
Büchel, Patrick; Kratochwil, Michael; Rösch, Daniel

Article  —  Published Version

Computing valuation adjustments for counterparty
credit risk using a modified supervisory approach

Review of Derivatives Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Büchel, Patrick; Kratochwil, Michael; Rösch, Daniel (2020) : Computing valuation
adjustments for counterparty credit risk using a modified supervisory approach, Review of
Derivatives Research, ISSN 1573-7144, Springer US, New York, NY, Vol. 23, Iss. 3, pp. 273-322,
https://doi.org/10.1007/s11147-019-09165-w

This Version is available at:
https://hdl.handle.net/10419/288900

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s11147-019-09165-w%0A
https://hdl.handle.net/10419/288900
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Review of Derivatives Research (2020) 23:273–322
https://doi.org/10.1007/s11147-019-09165-w

Computing valuation adjustments for counterparty credit
risk using a modified supervisory approach

Patrick Büchel1 ·Michael Kratochwil2,3 · Daniel Rösch2

Published online: 14 January 2020
© The Author(s) 2020

Abstract
Considering counterparty credit risk (CCR) for derivatives using valuation adjustments
(CVA) is a fundamental and challenging task for entities involved in derivative trad-
ing activities. Particularly calculating the expected exposure is time consuming and
complex. This paper suggests a fast and simple semi-analytical approach for exposure
calculation, which is a modified version of the new regulatory standardized approach
(SA-CCR). Hence, it conforms with supervisory rules and IFRS 13. We show that our
approach is applicable to multiple asset classes and derivative products, and to single
transactions as well as netting sets.
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1 Introduction

The financial crisis and its aftermath have revealed the importance of counterparty
credit risk (CCR) in over-the-counter (OTC) derivative transactions. Today, the consid-
eration of CCR is market standard and the calculation of credit valuation adjustments
(CVA) has evolved to be a fundamental task for entities involved in derivatives trad-
ing due to several reasons. Firstly, market participants need to consider CCR when
pricing derivatives. Secondly, international financial reporting standards (IFRS 13)
require all entities involved in derivative transactions to consider CCR in the account-
ing fair value.1 Thirdly, financial institutions are expected to calculateminimumcapital
requirements for CVA risk under Basel III, which implies the calculation of CVA
as well as CVA sensitivities. The most time-consuming and complex part of xVA
calculation is the determination of the expected exposure. Given the lack of clear
methodological guidance in IFRS 13, a wide range of methods has been developed
by regulators, financial institutions and scientists alike. As many market participants
may not be able to apply highly complex and sophisticated methods, there is a need
for simpler semi-analytical and parametric approaches. Most existing approaches are
either too simplistic to be robust, only applicable on transaction level or suitable for
a small range of products. Hence, most of these methods are not applicable to multi-
dimensional netting sets.

Our paper provides the following contributions. Firstly, we develop a fast and
simple semi-analytical method for exposure calculation, which is a modified version
of the new supervisory standardized approach for measuring counterparty credit risk
exposures (SA-CCR). We derive the necessary adjustments to the regulatory SA-CCR
inorder to ensure consistencywith IFRS13.The approachhas aflexible structure and is
able to capture risk mitigating effects from margining and collateralization. Secondly,
we show that our approach is applicable to multiple asset classes and on a single-
transaction as well as a netting set level. To ensure the usability of our approach, we
compare our results with an advanced model approach for an illustrative set of interest
rate and foreign exchange derivatives.

We find that our modified SA-CCR approach is able to produce expected exposure
profiles capturing the main exposure dynamics of interest rate and foreign exchange
positions. Hence, we are able to mirror exposure profiles generated by advanced meth-
ods, which might serve as input for CVA calculation. As we maintain the key building
blocks and methodological assumptions of the supervisory SA-CCR, we offer a flex-
ible and consistent approach to calibration based on market-implied volatilities, yet
simple enough to be adopted by smaller institutions with limited personal resources.

The remainder of the paper is structured as follows. Section 2 provides an overview
and categorization of existingmethods for exposure quantification. In Sect. 3we derive
the necessary adjustments to the SA-CCR based on central model foundations. The
calibration of the modified SA-CCR is lined out in Sect. 4. The methodology and
results of the empirical analysis are presented in Sect. 5. Section 6 concludes this
paper.

1 IFRS 13 also requires the inclusion of an entity’s own credit risk in the fair value measurement via the
calculation of Debit Valuation Adjustments (DVA). In this paper we focus solely on the calculation of CVA
based on the expected positive exposure. It is possible to adapt our approach for calculation of further xVAs.
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2 Methods for exposure quantification

Calculation of xVAs requires the quantification of the expected exposure at time t . The
lack of clear guidance from accountants and supervisors as well as the need for com-
plex and simpler methods have led to the development of a wide range of approaches.
According to Gregory (2015), these methods can be divided into advanced, parametric
and semi-analytical approaches. Using advanced approaches is the most sophisticated
way to quantify CCR exposures, and there is plenty of academic literature on their
application (see Pykhtin and Zhu 2007; Pricso and Rosen 2005; Picoult 2004; Can-
abarro and Duffie 2003; Picoult 2004). An advanced approach provides the most
realistic risk assessment, but requires in-depth quantitative knowledge, a multitude of
input data and a powerful infrastructure. Especially the simulation of potential market
scenarios and the valuation of transactions for each scenario and viewpoint are com-
plex and laborious tasks. Developing and maintaining an advanced model is complex
and associated with high costs. While advanced approaches are usually applied in
larger financial institutions, small and medium-sized market participants often do not
have the capabilities to operate a complex exposure simulation model. Thompson and
Dahinden (2013) find that even banks applying advanced models are often unable to
cover all asset classes and products within these models. Therefore, we are certainly
justified in saying that there is a need for alternative, less sophisticated approaches. To
avoid an operational burdensome simulation model, various semi-analytical methods
have been developed. These approaches are based on assumptions with respect to the
development of risk factors driving the market value of a product or netting set. One
prominent example for semi-analytical methods is the swaption approach introduced
by Sorensen and Bollier (1994). Theymeasure the exposure of an interest rate swap by
valuing a series of swaptions, which a party would theoretically enter into in case of
the counterparty’s default. There are several other semi-analytical methods for interest
rate swaps and other derivative products (such as Leung and Kwok 2005 for credit
default swaps). In the past years, there has been a lot of work on the development
and enhancement of reduced-form and structural models for CVA calculation (e.g.
Kao 2016; Hull and White 2012; Cherubini 2013). While semi-analytical methods
are considered the best choice for modelling CCR exposure on transaction level, their
application is limited. Semi-analytical methods are generally suited for a limited num-
ber of products and designed for a specific asset class. Hence, it is difficult to apply
these methods for products with multiple underlying risk factors (e.g. cross-currency-
swaps) and multi-dimensional netting sets. In general, CCR exposures are calculated
on netting set/counterparty level and require an aggregation of product-specific expo-
sure profiles, which is something most of these semi-analytical methods are not able
to provide. Most semi-analytical approaches ignore diversification and effects from
collateralization, netting and margining. Even extensions are only able to recognize
these effects in a very limited way. For example, Brigo and Masetti (2005) develop an
analytical approach for interest rate portfolios in a single currency.

Parametric approaches are considered to be the most simplistic way of quantify-
ing CCR exposures. They provide an approximation based on a limited number of
simple parameters. Most parametric approaches calculate the exposure as the sum
of current exposure (CE) and an add-on for potential future exposure (PFE). By
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calibrating the aforementioned simple parameters to more complex methods, the out-
come of parametric approaches is aligned with the results from more sophisticated
models. Especially regulatory standardized approaches are based on the idea of sim-
plification and calibration. When calculating the exposure at default (E AD) for the
assessment of minimum regulatory capital requirements, banks currently have the
option to choose between using an advanced Internal Model Method (IMM) or one of
two standardized approaches (Standardized Method (SM), Current Exposure Method
(CEM)).2 According to EBA (2016) the Current Exposure Method (CEM) is the most
widespread approach for calculating CCR exposures in the European banking sec-
tor for regulatory purposes. This method was introduced by the Basel Committee on
Banking Supervision (BCBS) (1996) and is still valid after it was adjusted in the
course of Basel II (2005). A majority of financial institutions uses methods based on
the CEM for accounting and pricing purposes. These approaches are often referred
to as “mark-to-market plus add-on” methods. In the past, especially the CEM was
criticized for several reasons. From the perspective of BCBS (2014c) the main issues
are (1) the lack of risk sensitivity, (2) the outdated calibration of risk weights, (3) the
missing ability to recognize credit risk mitigation techniques (in particular margining)
as well as (4) a too simplistic attempt to capture netting effects.3

Driven by this criticism, the financial crisis and the increasing importance of bilat-
eral margining in OTC derivatives markets,4 a new regulatory standardized approach
was developed by the BCBS (2014c). The SA-CCRwill replace the existing standard-
ized approaches (SMandCEM).With the development of the SA-CCR, the BCBSwas
striving for a holistic approach applicable to a variety of derivative products. Further-
more, the SA-CCR was intended to overcome the weaknesses of existing approaches
while keeping complexity on a reasonable level.

The SA-CCR can be classified as a semi-analytic method. It uses a rule based cal-
culation scheme and simple parameters. Nevertheless, the derivation of the approach
is based on detailed assumptions with respect to the distribution of market values and
model based aggregation algorithms. The SA-CCR has several major advantages com-
pared to its predecessors. First, the SA-CCR is able to distinguish between margined
and unmargined netting sets. Effects of margining are considered in the current and
potential future exposure component. This is an important feature in light of the rising
importance of bilateral margining and central clearing. As stated in BCBS (2014c)
the SA-CCR is also able to cope with complex situations (e.g. several netting sets are
covered by one margin agreement). Second, the SA-CCR applies a more sophisticated
approach to netting and diversification. This adds additional complexity, but should
lead to higher risk sensitivity in the approximation of exposures (BCBS 2014c). The

2 Institutions with very limited trading business have the possibility to use an even simpler method, the
Original ExposureMethod (OEM), for the purpose of calculatingminimum regulatory capital requirements.
3 For a comprehensive discussion of critique of CEM, please refer to Fleck and Schmidt (2005) and Pykhtin
(2014).
4 As a result of the global financial crises, regulators all over the world set regulations for reducing risk
in the financial industry, especially in the OTC market, and to protect counterparties from the risk of a
potential default of the other counterparty. These are the obligation to clear certain derivative products as
well as the obligation to reduce the risk of non-cleared OTC derivative contracts by exchanging collateral
in form of initial and variation margin (BCBS, IOSCO 2015; ESAs 2016).
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structure of the calculation of potential future exposure is flexible and allows to add
or delete elements where necessary.5 Third, the SA-CCR takes over-collateralization,
moneyness of transactions and the netting set into account. As excess collateral and
transactions with negative values guard against rising exposures, this should lead to
more realistic results. Overall, the SA-CCR is more complex compared to the popular
CEM, but financial institutionsmight be able to leverage on the improved risk sensitiv-
ity and flexibility. The SA-CCR provides a consistent exposure calculation framework
for all asset classes, while accounting for specific aspects of different financial prod-
ucts (such as equity options, swaptions, etc.). Considering these facts alongside the
aforementioned improvements and the transparency with respect to its model foun-
dations, the application of SA-CCR for CVA pricing and accounting purposes is an
interesting option for all kinds of entities involved in derivatives trading.

According to Marquart (2016) the application of regulatory approaches (foremost
CEM) is considered best practice when calculating exposures for CVA pricing. She
analysed the impact on accountingCVAwhen switching fromCEM to SA-CCR, under
the assumption of using a simple CVA formula CV A = PD · LGD · E AD, where
E AD is defined as the Effective Expected Positive Exposure (EEPE) resulting from
SA-CCR, or CEM respectively. The application of the supervisory SA-CCR for CVA
pricing compasses several issues. First, the SA-CCR aims for an approximation of the
exposure at default (E AD) under the Internal Model Method (IMM). Under IMM, the
E AD is defined as the product of the Effective Expected Positive Exposure (EEPE)
and a factor (α = 1.4), which is used to convert the EEPE into a loan equivalent
exposure.6 For CVA pricing, a time dependent expected exposure profile EE(t) is
required. Hence, the target measure of the supervisory SA-CCR is not appropriate.
Second, the SA-CCR is calculated for a risk horizon of up to one year for unmargined
netting sets. For the purpose of CVA pricing, an exposure profile for the life-time of a
netting set is required. Using the EEPE or E AD as a scalar when calculating CVA
would ignore the time dependency of exposure. Third, the SA-CCR is calibrated to a
period of stress. This means resulting exposures are calculated under the real-world
measure. According to IFRS 13, the calculation of CVA needs to be conform to the
expectations of market participants. This requires a calibration under the risk-neutral
measure. Additionally, the SA-CCR contains a set of conservative elements which
should not be applied when calculating exposure for CVA pricing. In conclusion, we
find that the SA-CCR in its supervisory form does not conform to IFRS 13. Hence,
modifications to the regulatory SA-CCR are required to deploy the approach for CVA
pricing and accounting purposes.

3 Derivation of themodified SA-CCR

This paper aims to define modifications to the supervisory SA-CCR to derive an
approach for the calculation of expected exposure profiles. As stated above, the adjust-

5 There are discussions to give national competent authorities the option to adjust the add-on structure for
institutions with complex commodity trading activities.
6 For information on the calibration and theoretical background of α, please refer to ISDA, TBMA, LIBA
(2003), Lynch (2014) and Gregory (2015).
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ments are necessary in order to calculate exposure values suitable forCVAcalculations.
While adjusting the SA-CCR, we aim to retain the basic structure and main building
blocks. This allows the application of a consistent approach across asset classes and
enables financial institutions to leverage on future implementations of the supervisory
SA-CCR. The following presentation of the SA-CCRmethodology and the derivation
of its adjustments is based on the content and structure of BCBS (2014b).

The calculation of CVA requires an expected exposure profile as the main input. In
the absence of collateral, the expected exposure of a netting set (k) is defined as the
expected positive value of the netting set’s market value (Vk) at a future point in time
(t):

EEk(t) = IEQ [max (Vk(t), 0)] (1)

In its supervisory form, the target measure of the SA-CCR is a conservative Effective
ExpectedPositiveExposure (EEPE) on netting set level under the real-worldmeasure
(calibrated to historic stressed volatilities). Hence, the main adjustment when deriving
our approach is the change of target measure to an EEk(t) under the risk-neutral
measure. To retain the general structure of the SA-CCR, we define EEk(t) as the
combination of replacement costs (RCk(t)) and potential future exposure (PFEk(t)):

EEk(t) = RCk(t) + PFEk(t) (2)

Please note that both components of the modified SA-CCR are a function of time (t).
Following our approach, RCk(t) captures the deterministic component, while poten-
tial future exposure quantifies the stochastic component of EEk(t). In the following
sections, we derive the modified formulas for calculation of these components on net-
ting set level. Finally, we transfer our results to the SA-CCR specific parameters for
exposure calculation.

3.1 Replacement costs

For the derivation of the replacement costs formula, we first introduce the following
assumptions. (A1) A transaction’s market value follows a driftless brownian motion.
For the formulation of replacement costs, we set the volatility to zero. (A2) We
assume no cash flows between (t0, t). (A3) Furthermore, the transaction’s netting
set is unmargined and therefore not supported by a margin process.7 These assump-
tions are used implicitly by BCBS (2014b) for the derivation of RC for unmargined
netting sets.

Under these assumptions, the future market value of a transaction (Vi ) at a specific
point in time (t) is defined as:

Vi (t) = Vi (t0) + σi (t) · √
t · Xi (3)

7 A netting set is considered to be unmargined if there is no exchange of variation margin (V M). Never-
theless, other types of collateral (such as initial margin (I M)) might be present.
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Computing CVA based on a modified supervisory approach 279

where Vi (t0) represents today’s market value and Xi is a standard normal random
variable (Xi ∼ N (0, 1)). σi (t) represents the volatility of the transaction’s market
value at time t . Applying assumption A1, the expected future market value is equal
to today’s market value as the second term of Eq. (3) becomes zero. As stated above,
RC(t) should capture the deterministic movements of a transaction’s market value. In
particular, interest rate and credit default swaps involve regular payments resulting in a
change of the transaction’smarket value over time. In order to cover these deterministic
effects, we relax assumption A2. Given assumption A1, the future market value of
a transaction is deterministic and can be calculated based on the transaction’s future
cash flows. This may generally be written as:

V̂i (t) =
T∑

j=t

CFREC (t j ) · DF(t, t j ) −
T∑

j=t

CFPAY (t j ) · DF(t, t j ) (4)

where CFREC (t j ) is the cash flow received at time t j , CFPAY (t j ) equals the cash
flow paid at time t j and DF(t, t j ) represents the discount factor from time t j to time
t .

For more complex derivatives or in case no information regarding future cash flows
is available, we introduce a time-dependent and product specific scaling factor (si ) to
provide an approximation of the future market value of a transaction (V̂i (t)).

V̂i (t) = Vi (t0) · si (t) (5)

For interest rate or credit default swaps, this scaling factor might be based on a sim-
plified duration measure for the respective product:

si (t) = Di (t)

Di (t0)
· 1{Mi≥t} (6)

where 1{Mi≥t} is an indicator variable which has the value of 1 if the transaction has
not expired at t (i.e., maturity Mi is greater or equal than t). The duration measure
Di (t) is defined as:8

Di (t) = exp (−r · max(Si , t)) − exp(−r · Ei )

r
(7)

where Si is the start date of the transaction and Ei its end date. r is defined as the
current interest rate level. For simple products in other asset classes, s(a)

i could be
represented by the indicator variable. Nevertheless, our approach offers the flexibility
to define a transaction specific scaling factor for all kinds of (exotic) products. This
allows a recognition of deterministic developments of the transaction’s market value
in a flexible and consistent setting.

Within a legally enforceable netting set (k), the offsetting between transactions with
positive and negative market values (V̂i (t)) is allowed. Hence, a netting set’s market
value at time t is defined as:

8 For the derivation of Di (t) please refer to “Appendix A.3.3”.
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V̂k(t) =
∑

i∈k
V̂i (t) (8)

As stated above, replacement costs do not involve stochastic elements. Thus, the
expectation of the future market value is solely driven by deterministic movements
and hence represented by V̂k(t). This leads to the following formulation of replacement
costs for unmargined and uncollateralized netting sets:

RCk(t) = IEQ [max (Vk(t), 0)] = max
(
V̂k(t), 0

)
(9)

In the presence of collateral, the market value of the netting set is reduced by the
cash-equivalent value of net collateral received (CCE (t)). Under assumption A3, all
collateral posted or received has the form of independent collateral. Given the lack of
a margin process, no adjustment to the notional amount of collateral posted/received is
required. The time dependency of the collateral value is limited to the volatility of the
collateral value itself. In accordance with the supervisory SA-CCR, we calculate cash-
equivalent values of collateral (CCE (t)) using collateral haircuts. There are two main
adjustments to the supervisory approach. Firstly, we do not use a fixed time horizon,
but calculate the cash-equivalent value for specific points in time (t). Secondly, we
do not apply regulatory prescribed haircuts, but values based on institutions’ own
volatility estimates. Given these adjustments, CCE (t) is defined as:

CCE (t) =
∑

c∈k
V rec
c (t0) · (1 − hc(t)) −

∑

c∈k
V post,unseg
c (t0) · (1 + hc(t)) (10)

where Vc equals the market value of a received (Vrec
c (t0)) or unsegregated posted

(V post,unseg
c (t0)) collateral position at time t = t0. The haircut applicable to a specific

collateral position is represented by hc(t). Please note that segregated posted collateral
is not relevant for the calculation of replacement costs, as it is placed in a bankruptcy
remote account and will therefore not increase exposure to the relevant counterparty.
Including collateral positions in the calculation of replacements costs for unmargined
netting sets leads to:

RCk(t) = max
(
V̂k(t) − CCE (t), 0

)
(11)

In order to derive a formulation for margined netting sets, we need to relax assumption
A3. Within the modified SA-CCR, we introduce the possibility to model collateral
dynamics directly. We calculate the future expected market value of each transaction
at each point in time t based on known cash flows using Eq. (4) or by applying a scaling
factor (see Eq. (5)). Hence, we know the expected future market value of the netting
set (V̂k(t)) at each t . Based on this information, we are able to derive an expected
collateral path including the consideration of margin parameters like threshold (T H )
and Minimum Transfer Amount (MT A). In case of (T H �= 0) collateral is only
exchanged, when the threshold is exceeded. This implies that the incremental amount
above the threshold is exchanged in form of collateral. We define the amount above
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Computing CVA based on a modified supervisory approach 281

the threshold as the collateral demand (ĈD(t)). If (MT A �= 0), collateral is only
exchanged, when the absolute difference between the current collateral position (Ĉ(t))
and the collateral demand exceeds the MT A. Under the assumption of symmetric
MT A and T H , absence of rounding, daily margining and instantaneous processing
of collateral exchange, the expected collateral position at t j is defined as:9

Ĉ(t j ) = Ĉ(t j−1) + max
(
max

(
ĈD(t j ) − Ĉ(t j−1), 0

)
− MT A, 0

)

+min
(
min

(
ĈD(t j ) − Ĉ(t j−1), 0

)
+ MT A, 0

)
(12)

where the collateral demand (ĈD(t)) is defined as:

ĈD(t j ) = max
(
max

(
V̂ (t j ), 0

)
− T H , 0

)

+min
(
min

(
V̂ (t j ), 0

)
+ T H , 0

)
(13)

Based on this definition, the replacement costs for a margined netting set at t are
defined as:10

RCmargin
k (t) = max

(
V̂k(t) − Ĉ(t) + N IC A, 0

)
(14)

where N IC A represents the Net Independent Collateral Amount defined as:

N IC A = I Mrec − I Munseg
post (15)

In addition to modelling collateral dynamics directly, we introduce an optional (alter-
native), more simplistic approximation for the recognition of collateral in margined
netting sets. This conservative approximation follows the methodology described in
BCBS (2014b).We assume that the latest exchange of variationmargin is not known at
time t . Hence, we estimate RC(t) of margined netting sets as themaximum of replace-
ment costs of an equivalent unmargined netting set, the highest exposure amountwhich
would not trigger a margin call and zero. In general, a margin call is triggered if the
uncollateralized market value is equal to the sum of T H and MT A. This amount is
reduced by the net independent collateral amount (N IC A).11

Under a margin agreement, changes in the netting set’s market value will lead to
changes in the amount of variation margin posted or received. Therefore, we introduce
a time-dependent adjustment for variation margin (V M) based on the change of the
market value of the netting set. Based on this adjustment, we arrive at the following

9 Please note that our approach offers the possibility to integrate additional collateral parameters, such as
independent amounts, rounding or other re-margining periods.
10 Please note that the application of haircuts is also required formargined netting sets. In case of amargined
netting set, the risk horizon for the application of haircuts is set to the MPOR.
11 In this case N IC A has to include differential of the independent amounts used as parameters within the
calculation of variation margin amounts.
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approximation of replacement costs for margined netting sets:

RCmargin
k (t) ≈ max

(
V̂k(t) − ĈCE (t), T H + MT A − N IC A, 0

)
(16)

where ĈCE (t) is defined as:

ĈCE (t) =
(

∑

c∈k
V V M
c (t0) · (1 ± hc(MPOR))

)
· V̂k(t)

Vk(t0)
+ N IC A (17)

where V VM
c (t0) is defined as today’s market value of a variation margin collateral

position.12 In general we cap the expected exposure of a margined netting set at the
expected exposure of an equivalent netting set without any form of margin agreement.
This is equal to the assumption that a netting set is treated as unmargined as long
as no collateral is exchanged (e.g. the sum of MTA and TH is not exceeded).. This
procedure is required to avoid overly conservative results due to high thresholds and
minimum transfer amounts.

3.2 Potential future exposure

In line with BCBS (2014b) we define the potential future exposure (PFE) as the
product of a multiplier (mk) and an aggregated add-on (AddOnk) for each netting set
(k):

PFEk(t) = mk(t) · AddOnk(t) (18)

wheremk(t) is a function of ĈCE (t), V̂k(t) as well as the calculated aggregated add-on
(AddOnk(t)) of the respective netting set (k). In our approach, the aggregated add-
on represents an analytical approximation of EEk(t) on netting set level, assuming
a market value of zero and the absence of collateral. The multiplier is introduced to
account for market value and collateral amounts different from zero. The regulatory
SA-CCR approach reflects the benefit of excess collateral and negative market values,
as only these are mitigants against potential future exposure. Please note that the
multiplier as well as the aggregated add-on are a function of time (t). In the subsequent
paragraphs we provide the derivation of add-ons as well as the multiplier formula.

3.2.1 Add-ons for unmargined netting sets

The netting set level add-on for unmargined netting sets represents an estimate of
the expected exposure (EE) at time t . The assumptions of the regulatory SA-CCR
presented in BCBS (2014b) aremaintained in order to build a consistent and integrated
framework. Hence, our approach is based on the following main assumptions:

12 Please note that a change in sign of V̂k (t) will also lead to a change in sign of variation margin. In
case of posted VM, segregated collateral needs to be eliminated from the calculation of ĈCE (t). Hence,
assumptions on the properties of potentially posted and received variation margin are required.
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– AO1: The market value of all transactions is zero (Vi (t) = 0). This assumption
implies that the market value of the netting set is zero (Vk(t) = 0).

– AO2: There is neither received nor posted collateral (CCE (t) = 0).
– AO3: There are no cash-flows within the time period (t0, t)
– AO4:The evolution of each transaction’smarket value follows an arithmetic brow-
nian motion with zero drift.

Under these assumptions, the expected exposure of a netting set at time t is defined
as:13

EEk(t) = IEQ [max(Vk(t), 0)] = IEQ
[
max(σk(t) · √

t · Y , 0)
]

(19)

with σk(t) representing the annualized volatility of the netting set’s market value at t .
As Y is a standard normal variable, we can calculate EEk(t) analytically. Hence, the
expected exposure solves for:14

EEk(t) = σk(t) · √
t · φ(0) (20)

where φ(0) is defined as the standard normal probability density: φ(0) = 1/
√
2π .

According to BCBS (2014b) and in line with the above foundations, we are able to
restate this equation at trade level in order to calculate an expected exposure at trade
level EEi (t).

AddOni (t) = EEi (t) = σi (t) · √
t · φ(0) (21)

Please note that contrary to BCBS (2014b) the volatility of the market value on trade
level (σi (t)) is a function of t as we estimate the volatility of each transaction’s market
value as a function of t . Nevertheless, we are generally able to use the same structure
and aggregation methodology for the calculation of add-ons as proposed by BCBS
(2014b).15

3.2.2 Add-ons for margined netting sets

The add-on formarginednetting sets aims to estimate the expected increase of exposure
between time of default (τ = t) and the final close-out of positions (t + MPOR).
Given assumptions AO1, AO2 and AO3 and in accordance with the argumentation of
BCBS (2014b), the calculation of this amount on netting set level can be reduced to:

AddOnmargin
k (t) = EEmargin

k (t) = σk(t) · φ(0) · √
MPOR (22)

13 For detailed derivation of Eq. (19), please refer to “Appendix A.1”.
14 For the respective derivation of the analytical formulation of EEk (t), please refer to “Appendix A.1”.
15 The validity of this assumption under the new target measure EE(t) is proven in “Appendix A.2”.
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For a netting set with only one trade, we can restate formula (22) and arrive at the
formulation for the trade-level add-on for transactions in a margined netting set.16

AddOnmargin
i (t) = σi (t) · φ(0) · √

MPOR (23)

3.2.3 Structure of add-on calculations

The regulatory SA-CCR has a specific structure for the calculation of PFE add-ons.
Aggregation procedures are used to calculate netting set level add-ons from trade-
level add-ons. These aggregation rules are based on the central idea that add-ons can
be aggregated like standard deviations.While deriving our modified approach for add-
on calculation, we apply similar assumptions as used for developing the regulatory
SA-CCR. We have shown that the general principles of the SA-CCR are still valid
under the new target measure (EE(t)). Hence, we are generally able to apply the
same basic structure and methodology for aggregation as provided by the regulatory
SA-CCR.

Thefirst step for calculating the aggregated add-ononnetting set level is the determi-
nation of an add-on at trade-level. In line with the regulatory SA-CCR, the calculation
of trade-level add-ons is asset class specific, but has common features for all derivative
transactions. Hence, each transaction is allocated to at least one of five asset classes
based on the primary risk factor.17 For products with more than one material risk
factor, the assignment to multiple asset classes is required.18

Following the supervisory SA-CCR, we operate with simple trade-level parameters
instead of trade-level volatilities (σi (t)) directly. Hence, we define a transaction’s add-
on at time t as the product of an exposure factor (EFi ), the adjusted notional amount
(di ), its delta (δi ) and a scaling factor with respect to time (

√
t or

√
MPOR).19

AddOni (t) = EFi · di (t) · δi (t) · √
t (24)

AddOnmargin
i (t) = EFi · di (t) · δi (t) · √

MPOR (25)

By inserting Eq. (21) into Eq. (24) and solving for σi (t), we arrive at the following
approximation for the volatility of the transaction’s market value at t :

σi (t) = EFi
φ(0)

· di (t) · |δi (t)| (26)

16 As shown in “Appendix A.2”, the aggregation of trade-level add-ons also holds true when aggregating
margined trade-level add-ons.
17 Within this paper we share the number and set-up of asset classes and hedging sets proposed by the
Basel Committee. Nevertheless, the general structure of our approach allows for further modification with
respect to the amount and definition of asset classes, hedging and subsets.
18 Details with respect to this requirement are still under discussion. A first discussion paper has been
published by EBA (2017).
19 The maturity factor (MFi ) used in the supervisory SA-CCR is applied as correction for trades maturing
within the risk horizon of 1 year for unmargined netting sets. Under the target measure EE(t), this is not
necessary, as no averaging over a dedicated risk horizon is applied. Hence, a maturity factor is not required.
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In accordance with BCBS (2014b) the ratio of EFi and φ(0) can be interpreted as the
annualized standard deviation of the transaction’s primary risk factor (σ (RF)

i ):

σ
(RF)
i = EFi

φ(0)
(27)

Please note that the volatility of the risk factor (σ (RF)
i ) is assumed to be constant over

time. Hence, the time dependence of the volatility of the transaction’s market value is
solely resulting from di (t) and δi (t). The exposure factor (EFi ) can be interpreted as
an approximation of the expected exposure of a netting set with one directional trade,
which has the size of one unit adjusted notional at t = 1year .

EFi = σ
(RF)
i · φ(0) (28)

This relationship allows a calibration of EFi based on the (implied) volatility of the
transaction’s primary risk factor (σ (RF)

i ). The supervisory SA-CCR provides supervi-
sory factors (SFi ) on subclass level.20 We introduce a more granular approach to the
calibration of the exposure factor in Sect. 4.

The delta parameter (δi ) is a function of the direction of the trade with respect to
the primary risk factor (long / short). For products with a non-linear relationship to
the primary risk factor, δi serves as a scaling factor with respect to the moneyness of
the product.21 For plain vanilla options we use a delta formula based on the formula
provided by the supervisory SA-CCR (BCBS 2014c):

δi (t) = ψ · N
⎛

⎜⎝ω ·
ln(P̂(t)/K ) + 0.5 ·

(
σ

(impl)
i

)2 · (T − t)
(
σ

(impl)
i

)
· √

(T − t)

⎞

⎟⎠ (29)

where K represents the strike price andσ
(impl)
i the (implied) volatility of the underlying

of the option. T is defined as the amount of time (in years) between today and the expiry
date of the option.22 P̂(t) equals an estimation of the spot price of the underlying at
time t .23 If an estimation of P(t) via the forward price is not possible, we assume
P(t) = P(t0). The parameters ψ and ω are required to cover all combinations of
bought/sold and call/put options.24

For more complex and exotic options Eq. (29) might not be appropriate as a lot
of these products are path-dependent. As δi (t) is defined on trade-level, our approach

20 Such as rating categories within asset class credit.
21 Please note that supervisory approach is offering a specific delta formula for CDOs which uses detach-
ment and attachment points as inputs for the calculation of the delta parameter.
22 For options with multiple exercise dates, one might only assume the latest exercise date.
23 Example: For FX options, we are able to estimate the forward price at time t based on the interest rate
curves of the involved currencies.
24 ψ equals (−1) where the transaction is a sold call option or a bought put option and sign (+1) where
the transaction is a bought call option or sold put option. ω equals (−1) for put and (+1) for call options.
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offers the flexibility to include the actual economic deltas for these products. Neverthe-
less, this requires an assumption on the development of the products delta over time,
especially if those deltas are not calculated analytically. Hence, the methodology for
calculation of δi (t) needs to be defined for each product type based on the availability
and quality of the respective data.

The adjusted notional amount (di ) captures the size of a transaction. For interest
rate and credit derivatives, di is also used to recognize the duration of the instrument
and thereby its sensitivity to changes in underlying risk factors. In general, the add-on
under SA-CCR is proportional to the adjusted notional. The adjustments to the asset
class specific formulation of di are presented in “Appendix A.3.3”.

3.2.4 Aggregation of trade-level add-ons

With respect to the aggregation of trade-level add-ons and structure of subsets and
hedging sets, we basically follow the procedures and definitions of the supervisory
SA-CCR (BCBS 2014b):

In case of interest rate derivatives, all transactions (i) are allocated to a hedging
subset based on their currency (c) and maturity. For each currency, three maturity
buckets (0 − 1y, 1− 5y, > 5y) are defined. Within these maturity buckets (b), trade-
level add-ons of long and short positions are aggregated assuming a correlation of
100%. Hence, we arrive at the following definition for the add-on (X ) for each hedging
subset (Xcb) at time t :

Xcb(t) =
∑

i∈{ccyc,MBb}
Xi (t) =

∑

i∈{ccyc,MBb}
EFi · di (t) · δi (t) · √

t (30)

In a next step we calculate an add-on for each hedging set (currency) based on the
following equation:

Xc(t) =
√∑

b

(Xcb(t))2 +
∑

b

∑

b �=d

ρbd · Xcb(t) · Xcd(t) (31)

whereρbd is defined as the correlation between twomaturity buckets.25 GivenEq. (31),
we are able to account for offsetting effects between long and short transactions in the
same currency and different maturity bucket. Based on the adjustments of trade-level
parameters (di (t), δi (t)) over time, we model implicitly the time-variant development
of the sensitivity of the transactions and the netting set to changes in the underlying
risk factors. Hence, we are able to capture the offsetting effects of long and short
positions in the same currency and with different maturities over time.

25 In line with BCBS (2014b) the correlation between maturity buckets (0–1y) and (>5y) is set to 30%,
while all correlations between other maturity buckets are set to 70%. Please note, that we assume constant
correlation over time in line with our methodological framework (see Eq. (A.4)).
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Within the supervisory SA-CCR framework, the regulatory PFE add-on on for IR
derivatives on asset class level is defined as the sum of all hedging set add-ons:

X (I R)
reg (t) =

∑

c

Xc(t) (32)

Given the formulation above, the regulatory PFE add-on for IR derivatives does not
recognize diversification effects between exposure in different currencies.

The add-on calculation for FX derivatives does not require an allocation of trans-
actions to hedging subsets. All transactions referencing the same currency pair are
allocated to a hedging set directly. Within the resulting hedging sets, full offsetting
of long and short positions is allowed. Hence, the aggregation of trade-level add-ons
(Xi ) to the specific hedging set add-on (Xc) for each currency pair (c) can be written
as:

Xc(t) =
∑

i∈ccyc
Xi (t) =

∑

i∈ccyc
EFi · di (t) · δi (t) · √

t (33)

For FX derivatives, the regulatory PFE add-on on asset class level (X (FX)) is defined
as the simple sum of all hedging set add-ons (Xc):

X (FX)
reg (t) =

∑

c

Xc(t) (34)

Hence, the regulatory PFE add-on for FX derivatives does not take diversification
effects between different currency pairs into account. The aggregated PFE add-on
across asset classes is defined as the simple sum of all add-ons on asset class level.
Hence, diversification effects across asset classes are also not considered during the
aggregation of the PFE add-on.

The aggregation procedures for equity, credit and commodity derivatives involve
offsetting of transactions via the application of a single-factor model. Hence, offset-
ting of transactions with different underlying reference entity (CR), issuer (EQ) or
commodity type (COM) is considered, when calculating the PFE add-on.26

In general, the recognition of diversification effects in the add-on calculation of the
supervisory SA-CCR is deemed conservative. We perceive the missing consideration
of offsetting effects across currencies (IR) and currency pairs (FX) as too conservative
for the purpose of CVA calculation. Our approach provides the flexibility for imple-
menting improvements to the methodology for the aggregation of PFE add-ons. As a
simple example we introduce a modified aggregation procedure for the calculation of
IR and FX add-ons on asset class level. This method is based on the new standard-
ized approach for market risk (BCBS 2019), where this concept is used to aggregate
bucket level results (FX=currency pairs, IR=currencies) to asset class results. Follow-
ing BCBS (2019), we define the asset class level add-on of the modified SA-CCR for
asset classes FX and IR as:

26 For further details on the aggregation procedures for those asset classes, we refer to BCBS (2014b) and
BCBS (2014c).
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X (I R/FX)
mod (t) =

√∑

b

(Xb(t))2 +
∑

b

∑

b �=c

γ
(a)
bc · Xb(t) · Xc(t) (35)

where Xb(t) equals the add-on of the respective hedging set (b). γbc represents the
correlation between two currency pairs (FX) or currencies (IR). In line with BCBS
(2019) we set γ

(I R)
bc = 0.5 and γ

(FX)
bc = 0.6. In the modified SA-CCR, Eq. (35) is

used to replace Eqs. (32) and (34).
As mentioned above, the modified SA-CCR framework offers the possibility to

include more complex aggregation methodologies to model correlations between
hedging sets and asset classes. Thederivation ofmore complexmodifiedprocedures for
the aggregation of add-ons would require a comprehensive discussions and analysis of
different aggregation methods for each asset class. Within this paper we focus on pro-
viding detailed insights in the methodological foundations of the modified SA-CCR.
Hence, we choose a simple aggregation methodology to account for diversification
effects between hedging sets in the asset classes IR and FX.

3.3 Multiplier

When deriving the PFEmultiplier, the assumptionsAO1 andAO2 are relaxed. Hence,
themarket value of a netting set can be different to zero and received or posted collateral
might be present. The multiplier is defined as a fraction of PFE. Thereby the PFE is
corrected for the fact that market value and collateral amounts are different from zero.
Based on these assumptions, the expected exposure (EE(t)) of an unmargined netting
set (k) at a certain point in time t is defined as:

EEk(t) = IEQ
[
max

(
(V̂k(t) + σk(t) · √

t · Y ) − CCE (t), 0
)]

(36)

where:

– V̂k(t) is the (deterministic) market value of the netting set at time t ,
– CCE (t) represents the cash-equivalent value of net collateral received at t ,
– σk(t) is the volatility of the netting set at time t and
– Y is defined as a standard normal random variable.

Based on Eq. (36) and the aforementioned assumptions, the multiplier formula is
derived analytically for unmargined netting sets. For details on assumptions and ana-
lytical calculation of the multiplier formula, please refer to “Appendix A.3”. The
multiplier for a netting set (k) at time t is defined as:

m(t) = y · � [φ(0)y] + φ [φ(0)y]

φ(0)
−

max
(
V̂k(t) − CCE (t), 0

)

AddOnk(t)
(37)

where y = V̂k (t)−CCE (t)
AddOnk(t)

, �(.) is the standard normal cumulative distribution function
andφ(.) the standard normal probability density function. This differs from themodel-
based multiplier formula derived by BCBS (2014b). The supervisory SA-CCR applies
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a more conservative multiplier function to account for the possibility that future MtM
values are not normally distributed. Additionally only cases are considered where
V̂k(t)−CCE (t) is less than zero. Futhermore, a floor is introduced in order to prevent
themultiplier from reaching zero. Themodified SA-CCRuses themultiplier as defined
in Eq. (37) without further modifications. As shown in “Appendix A.3”, the same
formulation applies for margined and unmargined netting sets.

4 Calibration

4.1 Background and general considerations

In its regulatory setup, the SA-CCR is calibrated under the real-world measure based
on historical data. According toBCBS (2013) the regulatory SA-CCRparameterswere
estimated using a three step approach. In a first step, the supervisory parameters were
calibrated based on market data from different markets. Volatilities and correlations
were evaluated based on a stress period which, in most cases, was defined as the
three-year period with the largest historically observed volatility. The BCBS applied
different approaches by asset class to perform this initial calibration.27 The second
step was based on a comparison of SA-CCR exposure outcomes with results from
simplified IMM models for a set of hypothetical portfolios. This comparison was
carried out for small portfolios involving hypothetical trades for each asset class. The
third and final step involved a benchmarking exercise based on contributions by a set
of IMM banks via Quantitative Impact Studies. The model outcomes were averaged
and compared with CEM and SA-CCR exposures to derive final adjustments to the
regulatory parameters.

The outcome of this process is regulatory prescribed parameters (option volatilities,
supervisory factors and correlations) for each asset class.28 For some asset classes,
such as interest rates or foreign exchange, the supervisory factor is defined on asset
class level. Hence, there is no differentiation between more granular risk factors such
as currencies or tenors. For some asset classes additional levels (subclasses)were intro-
duced to increase the granularity and risk sensitivity of the approach.29 The BCBS
tried to limit the granularity of the regulatory approach, aiming for a total number of
risk factors close to the Current Exposure Method (CEM). As the SA-CCR was not
designed to cover exotic products ormore complex risk factors, a certain degree of con-
servatism was included when developing the approach and defining model parameters
(BCBS 2013).

The supervisory parameters given by theBCBSare not appropriatewhen generating
exposure profiles for accounting and pricing purposes. In summary, themain issues are
the calibration under the real-world measure based on historical (stressed) volatilities,
the lack of granularity with respect to risk factors, as well as the high degree of

27 For a detailed overview on the calibration by asset class, please refer to BCBS (2013).
28 The supervisory parameters are available in BCBS (2014c).
29 Example: For credit derivatives, the supervisory factor is defined based on the underlying type (index
or single-name) and the underlying’s credit quality.
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conservatism applied to the overall calibration approach. Hence, a re-calibration of
the parameters is required in order to use the modified SA-CCR for CVA calculation.

4.2 Calibration of themodified SA-CCR

The calibration of the modified SA-CCR has two main objectives. First, we aim to
increase the granularity of risk factors aiming for more risk sensitive exposure calcu-
lation. Second, the calibration is performed under the risk-neutral measure based on
market-implied volatilities, in order to meet the expectation of market participants.
Overall, the main driver of exposure is the volatility of the primary risk factor of each
transaction. Hence, we focus on the calibration of the exposure factor (EFi ).We do not
provide a re-calibration of the SA-CCR correlation parameters, but apply a modified
methodology for the aggregation of hedging set add-ons involving additional correla-
tion parameters (see Sect. 3.2.4). We perform a calibration of option volatilities for the
calculation of the delta parameter (see Eq. (29)). The calibration approach differs by
asset class and depends on data availability for the respective risk factors. Within this
section, we provide a general overview and present proposals for the calibration of the
modified SA-CCR, without discussing all asset class specific details. We focus on the
asset classes IR and FX, as these are relevant for the subsequent empirical analysis.

In general, the calibration of exposure factors is based onmarket-implied volatilities
obtained from options. Hence, the approach offers the possibility to consider the
maturity and the moneyness of a certain position. For interest rate derivatives, the
exposure factor is calibrated based on market-implied at-the-money (ATM) swaption
volatilities for the respective currency, taking the volatility term structure into account.
Hence, the risk factor is defined by the combination of currency and tenor. In case of
missing data we propose to use the supervisory factor (0.5%).

In linewithBCBS (2013)wecalibrate the exposure factor for FXderivatives directly
from implied FX option volatilities using the relationship stated in Eq. (28). While the
supervisory SA-CCR only applies one distinct supervisory factor for the whole FX
asset class, we consider each currency pair a single risk factor. Hence, the volatility
used to calculate the exposure factor for a specific transaction is a function of its base
and reference currency. The market-implied ATM volatilities are provided based on
the following term structure: 1D, 1W, 1M, 2M, 3M, 6M, 9M, 12M, 2Y, 3Y, 4Y, 5Y,
10Y. In order to calculate the relevant volatility value for a specific transaction, we use
linear interpolation. If there is no valid and appropriate data on implied volatilities for
a certain currency pair, we use the supervisory factor (4%).

For other asset classes (Equity, Credit, Commodity) the granularity of exposure
factors can be chosen based on available data and desired complexity of implemen-
tation. For equity and credit derivatives, the calibration for each underlying can be
carried out independently or via a beta-approach as described in BCBS (2013), where
exposure factors for single-name positions are obtained from index volatilities and the
respective beta. For commodity positions, different dimensions, such as underlying,
grade and delivery location can be considered when calibrating exposure factors. In
general, one could also decide to calibrate the exposure factor on broad commodity
types similar to the supervisory approach. By maintaining the key building blocks of
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the regulatory SA-CCR, we provide a flexible framework for the calibration of the
modified SA-CCR. This leads to a general trade-off between the risk-sensitivity of the
approach and the amount of data required for its calibration.

5 Empirical analysis

5.1 Methodology

In this section we assess the modified SA-CCR’s ability to provide a risk sensitive
and accurate approximation of the exposure calculated by an advanced model. As
the main criterion, we compare the resulting credit valuation adjustment (CVA) from
both approaches. The analysis is performed based on illustrative examples of netting
sets. These are composed of hypothetical interest rate (IR) and foreign exchange (FX)
transactions. The netting sets involve products with different maturity, underlying,
direction and moneyness. Our empirical study comprises the following main steps:

SA-CCR (re)calibration: First, we calibrate the relevant exposure factors (EFi ) of
the modified SA-CCR to market-implied volatilities as described in Sect. 4.30 We
construct a series of netting sets for the empirical analysis including margined and
unmarginednetting sets aswell as netting setswith non-linear products.Anoverviewof
the transactions and netting sets is provided in “AppendixA.4.2”. The calibration of the
relevant parameters is carried out based on amarket data set as of 28th September 2018.

Exposure calculation: Second, we calculate EEk(t) based on the modified SA-
CCR and an advanced benchmark model (BMM). For interest rates, we apply a model
based on the approach of Trolle and Schwartz (2009). The modelling of FX rates
is based on a Heston model (1993). The parameters of the Trolle–Schwartz model
are calibrated to European swaptions. The calibration process is based on swaption
prices derived from quoted implied volatilities for a series of European swaptions with
different underlying and option tenor as well as different strike price. Parameters of
the Heston model are calibrated based on implied lognormal volatilities quoted for FX
option strategies. Quotes are available for different maturity and moneyness. These
strategies are transformed to European FX options and their corresponding prices,
which are used as input for the calibration process.31

From our point of view, the applied models provide state-of-the-art stochastic pro-
cesses for the evolution of all major risk factors. Themodels also cover the dependency
of the implied volatility to moneyness (volatility skew). Accuracy is a critical issue
when calculating exposures for CVA pricing and accounting purposes. Hence, we
decided to use an advanced, state-of-the-art benchmark model involving a compre-
hensive set of risk factors to assess the accuracy of the modified SA-CCR, rather than
a more simplistic exposure model.

CVA calculation: Based on the exposure profiles obtained from the modified SA-
CCR and the benchmark model, we calculate the CVA using the following discretized

30 Please note that other parameters, such as correlations, are not re-calibrated. Hence, we use the super-
visory parameters given by the regulatory SA-CCR.
31 For additional details on the calibration of the applied benchmark model please refer to “Appendix
A.4.1”.
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formula under the assumption of a flat credit spread curve (40 basis points) and a
recovery rate of 40% (Gregory 2010).

CV A ≈ (1 − R) ·
M∑

i=1

DF(ti ) · EE(ti ) · PD(ti−1, ti ) (38)

Analysis: Finally, we compare the exposure profiles and the CVA results for the
benchmark model with the modified SA-CCR. The targets of this comparison are
the assessment of the applicability for the purpose of CVA calculation, the validation
of results as well as the identification of shortcomings and areas of future work. Hence,
we use illustrative examples for different products and situations.

5.2 Results

5.2.1 Results for interest rate swaps

The expected exposure profile of an IR swap is driven by two contrary effects. The
uncertainty with respect to future payments leads to an increasing exposure (disper-
sion), whereas the roll-off of swap payments has a decreasing effect on the exposure
(amortization) over time.The combinationof these effects results in the typical humped
shape of the exposure profile (Gregory 2010). Within the modified SA-CCR, the dis-
persion effect is reflected by scaling the volatility with the square root of time (

√
t)

when calculating the PFE add-on.32 As shown above, the modified SA-CCR approach
is also able to recognize the amortization effect due to the consideration of cash flows
in replacement costs and the adjustment of the duration parameter, which is used to
calculate the PFE add-on. Our approach allows the generation of expected (positive)
exposure (EE), expected negative exposure (ENE) and expected market value pro-
files (EMtM).33 These different types of exposure profiles are presented in Fig. 1 for
an EUR 5Y at-the money (ATM) IR payer swap, with differing payment frequencies
(fix = annual, float = semi-annual).

The shape of the exposure profiles modelled with the modified SA-CCR is in line
with the results of the advanced benchmark model (BMM). By calibrating the modi-
fied SA-CCR approach to market-implied volatilities, we are able to reflect a similar
level of risk. Additionally, Fig. 1 shows that the modified SA-CCR is able to recognize
the asymmetry between payer and receiver swaps, as well as the differing payment
frequencies of the fixed and floating leg. By using an adjusted SA-CCR multiplier
formula, we consider the effect of the current market value on future exposure uncer-
tainty. Figure 2 provides expected exposure profiles and corresponding CVA results
of EUR 10Y ATM IR payer swaps with different moneyness.

The results show that our approach mirrors the exposure dynamics produced by
an advanced model. Based on the generated exposure profiles, we are able to calcu-

32 See Eq. (21).
33 Please note that the following presentation of results is focused on the calculation of CVA and thereby
the generation of expected (positive) exposure (EE).
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Fig. 1 Exposure profiles of an EUR 5Y ATM IR (payer) swap. Note The figure shows different types of
exposure profiles for an EUR 5Y ATM IR (payer) swap, calculated with the modified SA-CCR approach
(left panel) and a benchmark model (right panel)

Fig. 2 Expected exposure of EUR 10Y IR payer swaps. Note The figure shows the expected exposure
profile (EE(t)) of IR (payer) swaps with a maturity of 10 years, which are in-the-money (left), at-the-
money (middle) and out-of-the-money (right). The results of the modified SA-CCR (solid line) are close to
the results retrieved from the benchmark model (dashed line). This is also indicated by the corresponding
CVA results shown in the header of each graph

late Credit Valuation Adjustments (CVA) by using Eq. (38) and the aforementioned
assumptions with respect to the credit spread curve and recovery rate (see Sect. 5.1).

In order to assess the quality of the approximation by the modified SA-CCR, we
apply the approach to an illustrative set of IR swaps with different underlying cur-
rencies, tenors and moneyness. We use 14 hypothetical IR swap transactions. Each
transaction is put into a separate uncollateralised and unmargined netting set. All hypo-
thetical transactions are fix-to-floating IR swaps with identical payment frequencies
(fixed = anual, float = semi-annual). The test data comprises swaps with different
underlying currencies (EUR, USD), tenors (5Y, 7Y, 10Y), direction (pay, receive) and
moneyness (ATM+0.01,ATM, ATM−0.01).34 Table 1 provides an overview of the
CVA results for the different netting sets.35

In general, we observe that the expectedmarket value estimated by themodified SA-
CCR is very close to the results from the benchmarkmodel for all analysed netting sets.
This is a result of the cash flow based calculation of replacement costs. The excellent
approximation of the expected market value leads to very good results for in-the-
money (ITM) transactions, as their future exposure is mainly driven by movements

34 For additional details on the hypothetical transactions, please please refer to “Appendix A.4.2”.
35 A graphical representation of the expected exposure profiles for these netting sets are provided in
“Appendix A.4.3”.

123



294 P. Büchel et al.

Table 1 CVA results for hypothetical IR swaps

Id Description CVA (SA-CCR) CVA (BMM)

-2000 EUR IRS PAY ATM−0.01 5Y 703.82 702.95

-2001 EUR IRS PAY ATM 5Y 167.68 155

-2002 EUR IRS PAY ATM+0.01 5Y 11.55 11.21

-2003 EUR IRS REC ATM−0.01 5Y 0.52 0.12

-2004 EUR IRS REC ATM 5Y 55.22 43.57

-2005 EUR IRS REC ATM+0.01 5Y 490.03 491.33

-2006 EUR IRS PAY ATM−0.01 10Y 2769.08 2,789.02

-2007 EUR IRS PAY ATM 10Y 1125.70 1,051.82

-2008 EUR IRS PAY ATM+0.01 10Y 324.23 311.03

-2009 EUR IRS PAY ATM−0.01 7Y 1370.16 1,363.46

-2010 EUR IRS PAY ATM 7Y 410.23 400.67

-2011 EUR IRS PAY ATM+0.01 7Y 57.68 69.2

-2012 USD IRS PAY ATM−0.01 5Y 470.25 457.78

-2013 USD IRS PAY ATM 5Y 120.95 96.75

-2014 USD IRS PAY ATM+0.01 5Y 20.20 13.2

This table provides an overview of theCVA results for different hypothetical IR swaps calculatedwith (1) the
modified SA-CCR approach and (2) the benchmark model (BMM). We provide a graphical representation
of the expected exposure profile for each netting set in “Appendix A.4.3”

in the expected MtM (see table 1). Given the granular calibration approach of the
modified SA-CCR, we are able to consider different levels of risk with respect to the
underlying currency and tenor of the transactions. The calibration to at-the-money
(ATM) market-implied volatilities leads to an appropriate approximation for most
netting sets, even if the respective transaction is not at-the-money (see Fig. 2 and
Table 1).

The modified SA-CCR is able to provide an adequate and risk sensitive approxi-
mation of the expected exposure profile for IR swaps. We are able to use these as input
for the calculation of CVA and receive very good results on single-transaction level.
The approach is capable of reflecting all major exposure dynamics and estimating a
reasonable level of risk. Furthermore, the modified SA-CCR is sensitive to different
underlying currencies, tenors and the moneyness of transactions.

5.2.2 Results for FX forwards

The risk of FX forwards is dominated by the notional exchange at maturity (T ) of the
transaction. FX forwards do not involve any further cash flows between (t) and (T ).
Hence, the exposure is driven by the uncertainty regarding future payments atmaturity.
The exposure monotonically increases with time and is also driven by small effects
from interest rate risk (Gregory 2010). We are able to recognize these characteristics
in the modified SA-CCR via a cash flow based calculation of replacement costs as well
as the scaling of the add-on by

√
t (see equation 24). Figure 3 provides the expected

exposure profile of 3Y EUR/USD FX forwards with different moneyness.
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Fig. 3 Expected exposure profile for FX forwards with different moneyness. Note The figure shows the
expected exposure profile and CVA results for three EUR/USD FX forwards with maturity of 3 years and
different moneyness. The results of the modified SA-CCR (solid line) are very close to the results from the
benchmark model (dashed line) for ITM and ATM transactions

The results presented in Fig. 3 show that themodified SA-CCR reflects the influence
of currentmarket values on the uncertainty of future exposures. Furthermore, the shape
of the generated exposure profiles are in linewith the outcomeof the benchmarkmodel.
Based on the resulting expected exposure profiles, we are able to calculate the CVA for
different products and netting sets. For an illustrative validation of the modified SA-
CCR, we have composed 18 single-transaction nettings sets. Furthermore, we assume
the absence of collateral and margin agreements. The netting sets are comprised of
FX forwards with different maturity, underlying currency pair, as well as moneyness.
Table 2 provides an overview of the CVA results for these hypothetical netting sets.36

In general, the expected exposure of FX forwards is more sensitive to calibration
compared to IR swaps. As discussed, the risk of FX forwards is concentrated on
payments at maturity. Hence, the uncertainty of future exposure increases over time.
There are no exposure-reducing effects on the expected exposure from roll-off of
payments during the life-time of the transaction. Hence, ATM and OTM transactions
are very sensitive to uncertainty in calibration. In contrast, ITM transactions are less
sensitive to calibration, as the expected exposure is mainly driven by the current and
expected market value. Hence, the modified SA-CCR generates reasonable expected
exposure profiles for ITM transactions, which are very close to the outcome of the
benchmark model. The expected exposure of OTM transactions is mainly driven by
the PFE add-on. Hence, results are more sensitive to calibration of the add-on. As we
calibrate the modified SA-CCR to ATM volatilities, we are not able to correctly reflect
the level of risk estimated by the benchmark model for all currencies and tenors.

Nevertheless, themodified SA-CCRconsiders the exposuremitigating effect of cur-
rent negative market values and is able to reproduce the shape of the exposure profile.
Hence, an advanced calibration approach considering the dependency of market-
implied volatility on moneyness should lead to more appropriate results. For ATM
FX forwards, the modified SA-CCR provides reasonable exposure profiles and an
appropriate approximation of the CVA estimated by the benchmark model.

Taking the results for the illustrative examples into account, we are justified in
saying that our approach is able to provide an expected exposure profile, which could
serve as a reasonable basis for the approximation of the CVA. The approach incor-
porates the specific risks of different currency pairs and tenors. Furthermore, the risk

36 The visualization of EE(t) profiles is available in “Appendix A.4.4”.
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Table 2 CVA results for hypothetical FX forwards

Id Description CVA (SA-CCR) CVA (BMM)

-2015 EUR/USD FXFWD ATM−20% 1Y 0.05 0.08

-2016 EUR/USD FXFWD ATM 1Y 81.41 80.19

-2017 EUR/USD FXFWD ATM+20% 1Y 827.75 827.96

-2018 EUR/USD FXFWD ATM−20% 3Y 12.70 17.02

-2019 EUR/USD FXFWD ATM 3Y 451.54 477.00

-2020 EUR/USD FXFWD ATM+20% 3Y 2,607.15 2675.40

-2021 EUR/JPY FXFWD ATM−20% 3Y 41.98 27.41

-2022 EUR/JPY FXFWD ATM 3Y 548.06 509.16

-2023 EUR/JPY FXFWD ATM+20% 3Y 2,431.10 2538.73

-2024 EUR/GBP FXFWD ATM−20% 3Y 22.71 45.89

-2025 EUR/GBP FXFWD ATM 3Y 487.13 462.00

-2026 EUR/GBP FXFWD ATM+20% 3Y 2489.46 2495.68

-2027 EUR/CHF FXFWD ATM−20% 1Y 0.01 0.45

-2028 EUR/CHF FXFWD ATM 1Y 67.95 64.50

-2029 EUR/CHF FXFWD ATM+20% 1Y 800.52 799.50

-2030 USD/GBP FXFWD ATM−20% 3Y 41.07 83.08

-2031 USD/GBP FXFWD ATM 3Y 559.32 595.09

-2032 USD/GBP FXFWD ATM+20% 3Y 2486.28 2369.26

This table provides an overview of the CVA results for different hypothetical FX forwards calculated
with (1) the modified SA-CCR approach and (2) the benchmark model (BMM). We provide a graphical
representation of the expected exposure profile for each netting set in “Appendix A.4.4”

mitigating effect of current negativemarket values is considered via the PFEmultiplier.
Nevertheless, we have uncovered calibration issues with respect to OTM transactions.
These could be solved by taking the dependency of the market-implied volatility to
the moneyness of the transaction into account.

5.2.3 Results for multi-transaction netting sets

In addition to the analysis of single transactions, we apply our approach to illustrative
multi-transaction netting sets. The supervisory SA-CCRprovides a holistic framework
for the aggregation of trade-level add-ons across hedging (sub)sets and asset classes.
The supervisory methodology is considered to be conservative, as it proscribes institu-
tions to recognize diversification effects between risk factors which are considered to
be correlated in some cases (e.g. interest rate risk in different currencies).37 As stated
in Sect. 3.2.4, we apply an adjusted aggregation procedure for the aggregation of
hedging set add-ons to results on asset class level using regulatory correlation param-
eters introduced in BCBS (2019). Hence, our approach is still expected to produce
conservative results for netting sets with transactions in different hedging sets.

37 For more detailed information on the aggregation mechanisms, please refer to BCBS (2014b, 2014c).
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Table 3 CVA results for hypothetical combined netting sets

Id Trade Id Description CVA (SA-CCR) CVA (BMM)

-2033 -2001 EUR IRS PAY ATM 5Y 0.00 0.00

-2004 EUR IRS REC ATM 5Y

-2034 -2001 EUR IRS PAY ATM 5Y 1509.91 1616.82

-2007 EUR IRS PAY ATM 10Y

-2010 EUR IRS PAY ATM 7Y

-2035 -2013 USD IRS PAY ATM 5Y 236.43 113.26

-2001 EUR IRS PAY ATM 5Y

-2036 -2012 USD IRS PAY ATM−0.01 5Y 362.86 290.24

-2013 USD IRS PAY ATM 5Y

-2014 USD IRS PAY ATM+0.01 5Y

-2037 -2019 EUR/USD FXFWD ATM 3Y 895.19 730.41

-2022 EUR/JPY FXFWD ATM 3Y

-2038 -2019 EUR/USD FXFWD ATM 3Y 462.59 415.14

-2031 USD/GBP FXFWD ATM 3Y

-2039 -2028 EUR/CHF FXFWD ATM 1Y 609.61 591.44

-2031 USD/GBP FXFWD ATM 3Y

-2040 -2019 EUR/USD FXFWD ATM 3Y 532.95 535.98

-2016 EUR/USD FXFWD ATM 1Y

-2041 -2019 EUR/USD FXFWD ATM 3Y 501.31 491.82

-2004 EUR IRS REC ATM 5Y

This table provides an overview of the CVA results for different hypothetical netting sets with multiple
transactions, calculated with (1) the modified SA-CCR approach and (2) the benchmark model (BMM).
We provide a graphical representation of the expected exposure profile for each netting set in “Appendix
A.4.5”

The hypothetical netting sets are designed to cover the aggregation across different
elements of the SA-CCR (e.g hedging sets, asset classes, sub-hedging sets). In total,
we examine nine hypothetical netting sets.38 Table 3 provides an overview of the CVA
results and the composition for these netting sets.

Nettings sets 2033, 2034 and 2036 are composed of IR derivatives referencing the
same underlying currency, while netting set 2035 comprises two IR swaps with differ-
ent currencies. For netting set 2033, the expected exposure profile is considered to be
zero, as the involved transactions have the same currency and tenor, but the opposite
direction. We are allowed to fully offset the expected exposure of these transactions
resulting in an expected exposure and CVA of zero. The results for netting set 2034
show that the aggregation procedures of the supervisory SA-CCR produce an ade-

38 Details on the composition of theses netting sets are provided in “Appendix A.4.2”.
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quate result for multiple transactions in the same currency, but with different maturity.
The exposure of netting set 2035 is over-estimated. This results from the obviously
insufficient recognition of diversification effects between different currencies via the
modified aggregation formula (see Eq. (35)).

When calculating the FX add-on, the modified SA-CCR allows netting between
different currency pairs. Nevertheless, the expected exposures for netting sets 2037,
2038 and2039are slightly overestimated.The result for netting set 2040 shows, that our
approach is suitable for netting sets composed of transactionswith the same underlying
currency, but different tenors. Netting set 2041 provides an illustrative example for
a portfolio with transactions in multiple asset classes. The SA-CCR does not allow
the recognition of netting effects across asset classes when calculating the add-on.
Nevertheless, the CVA results for netting set 2041 are very close to the outcome of
the benchmark model.

The results for multi-transaction netting sets affirm that the aggregation method-
ology is an important element of the modified SA-CCR. Especially, the aggregation
across different currencies without recognition of offsetting effects is a critical issue
with respect to the accuracy of the modified SA-CCR. Hence, there needs to be addi-
tional work on the incorporation of diversification effects between hedging sets. The
aggregation across asset classes does not seem to be a major issue for netting sets
composed of IR and FX transactions. Notwithstanding, it should be mentioned that
the illustrative examples only cover a limited number of compositions and situations.
To fully assess the applicability of the modified SA-CCR, it is necessary to extend
the empirical analysis to additional examples based on hypothetical and real-world
data.

5.2.4 Results for collateralized portfolios

In order to assess the treatment of collateral in themodifiedSA-CCR,we calculateCVA
for 6 selected netting sets based on the assumption of a perfect CSA.39 The respective
netting sets have already been presented in the previous sections on the results of IR
swaps and FX forwards. The assumption of a perfect CSA leads to replacement costs
of zero and a PFE multiplier of 1 as the amount of collateral is equal to the market
value of the netting set at all future points in time t . Hence, the expected exposure
under the modified SA-CCR is solely driven by the PFE add-on, which is calculated
for a risk horizon equal to the margin period of risk.

Table 4 provides an overview on the CVA results for the selected netting sets
under the assumption of a perfect CSA. The results show that the modified SA-CCR
is capable of capturing the effects from margining on the expected exposure and the
resulting CVA. For FX forwards (2015, 2016, 2017) we receive nearly identical results
compared to the benchmark model. The results of the modified SA-CCR do not differ
by moneyness as the market value is fully collateralized and therefore not impacting
the replacement costs or the PFE multiplier. With respect to IR swaps, we recognize
a difference in the CVA results. Nevertheless, we are able to mirror the key exposure
dynamics produced by the BMM (see “Appendix A.4.6”).

39 The existence of a perfect CSA implies: T H = 0, MT A = 0, absence of rounding, no inital margin
and instantaneous collateral exchange.
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Table 4 CVA results for collateralized portfolios (perfect CSA)

Id Description CVA (SA-CCR) CVA (BMM)

-2000 EUR IRS PAY ATM−0.01 5Y 16.33 10.47

-2001 EUR IRS PAY ATM 5Y 16.33 10.64

-2002 EUR IRS PAY ATM+0.01 5Y 16.33 10.83

-2015 EUR/USD FXFWD ATM−20% 1Y 24.17 24.02

-2016 EUR/USD FXFWD ATM 1Y 24.17 23.98

-2017 EUR/USD FXFWD ATM+20% 1Y 24.17 23.94

This table provides an overview of the CVA results for different hypothetical netting sets under the assump-
tion of a perfect CSA calculated with (1) the modified SA-CCR approach and (2) the benchmark model
(BMM). We provide a graphical representation of the expected exposure profile for each netting set in
“Appendix A.4.6”

Table 5 CVA results for collateralized portfolios (CSA: TH=5.000, MTA=1.000)

Id Description CVA (SA-CCR) CVA (BMM)

-2000 EUR IRS PAY ATM−0.01 5Y 99.2 108.52

-2001 EUR IRS PAY ATM 5Y 79.71 63.98

-2002 EUR IRS PAY ATM+0.01 5Y 0.76 0.58

-2015 EUR/USD FXFWD ATM−20% 1Y 15.43 15.97

-2016 EUR/USD FXFWD ATM 1Y 24.51 30.85

-2017 EUR/USD FXFWD ATM+20% 1Y 35.55 43.96

This table provides an overview of the CVA results for different hypothetical netting sets under the assump-
tion of an imperfect CSA (T H = 5.000, MT A = 1.000) calculated with (1) the modified SA-CCR
approach and (2) the benchmark model (BMM). We provide a graphical representation of the expected
exposure profile for each netting set in “Appendix A.4.7”

In addition to the analysis of netting sets under the assumption of a perfect CSA, we
consider the samenetting sets given an imperfectCSA(T H = 5.000, MT A = 1.000).
The following calculations are preformed under the assumption of instantaneous ful-
filment of collateral calls. Table 5 provides an overview on the CVA results for the
selected netting sets under the assumption of an imperfect CSA.

The results for FX forwards are basically in line with the results from the BMM.
Nevertheless, there are differences with respect to the level of expected exposure.
These differences are mainly driven by the fact that the expected market value of the
modified SA-CCRdiffers slightly from theBMM.The expected futuremarket value of
the modified SA-CCR does not consider all risk factors, such as cross-currency basis
spreads. Hence, themarket value differs from theBMM.The difference in the expected
market value leads to a different collateral path. These effects result in a different
consideration of collateral and CVA values. The results for IR swaps are also well in
line with the CVA values from the BMM. The modified SA-CCR is able to capture
the combination of collateral parameters and the decreasing duration of an IR swap
over time. In summary, we are certainly justified in saying that the modified SA-CCR
is able to capture the main exposure dynamics of margined netting sets. Nevertheless,
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Table 6 CVA results for FX options

Id Description CVA (SA-CCR) CVA (BMM)

-2126 EUR/USD FX call option ATM (1Y) 127.92 124.34

-2128 EUR/USD FX put option ATM (1Y) 127.26 115.86

-2130 EUR/USD FX call option ITM (1Y) 801.10 807.98

-2131 EUR/USD FX put option OTM (1Y) 8.97 0.12

-2132 EUR/USD FX call option OTM (1Y) 0.12 0.91

-2133 EUR/USD FX put option ITM (1Y) 801.10 803.44

This table provides an overview of the CVA results for different hypothetical FX options calculated with
(1) the modified SA-CCR approach and (2) the benchmark model (BMM). We provide a graphical repre-
sentation of the expected exposure profile for each netting set in “Appendix A.4.8”

there is room for additional analysis, validation and potential improvements of the
collateral treatment.

5.2.5 Results for non-linear products

In addition to the presented examples, we analyse the treatment of non-linear products.
For this purpose, we use 6 different FX options in individual netting sets. These FX
options are all referencing the EUR/USD exchange rate and have a maturity of 1 year,
but differ with respect to option type (call/put) and moneyness (ITM/OTM/ATM).40

When calculating the exposure under the modified SA-CCR, we assume a constant
market value (V̂i (t) = Vi (t0)) as well as a constant exchange rate (P̂i (t) = Pi (t0)).
This is a simplification in line with the methodology presented in Sect. 3.2.3. The
option volatility used for the calculation of the option price at (t = t0) and δi (t) is
calibrated based on FX option strategies as described in Sect. 4.

Table 6 provides an overview on the CVA results for the different options. The
results for ATM and ITM options are reasonable and well in line with the results from
the BMM (-2126, -2128, -2130, -2133). With respect to OTM options, the modified
SA-CCR does not meet the results produced by the BMM. This is consistent with the
outcome for FX forwards and results form the fact that we are calibrating the modified
SA-CCR to ATM options. Hence, we are not able to cover the FX volatility skew in
the modified SA-CCR. This leads to an underestimation of exposure for OTM FX
options. An improvement of the calibration to capture the volatility surface as a whole
should significantly increase the accuracy for OTM options.

5.3 Implications for the supervisory SA-CCR

When deriving our modified approach, we are keeping key building blocks and ele-
ments of the supervisory SA-CCR. The EaD calculated under the superviory SA-CCR
will serve as input for the calculation of other regulatory measures, such as leverage

40 The ITM call is defined setting the price/strike ratio to 1.2, while the OTM call is constructed with a
price/strike ratio of 0.8. The put options are defined vice versa.
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ratio (BCBS 2014a), large exposure framework (BCBS 2014d) and the CVA risk
capital charge (BCBS 2017). Hence, all banks will have to implement the SA-CCR
irrespectively of the application of an internal model. Furthermore, there is ongoing
discussion to limit the benefit from the application of internal models by introducing
a capital floor based on the outcome of regulatory standardized approaches (BCBS
2017). Given the broad application of the SA-CCR and its subsequent impact on
various regulatory measures, we are certainly justified in saying that the SA-CCR is
of significant importance for the regulatory framework as a whole. Hence, systemic
misjudgement of risk by the supervisory SA-CCR is not an isolated issue, but will
propagate through other regulatory measures.

Our results imply that the risk sensitivity of the supervisory SA-CCR can be
significantly improved by adjustments to its methodological framework and its
calibration. First, the multiplier formula of the supervisory SA-CCR is very con-
servative as it involves a floor and uses a more conservative function than analytically
implied. This leads to an insufficient recognition of risk-mitigating effects from over-
collateralization (especially with respect to initial margin). Abolishing the supervisory
floor and adjusting the multiplier formula would significantly improve risk sensitiv-
ity for a multitude of portfolios, especially in light of new margin requirements for
OTC derivatives. Second, the lack of granularity of the supervisory factor and volatil-
ity leads to a lack of risk sensitivity. IR and FX transactions with different currency
are all treated with a single risk-weight. Our results show, that the calibration of the
approach for each currency has strong benefits with respect to its risk sensitivity. From
our point of view the calibration of the supervisory approach should be more granular
to account for the characteristics of different risk factors. Third, our results reveal that
the aggregation procedures are a critical issue with respect to the accuracy of results
for multi-transaction netting sets. Especially netting sets with IR or FX transactions
referencing different currencies are sensitive to an insufficient consideration of those
effects.Nevertheless, the supervisorySA-CCRframework is flexible enough to include
more complex aggregation approaches. Hence, we strongly recommend to review the
supervisory aggregation procedures and consider other forms of aggregation for IR
and FX add-ons.

6 Conclusion

The calculation of CVA based on expected exposure profiles is crucial for financial
institutions involved in derivative trading activities. As a lot of market participants are
not capable of implementing and maintaining an advanced model for the estimation of
the expected exposure, there is a practical need for simple, semi-analytical approaches.
Existing semi-analytical approaches are often designed to reflect the properties of a
specific asset class and fail to provide a holistic approach across asset classes. Fur-
thermore, they are usually not capable of capturing effects from collateralization and
margining.

This paper proposes a modified supervisory approach based on the Standardized
Approach for Measuring Counterparty Credit Risk Exposures (SA-CCR). We derive
necessary adjustments to the supervisory methodology and calibration, obtaining an
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approach which is applicable for the calculation of CVA for accounting and pricing
purposes. Main adjustments to the supervisory SA-CCR are the change of target mea-
sure and risk-neutral calibration to market-implied volatilities. While deriving our
approach, we maintain key building blocks of the supervisory approach.

Our results indicate that the modified SA-CCR is able to capture main exposure
dynamics on single-transaction level for the most important asset classes (FX and IR).
The risk-neutral calibration results in a reasonable level of exposure. Based on the
resulting expected exposure profiles, we provide an approximation of CVA, which is
close to the results produced by an advanced model. By analysing multi-transaction
netting sets, we reveal that in some cases appropriate aggregation mechanisms are
essential to provide a reasonable approximation of the expected exposure profile. Nev-
ertheless, the structure of the SA-CCR allows the inclusion of additional adjustments
to the aggregation of results for hedging sets and asset classes. Additional analysis
regarding the application of the modified SA-CCR to further asset classes and more
complex products is subject for future work.

The modified SA-CCR offers a holistic and consistent framework for the calcu-
lation of exposure profiles. All asset classes and product types are modelled based
on common methodological foundations. The consistent treatment and aggregation
of exposure from different product types and asset classes allows the recognition of
risk-mitigating effects, such as collateralization and margining, on portfolio level. Our
approach is capable of estimating the impact frommargin parameters and collateral on
the exposure profile. Given the high amount of flexibility with respect to the treatment
of products on transaction level and the aggregation of add-ons, it is possible to add
additional complexity, where needed. By keeping the key building blocks and struc-
ture of the supervisory approach, institutions have the possibility to leverage on the
implementation of the supervisory SA-CCR, when applying the modified approach.
Based on the empirical results presented in this paper and the high importance of accu-
racy in CVA calculations, we do not consider the modified SA-CCR as replacement
for existing advanced models. Nevertheless, our approach is suitable for the calcula-
tion of exposure profiles for products not covered by advanced methods and offers an
alternative approach for institutions not capable of maintaining own advanced models.
Taking everything into consideration, we believe that our approach is of significant
practical relevance and offers improvements to current industry practices with respect
to the calculation of CVA outside advanced models.
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A Analytical derivation of SA-CCRmodel foundations

A.1 Expected exposure

Based on the assumptions introduced by BCBS (2014b), a transaction’s market value
follows an arithmetic Brownian motion. Hence, the market value (V ) of a transcation
(i) at a specific future point in time (t) is generally defined as:

Vi (t) = Vi (t0) + μi · dt + σi (t) · √
t · Xi (A.1)

where Xi is a standard normal random variable (Xi ∼ N (0, 1)). μi equals the drift
and σi (t) the time-dependent volatility of the transaction’s market value. The SA-CCR
add-on is calculated under the assumption of zero drift (μi = 0), an initial market
value of 0 (Vi (t0) = 0) and absence of collateral. Furthermore, it is assumed that there
are no cashflows between t0 and t . Based on these assumptions, Eq. (A.1) reduces to:

Vi (t) = 1{Mi≥t} · σi (t) · √
t · Xi (A.2)

where 1{·} represents an indicator variable, which recognizes if the transaction has
matured. σi represents the volatility of the transaction’s market value. Hence, for
Mi ≥ t the market value of the transaction at time t is also normally distributed with
Vi (t) ∼ N (0, σi (t)2 · t).

Based on Eq. (A.2) and the aforementioned assumptions, the market value of a
netting set, representing a group of legally nettable transactions, is defined as the sum
of the single market values of all transactions (i) being an element of netting set k:

Vk(t) =
∑

i∈k
Vi (t) =

∑

i∈k
1{Mi≥t} · σi (t) · √

t · Xi (A.3)

As the sumof joint normally distributed randomvariables is again normally distributed,
themarket value of the netting set at time t is normally distributed. This results from the
assumption that Xi is a standard normal randomvariable. Hence, under the assumption
of fixed correlations between the market value of a netting set’s transactions, the
variance of the Vk(t) can be calculated the following way:41

Var(Vk(t)) = Var

(
∑

i∈k
Vi (t)

)

= Var

(
∑

i∈k
σi (t) · √

t · Xi · 1{Mi≥t}

)

= t ·
⎛

⎝
∑

i, j

σi (t) · σ j (t) · COV (Xi , X j ) · 1{Mi≥t} · 1{Mj≥t}

⎞

⎠

41 The assumption of fixed correlations implies that correlations between the market value of transactions
in the netting set are not a function of time.
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= t ·
⎛

⎝
∑

i, j

σi (t) · σ j (t) · ρi j · 1{Mi≥t} · 1{Mj≥t}

⎞

⎠

= : t · (σk(t))
2 (A.4)

Based on this result, Vk(t) is normally distributed with N ∼ (0, t · (σk(t))2). In case
of a known correlation ρi j between two normal random variables Xi and X j , equation
A.3 can be restated as follows:

Vk(t) = σk(t) · √
t · Y (A.5)

where Y ∼ N (0, 1) and σk(t) represents the volatility of the netting set’s market
value:

σk(t) =
√∑

i, j

ρi j · σi (t) · σ j (t) · 1{Mi≥t} · 1{Mj≥t} (A.6)

Please note that the netting set’s volatilityσk(t) is itself a function of t . This dependence
results from the changing composition of the netting set, as transactions mature over
time as well as changes in the volatility of the transactions’ market values. The target
measure (EEk(t)) is formally defined as the expected positive value of the netting
set’s market value. Hence, we are able to calculate the Expected Exposure of a netting
set by:

EEk(t) = IEQ [max(Vk(t), 0)] = IEQ
[
max(σk(t) · √

t · Y , 0)
]

(A.7)

As Y is a standard normal variable, we are able to calculate the expected value of Y
and hence EE(t) analytically:

AddOnk = EE(t) = IEQ [max(Vk(t), 0)] = IEQ
[
max(σk(t) · √

t · Y , 0)
]

= σk(t) · √
t · IEQ [max(Y , 0)]

= σk(t) · √
t ·

∫ +∞

0

1√
2π

· exp
[−y2

2

]
ydy

= σk(t) · √
t · 1√

2π
·
[
−e

−y2

2 dy

]+∞

0

= σk(t) · √
t · 1√

2π
· [−(0 − 1)]

= σk(t) · √
t · 1√

2π

= σk(t) · √
t · φ(0) (A.8)

where φ(0) is defined as the standard normal probability density: φ(0) = 1/
√
2π .
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A. 2 Aggregating trade level add-ons

The regulatory and modified SA-CCR are aiming for calculation of aggregated add-
ons instead of dealing with trade-level volatilities directly. Hence, Eq. (A.8) needs to
be restated the following way:

EEk(t) = AddOnk(t) =
√∑

i, j

ρi j · AddOni (t) · AddOn j (t) (A.9)

where AddOni (t) represents the expected exposure of a netting set with one trade (i)
at t :

AddOni (t) = EEi (t) = σi (t) · √
t · φ(0) (A.10)

By inserting Eq. (A.10) into Eq. (A.9), we are able to show that trade level add-ons
can be aggregated as if they were standard deviations:

AddOnk(t) =
√∑

i, j

ρi j · AddOni (t) · AddOn j (t)

=
√∑

i, j

ρi j · σi (t) · √
t · φ(0) · σ j (t) · √

t · φ(0)

=
√∑

i, j

ρi j · σi (t) · σ j (t) · t · (φ(0))2

= φ(0) · √
t ·

√∑

i, j

ρi j · σi (t) · σ j (t)

= φ(0) · √
t · σk(t) (A.11)

Equation (A.11) is equal to the definition of the expected exposure at netting set level
EEk(t) in Eq. (A.8). Hence, trade-level add-ons can be aggregated at each point in
time (t) as if they were standard deviations. This is the central foundation with respect
to the aggregation procedures formulated by BCBS (2014b). As shown above, this
foundation is still valid after switching to the new target measure (EEk(t)) for the
modified SA-CCR.

A.3 PFEmultiplier formulation

A.3.1 Multiplier formula for unmargined netting sets

As discussed in Sect. 3.3, the expected exposure (EE(t)) of an unmargined netting
set (k) at time t under the presence of collateral and a market value different from zero
is defined as follows:
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EEk(t) = IEQ
[
max

(
V̂k(t) + σk(t) · √

t · Y − CCE (t), 0
)]

(A.12)

where

– V̂k(t) is the (deterministic) market value of the netting set at time t ,
– CCE (t) equals the cash-equivalent collateral value at time t as defined by Eq. (10)
– σk(t) is the volatility of the netting set at time t ,
– Y is defined as a standard normal random variable.

For the derivation of the multiplier formula, the following definitions are applied:

X := V̂k(t) + σk(t) · √
t · Y − CCE (t) (A.13)

IE[X ] = V̂k(t) − CCE (t) =: x0 (A.14)

Var [X ] = (σk(t))
2 · t =: σ 2 (A.15)

These definitions imply that X is normally distributed with X ∼ N
(
x0, σ 2

)
. Hence,

the Expected Exposure (EEk(t)) can be calculated analytically by solving:

EEk(t) = IEQ [max(X , 0)] (A.16)

Applying the probability density function of a normally distributed random variable
leads to the following formulation for EEk(t):

EEk(t) =
∫ ∞

0
x · 1

σ · √
2 · π

· exp
(

− (x − x0)2

2σ 2

)
dx (A.17)

In order to solve Eq. (A.17), the following substitutions have to be applied: y = x−x0
σ

and σ · dy = dx .

EEk(t) = 1√
2π

∫ ∞
−x0
σ

(x0 + σ · y) · exp
(

− y2

2

)
dy (A.18)

Equation (A.18) can be solved analytically:

EEk(t) = 1√
2π

∫ ∞
−x0
σ

(x0 + σ · y) · exp
(

− y2

2

)
dy

= x0 ·
∫ ∞

−x0
σ

1√
2π

exp

(
− y2

2

)
dy + σ ·

∫ ∞
−x0
σ

1√
2π

· y · exp
(

− y2

2

)
dy

= x0 · [�(y)]∞−x0
σ

+ σ ·
[
− 1√

2π
· exp

(
− y2

2

)]∞

−x0
σ

= x0 ·
[
1 − �

(
− x0

σ

)]
+ σ ·

[
−0 + 1√

2π
· exp

(
−x20
2σ 2

)]

= x0 · �
( x0

σ

)
+ σ · φ

( x0
σ

)
(A.19)
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After replacing x0 and σ with the values defined in equations (A.14) and (A.15)
we arrive at:

EEk(t) =
[
V̂k(t) − CCE (t)

]
· �

(
V̂k(t) − CCE (t)

σk(t) · √
t

)

+σk(t) · √
t · φ

(
V̂k(t) − CCE (t)

σk(t) · √
t

)
(A.20)

where �(·) is the standard normal cumulative distribution function and φ(·) the stan-
dard normal probability density function. This equation is equivalent to the result
for calculating the EE(t) for unmargined netting sets according to equation (41) in

BCBS (2014b). By assuming
[
V̂k(t) − CCE (t)

]
= 0, we receive EE(t) equal to the

formulation of Eq. (20):

AddOnk(t) = EEk(t) = σk(t) · √t · φ(0) (A.21)

As we want to express the multiplier in terms of AddOnk(t) rather than netting set
volatilities, we solve Eq. (A.21) for σk(t). This results in:

σk(t) = AddOnk(t)√
t · φ(0)

(A.22)

Inserting Eq. (A.22) into Eq. (A.20) leads to:

EEk(t) =
[
V̂k(t) − CCE (t)

]
· �

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)

+ AddOnk(t)

φ(0)
· φ

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)
(A.23)

Based on Eq. (A.23), we are able to derive the multiplier formula in accordance with
BCBS (2014b) by isolating the PFE portion of Eq. (A.23). Therefore, we need to
subtract the replacement costs from EEk(t):

PFEk(t) =
[
V̂k(t) − CCE (t)

]
· �

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)

+ AddOnk(t)

φ(0)
· φ

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)
− RCk(t) (A.24)

Based on Eq. (18), the multiplier of a netting set at time t (mk(t)) is defined as the
ratio of potential future exposure and AddOnk(t):

mk(t) = PFEk(t)

AddOnk(t)
(A.25)
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Hence, we arrive at the the following formula for the multiplier:

mk(t) =
[
V̂k(t) − CCE (t)

]

AddOnk(t)
· �

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)

+ 1

φ(0)
· φ

(
φ(0) · V̂k(t) − CCE (t)

AddOnk(t)

)
−

max
(
V̂k(t) − CCE (t), 0

)

AddOnk(t)
(A.26)

By substituting V̂k (t)−CCE (t)
AddOnk (t)

= y we arrive at the following final formulation for
the multiplier:

mk(t) = y · � [φ(0)y] + φ [φ(0)y]

φ(0)
−

max
(
V̂k(t) − CCE (t), 0

)

AddOnk(t)
(A.27)

A.3.2 Multiplier formula for margined netting sets

Based on assumptions presented in Sect. 3.3, the expected exposure of a margined
netting set is defined as:

EEk(t) = IEQ
[
max

(
V̂k(t) + σk(t) · √

MPOR · Y − ĈCE (t), 0
)]

(A.28)

where:

– V̂k(t) is the (deterministic) market value of the netting set at time t ,
– ĈCE (t) represents the (deterministic) cash-equivalent collateral value at t as
defined by Eq. (17),

– σk(t) is the volatility of the netting set at time t ,
– Y is defined as a standard normal random variable.

Based on Eq. (A.28) the following definitions are applied:

X := V̂k(t) + σk(t) · √
MPOR · Y − ĈCE (t) (A.29)

IE[X ] = V̂k(t) − ĈCE (t) =: x0 (A.30)

Var [X ] = (σk(t))
2 ·

(√
MPOR

)2 =: σ 2 (A.31)

These definitions imply that X is normally distributed with X ∼ N
(
x0, σ 2

)
. Hence,

the Expected Exposure (EEk(t)) can be calculated analytically by solving:

EEk(t) = IEQ [max(X , 0)] (A.32)

Based on this formulation, we are able to solve the equation analytically by applying
the same steps as presented in “Appendix A.3.1”. Hence, we arrive at the following
formulation for the multiplier:
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mk(t) =
[
V̂k(t) − ĈCE (t)

]

AddOnmargin
k (t)

· �

(
φ(0) · V̂k(t) − ĈCE (t)

AddOnmargin
k (t)

)

+ 1

φ(0)
· φ

(
φ(0) · V̂k(t) − ĈCE (t)

AddOnmargin
k (t)

)
−

max
(
V̂k(t) − ĈCE (t), 0

)

AddOnmargined
k (t)

(A.33)

By substituting V̂k (t)−ĈCE (t)

AddOnmargin
k (t)

= y we arrive at the following formula for the multi-

plier:

mk(t) = y · � [φ(0)y] + φ [φ(0)y]

φ(0)
−

max
(
V̂k(t) − ĈCE (t), 0

)

AddOnmargined
k (t)

(A.34)

A.3.3 Adjusted notional calculation by asset class

In general, we follow the asset class specific calculation procedures for the determina-
tion of the adjusted notional amount (di (t)) introduced by BCBS (2014b). Hence, the
following paragraphs do not provide a detailed discussion of the asset class specific
features of the SA-CCR, but concentrate on elements that have been modified when
developing our approach.

For the derivation of the adjusted notional for interest rate (IR) swaps, we allow
cash flows during the life-time of interest rate derivatives. The main purpose of the
add-on calculation for IR transactions within the modified SA-CCR is to capture the
diffusion and the amortization effect. BCBS (2014b) derives the calculation of the
adjusted notional for interest rate derivatives based on the following pricing formula
for a fixed-to-floating swap:

V swap
i (t) = [SRi (t) − FRi ] ·

∫ Ei

max(Si ,t)
Ni (τ ) · DF(t, τ )dτ (A.35)

where SRi (t) equals the swap rate at time t and FRi is the fixed rate of the swap.
DF(t, τ ) represents the discount factor from time τ to time t . Ei represents the time
until the end date of the transaction at time t while Si equals the time until the start
date of the transaction at time t (in years). The volatility of the swap rate describes
the diffusion effect of the exposure and is captured by the exposure factor (EFi ) in
Eq. (25). Thus the adjusted notional parameter is meant to provide an approximation
for the integral at time t . A deviation from the supervisory approach is introduced.
Instead of calculating the value under the integral at t = t0 or the start date of the swap
respectively, we estimate the value at time (t∗):

d(I R)
i (t) = N̄i · Di (t) = N̄i

∫ Ei

t∗
DF(t, τ )dτ (A.36)
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where t∗ is defined as the maximum of t and the start date of the interest rate swap (Si ).
N̄i is the average of the swap notional between t and the end date of the transaction
(Ei ). Di (t) represents the approximation of the integral under the assumption of a flat
interest rate curve. Di (t) is a measure for the duration of the swap and solves for:

Di (t) =
∫ Ei

t∗
exp(−rτ)dτ = exp(−r · t∗) − exp(−r · Ei )

r
(A.37)

With increasing t , Di (t) decreases. This behaviour captures the amortization effect of
interest rates swaps. In case of a cash-flow based calculation of the expected future
market value for replacement costs (see Eq. (4)) the duration parameter (Di (t)) is
replaced by the actual (absolute) duration of the swap position.

In accordance with BCBS (2014b), Eq. (A.37) is also applied to credit derivatives.
Hence, the adjusted notional amount for credit and interest rate derivatives is a function
of time and defined as:

d(I R/CR)
i (t) = N̄i · Di (t) = N̄i · exp(−r · t∗) − exp(−r · Ei )

r
(A.38)

For FX derivatives the adjusted notional amount is defined as the notional of the
foreign currency leg denominated in the reporting / domestic currency (D):

d(FX)
i (t) = N̄ (Ai )

i · P̂ Ai
D

(t) (A.39)

where Ai represents the foreign currency of the transaction and D the reporting cur-
rency. PAi

D
equals the price of one unit foreign currency in domestic currency. As

PAi
D

is not known for future points in time, an estimation of PAi
D

(t) is required. For

FX products, we use the respective forward exchange rate for determination of the
adjusted notional amount at time t :

P̂ Ai
D

(t) = FAi
D

(t0, t) = PAi
D

(t0) · e(rD−rAi )·t (A.40)

If both legs of the FX product are denominated in foreign currency (Ai and Bi ), di
is calculated as follows:

d(FX)
i (t) =

(
N̄ (Ai )
i · P̂ Ai

D
(t) + N̄ (Bi )

i · P̂Bi
D

(t)
)

· 0.5 (A.41)

In line with BCBS (2014c) the adjusted notional amount for equity and commodity
derivatives is defined as product of the number of units referenced by the transaction
(ηi ) and the price of one unit (Pi ). In accordance with our approach for FX derivatives,
we use the respective forward price for future dates as estimation for the price of one
unit at time t .

d(EQ/FX)
i (t) = ηi · P̂i (t) (A.42)
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If there are deterministic changes in the notional of a transaction over time (e.g.
amortizing interest rate swap), the future notional amount at t is known. Our approach
offers the flexibility to include a product specific notional profile (Ni (t)) into the
calculation of the adjusted notional.

A.4 Empirical analysis

A.4.1 Calibration of the benchmark model (BMM)

In order to benchmark the results of the modified SA-CCR, we calculate exposure
profiles based on an advanced exposure model. The model involves stochastic pro-
cesses for the simulation of the development of risk factors over time. The parameters
of these stochastic processes have to be calibrated. In case of generation of exposure
profiles for CVA calculation, the calibration is performed under the risk-neutral frame-
work based on observable market prices for specific financial instruments. The aim of
the calibration process is to find the set of model parameters (�) that minimizes the
deviation between the prices of calibration instruments (n) calculated by the model
(Pmodel

n ) and their market price (Pmarket
n ):

r2(�) =
N∑

n=1

(
Pmarket
n − Pmodel

n (�)
)2

(A.43)

Hence, themain inputs of the calibration process are financial instrumentswith observ-
able market prices as well as their properties (such as maturity, strike, underlying).
Within this section we provide an overview on the instruments and data used for the
calibration of the benchmark model. However, we do not provide a detailed informa-
tion on the models and the corresponding pricing functions.42

Trolle–Schwartz model: For the simulation of interest rates, we apply amodel based
on Trolle and Schwartz (2009). The model simulates the evolution of instantaneous
forward rates with stochastic volatility. We use an extended form of the model consid-
ering a multi-curve setting under the assumptions of deterministic tenor-basis spreads.
The calibration of the model parameters for each currency is based on European swap-
tions. Available swaption data has the following main dimensions and values:

– Option Tenor: 1M, 3M, 6M, 9M, 1Y, 2Y, 5Y, 10Y, 15Y, 20Y, 30Y
– Swap Tenor: 1Y, 2Y, 5Y, 10Y, 15Y, 20Y, 30Y
– Strike (ATM ± bp): 12.5, 25, 50, 75, 100, 150, 200, 300

The prices of these swaptions are not directly observable in the market, as swaptions
are quoted in terms of implied volatility. Hence, the observable implied volatilities
have to be transformed into swaption prices. Depending on the volatility definition
(lognormal/normal) we use a Black or Bachelier pricing formula to arrive at the swap-
tion prices. These prices are used to calibrate the parameters of the Trolle-Schwartz
model. Based on the available input data, we are able to recognize dependence of the
volatility on the strike, underlying and option tenor.

42 Please refer to Heston (1993) and Trolle and Schwartz (2009) for additional information.
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Heston model: The exchange rate is simulated via a stochastic model based on Hes-
ton (1993). The exchange rate equals the price of one unit foreign currency, expressed
in domestic currency. The parameters for modelling the interest rate process of the
foreign and domestic currency are given by the calibration of the Trolle-Schwartz
model. The other parameters of the model are calibrated based on European options
on exchange rates. There are no quotes for FX options directly available in the market.
Quotes are only directly observable for FX option strategies in the form of lognormal
volatilities as function of delta. Available FX option strategy data for each exchange
rate has the following main dimensions and values:

– Strategy type: Risk Reversal, Straddle, Strangle
– Maturity: 1D, 1W, 2W, 3W, 1M, 2M, 3M, 6M, 9M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y
– Delta: 0.5, 0.25, 0.1

For each maturity, each of these strategies is converted into European call and put
options. This results in a set of five options for each maturity (3 call and 2 put options).
The respective implied volatility of each option is transferred into a market price. This
set of options with the corresponding market prices is used to calibrate the parameters
of the Heston model. The resulting model is able to capture the dependency of the
implied volatility to the moneyness and maturity.

A.4.2 Input: transactions and netting sets

See Table 7.

Table 7 Hypothetical netting sets for empirical analysis in Sect. 5

Id TradeId Class Description Notional(EUR) mtm(EUR)

-2000 -2000 IR EUR IRS PAY ATM−0.01 5Y 1,000,000 49,937.01

-2001 -2001 IR EUR IRS PAY ATM 5Y 1,000,000 −0.01

-2002 -2002 IR EUR IRS PAY ATM+0.01 5Y 1,000,000 −49,937.03

-2003 -2003 IR EUR IRS REC ATM−0.01 5Y 1,000,000 −49,937.01

-2004 -2004 IR EUR IRS REC ATM 5Y 1,000,000 0.01

-2005 -2005 IR EUR IRS REC ATM+0.01 5Y 1,000,000 49,937.03

-2006 -2006 IR EUR IRS PAY ATM−0.01 10Y 1,000,000 97,419.36

-2007 -2007 IR EUR IRS PAY ATM10Y 1,000,000 −0.02

-2008 -2008 IR EUR IRS PAY ATM+0.01 10Y 1,000,000 −97,419.39

-2009 -2009 IR EUR IRS PAY ATM−0.01 7Y 1,000,000 69,387.70

-2010 -2010 IR EUR IRS PAY ATM 7Y 1,000,000 0

-2011 -2011 IR EUR IRS PAY ATM+0.01 7Y 1,000,000 −69,387.71

-2012 -2012 IR USD IRS PAY ATM−0.01 5Y 1,000,000 46,129.85

-2013 -2013 IR USD IRS PAY ATM 5Y 1,000,000 0.01

-2014 -2014 IR USD IRS PAY ATM+0.01 5Y 1,000,000 −46,129.83

-2015 -2015 FX EUR/USD FWD ATM−20% 1Y 1,000,000 −205,592.64

-2016 -2016 FX EUR/USD FWD ATM 1Y 1,000,000 171.95
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Table 7 continued

Id TradeId Class Description Notional(EUR) mtm(EUR)

-2017 -2017 FX EUR/USD FWD ATM+20% 1Y 1,000,000 205,936.54

-2018 -2018 FX EUR/USD FWD ATM−20% 3Y 1,000,000 −217,299.87

-2019 -2019 FX EUR/USD FWD ATM 3Y 1,000,000 144.92

-2020 -2020 FX EUR/USD FWD ATM+20% 3Y 1,000,000 217,589.71

-2021 -2021 FX EUR/JPY FWD ATM−20% 3Y 1,000,000 −200,390.47

-2022 -2022 FX EUR/JPY FWD ATM 3Y 1,000,000 −16.85

-2023 -2023 FX EUR/JPY FWD ATM+20% 3Y 1,000,000 200,356.78

-2024 -2024 FX EUR/GBP FWD ATM−20% 3Y 1,000,000 −206,765.66

-2025 -2025 FX EUR/GBP FWD ATM 3Y 1,000,000 54.23

-2026 -2026 FX EUR/GBP FWD ATM+20% 3Y 1,000,000 206,874.12

-2027 -2027 FX EUR/CHF FWD ATM−20% 1Y 1,000,000 −199,214.46

-2028 -2028 FX EUR/CHF FWD ATM 1Y 1,000,000 −22.31

-2029 -2029 FX EUR/CHF FWD ATM+20% 1Y 1,000,000 199,169.84

-2030 -2030 FX USD/GBP FWD ATM−20% 3Y 1,000,000 −200,050.19

-2031 -2031 FX USD/GBP FWD ATM 3Y 1,000,000 −80.85

-2032 -2032 FX USD/GBP FWD ATM+20% 3Y 1,000,000 199,888.48

-2033 -2001 IR EUR IRS PAY ATM 5Y 1,000,000 −0.01

-2004 IR EUR IRS REC ATM 5Y 1,000,000 0.01

-2034 -2001 IR EUR IRS PAY ATM 5Y 1,000,000 −0.01

-2007 IR EUR IRS PAY ATM10Y 1,000,000 −0.02

-2010 IR EUR IRS PAY ATM 7Y 1,000,000 0

-2035 -2013 IR USD IRS PAY ATM 5Y 1,000,000 0.01

-2001 IR EUR IRS PAY ATM 5Y 1,000,000 −0.01

-2036 -2012 IR USD IRS PAY ATM−0.01 5Y 1,000,000 46,129.85

-2013 IR USD IRS PAY ATM 5Y 1,000,000 0.01

-2014 IR USD IRS PAY ATM+0.01 5Y 1,000,000 −46,129.83

-2037 -2019 FX EUR/USD FWD ATM 3Y 1,000,000 144.92

-2022 FX EUR/JPY FXFWD ATM 3Y 1,000,000 −16.85

-2038 -2019 FX EUR/USD FWD ATM 3Y 1,000,000 144.92

-2031 FX USD/GBP FWD ATM 3Y 1,000,000 −80.85

-2039 -2028 FX EUR/CHF FWD ATM 1Y 1,000,000 −22.31

-2031 FX USD/GBP FWD ATM 3Y 1,000,000 −80.85

-2040 -2019 FX EUR/USD FWD ATM 3Y 1,000,000 144.92

-2016 FX EUR/USD FWD ATM 1Y 1,000,000 171.95

-2041 -2019 FX EUR/USD FWD ATM 3Y 1,000,000 144.92

-2004 IR EUR IRS REC ATM 5Y 1,000,000 0.01

-2126 -2126 FX EUR/USD FX Call Option ATM 1Y 1.000.000 29,993.39

-2128 -2128 FX EUR/USD FX Put Option ATM 1Y 1.000.000 29,993.39

-2130 -2130 FX EUR/USD FX Call Option ITM 1Y 1.000.000 200,028.82
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Table 7 continued

Id TradeId Class Description Notional(EUR) mtm(EUR)

-2131 -2131 FX EUR/USD FX Put Option OTM 1Y 1.000.000 28.82

-2132 -2132 FX EUR/USD FX Call Option OTM 1Y 1.000.000 28.82

-2133 -2133 FX EUR/USD FX Put Option ITM 1Y 1.000.000 200,028.82

This table provides an overview of the hypothetical netting sets, which are usedwithin the empirical analysis
presented in Sect. 5 of this paper. All IR trades are fix-to-float IR swaps

A.4.3 Output: IR profiles

See Figs. 4, 5, 6, 7, and 8.

Fig. 4 Expected exposure of EUR 5Y IR payer swaps. Note The figure shows the expected exposure
profile and CVA results for EUR 5Y IR payer swaps with different moneyness calculated with the modified
SA-CCR (solid line) and the benchmark model (dashed line). Please notice that in case of a payer swap,
ATM−0.01 (left panel) is equal to an in-the-money position

Fig. 5 Expected exposure of EUR 5Y IR receiver swaps. Note The figure shows the expected exposure
profile andCVAresults for EUR5Y IR receiver swapswith differentmoneyness calculatedwith themodified
SA-CCR (solid line) and the benchmark model (dashed line). Please notice that in case of a receiver swap,
ATM−0.01 (left panel) is equal to an out-the-money position
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Fig. 6 Expected exposure of EUR 10 IR payer swaps. Note The figure shows the expected exposure profile
and CVA results for EUR 10Y IR payer swaps with different moneyness calculated with the modified
SA-CCR (solid line) and the benchmark model (dashed line)

Fig. 7 Expected exposure of EUR 7Y IR payer swaps. Note The figure shows the expected exposure
profile and CVA results for EUR 7Y IR payer swaps with different moneyness calculated with the modified
SA-CCR (solid line) and the benchmark model (dashed line)

Fig. 8 Expected exposure of USD 5Y IR payer swaps. Note The figure shows the expected exposure
profile and CVA results for USD 5Y IR payer swaps with different moneyness calculated with the modified
SA-CCR (solid line) and the benchmark model (dashed line)
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A.4.4 Output: FX profiles

See Figs. 9, 10, 11, 12, 13 and 14.

Fig. 9 Expected exposure of EUR/USD 1Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of EUR/USD 1Y FX forwards with different moneyness. The solid line represents
the result from the modified SA-CCR, while the dashed line shows the result based on the benchmark model

Fig. 10 Expected exposure of EUR/USD 3Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of EUR/USD 3Y FX forwards with different moneyness.The solid line represents
the result of the modified SA-CCR, while the dashed line shows the result based on the benchmark model

Fig. 11 Expected exposure of EUR/JPY 3Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of EUR/JPY 3Y FX forwards with different moneyness. The solid line represents
the result of the modified SA-CCR, while the dashed line shows the result based on the benchmark model

Fig. 12 Expected exposure of EUR/GBP 3Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of EUR/GBP 3Y FX forwards with different moneyness. The solid line represents
the result of the modified SA-CCR, while the dashed line shows the result based on the benchmark model
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Fig. 13 Expected exposure of EUR/CHF 1Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of EUR/CHF 3Y FX forwards with different moneyness. The solid line represents
the result of the modified SA-CCR, while the dashed line shows the result based on the benchmark model

Fig. 14 Expected exposure of USD/GBP 3Y FX forwards. Note The figure shows the expected exposure
profile and CVA results of USD/GBP 3Y FX forwards with different moneyness. The solid line represents
the result of the modified SA-CCR, while the dashed line shows the result based on the benchmark model

A.4.5 Output: profiles for combined netting sets

See Figs. 15, 16, and 17.

Fig. 15 Expected exposure profile of IR multi-transaction netting sets. Note This figure provides the
expected exposure profile and CVA results for the hypothetical netting sets 2033, 2034 and 2035. The
solid line represents the result of the modified SA-CCR, while the dashed line shows the result based on
the benchmark model
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Fig. 16 Expected exposure profile of multi-transaction netting sets. Note This figure provides the expected
exposure profile and CVA results for the hypothetical netting sets 2036, 2037 and 2038. The solid line
represents the result of themodified SA-CCR,while the dashed line shows the result based on the benchmark
model

Fig. 17 Expected exposure profile of IR multi-transaction netting sets. Note This figure provides the
expected exposure profile and CVA results for the hypothetical netting sets 2039, 2040 and 2041. The
solid line represents the result of the modified SA-CCR, while the dashed line shows the result based on
the benchmark model

A.4.6 Output: profiles for portfolios with perfect CSA

See Figs. 18 and 19.

Fig. 18 Expected exposure profile of IR swaps with perfect CSA. Note This figure provides the expected
exposure profile andCVA results for the hypothetical netting sets 2000, 2001 and 2002 under the assumption
of a perfect CSA. The solid line represents the result of the modified SA-CCR, while the dashed line shows
the result based on the benchmark model
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Fig. 19 Expected exposure profile of FX forwards with perfect CSA.NoteThis figure provides the expected
exposure profile andCVA results for the hypothetical netting sets 2015, 2016 and 2017 under the assumption
of a perfect CSA. The solid line represents the result of the modified SA-CCR, while the dashed line shows
the result based on the benchmark model

A.4.7 Output: profiles for portfolios with imperfect CSA

See Figs. 20, 21.

Fig. 20 Expected exposure profile of IR swaps with a CSA (TH=5.000,MTA=1.000). Note This figure
provides the expected exposure profile and CVA results for the hypothetical netting sets 2000, 2001 and
2002 under the assumption of an imperfect CSA. The solid line represents the result of the modified SA-
CCR, while the dashed line shows the result based on the benchmark model

Fig. 21 Expected exposure profile of FX forwards with a CSA (TH=5.000,MTA=1.000). Note This figure
provides the expected exposure profile andCVA results for the hypothetical netting sets 2000, 2001 and 2002
under the assumption of an imperfect CSA. The solid line represents the result of the modified SA-CCR,
while the dashed line shows the result based on the benchmark model

123



320 P. Büchel et al.

A.4.8 Output: profiles for FX Options

See Figs. 22 and 23.

Fig. 22 Expected exposure profile of FX options. Note This figure provides the expected exposure profile
and CVA results for the hypothetical netting sets 2126, 2130 and 2132. The solid line represents the result
of the modified SA-CCR, while the dashed line shows the result based on the benchmark model

Fig. 23 Expected exposure profile of FX options. Note This figure provides the expected exposure profile
and CVA results for the hypothetical netting sets 2128, 2131 and 2133. The solid line represents the result
of the modified SA-CCR, while the dashed line shows the result based on the benchmark model
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