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Abstract

We consider structural vector autoregressions identified through stochastic volatility.

Our focus is on whether a particular structural shock is identified by heteroskedasticity

without the need to impose any sign or exclusion restrictions. Three contributions emerge

from our exercise: (i) a set of conditions under which the matrix containing structural

parameters is partially or globally unique; (ii) a statistical procedure to assess the validity

of the conditions mentioned above; and (iii) a shrinkage prior distribution for conditional

variances centred on a hypothesis of homoskedasticity. Such a prior ensures that the

evidence for identifying a structural shock comes only from the data and is not favoured

by the prior. We illustrate our new methods using a U.S. fiscal structural model.
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1. Introduction

This paper considers the partial identification of a structural shock in a multivariate

setup that is in line with the definition by Rubio-Ramı́rez, Waggoner and Zha (2010).

This definition states that a structural shock is identified when the parameters of its

corresponding equation within a system are globally identified, that is, up to being sign–

normalised as in Waggoner and Zha (2003b). Partial identification is essential in empirical

analyses using Structural Vector Autoregressions (SVARs) and focusing on fewer shocks

than there are variables in the model. For example, it is often the case that one is

interested in the identification of a specific shock, such as a monetary or a fiscal policy

shock. Moreover, partial identification becomes even more important in larger systems

of variables that, on the one hand, improve the forecasting performance of the model,

resulting in more realistic impulse responses but, on the other one, increase the number

of shocks that are not necessarily of interest or difficult to interpret (see Carriero, Clark

and Marcellino, 2019).

In our approach, the source of partial identification is conditional heteroskedasticity

that offers the potential to identify all the parameters of a given equation up to a sign

following the seminal developments proposed by Rigobon (2003). We choose a specific

model for conditional variances, namely Stochastic Volatility (SV) as proposed by Cogley

and Sargent (2005), and in line with the identification ideas put forth by recent studies,

such as Lewis (2021) and Bertsche and Braun (2022). Not only does this choice offer

a flexible approach to address identification, but it also has been shown to be a key

extension of homoskedastic SVARs that leads to improved forecasting performance (see,

e.g., Clark and Ravazzolo, 2015; Chan and Eisenstat, 2018).

The main contribution of this paper is a general condition for the partial identification

of a structural shock via heteroskedasticity. This condition states that a structural shock

is identified up to sign if the sequence of its conditional variances is distinct from and

not proportional to those for all other shocks. Our condition covers both conditional

and unconditional heteroskedasticity and most of the heteroskedastic models used in
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empirical studies. It is expressed explicitly in terms of conditional variances, simplifying

the proof and granting a straightforward interpretation. In these respects, it stands out

from the existing conditions on which we provide more details in Section 2. We further

show that a shock having such a unique sequence of (conditional) variances leads to

globally identified impulse response functions.

Importantly, the conditions for partial identification that we derive can be verified. In

this regard, a second contribution of this paper is the development of a Savage-Dickey

Density Ratio (SDDR) for the hypothesis of homoskedasticity that extends the procedure

by Chan (2018) for univariate SV models to multivariate structural models and

generalising it. This is achieved by proposing a new prior distribution for the parameter

that is associated with changes in the latent log volatilities. Notably, such a parameter

plays a key role in our framework as it allows us to verify if a particular shock of interest

can be identified through heteroskedasticity. For convenience, we refer to it as volatility

of the log-volatility parameter hereafter. The prior for this parameter is centred at the

hypothesis of homoskedasticity and follows a hierarchical structure determining the

level of shrinkage and ensuring the verification to be based on less arbitrary choices.

Given the flexibility of our setup, we provide conditions under which the analysis using

the SDDR is feasible. Our verification procedure generalises that by Lütkepohl and

Woźniak (2020) to SVARs with a more flexible process for conditional volatility, namely

the SV model. Notably, our approach verifies the conditions assumed to hold for the

identification test proposed by Lewis (2021).

A third contribution of this paper is the provision of a detailed analysis of the

marginal prior distribution of the conditional variances implied by the normality of the

SV process innovations, our new prior for the volatility of the log-volatility parameter,

and the non-centred SV process parameterisation proposed by Kastner and

Frühwirth-Schnatter (2014) that we adapt to the SVAR context. We show that the

marginal prior for conditional variances is centred around the hypothesis of

homoskedasticity and exhibits strong shrinkage towards it while maintaining heavy

tails. These features are essential for SVAR models with identification via
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heteroskedasticity to be verified for two reasons. First, they standardise the SVAR model

facilitating the identification and estimation of conditional variances and the structural

matrix. Secondly, this setup requires the evidence in favour of heteroskedasticity to

come from the data. We also point out a problem of a standard prior setup for the SV

model in heteroskedastic SVARs used by Cogley and Sargent (2005) and more recently

by Chan, Koop and Yu (2024).

Estimation is conducted using a Gibbs sampler that implements optimal techniques

such as the structural matrix sampler by Waggoner and Zha (2003a), autoregressive

slope row-by-row sampling by Chan et al. (2024), auxiliary mixture by Omori, Chib,

Shephard and Nakajima (2007), and the ancillarity-sufficiency interweaving strategy by

Kastner and Frühwirth-Schnatter (2014) granting efficient simulation smoothing when

the heteroskedasticity is uncertain. All estimation procedures are accessible via the R

package bsvars by Woźniak (2024a,b) implementing our algorithms in compiled code

using C++, which speeds up the computations by orders of magnitude. Additionally, the

package offers a wide range of structural and predictive analyses using heteroskedastic

SVARs.

We illustrate our methods by studying the sources of identification of unanticipated

tax shocks using a structural model by Mertens and Ravn (2014). We find evidence for

identification via heteroskedasticity in an extended sample covering the period until 2023.

In a recent paper, Lewis (2021) also considers identification via time-varying volatility to

estimate the effects of unanticipated tax changes for Mertens and Ravn’s data. However,

he uses a frequentist approach and, hence, his methods differ fundamentally from those

developed in the following.

Our paper is closely related to a number of studies that pursue identification through

heteroskedasticity using different techniques. For example, Lütkepohl and Milunovich

(2016) investigate identification by testing a heteroskedastic rank defined as the number

of independent heteroskedastic processes following a Generalised Autoregressive

Conditional Heteroskedasticity (GARCH) model. Lanne and Luoto (2021) propose a test

for the validity of moment conditions based on kurtosis of the structural shocks that are
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in line with their non-normality or heteroskedasticity. Lewis (2021) proposes a test based

on the autocorrelation of the reduced-form residuals that assumes non-proportional

changes in volatilities of the structural shocks. Lütkepohl, Meitz, Netšunajev and

Saikkonen (2021) propose a test for identification through heteroskedasticity for a

two-regime volatility model when the timing of the change is known. Finally, Lütkepohl

and Woźniak (2020) develop th SDDR to verify identification via Markov-switching

heteroskedasticity in a model with an arbitrary number of regimes.

The remainder of this paper is as follows. Section 2 introduces the SVAR model and

the identification results, with proofs relegated to the appendix. Section 3 parametrises

the conditional heteroskedasticity using the SV model while the underlying priors for

the volatility process are presented in Section 4. The SDDR for the verification of the

identification via heteroskedasticity is introduced in Section 5. The priors and estimation

of the remaining groups of parameters is scrutinised in Section 6 and the appendix,

respectively. Finally, we illustrate our methodology by investigating identification of

unanticipated tax shocks in Section 7.

Notation

We use the following notation: y denotes the available data, IN is the identity matrix of

order N, 0N×N and ıN are a matrix of zeros and a vector of ones of the indicated dimensions,

respectively, the operator diag(·) puts the vector provided as its argument on the main

diagonal of a diagonal matrix of the order corresponding to the dimension of the vector,

an indicator function I(·) takes the value of 1 if the condition provided as the argument

holds and 0 otherwise, ⊗ denotes the Kronecker product of matrices. A \B defines the set

with all elements of the set A which are not in the set B. Γ(·) denotes the gamma function,

and Kn(·) denotes the modified Bessel function of the second kind. The following notation

is used for statistical distributions: N stands for a univariate normal and NN for the N-

variate normal distribution. NP stands for a univariate normal product while logNP for

the univariate log normal product distribution (to be defined in Section 4). The gamma

distribution is denoted by G, the inverted gamma 2 by IG2, and the uniform distribution
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byU. Unless specified otherwise, n goes from 1 to N, t goes from 1 to T, and s goes from

1 to S.

2. Partial identification in heteroskedastic SVARs

In this section we establish results for partial identification of structural parameters that

are applicable within a broad class of heteroskedastic SVAR models. Some theoretical

results in this section can be interpreted as general matrix results and thus extendable

to different modeling frameworks. Similarly general identification results can be found

in Lewis (2021). These, however, are based on moments formulated in such a way so as

to become testable in a frequentist setup. In contrast, we state our conditions so as to

facilitate Bayesian analysis. To make notation less cumbersome, Theorem 1, Corollary 1

and Corollary 2 are presented using SVAR-consistent notation.

2.1. Model

We begin by describing two common representations for SVAR models. Consider first

the following reduced-form equation:

yt = A1yt−1 + · · · +Apyt−p +Addt + ut, (1)

where yt is an N-dimensional vector of observable time series variables, Ai, i = 1, . . . , p,

are N ×N autoregressive coefficient matrices, dt is a d× 1 vector containing deterministic

terms such as the intercept, trend variables, or dummies, Ad is the corresponding N × d

matrix of coefficients, and ut = (u1.t, . . . ,uN.t)′ is an N-dimensional, zero-mean, serially

uncorrelated error term.

The structural equations introduce a linear relationship between the reduced-form

innovations, ut, and the structural shocks, wt, via the N × N contemporaneous effects

matrix B0,

B0ut = wt, (2)
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where the structural shocks are additionally contemporaneously uncorrelated.

Depending on the model used, the time-varying covariances, E[wtw′t], or conditional

covariances, E[wtw′t|wt−1,wt−2, . . . ], of wt are denoted by Λt = diag
(
σ2

1.t, . . . , σ
2
N.t

)
, where

the σ2
n.t are the unconditional or conditional variances. We also consider an alternative

structural form of the model:

ut = Bwt, (3)

where B = B−1
0 is a nonsingular N ×N structural matrix that represents the impact effects

of the structural errors wt on the observed variables. In other words, B represents the

zero-horizon impulse responses.

Both structural-form equations (2) and (3) have the same reduced-from equation (1).

The assumptions for wt imply that the unconditional or conditional covariance matrices

of the residuals ut, E
[
utu′t

]
and E

[
utu′t|ut−1,ut−2, . . .

]
respectively, may be time-varying

and are denoted by Σt.

2.2. Identification

It is well known that the structural matrices B0 or B are not identified without additional

restrictions. Below, we state the general conditions for partial identification of some of

the parameters of these matrices as the following matrix result.

Theorem 1. Let Σt, t = 0, 1, . . . , be a sequence of positive definite N × N matrices and Λt =

diag
(
σ2

1.t, . . . , σ
2
N.t

)
a sequence of N × N diagonal matrices with Λ0 = IN. Suppose there exists

a nonsingular N ×N matrix B such that

Σt = BΛtB′, t = 0, 1, . . . . (4)

Let σ2
n = (1, σ2

n.1, σ
2
n.2, . . . ) be a possibly infinite dimensional vector. Then the nth column of B is

unique up to sign if σ2
n , σ

2
i ∀i ∈ {1, . . . ,N}\{n}.

Proof. The proof is given in Appendix A.1. It proceeds by showing that, under the

conditions of the theorem, any other nonsingular N ×N matrix B∗ satisfying equation (4)

has the same nth column as B except that all signs may be reversed. □
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Theorem 1 has obvious implications for models set up as in (3). It implies that, if the nth

component of wt has a sequence of variances σ2
n = (1, σ2

n.1, σ
2
n.2, . . . ) which is different from

the variance sequence of any other component of wt, the nth column of B will be identified

up to a sign. The theorem generalizes identification results for some special volatility

models that have been used in the literature on identification through heteroskedasticity

(see, e.g., Kilian and Lütkepohl, 2017, Chapter 14). For example, it is easy to see that

identification results for volatility models based on a finite number of volatility regimes

as considered by Rigobon (2003), Rigobon and Sack (2003), Lanne and Lütkepohl (2008),

Lanne, Lütkepohl and Maciejowska (2010), Netšunajev (2013), Herwartz and Lütkepohl

(2014), Woźniak and Droumaguet (2015), Lütkepohl and Velinov (2016), Lütkepohl and

Netšunajev (2017) are special cases of Theorem 1.

As we will consider SV models in the following, it is important to mention that

Theorem 1 applies for such models. In this context, SV models have also been proposed

by Lewis (2021) and Bertsche and Braun (2022). In such cases, the conditional covariance

matrices of the reduced form errors for model (3) are given by

Σt = BΛtB′,

where Λt = diag
(
σ2

1.t, . . . , σ
2
N.t

)
is a diagonal matrix. If the σ2

n.t vary stochastically, as in

SV dynamics, they will not be proportional with probability 1 and, hence, satisfy the

conditions for identification of Theorem 1. So if any one of the structural errors has

changing conditional variances, it will be identified, even if all the other components

have constant conditional variance. We will use that insight in our Bayesian analysis

of the SV model. It may be worth noting, however, that Theorem 1 also implies that a

single shock may be homoskedastic and still be identified in case all other shocks are

heteroskedastic. This discussion also shows that Theorem 1 generalises results for full

identification in Sentana and Fiorentini (2001), Lewis (2021), and Bertsche and Braun

(2022) to the case of partial identification.

As we will consider the structural form setup (2), it is useful to know that Theorem 1
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implies that a single row of B0 is identified if the corresponding error term has a variance

vector which is different from the variance vectors of all other equations. More precisely,

Theorem 1 implies the following result:

Corollary 1. Let Σt, Λt, t = 0, 1, . . . , and σ2
n = (1, σ2

n.1, σ
2
n.2, . . . ), n = 1, . . . ,N, be as in Theorem

1. Suppose there exists a nonsingular N ×N matrix B0 such that

Σt = B−1
0 ΛtB−1′

0 , t = 0, 1, . . . . (5)

Then the nth row of B0 is unique up to sign if σ2
n , σ

2
i ∀i ∈ {1, . . . ,N}\{n}.

Proof. – See Appendix A.2. □

Note that the vectors σ2
j contain value one for the variance in period 0. This specific

parameterisation gives the elements of vector σ2
j the interpretation of variances relative

to the variances for t = 0. We are using relative variances in our theorem and corollary

because it makes it easier to state the result, is in line with our standardisation of the

structural model, and also leads directly to the verification procedure discussed in

Section 5.

The corollary generalises Theorem 1 of Lütkepohl and Woźniak (2020). It provides

a general result on identification of a single equation through heteroskedasticity. It shows

that a structural shock and, hence, the corresponding structural equation is identified

if the sequence of variances is distinct from the variance sequences of any of the other

shocks.

2.3. Impulse responses

Structural impulse responses are computed from the reduced-form impulse responsesΦi,

i = 0, 1, . . . , which are obtained by the following recursions from the pth-order reduced-
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form VAR slope coefficients:

Φi =


IN for i = 0,∑i

j=1 A jΦi− j for i = 1, 2, . . . ,
(6)

where A j = 0 for j > p (Lütkepohl, 2005, Section 2.1.2). The structural impulse responses

are the elements of the matricesΘi =ΦiB−1
0 =ΦiB, i = 0, 1, . . . . Thus, for computing them,

the structural matrices B0 or B are needed. In particular, if just one shock is identified

through heteroskedasticity, the following result formalises the implications of Corollary 1

for impulse response analysis:

Corollary 2. If the nth row of B0 is identified and, hence, unique in model (2), then the nth column

of B−1
0 is unique and the structural impulse responses can be obtained by right-multiplying the

matricesΦi by the nth column of B−1
0 .

Proof. See Appendix A.3. □

We present theoretical results for impulse responses based on the SVAR in (2) since

this is the specification used for the empirical application in this paper. However, it is

straightforward to verify that – for the SVAR setup in (3) – if just one shock is uniquely

identified and the corresponding column of the B matrix is given, then all the responses

to the nth shock are uniquely obtained by right-multiplying the Φi matrices by the nth

column of B.

3. SVAR model with stochastic volatility

Our empirical model is the SVAR model corresponding to equation (2), that is, the

specification with the structural matrix B0. The model below supplements this

specification with the assumption of conditionally normally distributed and

heteroskedastic error terms with conditional variances following the SV process.

Conditional heteroskedasticity has been proven an essential extension of SVARs

facilitating the model identification (e.g., Bertsche and Braun (2022)).
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We make an additional assumption for the structural shocks wn.t from equation (2)

to be jointly conditionally normally distributed, given the past observations of vector yt,

with zero means and conditional variances σ2
n.t:

wt|yt−1,yt−2, · · · ∼ NN

(
0(N×1), diag

(
σ2

1.t, . . . , σ
2
N.t

))
. (7)

The joint normality and a diagonal covariance matrix imply conditional independence

between the structural shocks.

In our setting, the conditional variances are specified by an SV process that is

expressed in its non-centred parametrisation where the structural shocks are

decomposed into conditional standard deviations and a standardised normal error term:

wn.t =
√
σ2

n.tϵn.t, (8)

ϵn.t ∼ N(0, 1). (9)

The conditional variances are defined as the exponent of the volatility of the log-volatility

parameter, ωn, and the latent log-volatility term, hn.t:

σ2
n.t = exp {ωnhn.t} , (10)

where hn.t follows a zero-mean stationary autoregressive process of order one with

autoregressive parameter ρn ∈ (−1, 1) and standardised normal shocks, vn.t:

hn.t = ρnhn.t−1 + vn.t, (11)

vn.t ∼ N(0, 1). (12)

We further assume that hn.0 = 0 implying that σ2
n.0 = 1. This non-centred parameterisation

of state-space models was introduced by Frühwirth-Schnatter and Wagner (2010) and

adapted for the SV model by Kastner and Frühwirth-Schnatter (2014) and Chan (2018).

Such a model specification ensures that the specification of the conditional variances
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is in line with that from Theorem 1. Note that, given equations (11) and (12), the initial

condition is equal to the unconditional expected value of hn.t that is equal to 0. This,

however, does not fix the unconditional expected value of the conditional variances σ2
n.t

that depends on ωn and ρn. Therefore, we will standardise the system in a different

way. Our standardisation uses a non-centred SV specification and a prior that shrinks the

model towards homoskedasticity, as explained in Section 4.

The non-centred specification implies a centred specification via the one-to-one

relationships h̃n.t = ωnhn.t, ωn = ±
√
σ2
υ.n, and υ̃n.t = ωnvn.t. Then equations (10), (11), and

(12) can be rewritten respectively as:

σ2
n.t = exp

{
h̃n.t

}
(13)

h̃n.t = ρnh̃n.t−1 + υ̃n.t (14)

υ̃n.t ∼ N
(
0, σ2

υ.n

)
. (15)

These one-to-one relationships might suggest that these two specifications are

equivalent. However, complementing them with commonly used prior distributions for

the parameters ωn and σ2
υ.n reveals essential differences. Our choice of the non-centred

parameterisation of the SV process for SVARs identified via heteroskedasticity is

motivated by (i) its potential to provide the standardisation of the model, (ii) the

feasibility of specifying a prior distribution for the conditional variances that is centred

at a point corresponding to homoskedasticity of the structural shocks, and (iii) the

possibility to verify the homoskedasticity hypothesis for each of the shocks, which helps

to assess partial identification of the system. The latter is essential to determine which

shocks are identified through heteroskedasticity. All of these features can be understood

by the analysis of the prior distribution for the parameters and the implied prior for the

conditional variances that we analyse in Section 4.
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4. The prior for stochastic volatility

We propose a novel prior specification for the SV process and its parameters that is suitable

for the SVAR models in the context of identification through heteroskedasticity. It is

based on the model equations (8)–(12). Our objectives for setting this prior are that (i) the

implied prior for the conditional variances is centred around a homoskedastic process,

(ii) it provides a controlled level of shrinkage towards the hypothesis of homoskedasticity

of the structural shocks, (iii) it supports the standardisation of the system at a point where

σ2
n.t = 1 for all n and t (and, hence, the shock is homoskedastic), (iv) it leads to an efficient

Gibbs sampler for the estimation of the model, and (v) it facilitates a reliable verification

of the partial identification through heteroskedasticity using the SDDR.

By centring at and shrinking the prior for the conditional variances towards the

hypothesis of homoskedasticity we address the critique of Bayesian SVARs identified

through heteroskedasticity by Lewis (2021) and Bertsche and Braun (2022). They argue

that the conventional priors enable the identification via the implied non-normality of

residuals irrespectively of whether the structural shocks are heteroskedastic or not. Note

that this feature is shared by the corresponding frequentist models that assume the

normality of the SV equation innovations. Our priors proposed in the following let the

data decide on whether particular shocks are homo- or heteroskedastic. As a

consequence, in our setup, it is the data that decides on the partial or full identification

of the SVAR system via heteroskedasticity. At the same time, our priors facilitate the

estimation of a parametric model when it is partially identified and perform a valid

verification of the identification using SDDRs.

This section first states the prior for the latent process hn.t and the parameters of the SV

process. Then, it analyses the properties of the implied priors for the conditional variances

and their logarithms. Finally, it discusses how partial identification of the SVAR model

can be verified in our setup.
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4.1. Priors for the SV process parameters

In order to state the prior distribution for hn.t we define a T×1 vector hn =
(
hn.1 . . . hn.T

)′
,

and a T×T matrix Hρn with ones on the main diagonal, with −ρn on the first subdiagonal,

and with zeros elsewhere.

The prior for the latent process hn is determined by equations (11) and (12) which

imply the following conditionally multivariate normal distribution, given parameter ρn:

hn | ρn ∼ NT

(
0T×1,

(
H′ρn

Hρn

)−1
)
. (16)

The remaining parameters of the SV process include ωn – the essential parameter of the

non-centred parameterisation responsible for the variance of the log-conditional

variances, ρn – the latent process’ autoregressive parameter, and σ2
ωn

– the prior variance

of ωn. These parameters follow a hierarchical prior structure, including normal,

uniform, and truncated gamma distributions, respectively:

ωn | σ
2
ωn
∼ N

(
0, σ2

ωn

)
, (17)

ρn | σ
2
ωn
∼ U

(
−

√
1 − σ2

ωn ,
√

1 − σ2
ωn

)
, (18)

σ2
ωn
| ρn ∼ G

(
S,A

)
I

(
0 < σ2

ωn
< 1 − ρ2

n

)
. (19)

This original specification is our proposal for the prior distributions of the SV process for

structural shocks of the SVAR models in the context of identification through

heteroskedasticity. It is complemented by three restrictions:

|ρn| < 1, (20)

σ2
ωn

1 − ρ2
n
≤ 1, (21)

A > 0.5. (22)

Under the first restriction, the latent SV process has no unit roots and is stationary. Note
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that restrictions (20) and (21) result in the bounds for ρn as presented in the uniform prior

for ρn from expression (18). Similarly, the truncation of the gamma prior for σ2
ωn

results

from the restriction (21). The last restriction from inequality (22) determines the marginal

prior forωn and makes it particularly suitable for our setup, as explained below. We show

that under restrictions (20) and (21), all our objectives regarding centring and shrinking of

the prior for the conditional variances are met, whereas, under the last one, the SDDR for

the verification of the partial identification provides reliable results and is free of arbitrary

choices.

4.2. Implied priors for conditional variances and their logarithms

The SV process equations (8)–(12), the prior distributions for their parameters (16)–(19),

and the restrictions (20)–(22) imply prior distributions for the interpretable sequences of

random variables like conditional variances and their logarithms. The following

definitions will simplify the subsequent discussion of these priors.

Definition 1. (Normal product distribution)

Let x and y denote two independent zero-mean normally distributed random variables

with variances σ2
x and σ2

y respectively. Then, a random variable z = xy follows the normal

product distribution with zero mean and variance σ2
z = σ

2
xσ

2
y, denoted by z ∼ NP

(
σ2

z
)
,

with density function given by: 1

π
√
σ2

z

K0

(
|z|
√
σ2

z

)
. □

The normal product distribution is known in the statistical literature. We state it here to

clarify our notation. However, the following distribution is new and its density function

is obtained by change of variables.

Definition 2. (Log normal product distribution)

Let a random variable z follow the normal product distribution with variance σ2
z . Then,

a random variable q = exp(z) follows the log normal product distribution, denoted by

q ∼ logNP
(
σ2

z
)
, with density given by: 1

π
√
σ2

z

1
q K0

(
| log q|
√
σ2

z

)
. □

We are now ready to state the implied marginal priors for the volatilities in Proposition 1:
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Proposition 1. (Marginal distributions of conditional volatilities)

Given the prior specification from equations (8)–(12) and (16)–(22), the marginal priors for

the latent process hn.t, log-conditional variances log σ2
n.t = ωnhn.t, and conditional variances

σ2
n.t = exp(ωnhn.t) are given by the following normal, normal product, and log normal product

distributions:

(a) hn.t | ρn ∼ N

(
0, 1−ρ2t

n

1−ρ2
n

)
,

(b) log σ2
n.t | ρn, σ2

ωn
∼ NP

(
σ2
ωn

1−ρ2t
n

1−ρ2
n

)
,

(c) σ2
n.t | ρn, σ2

ωn
∼ logNP

(
σ2
ωn

1−ρ2t
n

1−ρ2
n

)
,

with the corresponding limiting distributions:

(d) lim
t→∞

hn.t | ρn ∼ N

(
0, 1

1−ρ2
n

)
,

(e) lim
t→∞

log σ2
n.t | ρn, σ2

ωn
∼ NP

(
σ2
ωn

1−ρ2
n

)
,

(f) lim
t→∞
σ2

n.t | ρn, σ2
ωn
∼ logNP

(
σ2
ωn

1−ρ2
n

)
. □

Proof. (a) The result is based on the properties of a normal compound distribution that

facilitates the integration of
∫

p(hn.t, hn.t−1, . . . , hn.1)d(hn.t−1, . . . , hn.1), where the joint

distribution under the integral is constructed from the conditional distributions

hn.t | hn.t−1, . . . , hn.1 ∼ N(ρnhn.t−1, 1), and using hn.0 = 0. (b) The result is obtained directly

by applying Definition 1, the result (a) and the prior in expression (17). Points (c)–(f) are

obtained as a straightforward consequence of the first two results. □

4.3. Non-centred and centred SV representations

In order to understand our prior setup it is essential to understand the properties of the

implied prior distributions and compare them to a conventional prior for SV processes.

Our proposed normal prior for the parameterωn from equation (17) implies the following
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gamma prior for the conditional variance of the SV process in its centred parameterisation

σ2
υ.n = ω

2
n with expected value E

[
σ2
υ.n | σ

2
ωn

]
= σ2

ωn
:

σ2
υ.n | σ

2
ωn
∼ G

(
2σ2
ωn
,

1
2

)
. (23)

However, the conventional conjugate prior for a variance parameter belongs to the

family of inverted-gamma distributions. We state this conventional prior for the sake of

comparison to our proposal. Let the conventional prior for σ2
υ.n in the centred

parameterisation have the expected value equal to σ2
ωn

and be specified as:

σ2
υ.n | σ

2
ωn
∼ IG2

(
2σ2
ωn
, 4

)
, (24)

where IG2(·, ·) denotes the inverted-gamma 2 distribution (see Bauwens, Lubrano and

Richard, 1999, Appendix A). The alternative prior specifications from equations (23) and

(24) illustrate how our approach is different from the conventional take on SV models.

Our gamma prior for the volatility of the log-volatility parameter in equation (23) implies

strong shrinkage towards the homoskedasticity (see Chan, 2018). Furthermore, the prior

from equation (23) shows that our specification can be equivalently presented as the SV

process in its centred parameterisation and with a gamma prior for the variance of the

latent process.

4.4. Properties of the prior for conditional variances

At the beginning of the current section, we stated the objectives for our prior setup. Below

we provide more insights into how these objectives are embedded in our priors and why

that matters.

The first objective was to centre the prior for conditional variances around the

hypothesis of homoskedasticity. As long as the prior expected values of the

log-conditional variances following the normal product distribution are 0 for all t, that

is, centred at the homoskedastic process, the expected values of the conditional

variances following the log normal product distribution are not simply equal to 1, of
17



Figure 1: Densities of the log normal product for various values of the scale parameter.
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Note: the blue, orange, and green lines correspond to the densities for the values of the scale parameter, σ2
z ,

equal to 0.8, 1, and 1.5 respectively.

course. However, the log normal product distribution has a pole at value 1. Property 1

establishes when this distribution has a single mode at this point.

Property 1. (Single pole of log normal product distribution at point 1)

The log normal product distribution from Definition 2 has a single pole at point 1 iff

σ2
z ≤ 1. In this case, the value of the density function approaches 0 when the argument

goes to 0. When σ2
z > 1, this density function differs from 0 and goes to infinity when q

goes to 0.

We illustrate Property 1 in Figure 1. First, note that the condition for a single pole for

the distribution of conditional variances for all t was stated in expression (21) and,

consequently, defined our prior. Secondly, the single pole of the log normal product

distribution implies a strong concentration of the prior probability mass at the point

corresponding to the pole. This point is σ2
n.t = 1 implying homoskedasticity of the

structural shocks. This extreme concentration of probability mass to the point of

unbounded probability density function supports our claim that at the prior mode, the
18



SVAR model is not identified through heteroskedasticity. Still, the distribution is proper

and allows a strong signal from the data to push the posterior probability mass towards

heteroskedasticity. Finally, note that the inequality restriction is imposed on the

parameter of the limiting log normal product distribution, σ2
ωn
/(1− ρ2

n), to ensure it holds

for all t.

The second objective was to shrink the prior for conditional variances towards

homoskedasticity. It is also obtained by imposing the restriction from Property 1 in

inequality (21). This objective cannot be obtained without this restriction. The second

pole at point 0 distributes probability mass over the interval from zero to 1 more evenly.

In effect, the posterior estimates are either pushed towards very small values when they

are shrunk towards 0 or take practically any value on the real scale. Additionally, our

hierarchical prior exhibits the same shrinkage properties for the log-conditional

volatilities as analysed in other contexts by Bitto and Frühwirth-Schnatter (2019) and

Cadonna, Frühwirth-Schnatter and Knaus (2020). These properties include the extreme

concentration of the prior mass at the point of homoskedasticity and heavy tails,

allowing to accommodate the signals of heteroskedasticity from the data.

The latter remark leads to the third objective of specifying the prior so that the SVAR

model is standardised. The conventional standardisations of the model in the

frequentist approach rely either on setting the diagonal elements of the matrix B0 to 1 or

the unconditional expected value of the conditional variances, E
[
σ2

n.t

]
, to value 1. Both of

these solutions complicate the derivation of an efficient Bayesian estimation algorithm

and might require cumbersome treatment of the local identification of the model. Our

property relies on the appropriate centring and shrinking of the prior that results in

standardised posterior output.

All of these features are clearly visible in Figure 2 that juxtaposes our prior distribution

with a conventional setup. These figures present in red our prior distribution for the non-

centred parameterisation with the restrictions (20)–(22), and in blue a conventional prior

for the SV process in its centred parameterisation. In both setups here we apply a uniform

prior for ρn on the interval (−1, 1), and the unrestricted inverse gamma prior for σ2
υ.n as in
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Figure 2: Priors for log-variances and variances of Stochastic Volatility processes in their centred and non-
centred parameterisations
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Note: red corresponds to our non-centred and blue to the centred parameterisation of the Stochastic
Volatility process.

expression (24).

Figure 2 (a) presents the marginal limiting prior for log-conditional variances for two

cases: (i) our proposed prior is plotted in red where the hyper-parameters were integrated
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out according to log σ2
n.t =

∫
p
(
log σ2

n.t | ρn, σ2
ωn

)
d
(
ρn, σ2

ωn

)
with respect to the priors for

ρn and σ2
ωn

as in equations (18)–(21); (ii) a conventional prior is plotted in blue where

the marginalisation is performed with respect to parameters ρn and σ2
υ.n following the

unrestricted prior described in the paragraph above. Our proposal is based on the normal

product distribution, and the marginal prior inherits its properties, including the pole at

zero, strong shrinkage towards the prior mean, and heavy tails. The conventional prior

is Student-t distributed, not exhibiting that strong concentration of the prior probability

mass around homoskedasticity.

Figure 2 (b) presents a similarly obtained marginal limiting prior distribution of the

conditional variances and reveals major differences in the prior specifications. Firstly, note

that our prior plotted in red has a single pole at value 1, and exhibits strong shrinkage

towards this point. The conventional prior that is log t distributed has a mode at point

1 and a pole at point 0. The pole arises from the marginalisation of the log t distribution

with respect to parameters ρn and σ2
υ.n and is described in Property 2.

Property 2. (Prior for conditional variances in a centred SV model)

Consider a centred SV model from equations (13)–(15) with the inverted-gamma 2 prior

for the volatility of the log-volatility parameter as in equation (24) that, for the sake of

generality, is stated as:

σ2
υ.n | σ

2
ωn
∼ IG2

(
σ2
ωn
, ν

)
. (25)

Then,

(a) the log-volatilities, h̃n.t, follow a Student-t marginal prior distribution (see Bauwens

et al., 1999),

(b) the conditional variances, σ2
n.t, follow a log t marginal prior distribution (see Hogg

and Klugman, 1983),

(c) the prior distribution stated in (b) has a pole at point 0, unless ν goes to infinity (see

Callealta Barroso, Garcı́a-Pérez and Prieto-Alaiz, 2020, for points (c)–(e)),
21



(d) the prior distribution stated in (b) has a second mode – a local maximum – at point

exp
{
−

1
2

[
(ν + 1) −

√
(ν + 1)2 − 4σ2

ωn

]}
iff σ2

ωn
<

(ν+1)2

4 ,

(e) the prior distribution stated in (b) has a median at point 1 only if ν goes to infinity. □

Property 2 shows that the unrestricted centred SV parameterisation is highly

problematic in SVAR applications. With unconstrained volatility of the log-volatility

parameter, it does not ensure even the standardisation of the system about value σ2
n.t = 1.

Moreover, with any finite values of the shape hyper-parameter, ν, the pole at point 0

provides heavy local shrinkage towards a point in which the model is singular as it

exhibits zero conditional variances of the structural shocks. In this context, our proposal

satisfying all the stated objectives robustly leads to reliable posterior estimates and

inferences.

Finally, Figures 2 (c) and 2 (d) present the shape of the priors for conditional

variances and their logarithms in a dynamic setting for the first ten sample periods.

These distributions inherit the properties from the marginal limiting distributions. All

these arguments indicate the adequacy of our prior setup that includes an appropriate

hierarchy and the restrictions that provide necessary features and interpretations in the

context of priors for the volatility process of structural shocks for the SVAR model

partially identified through heteroskedasticity.

5. Bayesian assessment of identification conditions

The assessment of the identification conditions is a challenging task for heteroskedastic

SVARs because it often relies on the estimated parameters of a model that is potentially

not identified (see the points made by Lewis (2021) and by Lütkepohl et al. (2021)). We

follow Lütkepohl and Woźniak (2020) and complement the setup of our model with a

Savage-Dickey Density Ratio by Verdinelli and Wasserman (1995) for the verification of the

identification conditions from Theorem 1. More precisely, we verify the heteroskedasticity

22



of each structural shock by seeking evidence against the homoskedasticity restriction

ωn = 0. (26)

If this condition holds, the latent volatility equation becomes deterministic with hn.t = 0

and σ2
n.t = 1 for all t, that is, the latent process is homoskedastic for a given n. This

restriction is verified for each n, that is, for each structural shock. The results allow us to

make statements regarding the identification of the SVAR model through

heteroskedasticity and answer whether the system is fully or partially identified. Recall

that, by Theorem 1, each shock with nonzero ωn is identified through heteroskedasticity.

The SDDR is particularly suitable for the verification of the identification conditions

because it relies on the estimation outcome of one general model and does not require

the estimation of restricted models.

In order to verify the restriction from equation (26) using the SDDR, we adapt the

ideas presented by Frühwirth-Schnatter and Wagner (2010) for state space models and

applied to SV models by Chan (2018). More specifically, we extend the heteroskedasticity

verification procedure using SDDR by Chan (2018) for investigating the hypothesis (26)

for the structural shocks of SVAR models. Several features make our procedure reliable.

Firstly, it is embedded in the SV hierarchical prior structure that is suitable for the volatility

process in the context of identification through heteroskedasticity. Secondly, we extend

the normal prior distribution for ωn, as in equation (17), proposed by Chan (2018) by a

hierarchical prior for its variance σ2
ωn

as in equation (19). In contrast, Chan (2018) simply

fixes this prior variance. Our specification allows the subsequent estimation of σ2
ωn

making

the prior and the inference using the SDDR less dependent on arbitrary choices. Moreover,

based on the results provided by Bitto and Frühwirth-Schnatter (2019) and Cadonna et al.

(2020), the marginal prior forωn, based on a gamma scale mixture of normal distributions,

combines the extreme shrinkage towards the hypothesis of homoskedasticity and heavy

tails allowing the data to provide the signal of heteroskedasticity that informs posterior

inference. An additional property that is necessary for the SDDR to provide reliable
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outcomes is the bounded density function for the marginal prior for ωn that we discuss

below. Finally, our estimation algorithm for the SV parameters uses the ancillarity-

sufficiency interweaving strategy by Kastner and Frühwirth-Schnatter (2014) that is the

optimal solution making the MCMC algorithm efficient when it is unknown whether the

process is homo- or heteroskedastic. Therefore, we provide the setup that is numerically

efficient, sufficiently flexible to exploit the information from data, and suitable for partial

identification verification of the SVARs identified through heteroskedasticity.

Our SDDR is defined by the ratio of the marginal posterior of ωn ordinate to the

marginal prior ordinate for this parameter both evaluated at point 0:

SDDR =
p(ωn = 0|y)
p(ωn = 0)

. (27)

Small values of the SDDR provide evidence against the restriction ωn = 0. In turn, the

posterior probability mass being more concentrated around the restriction than the prior

probability mass is evidence in favor of the restriction. The analysis of the SDDR in

equation (27) reveals that Property 3 establishing the bounded marginal prior for ωn is

essential. If this density is unbounded at point ωn = 0, then it is impossible for the data

to provide evidence for heteroskedasticity, as the denominator of the SDDRs is equal

to infinity and the SDDR itself goes to zero. Additionally, extending the prior by Chan

(2018) allows our verification procedure to let the data speak about the heteroskedasticity

of structural shocks.

In order to present the result of bounded marginal prior for ωn, we first redefine the

prior σ2
ωn

from equation (19) as:

σ2
ωn
∼ G

(
S,A

)
(28)

and provide the density of the marginal prior for ωn.

Proposition 2. (Density of marginal prior for ωn)

The marginal prior density function for parameter ωn obtained by marginalising the joint prior
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distribution over σ2
ωn

, p (ωn) =
∫
∞

0
p
(
ωn | σ2

ωn

)
p
(
σ2
ωn

)
dσ2
ωn

, where the priors p
(
ωn | σ2

ωn

)
and

p(σ2
ωn

) are given by expressions (17) and (28) respectively is given by:

p (ωn) =
|ωn|

A− 1
2 KA− 1

2

(√
2
S |ωn|

)
√
π

(√
2
)A− 3

2
Γ
(
A
) (√

S
)A+ 1

2

. (29)

□

Proof. The integration proceeds by recognising the constant and kernel and applies to

the latter which is facilitated using the normalising constant of the generalised inverse

Gaussian distribution provided by Barndorff-Nielsen (1997). □

Below, we state that the existence of the upper bound for the density from equation (29)

at point 0 depends on the value of hyper-parameter A by providing results on the following

limit:

Property 3. (Upper bound of the marginal prior density for ωn) (See Cadonna et al.,

2020, Theorem 2).

lim
ωn→0

p (ωn) =


∞ for 0 < A ≤ 0.5

1√
2πS

(
A2
−

1
4

) Γ (A + 3
2

)
Γ
(
A
) for A > 0.5

(30)

Therefore, the marginal prior density function for parameter ωn is bounded from above

iff the restriction, A > 0.5, from equation (22) holds. Consequently, we set the hyper-

parameter A = 1 which reduces the gamma prior to an exponential distribution and the

Bayesian Lasso prior considered by Belmonte, Koop and Korobilis (2014) for state-space

models. However, other choices are possible and are best reviewed by Cadonna et al.

(2020).

We further set the hyper-parameter S = 0.05. This choice implies that practically the

whole prior probability mass of σ2
ωn

lays within the interval (0, 1). Therefore, instead of

imposing a strict restriction leading to a hard-to-sample-from truncated full conditional
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posterior distribution for σ2
ωn

, we impose the restriction via an appropriate prior

specification. As we explain in Appendix C, we first sample σ2
ωn

from the generalised

inverse Gaussian distribution whose value will be within the interval (0, 1) with a

probability close to one thanks to our prior setup. Subsequently, ρn is sampled from the

truncated normal distribution given the most recent draw of σ2
ωn

to fix the truncation set.

The SDDR can be easily computed as long as the densities of the full conditional

posterior and the prior distributions are of a known analytical form. In Appendix C,

we show that, given the data, the latent volatilities processes involved in our model and

the parameters of the SVAR equation, the parameters ωn can be independently sampled

from the univariate normal full conditional posterior distributions with the mean ωn and

variance vωn specified in equations (C.18)–(C.20). Then, the numerator of the SDDR can

be computed using a sample of S draws from the posterior distribution by applying the

marginal density ordinate estimator proposed by Gelfand and Smith (1990):

p̂
(
ωm = 0 | y

)
=

1
S

S∑
s=1

fN
(
0;ω(s)

n , v
(s)
ωn

)
, (31)

where fN denotes the density function of a normal distribution, whereas ω(s)
n and v(s)

ωn

denote the values of the mean and variance in which the place of the parameters of the

model are replaced by their sth draws from the posterior.

6. Prior distribution for the SVAR parameters

Our objectives for setting the joint prior distribution for the structural matrix B0 and the

autoregressive slope parameters collected in the matrix A =
[
A1 . . . Ap Ad

]
are that

(i) it is conditionally conjugate, and thus, facilitates the derivation of an efficient Gibbs

sampler for the estimation of the parameters, (ii) it is a reference prior that does not distort

the shape of the likelihood function due to the local identification of the model as defined

by Rubio-Ramı́rez et al. (2010), (iii) it can be interpreted as a Minnesota prior proposed by

Doan, Litterman and Sims (1984), and (iv) it enjoys the flexibility of the hierarchical prior
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specification thanks to which the essential hyper-parameters responsible for the level of

shrinkage are estimated as argued by Giannone, Lenza and Primiceri (2015).

All these objectives are met when the prior for the structural matrix is set to the

generalised-normal distribution proposed by Waggoner and Zha (2003a) and multivariate

normal for the autoregressive parameters. Let B0.n and An denote the nth row of the

matrices B0 and A, respectively. Then the prior distribution for matrix B0 is proportional

to

p
(
B0 | γ0

)
∝ det (|B0|)

ν−N exp

−1
2

N∑
n=1

1
γ0.n

B0.nB′0.n

 . (32)

The parameters of this distribution are further assumed to be equation invariant. That

feature makes this distribution the reference prior, which means that it is invariant to

the rotations of the structural system up to permutation and sign change of its rows (see

Woźniak and Droumaguet, 2015). The scale matrix of the distribution in (32) is set to

γ0.nIN, where γ0.n is a hyper-parameter, and the shape parameter is set to ν0 = N, which

makes the marginal prior distribution for the rows of B0 the N-variate normal distribution

with the zero mean and covariance γ0.nIN.

The prior distribution for each row of matrix A is multivariate normal, sharing

features of the Minnesota prior. Therefore, the prior mean of A is equal to

A =
[
D 0N×(N(p−1)+d)

]
, where D is a diagonal matrix with zeros and ones on the diagonal

depending on whether the corresponding variables in yt are stationary or unit-root

nonstationary. The matrix D is fixed at IN if all variables in yt are unit-root

non-stationary or at 0N×N if they are stationary. The covariances of the rows of A are

given by diagonal matrices γA.nΩ with scalar hyper-parameters γA.n and, where

Ω = diag
(
p−1′
⊗ ı′N 100ı′d

)
, and p−1 denotes a vector containing the reciprocal of integer

values from 1 to p. This matrix provides the increasing level of shrinkage with

increasing lag order of the autoregressive slope parameters, incorporating the ideas of

the Minnesota prior of Doan et al. (1984). Furthermore, the prior variances of the

parameters corresponding to the deterministic terms are equal to 100γA, reflecting a
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popular view that the shrinkage should be relatively weaker for these parameters.

Extending the prior by Giannone et al. (2015), the levels of shrinkage of the

autoregressive and structural matrices follow a 3-level global-local hierarchical prior on

the equation-specific shrinkage parameters γA.n and γ0.n:

γ0.n | s0.n ∼ IG2
(
s0.n, ν0

)
, s0.n | sγ0.n

∼ G

(
sγ0
, νγ0

)
, sγ0

∼ IG2
(
ss0
, νs0

)
, (33)

γA.n | sA.n ∼ IG2
(
sA.n, νA

)
, sA.n | sγA.n

∼ G

(
sγA
, νγA

)
, sγA

∼ IG2
(
ssA
, νsA

)
. (34)

We set ν0, νγ0
, ss0
, and νs0

to values 10, 10, 100, and 1 respectively to make the marginal

prior for the elements of B0 quite dispersed, and νA, νγA
, ssA
, and νsA

all equal to 10, which

facilitates relatively strong shrinkage for the autoregressive parameters in matrix A that

gets updated, nevertheless. Providing sufficient flexibility on this 3-level hierarchical

prior distribution was essential for a robust shape of the estimated impulse responses.

7. An empirical illustration: Verifying identification of tax shocks

When heteroskedasticity is used for identification in SVAR analysis, the shocks are

distinguished by their variances or conditional variances. This approach provides

distinct shocks without economic labels and requires some additional information to

label the shocks. Such information is sometimes available in the form of specific shapes

of the impulse responses associated with a shock or a specific sign pattern of the impact

effects of the shocks.

To illustrate the methods developed in the previous sections, we will consider a fiscal

SVAR model in which the unanticipated tax shock has been identified in different

conventional ways. These alternative identification strategies include, for example,

Blanchard and Perotti (2002) (henceforth BP) who use restrictions on the short-run

effects of the shocks and the instantaneous interactions of the variables to identify their

shocks, and by Mountford and Uhlig (2009) using sign restrictions. Moreover, Mertens

and Ravn (2014) (henceforth MR), as revised by Ramey (2016), use an external

instrument, a narrative measure of the tax shock proposed by Romer and Romer (2010).
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Finally, Lewis (2021) (henceforth LE) uses heteroskedasticity and, hence, an approach in

that respect similar to ours. He uses quite different frequentist estimation and inference

methods, however, and he also needs more restrictive assumptions regarding the

heteroskedasticity of the shocks. Specifically, he assumes non-proportional changes in

the conditional variances of the structural shocks. We use the MR model as our

benchmark to illustrate the use of our methodology for identifying the tax shock via

heteroskedasticity, and the narrative measure by Romer and Romer (2010) to ensure a

correct labelling of the shocks.

7.1. A simple fiscal SVAR

MR specify a three variable fiscal system including total tax revenue, denoted by ttr,

government spendings, gs, and gross domestic product, gdp, and they express all the

quarterly variables in real, log, per person terms. We will also consider these three

variables and investigate whether the tax shock can be identified by our methodology.

In order to investigate identification through heteroskedasticity in this fiscal system,

we use three alternative samples of different length and partly different values even for

overlapping periods. They are plotted in Figure 3, where it can be seen that the series

are different but similar in overlapping periods. The shortest sample, hereafter MR-

sample, uses the data from MR and LE that is downloaded directly from Karl Merten’s

website1. Following the data construction described by MR, total tax revenue, government

spendings, and gross domestic product, as well as the GDP deflator are taken from NIPA

Tables number 3.2, 3.9.5, 1.1.5, and 1.1.9, respectively, provided by the U.S. Bureau of

Economic Analysis (2024c,d,a,b), and the population variable is provided by Francis and

Ramey (2009). This data spans the period 1950Q1 to 2006Q4.

We extend the sample to the latest available observations in 2023Q3 with modifications

in the population variable that is replaced by one matching Francis and Ramey’s definition

and provided by the U.S. Bureau of Labor Statistics (2024). Based on these variables

we form two samples, both of which contain longer time series than MR and start in

1The spreadsheet is available at: https://karelmertenscom.files.wordpress.com/2017/09/jme2014 data.xls
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Figure 3: Data plots of the three samples used for estimation.
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Note: The figure plots three series for three samples: the 2023-sample plotted in light pink includes
observations from 1948Q1 to 2023Q3 (T = 303), the 2006-sample plotted in darker pink is as the
2023-sample but finishes in 2006Q4 (T = 236), the MR-sample, plotted in purple, spans the period
from 1950Q1 to 2006Q4 (T = 228). The plotted series are standardised by subtracting from each
series its first observation in 1980.

1948Q1. One of these samples, hereafter the 2023-sample, finishes in 2023Q3, and the

other one, hereafter the 2006-sample, terminates in 2006Q4. Following MR, we use a

VAR(4) model with a constant term, a linear and a quadratic trend, and a dummy for

1975Q2 as deterministic terms.

7.2. Verifying identification via heteroskedasticity

We base our structural analysis on the model (2). Hence, we have to sample from the

posterior of the structural B0 matrix which is not identified without further restrictions if

the shocks are not heteroskedastic. Even if the shocks are identified, the row ordering and

row signs may change in different drawings from the posterior without taking special

precautions to prevent that from happening. We therefore follow LE and reorder the rows

and adjust their signs such that each draw has the minimum distance to the benchmark B0

matrix computed from the estimates of the structural parameters from BP to begin with

and call this the BP–ordering. More detail on this procedure is provided in Appendix D.

Hence, the shocks can be labelled along the lines of BP as an unanticipated tax shock (wttr
t ),

a government spending shock (wgs
t ), and an additional shock (wgdp

t ) capturing unexpected

changes in gdpt not caused by tax or spending shocks. We will label our shocks accordingly
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Table 1: Verification of identification through heteroskedasticity of the structural shocks (based on the
BP–ordering).

2023-sample 2006-sample MR-sample

wttr
t -21.38 [4.69] -1.51 [0.18] 0.32 [0.05]

wgs
t -4.62 [0.79] -1.32 [0.15] 0.23 [0.05]

wgdp
t -63.39 [6.43] 0.50 [0.03] 0.39 [0.03]

Note: The table reports the log of the Bayes Factors estimated via the log of SDDRs from
equation (27) together with numerical standard errors (NSEs) provided in parentheses. Negative
values provide evidence against homoskedasticity. Bold font numbers represent cases in which
the evidence for heteroskedasticity is positive (values greater than 3 in absolute terms) or strong
(greater than 20) on the scale of Kass and Raftery (1995). The NSEs are computed based on 30
subsamples of the original MCMC draws.

although it is, of course, not clear from the outset that the shocks can actually be identified

by heteroskedasticity and, thus, we may not get identified shocks with our methodology.

If we get identified shocks, they may differ from those in BP or MR in which case our

labels may not be meaningful. We will later return to this issue.

The next step in our analysis is to assess whether there are shocks that are identified

through heteroskedasticity. Our main tool for that purpose is the SDDR from

equation (27). The SDDR values computed for each of the three shocks individually

using our three data samples are reported in Table 1. For the 2023-sample, the evidence

for heteroskedasticity of all three structural shocks is strong according to the scale

proposed by Kass and Raftery (1995). The values of the log Bayes factors shown in the

table mean that the posterior mass in favour of heteroskedasticity exceeds 99% for all the

shocks. This result provides overwhelming evidence for the identification of all three

shocks via heteroskedasticity in the 2023-sample and is robust to many variations in the

model prior specification. These variations include perturbations of the

hyper-parameters that need to be fixed in our setup. We checked the conclusions for

three values of each scale and shape of the prior distribution for ωn, as well as for three

alternative setups for the hyper-parameters for each of the matrices A and B0. Each of

these alternative setups included cases of stronger and weaker shrinkage than in our
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benchmark prior specification.

The evidence for the structural shocks to be identified through heteroskedasticity

is much weaker in the 2006-sample. Moreover, the log Bayes factors estimated by the

log-SDDRs for the MR-sample are even positive, implying that the posterior mass for

homoskedasticity is greater than that for heteroskedasticity. The log-SDDRs are negative

for the last two shocks in the 2006-sample that includes eight more observations than

the MR-sample from the volatile late 1940s. More specifically, in the 2006-sample, the

posterior probability of a heteroskedastic shock wttr
t is 82%. Obviously, in this case the

evidence for identification through heteroskedasticity of the first shock is limited and it is

even more limited for the other shocks. These findings are also robust to the perturbations

in the values of the prior hyper-parameters.

In Figure 4 we further illustrate how the SDDRs work by plotting the marginal prior

versus the marginal posterior densities of the volatility of the log-volatility parameter

associated with our three samples. Based on the information from these plots, the

SDDRs from equation (27) can be approximated by the ratio of the marginal posterior

ordinate at zero to that of the marginal prior density. The figures for the 2023-sample

exhibit posterior mass concentrated away from the origin, providing evidence against

homoskedasticity. Instead, the posterior mass for the 2006- and MR-samples is

concentrated about the hypothesis of homoskedasticity, often more than the prior, thus

favouring homoskedasticity. Figure 4 features the marginal prior densities of the

volatility of the ωi parameters and highlights their essential characteristics discussed in

Section 5, such as their high concentration about the origin, fat tails, boundedness from

above, and flexibility provided by a hierarchical specification, extending the normal

prior with fixed variance used by Chan (2018).

Finally, we analyse the sequences of conditional variances of the structural shocks that

are required to be clearly distinct for partial identification of the shocks to hold according

to Theorem 1. We plot their posterior means together with 90% highest posterior density

(HPD) intervals in Figure 5. The conditional variances are visibly time varying for the

2023-sample. The conditional variances of the first shock are significantly different from
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Figure 4: Marginal prior (solid line) and posterior (histograms) densities of the volatility of the log-volatility
parameter, ω1, across samples (based on the BP–ordering).
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point zero approximates the SDDR in equation (27). Posterior mass less concentrated than the
prior mass about zero provides evidence against homoskedasticity.

1 in six periods in that sample including the mid 70s and mid 80s, individual quarters

in 2001, 2002, and 2003, as well as in the first quarter of 2009. The variances of the

second shock are different from 1 in the first quarter of 1951 only, while those of the third

shock have HPD intervals not including 1 in 1950, and in quarters 2 and 3 of 2020. The

distinctive occurrence times of high volatility periods for the three shocks provide strong

evidence for them to be different in these sequences, further supporting the identification

via heteroskedasticity in this sample.

The conditional variances in the 2006-sample are to some extent similar to those from

the 2023-sample until 2006. However, at all times the 90% HPD intervals include the
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Figure 5: Conditional variance of structural shocks in the three samples (based on the BP–ordering).

1960 1980 2000 2020

0
2

4
6

8

conditional variance of  ttr

20
23

 s
am

pl
e

1960 1980 2000 2020

1
2

3
4

5

20
06

 s
am

pl
e

1960 1980 2000 2020

0.
5

1.
5

2.
5

time

M
R

 s
am

pl
e

1960 1980 2000 2020

0
2

4
6

conditional variance of  gs

1960 1980 2000 2020

1
2

3
4

5

1960 1980 2000 2020

1
2

3
4

time

1960 1980 2000 2020

0
5

10
20

conditional variance of  gdp

1960 1980 2000 2020

0.
8

1.
0

1.
2

1960 1980 2000 2020

1.
0

1.
5

2.
0

time

Note: The figures plot time-varying conditional variances of the structural shocks. The lines
report the posterior mean and the shaded areas 90% HPD intervals. The variances in the first row
clearly exhibit non-proportional changes across time. The horizontal black line is set at the value
of 1 around which the prior is centred.

value of 1. This is caused by a weaker signal provided from the data in the shorter sample

regarding time-varying volatility, which undermines the evidence for identification in

the framework of our model. In the MR-sample, the evidence for conditional variances

that support identification is even weaker. Thus, the bottom line is that, in the 2023-

sample, the shocks are clearly identified through heteroskedasticity, while the evidence

for identification through heteroskedasticity is weaker in the 2006-sample and no such

evidence is found in the MR-sample.

7.3. Checking alternative ordering rules

One may wonder how much our results depend on the BP–ordering of our draws from the

posterior of B0. Therefore, we have repeated our sampling using the estimates obtained
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by MR to order the rows of the B0 drawings (see Appendix D). The results of the SDDRs

based on the MR–ordering are presented in Table 2(a). They paint a similar picture as

the results in Table 1. The evidence for shocks identified through heteroskedasticity is

overwhelming in the 2023-sample. It is weaker for the 2006-sample and hardly existent

in the MR-sample.

Table 2: Verification of identification through heteroskedasticity of the structural shocks (based on
alternative orderings).

2023-sample 2006-sample MR-sample

(a) MR–ordering

wttr
t -21.38 [4.97] -0.92 [0.14] 0.32 [0.05]

wgs
t -4.62 [0.79] -1.27 [0.13] 0.24 [0.04]

wgdp
t -32.46 [8.16] 0.38 [0.04] 0.38 [0.03]

(a) PM–ordering

wttr
t -21.38 [4.7] -1.47 [0.2] 0.27 [0.05]

wgs
t -4.62 [0.79] -1.31 [0.14] 0.52 [0.03]

wgdp
t -63.39 [6.43] 0.35 [0.03] -0.04 [0.07]

Note: The table reports the log of the Bayes Factors estimated via the log of SDDRs from
equation (27) together with numerical standard errors provided in parentheses. The note to
Table 1 applies.

In Figure 6(a) we show the marginal prior and posterior densities of the ω1

parameter. The picture is very similar to that in Figure 4. In other words, the posterior in

the 2023-sample has considerable mass away from the origin and, hence, strongly

supports identified shocks, while the situation is much less clear for the 2006-sample

and, for the MR-sample, where identification is clearly not supported because the prior

and posterior densities are both centred at zero and have considerable density mass in

the neighbourhood of zero.

Finally, we show the conditional variances based on the MR–ordering in Figure 7(a).

Comparing that figure to Figure 5, it can be seen that the conditional variances are

again very similar to those in the latter figure. Thus, the choice of B0 for standardizing
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Figure 6: Marginal prior (solid line) and posterior (histograms) densities of the volatility of the log-volatility
parameter, ω1, across samples (based on alternative orderings).
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the posterior draws is of limited importance. At least, if there is sufficient conditional

heteroskedasticity to ensure identification of the shocks, whether we use the BP– or the

MR–ordering for the B0 drawings is not important.

We emphasize, however, that some kind of standardisation of the B0 drawings is

necessary even if the shocks are all well identified because the structure of the model is

invariant to changing the order and sign of the shocks. As long as the standardisation

ensures a unique ordering and sign of the shocks, it should have little impact on the

samples from the posterior distributions if the shocks are well identified. Therefore,

given that for the 2023-sample we can expect to identify all three shocks through

heteroskedasticity, we have also used a target matrix B0 for this sample which is not

based on a set of estimates from some alternative identification scheme. Instead, we

have used a selected posterior mode as the benchmark B0 matrix and call it the

PM–ordering (see Appendix D for details).

In this case, it is not clear a priori that the ordering of the shocks will be the same

as for the BP– and MR–orderings. As the shocks are distinguished by their conditional

variances, we consider the conditional variances and order them such that they look

similar to those based on the BP– and MR–orderings. In this case, the three distinct

variance patterns allow for easily matching them with the shocks from the BP– and

MR–orderings such that we can easily label the shocks correspondingly. We present the

resulting conditional variances in Figure 7(b).

We have also computed SDDRs and the conditional variances of the three shocks,

using the PM–ordering of the B0 drawings from the posterior. The results are shown in

Table 2(b). They strongly support that all three shocks are identified through

heteroskedasticity in the 2023-sample. In fact, the SDDR values in Table 2(b) are

identical to the corresponding values for the 2023-sample in Table 1. Additionally, the

robustness of heteroskedasticity and identification verification to various ordering rules

is confirmed by the plots of marginal posterior and prior distributions of the volatility of

the log-volatility parameter for the PM–ordering in Figure 6 (b) closely resembling other

reported figures of this parameter. Thus, as long as some fixed ordering is used to
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Figure 7: Conditional variance of structural shocks in the three samples (based on alternative orderings).
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standardise the drawings from the posterior of B0, it does not affect the posterior of the

conditional variances and, hence, the identification of the shocks.

7.4. The effects of tax shocks

Thus far, we have documented partial identification via heteroskedasticity of the tax

shock in two of our samples. As the MR-sample does not support identification through

heteroskedasticity of any of the shocks, we do not consider the MR-sample in the

following. There is strong evidence for identification in the 2023-sample and much

weaker in the 2006-sample. Subsequently we investigate how this reduced level of

empirical support for identification affects the impulse responses of the tax shocks on

gdpt. Given that our identification results are robust with respect to different orderings

of the posterior drawings, we now focus on the PM-ordering.

Given that heteroskedasticity provides three identified shocks, we begin by

investigating which one of them is the tax shock. The properties of the conditional

variances of the first shock in the PM–ordering closely resemble those of the tax shock in

the BP– and MR–orderings. This fact makes it more likely that the first shock in the

PM–ordering is the tax shock as well. We investigate this further and report the

correlations between the structural shocks from our estimated models and

PM–orderings and the narrative measure of the unanticipated tax shock by Romer and

Romer (2010) in Table 3. The results show that the first shock in our models is the most

correlated with the narrative measure. This correlation exceeds 0.22 for all the models

reported in the table. It is much higher than for the second shock for which the values

are -0.022 for the 2023-sample and 0.117 for the 2006-sample. They are still higher than

for the third shock for which they are less than -0.15 for both samples. Therefore,

irrespectively of the empirical support for identification across both samples, the first

shock can be labeled the tax shock. The correlations for this shock have similar values as

the tax shocks estimated by BP, MR, and LE, according to our reproductions of findings

from other papers reported in the last three columns of Table 3.

As our first shock in the PM–ordering can be called the tax shock using its correlation
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Table 3: Sample correlations between the narrative tax shock measure used by MR and the estimated
structural shocks (based on the PM–ordering).

2023-sample 2006-sample BP results MR results LE results

wttr
t 0.224 0.264 0.277 0.298 0.233

wgs
t -0.022 0.030

wgdp
t -0.154 -0.170

Note: The table reports sample correlations between the narrative measure of tax shocks proposed
by Romer and Romer (2010) and used by MR. It indicates that our first shock is the most correlated
with the instrument, which validates its labeling as the tax shock. The results in columns 2023-
sample and 2006-sample are based on our posterior estimations where we used the posterior mean
of the shocks as their estimator. The results in columns BP results, MR results, and LE results are
based on our reproduction of the results from MR and LE using the authors’ computer code and
data.

with a narrative measure, we investigate its dynamic effects on gdpt, a focal relationship

in the other studies. In Figure 8 we report the corresponding impulse responses coming

from our estimates for both samples. Following MR and LE, they represent gdpt responses

to a tax shock that reduces ttrt by one percent of gdpt in the last quarter of 2006. They

share three common features, namely, (i) no effect on impact and for the first four quarters

followed by (ii) an increase in gdpt reaching a peak around 1.27 percent ten quarters after

the impact, and (iii) becoming statistically insignificant after around three years. For the

two samples they differ by the width of the 68% HDP intervals that are smaller for the

2023-sample and wider for the 2006-sample. This increase in width is driven by both

the larger sample size of the 2023-sample and the reduced level of empirical support for

identification of the tax shock in the 2006-sample.

Nevertheless, the impulse response estimates from the 2023- and 2006-samples are

quite similar to each other. We further compare them to the impulse responses reported

in BP2, MR, and LE for the MR-sample, that is, the original data used by these authors.

Figure 9 reports our estimates for the 2023-sample with 95% HDP intervals with the

results from the BP, MR, and LE models reporting the maximum likelihood estimates

2Our BP results are based on the BP model estimated by MR.
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Figure 8: Impulse responses of gross domestic product to a negative tax shock: our estimates (based on the
PM–ordering).
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Note: The figure reports impulse responses of gdpt to a negative tax shock lowering ttrt by one
percent of gdpt value in the last quarter of 2006. The lines report the posterior medians and the
shaded areas the 68% HPD point-wise intervals.

with the 95% confidence intervals. Our results share two features with other estimates,

namely, the peak is reached in the mid-horizons, and the statistical significance lost

around three years after the impact. Additionally, our peak response is similar to those

in BP and LE, whereas MR obtain a larger peak. However, only the impulse responses

reported by LE are statistically insignificant on impact and in the following four quarters

as in our estimates, while those by BP and MR are positive and significant also on

impact. Nevertheless, the conclusions from our estimates do not deviate far from those

established in the literature and are obtained by identification via heteroskedasticity and

shock labelling using narrative measures only.

8. Conclusions

In this paper, we provided general conditions for the identification of a structural shock

via heteroskedasticity in multivariate dynamic structural models. These conditions are
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Figure 9: Impulse responses of gross domestic product to a negative tax shock: comparison with other
studies.
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Note: The figure reports impulse responses of gdpt to a negative tax shock lowering ttrt by one
percent of gdpt value in the last quarter of 2006. In the 2023-sample plot, the line reports the
posterior median and the shaded area reports the 95% HPD point-wise interval for the PM–
ordering. In the remaining plots, the lines report the maximum likelihood estimator and the
shaded areas–the 95% point-wise confidence intervals.

applicable to a wide range of heteroskedastic and conditionally heteroskedastic structural

vector autoregressions and can also be used if only a subset of the shocks can be identified

through heteroskedasticity. We also proposed flexible and easy to compute Savage-Dickey

density ratios to verify the identification conditions. This was facilitated by specifying
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new priors for time-varying conditional variances of the structural shocks. Such priors

are flexible due to a hierarchical specification and ensure the standardisation using a

specification centred at homoskedastic structural shocks. As a result, shock identification

is indicated by the data and not implied by the prior.

These methods were illustrated by investigating whether the shocks in a system of

fiscal variables are identified via heteroskedasticity. Identification is not confirmed for

one of our samples but is supported when a longer sample period is used.

Our model is flexible and applicable to a wide range of time series in empirical

macroeconomic and financial applications, which is facilitated by the code being available

in an R package bsvars by Woźniak (2024a,b). Additionally, an important extension in

which the structural matrix and the volatility of the log-volatility parameters change over

time with a Markov process was recently proposed by Camehl and Woźniak (2024). That

model facilitates verification through heteroskedasticity within Markov regimes.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

Let B∗ be a matrix that satisfies:

Σt = B∗ΛtB′∗, t = 0, 1, . . . .

It will be shown that, under the conditions of Theorem 1, the nth column of B∗ must be the

same as that of B, except perhaps for a reversal of signs. Without loss of generality, it is

assumed in the following that n = 1 because this simplifies the notation. In other words,

it is shown that the first columns of B and B∗ are the same except for a reversal of signs if

σ2
1 , σ

2
i , i = 2, . . . ,N.

There exists a nonsingular (N × N) matrix Q such that B∗ = BQ. Using condition (4)

for t = 0, Q has to satisfy the relation

BB′ = BQQ′B′.

Multiplying this relation from the left by B−1 and from the right by B−1′ implies that

QQ′ = IN and, hence, Q is an orthogonal matrix.

The relations

BΛtB′ = BQΛtQ
′B′

imply Λt = QΛtQ′ and, hence, QΛt = ΛtQ for all t = 0, 1, . . . .

Denoting the (i. j)th element of Q by qi j, the latter equation implies that

qn1σ2
1 = qn1σ2

n, n = 1, . . . ,N.

Hence, since σ2
n is different from σ2

1 for n = 2, . . . ,N, we must have qn1 = 0 for n = 2, . . . ,N.

Since, Q is orthogonal, the first column must then be

(1, 0, . . . , 0)′ or (−1, 0, . . . , 0)′
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which proves the theorem. Q.E.D.

Appendix A.2. Proof of Corollary 1

Consider the setup of Theorem 1 with B = B−1
0 . Then the arguments in the proof of

Theorem 1 show that B−1
0∗ = B−1

0 Q, where Q is as in the proof of Theorem 1. Hence,

B0∗ = Q′B0, which shows that B0∗ and B0 have the same nth row up to sign. Q.E.D.

Appendix A.3. Proof of Corollary 2

To show that uniqueness of the nth row of B0 implies a unique nth column of B−1
0 we focus

without loss of generality on the first row. If the first row of B0 is unique, any other

admissible B0 matrix must be of the form QB0, where Q is an orthogonal matrix of the

form:  1 0(1×(N−1))

0((N−1)×1) Q∗

 ,
with Q∗ being an orthogonal ((N − 1) × (N − 1)) matrix. This fact is an easy implication

of Theorem 1. Thus, any admissible inverse has the form B−1
0 Q′ and, hence, has the same

first column as B−1
0 . Clearly, the same argument applies for any other row of B0, meaning

that the impact effects of the nth shock are unique if the nth row of B0 is unique. This

fact allows us to do impulse response analysis for a partially identified model. For each

identified shock, unique impulse responses are obtained and can be easily computed in

the usual way. Q.E.D.

Appendix B. Multivariate prior for stochastic volatility

Our prior assumptions also imply the joint distributions for the sequences of latent

variables related to the volatility processes. In what follows, we first define two new

multivariate distributions and use them subsequently to state the joint distributions of

conditional variances and their logarithms.

Definition 3. (Multivariate normal product distribution) Let x be a scalar zero-mean

normally distributed random variable with variance σ2 that is independent of a T × 1
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zero-mean normal vector Y with covariance Σ. Then, a random vector Z = xY follows

a T-variate normal product distribution with zero mean and covariance equal to σ2Σ,

denoted by Z ∼ NPT
(
σ2Σ

)
, with density:

2−
T−1

2 π−
T+1

2 det(Σ)−
1
2

( 1
σ2 Z′Σ−1Z

)− T−1
4

K
−

T−1
2


√

1
σ2 Z′Σ−1Z

 . (B.1)

□

Definition 4. (Multivariate log normal product distribution) Let a T × 1 random vector

Z follow a multivariate normal product distribution: Z ∼ NPT
(
σ2Σ

)
. Then a T×1 random

vector Q = exp(Z) obtained by applying the exponent to each of the elements of Z follows

the multivariate log normal product distribution, denoted by Q ∼ logNPT
(
σ2Σ

)
, with

density:

2−
T−1

2 π−
T+1

2 det(Σ)−
1
2

× det(diag(Q))−1
( 1
σ2 log(Q)′Σ−1 log(Q)

)− T−1
4

K
−

T−1
2


√

1
σ2 log(Q)′Σ−1 log(Q)

 . (B.2)

□

Note that the univariate (log-)normal product distributions are special cases of their

multivariate versions for T = 1. The multivariate distributions are useful to state the

following joint distributions for the sequences of volatilities:

Proposition 3. (Joint distributions of conditional volatilities)

Given the prior specification from equations (8)–(12) and (16)–(22), the joint priors for the T × 1

vectors containing the latent process hn, log-conditional variances logσ2
n = ωnhn, and conditional

variances σ2
n = exp(ωnhn) are given by the following T-variate normal, normal product, and log

normal product distributions:

(a) hn | ρn ∼ NT

(
0T×1,

(
H′ρn

Hρn

)−1
)
,
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(b) logσ2
n | ρn, σ2

ωn
∼ NPT

(
σ2
ωn

(
H′ρn

Hρn

)−1
)
,

(c) σ2
n | ρn, σ2

ωn
∼ logNPT

(
σ2
ωn

(
H′ρn

Hρn

)−1
)
. □

Appendix C. Gibbs sampler for the estimation of the parameters

This section scrutinises the estimation procedure that belongs to the class of MCMC

methods. The assumptions regarding the distribution of residuals and the prior

distribution of the parameters of the model result in a convenient and efficient Gibbs

sampler that performs excellently even for larger systems of variables.

Appendix C.1. Sampling SVAR parameters

The conjugate prior distribution for matrix B0 results in a convenient generalised-normal

full conditional posterior distribution that is proportional to:

p
(
B0 | y,A,σ2

1, . . . ,σ
2
N, γ0

)
∝ det (|B0|)

ν−N exp

−1
2

N∑
n=1

B0.nS
−1
n B′0.n

 (C.1)

S
−1
n = IN/γ0.n +

T∑
t=1

utu′t/σ
2
n.t (C.2)

ν = T + ν (C.3)

The random number generator from this distribution follows the algorithm by Waggoner

and Zha (2003a). Our experience clearly indicates its fast convergence and efficient

extraction of the global shape of the posterior distribution, as pointed out by Woźniak

and Droumaguet (2015).

In order to sample the autoregressive parameters A, we follow the row-by-row

algorithm by Chan et al. (2024) that reduces the number of operations to be performed

by the computer by orders of magnitude in comparison to sampling all the parameters

at once. Each of the rows, denoted by An, is sampled from a conditional multivariate

normal distribution given all other rows and parameters, and data. Denote by A(n)
0 an

N × K matrix filled with the elements of matrix A and zeros in the nth row, and an
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(Np + d)–vector xt =
[
y′t−1 . . . y′t−p d′t

]′
. Then the structural-form model from equation

(2) can be written as

B0

(
yt −A(n)

0 xt

)
=

(
B0.n ⊗ x′t

)
A′n +wt. (C.4)

Define an N–vector z(n)
t = B0

(
yt −A(n)

0 xt

)
and an N × (NP + d) matrix W(n)

t =
(
B0.n ⊗ x′t

)
.

Then, the full conditional posterior distribution for the vector An is given by:

A′n | y,A
(n)
0 ,B0,σ2

1, . . . ,σ
2
N, γA ∼ NNp+d

(
VnAn,Vn

)
(C.5)

V
−1
n = Ω

−1/γA.n +

T∑
t=1

W(n)′
t diag

(
σ2

1.t, . . . , σ
2
N.t

)−1
W(n)

t (C.6)

An = Ω
−1A′n/γA.n +

T∑
t=1

W(n)′
t diag

(
σ2

1.t, . . . , σ
2
N.t

)−1
z(n)

t (C.7)

where An is the nth row of A.

The hierarchy of the structural matrix hyper-parameters γ0.n, s0.n, and sγ0
is sampled

from their respective full conditional posterior distributions:

γ0.n | B0.n ∼ IG2
(
s0.n + B0.nB′0.n, ν0 +N2

)
(C.8)

s0.n | γB, sγ0
∼ G

(
(s−1
γ0
+ (2γ0.n)−1)−1, νγ0

+ 0.5ν0

)
(C.9)

sγ0
| s0 ∼ IG2

ss0
+ 2

N∑
n=1

s0.n, νs0
+ 2Nνγ0

 , (C.10)

whereas the hierarchy of the autoregressive hyper-parametersγA.n, sA.n, and sγA
is sampled

from:

γA.n | An, sA.n ∼ IG2
(
sA.n +

(
An −An

)
Ω−1

(
An −An

)′
, νA +Np + d

)
(C.11)

sA.n | γA.n, sγA
∼ G

(
(s−1
γA
+ (2γA.n)−1)−1, νγA

+ 0.5νA

)
(C.12)

sγA
| sA ∼ IG2

ssA
+ 2

N∑
n=1

sA.n, νsA
+ 2NνγA

 . (C.13)
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Appendix C.2. Sampling stochastic volatility parameters

The Gibbs sampler for the parameters of the SV processes results from our prior

assumptions described in Section 4 and the assumption regarding the normality of the

structural shocks in equation (7). It is facilitated using the auxiliary mixture sampler

proposed by Omori et al. (2007). Transform equation (10) by squaring and taking the

logarithm of its both sides and plugging in the expression from equation (8) obtaining:

w̃n.t = ωnhn.t + ϵ̃n.t, (C.14)

where w̃n.t = log w2
n.t and where ϵ̃n.t = log ϵ2

n.t. Given the standard normal assumption in

equation (9), the distribution of ϵ̃n.t is logχ2
1. This non-standard distribution is

approximated precisely by a mixture of ten normal distributions defined by Omori et al.

(2007). Applying the auxiliary mixture technique makes the linear equation (C.14)

conditionally normal given the mixture component indicators, which greatly simplifies

the sampling algorithm. This mixture of normals is specified by sn.t = 1, . . . , 10 – the

mixture component indicator for the nth equation at time t, the normal component

probability πsn.t , mean µsn.t , and variance σ2
sn.t

. The latter three parameters are fixed and

given in Omori et al. (2007), while sn.t augments the parameter space and is estimated.

Its prior distribution is multinomial with probabilities πsn.t . Finally, define T × 1 vectors:

sn =
(
sn.1 . . . sn.T

)′
collecting the realisations of sn.t for all t, µsn

=
(
µsn.1 . . . µsn.T

)′
, and

σ2
sn
=

(
σ2

sn.1
. . . σ2

sn.T

)′
collecting the nth equation auxiliary mixture means and

variances, and w̃n =
(
w̃n.1 . . . w̃n.T

)′
.

Sampling latent volatilities hn proceeds independently for each n from the following

T-variate normal distribution parameterised following Chan and Jeliazkov (2009) in terms
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of its precision matrix Vhn and location vector hn as:

hn | y, sn,B0,B+, ωn, ρn ∼ NT

(
Vhnhn,Vhn

)
(C.15)

V
−1
hn
= ω2

n diag
(
σ−2

sn

)
+H′ρn

Hρn (C.16)

hn = ωn diag
(
σ−2

sn

) (
w̃n − µsn

)
(C.17)

The distinguishing feature of the precision matrix is that it is tridiagonal, which greatly

improves the speed of generating random numbers from this full conditional posterior

distribution if only the appropriate simulation smoother proposed by McCausland, Miller

and Pelletier (2011) is implemented.

The parameters that are essential for the assessment of identification of the SVAR

models, ωn, are sampled independently from the following normal distribution:

ωn | y, sn, hn, σ
2
ωn
∼ N

(
vωnωn, vωn

)
(C.18)

v−1
ωn
= h′n diag

(
σ−2

sn

)
hn + σ

−2
ωn

(C.19)

ωn = h′n diag
(
σ−2

sn

) (
w̃n − µsn

)
(C.20)

Next, proceed to the ancillarity-sufficiency interweaving sampler proposed by

Kastner and Frühwirth-Schnatter (2014). They show that sampling directly the

parameters of the centred SV model leads to an efficient sampler if data is

heteroskedastic, but it leads to substantial inefficiencies if data is homoskedastic. On the

other hand, sampling directly parameters of the non-centred SV parameterisation leads

to efficient sampling for homoskedastic data but not for heteroskedastic series. The

solution offering the optimal strategy when the heteroskedasticity is uncertain, and to be

verified, is to apply an ancillarity-sufficiency interweaving step in the Gibbs sampler.

Our implementation proceeds as follows: Having sampled the random vector hn and

parameter ωn, compute the parameters of the centred parameterisation h̃n.t = ωnhn.t and
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σ2
υn
= ω2

n. Then, sample σ2
υn

from the following full conditional posterior distribution:

σ2
υn
| y, h̃n, σ

2
ωn
∼ GIG

(
−

T − 1
2
, h̃′nH′ρn

Hρnh̃n, σ
−2
ωn

)
, (C.21)

where h̃n =
(
h̃n.1 . . . h̃n.T

)
. Finally, compute ωn = ±

√
σ2
υn and hn.t =

1
ωn

h̃n.t and return

them as the MCMC draws for these parameters.

The autoregressive parameters of the SV equations are sampled independently from

the following truncated normal distribution:

ρn | y, hn, σ
2
ωn
∼ N


T−1∑

t=0

h2
n.t


−1  T∑

t=1

hn.thn.t−1

 ,
T−1∑

t=0

h2
n.t


−1I (

|ρn| <
√

1 − σ2
ωn

)
. (C.22)

This sampler is performed using the algorithm proposed by Robert (1995) and

implemented in the R package RcppTN by Olmsted (2017).

The prior variances of parameter ωn, σ2
ωn

, are a posteriori sampled independently from

the following generalized inverse Gaussian distribution:

σ2
ωn
| y, ωn ∼ GIG

(
A −

1
2
, ω2

n,
2
S

)
(C.23)

using the algorithm introduced by Hörmann and Leydold (2014) and implemented in the

R package GIGrvg by Leydold and Hörmann (2017).

Finally, the auxiliary mixture indicators sn.t are each sampled independently from

a multinomial distribution with the probabilities proportional to the product of the prior

probabilities πsn.t and the conditional likelihood function.

Appendix C.3. Computational considerations

The computations reproducing our results can be performed using the R package bsvars

by Woźniak (2024a,b) that contains our data set with observations until 2022. It contains

compiled code implementing the developed Gibbs sampler as well as the computations

for the SDDR and other objects in C++ using the R package Rcpp by Eddelbuettel,
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François, Allaire, Ushey, Kou, Russel, Chambers and Bates (2011) and Eddelbuettel

(2013) for convenient interfacing with R and the package RcppArmadillo by

Eddelbuettel and Sanderson (2014) for algebraic operations and sampling random

matrices. The C++ source code for some low-level utility functions is taken from the

open-source package stochvol by Hosszejni and Kastner (2021). The computations for

this paper were performed at the Spartan HPC-Cloud Hybrid (see Meade, Lafayette,

Sauter and Tosello, 2017) at the University of Melbourne.

Appendix D. Row sign and order normalisation

Heteroskedastic SVARs are identified up to the signs and orders of the rows of the

structural matrix. Their practical application to the analysis of the sign and order

dependent quantities requires transformation of the posterior sample so that it seems

drawn from the posterior region corresponding to the selected row signs and order. We

follow the normalisation practice by Lewis (2021) and choose the changes of row signs

and order of the structural matrix that minimise a distance from the particular posterior

draw to the benchmark structural matrix, denoted by B̂0. Let an N × N diagonal scaling

matrix D with 1 or −1 on the main diagonal, and an N × N permutation matrix P

represent the possible row sign and order transformation of B(s)
0 , denoted by PDB(s)

0 . We

choose those D and P that minimise the likelihood-based distance proposed by

Jarociński (2024):
{
vec

[(
PDB(s)

0 − B̂0

)′]}′
Ω̂−1

{
vec

[(
PDB(s)

0 − B̂0

)′]}
, where Ω̂ is the

covariance matrix of the asymptotic distribution of the maximum likelihood estimator

evaluated at B̂0. Having chosen the row signs and order, the appropriately transformed

draw of the structural matrix is returned and the equation ordering of the SV parameters

and latent variables is adjusted accordingly.

Following Lewis (2021), we construct the benchmark B̂0 such that it matches the matrix
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product on the left-hand side of the equation


σttr 0 0

0 σgs 0

0 0 σgdp


−1 

1 θgs 0

γttr 1 0

0 0 1


−1 

1 0 −θgdp

0 1 −γgdp

−ζttr −ζgs 1




uttr
t

ugs
t

ugdp
t

 =


wttr
t

wgs
t

wgdp
t

 (D.1)

with the parameter values from the appropriate columns of Table 1 in Mertens and Ravn

(2014).

The PM–ordering is chosen by drawing first from the posterior of B0 without paying

attention to row ordering and sign. Such a sample from the posterior has modes

corresponding to the various possible combinations of row signs and orderings. We pick

one of the modes and use it for fixing the row signs and orderings in the posterior

sample by choosing the row signs and orderings such that Jarociński’s likelihood

distance is minimised.
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