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Abstract

We consider the issue of measuring segregation in a population of small

units, considering establishments in our application. Each establishment

may have a different probability to hire an individual from the minority

group. We define segregation indices as inequality indices on these un-

observed, random probabilities. Because these probabilities are measured

with error by proportions, standard estimators are inconsistent. We model

this problem as a nonparametric binomial mixture. Under this testable

assumption and conditions satisfied by standard segregation indices, such

indices are partially identified and sharp bounds can be easily obtained by

an optimization over a low dimensional space. We also develop bootstrap

confidence intervals and a test of the binomial mixture model. Finally, we

apply our method to measure the segregation of foreigners in small French

firms.
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1 Introduction

Suppose that we seek to measure to what extent a minority group, such as for-
eigners, is concentrated in some firms only, because for instance some firms are
reluctant to hire them.1 Measuring the magnitude of segregation is a crucial step
to understand the underlying phenomena and design adequate policies.2 A natu-
ral way to do this would be to compute the proportion of minority workers Xi/Ki,
with Xi the number of workers from the minority group and Ki the size of firm
i, and then compute an inequality index on the sample (Xi/Ki)i=1...n. However,
even if firms all hire each of their worker from the minority group with the same
probability, there will be some variation on Xi/Ki across firms just because Ki is
finite. Hence, this approach will overestimate the actual level of segregation, an
issue known as the small-unit bias.

Several works propose solutions to deal with this issue. The most common way
is to provide corrected versions of the indices, in an attempt to extract the signal
from the noise. Winship (1977) has been the first to propose a corrected Duncan
index. The idea was developed by Carrington and Troske (1997), who propose an
adjustment that can be applied to other indices. Allen et al. (2015) proposed a
correction based on bootstrap. These papers have received substantial attention,
as the literature on the measurement of segregation, whether at the residential (see
e.g. Cutler and Glaeser, 1997; Cutler et al., 1999, 2008; Echenique and Fryer, 2007;
Bayer and McMillan, 2012), school (see e.g. Card and Rothstein, 2007; Fredriksson
et al., 2013) or workplace level (see e.g. Carrington and Troske, 1998; Hellerstein
and Neumark, 2008) is large. Having only a small number of observations per
unit is particularly frequent for workplace and school segregation as a large share
of firms have less than ten employees and classrooms are between 20 and 40
pupils.3 Residential segregation may also be affected when only surveys (and
not censuses) are available. In their paper about ideological segregation of the
Internet, Gentzkow and Shapiro (2011) have also to deal with small-unit bias.

1Hereafter, we illustrate our ideas with the example of firms, in line with our application,
but of course they also apply to different units, in particular geographic areas and classrooms.

2All along the paper, we follow the literature and use the term “segregation” in a positive
term, to describe the relative concentration of groups across units. The indices we propose do
not allow, by themselves, to conclude about which segregating mechanism is at work.

3See also Söderström and Uusitalo (2010); Brunello and Rocco (2013); Leckie and Goldstein
(2014) for recent papers about school segregation with attempts to correct for small-unit bias.

2



In this paper, we propose a different approach: we consider that segregation should
be measured directly through an inequality index on the distribution Fp of pi, the
probability that firm i has to hire someone from the minority group.4 In line
with the literature (see in particular Winship, 1977; Carrington and Troske, 1997;
Rathelot, 2012), we impose an independence condition between hiring or, more
generally, on the allocation process. In other words, conditional on Ki and pi, Xi

is supposed to follow a binomial distribution B(Ki, pi). This binomial assumption,
which we show is testable, allows us to identify the first moments of Fp. Because
most of the existing segregation indices depend on the whole distribution of this
probability, not only on its first moments, these indices are only partially identified
in general. Bounds can be obtained by minimizing or maximizing these indices
over distributions whose first moments match those identified in the data. This
problem is a difficult one, as the space of corresponding distributions is of infinite
dimension in general.

Another contribution of this paper is to prove that under a linearity condition
satisfied by, among others, the Atkinson, Duncan and Theil indices, the bounds
on segregation indices for units of size K can be obtained by optimizing over
discrete distributions with only K + 1 points of support at most. We also show,
using the theory of Chebyshev systems (see, e.g. Krein and Nudel’man, 1977)
that under another assumption satisfied for instance by the Theil index, bounds
can be obtained without optimization, by simply finding roots of appropriate
polynomials. We also show how bounds on subpopulations can be combined to
handle random unit sizes or to control for covariates at the unit (e.g., firms’ sectors)
or at the position (e.g., skilled versus unskilled positions in the firm) level.

Our results are also related to a few papers on partial identification. Stoye (2010)
also considers the partial identification of spread parameters such as the Gini,
Theil or Atkinson indices. Our paper complements his, by considering a different
type of measurement problem on the variable of interest p. While Stoye (2010)
considers missing or interval valued data, we consider a setting where only re-
strictions on the first moments of p are available. Our identification result is also
linked to a result of Chernozhukov et al. (2013) in the context of nonlinear panel
data models. In such models, bounds on marginal effects can be obtained by
maximizing some functionals over the distribution of the fixed effect. Similarly to

4In Section 2, we elaborate on when one should focus on Fp rather than on the distribution
of the realized share (Xi/Ki)i=1...n.
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us, they show that one can actually restrict to discrete distributions with a low
number of support points.

We also develop estimation and inference on the segregation index, using a two-
step procedure. In the first step, we consider a maximum likelihood estimator for
the distribution of Xi conditional on Ki. Once the unobserved pi is integrated out,
Xi does not follow a binomial distribution in general, but a multinomial one, with
some inequality constraints on the corresponding probabilities stemming from the
underlying binomial model. The estimator takes a simple closed form when the
constraints are slack. When they are not, we show that the estimator can be ob-
tained through an optimization under linear equality and inequality constraints.
In the second step, the bounds are estimated by optimizing over finite-dimensional
distributions whose first moments match the first-step estimator. When the con-
straint on the vector of moments is binding, the lower and upper bounds coincide
and no optimization is needed in this case. We show that the estimated bounds
are consistent under minimal conditions and derive their asymptotic distribution
under additional restrictions. This distribution is normal when the true vector of
moments lies in the interior of the moment space, but is not when this vector is at
the boundary of the moment space. We propose a bootstrap confidence interval
that works in both cases. Finally, we develop a bootstrap likelihood ratio test of
the binomial mixture model.

Monte Carlo simulations indicate that our method works well for finite samples,
and is not computationally too demanding. They also show that even for modest
unit sizes (K = 9, typically), the constraint on the vector of moment is binding
most of the times for sample sizes as large as 10, 000, leading in most cases to an
estimated identification interval reduced to a single point. For typical unit and
sample sizes, the length of the confidence intervals mostly stems from sampling
variation, not from partial identification.

Finally, we apply our framework to measure the segregation of immigrants in small
French firms. Our method proves to work well in this context. First, we do not
reject the binomial mixture model for any plant sizes. Second, for plant sizes
larger than 3, the identification region is already informative. Third, contrary
to what is suggested by the naive, Carrington and Troske (1997) or Allen et al.
(2015) estimators, we cannot reject at standard levels that there is no relationship
between plant size and the level of segregation, at least for very small firms.
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Finally, we show that the level of segregation we obtain is not explained by the fact
that foreigners hold more unskilled positions. This result is consistent with those
of Hellerstein and Neumark (2008) and Åslund and Skans (2010) for American
and Swedish firms respectively.

The paper is organized as follows. Section two presents the binomial mixture
model and studies partial identification of parameters of interest in this model.
Section three presents the estimation procedure for the bounds, as well as the
inference results. The behavior of the bounds and their estimators is studied
through simulations in Section four. The application to workplace segregation is
developed in the fifth section. Section six concludes. Appendix A gathers all the
proofs. In the online appendix, we extend our framework to handle random unit
sizes and control for covariates, develop the bootstrap likelihood ratio test of the
binomial mixture model and provide additional discussion on inference.

2 Identification

2.1 The setting and the object of interest

The population is assumed to be split into two groups, a group of interest, called
the minority group hereafter, and the rest of the population. Individuals are
distributed across units, which may represent geographic areas, classrooms, or,
as in our application, firms. We assume that there exists a random variable pi
taking values in [0, 1] that represents the probability for any individual belonging
to unit i to be a member of the population of interest. The probabilities pi are
i.i.d. across units, with cumulative distribution function (cdf) Fp. Because we
have in mind units of small to moderate size, our asymptotic analysis here is in
the number of units.5

The object of interest of this paper is a segregation index of the minority group,
θ0, which is a real functional of Fp. We denote hereafter this index by g(Fp,m01),
with m01 = E(p). This notation may seem redundant, because m01 depends on
Fp, but the reason will become clearer below. Popular indices include the Duncan
D, the Theil T , the Atkinson Ab parameterized by b ∈ (0, 1), and the coworker

5This contrasts with the framework of Allen et al. (2015) where the size of the units tend to
infinity while the number of units is fixed.
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index CW . They satisfy respectively

D = 1
2
E
[∣∣∣ p
E(p)
− 1−p

E(1−p)

∣∣∣] =
∫
|u−m01|dFp(u)

2m01(1−m01)
,

T = 1− E(p ln(p))
E(p) ln(E(p))

= 1−
∫
u ln(u)dFp(u)

m01 ln(m01)
,

Ab = 1−m−
b

1−b

01 (1−m01)
−1 (∫ (1− u)1−bubdFp(u)

) 1
1−b ,

CW =
∫

(u−m01)
2dFp(u)/(m01 −m2

01).

(2.1)

These definitions correspond to the limit in probability of the standard formulas
given for instance by Massey and Denton (1988). Though our main results will
not include it, let us also mention the Gini index, G = (1−m01−

∫
F 2
p (u)du)/m01.

The probability p are not directly observed. Instead, we observe the size of the
unit, K, and the number X of minority individuals in that unit.6 Why is it inter-
esting to learn about Fp rather than about the distribution of the realized share
X/K or of the number of minority individuals across units? While the realized
shares may be more interesting for studying the consequences of segregation, as
we discuss in the conclusion, we see at least two reasons for this choice.

First, let us consider the case where the available data are not exhaustive: suppose
that only a subset of individuals in a school, a neighborhood or a firm are sampled.
In this case, FX/K , the distribution of the realized minority shares, is not observed.
If one is interested in this distribution, we show that our analysis can be applied,
up to a few changes detailed in section 2.2. When the size of the underlying unit
is very large (but the sample size remains small), our results can be applied as
such.

Second, since the beginning of the segregation literature, computing segregation
indices is often used to understand the features of the underlying allocation process
of individuals across units. If the question is to investigate whether the allocation
process, as a whole, is influenced by the ethnicity variable, the interesting dis-
tribution is less the realized one (which, by construction, incorporates the noise
coming from the sampling process) than the one of the underlying probabilities.
In one of the earliest paper of this literature, Jahn et al. (1947) characterizes in
this way the absence of segregation: “[...] if there is no segregation then members
of a minority racial group [...] will be distributed randomly throughout the various
census tracts of a city".

6To ease the exposition, we omit subscripts i in this section.
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To fix ideas, consider the following model. In a first step, a job seeker has to
choose to which firm i to apply to. In a second step, firm i decides which job
seekers they hire. To make their decision, job seekers will consider the nature
of the job, the wage offered, as well as the distance between the job and his
residence. Firms will try to assess candidates’ productivity based on observable
information; they can also be prejudiced. The probability pi of firm i will then
depend of both the probability to apply of minority and majority job seekers,
and, conditional on the application, on the probability for the firm to hire the
majority or minority applicant. If at both stages ethnicity is not relevant, that is
if minority and majority apply to similar jobs and employers make similar hiring
decisions when they face minority and majority candidates, we expect pi to reflect
the proportion of job seekers in the population, so that pi = m01 for all i and
D = T = Ab = CW = 0. However, given the small number of workers in firms,
the actual proportion of minority workers may only be a poor approximation of
pi, and the segregation indices based on the distribution of X/K instead of p
would be all positive, even though ethnicity would play no role in the underlying
process.7

From this example, it is obvious that computing segregation based on the dis-
tribution of p does not exhaust the set of interesting questions relating to the
underlying process. One of the most important caveat is that the segregation
measured with respect to ethnicity may well be driven by any characteristics cor-
related with ethnicity. For instance, if minority and majority workers differ in
their skill level, ethnic segregation may just be due to the fact that firms vary
in the level of skill that they require.This issue is not specific to the small-unit
case and also applies when units are large. In the online appendix, we propose a
solution by including covariates at the unit level (e.g., firms’ sector) or at the po-
sition level (e.g., skilled vs unskilled positions). Another limit is that applications
and hiring decisions may depend on the current, realized share of the minority
in the firm. If so, realized shares may be of more interest than the unobserved
probabilities. But such a case would also violate the binomial mixture model we
consider below. To assess whether this issue is important in a given context, it is
therefore important to run the test of the binomial mixture model that we develop

7A similar reasoning would apply to education. School and classroom segregation results
from both the geographic distribution of ethnic groups, individual choices and from principals
decisions in accepting pupils and gathering them into classrooms.
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in Subsection C.1 of the online appendix.

2.2 The main identification result

We suppose here that the size of units K is constant; the case of a random size
is considered in Section B.1 of the online appendix. We posit that individuals are
selected into units independently from each other in terms of their membership
of the group of interest. In this case, X follows, conditional on p, a binomial
distribution B(K, p). Because p is random and unobserved, this model is called a
binomial mixture (see, e.g. Lord, 1969; Wood, 1999). Note that the independence
condition may not hold. The presence of an immigrant in a firm may, for instance,
increase the probability that another immigrant is employed in this firm. However,
in the absence of detailed data on the selection process into units, this seems to
us to be the most transparent assumption. It is also assumed by Carrington
and Troske (1997) or Rathelot (2012). It is also asymptotically equivalent to
the allocation mechanism considered by Allen et al. (2015) when the number of
individuals and the number of units tend to infinity at the same rate.8 Finally, as
we shall see below, this assumption is testable.

Because the distribution ofX is defined byK probabilities, namely P0 = (P01, ..., P0K)′,
with P0j = Pr(X = j), we expect it to convey information on K parameters of
Fp. Letting m0i = E(pi), we have, after some algebra:

P0j = E [Pr(X = j|p)] =
K∑
i=1

(
K

i

)(
i

j

)
(−1)i−jm0i,

Hence, letting m0 = (m01, ...,m0K)′ and Q be the K×K matrix of typical element(
K
j

)(
j
i

)
(−1)j−i, we get

P0 = Qm0. (2.2)

Moreover, Q is invertible as an upper triangular matrix with non-zero diagonal
elements. Thus, there is a one-to-one mapping between P0 and m0. This has two
implications. First, m0 is identified from the distribution of X. As a result, any

8Allen et al. (2015) suppose that individuals from group e ∈ {0, 1} (with e = 1 for the minority
group, say) are allocated independently and with probability πe

i to unit i. However, if the number
of individuals n tends to infinity together with the number of units, such that πe

i n → ρei , then
the number of individuals of group e in unit i, Xe

i , follows a Poisson distribution with parameter
ρei . Because X1

i and X0
i are independent, we finally get X1

i |X1
i +X0

i = K ∼ B(K, ρ1i /(ρ
0
i +ρ1i )),

as here.

8



parameter θ0 depending only on m0 is point identified. This is for instance the
case of the coworker index CW . Because CW = (m02 −m2

01)/(m01 −m2
01), the

coworker index is point identified as soon as K ≥ 2.

The second implication of (2.2) is that two different distributions of p with the
same first K moments lead to the same distribution of X and are thus observa-
tionally equivalent. In other words, we do not learn anything on p beyond its first
K moments. As a result, θ0 is not identified in general, and its sharp lower and
upper bounds θ0 and θ0 satisfy

θ0 = inf
F∈Dm0

g(F,m01), θ0 = sup
F∈Dm0

g(F,m01), (2.3)

where Dm0 is the subset of D, the set of cumulative distribution functions on [0, 1],
for which the vector of first K moments equals m0.

Equation (2.3) provides the sharp bounds on θ0 but is not useful in practice
because it amounts to optimizing over an infinite dimensional set. We now show
that under restrictions satisfied by most segregation indices, the problem can
be much simplified. We use for that purpose related results on the so-called
Chebyshev-Markov moment problem (see, e.g., Krein and Nudel’man, 1977, for
historical notes on this problem).

As a vector of raw moments, m0 cannot lie anywhere in [0, 1]K . It should satisfy
some restrictions; for instance, the variance has to be positive, implying m02 ≥
m2

01. Formally,

m0 ∈M =

{(∫
xdF, ...,

∫
xKdF

)′
, F ∈ D

}
.

We provide a complete characterization of the moment spaceM below, but first
consider the case where m0 belongs to its boundary ∂M. When m0 ∈ ∂M, there
is actually a unique distribution F ∗ corresponding to m0. Moreover, F ∗ is discrete
with at most L + 1 support points, where L is the integer part of (K + 1)/2 (for
a proof of both points, see, e.g., Theorem IV.4.1 in Krein and Nudel’man, 1977).
Then no optimization is required to solve (2.3), and θ0 = θ0.

Now, when m0 ∈
◦
M, the interior ofM, we can also simplify the computation of

the bounds, at the price of imposing the following assumption.

Assumption 2.1 g(F,m01) = ν
(∫

h(x,m01)dF (x),m01

)
, where h and ν are con-

tinuous and ν(.,m01) is monotonic.
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An important feature of the assumption is that F 7→
∫
h(x,m01)dF (x) is linear.

Assumption 2.1 does not hold for the Gini index but is satisfied by the Duncan,
the Theil and the Atkinson indices.9

Assumption 2.1 also holds when one cares about the realized shares, but only a
sample of each unit is observed. Specifically, let X̃ denote the total number of
minority people in a random unit of size L, and suppose that the parameter of
interest satisfies θ0 = ν

(∫
h(x,m01)dFX̃/L(x),m01

)
. Assume that in each unit,

only K < L individuals are sampled, among whom X belong to the minority.
Then, using the fact that X̃ − X|p,X ∼ B(p, L − K), we obtain, after some
algebra,

θ0 = ν

(∫
h̃(p,m01)dFp(p),m01

)
,

with

h̃(p,m01) =
K∑
j=0

L−K∑
k=0

(
K

j

)(
L−K
k

)
h((j + k)/K,m01)p

j+k(1− p)L−(j+k).

Hence, Assumption 2.1 also holds in this context. Note that when L → ∞, the
law of large numbers and continuity of h imply that h̃(p,m01)→ h(p,m01).

Under this condition, by a theorem of Caratheodory, the bounds on
∫
h(x,m01)dF (x),

and thus on θ0, are attained on distributions with no more than K + 1 support
points (see for instance Theorem I.3.6 of Krein and Nudel’man, 1977).10 This
makes the optimization computationally possible. Specifically, let D` denote the
subset of D with at most ` points of support and D`m0

= D` ∩ Dm0 . Then define

θ0,` = inf
F∈D`

m0

g(F,m01), θ0,` = sup
F∈D`

m0

g(F,m01). (2.4)

Because the optimization set is smaller than in (2.3), θ0,` and θ0,` are only inner
bounds in general, namely θ0,` ≥ θ0 and θ0,` ≤ θ0. Caratheodory’s result ensures
however that under Assumption 2.1, these inner bounds coincide with the sharp
bounds for ` = K + 1. In concrete terms, this means that for finding the sharp
lower and upper bounds on the segregation index, we can make as if there was a
finite number of types of firms with the same underlying probability.

9It suffices to choose ν(u, v) = u/[2v(1 − v)] and h(x,m01) = |x − m01| for the Duncan,
ν(u, v) = 1 − u/[v ln(v)] and h(x,m01) = x ln(x) for the Theil and ν(u, v) = 1 − v−b/(1−b(1 −
v)−1u1/(1−b) and h(x,m01) = xb(1− x)1−b for the Atkinson index.

10Linearity of F 7→
∫
h(x,m01)dF (x), together with convexity of Dm0 and continuity of

ν(.,m01), also implies that the identification region is the interval [θ0, θ0].
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Theorem 2.1 summarizes our discussion on the two cases.

Theorem 2.1 - If m0 ∈ ∂M, θ0 = θ0 = g(F ∗,m01), where F ∗ is the cdf of a
discrete distribution with at most L+ 1 support points, where L is the integer part
of (K + 1)/2.
- If m0 ∈

◦
M and Assumption 2.1 holds, θ0,K+1 = θ0 and θ0,K+1 = θ0.

Note thatDK+1
m0

can be seen as a subset of [0, 1]2K+1, as any F ∈ DK+1
m0

is defined by
its support points and associated probabilities. As a result, θ0,K+1 and θ0,K+1 can
be obtained as an optimization over a subset of [0, 1]2K+1. Noteworthy, the result
would also apply to the lower bound of concave functionals of F . Because g(.,m01)

is concave in the case of the Gini index, θ0,K+1 = θ0 for the Gini. However, the
upper bound cannot be obtained similarly.

The second result of Theorem 2.1 can be easily generalized to moment problems
of the kind

inf
F∈D

∫
q(x)dF (x) s.t.

∫
r(x)dF (x) = 0, (2.5)

where q(x) ∈ R while r(x) belongs to RK . Here as well, the infimum is attained
by distributions with at most K+1 support points, which makes the optimization
feasible in practice. An example where bounds of an identification region satisfies
Problem (2.5) is average marginal effects in binary choice panel data (See Lemma
7 of Chernozhukov et al., 2013, for such a result). In that case, F represents the
distribution of fixed effects and the constraints correspond to the fact that the
probabilities of all possible sequences of choices should match those of the data.

2.3 Additional results in special cases

In the interior case, computing the bounds still require a nonlinear optimization
under constraints that are also nonlinear in the support points. Interestingly, the
Chebyshev-Markov problem has been further simplified under additional assump-
tions, using the theory of Chebyshev systems (see, e.g. Krein and Nudel’man,
1977). More precisely, we consider the following condition.

Assumption 2.2 g satisfies Assumption 2.1. Moreover h does not depend on
m01, is CK+1 on (0, 1) and satisfies either h(K+1)(x) > 0 for all x ∈ (0, 1) or
h(K+1)(x) < 0 for all x ∈ (0, 1).

11



Assumption 2.2 is satisfied for the Theil index. In this case, h(x) = x lnx. h is C∞

on (0, 1) and satisfies h(K+1)(x) = (−1)K+1(K−1)!/xK forK ≥ 1. Thus h(K+1) has
constant sign for all K ≥ 1. In the case of the Atkinson index, h(x) = xb(1−x)1−b,
we checked numerically that for all b ∈ (0, 1) and K odd between 3 and 49,
hK+1(x) < 0 for all x ∈ (0, 1), so that Assumption 2.2 is also satisfied for the
Atkinson index for all odd K ≤ 50.

Under Assumption 2.2, no numerical optimization is needed to compute the
bounds θ0 and θ0. The idea behind is that special discrete distributions rational-
izing the bounds, called principal representations, will also rationalize the bounds
with h(x) = xK+1.11 Then, one can show that in the latter case, the problem
reduces to finding the roots of a polynomial, a task for which very efficient al-
gorithms are available. Using principal representations to compute the bounds
is therefore much simpler and faster than solving (2.4), a point that we confirm
below in our simulations (see in particular Table 3).

Let us now detail how the principal representations can be obtained. We do not
provide proofs of our claims hereafter but refer to the monograph of Krein and
Nudel’man (1977) for more details. The principal representations are determined
solely by the vector x = (x1, ..., xL+1) of their support points, with 0 ≤ x1 <

... < xL+1 ≤ 1.12 Then the associated vector of probabilities y = (y1, ..., yL+1) is
uniquely defined by the L + 1 moment constraints V (x)y′ = (1, E(p), ..., E(pL))′,
where V (x) is the Vandermonde matrix associated with vector x:13

V (x) =


x01 . . . x0L+1
...
xL1 . . . xLL+1

 .

y is uniquely defined by V (x)y′ = (1,m′0)
′ because Vandermonde matrices are

nonsingular (see, e.g. Horn and Johnson, 1990).

Now, let us define the support points of the principal representations. For that
11Interestingly, principal representations have found numerous other applications in statistics,

see Dette and Studden (1997) for a survey or Dette and Schorning (2013) for a recent application
to optimal design of experiments.

12We consider here the case where the principal representations have L + 1 support points.
They may have less support points, in which case we should modify the dimension of x accord-
ingly.

13In the following, Vandermonde matrices of different sizes will be used, depending on the size
of x. In the absence of ambiguity, we keep the notations V (x).
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purpose, let Am0 , Bm0 and Cm0 denote the square matrices of size L, L and L− 1

respectively, with typical (i, j) term equal tom0i+j−2, m0i+j−1 andm0i+j−m0i+j−1

respectively, with the convention that m00 = 1. If K is even, first, define a =

(a0, ..., aL−1)
′ and a = (a0, ..., aL−1)

′ by

a = −B−1m0
(m0L+1, ...,m0K)′ ,

a = (Bm0 − Am0)
−1 (m0L −m0L+1, ...,m0K−1 −m0K)′ .

(2.6)

That Bm0 and Bm0−Am0 are nonsingular is ensured by m0 ∈
◦
M and K even (see

Remark III 2.1 of Krein and Nudel’man, 1977). Then consider the polynomials
Pm0

and Pm0 defined by

Pm0
(x) =

L−1∑
j=0

ajx
j + xL, Pm0(x) =

L−1∑
j=0

ajx
j + xL.

The subscript m0 underlines the dependency of these polynomials on m0, through
(2.6). The support points of the lower principal representation Fm0

are then
0 and the roots of Pm0

. Similarly, the support points of the upper principal
representation Fm0 are 1 and the roots of Pm0 . The construction is the same in
the odd case. a and a = (a0, ..., aL−2)

′ then satisfy

a = −A−1m0
(m0L, ...,m0K)′ , a = C−1m0

(m0L −m0L+1, ...,m0K−1 −m0K)′ .

The polynomials Pm0
and Pm0 are defined similarly, and the support points of

Fm0
(resp. Fm0) are the roots of Pm0

(resp. 0, 1 and the roots of Pm0).

In the case of the Atkinson index, Assumption 2.2 does not hold for K even. In
this case, however, we can still rely on Chebyshev systems, by remarking that
h(x) = xK+1 satisfies Assumption 2.2. In other words, the lower and upper
bounds on m0K+1, denoted respectively by m0K+1 and m0K+1, can be obtained by
the previous construction. Then one possibility would be to compute the bounds
on Ab given (m01, ...,m0K+1), for all possible values of m0K+1 in [m0K+1,m0K+1].
But the bounds on Ab are even simpler to yield, by properties of Chebyshev
systems. Specifically, Theorem VI.2.2 of Krein and Nudel’man (1977) ensures
that the bounds on Ab are attained on either m0K+1 or m0K+1.

We summarize our discussion in the following theorem.

Theorem 2.2 Suppose that Assumption 2.2 holds. Then{
θ0, θ0

}
=
{
g(Fm0

,m01), g(Fm0 ,m01)
}
.
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Moreover, if Assumption 2.2 holds for K + 1 instead of K, then

θ0 = min
{
g
(
Fm0

,m01

)
, g
(
Fm0

,m01

)
, g
(
Fm0

,m01

)
, g
(
Fm0 ,m01

)}
,

θ0 = max
{
g
(
Fm0

,m01

)
, g
(
Fm0

,m01

)
, g
(
Fm0

,m01

)
, g
(
Fm0 ,m01

)}
,

where m0 = (m01, ...,m0K ,m0K+1) and m0 = (m01, ...,m0K ,m0K+1).

2.4 Links with other approaches

Previous approaches in the literature have focused on the estimation of param-
eters that are identified, but different from θ0 in general. The first and perhaps
most natural possibility is to ignore the randomness due to the small size of
the unit, and make as if X = Kp. This amounts to estimating the parameter
θN = g(FX/K ,m01). However, the following proposition shows that if g(.,m01) is
monotonic with respect to the second-order dominance, as is the case of all the
inequality indices we consider, this parameter is always greater than θ0. In other
words, ignoring the randomness leads to overestimate the true level of segregation.

Proposition 2.3 Suppose that g(.,m01) is decreasing with respect to the second-
order dominance. Then θN ≥ θ0. Moreover, the inequality is strict if g(.,m01) is
strictly decreasing14 and the support of p is not reduced to {0, 1}.

Several works have recognized this small-unit bias. The most commonly used
correction method is the one introduced by Carrington and Troske (1997), based
on earlier works by Winship (1977) and Cortese et al. (1978). The idea is to
define an index that corresponds to a distance from randomness. Specifically, let
θnsN = g(FXns/K ,m01), with Xns ∼ B(E(p), K), denote the naive parameter that
would be obtained if all units had the same probability, that is if there was no
segregation. Suppose also, without loss of generality if g is bounded, that g ranges
from 0 to 1. The corrected index θCT of Carrington and Troske (1997) is defined
by

θCT =
θN − θnsN
1− θnsN

.

The index θCT is therefore an affine correction that coincides with θ0 in the two
polar cases where there is no segregation, because θCT = θN = θ0 = 0 in this case,

14Here we say that g(.,m01) is strictly decreasing with respect to the second-order domi-
nance if, whenever

∫
w(x)dF (x) >

∫
w(x)dG(x) for all strictly concave w, we have g(F,m01) >

g(G,m01).
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or if segregation is maximal, because then θCT = θ0 = 1. But in in general θCT is
not equal to θ0, nor does it lie inside the interval [θ0, θ0], as we will illustrate in
Subsection 4.1.

Allen et al. (2015) propose a bootstrap correction of the segregation index. Their
method aims to obtain a good approximation of the discrepancy between θN =

g(FX/K ,m01) and θ0 by bootstrap, and then to correct for this discrepancy. In our
framework, this would amount to approximate this discrepancy by θ∗N−θN , where
θ∗N = g(FX∗/K ,m01) and X∗|X ∼ B(K,X/K).15 The corrected index is then:

θABW = 2θN − θ∗N (= θN + θN − θ∗N).

The idea behind this parameter is that, if X/K was distributed as p, we would
have θN − θ0 = θ∗N − θN and θABW = θ0. More generally, one can show that the
bias of θABW decreases more quickly than the one of θN as K →∞.

If focusing on θ0 rather than θABW or θCT raises some identification issues, an
important advantage of our approach is that it sticks to indices whose axiomatic
properties are well understood (see, e.g., James and Taeuber, 1985; Chakravarty
and Silber, 1994; Hutchens, 2001). One particularly desirable property is size
invariance, satisfied by all indices we consider (James and Taeuber, 1985). While
θABW or θCT correct for part of the small-unit bias, the resulting index will in
general depend on the unit size and violate the size invariance principle.

Rathelot (2012) follows a closer approach to ours by considering the same parame-
ter θ0. But contrary to us, he imposes the distribution of p to be a mixture of beta
distributions. Combined with the binomial assumption on X, the model becomes
fully parametric and can be estimated by maximum likelihood. The segregation
indices can be easily deduced as a function of the parameters of the beta mixture.
Note that such a model is overidentified in general. For instance, a mixture of two
beta distributions has five parameters, so that most vectors of first K moments
will not be compatible with this model whenK ≥ 6. In such cases, the segregation
index obtained may not lie inside the interval [θ0, θ0]. Importantly, this corrected
index will only converge to θ0 as K →∞ if one lets the number of components of
the mixture tend to infinity with K.

15In their framework, θ∗N is not exactly defined this way, because the two allocation models
differ. The two are however expected to be close when the sample size is large, for the reasons
detailed in Footnote 6.
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3 Estimation and inference

3.1 Estimation of the bounds

In this section, we suppose to have in hand an i.i.d. sample (X1, ..., Xn) of n
units. Unit sizes are still constant equal to K. Following the identification part,
we estimate the identified set by estimating its sharp bounds. We first estimate
P0 and thus m0 = Q−1P0. We then use Theorems 2.1 or 2.2 to yield the estimates
of the bounds.

First, we estimate P0 by constrained maximum likelihood, where the constraints
come from the binomial mixture model. By what precedes, the model is equivalent
to P0 ∈ P = {Qm : m ∈M}. We then let

P̂ = arg max
P∈P

K∑
k=1

Nk ln(Pk) +N0 ln

(
1−

K∑
k=1

Pk

)
, (3.1)

where Nk =
∑n

i=1 1{Xi = k}. This optimization may look complicated because
M, and thus P , is defined in a complicated way. We can use however a sim-
pler characterization of M to simplify it much, as Lemma 3.1 below shows.
Hereafter, we let SL+1 = {(x1, ..., xL+1) : 0 ≤ x1 < ... < xL+1 ≤ 1} and
TL+1 = {(y1, ..., yL+1) ∈ [0, 1]L+1 :

∑L+1
k=1 yk = 1}.

Lemma 3.1 The maximum likelihood estimator P̂ = (P̂1, ..., P̂K)′ satisfies

P̂k =

(
K

k

) L+1∑
j=1

ŷjx̂
k
j (1− x̂j)K−k, k ∈ {1, ..., K},

where x̂ = (x̂1, ..., x̂L+1) and ŷ = (ŷ1, ..., ŷL+1) are given by

(x̂, ŷ) = arg max
(x,y)∈SL+1×TL+1

K∑
k=0

Nk ln

(
L+1∑
j=1

yjx
k
j (1− xj)K−k

)
.

Following (2.2), we then estimate m0 by m̂ = Q−1P̂ . Note that by construction,
m̂ ∈M.

Now let us turn to the segregation index. We rely on Theorems 2.1 and 2.2 to
estimate its bounds. We first check whether m̂ ∈ ∂M or not, because if this is
the case, the bounds are equal and no optimization is required. A simple way to
test this is to consider whether the unconstrained maximum likelihood estimator
P̃ = (P̃1, ..., P̃K), which satisfies P̃k = Nk/n, belongs or not to P . We propose a
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simple procedure for testing P̃ 6∈ P in Subsection D.1 of the online appendix. Our
Monte Carlo simulations show that m̂ ∈ ∂M occurs with probability close to one
when K ≥ 10, even with sample sizes as large as 10,000 (for similar evidence, see
Wood, 1999). In this case, we simply estimate the bounds by

θ̂ = θ̂ = g(F̂ , m̂1), (3.2)

where F̂ is the cdf corresponding to (x̂, ŷ).

If P̃ ∈ P , m̂ ∈
◦
M with probability approaching one.16 Then Dm̂ is not reduced

to a single distribution, and if Assumption 2.2 is not satisfied, optimization is
required to obtain the estimated bounds. We then use estimators of θ0,K+1 and
θ0,K+1. Given a vector of moments m = (m1, ...,mK), any F ∈ DK+1

m is defined by
its support points x ∈ SK+1 and the associated probabilities y ∈ TK+1. Moreover,
the moment constraints write V (x)y = (1,m′)′. Thus, the vector of probabilities y
satisfies y′ = V (x)−1(1,m′)′, and the constraints are equivalent to V (x)−1(1,m′)′ ≥
0, where the inequalities are understood componentwise. Because F ∈ DK+1

m

depends on x and m only, we may rewrite g(F,m1) as a function of x and m only.
We denote this function by q(x,m). The bounds on the true parameter θ0 = θ(m)

when the vector of moments is m0 = m satisfy

θ(m) = min
x∈SK+1:V (x)−1(1,m′)′≥0

q(x,m), (3.3)

θ(m) = max
x∈SK+1:V (x)−1(1,m′)′≥0

q(x,m). (3.4)

Our estimators of θ0 and θ0 are respectively θ̂ = θ(m̂) and θ̂ = θ(m̂).

Finally, when Assumption 2.2 holds, we simply estimate the principal representa-
tions Fm0

and Fm0 by F m̂ and F m̂, and let

θ̂ = min
{
g (F m̂, m̂1) , g

(
F m̂, m̂1

)}
, θ̂ = max

{
g (F m̂, m̂1) , g

(
F m̂, m̂1

)}
. (3.5)

3.2 Inference on the segregation index and its identified set

We first show that the estimators of the bounds are root-n consistent and charac-
terize their asymptotic distribution. We consider hereafter both the cases where
m0 ∈

◦
M and m0 ∈ ∂M, since the corresponding asymptotic distributions differ.

We obtain the result under the following two conditions.
16The only exception is when P̃ ∈ ∂P, the boundary of P. This occurs however with proba-

bility tending to 0 as n→∞.
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Assumption 3.1 The distribution of p is not a Bernoulli distribution.

Assumption 3.2 θ and θ are directionally differentiable at m0 in the following
sense: θ′(m,h) = limt↓0(θ(m + tht) − θ(m))/t exists for all ht ∈ RK such that
ht → h and m+ tht ∈M for t small enough. Moreover, θ′(m, .) is continuous.

The first assumption excludes total segregation, where we would either have units
with only people from the minority group or only people from the majority. We
rule out such situations for inference, because estimators are then degenerated,
namely they coincide with the true values. Assumption 3.2 is more substantial,
but can be proved to hold in two cases of interest (see Subsection D.2 of the online
appendix).

Before giving the asymptotic distribution of the estimated bounds, we introduce
additional notations. For any vector P , let us define Σ(P ) = [diag(P )− PP ′],
diag(P ) being the diagonal matrix with diagonal vector equal to P . We let CP0 =

{λ(P − P0), P ∈ P , λ > 0} and πCP0
the projection onto the closure of CP0

with respect to the norm ‖x‖ = x′ (diag(P0)
−1 +M1/P00)x, M1 being the K ×K

matrix of ones.

Theorem 3.1 Suppose that Assumption 2.1 holds. Then (θ̂, θ̂)
P−→ (θ, θ). If

Assumptions 3.1-3.2 also hold, then

√
n
(
θ̂ − θ0, θ̂ − θ0

)′
d−→
(
θ′
(
m0, Q

−1πCP0
(Z)
)
, θ
′
(
m0, Q

−1πCP0
(Z)
))′

,

where Z ∼ N (0,Σ(P0)).

Importantly, our results apply whether or notm0 lies in the interior ofM. Ifm0 ∈
◦
M and θ and θ are differentiable rather than simply directionally differentiable,
the estimated bounds are asymptotically normal, because πCP0

(Z) = Z. But if
m0 ∈ ∂M, the asymptotic distribution of the estimated bounds is a function of
the projection of a normal variable onto a convex cone.

Because the estimated bounds are not asymptotically normal when m0 ∈ ∂M, the
confidence interval proposed by Imbens and Manski (2004) for partially identified
parameters does not apply here. Moreover, standard bootstrap typically fails
here, because of the lack of continuity in m0 of the asymptotic distribution (see
Andrews, 2000, for a similar counterexample). To build valid confidence intervals,
we therefore propose a modified bootstrap procedure. We project m̂ onto ∂M
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whenever m̂ ∈
◦
M but is close to the boundary. Let dn =

√
n(θ̂ − θ̂)/kn and

In = 1 {dn ≤ 1}, with kn → ∞,
√
n/kn → ∞. Observe that when m0 ∈ ∂M,

θ = θ so that dn
P−→ 0 and In

P−→ 1. When m0 ∈
◦
M on the other hand, θ < θ

in general because there is an infinity of distributions rationalizing m0. Thus
dn

P−→∞ and In
P−→ 0. Then we define

m̂b = π∂M(m̂)In + m̂(1− In),

where π∂M denotes the projection onto ∂M.17 The bootstrap distribution of X
that we consider hereafter is given by the vector of probabilities P̂b = Qm̂b.

We now define the bootstrap confidence intervals. We have to take into account
the fact that the lower and upper bounds collapse when m0 ∈ ∂M, whereas
they are in general distinct when m0 ∈

◦
M. For any statistic T , let T ∗ denote

the corresponding bootstrap statistic. For example, if T =
√
n(θ̂ − θ), we let

T ∗ =
√
n(θ̂

∗
− θ̂), where θ̂

∗
is the bootstrap estimator of θ. We let cα(T ∗) denote

the α-th quantile of the distribution of T ∗ conditional on m̂b. We first define a
confidence interval for the interior case by

CIinterior
1−α =

[
θ̂ − c1−α(T ∗)√

n
, θ̂ − cα(T ∗)√

n

]
,

where T is defined as T . The reason why we use cα(T ∗) and c1−α(T ∗) instead of
cα/2(T

∗) and c1−α/2(T ∗) is that when m0 ∈
◦
M, θ0 < θ0 in general and only one of

the two bounds matter in the asymptotic coverage.

This is not the case however when m0 ∈ ∂M. Because θ0 = θ0 = θ0, the asymp-
totic coverage of CIinterior

1−α is in general smaller than 1 − α. We consider instead
the symmetric confidence interval

CIboundary
1−α =

[
θ̂ − c1−α(T ∗s )√

n
, θ̂ +

c1−α(T ∗s )√
n

]
,

where θ̂ = (θ̂ + θ̂)/2 and Ts =
√
n
∣∣∣θ̂ − (θ0 + θ0)/2

∣∣∣. When m0 ∈ ∂M, θ̂ is a
consistent estimator of θ0 = (θ0 + θ0)/2 and we show in the proof of Theorem
3.2 below that the bootstrap statistic T ∗s has the same distribution as Ts. Thus,
CIboundary

1−α has an asymptotic coverage rate of 1− α.
17Because ∂M is not convex, this projection may not be well defined. This is not an issue

here. In this case, π∂M(m̂) denotes any element in the set arg minm∈∂M ‖m̂−m‖.
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Finally, to obtain a confidence interval with a correct asymptotic coverage in all
situations, we let

CI11−α = InCIboundary
1−α + (1− In)CIinterior

1−α .

The idea is that we will eventually pick CIboundary
1−α when the true parameter is

at the boundary, because In
P−→ 1 in this case, and CIinterior

1−α otherwise. The
validity of this confidence interval, established in Theorem 3.2 below, relies on the
following condition.

Assumption 3.3 θ(.) and θ(.) are differentiable at m0 (and we let θ′(m0) and
θ
′
(m0) denote their gradient). Moreover, we either have

- m0 ∈
◦
M, θ0 < θ0 and θ

′
(m0) 6= 0, θ′(m0) 6= 0;

- or m0 ∈ ∂M, with Cm0 a half space and the cdf of the asymptotic distribution
of Ts continuous at its 1− α quantile.

Assumption 3.3 is rather mild. Lemma D.2 already shows that the bounds are
differentiable almost everywhere in several cases. When m0 ∈

◦
M, the set of

distributions Dm0 is infinite, so that θ0 < θ0 holds in general. The important
restriction, when m0 ∈ ∂M, is that M is smooth at m0, so that Cm0 is a half
space. This holds everywhere except at (0, 0) and (1, 1) when K = 2, because
in this case ∂M = {(m01,m01),m01 ∈ [0, 1]} ∪ {(m01,m

2
01),m01 ∈ [0, 1]}. We

conjecture that it also holds almost everywhere when K ≥ 3, though the analysis
of the geometry of ∂M is beyond the scope of the paper.

Theorem 3.2 Suppose that Assumptions 2.1, 3.1, 3.2 and 3.3 hold. Then, with
probability one,

inf
θ0∈[θ0,θ0]

lim
n→∞

Pr(θ0 ∈ CI11−α) = 1− α.

Theorem 3.2 shows that bootstrap confidence intervals are asymptotically valid
in general. The conditions for obtaining this result are the differentiability of
the bounds and the fact when m0 ∈ ∂M, Cm0 is a half space. Theoretically
speaking, it is possible to drop these conditions and still make valid inference by
using subsampling, as for instance Chernozhukov et al. (2007) or Romano and
Shaikh (2010). However, Monte Carlo simulations (not reported here) seem to
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indicate that, in our context, subsampling does not provide reliable results unless
the sample size n is very large.

CI11−α is asymptotically valid whether m0 lies in the interior or at the boundary of
M. It is unclear, on the other hand, whether it is uniformly valid. The confidence
interval considered by Imbens and Manski (2004) in a related setting is uniformly
valid, but this is because they assume a uniform convergence in distribution of the
estimated bounds. Such a uniform convergence does not hold here, as asymptotic
normality fails to hold at the boundary. That inference on a partially identified
parameter may not be uniform is underlined by Andrews and Han (2009), in a re-
lated context where the endpoints of the identification interval are estimated. We
consider in the online appendix (see Subsection D.3) another confidence interval
that satisfies the uniformity requirement but is generally conservative.

4 Simulations

4.1 Identified bounds and other approaches

Figure 1 presents a comparison, for the Theil and Duncan index, between the
sharp bounds, the naive approach and the corrections proposed by Carrington
and Troske (1997), Allen et al. (2015) and Rathelot (2012). We consider Φ−1(p) ∼
N (µ, σ2), with µ ' −3.12 and σ2 ' 1.56 chosen so as to be close to the first two
estimated moments of p in our application in Section 5. The sharp bounds are
obtained by solving (2.4), the naive and the Carrington and Troske parameter by
using their theoretical expressions, the Allen et al. corrected index by simulations
on a very large sample (n = 106) and the corrected index of Rathelot (2012) by
maximizing the theoretical log-likelihood of the model.
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Figure 1: Comparison between the sharp bounds, the naive approach and previous
corrections for the Theil and Duncan indices.
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Note: Φ−1(p) ∼ N (−3.12, 1.56). With this DGP, the Theil index is T ' 0.562 and the

Duncan index is D ' 0.775.

Firstly, the length of the identification region shrinks quickly between K = 2

and K = 6 for both indices, less so after. As expected, the naive approach is well
above the upper bound of the identification region. For both indices, the corrected
indices proposed by Allen et al. (2015) or Carrington and Troske (1997) always
lie outside of the identification interval: the former is always above and the latter
always below (except for the Theil index with K = 2). The correction proposed
by Carrington and Troske (1997) performs better with the Theil than with the
Duncan index. The parametric method of Rathelot (2012) lies within the bound
for all K ≤ 10 with this DGP, but this needs not be the case in general.

Table 1 presents a comparison of the different approaches when the unit size
is random, and uniform on {2, ..., 10}. As discussed in Subsection B.2 of the
online appendix, we can consider an “unweighted” index, focused on the unit,
(Equation (B.1)) or a “weighted” index, focused on the worker (Equation (B.2)).
With our DGP for whichK ⊥⊥ p, the two indices coincide but they lead to different
identification sets, because the identification interval shrinks with K and larger
values ofK are weighted more with the individual-weighted index. Consistent with
the results obtained with a fixed unit size, the naive index as well as the corrected
indices by Carrington and Troske or Allen et al. do not lie in the identification
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set. Conversely, the corrected index by Rathelot does, in this case.

Table 1: Comparison between the sharp bounds, the naive approach and previous
corrections, with a random unit size.

Method Theil index Duncan index

Sharp bounds
Unweighted [0.48,0.60] [0.69,0.83]
Weighted [0.51,0.59] [0.72,0.81]

Naive 0.74 0.92
Carrington-Troske 0.45 0.55
Allen et al. 0.68 0.89
Rathelot 0.57 0.78

Note: Φ−1(p) ∼ N (−3.12, 1.56). With this DGP, the Theil

index is T ' 0.562 and the Duncan index is D ' 0.775.

4.2 Monte Carlo simulations

We now assess the performance of the estimators and confidence intervals consid-
ered in this paper in order to solve small-unit biases. We first study whether the
constraint that P0 belongs to P is binding in practice when estimating P0. The
data generating process is defined as previously (Φ−1(p) ∼ N (−3.12, 1.56)), and
we estimate Pr(P̃ 6∈ P) for different sample and unit sizes. Figure 2 presents the
results for n ∈ {50; 200; 1000; 10000} and K ∈ {2, ..., 12}.

For any n, the probability grows quite quickly to one with K. This reflects the
aforementioned fact that the set P shrinks very quickly withK. For instance, with
200 units, the estimated probability (with 1,000 simulations) is one as soon as K
is 7. Obviously, the probability is systematically lower when n is larger because
the estimation precision increases, but for K ≥ 10, this probability remains very
close to 1 for samples as large as 10,000. This implies that for K ≥ 10, we should
expect to generally get a point estimate for the estimated identification region of
θ0, even though the true identification region is not reduced to a singleton. Hence,
the length of the true identification interval for such values of K and n is far below
the length due to estimation. Our ignorance on the true parameter mostly stems
from finite sampling rather than partial identification issues.
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Figure 2: Probability that P̂ is constrained (Pr(P̃ 6∈ P)).
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Note: each dot corresponds to 1,000 simulations with the DGP Φ−1(p) ∼ N (−3.12, 1.56).

Table 2 displays the properties of the estimated bounds and the confidence in-
tervals CI10.95 for different sample sizes. We consider here both the Theil and
Duncan indices, and the data generating process is defined as before by Φ−1(p) ∼
N (−3.12, 1.56). For this distribution, T ' 0.562 and D ' 0.775. CR(θ0) denotes
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Table 2: Performance of [θ̂, θ̂] and properties of CI10.95.

Theil index Duncan index

K n [θ0, θ0] [E(θ̂)
(σ(θ̂))

, E(θ̂)

(σ(θ̂))

] CR(θ0) [θ0, θ0] [E(θ̂)
(σ(θ̂))

, E(θ̂)

(σ(θ̂))

] CR(θ0)

3 100 [0.426, 0.644] [0.494
(0.171)

, 0.593
(0.170)

] 0.928 [0.627, 0.890] [0.701
(0.213)

, 0.818
(0.184)

] 0.960

1,000 [0.434
(0.064)

, 0.639
(0.043)

] 0.998 [0.635
(0.088)

, 0.881
(0.041)

] 0.975

10,000 [0.426
(0.019)

, 0.643
(0.013)

] 1.000 [0.626
(0.027)

, 0.886
(0.030)

] 0.988

6 100 [0.516, 0.588] [0.536
(0.112)

, 0.537
(0.112)

] 0.958 [0.721 0.804] [0.770
(0.107)

, 0.770
(0.107)

] 0.970

1,000 [0.541
(0.053)

, 0.552
(0.052)

] 0.975 [0.774
(0.056)

, 0.787
(0.046)

] 0.950

10,000 [0.524
(0.027)

, 0.579
(0.027)

] 0.930 [0.738
(0.035)

, 0.801
(0.020)

] 0.978

9 100 [0.540, 0.575] [0.544
(0.092)

, 0.544
(0.092)

] 0.955 [0.733, 0.798] [0.772
(0.080)

, 0.772
(0.080)

] 0.963

1,000 [0.552
(0.037)

, 0.552
(0.037)

] 0.958 [0.781
(0.034)

, 0.781
(0.034)

] 0.952

10,000 [0.555
(0.023)

, 0.557
(0.023)

] 0.998 [0.779
(0.024)

, 0.782
(0.023)

] 0.985

12 100 [0.549, 0.569] [0.538
(0.092)

, 0.538
(0.092)

] 0.920 [0.753, 0.788] [0.769
(0.075)

, 0.769
(0.075)

] 0.960

1,000 [0.557
(0.032)

, 0.557
(0.032)

] 0.955 [0.780
(0.028)

, 0.780
(0.028)

] 0.975

10,000 [0.557
(0.018)

, 0.557
(0.018)

] 0.990 [0.775
(0.024)

, 0.775
(0.024)

] 1.000

Random u.

100 [0.508, 0.594] [0.547
(0.062)

, 0.563
(0.060)

] 0.942 [0.708, 0.820] [0.758
(0.063)

, 0.790
(0.059)

] 0.884

1,000 [0.526
(0.026)

, 0.577
(0.022)

] 0.958 [0.742
(0.028)

, 0.808
(0.023)

] 0.998

10,000 [0.519
(0.011)

, 0.583
(0.011)

] 1.000 [0.730
(0.013)

, 0.811
(0.010)

] 1.000

Random w.

100 [0.528, 0.582] [0.546
(0.052)

, 0.557
(0.052)

] 0.947 [0.728, 0.804] [0.768
(0.044)

, 0.781
(0.042)

] 0.938

1,000 [0.542
(0.022)

, 0.565
(0.021)

] 0.894 [0.764
(0.021)

, 0.792
(0.019)

] 0.924

10,000 [0.537
(0.012)

, 0.569
(0.012)

] 0.944 [0.754
(0.013)

, 0.793
(0.012)

] 0.961

Note: for each (n,K), simulations are based on 400 draws of samples. The distribution of p

is Φ−1(p) ∼ N (−3.12, 1.56), leading to T ' 0.562 and D ' 0.775. CR(θ0) = Pr(θ0 ∈ CI10.95).

“Random” corresponds to a random K, drawn with equal probability in {3, 6, 9, 12}. “u.” and

“w.” refer respectively to the unweighted and weighted indices defined by (B.1) and (B.2).
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the coverage rate of the true parameter by the confidence interval. We consider
designs with fixedK in {3, 6, 9, 12} as well as a random design whereK is drawn in
this same set with equal probability. Finally, to build confidence intervals, we use,

following the law of iterated logarithm, kn =
(

2 ln ln(n)/[nV̂ ∗(θ̂ − θ̂)]
)1/2

1{θ̂ >

θ̂}, where V̂ ∗(θ̂ − θ̂) denotes the bootstrap estimator of V (θ̂ − θ̂).

Overall, the estimator of the identification interval is quite precise even for small
samples. In our setting, we only observe a significant bias on θ0, which however
does not lead to a low coverage of the confidence intervals. We also see that even
for n = 10, 000, standard errors are far larger than the length of the identification
region for K ≥ 9. This means that for K ≥ 9, uncertainty mostly stems from es-
timation, not from partial identification. The bootstrap confidence interval CI10.95
is also usually conservative, with a true coverage rate lying mostly between 0.92
and 1. This is expected, since with our DGP θ0 6∈ {θ0, θ0}, so that the asymptotic
coverage is 1. In the online appendix, we obtain similar results for other DGP’s
and show that the bootstrap test for the binomial mixture model performs well
in practice.

Finally, we provide some evidence regarding the computational cost of our method.
Two cases should be distinguished. When P̃ ∈ P , which can be tested simply
as explained in Subsection D.1 of the online appendix, the maximum likelihood
estimator is trivial to compute since P̂ = P̃ = (N1/n, ..., NK/n)′. However, the
bounds can be costly to obtain in this case. Table 3 shows that computing the
bounds based on Equations (3.3) and (3.4) is actually quick for small K, but
becomes demanding for high K. On the other hand, it is almost immediate
for any K when we can rely on Equation (3.5), as is the case with the Theil
index. Conversely, when P̃ 6∈ P , the bounds can be computed at almost no cost
in view of (3.2), but the computation of P̂ , based on Lemma 3.1, becomes the
bottleneck in terms of CPU. As discussed above, this case prevails when K ≥ 10

for typical sample sizes. The first row of Table 3 shows that the corresponding
time increases with K, which makes sense because the dimension over which we
optimize increases, but remains very manageable even with K = 20. Finally,
computing bootstrap confidence intervals is, as expected, much more expensive
because we have to go through these steps many times (200 in our simulations).
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Table 3: Elapsed CPU time for the estimation of the bounds and confidence
intervals (in 100th of seconds)

K

3 6 9 12 20

Constrained ML, n = 100 15.8 19.9 22.7 37.3 49.9

Theil bounds, Chebyshev, n =∞ 0.13 0.08 0.08 0.08 0.13

Theil bounds, regular, n =∞ 12.6 10.5 37.6 78.5 6,940

Duncan bounds, regular, n =∞ 9.2 25.0 62.2 223.6 6,055

CI, n = 100 (in seconds) 67.2 120.9 126.7 222.5 376.3

Note: the times reported in the table are average elapsed CPU times over 100 simu-

lations. The DGP is the same as in Table 2. The first row corresponds to the time

required to obtain P̂ when m̃ /∈ M. In rows 2 to 4, we let n = ∞ in the sense that

P̃ = P0. Row 2 displays the CPU time needed to compute the bounds of the Theil

by the Chebyshev method, following Equation (3.5). Rows 3 and 4 display the CPU

time needed to compute the Theil and Duncan bounds following Equations (3.3) and

(3.4). The last row displays the CPU time needed to compute the confidence intervals

of both the Theil and Duncan indices, with 200 bootstrap iterations.

5 An application to workplace segregation by na-

tionality across French establishments

Understanding why and how employers make their hiring decisions and employees
apply for jobs requires to be able to measure workplace segregation. Early works
focused on gender or race segregation across occupations or industries, see e.g.
Fields and Wolff (1991). Groshen (1991) is the first contribution to use the in-
formation available at the scale of establishments. Carrington and Troske (1995)
use the 1983 CPS to compute Duncan indices for gender segregation across es-
tablishments, with a focus on small firms. Another strand of literature, which
aims at linking skill dispersion with wage distribution, requires the computation
of segregation indices. Kremer and Maskin (1996) and Kramarz et al. (1996)
analyze, in the US and the French cases, how skill dispersion, measured by seg-
regation indices, accounts for changes in the wage structure. Iranzo et al. (2008)
investigate a similar issue in the case of Italy and find that most of overall skill
dispersion is within, not between, firms. However, few of these works acknowledge
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the issue of small-unit bias and attempt to correct the indices.18 Carrington and
Troske (1997) present new results on black/white segregation introducing their
method to correct for small-unit bias. Hellerstein and Neumark (2008) use the
1990 Decennial Employer-Employee Database to measure workplace segregation
by education, language and ethnicity. They compute adjusted indices using Car-
rington and Troske’s method. Åslund and Skans (2010) and Glitz (2014) also use
Carrington and Troske’s method to attempt to compute workplace segregation in
Sweden and in Germany.

In this section, we aim at computing the Theil and Duncan indices to measure
the segregation between French and foreigners across French businesses. Do all
establishments have the same share of foreigners or, on the contrary, do some firms
specialize in hiring foreign workers while the other ones avoid them? As a large
share of workers are employed in small establishments, not taking into account
the small unit bias would certainly lead to upward-biased estimates of segregation
levels. We use the method introduced in this paper to compute either point or
set estimates of the Theil and Duncan indices. As a matter of comparison, we
also display the naive estimate and the ones proposed by Carrington and Troske
(1997), Allen et al. (2015) and Rathelot (2012).

We rely on the 2007 Déclarations Annuelles de Données Sociales (DADS), the
French matched employer-employee database, which is exhaustive on the private
sector (1.77 million establishments). In what follows, we restrict the sample to the
1.04 million establishments that have between 2 and 25 employees. We define the
minority group as individuals born abroad and with the nationality of a country
outside Europe. 3.7% of workers are considered as minority workers in the total
population. We distinguish two categories of jobs: the least-skilled category gather
white-collar unskilled jobs (employés) and blue-collar jobs (ouvriers). The other
occupations form the skilled category. 41% of jobs belong to the unskilled category.
While 40.7% of majority workers work in unskilled jobs, this is the case for 57.4%
minority workers. Regressing the net wages of each worker on his and the job’s
characteristics, we check the economic relevance of our categories. We find that,
conditional on sex, age and the number of days in the year, workers in unskilled
jobs earn 29% less than those in skilled jobs, minority workers earn 8% less than

18Kremer and Maskin (1996) and Kramarz et al. (1996) interpret their segregation measure as
a R-squared and suggest that using adjusted R-squared might be a way to deal with small-unit
issues.
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majority workers and being a minority worker in an unskilled job is associated
with an additional penalty of 1.6%.

Before presenting our results, we first check that the binomial mixture model is
not rejected in these data. For that purpose, we use the test that we consider
in Subsection C.1 of the online appendix. For K = 2...8, P̃ = P̂ , so the test is
automatically accepted. For K ≥ 9, P̃ 6= P̂ , but this may be expected even if
P0 ∈ P given the results of our Monte Carlo simulations (see Figure 2 above).
Performing the bootstrap test detailed above for K ≥ 8, we do not reject the
binomial mixture model at the 10% level for any value of K (see Table 4). We see
this as evidence that the binomial mixture model is reasonable here.

Table 4: Test of the binomial mixture model.

Unit size p-value of the Unit size p-value of the
K bootstrap test K bootstrap test

≤ 8 1 17 0.54
9 0.80 18 0.34
10 0.56 19 0.11
11 0.98 20 0.61
12 0.80 21 0.19
13 0.72 22 0.07
14 0.77 23 0.73
15 0.99 24 0.17
16 0.49 25 0.37
Note: for K ≤ 8, P̃ = P̂ , so that LRn = 0 and p-value= 1.

Figure 3 displays the estimates of workplace segregation for different firm sizes,
using the Theil and Duncan indices across French establishments. In line with
Figure 1, we observe that the sharp bounds become very informative for K ≥ 5.
The estimated identification region reduces to a singleton for K ≥ 9, as expected
since for these values, P̃ 6= P̂ . Both for the Theil and the Duncan, the naive
estimator is well above the upper bound of the 95% confidence interval. Carrington
and Troske’s correction works quite well for the Theil index, remaining inside
the 95% confidence interval or close to its lower bound. However, in line with
Figure 1, it strongly underestimates the Duncan index, the difference with our
point estimate lying between 0.10 and 0.15 for K ≥ 9. We observe a reversed
pattern for the Allen et al. estimator. Their corrected Theil remains outside
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the 95% confidence intervals for all unit sizes, while their corrected Duncan is
close to our point estimate and mostly within the confidence interval for K ≥ 14.
The method proposed by Rathelot (2012) seems to perform well here for both
indices, suggesting that the mixture of two beta distributions is a reasonable
approximation for the distribution of p.

Figure 3: Theil and Duncan indices, by firm size.
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A striking difference between the naive and Allen et al. estimates, on the one hand,
and the identification region we estimate, on the other hand, is that segregation
seems to be strongly negatively correlated with K in the first case, much less so
in the second case. The negative correlation between the index and the unit size
is not surprising for the naive and the Allen et al. estimates, as the magnitude of
their bias decrease with K (proportional to 1/K for the naive estimator, 1/K3/2

or 1/K2 for Allen et al. estimator). But there may still exist a true negative
dependence of the segregation level on firm sizes. For instance, small firms may
rely more heavily on social networks in their hiring process, resulting in a higher
segregation between firms (people from the minority tending to hire other people
from the same minority, and conversely).19

To test for this correlation, we consider the null hypothesis that K 7→ θ0(K) is
19Pistaferri (1999) shows that, in Italy, smaller firms tend to use more often informal hiring

channels. In a similar vein, Giuliano et al. (2009) show, for the US, that manager’s race affects
the racial composition of new hires.
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constant over K, where θ0(K) is the true parameter corresponding to firms of size
K and K is a subset of firm sizes. Because of partial identification, developing
such a test is not trivial, see Subsection C.2 of the online appendix for details.
We consider three subsets K here: the whole range {2, ..., 25}, {2, ..., 9}, which
corresponds to the definition of very small firms in France, and {10, ..., 25}. The
results are displayed in Table 5. For both the Duncan and Theil indice, we do
not reject the null hypothesis that K 7→ θ0(K) is constant on very small firms.
We also accept at the 10% level the hypothesis of a constant Duncan index on
{10, ..., 25}. We perform the same tests with the alternative methods (naive, Car-
rington and Troske’s correction and Allen et al.’s correction), using the asymptotic
normality of the corresponding estimators and estimating the asymptotic variance
with bootstrap. For the three methods, three possible subsets K and two indices,
we always reject the null hypothesis at the 1% level. Contrary to ours, these ap-
proaches do not satisfy the size invariance axiom mentioned above, which might
cause the apparent dependence of segregation in K.

Table 5: Equality tests of segregation indices across unit sizes.

K Theil index Duncan index

K ≤ 25 < 2.10−3 < 2.10−3

K ≤ 9 0.45 0.25
10 ≤ K ≤ 25 < 2.10−3 0.11

Note: we use the subsampling test detailed in Subsection

C.2 of the online appendix, with 500 subsamples.

Finally, we compute the bounds on the segregation indices for the whole set of
firms. Results are displayed in Table 6. When considering the worker level and
thus using the weighted index, we estimate the bounds to be [0.428, 0.514] on
the Theil index and [0.634, 0.740] on the Duncan index. The uncertainty is thus
quite large, a result mostly driven by the lack of information on very small firms,
which represent a large proportion of our sample (83% of the firms are of size less
than 9). When the index is unweighted, even more importance is given to the
small firms and the identication set is wider. Because of the very large number of
observations, the confidence intervals are not much wider than the identification
sets in this case. For both the Theil and the Duncan, the naive and Allen et al.
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estimates are above the upper bound, while the Carrington-Troske estimates are
below the lower bound. The index corrected by the Rathelot method is just below
the lower bound for the Theil but within the bounds for the Duncan.

Table 6: Comparison between the sharp bounds, the naive approach and previous
corrections on all firms.

Method Theil index Duncan index

Estimate CI0.95 Estimate CI0.95

Sharp bounds

Weighted [0.428, 0.514] [0.423, 0.521] [0.634, 0.740] [0.620, 0.746]

Unweighted [0.423, 0.604] [0.419, 0.609] [0.596, 0.819] [0.584, 0.823]

Alternative methods

Naive 0.749 [0.747, 0.750] 0.915 [0.914, 0.915]

Carrington-Troske 0.421 [0.418, 0.424] 0.502 [0.500, 0.504]

Allen et al. 0.685 [0.683, 0.686] 0.888 [0.888, 0.889]

Rathelot 0.425 [0.421, 0.428] 0.659 [0.654, 0.661]

Conditional on job skill level

Unskilled [0.425, 0.514] [0.422, 0.524] [0.628, 0.730] [0.614, 0.732]

Skilled [0.423, 0.543] [0.415, 0.551] [0.620, 0.774] [0.602, 0.782]

Average (θ0.) [0.424, 0.532] [0.418, 0.541] [0.623, 0.757] [0.607, 0.763]

Note: the conditional indices correspond to the θ0w defined in Subsection B.2, while θ0. is a weighted

average of those two.

We have shown that minority workers are disproportionately represented in un-
skilled positions. Because the proportion of unskilled positions varies across firms,
we can imagine that this simple correlation would increase the segregation of the
minority across firms. The last rows of Table 6 show that this is not the case.
First, segregation seems to remain of the same magnitude once we restrict our
sample to either skilled or unskilled positions within the firm. Second, when we
consider the average conditional index, which is the weighted average of the in-
dices on the two types of positions, we also find that segregation remains at a very
similar level. While the descriptive results mentioned above make us confident
that the job category we have built are economically sensible, our results show
that workplace segregation of minority does not merely reflect the higher share of
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unskilled jobs among minority workers and the uneven distribution of unskilled
positions across establishments. Rather, the same level of segregation seems to
exist for both types of jobs.

Our result is in line with Hellerstein and Neumark (2008). Using a correction à la
Carrington and Troske, they find that ethnic workplace segregation in the U.S. is
not accounted for by differences in education across ethnic groups. However, they
find that taking the language spoken into account explains an important part of
segregation. In the case of France, we conjecture that language will not play as
an important role as in the U.S. but we lack the appropriate data to test this
hypothesis. Similarly, Åslund and Skans (2010) show that controlling for human
capital does not affect much the segregation index in the case of ethnic workplace
segregation in Sweden, using again an extended version of Carrington and Troske’s
correction.

6 Conclusion

In this paper, we investigate what can be learned on segregation indices when only
an imperfect measure of p, distributed according to a binomial variable B(K, p),
is available. We show that in general this leads to partial identification of the seg-
regation index. We then develop inference on the bounds. We have not considered
here segregation indices that do not take the form imposed by Assumption 2.1,
such as the Gini index. Optimizing over distributions with finite support, as done
here, leads to bounds that are in general strictly included in the sharp identified
set. To obtain valid confidence intervals, a solution would be to choose a number
of points in the support large compared to the sample size, so that this problem
becomes negligible compared to the sample variability.

Given their initial purposes, we believe that segregation indices should be functions
of Fp. This does mean, however, that when studying segregation, focusing on p

rather than on X (or X/K) is always preferable.20 When concern is for the
consequences of segregation, the distribution of interest might be the one of the
realized shares. In the school or the residential context, the question is often
about how some groups affect others’ decisions and outcomes. For instance, in
the school context, an important issue is how low- and high-performing students

20We thank an anonymous referee for his detailed suggestions about this aspect.
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affect each other in a classroom and whether more or less segregation is desirable
from an aggregate point of view. Along this line, Bhattacharya (2009) investigates
how the actual allocation has to be modified in order to maximize an aggregate
measure of welfare. Similarly, Graham et al. (2010) aims to estimate the impact
on the average outcome of a change in the allocation of individuals, increasing or
decreasing actual segregation.

Even if one aims at understanding the causes of segregation, the distribution of
X/K may matter, depending on the theoretical model we consider. Specifically,
suppose that when doing their choice of firms (or neighborhood), individuals value
the composition of the firm in terms of the minority (for such an analysis on urban
segregation, see Kasy, 2015). If they observe the actual composition, then X/K
would matter as well. If not because, e.g., all individuals choose simultaneously
as in Kasy (2015), then Fp is more an object of interest.
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A Proofs

A.1 Proof of Proposition 2.3

For any increasing and concave function u, by Jensen’s inequality,

E [u (X/K)] = E [E [u (X/K) |p]]

≤ E [u (E [X/K|p])]

≤ E[u(p)].

Hence, Fp dominates stochastically FX/K at the second order, and by monotonicity,
g(Fp,m01) ≤ θN . Moreover, this is true for any distribution Fp ∈ Dm0 since
such distributions rationalize the one of X/K. Choosing a sequence (Fn,p)n∈N

in Dm0 such that limn→∞ g(Fn,p,m01) = θ0, we thus get θ0 ≤ θN . When the
support of p is not reduced to {0, 1}, X/K is not a deterministic function of p
with probability equal to one. Hence, for any strictly concave function u, the
event E [u (X/K) |p] < u (E [X/K|p]) holds with a positive probability. As a
result, E [u (X/K)] < E[u(p)], and the result follows by strict monotonicity of
g(.,m01) �

A.2 Proof of Lemma 3.1

By Theorems III.4.1 and III.5.1 of Krein and Nudel’man (1977):

M =

{(∫
xdF, ...,

∫
xKdF

)′
, F ∈ DL+1

}
.

In other words, for any m ∈M, there exists a distribution with only L+1 support
points that rationalize this distribution. This implies that P = (P1, ..., PK)′ ∈ P
if and only if there exists (x, y) ∈ SL+1 × TL+1 such that

Pk = Qk

(
L+1∑
j=1

yjx
1
j , ...,

L+1∑
j=1

yjx
K
j

)′
.

Using the definition of Q, we obtain after some algebra

Pk =

(
K

k

) L+1∑
j=1

yjx
k
j (1− xj)K−k, k ∈ {1, ..., K}.

The result follows.
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A.3 Proof of Theorem 3.1

We first establish the asymptotic distribution of P̂ , before turning to the bounds.
The unconstrained maximum likelihood estimator P̃ is simply the vector of sample
proportions (N1/n, ..., NK/n). Therefore, by the central limit theorem,

√
n
(
P̃ − P0

)
d−→ Z,

where Z ∼ N (0,Σ(P0)). Now, the constrained maximum likelihood estimator P̂
satisfies P̂ = ρ(P̃ ), where ρ is defined as in Lemma F.1. Therefore, by this lemma,

√
n
(
P̂ − P0

)
= πCP0

(√
n
(
P̃ − P0

))
+ oP (1).

By continuity of the projection, we obtain

√
n
(
P̂ − P0

)
d−→ πCP0

(Z).

As a result,
√
n (m̂−m0)

d−→ Q−1πCP0
(Z). (A.1)

Hence m̂ is consistent. θ and θ are continuous by Lemma F.2. Consistency of the
estimated bounds follows by the continuous mapping theorem. The asymptotic
distribution of the bounds also follows from (A.1) and the extended delta method
of Shapiro (1991) �

A.4 Proof of Theorem 3.2

The proof consists in five steps.

1. Asymptotic normality of P̃ ∗. Our bootstrap consists of drawing a i.i.d.
sample (X∗1 , ..., X

∗
n) with

(Pr(X∗i = 1), ....,Pr(X∗i = K))′ = P̂b.

Moreover, introducing the function I(x) = (1{x = 1}, ...,1{x = K})′, we have
P̃ ∗ = 1

n

∑n
i=1 I(X∗i ). Fix ε > 0. For n large enough, ‖I(X∗i )‖ ≤ ε

√
n. Therefore,

1

n

n∑
i=1

E
[
‖I(X∗i )‖2 1

{
‖I(X∗i )‖ > ε

√
n
}]
→ 0.

Besides,
V
(
I(X∗i )|P̂b

)
= Σ(P̂b)

P−→ Σ(P0).
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Hence, by the Lindeberg-Feller central limit theorem (see, e.g., van der Vaart, 2000,
Theorem 2.27), we have, conditional on P̂b and with probability approaching one,

√
n
(
P̃ ∗ − P̂b

)
d−→ N (0, Σ(P0)) . (A.2)

2. Asymptotic distribution of P̂ ∗. We now prove that
√
n
(
P̂ ∗ − P̂b

)
d−→ πCP0

(Z), (A.3)

where Z ∼ N (0,Σ(P0)).

First, suppose that P0 ∈
◦
P . Then with probability approaching one, P̂b ∈

◦
P

and thus also P̃ ∗ ∈ P . As a result, with probability approaching one, P̂ ∗ = P̃ ∗.
Thus, (A.2) also holds when replacing P̃ ∗ by P̂ ∗. (A.3) follows by remarking that
CP0 = RK , so that πCP0

(Z) = Z.

Next, suppose that P0 ∈ ∂P . Let Z∗n =
√
n
(
P̃ ∗ − P̂b

)
. By the continuous

mapping theorem, πCP0
(Z∗n)

d−→ πCP0
(Z). Therefore, it suffices to prove that

√
n
(
P̂ ∗ − P̂b

)
− πCP0

(Z∗n)
P−→ 0. (A.4)

For that purpose, remark that by Lemma F.1,
√
n
(
P̂ ∗ − P̂b

)
=
√
n
(
P̂ ∗ − P0

)
+
√
n
(
P0 − P̂b

)
= πCP0

(√
n(P̃ ∗ − P0)

)
+
√
n
(
P0 − P̂b

)
+ oP (1) . (A.5)

By Assumption 3.3, the boundary ∂CP0 of CP0 is linear. Thus, it is the tangent
space of P at P0, and by definition,∥∥∥P̂b − π∂CP0

(P̂b)
∥∥∥ = oP

(∥∥∥P̂b − P0

∥∥∥) .
Let π∂CP0

denotes the linear projection onto the tangent space ∂CP0 of CP0 and
un = π∂CP0

(
√
n(P0 − P̂b)). We get∥∥∥√n(P0 − P̂b

)
− un

∥∥∥ =
√
n
∥∥∥P̂b − π∂CP0

(P̂b)
∥∥∥

=
√
n oP

(∥∥∥P̂b − P̃∥∥∥+
∥∥∥P̃ − P0

∥∥∥)
= oP

(√
n
∥∥∥P̃ − P0

∥∥∥) = oP (1), (A.6)

where the first equality stems from linearity of π∂CP0
, the second from the trian-

gular inequality and the third from
∥∥∥P̂b − P̃∥∥∥ = minP∈∂P

∥∥∥P − P̃∥∥∥. Combining
(A.5) and (A.6) yields

√
n
(
P̂ ∗ − P̂b

)
= πCP0

(√
n(P̃ ∗ − P0)

)
+ un + oP (1). (A.7)
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Now, remark that

πCP0
(h) = h1{h ∈ CP0}+ π∂CP0

(h)1{h 6∈ CP0}.

Besides, for all h1 ∈ RK and h2 ∈ ∂CP0 , h1 +h2 ∈ CP0 if and only if h1 ∈ CP0 . As
a result, for all h1 ∈ RK and h2 ∈ ∂CP0 ,

πCP0
(h1) + h2 = πCP0

(h1 + h2). (A.8)

Hence,

√
n
(
P̂ ∗ − P̂b

)
= πCP0

(√
n(P̃ ∗ − P0) + un

)
+ oP (1)

= πCP0
(Z∗n) + oP (1), (A.9)

where the first equality follows by (A.7), (A.8) and the fact that un ∈ ∂CP0 , and
the second by (A.6) and the fact that projections are continuous. (A.4), and
therefore (A.3) follows.

3. Asymptotic distribution of (T
∗
, T ∗). We have m̂∗ = Q−1P̂ ∗. Moreover,

(θ, θ) is differentiable at m0. Applying the delta method for the bootstrap (see,
e.g. van der Vaart, 2000, Theorem 23.9) then yields(

T ∗

T ∗

)
d−→

(
θ
′
(m0)Q

−1πCP0
(Z)

θ′(m0)Q
−1πCP0

(Z)

)
. (A.10)

4. Asymptotic validity of the confidence interval when m0 ∈
◦
M. When

m0 ∈
◦
M, In

P−→ 0 and it suffices to show that

inf
θ0∈[θ0,θ0]

lim
n→∞

Pr
(
θ0 ∈ CIinterior

1−α
)

= 1− α. (A.11)

Suppose first that θ0 = θ0. Then

Pr
(
θ0 ∈ CIinterior

1−α
)

= Pr
(
T ≤ c1−α(T ∗), T +

√
n(θ0 − θ0) ≥ cα(T ∗)

)
= Pr (T ≤ c1−α(T ∗))− Pr

(
T ≤ c1−α(T ∗), T +

√
n(θ0 − θ0) < cα(T ∗)

)
. (A.12)

Let P1 and P2 denote the two probability terms in (A.12). θ is differentiable atm0,
with a nonzero gradient by Assumption 3.3. Besides, when m0 ∈

◦
M, πCP0

(Z) =

Z. Thus, by Theorem 3.1, the asymptotic distribution of T is normal with strictly
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positive variance. This distribution is therefore continuous at c1−α(T ). By Part
3 of the proof and Theorem 1.2.1 of Politis et al. (1999) (see also their remark
1.2.1), P1 → 1− α with probability one.

Besides, with probability one,

P2 ≤ Pr
(
T +
√
n(θ0 − θ0) < cα(T ∗)

)
→ 0,

since cα(T ∗) = OP (1) and
√
n(θ0 − θ0)→∞. As a result, with probability one,

Pr
(
θ0 ∈ CIinterior

1−α
)
→ 1− α.

The same holds when θ0 = θ0. Finally, if θ0 ∈ (θ0, θ0),

Pr
(
θ0 ∈ CIinterior

1−α
)

= Pr
(
T +
√
n(θ0 − θ0) ≤ c1−α(T ∗), T +

√
n(θ0 − θ0) ≥ cα(T ∗)

)
.

Because T +
√
n(θ0− θ0)→ −∞ and T +

√
n(θ0− θ0)→ +∞, the probability on

the right-hand side tends to one. Hence, (A.11) holds.

5. Asymptotic validity of the confidence interval when m0 ∈ ∂M. In
this case, θ0 = θ0 = θ0. Thus, we have, by Theorem 3.1,

√
n(θ̂ − θ̂) = OP (1).

Because kn →∞, In
P−→ 1 and it suffices to show that with probability one,

lim
n→∞

Pr
(
θ0 ∈ CIboundary

1−α

)
= 1− α. (A.13)

We have

Pr
(
θ0 ∈ CIboundary

1−α

)
= Pr

(√
n

∣∣∣∣θ̂ − θ0 + θ0
2

∣∣∣∣ ≤ c1−α(T ∗s )

)
= Pr (Ts ≤ c1−α(T ∗s )) ,

where in the first equality we have used the definition of CIboundary
1−α and the fact

that θ0 = θ0 = θ0. Remark that T ∗s = |T ∗ + T ∗|/2. Thus, by Part 3 above, the
continuous mapping theorem, Assumption 3.3 and Theorem 1.2.1 of Politis et al.
(1999) once more,

Pr (Ts ≤ c1−α(T ∗s ))→ 1− α

with probability one. The result follows �

39



References

Allen, R., S. Burgess, R. Davidson, and F. Windmeijer (2015): “More
Reliable Inference for Segregation Indices,” Econometrics Journal, 18, 40–66.

Andrews, D. K. (2000): “Inconsistency of the Bootstrap when a Parameter Is
on the Boundary of the Parameter Space,” Econometrica, 68, 399–406.

Andrews, D. K. and S. Han (2009): “Invalidity of the Bootstrap and the
m Out of n Bootstrap for Confidence Interval Endpoints Defined by Moment
Inequalities,” Econometrics Journal, 12, S172–S199.

Åslund, O. and O. N. Skans (2010): “Will I See You at Work? Ethnic Work-
place Segregation in Sweden, 1985-2002,” Industrial and Labor Relations Review,
63, 471–493.

Bayer, P. and R. McMillan (2012): “Tiebout sorting and neighborhood strat-
ification,” Journal of Public Economics, 96, 1129–1143.

Bhattacharya, D. (2009): “Inferring optimal peer assignment from experimen-
tal data,” Journal of the American Statistical Association, 104, 486–500.

Brunello, G. and L. Rocco (2013): “The effect of immigration on the school
performance of natives: Cross country evidence using PISA test scores,” Eco-
nomics of Education Review, 32, 234–246.

Card, D. and J. Rothstein (2007): “Racial segregation and the black-white
test score gap,” Journal of Public Economics, 91, 2158–2184.

Carrington, W. J. and K. R. Troske (1995): “Gender Segregation in Small
Firms,” Journal of Human Resources, 30, 503–533.

——— (1997): “On Measuring Segregation in Samples with Small Units,” Journal
of Business & Economic Statistics, 15, 402–09.

——— (1998): “Interfirm Segregation and the Black/White Wage Gap,” Journal
of Labor Economics, 16, 231–60.

Chakravarty, S. and J. Silber (1994): “Employment Segregation Indices:
An Axiomatic Characterization,” in Models and Measurement of Welfare and
Inequality, ed. by W. Eichhorn, Springer Berlin Heidelberg, 912–920.

Chernozhukov, V., I. Fernandez-Val, J. Hahn, and W. Newey (2013):

40



“Average and Quantile Effects in Nonseparable Panel Models,” Econometrica,
81, 535–580.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Con-
fidence Regions for Parameter Sets in Econometric Models,” Econometrica, 75,
1243–1284.

Cortese, C., F. Falk, and J. Cohen (1978): “Understanding the Standardized
Index of Dissimilarity: Reply to Massey,” American Sociological Review, 43,
590–592.

Cutler, D. M. and E. L. Glaeser (1997): “Are Ghettos Good or Bad?” The
Quarterly Journal of Economics, 112, 827–72.

Cutler, D. M., E. L. Glaeser, and J. L. Vigdor (1999): “The Rise and
Decline of the American Ghetto,” Journal of Political Economy, 107, 455–506.

——— (2008): “When are ghettos bad? Lessons from immigrant segregation in
the United States,” Journal of Urban Economics, 63, 759–774.

Dette, H. and K. Schorning (2013): “Complete classes of designs for nonlinear
regression models and principal representations of moment spaces,” The Annals
of Statistics, 41, 1260–1267.

Dette, H. and W. J. Studden (1997): The theory of canonical moments with
applications in statistics, probability, and analysis, vol. 338, John Wiley & Sons.

Echenique, F. and R. Fryer (2007): “A Measure of Segregation Based on
Social Interactions,” Quarterly Journal of Economics, 122, 441–85.

Fields, J. and E. N. Wolff (1991): “The Decline of Sex Segregation and the
Wage Gap, 1970-80,” Journal of Human Resources, 26, 608–622.

Fredriksson, P., B. Öckert, and H. Oosterbeek (2013): “Long-Term
Effects of Class Size,” The Quarterly Journal of Economics, 128, 249–285.

Gentzkow, M. and J. M. Shapiro (2011): “Ideological Segregation Online
and Offline,” The Quarterly Journal of Economics, 126, 1799–1839.

Giuliano, L., D. I. Levine, and J. Leonard (2009): “Manager Race and the
Race of New Hires,” Journal of Labor Economics, 27, 589–631.

Glitz, A. (2014): “Ethnic Segregation in Germany,” Labour Economics, 29, 28–

41



40.

Graham, B., G. Imbens, and G. Ridder (2010): “Measuring the Effects of
Segregation in the Presence of Social Spillovers: A Nonparametric Approach,”
NBER Working Paper 16499.

Groshen, E. L. (1991): “The Structure of the Female/Male Wage Differential:
Is It Who You Are, What You Do, or Where You Work?” Journal of Human
Resources, 26, 457–472.

Hellerstein, J. K. and D. Neumark (2008): “Workplace Segregation in the
United States: Race, Ethnicity, and Skill,” The Review of Economics and Statis-
tics, 90, 459–477.

Horn, R. A. and C. R. Johnson (1990): Matrix analysis, Cambridge Univer-
sity Press.

Hutchens, R. (2001): “Numerical measures of segregation: desirable properties
and their implications,” Mathematical Social Sciences, 42, 13–29.

Imbens, G. W. and C. Manski (2004): “Confidence Intervals for Partially
Identified Parameters,” Econometrica, 72, 1845–1857.

Iranzo, S., F. Schivardi, and E. Tosetti (2008): “Skill Dispersion and Firm
Productivity: An Analysis with Employer-Employee Matched Data,” Journal
of Labor Economics, 26, 247–285.

Jahn, J., C. F. Schmid, and C. Schrag (1947): “The Measurement of Eco-
logical Segregation,” American Sociological Review, 12, 293–303.

James, D. R. and K. E. Taeuber (1985): “Measures of Segregation,” Sociolog-
ical Methodology, 15, 1–32.

Kasy, M. (2015): “Identification in a model of sorting with social externalities
and the causes of urban segregation,” Journal of Urban Economics, 85, 16–33.

Kramarz, F., S. Lollivier, and L.-P. Pelé (1996): “Wage Inequalities
and Firm-Specific Compensation Policies in France,” Annales d’Economie et
de Statistique, 41-42, 369–386.

Krein, M. G. and A. A. Nudel’man (1977): The Markov Moment Problem
and Extremal Problems, Translations of Mathematical monographs.

42



Kremer, M. and E. Maskin (1996): “Wage Inequality and Segregation by
Skill,” NBER Working Papers 5718, National Bureau of Economic Research,
Inc.

Leckie, G. and H. Goldstein (2014): “A multilevel modelling approach to
measuring changing patterns of ethnic composition and segregation among Lon-
don secondary schools, 2001-2010,” Journal of the Royal Statistical Society: Se-
ries A (Statistics in Society).

Lord, F. M. (1969): “Estimating True-Score Distributions in Psychological Test-
ing (an Empirical Bayes Estimation Problem),” Psychometrika, 34, 259–299.

Massey, D. S. and N. A. Denton (1988): “The Dimensions of Residential
Segregation,” Social Forces, 67.

Pistaferri, L. (1999): “Informal Networks in the Italian Labor Market,” Gior-
nale degli Economisti, 58, 355–375.

Politis, D., J. Romano, and M. Wolf (1999): Subsampling, Springer.

Rathelot, R. (2012): “Measuring Segregation when Units are Small: a Para-
metric Approach,” Journal of Business & Economic Statistics, 30, 546–553.

Romano, J. and A. Shaikh (2010): “Inference for the Identified Set in Partially
Identified Econometric Models,” Econometrica, 78, 169–211.

Shapiro, A. (1991): “Asymptotic analysis of stochastic programs,” Annals of
Operations Research, 30, 169–186.

Söderström, M. and R. Uusitalo (2010): “School Choice and Segregation:
Evidence from an Admission Reform,” Scandinavian Journal of Economics, 112,
55–76.

Stoye, J. (2010): “Partial identification of spread parameters,” Quantitative Eco-
nomics, 1, 323–357.

van der Vaart, A. W. (2000): Asymptotic Statistics, Cambridge University
Press.

Winship, C. (1977): “A Revaluation of Indexes of Residential Segregation,” Social
Forces, 55, 1058–1066.

Wood, G. R. (1999): “Binomial mixtures: Geometric Estimation of the Mixing

43



Distribution,” Annals of Statistics, 27, 1706–1721.

44


