the highest standard devia-
tion compared to backward and stepwise selection. Notably, 
the Ridge regression performs best among the penalization 
methods while the Lasso and elastic net methods lag behind, 
but perform equally well in the mean, median and standard 
deviation of the RMSE. The Ridge model produces the same 
mean RMSE as the full linear regression model and even a 
lower median RMSE, nonetheless the Ridge model has a 
higher standard deviation of the RMSE. As the mean (and 
median) performance is (almost) equal, one would prefer 
the more stable full linear regression model. Overall, neither 
the variable selection methods nor the penalization methods 
perform better than the full linear regression models in terms 
of the mean, median and standard deviation of the RMSE.

The random forest yields a considerably lower mean 
(median) RMSE of 0.0087 (0.0075) than all the considered 
linear regression models and, additionally, presents a lower 
standard deviation. With a mean (median) RMSE of 0.0155 
(0.0154), the neural network slightly outperforms, all the 

linear regression models except the Ridge regression, but it 
continues to lag the random forest. In addition, apart from 
the reduced linear regression model, the neural network 
exhibits the highest standard deviation of the RMSE, which 
raises concerns about the stability of the neural network 
forecasts over time.

Broadly, the performance of the random forest indicates 
that enhanced machine learning methods can outperform lin-
ear regression models in relatively small data sets. However, 
the relatively weak performance of the neural network shows 
that even with a systematic choice of hyperparameters, over-
fitting remains a challenging issue, when applying enhanced 
machine learning methods, especially in small data sets.

Next, we extend the out-of-sample period from 1 to 
2 years and conduct another test of our models’ perfor-
mance. The results shown in Table 5 support our previ-
ous results.21 The random forest exhibits the lowest mean 
(median) RMSE. The neural network performs worse than 
all other models. While the mean (median) forecasting per-
formance of the random forest is significantly better than 
the mean performance of the linear regression, the stand-
ard deviations are nearly the same. Therefore, based on the 
changed test setting, the random forest can be considered as 
the best performing forecasting model. However, the per-
formance difference between random forest and the linear 
regression models decreases, which may indicate that the 
random forest needs more data to fit the model when the 
forecasting horizon increases.

Table 5   Out-of-sample forecasts with 2-year out-of-sample period

This table reports the RMSE of the out-of-sample estimation for the full linear regression model, which is based on Braun (2016) and Gürtler 
et  al. (2016), the reduced model after the three-step selection, linear regression with variable selection, penalized regression, random forests 
(RF) and neural network (NN) models. The results, in terms of the RMSE, are exhibited for each rolling sample period. Additionally, the mean, 
median and standard deviation of the RMSE across all rolling sample periods are shown. A 2-year period is used for the out-of-sample forecast

IS OOS Full Reduced Forward Backward Stepwise Lasso Ridge Elastic net RF NN

2002–2006 2007–2008 0.0196 0.0268 0.0208 0.0207 0.0209 0.0218 0.0198 0.0218 0.0245 0.0317
2003–2007 2008–2009 0.0204 0.0254 0.0201 0.0202 0.0202 0.0204 0.0193 0.0204 0.0137 0.0182
2004–2008 2009–2010 0.0350 0.0345 0.0323 0.0307 0.0323 0.0307 0.0338 0.0307 0.0275 0.0387
2005–2009 2010–2011 0.0220 0.0236 0.0223 0.0224 0.0225 0.0227 0.0221 0.0227 0.0154 0.0226
2006–2010 2011–2012 0.0232 0.0197 0.0228 0.0233 0.0232 0.0184 0.0203 0.0184 0.0160 0.0255
2007-2011 2012–2013 0.0213 0.0281 0.0209 0.0213 0.0213 0.0210 0.0209 0.0214 0.0209 0.0305
2008–2012 2013–2014 0.0215 0.0224 0.0225 0.0222 0.0231 0.0227 0.0220 0.0227 0.0194 0.0312
2009–2013 2014–2015 0.0147 0.0156 0.0152 0.0194 0.0192 0.0158 0.0146 0.0158 0.0144 0.0217
2010–2014 2015–2016 0.0174 0.0169 0.0178 0.0177 0.0180 0.0174 0.0170 0.0174 0.0162 0.0306
2011–2015 2016–2017 0.0257 0.0244 0.0258 0.0258 0.0211 0.0229 0.0240 0.0229 0.0263 0.0312
Mean 0.0221 0.0237 0.0221 0.0224 0.0222 0.0214 0.0214 0.0214 0.0194 0.0282
Median 0.0214 0.0240 0.0216 0.0218 0.0212 0.0214 0.0206 0.0216 0.0178 0.0306
SD 0.0055 0.0056 0.0046 0.0037 0.0039 0.0041 0.0051 0.0041 0.0051 0.0061

20  Results based on R2

OS
 are qualitatively identical and are available 

with the authors on request. Refer to Campbell and Thompson (2007) 
and Xu and Taylor (1995) for a definition of the R2

OS
.

21  The results based on R2

OS
 are qualitatively identical and are avail-

able on request.
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Graphical model analysis

Based on the results of the prior literature, we know that the 
EL is the most influential determinant of CAT bond premia 
(Galeotti et al. 2013; Braun 2016; Gürtler et al. 2016; Trottier 
et al. 2018). The random forest model confirms the dominant 
influence of the EL, which can be observed in Fig. 3, where 
we depict the importance of the variables used in the model. 
In this figure, the horizontal line presents the range of the fac-
tor by which the model’s forecasting error increases when the 
variable is permuted. Thus, the larger the increase in forecast-
ing error measured by the RMSE over all the trees of the ran-
dom forest, the more important will be the variable. The black 
dot on the respective horizontal line represents the median 
importance of a variable aggregated over the trees.

Consequently, it is important to understand which rela-
tionship between the EL and the CAT bond premium is 
adopted by our best-performing model, the random forest. 
In this section, we present this relationship graphically. Such 
a graphical presentation of the model structure is particularly 
helpful for the random forests model, because its structure, 
that is, the relationship between the dependent and explana-
tory variables, cannot be understood based on a set of coeffi-
cients as is the case for linear regression models. To develop 
a graphical representation, we construct accumulated local 
effect (ALE) plots for each rolling sample period. The ALE 
plots describe how a variable (in this case, we consider the 
EL) influences the forecast of a machine learning model, on 
average. The ALE plot exhibits the local effect of a variable 
within a certain interval. To calculate the ALE, the EL is 
divided into 20 intervals based on the quantiles of the EL-
distribution. Subsequently, the local effects of the EL are 
computed by determining the differences in premium fore-
casts between each consecutive pair of observations within 
the interval, which are sorted in ascending order by their 
respective ELs. Next, all the local effects within an interval 
are averaged. Finally, the ALEs are accumulated to the con-
nected graphs as can be seen in Fig. 4. The ALE plots are 
centered so that the mean effect is zero.

In Fig. 4, the graphs present an overall concave structure, 
and, not surprisingly, a positive relationship between the 
premium and EL. However, while the slope of the graphs is 
seen decreasing toward the higher values of the EL, locally, 
it exhibits convex areas, where the premium increases more 
sharply with the increasing EL. Thus, the non-trivial rela-
tionship between the premium and EL in Fig. 4 suggests that 

it is challenging to identify a parametric representation of 
the premium as a function of the EL as would be required 
by a linear regression or a neural network model. Therefore, 
Fig. 4 provides a potential explanation for the random forest 
outperforming the other considered methods.

Conclusion

This study assesses the potential of enhanced machine learn-
ing methods to improve forecasting models in asset pricing. 
The tests conducted for the forecast of CAT bond premia 
show that extensions of the linear regression model based on 
variable selection or penalization methods exhibit relatively 
small performance differences in comparison with the full 
linear regression model and will not improve the forecast 
produced by the full model. The mean (median) forecasting 
performance of the random forest is substantially higher than 
that of the linear regression models and the neural network; 
furthermore, the forecasting performance of the random for-
est exhibits a smaller standard deviation. This result is also 
supported in an alternative analysis with a 2-year out-of-
sample period. Overall, enhanced machine learning methods 
seem to have the potential to improve the forecasts of CAT 
bond premia and prices of other asset classes, even if only 
a relatively small data set is available. In the context of our 
application, random forests provide stable and significant 
performance improvements, whereas the performance of 
neural networks is very unstable compared to the perfor-
mance of other models. Especially, against the background 
of uncertain future market conditions, the stability of the 
forecasts of random forests is a valuable result.

This study has two main contributions to the literature on 
asset pricing. First, our analysis of the performance of dif-
ferent machine learning methods in forecasting CAT bond 
premia provides an indication of their potential for asset 
pricing, which is relevant for scientific literature and practi-
tioners who consider the use of machine learning methods. 
In this context, a valuable finding of our study is that random 
forests can perform effectively and stable for a relatively 
small asset class. Second, a central explanation for the supe-
rior performance of random forests is attributable to the fact 
that they model the CAT bond premium without a specific 
distribution assumption. Thus, our study provides evidence 
that enhanced machine learning methods enable forecasting 
model improvements even in markets where the influencing 
variables are essentially known.
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