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1 Introduction

Polls show that people regard crime and delinquency as the number one social problem. As such,

identifying the root causes of delinquent activity and designing efficient policies against delinquency

are two natural scopes for the economics profession. About thirty years ago, the major breakthrough

in the economic analysis of crime was the work of Becker (1968) in which delinquents are rational

individuals acting in their own self-interest. In deciding to commit a delinquency, delinquents weigh

the expected costs against the expected benefits accruing from this activity. The goal of the criminal

justice system is to raise expected costs of delinquency to offenders above the expected benefits.

People will commit crimes only so long as they are willing to pay the prices society charges.

There is by now a large literature on the economics of crime. Both theoretical and empirical

approaches have been developed over the years in order to better understand the costs and benefits

of crime (see, for instance, the literature surveys by Garoupa, 1997, and Polinsky and Shavell,

2000). In particular, the interaction between the “delinquency market” and the other markets has

important general equilibrium effects that are crucial if one wants to implement the most effective

policies.1 The standard policy tool to reduce aggregate delinquency that is common to all these

models relies on the deterrence effects of punishment, i.e., the planner should increase uniformly

punishment costs.

It is however well-established that delinquency is, to some extent, a group phenomenon, and

the source of crime and delinquency is located in the intimate social networks of individuals (see

e.g. Sutherland, 1947, Sarnecki, 2001 and Warr, 2002). Indeed, delinquents often have friends

who have themselves committed several offences, and social ties among delinquents are seen as a

means whereby individuals exert an influence over one another to commit crimes. In fact, not only

friends but also the structure of social networks matters in explaining individual’s own delinquent

behavior. In adolescents’ friendship networks, Haynie (2001) and Calvó-Armengol et al. (2005,

2009) show that individual Bonacich centrality (a standard measure of network centrality) together

with the density of friendship links condition the delinquency-peer association. This suggests that

the underlying structural properties of friendship networks must be taken into account to better

understand the impact of peer influence on delinquent behavior and to address adequate and novel

delinquency-reducing policies.

In this paper, we develop an explicit delinquent network game where individuals decide non-

cooperatively their crime effort by using the network model developed by Ballester et al. (2006) to

the case of delinquent networks. For this purpose, we build on the Beckerian incentives approach

1For example, Burdett et al. (2003) and Huang et al. (2004) study the interaction between crime and unemploy-

ment, while Verdier and Zenou (2004) analyze the impact of the land market on criminal activities. Others have

focused on the education market (Lochner, 2004) or on political economy aspects of crime (İmrohoroğlu et al., 2000).

Most of these models generate multiple equilibria that can explain why identical areas may end up with different

amounts of crime.

2



to delinquency behavior but let the cost to commit delinquent offenses to be determined, in part,

by one’s network of delinquent mates. We then consider different policies that aim at reducing the

total crime activity in a delinquent network. Compared to Ballester et al. (2006), the present paper

has the following innovations: (i) the payoff function contains a component with global strategic

substitutes and is parameterized so that the effects of different parameters can be easily interpreted;

(ii) it compares the effects of an increase in “punishment” and other standard crime policies with

a “key player” policy; (iii) it analyzes a “key group” and a “key link” policy, in addition to the

“key player” policy; (iv) it shows that finding a “key group” is an NP -hard problem and provide a

simple (greedy) algorithm and a bound for the degree of suboptimality of the algorithm’s solution;

(v) it characterizes the equilibrium of a so-called “entry game” where individuals decide whether to

continue participating in a delinquent network (in their previously allotted position) or take some

job in the outside world; (vi) it analyzes the “key player” and “key group” policies in the “entry

game.” To the best of our knowledge, this is the first paper analyzing policies aiming at reducing

crime in an explicit social network framework.2

Let us now be more precise about what we do in this paper. Following Ballester et al. (2006),

we develop a delinquent network model where the payoff interdependence is, at least in part,

rooted in the network links across players (see, in particular, the recent literature surveys by Goyal,

2007 and Jackson, 2008). At the Nash equilibrium, we obtain a relationship between equilibrium

strategic behavior and network topology, as captured by the Katz-Bonacich centrality measure.

This measure is an index of connectivity that not only takes into account the number of direct links

a given delinquent has but also all his indirect connections.3 In our delinquency game, the network

payoff interdependence is restricted to direct network mates. But, because clusters of direct friends

overlap, this local payoff interdependence spreads all over the network. At equilibrium, individual

decisions emanate from all the existing network chains of direct and indirect contacts stemming

from each player, a feature characteristic of Katz-Bonacich centrality.

Because network chains of contacts often overlap, the values of individual centrality indices are

interrelated, which further translates into the interdependence of individual delinquency outcomes,

and between individual and group (average) outcomes. This dependence of individual on group

behavior is usually referred to as peer effects in the literature.4 Peer effects are an intragroup

externality, homogeneous across group members, that captures the average influence that members

exert on each other. In our model, though, the peer effect influence varies across delinquents with

their equilibrium-Bonacich centrality measure. The intragroup externality we obtain is heteroge-

2Calvó-Armengol and Zenou (2004) proposed a network model of criminal activities but without looking at policy

issues.
3There are, of course, other measures of centrality (for example the class of betweenness measures; see Wasserman

and Faust, 1994).
4The empirical evidence collected so far in the economics literature suggests that peer effects are, indeed, quite

strong in criminal decisions. See, for instance, Case and Katz (1991), Glaeser et al. (1996), Ludwig et al. (2001),

Patacchini and Zenou (2006), Sirakaya (2006), Damm and Dustmann (2008), Bayer et al. (2009).
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neous across delinquents, and this heterogeneity reflects asymmetries in network locations across

group members.

The standard policy tool to reduce aggregate delinquency relies on the deterrence effects of pun-

ishment. By uniformly hardening the punishment costs borne by all delinquents, the distribution

of delinquency efforts shifts to the left and the average (and aggregate) delinquency level decreases.

This homogeneous policy tackles average behavior explicitly and does not discriminate among delin-

quents depending on their relative contribution to the aggregate delinquency level. Our previous

results, though, associate a distribution of delinquency efforts to the network connecting them. In

particular, the variance of delinquency efforts reflects the variance of network centralities. In this

case, a targeted policy that discriminates among delinquents depending on their relative network

location, and removes a few suitably selected targets from this network, alters the whole distribu-

tion of delinquency efforts, not just shifting it. In many cases, it may yield to a sharper reduction

in aggregate delinquency than standard deterrence efforts. In practice, the planner may want to

identify optimal network targets to concentrate (scarce) investigatory resources on some particular

individuals, or to isolate them from the rest of the group, either through leniency programs, social

assistance programs, or incarceration.

To characterize the network optimal targets, we use a new measure of network centrality, the

intercentrality measure, proposed by Ballester et al. (2006). This measure solves the planner’s

problem that consists in finding and getting rid of the key player, i.e., the delinquent who, once

removed, leads to the highest aggregate delinquency reduction. We show that the key player is,

precisely, the individual with the highest intercentrality in the network.

At this point, it is important to note that, to implement the key-player policy, one does not

need to have all the information about the exact structure of the network. Indeed, the planner does

not need to know all the links each individual has but only needs to be able to rank delinquents

according to their intercentrality measure.5 This is less demanding in terms of information and it

implies, in particular, that two different networks can lead to the same policy implication, i.e., the

same key player to remove. Take for example a star-shaped network. Then it does not matter how

many links has the central delinquent, or whether some peripheral delinquents have some direct link

with each other, or even how large the network is. In all these cases, the planner will remove the

central delinquent because this is the key player −the delinquent with the highest intercentrality
measure. This is obviously an extreme case and in other networks one may need more information

to identify the key player. But this simple example highlights the advantages of implementing a

5Note that an undirected unweighted network is fully characterized by n(n−1)/2 values −the list of actual network
links. We show that two n− dimensional vectors aggregate this information in an enough informative manner for

our purposes: first, to identify crime behavior − equilibrium-Bonacich centrality− and second, to identify optimal

policy targets −optimal inter-centality. We further show that the only valuable information to identify the optimal
target provided by the vector of optimal-inter-centralities is of ordinal nature, which further reduces the informational

requirements on the network structure to effectively implement this policy.
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key-player policy.

We extend our characterization of optimal single player network removal for delinquency reduc-

tion, the key player, to optimal group removal, the key group. For this purpose, we generalize the

intercentrality measure to groups of players. For a given group size, the key group is precisely the

one with the highest value for such centrality measure among groups of exactly this size. Given

that the individual intercentrality captures both direct and indirect effects on equilibrium Katz-

Bonacich centrality measures, the generalization to a group of the intercentrality measure needs to

account (once and only once) for all the cross-contributions that arise both within and outside the

group. For this reason, and contrary to most centrality measures found in the literature, the group

centrality index is not a straightforward aggregation of its members centrality indices.

We then consider an alternative policy which aims at optimally removing a link (or a set of

links) between two individuals in order to minimize the total delinquency level. In some situations,

the limitation of resources or the nature of the problem requires to choose optimally among the set

of dependences among players. For instance, a social planner would like to optimally reduce the

(communication) externalities among delinquents, subject to a restriction in the number of bilateral

influences that can be targeted. This situation is interpreted as a problem of optimally removing a

set of links from the network. We obtain a new centrality measure which is roughly proportional

to the product of the Katz-Bonacich centrality indices of the two delinquents involved in the link.

Because the geometric intricacies of the delinquency network are explicitly taken into account

in the characterization of optimal network targets, the implications of our policy prescriptions are

quite different from the standard deterrence-based policies, where both the apprehension probabil-

ity and punishment are increased uniformly. We show that the key player (group) policy displays

amplifying effects, and the gains following the judicious choice of the key player (group) go beyond

the differences in intercentrality measures between the selected targets and any other delinquents

in the network. We also show that the relative gains from targeting the key player (group) instead

of operating a selection at random of a delinquent in the delinquency network increase with the

variability in intercentrality measures across delinquents. In other words, the key player (group)

prescription is particularly well-suited for networks that display stark location asymmetries across

nodes. Also, our policy prescriptions rely on centrality measures particularly robust to mispecifica-

tions in network data, and thus open the door to relatively accurate estimations of these measures

with small samples of network data.

In the last part of the paper, we endogenize the network connecting delinquents by allowing

players to join the labor market instead of committing delinquent offenses. The model is now richer

since, apart from punishment, the outside wage is an additional delinquency-reducing policy tool

available to the planner. We show that the key player policy prescription now depends both on

network features and on the wage level.

The organization of the paper is as follows. In the next section, we expose the basic delinquency
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network game, characterize the Nash equilibrium, prove its existence and uniqueness, and give the

general comparative statics results. In section 3, we analyze the key-player, group-player and key-

link policies. Section 4 is devoted to the endogenous participation of individuals to delinquent

activities. We analyze, in particular, how the policies exposed in Section 3 are affected by this

choice. Throughout the paper, we use the same example of a particular bridge network with 11

delinquents to illustrate all our results.

2 Delinquency network outcomes

2.1 The delinquency network game

The network6 A network g is a set of ex-ante identical individuals N = {1, . . . , n} and a
set of links between them. We assume n ≥ 2. The n−square adjacency matrix G of a network g

keeps track of the direct connections in this network. By definition, players i and j are directly

connected in g if and only if gij = 1, (denoted by link ij), and gij = 0 otherwise.7 Links need

not be reciprocal, so that we may have g12 = 1 and g21 = 0. Only in some of our results we will

explicitly impose this symmetry. By convention, gii = 0. Thus G is (0, 1)−matrix with zeros on
its diagonal.

The delinquency decision game We focus on petty crimes so we consider delinquents

rather than criminals.8 Consider some delinquency network g. Delinquents in the network decide

how much effort to exert. We denote by xi the delinquency effort level of delinquent i, and by

x = (x1, ..., xn) the population delinquency profile.

Following Becker (1968), we assume that delinquents trade off the costs and benefits of delin-

quent activities to take their delinquency effort decision. The expected delinquency gains to delin-

quent i are given by:

ui(x,g) = yi(x)| {z }
proceeds

− pi(x, g)| {z }
apprehension

f|{z}
fine

(1)

The individual proceeds yi(x) correspond to the gross delinquency payoffs of delinquent i. In-

dividual i gross payoff positively depends on i’s delinquency involvement xi, and on the whole

population delinquency effort x. The proceeds yi(x) indicate the global9 payoff interdependence.

The cost of committing delinquency pi(x, g)f is also positively related to xi as the apprehension

probability increases with one’s involvement in delinquency, hitherto, with one’s exposure to deter-

6General definitions and notations of matrices and networks can be found in Appendix A.
7Our model can be extended to allow for weighted links in a straightforward way.
8 It is well-documented that social interactions and peer effects are stronger for petty crimes than for other types

of crimes (Glaeser et al., 1996; Jacob and Lefgren, 2003; Patacchini and Zenou, 2008).
9That is, across all criminals in the network.
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rence. In words, pi(x, g) reflects local complementarities in delinquency efforts across delinquents

directly connected through g.10

The crucial assumption made here is that delinquents improve illegal practice while interacting

with their direct delinquent mates. In other words, we assume that the higher the criminal connec-

tions to a criminal and/or the higher the involvement in criminal activities of these connections,

the lower his individual probability to be caught pi(x, g). The idea is as follows. There is no formal

way of learning to become a criminal, no proper “school” providing an organized transmission of

the objective skills needed to undertake successful criminal activities. Given this lack of formal

institutional arrangement, we believe that the most natural and efficient way to learn to become

a criminal is through the interaction with other criminals. Delinquents learn from other criminals

belonging to the same network how to commit crime in a more efficient way by sharing the know-

how about the “technology” of crime. In our model, we capture this local nature of the mechanism

through which skills are acquired by relating the individual probability to be caught to the crime

level involvement of one’s direct mates, and by assuming that this probability decreases with the

corresponding local aggregate level of crime.

This view of criminal networks and the role of peers in learning the technology of crime is not

new, at least in the criminology literature. In his very influential theory of differential association,

Sutherland (1947) locates the source of crime and delinquency in the intimate social networks of

individuals. Emphasizing that criminal behavior is learned behavior, Sutherland (1947) argued that

persons who are selectively or differentially exposed to delinquent associates are likely to acquire

that trait as well.11 In particular, one of his main propositions states that when criminal behavior

is learned, the learning includes (i) techniques of committing the crime, which are sometimes very

complicated, sometimes very simple, (ii) the specific direction of motives, drives, rationalization

and attitudes. Interestingly, the positive correlation between self-reported delinquency and the

number of delinquent friends reported by adolescents has proven to be among the strongest and

one of the most consistently reported findings in the delinquency literature (for surveys, see War,

1996 and Matsueda and Anderson, 1998).

One natural way of interpreting the social connections between criminals is through a gang

since the latter is in general viewed as a specific type of criminal network (Sarnecki, 2001). Indeed,

when individuals belong to the same gang, they learn from each other. Using data from the

Rochester Youth Development study, which followed 1,000 adolescents through their early adult

years, Thornberry et al. (1993) find that once individuals become members of a gang, their rates

10See also Brock and Durlauf (2001) for a global/local dichotomy in capturing social interactions and Ioannides

(2006) for an exhaustive analysis of the effects of network topology in the Brock and Durlauf setting. Observe that all

our results remain unchanged if the local network externalities enter the benefit function instead of the cost function

in (2) as long as network payoffs reflect net strategic substituability.
11Sutherland (1947) and Akers (1998) expressly argue that criminal behavior is learned from others in the same

way that all human behavior is learned. Indeed, young people may be influenced by their peers in all categories of

behavior - music, speech, dress, sports, and delinquency.
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of delinquency increase substantially compared to their behavior before entering the gang. In other

words, networks of criminals or gangs amplify delinquent behaviors. In the sociological literature,

this is referred to as the social facilitation model, where gang members are intrinsically no different

from nongang members in terms of delinquency or drug use. If they do join a gang, however, the

normative structure and group processes of the gang (network) are likely to bring about high rates

of delinquency and drug use. Gang membership is thus viewed as a major cause of deviant behavior.

This is also what is found by Thornberry et al. (2003). In the present paper, the gang interpretation

of the network is possible as long as it means that the role of gangs is to facilitate the learning

of crime technology to its members without implying that crimes are committed collectively as it

is sometimes the case in gang activities. In other words, in our model, individuals learn illegal

conduct from others but practice it alone.

Since in most of the papers cited above (from the sociology and criminology literatures), selection

and endogeneity issues are not properly addressed, we would like to provide some evidence on

learning in crime from the economics literature where these econometric issues are taken into

account. Damm and Dustmann (2008) investigate the following question: Does growing up in a

neighborhood in which a relatively high share of youth has committed crime increase the individual’s

probability of committing crime later on? To answer this question, Damm and Dustmann exploit

a Danish natural experiment that randomly allocates parents of young children to neighborhoods

with different shares of youth criminals. With area fixed effects, their key results are that one

standard deviation increase in the share of youth criminals in the municipality of initial assignment

increases the probability of being charge with an offense at the age 18-21 by 8 percentages point (or

23 percent) for men. This neighborhood crime effect is mainly driven by property crime.12 Bayer

et al. (2009) consider the influence that juvenile offenders serving time in the same correctional

facility have on each other’s subsequent criminal behavior. They also find strong evidence of learning

effects in criminal activities since exposure to peers with a history of committing a particular crime

increases the probability that an individual who has already committed the same type of crime

recidivates with that crime.13

There are clearly learning effects in crime. One may, however, argue that, although delinquents

learn a lot from their best friends, the learning is not infinite so that after some time friends do not

provide any positive externalities that may reduce the probability to be caught. This is clearly not

true at least for delinquent friendships. Indeed, the techniques and information about crime are

not static and constantly evolving. For example, friends may help a delinquent to be more efficient

12Without controlling for selection effects, Case and Katz (1991), using data from the 1989 NBER survey of youths

living in low-income Boston neighborhoods, find that the direct effect of moving a youth with given family and

personal characteristics to a neighborhood where 10 percent more of the youths are involved in crime than in his or

her initial neighborhood is to raise the probabibility the youth will become involved in crime by 2.3 percent.
13Building on the binary choice model of Brock and Durlauf (2001), Sirakaya (2006) identifies social interactions

as the primary source of recidivist behavior in the United States.
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in shoplifting by explaining the new type of protection that has been installed in a particular shop.

This information may not be valid a year later if the shop has changed its protection system. Friends

can also tell a delinquent which apartment has already been robbed so that it avoid this delinquent

to take risk without getting much proceeds. Another interesting example is people selling illegal

DVDs on the street. They share knowledge based on experience (level of activity) but they decide

on their effort separately. To summarize, delinquents who know each other can share information

because they are friends (we take this communication as given) even though they act separately in

the delinquent world.

For the sake of tractability, we restrict to the following simple expressions:⎧⎨⎩ yi (x) = ximax
n
A− δ

Pn
j=1 xj , 0

o
pi(x,g) = p0ximax

n
1− φ

Pn
j=1 gijxj , 0

o (2)

where A > 0, δ > 0 and φ ≥ 0. For the sake of simplicity, we take A = 1. We assume that, at an
equilibrium x∗:14

1− δ
nX

j=1

x∗j ≥ 0 and 1− φ
nX

j=1

gijx
∗
j ≥ 0

so that, by direct substitution, we can focus on the following utility function:

ui(x,g) = (1− π)xi − δx2i − δ
nX
j 6=i

xixj + πφ
nX

j=1

gijxixj (3)

where π = p0f is the the marginal expected punishment cost for an isolated delinquent. We assume

throughout that π < 1. With these expression, we have:

σij =
∂2ui(x,g)

∂xi∂xj
=

(
σ = −δ + πφgij if gij = 1

σ = −δ if gij = 0
(4)

so that σij ∈ {σ, σ}, for all i 6= j with σ ≤ 0. The parameter δ ≥ 0 measures the intensity of the
global interdependence on gross delinquency payoffs. Here, individual delinquency efforts are global

strategic substitutes. The optimal delinquency effort of a given delinquent thus decreases with the

delinquency involvement of any other delinquent in the network. The expression πφ > 0 captures

the local strategic complementarity of efforts on the apprehension probability.15 This expression

is non-zero only when gij = 1, that is, when delinquents i and j are directly linked to each other.

Finally, note that ∂2ui(x,g)/∂x2i = −2δ < 0.
14This assumption is satisfied, for instance, when δ ≥ φ or π ≥ 1/2.
15A different scenario arises if we assume that players face substitutability in actions at the local level (φ < 0),

which results in a game with substitutabilities. Bramoullé et al. (2008) provide an exhaustive theoretical analysis of

this case.
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2.2 The Katz-Bonacich network centrality measure

Let Gk be the kth power of G, with coefficients g[k]ij , where k is some integer. The matrix G
k keeps

track of the indirect connections in the network: g[k]ij ≥ 0 measures the number of walks16 of length
k ≥ 1 in g from i to j. In particular, G0 = I.

Given a scalar a ≥ 0 and a network g, we define the following matrix:

M(g, a) = [I−aG]−1 =
+∞X
k=0

akGk.

These expressions are all well-defined for low enough values of a.17 The parameter a is a decay

factor that scales down the relative weight of longer walks.

If M(g, a) is a non-negative matrix, its coefficients mij(g, a) =
P+∞

k=0 a
kg
[k]
ij count the number

of walks in g starting from i and ending at j, where walks of length k are weighted by ak.

Let 1 be the n−dimensional vector of ones.

Definition 1 Consider a network g with adjacency n−square matrix G and a scalar a such that

M(g, a) = [I−aG]−1 is well-defined and non-negative. The vector of Katz-Bonacich centralities of
parameter a in g is:

b(g, a) = [I−aG]−1 · 1 (5)

The Katz-Bonacich centrality18 of node i is bi(g, a) =
Pn

j=1mij(g, a), and counts the total

number of walks in g starting from i. By definition, mii(g, a) ≥ 1, and thus bi(g, a) ≥ 1, with

equality when a = 0.

2.3 Nash equilibrium

For all y ∈IRn, y = y1+ ...+ yn is the sum of its coordinates. Define b(g, θ) =
Pi=n

i=1 bi(g, θ), denote

θ = πφ/δ and let ρ (g) be the spectral radius of the adjacency matrix G (see Appendix A). We have

the following result:19

Proposition 1 If θρ (g) < 1, then there exists a unique Nash equilibrium x∗, which is interior,

and given by:

x∗ =
1− π

δ [1 + b(g, θ)]
b(g, θ) (6)

The equilibrium Katz-Bonacich centrality measure b(g, θ) is thus the relevant network char-

acteristic that shapes equilibrium behavior. The condition θρ (g) < 1 relates the payoff function

16See Appendix A for the definition of a walk.
17Take a smaller than the spectral radius of G, defined in Appendix A.
18due to Katz (1953) and Bonacich (1987).
19All proofs are given in Appendix B.
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to the network topology. When this condition holds,20 the ratio of the local to the global payoff

interdependence θ = πφ/δ is lower than the inverse of the spectral radius of the adjacency matrix

G of the network g, which is a measure of connectivity in the network g. Let l (g) ≡ 1>G1, that,
is, the number of links in the network g. As a matter of fact, ρ (g) ≤

p
l (g) + n− 1, so that

θ
p
l (g) + n− 1 < 1 is a stronger sufficient condition that dispenses from computing the spectral

radius of G. In this case (and only then), the matrix [I−θG]−1 can be developed into the infinite
sum

P
k≥0 θ

kGk, which brings the Katz-Bonacich centrality measure into the picture.

The game we analyze here belongs to games with complementarities, for which the cross-payoffs

derivatives between every pair of players are non-negative. The condition θρ (g) < 1 guarantees

that local complementarities are not too large compared to own concavity. When this condition

does not hold, existence of equilibrium becomes an issue because the strategy space is unbounded.

The literature on supermodular games (see Topkis, 1979, Amir, 2005, Vives, 2005, for literature

surveys) has dealt with this problem by imposing a bounded lattice on the strategy space.

Consistent with the predictions of our model, two recent empirical studies by Haynie (2001)

and Calvó-Armengol et al. (2005) show that structural properties of friendship networks indeed

condition the association between friends’ delinquency and an individual’s own delinquent behav-

ior.21 Also, by analyzing the network organization of conspiracy, Baker and Faulkner (1993) show

that a measure of network centrality based on direct links predicts the individual probability to be

apprehended and convicted as well as the magnitude of the fine.

2.4 Comparative statics

In Proposition 1, the individual and aggregate delinquency levels depend on the underlying net-

work g connecting them through the adjacency matrix G in (6). The next result establishes a

positive relationship between the equilibrium aggregate delinquency level and the network pattern

of connections.

We write g ⊂ g0 to denote that the set of links in g0 contains the links in g, i.e.,for all i, j, g0ij = 1

if gij = 1.

Proposition 2 Let g and g0 be symmetric networks such that g ⊂ g0. If θρ (g0) < 1, then, in

equilibrium, the total delinquency level under g0 is strictly higher than that under g.

Consider two nested networks g and g0 such that g ⊂ g0. Then, either g and g0 connect the same

number of delinquents but there are more direct links between them in g0 than in g, or g0 brings

additional individuals into the pool of delinquents already connected by g, or both. Proposition

20Testing the impact of the Katz-Bonacich centrality measure on educational and criminal outcomes in the United

States, Calvó-Armengol et al. (2005, 2009) found that only 18 out of 199 networks (i.e. 9 percent) do not satisfy this

eigenvalue condition.
21Both studies use data from the National Longitudinal Study of Adolescent Health, United States, 1994-1995.
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2 shows that the density of network links and the network size (or boundaries) affect positively

aggregate delinquency, a feature often referred to as the social multiplier effect.22

3 Delinquency network policies

3.1 Finding the key player

The standard policy tool to reduce aggregate delinquency relies on the deterrence effects of punish-

ment (see for example Becker, 1968). Formally, an increase in π, which translates into an increase

in θ, amounts to hardening punishment costs borne by delinquents. Our previous results associate

a distribution of delinquency efforts across delinquents to any delinquency network connecting

them. In this case, an increase in θ affects all delinquency decisions simultaneously and shifts the

whole delinquency efforts distribution to the left, thus reducing the average (and the aggregate)

delinquency level.

In our model, though, delinquent behavior is tightly rooted in the network structure. When

all delinquents hold homogeneous positions in the delinquency network, they all exert a similar

delinquency effort. In this case, the above-mentioned policy, that tackles average behavior and

does not discriminate among delinquents depending on their relative contribution to the aggregate

delinquency level, may be appropriate. However, if delinquents hold very heterogeneous positions

in the delinquency network, they contribute very differently to the aggregate delinquency level. The

variance of efforts is higher. In this case, we could expect a sharp reduction in average delinquency

by directly removing a delinquent from the network and thus altering the whole distribution of

delinquency efforts, not just shifting it. A targeted policy that discriminates among delinquents

depending on their location in the network may then be more appropriate.

The key player is the one inducing the highest aggregate delinquency reduction. Given that

delinquent removal has both a direct and an indirect effect on the group outcome, the choice of

the key player results from a compromise between both effects. In particular, the key player need

not necessarily be the one exerting the highest delinquency effort or, equivalently, the one with

the highest centrality measure. The planner’s objective is thus to generate the highest possible

reduction in aggregate delinquency level by picking the appropriate delinquent. Formally, the

planner’s problem is the following:

max{x∗(g)− x∗(g−i) | i = 1, ..., n},

which, when the original delinquency network g is fixed, is equivalent to:

min{x∗(g−i) | i = 1, ..., n} (7)

From Ballester et al. (2006), we now define a new network centrality measure d(g, θ) that will

happen to solve this compromise.
22See, for instance, Glaeser et al. (2003), and references therein.
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Definition 2 For all network g and for all i, the measure

di(g, θ) = b(g, θ)− b(g−i, θ)

=
bi(g, θ)

2

mii(g, θ)
(8)

accounts for the number of walks that crosses player i in the network i.

The intercentrality measure di(g, θ) of delinquent i is the sum of i’s centrality measures in g,

and i’s contribution to the centrality measure of every other delinquent j 6= i also in g. It accounts

both for one’s exposure to the rest of the group and for one’s contribution to every other exposure.

The following result establishes that intercentrality captures, in an meaningful way, the two

dimensions of the removal of a delinquent from a network, namely, the direct effect on delinquency

and the indirect effect on others’ delinquency involvement.

Proposition 3 A player i∗ is the key player that solves (7) if and only if i∗ is a delinquent with
the highest intercentrality in g, that is, di∗(g, θ) ≥ di(g, θ), for all i = 1, ..., n.

Observe that the key player policy is such the planner perturbs the network by removing a

delinquent and all other delinquents are allowed to change their effort after the removal but the

network is not “rewired”, i.e. individuals do not optimally change their relationships (links) with

their friends. This assumption can be justified for two reasons. First, it would be extremely difficult

to solve a network formation problem every time a player is removed. Second, in the context of

a short-term policy and because friendship relationships take longer to adjust than the level of

criminal activity, it is reasonable to assume that delinquents do not change their friends when one

of them is removed even though they can modify their crime activity.

Example Consider the network g in Figure 1 with eleven delinquents.
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Figure 1

We distinguish three different types of equivalent actors in this network, which are the following:

Type Players

1 1

2 2, 6, 7 and 11

3 3, 4, 5, 8, 9 and 10
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From a macro-structural perspective, type−1 and type−3 delinquents are identical: they all have
four direct links, while type −2 delinquents have five direct links each. From a micro-structural

perspective, though, delinquent 1 plays a critical role by bridging together two closed-knit (fully

intraconnected) communities of five delinquents each. By removing delinquent 1, the network is

maximally disrupted as these two communities become totally disconnected, while by removing any

of the type−2 delinquents, the resulting network has the lowest aggregate number of network links.
We identify the key player in this network of delinquents. If the choice of the key player

were solely governed by the direct effect of delinquent removal on aggregate delinquency, type−2
delinquents would be the natural candidates. Indeed, these are the ones with the highest number

of direct connections. But the choice of the key player needs also to take into account the indirect

effect on aggregate delinquency reduction induced by the network restructuring that follows the

removal of one delinquent from the original network. Because of his communities’ bridging role,

delinquent 1 is also a possible candidate for the preferred policy target.

Table 1 computes, for delinquents of types 1, 2 and 3, the value of delinquency efforts xi,

centrality measures bi(g, θ) and intercentrality measures di(g, θ) for different values of θ and with

δ = φ = 1. In each column, a variable with a star identifies the highest value.23

θ 0.1 0.2

Player Type xi bi di xi bi di

1 0.077 1.75 2.92 0.072 8.33 41.67∗

2 0.082∗ 1.88∗ 3.28∗ 0.079∗ 9.17∗ 40.33

3 0.075 1.72 2.79 0.067 7.78 32.67

First note that type−2 delinquents always display the highest b−centrality measure. These
delinquents have the highest number of direct connections. Besides, they are directly connected

to the bridge delinquent 1, which gives them access to a very wide and diversified span of indirect

connections. Altogether, they are the most b−central delinquents.
For low values of θ, the direct effect on delinquency reduction prevails, and type−2 delinquents

are the key players −those with highest intercentrality measure di. When θ is higher, though, the

most active delinquents are not anymore the key players. Now, indirect effects matter a lot, and

eliminating delinquent 1 has the highest joint direct and indirect effect on aggregate delinquency

reduction.

When the punishment cost θ is low, delinquents transfer their know-how only at a very local

level, with their direct delinquent mates. When θ increases, delinquents counter the higher deter-

rence they face by spreading their know-how further away in the network and establishing synergies

with delinquents located in distant parts of the social setting. In this latter case, the optimal tar-

23We can compute the highest possible value for θ compatible with our definition of centrality measures, equals to

θ = 2

3+
√
41
' 0, 213.
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geted policy is the one that maximally disrupts the delinquency network, thus harming the most

its know-how transferring ability.

Note that the network g−1 has twenty different links, while g−2 has nineteen links. In fact, when

θ is small enough, the key player problem minimizes the number of remaining links in a network,

which explains why type−2 delinquents are the key player when θ = 0.1 in this example.

The individual Nash equilibrium efforts of the delinquency-network game are proportional to

the equilibrium Katz-Bonacich centrality network measures, while the key player is the delinquent

with the highest intercentrality measure. As the previous example illustrates, these two measures

need not to coincide. This is not surprising, as both measures differ substantially in their foun-

dation. Whereas the equilibrium-Katz-Bonacich centrality index derives from strategic individual

considerations, the intercentrality measure solves the planner’s optimality collective concerns. In

particular, the equilibrium Katz-Bonacich centrality measure fails to internalize all the network

payoff externalities delinquents exert on each other, while the intercentrality measure internalizes

them all. More formally, the measure d(g, θ) goes beyond the measure b(g, θ) by keeping track of

all the cross-contributions that arise between its coordinates b1(g, θ), ..., bn(g, θ).

Definition 2 specifies a clear relationship between d(g, θ) and b(g, θ). Holding bi(g, θ) fixed,

the intercentrality di(g, θ) of player i decreases with the proportion mii(g, θ)/bi(g, θ) of i’s Katz-

Bonacich centrality due to self-loops, and increases with the fraction of i’s centrality amenable to

out-walks.

3.2 Comparing policies

The cost of finding the key player Given a delinquency network g and a punishment cost

θ, the ranking of delinquents according to their individual intercentrality measure di(g, θ)s provides

a criterion for the selection of an optimal target in the network. Implementing such a network-based

policy has obviously its costs. Indeed, the computation of the intercentrality measures relies on

the knowledge of the adjacency matrix of the delinquency network. This matrix is obtained from

sociometric data that identifies the network links between delinquents. It is important to note that

sociometric data on delinquency is available in many cases. For instance, Haynie (2001) and Calvó-

Armengol et al. (2005) use friendship data to identify delinquent peer networks for adolescents

in 134 schools in the U.S. that participated in an in-school survey in the 1990’s. Sarnecki (2001)

provides a comprehensive study of co-offending relations and corresponding network structure for

football hooligans and right-wing extremists in Stockholm. Baker and Faulkner (1993) reconstruct

the structure of conspiracy networks for three well-known cases of collusion in the heavy electrical

equipment industry in the U.S. In all these cases, one may directly use the available data to compute

the intercentrality measures.

In some other cases, though, ad hoc information gathering programs have to be implemented.

Interestingly, Costebander and Valente (2003) show that centrality measures based on connectivity
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(rather than betweenness), such as b and d, are robust to mispecifications in sociometric data, and

thus open the door to estimations of centrality measures with incomplete samples of network data.

This, obviously, reduces the cost of identifying the key player. The idea behind these results is

that these measures take into account all walks in the network. Thus, generally the centrality of

a player is not determined only by his direct links but by the complete structure of the network.

In this sense, the probability that a missing link affects the choice of the most central/intercentral

player is smaller than with other type of measures. This difference turns significant the higher the

value of the density parameter θ since, in that case, higher order walks are also taken into account

in computing the centrality/intercentrality of a player.

Key player versus random target To fully assess the relevance of the key player delin-

quency policy, we also need to evaluate the relative returns from following this network targeted

policy. For this purpose, we compare the reduction in aggregate delinquency following the elim-

ination of the key player with respect to the expected consequences when the target is selected

randomly.

For each delinquent i in the delinquency network, define:

ηi(g) = n
x∗(g)− x∗(g−i)Pn

j=1 [x
∗(g)− x∗(g−j)]

.

This is the ratio of returns (in delinquency reduction) when i is the selected target versus a random

selection with uniform probability for all delinquents in the network.

Denote by d(g, θ) the average of the intercentrality measures in network g, and by σd(g, θ)

the standard deviation of the distribution of this intercentrality measures. The following result

establishes a lower bound on the ratio of returns in delinquency reduction when the key player is

removed.

Proposition 4 Let i∗ be the key player in g for a given θ. Then,

ηi∗(g) ≥ 1 +
σd(g, θ)

d(g, θ)
.

The relative gains from targeting the key player instead of operating a selection at random in

the delinquency network increase with the variability in intercentrality measures across delinquents

as captured by σd(g, θ). In other words, the key player prescription is particularly well-suited for

networks that display stark location asymmetries across nodes. In these cases, it is more likely

than the relative gains from implementing such a policy compensate for its relative costs.

Key player versus standard deterrence policy Consider the key player removal policy.

When a delinquent is removed from the network, the intercentrality measures of all the delinquents

that remain active are reduced, that is, dj(g−i∗ , θ) ≤ dj(g, θ), for all j 6= i∗, which triggers a

16



decrease in delinquency involvement for all of them. Moreover, when delinquent i∗ is removed from

the delinquency network, the corresponding ratio of aggregate delinquency reduction with respect

to the network centrality reduction is an increasing function of the intercentrality measure di(g, θ)

of this delinquent. Formally,

∂

∂di(g, θ)

∙
x∗(g)− x∗(g−i)

b(g, θ)− b(g−i, θ)

¸
> 0.

In words, the target policy displays amplifying effects, and the gains following the judicious choice

of the key player (the one with highest intercentrality measure) go beyond the differences in inter-

centrality measures between this player and any other delinquent in the network.

Consider standard deterrence (“uniform”) policies that consist in increases in θ. In particular,

consider policies increasing π (i.e. increase in the fine f), or reducing δ, or increasing φ.

Observe first that an increase of π above 1 would induce an equilibrium with no delinquency.

The problem is that the condition πφ
δ ρ (g) < 1 in Proposition 1 that guarantees the existence of a

unique interior Nash equilibrium and that the Bonacich centrality measure is well-defined may not

be anymore satisfied. Moreover, we are interested in situations where it is costly for the authorities

to increase π (or to implement any other policy). A thorough analysis of how the costs of different

policies affect the choice of the “right” policy is, however, beyond the scope of this paper.

Let us now focus on the effect of π, δ, or φ on x∗ = 1T .x∗, the equilibrium aggregate delinquency

activity. Observe that we are dealing with the situation of a unique equilibrium under Proposition

1. From expression (6), it is easy to obtain:

x∗ =
(1− π) b(g, θ)

δ [1 + b(g, θ)]
(9)

It is then straightforward to show that the aggregate delinquency activity x∗ is increasing in the

local complementarity parameter φ but is decreasing in the global substitutability parameter δ.

However, the effect of π on x∗ is ambiguous and given by

∂x∗

∂π
= − x∗

1− π| {z }
direct negative effect

+
φ

δ

∂x∗

∂θ| {z }
indirect positive effect

where
∂x∗

∂θ
=
(1− π)

δ

1

[1 + b(g, θ)]2
∂b(g, θ)

∂θ
> 0

The impact on punishment results from the combination of two effects that work in opposite

directions. First, the individual probability to be apprehended, and thus the punishment costs

borne by each delinquent, increase with π. This is a direct negative effect. Second, when π increases,

delinquents react strategically by acquiring a better delinquency technology to thwart the higher

deterrence they now face. The improvement in delinquency technology stems from more intense
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know-how inflows and transfers in the delinquency network. Each delinquent centrality measure

bi(g, θ) increases, which translates into a higher delinquency involvement for each delinquent. This

is an indirect positive effect on aggregate delinquency that mitigates the direct negative effect. In

order to better understand this last effect, we run numerical simulations for δ = 0.1 and for which

the maximum value of π is consistent with the spectral condition of Proposition 1. The results are

given in Figures 2a (φ = 0.8) and 2b (φ = 0.1).
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Figure 2a. Impact of deterrence π on total level of delinquent activity for δ = 0.1 and φ = 0.8.

We observe how the actual density of the network φ determines the sign of this effect. In Figure

2a, the network is more connected (φ = 0.8) and there are a lot of synergies between delinquents.

Bonacich centralities have high values, meaning that both direct and direct links matter very

much. In that case, increasing punishment π increases total delinquent activity because the indirect

positive effect dominates the direct negative effect. In Figure 2b, interactions are not important

between criminals since φ = 0.1. This means in particular, that friends of friends have not that

much influence on delinquents. As a result, the network effect becomes unimportant compared to

the deterrence effect and an increase in punishment π reduces total delinquency x∗. These results

imply that the policy maker should be aware of the degree of connectivity of the network if it is to

implement a deterrence policy aiming at reducing delinquent activity. In particular, if a network

of delinquents is dense and well connected so that φ is high, it should be clear that a key-player

policy will be more effective in reduce total delinquency than an increase in punishment.
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Figure 2b. Impact of deterrence π on total level of delinquent activity for δ = 0.1 and φ = 0.1.

3.3 From the key player to the key group

So far, we have characterized optimal single player removal from the network to reduce delinquency,

a key player. We now characterize optimal group removal from the network, a key group.

3.3.1 Finding the key group of players

In our model, individual equilibrium behavior is tightly rooted in the network structure through

(6). The removal of a set of players from the population, holding the pattern of social interactions

among the other players fixed, alters the whole distribution of outcomes.

We will devote this section to identifying the optimal target set in the population when the

planner wishes to reduce aggregate delinquency.24

We wish to eliminate a group of s players from the current population. If we remove a set S

of players such that |S| = s, the network of delinquents becomes g−S . The problem is therefore

to minimize x∗(g−S) by picking the adequate set S from the population. Formally, the planner

24Bollobás and Riordan (2003) contains a mathematical analysis of the relative network disruption effects of a

topological attack versus random failures in large networks. See also Albert et al. (2000) for a numerical analysis for

the case of the World Wide Web.
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maximizes the total change in delinquent activity:

max
|S|≤s

x∗(g)− x∗(g−S),

which is equivalent to:

min
|S|≤s

x∗(g−S) (10)

This is a finite optimization problem, which admits at least one solution. Let S∗ be a solution

to (10). We call the set S∗ a key group of the game. Removing S∗ from the game has the highest

overall impact on delinquency.

In the following, we assume that the condition on eigenvalue in Proposition 1 holds in the game,

guaranteeing the uniqueness of Katz-Bonacich solutions in any game induced by a subset of players.

The reason is that, by Lemma 3 in Appendix A, ρ(g) ≥ ρ(g−S). As a consequence, if b(g, θ) is

well-defined and non-negative (as implied by the condition in Proposition 1), so is b(g−S, θ).

Definition 3 The group intercentrality of S in the network g is:

dS(g, θ) = b(g, θ)− b(g−S , θ)

In fact, dS(g, θ) is the weighted number of walks in g crossing some agent in S. The case s = 1

obviously corresponds to the case of finding the key player in the delinquency network.

As with the key player, it turns out that diminishing the aggregate delinquent activity reduces

to choose the set with the highest group intercentrality:

max
|S|=s

dS(g, θ), (11)

that is, the solution25 of (7) is S∗ ⊆ N such that dS∗(g, θ) ≥ dS(g, θ), for all S ⊆ N with |S| = s.

Remark 1 An equivalent formulation of the key group problem (11) is:

max
{i1,...,is}⊆N

di1(g, θ) + di2(g−{i1}, θ) + di3(g−{i1,i2}, θ) + ...+ dis(g−{i1,...,is−1}, θ), (12)

where i1, ..., is are different two by two.

In words, the key group maximizes the sum of the individual intercentrality measures of its

members across the networks obtained through sequential removal of these members.26 The idea

behind this expression is as follows. We must eliminate a set of players S = {i1, ..., is} in order to
minimize the total number of weighted walks in the network, b(g−S, θ). After deleting player i1, the

25Note that we restrict the maximization program to |S| = s, given that dS (g, θ) is obviously increasing in the size

of S.
26Note that this sum is independent of the order in which nodes are removed.
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resulting number of walks is b(g, θ)− di1(g, θ). Now, the expression di2(g−i1 , θ) counts the number

of walks that hit agent i2 once agent i1 has been eliminated, so that we are not counting the same

walk twice. Thus, b(g, θ) − di1(g, θ) − di2(g−i1 , θ) is the remaining set of walks after eliminating

players i1 and i2, keeping in mind that we only want to count each walk once. By the previous

argument, also note that the remaining set of weighted walks is the same if we change the order of

deletion of these two players, that is:

b(g, θ)− di1(g, θ)− di2(g−i1 , θ) = b(g, θ)− di2(g, θ)− di1(g−i2 , θ)

Extending this argument to the rest of the players in S, we obtain expression (12).

3.3.2 Example

Consider again the network g in Figure 1 with eleven delinquents and a decay factor θ = 0.2. When

s = 1, note that Katz-Bonacich centrality and our individual intercentrality measure are different

concepts. The first accounts for the influence of one agent from his position, in terms of the number

of agents that he can reach. The second adds the contribution of this agent to the Katz-Bonacich

centrality of the others. Hence, individual intercentrality captures the role of each agent as a broker

in the interactions among the others. For instance, it is easy to check that the key player is 1

because he has the highest individual intercentrality d1(g, θ) = 41.67. But the player with the

highest contribution need not be the one with highest Katz-Bonacich centrality. In particular,

individual 2 is more (Katz-Bonacich) central than individual 1: b2(g, θ) = 9.17 > 8.33 = b1(g, θ).

Consider the case where the required group size is s = 2. The next table shows the values of

group intercentrality dS(g, θ) for each possible subset S of size 2 when θ = 0.2. For the sake of

simplicity, subsets that yield the same network architecture when they are removed are considered

as equivalent:
Removed Group S dS(g, θ)

{2, 7}∗ 67.22

{2, 8} 64.01

{3, 8} 59.39

{1, 2} 56.66

{2, 6} 50.41

{2, 3} 46.96

{3, 4} 42.15

The key group is {2, 7}, that is, a set of two maximally connected nodes (with five direct contacts
each), both connected to the intercentral player 1, and each at a different side of this player. This

subset solves the following optimization problem:

max
i,j

d{i,j}(g, θ) = max
i,j

(di(g, θ) + dj(g−i, θ))
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Suppose that we were to approximate the solution to this optimization problem with a greedy heuris-

tic procedure that sequentially picks up the player that maximizes the individual intercentrality at

each step. Formally, let

i∗1 = argmax
i∈N

di(g, θ)

and then, at each step 2 ≤ t ≤ s, choose the player i∗t with maximum intercentrality in the network

where the previous players have been deleted, that is,

i∗t ∈ argmax
n
di(g−{i∗1,...,i∗t−1}, θ) : i ∈ N\

©
i∗1, ..., i

∗
t−1
ªo

breaking possible ties arbitrarily. This greedy algorithm first eliminates player 1, and then any other

remaining player (after player 1 has been removed, all the other players have identical positions in

the network). Thus, the algorithm returns a group which is not optimal: there are other groups that

are better candidates than {1, 2}. Indeed, in this example, player 1 is not only very intercentral,
but also his intercentrality is very much correlated with the intercentrality of others. Hence, being

greedy and eliminating it at the first stage reduces the chance of finding highly central players at

further stages. And, in fact, player 1 is not part of the key group!

Nevertheless, we have obtained a relatively accurate approximation for the result by a simple

greedy algorithm, instead of choosing among all possible pairs of agents. Note that, in this example,

the error of this approximation is:

d{2,7}(g, θ)− d{1,2}(g, θ)

d{2,7}(g, θ)
≈ 16%

In fact, when s = 2, this error can be at most 25%. In the next section devoted to algorithmic

considerations, we discuss this issue more generally.

3.3.3 Algorithmic considerations

We prove that the key group problem has an inherent complexity that suggests the use of approx-

imation algorithms. In particular, we will study the performance of a greedy procedure where the

optimal group is constructed by iteratively choosing an optimal vertex from the network. For a

description of NP−hard problems and properties, see Garey and Johnson (1978) and Ballester
(2004).

Now, we show that the key group problem isNP -hard, even when we want to completely disrupt

the game. First, note that if we were to implement a “brute-force” basic algorithm to find a key

group of s players, we would have to step over all possible
¡n
s

¢
groups of players and compute each

particular contribution to the game. This combinatorial procedure may involve up to an exponential

number of steps in n. The computational complexity here is mainly combinatorial, that is, while

computing the contribution of a given group to the activity of the game is computationally tractable,

the fact that this task has to be done an exponential number of times (in the worst case) makes the
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problem potentially intractable. NP−hardness relates to the difficulty of computationally solving
a particular class of problems. Hence, by showing that the key group problem is NP -hard, we show

that there is no possible sophisticated algorithm such that, given any network, will return the exact

key group in reasonable time.27 This means that the key group problem is aNP -hard problem, from

the combinatorial perspective. Nevertheless, we will show below that we can efficiently approximate

it.

Proposition 5 The problem of finding a key group in a network g is NP -hard.

Since the computational complexity inherent to the key group selection is high, it is suitable to

use algorithmic approximations in order to solve real-life problems with large networks.

Consider a greedy algorithm that sequentially eliminates in s stages the player with highest

intercentrality, that is, let SG =
©
iG1 , . . . , i

G
s

ª
such that for all t = 1, . . . , s, player iGt is the most

intercentral in g−Stwhere St =
©
iG1 , . . . , i

G
t

ª
. We have the following result:

Proposition 6 The key group problem can be approximated in polynomial-time by the use of a

greedy algorithm, where, at each step t, expression (8) is used to find the agent iGt who will become

a member of the approximated key group SG. The error of the approximation can be bounded as

follows.

ε ≡ dS∗ (g, θ)− dSG (g, θ)

dS∗ (g, θ)
<
1

e
≈ 36.79%

This proposition shows that the error of approximation of using a greedy algorithm instead of

solving directly the key group problem is at most 36.79%.28 If the approximation error is over

30 percent in most situations then it would be difficult to claim that this result provides a good

approximation. Let us now provide some numerical simulations where the bound is calculated for

a (large) number of different situations and show that the actual value of the approximation error

is in fact rather small. For that, let us consider different scenarios of random networks based on

the following variables:

(i) Number of players. We consider two cases: n = 10 and n = 15. For larger n, combinatorial

problems become very important.

(ii) Probability p of a link between any pair of players (i.e. criminals) in the random network. We

consider three cases: p = 0.3 (sparse networks), p = 0.5 (moderate networks) and p = 0.75

(dense networks).

27This fact is conjectured by nearly all computer scientists who believe that there is no such algorithm for solving

any NP−hard problem. A simple reason for this is that, after decades of continuous search, no one has found an

efficient algorithm for solving any NP−hard problem.
28As Nemhauser et al. (1978) have showed, the error bound obtained is tight. See Appendix A and, in particular,

Proposition 10, for definitions and technical details..
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(iii) Decay factor θ. We consider two cases: networks with small decay factor where long walks

matter very little (θ is equal to 10 percent of its upper bound, i.e. θ = 0.1/ρ (g), where ρ (g)

is the spectral radius of the adjacency matrix G) and networks with high decay factor where

long walks matter almost as much as short walks (θ is equal to 90 percent of its upper bound,

i.e. θ = 0.9/ρ (g)).

(iv) Size of the key group k. We consider four cases for n = 10 (i.e. k = 2, 3, 5, 8) and four cases

for n = 15 (i.e. k = 3, 5, 8, 12).

This means that, in total, we have 2 × 3 × 2 × 4 = 48 possible scenarios since there are 2

possible n, 3 possible p, 2 possible θ and 4 possible k. In each scenario, we perform a simulation

with 100 possible different networks. For each simulation, we first find the exact key group by

searching through all possible subsets of players (for instance, for n = 15 and k = 8, the program

searches through all possible
¡
15
8

¢
= 6435 subsets of 8 players) and obtains its intercentrality

dS∗ (g, θ); second, we approximate the optimal group using the greedy algorithm and obtains its

intercentralitydSG (g, θ); finally, we calculate the relative error of approximation
dS∗ (g,θ)−dSG (g,θ)

dS∗(g,θ)
,

which should be below 36 percent according to Proposition 6. The following two tables display the

results of our numerical simulations for n = 10 and for n = 15. The numbers in the tables are the

average relative error of approximation (in percentage) over the 100 networks in each scenario.

k = 2 k = 3 k = 5 k = 8

p = 0.3 θ = 0.1/ρ (g) 0.05 0.06 0.12 0

θ = 0.9/ρ (g) 0.24 0.15 0.13 0

p = 0.5 θ = 0.1/ρ (g) 0.04 0.06 0.07 0

θ = 0.9/ρ (g) 0.12 0.08 0.09 0

p = 0.75 θ = 0.1/ρ (g) 0.01 0.05 0.07 0.02

θ = 0.9/ρ (g) 0.04 0.05 0.07 0.02
Case 1: n = 10

k = 3 k = 5 k = 8 k = 12

p = 0.3 θ = 0.1/ρ (g) 0.08 0.02 0.11 0

θ = 0.9/ρ (g) 0.11 1.7 0.10 0

p = 0.5 θ = 0.1/ρ (g) 0.09 0.03 0.06 0.01

θ = 0.9/ρ (g) 0.07 0.03 0.07 0.02

p = 0.75 θ = 0.1/ρ (g) 0.01 0.06 0.02 0.02

θ = 0.9/ρ (g) 0.10 0.06 0.07 0.03
Case 2: n = 15
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In all cases displayed in the tables, the relative error of approximation is very small, varying

between 0 percent (when k = 8 for n = 10 or k = 12 for n = 15) and 1.7 percent (for k = 5 and

n = 15). Note that these simulations have been performed for random networks, which tend to

be more “symmetric” that networks that are not random. For example, for the bridge network

described in Figure 1, the error of approximation was 16 percent. Still, this value is relatively low

compared to the upper bound of 36.79 percent. Therefore, we are pretty confident that the use of

the greedy procedure can be guaranteed to provide a fairly good approximation SG for the true

solution S∗ of the problem.

3.4 Finding the key link

Let us now focus on a different crime policy that targets links rather than individuals. The aim of

this policy is to choose how to remove optimally a link (or a set of links) between two individuals in

order to minimize the total delinquency level. In some situations, the limitation of resources or the

nature of the problem requires to optimally choose among the set of dependences among players.

For instance, a social planner would like to optimally reduce the (communication) externalities

among delinquents subject to a restriction in the number r of bilateral influences that can be

targeted. This situation can be interpreted as a problem of optimally removing a set of links from

the network.

Let us illustrate this policy with real-world examples. As stated above, a link removal means

a disruption of the communication between two delinquents. For instance, when a policeman is

watching the street, he is somehow disrupting the possible communication between delinquents

from the same neighborhood (a link can be understood as communication in a particular place).

This policeman is not, however, avoiding communication with other delinquents somewhere else.

Another example is to put a delinquent teenager in another school where there are less delinquent.29

By doing so, this delinquent will stop his activities and communication with other delinquents in

the older school. In this section, we will not compare link-removal and player-removal policies since

it depends on the costs for the policy maker, and we are not dealing with this issue. The key-link

policy should, however, be understood as closely related to the key-player policy since the removal

of a player implies the removal of his links plus the removal of the isolated player that remains.

Removing a set of links is somewhat more flexible because the policy-maker can target links from

different players.

More formally, for g0 ⊂ g, let lg0(g, θ) be the number of walks in g (weighted by θ) that use

some edge in g0. This is the contribution of g0 to the total connectivity of g.

Suppose that we need to maximize the change in network activity after removing at most r

29See, for example, Ludwig et al. (2001) and Kling et al. (2005) who study the Moving to Opportunity (MTO)

experiment that relocates families from high- to low-poverty neighborhoods. They find that this policy reduces

juvenile arrests by 30 to 50 percent of the arrest rate for control groups.
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links. Our best choice will consist of r links from the set of all possible links not present in g.

Formally, we need to solve:

max
g0⊆g

{lg0(g, θ) : |g0| ≤ r}.

Consider again the bridge network described in Figure 1. As in the case of the key player, even

when r = 1, the optimal choice can depend on the strength of complementarities, as shown in the

following table:

Removed link {i, j} Reduction in b (g, 0.1) Reduction in b (g, 0.22)

{1, 2} 0.59 185.99∗

{2, 6} 0.63∗ 180.84

{2, 3} 0.58 164.37

{3, 4} 0.53 148.95

For moderate values of θ (i.e. θ = 0.1), the key link to be removed is the one between the most

central nodes, i.e. delinquents 2 and 6. However, for higher values of θ (i.e. θ = 0.22), intermediate

positions become more relevant and the key link is part of the bridge between the two clusters in

the network, i.e. delinquents 1 and 2.

Let us now derive more general results. We first deal with the case of directed links (non-

symmetric networks) since it provides an easier expression of our result. In this case, the planner

has more degrees of freedom because it can target specific directed links. Let h ≡ g\{ij} be the
network g where gij is set to zero. The following relation holds in this class of networks, for all pair

of agents k, l ∈ N :

mkl(g, θ)−mkl(h, θ) = θmki(h, θ)mjl(g, θ) (13)

That is, all walks from k to l arrive at i for the first time before crossing ij (so this set of walks

occurs in the network h), cross the link ij and then continue from j to l in the network g. Let

lij(g, θ) be the total contribution of link ij to the centrality of g:

lij(g, θ) ≡
X
k,l∈N

(mkl(g, θ)−mkl(h, θ))

Let ebi(g, θ) be the Katz-Bonacich in-centrality of player i, i.e., the weighted sum of the value

of walks entering node i in the network g:

ebi(g, θ) = nX
j=1

mji(g, θ)

Lemma 1 The contribution of a single directed link ij ∈ g to the total Katz-Bonacich centrality of

the network g is given by:

lij(g, θ) = θ
ebi(g, θ)bj(g, θ)
1 + θmji(g, θ)

(14)
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This expression reflects the asymmetry of players i and j under the assumption of directed

links. The effect of a directed link ij depends roughly on the in-centrality of player i and the

out-centrality of player j.

When links are undirected, the following expression allows us to compute the contribution of

a single link ij ∈ g to the total Katz-Bonacich centrality of the network g. The proof is omitted,

being similar to the case of directed links.

Lemma 2 The contribution of a single undirected link ij ∈ g to the total Katz-Bonacich centrality

of the network g is given by:

lij(g, θ) = θ (bi(h, θ)bj(g, θ) + bi(g, θ)bj(h, θ))

= θ
2bi(g, θ)bj(g, θ) (1 + θmij(g, θ))− θ

h
b2i (g, θ)mjj(g, θ) + b2j (g, θ)mii(g, θ)

i
[1 + θmij(g, θ)]

2 − θ2mii(g, θ)mjj(g, θ)
(15)

In order to provide an interpretation, we take a moderate θ. Then, lij(g, θ) is proportional to

bi(g, θ)bj(g, θ). This means that, for moderate values of θ, the key link is the one connecting any

two nodes with highest Katz-Bonacich centrality. This was the case in the example above where

the link {2, 6} was chosen when θ = 0.1.

Expressions (14) and (15) have obvious advantages, as (8) does in the case of the key player.

We can compute the contribution of any link ij from the current data M(g, θ) without having

to recompute an inverse M(g\{ij}, θ) for each ij ∈ g. These operations are clearly cheaper than

the computation of an inverse. This fact becomes critical if we are to approximate the optimal

interaction set. The reason is that the function lg0(g, θ) is submodular30 in g0 so that we can

iteratively find the maximum of lij(g, θ) using (14) or (15) to obtain quickly a good approximation

of the problem:

Proposition 7 The key interaction set problem can be approximated in polynomial-time by the use
of a greedy algorithm where, at each step, expression (14) or (15) is used to find the link ij (with

highest lij(g, θ)) that will become a member of the approximated key interaction set. The error of

the approximation can be bounded as follows:

ε ≡
lg∗ (g, θ)− lgG (g, θ)

lg∗ (g, θ)
<
1

e
≈ 36.79%

4 Joining delinquency networks

4.1 Equilibrium networks

In this section, we extend our game in order to allow individuals to choose whether they want

to participate in the crime market or not in the first stage. So far, we have assumed that the
30See Definition 7 in Appendix A for the definition of a submodular function.
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delinquency network was given. In some cases, though, delinquents may have opportunities outside

the delinquency network. For instance, petty delinquents may consider entering the labor market

and giving up delinquent activities. Here, we expand the model and endogenize the delinquency

network by allowing delinquents to take a binary decision on whether to stay in the delinquency

network or to drop out of it.31 Formally, we consider the following two-stage game.

Fix an initial network g connecting agents.

In the first stage, each agent i = 1, ..., n decides to enter the labor market or to become a

delinquent. This is a simple binary decision. These decisions are simultaneous. Let ci ∈ {0, 1}
denote i’s decision, where ci = 1 (resp. ci = 0) stands for becoming a delinquent (resp. entering the

labor market), and denote by c = (c1, ..., cn) the corresponding population binary decision profile.

We assume that agents entering the labor market earn a fixed wage (nonnegative scalar) ω > 0.

The payoff for delinquents is determined in the second stage of the game.

In the second stage, delinquents decide their effort level, which depends on the first-stage out-

come.

Definition 4 The extended game is a two stage game where:

• In stage 1, each player i ∈ N decides whether to participate (ci = 1) or not (ci = 0) to the

crime market.

• In stage 2, let S be the set of players who decided to participate. Then, these players play the
game in gS.

• The final utilities are:

Ui(S,xS , g) =

(
ui(xS , gS) if i ∈ S

ω otherwise

We study the subgame perfect equilibrium in pure strategies of this extended game.

Definition 5 The set S is supported in equilibrium if there exists a ω and a subgame perfect

equilibrium where the set of players who decide to participate is S, given the outside option ω. S

is also called an (equilibrium) participation pool of the game at the wage level ω.

Let E(ω) be the family of sets supported by ω at equilibrium in the extended game.

The following result characterizes the class of sets that can be supported by some ω.

31See Calvó-Armengol and Jackson (2004) for a similar endogenous game of network formation in the context of

the labor market, where the binary decision for agents is to enter the labor market network or to drop out.
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Proposition 8 Let S ⊆ N and θρ(g) < 1 for all j ∈ N\S. Then, the set S is supported at

equilibrium by the outside option ω if and only if:

max
j∈N\S

bj(gS∪{j}, θ)

1 + b(gS∪{j}, θ)
≤ 1

1− π

√
ωδ ≤ min

i∈S

bi(gS, θ)

1 + b(gS , θ)

Remark 2 Whenever

ω >
(1− π)2

4δ
,

all agents outside the delinquency pool is an equilibrium, that is, ∅ is supported as an equilibrium

by ω.

Whenever an equilibrium exists, multiplicity of equilibria is a natural outcome of the extensive

form game. This multiplicity can arise, for instance, from the symmetric role of some agents in a

network.32

4.2 Participation game without global substitutability

Suppose that δ is small, that is, we have that the second-stage game is close to a game with strategic

complementarities. Let S be a participation pool (not necessarily an equilibrium pool) at some

wage ω. In this case, the payoff that an agent i ∈ N\S obtains by joining S is equal to:

x∗i (gS∪{i}) =
1− π

δ
bi(gS∪{i}, θ),

that is, it is proportional to its centrality in the network gS∪{i}.

Given that the outside option ω is fixed, it is clear that the two-stage game is supermodular,33

in the sense that the payoffs of player i are increasing with respect to participation decisions of

other agents. Formally, for all S ⊆ T ⊆ N and i ∈ N\T , it is clear that:

bi(gS∪{i}, θ) ≤ bi(gT∪{i}, θ)

because the right-hand side measures a higher number of walks.

This property ensures the existence of equilibrium for any wage ω, as summarized by the

following proposition.
32Two agents i and j are symmetric in a network whenever the network remains with the same structure after

exchanging their labels. In this case, if S is supported at equilibrium, i ∈ S and j ∈ N\S, so is S0 where i has been
interchanged with j.
33A game is supermodular if, for every player i

• his action set Si is compact,

• his utility ui (si, s−i) is upper semi-continous in si, s−i.

• his utility has increasing differences in (si, s−i).

For a broad description of supermodular games and their applications, see Amir (2005), Topkis (1998) and Vives

(2005).
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Proposition 9 When δ is small, the extended game has at least one equilibrium participation pool.

One may be interested in providing all the possible equilibria of the game when supermod-

ularity holds. Echenique (2007) provides a useful tool to list all the equilibria of a game with

complementarities.

The intuitive idea here is that substitutability is low enough to allow for increasing differences

in utility of agents in their decisions to enter the participation pool.

4.3 Finding the key player with criminal participation decision

Given that this game usually displays multiple subgame perfect equilibria in the endogenous delin-

quency network game, we define x∗(g, ω) to be the maximum aggregate equilibrium delinquency

level when the delinquency network is g and the labor market wage is ω. This delinquency level is

equal to the total amount of delinquency in the worst case scenario of maximum delinquency.

Consider some binary decision profile c. Let i be an active delinquent, that is ci = 1. Suppose

that delinquent i switches his current decision to ci = 0, that is, delinquent i drops out from the

delinquency pool and enters the labor market instead. The binary decision profile then becomes

c− νi, and the new set of active delinquents is C(c− νi) = C(c)\{i}. The drop out of delinquent
i from the delinquency pool also alters the network structure connecting active delinquents, as

any existing direct link between i and any other delinquent in C(c) is removed. The new network

connecting active delinquents is then g(c)−i = g(c− νi), and the aggregate delinquency level
becomes:

x∗(c− νi) = 1− π

δ

b
¡
g(c− νi), θ

¢
1 + b (g(c− νi), θ)

The key player problem acquires a different shape in the setting with endogenous formation of

delinquency pools. Initially, the planner must choose a player to remove from the network. Then,

players play the two-stage delinquency game. First, they decide whether to enter the delinquency

pool or not. Second, delinquents choose how much effort to exert. In this context, there is an

added difficulty to the planner’s decision. The removal of a player from the network affects the rest

of the players’ decisions to become active delinquents. This fact should be taken into account by

the planner in order to attain an equilibrium with minimum total delinquency. The right choice

of the key player should be based upon the remaining delinquency pool that will result from that

decision, that is, what the remaining players will decide concerning their delinquent activities.

We show, with the help of an example, that there is no trivial geometric recipe for the key

player problem in this case.

Consider again the network in Figure 1 with eleven players. Recall that, when θ = 0.2 and

the network of delinquents is exogenously fixed (or, equivalently, the outside option is ω = 0), the

key player was the player acting as a bridge, i.e. delinquent 1. If we now consider the endogenous

delinquency network formation in the two-stage game, the results may differ. Indeed, for low wages,
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player 1 is also the key player and the resulting equilibrium network is the whole remaining network,

that is, ten delinquents remain and are split into two fully connected cliques of five delinquents.

However, when ω becomes higher, delinquent 2 becomes the key player34 and the equilibrium

network now encompasses six different players. It consists of a clique of five fully intraconnected

players together with player 1.

These results are summarized in the following table, which gives, for two different values of ω,

the key player, the highest aggregate delinquency that results from eliminating this key player, and

the equilibrium delinquency network.

ω = 0.001 ω = 0.003

x∗(g−1, ω) 0.7843 0.7843

x∗(g−2, ω) 0.7847 0.7785

Key Player 1 2

Final delinquency pool
rr r rrH³³©JJPPA¢r r rrr¢A³³PPHJJ© r©Hr r rrr¢A³³PPHJJ©

Intuitively, when outside opportunities are high enough, all players from the same side of the

player being removed do not have enough incentives to enter the delinquency pool at the first stage

of the game. Hence, we do not get a “large” equilibrium with many players, and this constitutes

an advantage for the planner who will choose to delete node 2. This example implicitly explains

how one policy (providing a higher ω) increases the effectiveness of another policy (choosing the

key player) in order to reduce delinquency. These policies are complementary from the point of

view of their effects on total delinquency, although we are aware that they may be substitute if we

had considered a budget-restricted planner who had to implement costly policies.

4.4 The key-group problem with criminal participation decision

In the simple case without outside option, the choice of the key group was based on the contribution

of that group to the connectivity (total Katz-Bonacich centrality) of the network. In the context

of games with criminal participation decision, an additional criterion should be taken into account:

the fact that a removal of some players may induce further voluntary moves of other players in the

network. Thus, the choice of the optimal target can change accordingly, and differ from the usual

key group prescription when all players participate. We analyze the interplay between the optimal

target and an outside option that acts as a participation threshold in the new game.

The issue of existence will be relaxed in this section by assuming that we are dealing with a

wage ω such that, for any subgame in the subnetwork gT , with T ⊆ N , there exists an equilibrium

participation pool S supported by ω. On the other hand, multiplicity of equilibria makes it difficult

to adopt a particular approach in order to assess the efficacy of a particular policy. In this paper, we

34 In fact, any player except player 1 is the key player for ω = 0.003.
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focus on a extreme approach where the removal of a set of players from the network is evaluated by

comparing the maximum equilibrium of the original game and the resulting game, that is, outcomes

with maximum total activity x∗.

Definition 6 Given an extended game with wage ω and T ⊆ N , the remaining family after elimi-

nating S is defined as:

P (ω, S) = {T ⊆ N\S, T ∈ E(ω)}

In words, a set T ⊆ N\S is in the remaining family after eliminating S whenever T is a

participating pool in the restricted extended game played in g−S. This definition is just capturing

the the posterior behavior of players after S’s removal.

For a candidate set S to be eliminated, let Pm(ω, S) ∈ argmaxT∈P (,ω,S){b(gT , θ)} be a maximum
equilibrium participation pool when the set S is eliminated. It is a pool where the maximum activity

is achieved. Then, the choice of a key group S∗ of size s is:

S∗ ∈ arg min
|S|≤s

b(gPm(ω,S), θ)

Let us illustrate this with the network described in Figure 1. We study the problem of elim-

inating one player (s = 1) when θ = 0.2. When we analyze the extended game with criminal

participation decision, it is crucial for the planner to consider the possible transitions between dif-

ferent pools of delinquents. In particular, there are now three effects that should be taken into

account when choosing the set of players to be removed:

(i) A direct effect due to the reduction of their initial delinquent activity. The choice is here

biased towards the most Katz-Bonacich central players.

(ii) An indirect effect due to the (lower) incentives of the remaining players. In this dimension,

group-intercentrality is the relevant variable to consider.

(iii) A possible snow-ball effect because the removal of a player may induce a process where the

remaining players (sequentially) find it profitable to leave the pool of delinquents and to

participate to the labor market. This effect depends on the magnitude of the outside option

ω.

The next table summarizes the sets S that are sustainable in equilibrium for the games played

in g−1 (i.e. when delinquent 1 is removed) and g−2 (i.e. when delinquent 2 is removed), specifying

the range [ωL, ωH ] of wages that support for each S an equilibrium participating pool (we can have
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multiplicity of equilibria). We just specify distinct (up to network isomorphism) equilibrium pools:

g−1 g−2

Pool S ωL ωH b(gS, θ) ωL ωH b(gS, θ)

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 0.00 12.50 50.00 − − −
{2, 3, 4, 5, 6} 0.50 12.50 25.00 − − −

{1, 6, 7, 8, 9, 10, 11} − − − 1.02 1.70 39.47

{1, 3, 4, 5, 6, 7, 8, 9, 10, 11} − − − 0.00 4.17 51.33

{1, 7, 8, 9, 10, 11} − − − 1.70 7.03 36.25

{7, 8, 9, 10, 11} − − − 7.03 12.50 25.00

{1, 3, 4, 5, 6} − − − 0.95 1.25 12.37

{3, 4, 5, 6} − − − 1.25 3.12 10.00

To illustrate the results given in this table, let us consider the case when ω = 5. If delin-

quent 1 is removed then the highest equilibrium pool consists of all delinquents but 1, that is

N\{1} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. This is exactly the same choice as in the case without criminal
participation decision, which is based on the intercentrality index. If, on the contrary, delinquent 2

is removed then for the wage ω = 5, it is easily seen that the maximum equilibrium pool becomes

{1, 7, 8, 9, 10, 11}. In other words, with the exception of 1, all the delinquents directly connected to
2 find it not profitable to become delinquents and instead prefer to participate to the labor market.

As a result, when the wage is ω = 5 and there is no criminal participation decision, then the key

player is delinquent 2 because its deletion from the network has the highest impact on the incentives

of other players to become delinquent. In other words, by deleting delinquent 2 instead of 1, fewer

individuals will become delinquent. This will also lead to a higher decrease in the aggregate level

of crime.

If we now consider a much lower wage, say ω = 0.4, then removing delinquent 1 or 2 will

have the same effect on individuals’ participation in criminal activities. Indeed, in both cases, all

individuals will find it profitable to be delinquent since when 1 is removed, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
will be criminals in equilibrium while, when 2 is removed, the equilibrium pool of delinquents

is: {1, 3, 4, 5, 6, 7, 8, 9, 10, 11}. This suggests that the effectiveness of a key-player policy should not
only be measured by the direct and indirect effects on delinquent activities but also by the group

interactions it engenders in terms of participation to the labor market.
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Appendix A. Notation and definitions.

A.1. Matrix and vector notations

Matrices and vectors will be denoted in bold letters, like A and x, respectively. If not explicitly

stated, all matrices are square. The entries of A (matrix) and x (vector) are written as aij and xi,

respectively.

The transpose of A and x are AT and xT . The matrix Ak is the k-th power of A, and its

(i, j)-entry is written a
[k]
ij .

The identity matrix is I. The symbol 0 will be used for the zero vector. The symbol 1 will be

used for the one vector, where every entry is 1. Given a vector x, the scalar x ≡ 1T · x is the sum
of all its entries, and xS ≡ 1T · xS , where xS is the restriction of the vector x to the indices in S.

An eigenvalue of a matrix A is a complex number μ satisfying A · v = μv for some complex

vector v. Let S(A) (called the spectrum of the matrix A) be the set of all eigenvalues of A.

A.2. Networks

A network (graph) g consists of a set of agents (vertices or nodes) N and a set of weighted

links (edges) between them, where gij ≥ 0 is the weight assigned to the link ij. We may represent
a network by means of a nonnegative square adjacency matrix G = (gij)i,j∈N . Without loss

of generality, we will consider networks where gij ∈ [0, 1]. A network gij is un-weighted when

gij ∈ {0, 1}, for all i, j ∈ N .

The network g is symmetric (or undirected) when its adjacency matrix G is symmetric, that

is, gij = gji for all i, j ∈ N .

We refer to the agents i and j as being directly linked in the network g, whenever gij > 0.

A link ij is incident with the vertex v ∈ N in the network g whenever i = v or j = v.

A walk in g of length k from i to j is a sequence p = hi0, i1, ..., iki of agents such that i0 = i,

ik = j, ip 6= ip+1, and ip and ip+1 are directly linked, for all 0 ≤ p ≤ k− 1. Agents i and j are said

to be indirectly linked in g if there exists a walk from i to j in g. An agent i ∈ N is isolated in g if

gij = 0 for all j. The network g is said to be empty when all its agents are isolated.

We say that a walk p crosses or hits agent i if i is in the sequence defined by the walk. The

walk p covers the set S ⊆ N if p crosses every agent i ∈ S.

We say that network g0 is a (proper) subnetwork of g, written g0 ⊆ g (g0 ⊂ g), whenever N 0 ⊆ N

and G0 ≤GN 0 (G0 ¯GN 0).

Given a network g and a set S ⊆ N , we say that gS is the subnetwork of g induced by S

whenever the adjacency matrix of gS is GS . We write g−S to denote the network gN\S, that is g−S
is the network that results after eliminating all the agents in S.
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The spectral radius of a network g is defined as:

ρ(g) = max
μ∈S(G)

|μ|

where |μ| is the modulus of the (complex) eigenvalue μ of the matrix G. When g is undirected, all

the eigenvalues of G are real and ρ(g) is called the index of the network g.

We adapt some results from spectral graph theory35 and algebra into our framework.

Lemma 3 The following properties hold for any network g:

1. If g0 ⊆ g, then ρ(g0) ≤ ρ(g).

2. ρ(gS) ≤ ρ(g) for all S ⊆ N .

A.3. Maximization of submodular functions

The optimal choice of the group of players requires, at least potentially, the study of all possible

combinations of subsets of N . Thus, a computational approach is required. Let z : 2N → R be a
set function. Consider the problem of solving (7), that is,

max
S⊆N

{z(S) : |S| ≤ s}. (16)

Definition 7 The set function z : 2N → R is submodular (supermodular) if for all S, T ⊆ N ,

z(S) + z(T ) ≥
(≤)

z(S ∪ T ) + z(S ∩ T )

Without loss of generality we can normalize z such that z(∅) = 0. We only consider nonde-

creasing functions:

z(S) ≤ z(T ) for all S ⊆ T ⊆ N

although the following results can be adapted to non-monotonic functions. Let us denote individual

contributions by:

ρzi (S) = z(S ∪ {i})− z(S)

In fact, the set function z is submodular if individual contributions are increasing with respect to

set containment.

Remark 3 The set function z : 2N → R is submodular if and only if for all S ⊆ T ⊆ N and

i ∈ N\T :
ρzi (S) ≥

(≤)
ρzi (T )

35Cvetkovíc et al. (1997) is the main reference for spectral graph theory.
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The problem of maximizing a submodular function, or equivalently, minimizing a supermodular

function, is NP -hard, in general. Nemhauser et al. (1978) propose a polynomial-time greedy

heuristic for approximating this kind of problem. At each step, the algorithm augments the solution

set with the agent with the highest contribution:

Let S0 = ∅. At step t set St = St−1 ∪ it, where it ∈ argmaxi∈N\St−1 ρzi (St−1). Stop whenever
ρzit(St−1) ≤ 0 or |St| = s.

We summarize part of their results in the following proposition. Let Z be the optimal value of

(16) and ZG be the value obtained by applying the greedy algorithm.

The following results allow us to construct the proof of Proposition 6.

Proposition 10 If the greedy heuristic is applied to the problem (16), where z is submodular, then

the approximation error is bounded like:

ε ≡ Z − ZG

Z
≤
µ
s− 1
s

¶s

<
1

e
≈ 36.79% (17)

Lemma 4 The function dS(g, θ) is submodular in S.

Proof. Take S ⊆ T ⊆ N . Let b[k]ji (g) denote the number of k-walks starting at j and crossing i

in the network g. Then, for all i ∈ N\T :

dS∪{i}(g, θ)− dS(g, θ) =
¡
b(g, θ)− b(g−(S∪{i}), θ)

¢
− (b(g, θ)− b(g−S, θ))

= b(g−S , θ)− b(g−(S∪{i}), θ)

= di(g−S , θ)

=
∞X
k=0

θk
X

j∈N\S
b
[k]
ji (g−S)

≥
∞X
k=0

θk
X

j∈N\T
b
[k]
ji (g−T )

= di(g−T , θ)

= dT∪{i}(g, θ)− dT (g, θ).
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Appendix B. Proofs

Proof of Proposition 1. We would like to apply Theorem 1 of Ballester et al. (2006). First,

observe that the utility function ui(x1, ..., xn) in Ballester et al. (2006), defined by their equation

(3), can be written as:

ui(x1, ..., xn) = αxi −
1

2
(β − γ)x2i − γ

nX
j=1

xixj + λ
nX

j=1

gijxixj

= αxi −
1

2
(β − γ)x2i − γx2i − γ

nX
j 6=i

xixj + λ
nX

j=1

gijxixj

= αxi −
1

2
(β + γ)x2i − γ

nX
j 6=i

xixj + λ
nX

j=1

gijxixj (18)

Second, our utility function ui(x,g) defined by (3) is equivalent to the utility function ui(x1, ..., xn)

in Ballester et al. (2006), now defined by (18), if and only if:

α = 1− π ,
1

2
(β + γ) = δ , γ = δ , λ = πφ

which is equivalent to

α = 1− π , β = γ = δ , λ = πφ

Now since by (4), σij ∈ {σ, σ}, for all i 6= j with σ ≤ 0, then we can use Corollary 1 in Ballester et al.
(2006), and the condition on eigenvalue: β > λ

√
g + n− 1 can now be written as: πφ

√
g + n− 1 <

δ.

Proof of Proposition 2. It suffices to apply Theorem 2 of Ballester et al. (2006) to our

framework.

Proof of Proposition 3. It suffices to apply Theorem 3 of Ballester et al. (2006) to our

framework.

Proof of Proposition 4. Simple algebra leads to:

ηi(g, θ) =

di(g,θ)
1+b(g,θ)−di(g,θ)

1
n

Pn
j=1

dj(g,θ)
1+b(g,θ)−dj(g,θ)

, for all i = 1, ..., n.

By definition, di∗(g, θ) ≥ di(g, θ), for all i = 1, ..., n. This implies that:

1 + b(g, θ)− di∗(g, θ)

1 + b(g, θ)− dj(g, θ)
≤ 1, for all j = 1, ..., n,

and, thus ηi∗(g, θ) ≥ di∗(g, θ)/d(g, θ). Noting that di∗(g, θ) ≥ d(g, θ) + σd(g, θ), we can conclude.
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Proof of Proposition 5.
A vertex cover of a network g is a subset of vertices S ⊆ V (g) such that every link ij ∈ g is

incident with some vertex in S. A minimum vertex cover is vertex cover of minimum size. Note

that in any minimum vertex cover, any removal of a vertex from the set will make it fail to cover all

the links. The problem of finding a minimum vertex cover in a network is known to be NP -hard

(Karp, 1972). We show that we can solve this difficult problem by transforming it, in at most

n-steps, into a key-group problem, concluding that finding a key-group is also hard.

Lemma 5 The set S∗ is a vertex cover of g if and only if S∗is a key group of size |S∗| that disrupts
the network g in the game.

Proof. Let S∗ be a vertex cover of g. Obviously, if we are asked to remove |S∗| players in order
to minimize activity, the set S∗ would be a solution (a key group) that leaves all nodes isolated in

the network. Conversely, if S∗ is a key group that leaves all nodes isolated, then it must be because

it is a vertex cover (all links are incident to nodes in S∗).

This means that if we want to find a minimum vertex cover of a network, we have to iteratively

find the key groups of sizes 1,2,... until the network is completely disrupted at some stage k ≤ n

(the number of iterations is at most n). In this stage k, we have found the key group S∗k , which is

a minimum vertex cover.

Proof of Proposition 6. The result is a direct consequence of Proposition 10 and Lemma 4
in Appendix A.

Proof of Lemma 1. We can specialize (13) to compute mki(h, θ) as:

mki(g, θ)−mki(h, θ) = θmki(h, θ)mji(g, θ)

mki(h, θ) =
mki(g, θ)

1 + θmji(g, θ)
,

and, substituting it back to (13),

mkl(g, θ)−mkl(h, θ) = θ
mki(g, θ)mjl(g, θ)

1 + amji(g, θ)
for all k, l ∈ N .

Summing over all k and l, the result follows.

Proof of Proposition 8. The conditions θρ(g) < 1 implies that bj(gS∪{j}, θ) is well-defined for
all S ⊂ N and j ∈ N\S. Given that ρ(gS∪{j}) ≥ ρ(gS), bi(gS , θ) is all also well-defined for all i ∈ S.

On the other hand, by Proposition 1, this also implies the uniqueness of the Nash equilibrium in

the second stage game defined, respectively, by gS and gS∪{j}, for all j ∈ N\S:

x∗i (gS) =
1− π

δ (1 + b(gS , θ))
bi(gS , θ) for all i ∈ S (19)

x∗j (gS∪{j}) =
1− π

δ
¡
1 + b(gS∪{j}, θ)

¢bi(gS∪{j}, θ) for all i ∈ S (20)
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Now, uniqueness in the second-stage allows us to concentrate on the pure strategy Nash equi-

libria of the whole game where no agent j outside a sustainable S would be willing to enter the

game in the network gS to obtain uj
¡
x∗(gS∪{j}), gS∪{j}

¢
; and no agent i ∈ S would be better off

by obtaining ω, rather that ui (x∗(gS), gS). Formally, a set S is supported by ω at equilibrium if

and only if:

max
j∈N\S

uj
¡
x∗(gS∪{j}), gS∪{j}

¢
≤ ω ≤ min

i∈S
ui (x

∗(gS), gS) .

The result follows by using (19) and (20), and applying simple algebra to compute the utilities.

Proof of Proposition 9. We provide an instance of participation pool, by construction.

Starting with an empty pool S0 = ∅, at each step t, set St = St−1 ∪ it, where it is any player such
that: r

2ω

β
≤ α

β
bit(gSt , θ)

This means that, at each step, players that want to enter the pool do so. Stop whenever there is no

such agent it. It is clear that St (probably empty) is an equilibrium pool. The main implication of

supermodularity is that this sequential decisions cannot be rolled-back: if an agent decided to enter

the pool, then it must be profitable for him to stay after more agents have decided to participate.
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