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Consider the duration of stay of migrants in a host country. We propose a
statistical model of locally interdependent hazards in order to examine whether
interactions at the level of the neighbourhood are present and lead to social
multipliers. To this end, we propose and study a new two-stage estimation
strategy based on an inverted linear rank test statistic. Using a unique large
administrative panel dataset for the population of recent labour immigrants to
the Netherlands, we quantify the local social multipliers in several factual and
counterfactual experiments, and demonstrate that these can be substantial.

Keywords: interdependent hazards, local interaction, social multipliers, re-
turn migration

JEL Codes: C41, C10, C31, J61

∗bijwaard@nidi.nl. Netherlands Interdisciplinary Demographic Institute (NIDI-KNAW/ Uni-
versity of Groningen), PO Box 11650, 2502 AR The Hague, the Netherlands, +31 70 3565224
†christian.schluter@univ-amu.fr GREQAM, Centre de la Vieille Charité, 13002 Marseille,
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1 Introduction

Much economic and social activity arises from and gives rise to local interactions at
the level of the neighbourhood. Locally, social and geographic space coincides, and
such interaction can lead to individual outcomes influencing and being influenced
by outcomes of one’s neighbours or peers, endogenous “neighbourhood effects” for
short. This interaction gives rise in turn to local social multipliers which can am-
plify the social effect of idiosyncratic events. Here we consider the case of a duration
outcome, study identification, and propose a method for estimating a reduced-form
statistical model of interdependent hazards which arise from such local interactions.
In particular, our substantive empirical application concerns the duration of recent
labour immigration to the Netherlands. Spatially, immigrants not only cluster but
also segregate along ethnic lines. Hence, using Dutch administrative data on individ-
ual immigration durations, we test whether an individual’s return hazard is impacted
on by the propensity of her peers or co-ethnics in the neighbourhood to return.

This new model of interdependent hazards contributes to the recent literature of
modelling of social interactions in duration analysis. However, it differs from the
model of interdependent durations of Honoré and de Paula (2010), who consider a
complete information 2-agent synchronisation game of optimal switching. We believe
that, in the specific context of our empirical setting - local social interactions at the
level of the neighbourhood - information is necessarily incomplete while the number
of peers is much larger and ties are weaker than in their setting. For the same reason,
our model also differs from the hazard model with social interaction of Drepper and
Effraimidis (2015). They consider the hazard of first-time drug use in a very small
group (siblings), and seek to estimate the impact of the exogenous first transition
within the group on other group members. Our approach also differs from models in
which correlations between hazards arise because of correlated frailties (e.g. Duffie
et al. (2009) for a recent model) that are often parametrised using copulas (see
e.g. Goethals et al. (2008) for a discussion). In our model, hazards are directly
modelled as interdependent, and this interdependence arises from local interactions.
In terms of the spatial dimension of the analysis, we also contribut methodologically
and empirically to a growing literature that confirms the importance of the effects of
local interactions and of the neighbourhood.1

Specifically, our substantive empirical application concerns the staying durations
of immigrants in a host country, a key question in the migration literature (see e.g.
the survey by Dustmann and Görlach (2016)). The spatial clustering2 of immigrants

1For instance, Topa (2001) considers spatial dependence of unemployment rates in a setting in
which spatial interaction arise from information spillovers. The spatial units are 863 census tracts
in Chicago, and residents in one tract are assumed to exchange information locally with residents
of the adjacent tracts. Instead of unemployment incidences, Gobillon et al. (2010) consider spatial
differences in the duration of unemployment using administrative data for 1300 municipalities in
the Paris region. In their paper the neighbourhood affects the outcome directly, thus defining an
exogenous neighbourhood effect. Bayer et al. (2008) study the propensity of neighbours to work
together by examining whether individuals residing in the same city block are more likely to work
together than those in nearby blocks.

2See e.g. Bartel (1989), and Logan et al. (2002) for an examination of ethnic immigrant enclaves
in the US, and Clark and Drinkwater (2002) for the UK. Zorlu and Mulder (2008) observe for the
Dutch case, the subject of our empirical investigation, that “in some neighbourhoods in The Hague,
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is often a manifestation of local social networks at work (e.g. Munshi (2003), McKen-
zie and Rapoport (2010)), and local interactions are expected to be important for
recent labour immigrants since they are newcomers to the host country and the local
labour market. Despite this presumption of their importance, severe data limitations
- relating foremost to the size of the spatial units, to sample size and data reliability
- have often prevented their rigorous empirical investigation. The usual data situa-
tion in migration analysis is one of small samples, possibly subject to selectivity and
attrition issues, extracted from surveys of respondents who provide recall data; these
problems are particularly acute in studies of migration durations since survey attrition
usually confounds outmigration. If spatial units are reported in survey data at all,
these are typically either municipalities or regions. Such spatial units are excessively
large for analyses of local interactions.

We overcome these data challenges using a unique administrative panel for the
entire population of recent labour immigrants to the Netherlands covering the years
1999-2007, which is extensively described in Data Appendix B. The data character-
istics -large size, repeated and accurate measurement- are fairly unique in migration
analysis, as is the spatial unit, the neighbourhood. This Dutch immigrant register is
based on the legal requirement for immigrants to register with the authorities upon
arrival. Moreover, natives as well as immigrants are required to register with their
municipality. Several other official registers are linked by Statistics Netherlands to
this immigrant register, such as the social benefit and the income register (used by the
tax authorities). Sojourn times in the Netherlands, in a specific neighbourhood, and
in labour market states are thus recorded accurately. Consequently, no data based
on individual recall has to be used, and the administrative population has no attri-
tion. Moreover, the usual concerns about measurement error are less acute. Another
attractive feature of our data is the administrative report in the immigrant register
(consistent with the visa status at entry) of the immigration motive. This enables
us to focus explicitly and exclusively on labour immigrants. The immigration motive
is usually latent in standard datasets, and our previous work (Bijwaard (2010)) has
confirmed that the systematically different behavioural patterns of labour and non-
labour migrants confound the empirical analysis. Using the same data, Bijwaard,
Schluter and Wahba (2014) have established the considerable incidence of return mi-
gration, and have examined the individual-specific drivers of the return decision. The
size of our population data of recent labour migrants permits us to consider specific
groups. As in Adda et al. (2015) in the context of Germany, we consider here the
largest ethnic group of recent labour immigrants, namely Turkish labour immigrants
(about 8000 individuals).

The spatial dimension of our data allows us now to examine the extent to which
local social interactions affect the duration of stay. In particular, the dataset identifies
the neighbourhood the immigrant lives in, defined by Statistics Netherlands as areas
that include approximately 2,000 households on average. There are about 14,000
neighbourhoods. The extent of spatial clustering and segregation among the four
principal immigrant groups (Turks and three others for comparison) is extensively

Amsterdam and Rotterdam, the share of non-Western foreigners has reached levels above 70 per
cent and even 80 per cent” (p.1902). Such spatial concentration strongly suggests the presence of
local interactions.
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documented in Data Appendix B.1 and B.2. For instance, the Lorenz curve analysis
shows that about 80% (70%) of this immigrant population lives in about the 20%
(10%) most concentrated neighbourhoods, and the mapping of the 100 most concen-
trated neighbourhoods for each group reveals little spatial overlap. This evidence
suggests that there is scope for local interactions resulting in interdependent return
hazards.

To this end and within this empirical context, we propose a model of interde-
pendent hazards that arise from local interactions. First, we study identification.
Identification and estimation strategies for the linear model3 are not available to us
since duration models are inherently non-linear. Moreover, the objects of interest,
migration duration hazards, are not directly observable, nor can we use classic identi-
fication results for mixed-proportional hazard models (MPH), since the reduced-form
of our model of locally interdependent hazards is not of the MPH form. Despite these
challenges, we demonstrate non-parametric identification.

Our estimation strategy is based on Tsiatis’ (1990) inverted linear rank (LR) test
(see also Bijwaard et al. (2013)), that is developed further here for the spatial setting.
The LR test statistic is based on a weighted comparison between the value of a co-
variate for individual i at a (transformed and uncensored) duration, and the average
value of the covariate for all survivors at this duration. Under the null of no covariate
effect, the covariate does not influence the hazard, and the expected difference is thus
zero. Using Gehan weights ensures the monotonicity of the estimating function. The
linear rank estimator (LRE) is the root of the analogue sample moment condition.
Since the object of interest, the return hazard, is not directly observable, we follow
the approach adopted by Pinske and Slade (1998), who use the generalised residuals
in a spatial probit model. For durations, the generalised residuals are obtained by
applying a transformation model to the durations, i.e. we consider the integrated
hazards. We also note that the spatial interaction matrix (W ) for our data is very
large (a non-sparse 89, 0002 in our empirical application), so that estimators using an
inverse of the spatial interaction matrix are computationally not feasible. In order
to solve this computational problem associated with the size of the social interaction
matrix, we follow the suggestions of Klier and McMillen (2008), and use a first or-
der approximation of the moment condition in terms of the social local interaction
parameter.4

3To be precise, consider the model y = α+xβ+Wxδ+ρWy+ε, where y = [yi]i=1,..,n is a n−vector
of outcomes, x is the n × k matrix collecting exogenous characteristics and W = [wij ]i=1,..n;j=1,..n

is the n × n social interaction matrix (indicating whether individual j is a peer of individual i). ρ
captures endogenous neighbourhood effect, and δ the exogenous neighbourhood effect. The reflection
problem (Manski, 1993) refers to the perfect multicollinearity between Wy and Wx. E.g. Bramoullé
et al. (2009) consider a W that exhibits intransitive triads, so (x,Wx,Wy) can be instrumented by
(x,Wx,W 2x).

4These econometric problems and solutions are very different from the analysis of exogenous spa-
tial effects on unemployment durations examined in e.g. Gobillon et al. (2010) who use proportional
hazard models in which baseline hazards are estimated for each location. More specifically, they (i)
estimate the covariate coefficients across all municipalities using stratified partial maximum likeli-
hood (SPLE), and then recover the integrated baseline hazard for each municipality, indexed by j,
using the Breslow estimator, (ii) the locality specific baseline hazard is assumed to have a multi-
plicative form, θj(t) = αjθ(t), and the coefficients are estimated using minimum distance (MD); (iii)
these coefficients αj are then regressed on locality characteristics Zj .
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The outline of this paper is as follows. In the next section, we present the model of
locally interdependent hazards, demonstrate identification, and detail the estimation
strategy whose performance is then examined in the context of a simulation study.
Section 3 is devoted to the empirical application, the locally interdependent hazards of
leaving the host country (the Netherlands) for recent labour immigrants of the largest
ethnic group (Turks). We quantify the social multipliers for return probabilities in
several factual and counterfactual experiments, where we vary pull and push factors
as well as immigrant characteristics. Overall we show that these social multipliers
can be substantial. All proofs are collected in the Appendix A. Appendix B contains
a detailed description of the data, as well as evidence about the spatial clustering and
segregation of the different immigrant groups.

2 Local social interactions in duration models: In-

terdependent hazards

We seek to determine the effect of local social interactions on the return migration
intensity of immigrants, so the random outcome variable of interest is the time spent
in the Netherlands, denoted by T . The observational units are recent labour immi-
grants in the host country (the Netherlands). For expositional clarity, we present
first a restricted model of the migration duration which ignores the endogenous social
interaction effect.

We follow common practice in duration analysis (for a survey see e.g. van den
Berg (2001), who also observes that the “hazard function is the focal point of econo-
metric duration models” (p.3387)) and express the distribution of the migration du-
ration variate T in terms of the associated hazard, say λ. The proportional hazard
(PH) model expresses this return hazard as the product between a baseline hazard,
λ0(t, α), which is a function of time alone (and a parameter vector α) and common to
all individuals, and a covariate function, exp(x(t)β), which accelerates or decelerates
exits: λ(t|x(t); θ) = λ0(t, α) exp(x(t)β) with θ = (α′, β′)′ and x(t) being the history
of the covariate process x(.) up to time t. The parameter space Θ is assumed to be
convex. The covariate vector x(t) is allowed to change over time, but we assume that
their sample paths are piecewise constant, i.e. the derivative with respect to t is 0
almost everywhere, and left continuous. As regards the baseline hazard, we assume
that λ(t, α) is a positive function, that it is twice differentiable, and that its second
derivative is bounded in α and t.

In order to accommodate unobserved heterogeneity, the mixed proportional hazard
model (MPH) extends the PH model by multiplying it by a time-invariant person-
specific positive error term, say v with some distribution G, assumed to be indepen-
dent of the covariate process: λ(t|x(t), v; θ) = vλ0(t, α) exp(x(t)β). It is well known
that both baseline hazard and G are non-parametrically identifiable (see e.g. Elbers
and Ridder (1982)), so that genuine duration dependence can be distinguished from
dynamic sorting, provided that some restrictions are imposed on one of these two
objects: either v has a finite mean, or the tail behaviour of G is restricted, or λ(t, α)
is positive and finite for t close to zero. We do not need to specify G further. In
our empirical application the baseline hazard is modelled as piecewise constant, so
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λ0(t, α) = exp
(
α0 + α′−0A(t)

)
with A(t) =

(
I1(t), . . . , Ik(t)

)′
denoting the vector of

interval indicators.
Social interaction models distinguish between exogenous or contextual effects and

endogenous effects. The contextual effects are easily incorporated in the MPH model
since the covariate vector x(t) can include pre-determined characteristics of the neigh-
bourhood the individual lives in (we thus avoid increasing the notational burden). The
maintained assumption is that the baseline hazard function does not vary across in-
dividuals in different neighbourhoods (recall Footnote 4 for an alternative approach).

We model the endogenous local interaction effects as follows. Consider migrant i
in a particular neighbourhood. Denote the set of relevant peers (in our case migrants
of a particular ethnic group) of migrant i by Ni(t) with i = 1, .., n. Since our spatial
units are small, this set might extend beyond the confines of the neighbourhood, and
might include peers from neighbouring neighbourhoods. Ni is a function of time since
the migrant might move to a different neighbourhood within our observation window.
The number of relevant peers is denoted by #Ni(t). As is common in spatial and
social network econometrics, we collect this information in the n×n spatial interaction
matrix W (t) = [wij(t)]i=1,..,n;j=1,..,n with wii(t) = 0, wij(t) = 1/#Ni(t) if j ∈ Ni(t)
and zero otherwise. Hence all peers of i have the same weight, and these weights sum
to 1.

As the outcome of interest is the return hazard, the endogenous local effect refers
to the extent to which the return hazards of peers of migrant i ({j ∈ Ni(t) : λj})
influence and are influenced by the return hazard of migrant i. Since we are working
within the MPH paradigm, it is natural to assume that this effect is proportional, so
that it is the geometric mean  ∏

j∈Ni(t)

λj

1/#Ni(t)

that impacts on i’s hazard λi. We thus obtain the following model of interdependent
hazards:

λi(t|.) = viλ0(t, α) exp
(
xi(t)β + ρwi.(t) ln

[
λ(t)

])
, (1)

with λ(t) ≡ [λi(t|.)]i=1,..,n denoting the N×1 vector whose ith element is λi(t|.) and wi.
denoting the ith row of W . ρ is the endogenous local interaction effect which we seek
to estimate. The models stipulates that an individual’s (return) hazard is impacted on
by the propensity of her peers to return (alternatively, the hazard could be modelled
as a function of the individual’s subjective assessment of her peers’ return, and (1) is
obtained by imposing rational expectations).

Our model of interdependent hazards thus differs from the model of interdepen-
dent durations of Honoré and de Paula (2010), who consider a complete information
2-person game of optimal switching. We believe that, in our social local interaction
context, information is necessarily incomplete while the number of peers is much larger
and ties are weaker than in their setting. For the same reason, our model also differs
from the hazard model with social interaction of Drepper and Effraimidis (2012).
They consider the hazard of first-time drug use in a very small group (siblings), and
seek to estimate the impact of the first transition within the group on other group
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members. We believe this timing-of-events framework, which requires the first transi-
tion to be exogenous (the so-called no-anticipation hypothesis), to be inappropriate in
our specific setting, where it is the coherent probabilistic assessment of peers’ returns
that affect the individual’s hazard, rather than the (timing of the) realisation of one
particular first-return event.

We defer an illustration of the spatial effects on the hazards to Section 2.5, where
these are considered in two analytically treatable examples. There we also present
simulation evidence on the extent of the spatial biases when the spatial effect is
ignored.

2.1 The reduced form

Let v = [vi]i=1,..,n, X(t) = [xi(t)]i=1,..,n, and X(t) and W (t) denote the history of the
covariate process and the spatial interactions. Then solving (1) yields the reduced
form

λ
(
t|θ, ρ,X(t),W (t), v

)
= exp

(
H(t; ρ)X∗(t)θ +H(t; ρ) ln v

)
(2)

with H(s; ρ) = (I − ρW (s))−1 and X∗(s) = (lnλ0(s);X(s)). For notational conve-
nience, we suppress the explicit conditioning on the covariate and the spatial processes
(X(t),W (t)). For (I−ρW (t))−1 to be well-defined, we require that ρ be smaller than
the inverse of the absolute value of the largest eigenvalue of W (t). As W can change
with time, consider the smallest of the upper limits, and define the feasible convex
set for ρ thus defined by ΘW ≡ ∩tΘW (t). The ith element of λ is given by

λi
(
t|·
)

= exp
(
e′i(H(t; ρ)X∗(t)θ +H(t; ρ) ln v)

)
=

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
[λ0 (t, α)]HiΣ (3)

where ei is a (n × 1) selection vector that has a one in the ith position and zeros
everywhere else, Hij is the (i, j)th element of the matrix H(s; ρ), and HiΣ =

∑
j Hij.

2.2 Identification

The correlation structure implied by equation (3) makes clear that we no longer have
a MPH model since, depending on the structure of local interactions, unobservables
vj 6=i can influence the i’s hazard even though all vj are iid random variables. This
dependence renders the task of separating out dynamic sorting from duration depen-
dence more difficult. However, it is achievable:

Theorem 1 Assume that unobserved heterogeneity vi is independent and identically
distributed according to G with mean µ. Then the model’s parameters are identified.

Identification is strengthened if not all individuals are neighbours, and the network
structure exhibits symmetry (specifically W1n = Wn1 = 0, and the last and first
row of W are identical), so local interdependencies in the comparison at time t = 0
between individuals 1 and n cancel out; or if there are disconnected neighbourhoods
of different sizes.
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2.2.1 Threats to identification

If individuals purposefully locate into particular neighbourhoods, it is conceivable
that the unobserved heterogeneity terms v are correlated across individuals. While
the proof of theorem 1 has imposed the independence assumption, it also suggests how
we can relax this independence hypothesis, since we have first exploited systematic
within-neighbourhood variation. In particular, we can generalise the empirical model
to allow for systematic variation in unobservable heterogeneity across the discon-
nected neighbourhoods (such as “high” v. “low” mean v neighbourhoods), without
materially affecting the proof. Within a neighbourhood, however, we have to maintain
the independence assumption.

The threat to identification in our specific empirical context is further lessened
by the following two observations. First, we control for systematic observable vari-
ation in neighbourhood characteristics by including contextual effects as regressors.
Second, the location choices of our population of interest are severely constrained:
Our population of interest are recent migrants, who, because of being recent, do not
qualify for social transfer and protection programmes such as social housing. More-
over, at arrival, most Turkish labour immigrants are poor (see Table 3 below). In
the Netherlands, social housing represents a large stock of accommodation-for-rent in
the poorer neighbourhoods. Hence, poor recent labour immigrants are unlikely to be
able to choose one particular neighbourhood.

2.3 Generalised residuals and the linear rank estimator

The usual estimation practice in the standard MPH model is to use maximum like-
lihood based on the duration distributions conditional on v, and then to integrate
out the time-invariant heterogeneity v using some specification of G. This approach
is not feasible in the local interaction MPH: the joint distribution of the locally in-
teracted v is very complicated and too demanding computationally since the n × n
spatial interaction matrix W is too large to invert. Hence we pursue an alternative
estimation strategy based on generalised residuals and orthogonality conditions.

We develop an instrumental variable estimator for our spatial setting with endoge-
nous neighbourhood effects that takes as its departure the inverted linear rank test
statistic of Bijwaard et al. (2013). For a recent survey of rank-based estimation meth-
ods, see Chung et al. (2013). The key idea is an intuitive orthogonality condition: If
a covariate is independent of the hazard, then the mean of the covariate among the
survivors does not change with the survival time and equals the unconditional mean.
The sample analogue of this moment condition can then be used as the estimation
equation. Of course, the covariate process at survival time t, xi(t), does affect the
hazard λi(t|.), but applying a transformation model to the durations T that generates
the generalised residuals turns out to yield the desired independence.

To this end, consider the transformation model of the random duration variate T
given by

Ui = hi(T, θ, ρ) =

∫ T

0

exp
(
e′iH(s; ρ)X∗(s)θ

)
ds (4)

=

∫ T

0

λi(s|.)ds/ψids
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which is the integrated hazard except for the function of the unobservable hetero-
geneity terms, where ψi is the ith element of exp(H(t; ρ) ln v)). Ui is also known as
a generalised residual. For the population parameter vector (θ0, ρ0) the transforma-
tion model is denoted by Ui,0 ≡ hi,0(T ) with hi,0(T ) ≡ hi(T, θ0, ρ0), as is ψi,0 and
H0(s) ≡ H(s; ρ0). Conditional on v and the covariate and the spatial processes, the

integrated hazard
∫ T

0
λi(s|.)ds has a unit exponential distribution. It follows that

Ui,0 is a positive random variable that is independent of the covariate and the spatial
processes and the baseline hazard (this is shown formally in appendix equation (20)).
This independence is the basis of the fundamental moment condition which the linear
rank estimator exploits.

In order to accommodate the possibility that some spells are right censored at some
predetermined date C (in our case the end of our observation window), assuming that
censoring is uninformative, define the observation indicator ∆(t) = I(T > t)I(t < C).

Consider then the random sample of size n of (Ti,∆i, xi(Ti)). The transforma-
tion model transforms the durations for some θ to (Ui(θ),∆i, xi(Ui(θ))). Rank the
transformed durations, and let U(i)(θ) denote the i’s order statistic. The moment
condition compares the expected value of the covariates to the expected value for the
survivors across all transformed survival times. This population moment condition
is zero for the population parameters θ0 given the above independence result. The
sample analogue is

Sn(θ) =
n∑
i=1

νi∆i

[
xi
(
U(i)

)
− x̃
(
U(i)

)]
(5)

where

x̃
(
U(i)

)
=

∑n
j=i I

(
U(j) ≥ U(i)

)
xj
(
U(i)

)∑n
j=i I

(
U(j) ≥ U(i)

) (6)

is the sample mean of the covariates for survivors at the transformed survival time,
and νi is a weighting function.

Rather than defining the linear rank estimator as the root of the sample analogue,
we define it to be the minimiser of the associated quadratic form,

(θ̂, ρ̂) = argmin
θ∈Θ,ρ∈ΘW

Sn(θ, ρ)′Sn(θ, ρ), (7)

since the sample moment condition Sn(θ, ρ) is a step function. As Sn is thus not
differentiable everywhere, the distributional theory for (θ̂, ρ̂) cannot be based on the
usual asymptotic analysis which uses a first order expansion. However, applying the
arguments in Tsiatis (1990), we can consider an asymptotically equivalent function
S̃n(θ, ρ) that is linear in (θ, ρ) in the neighbourhood of (θ0, ρ0). This device yields the
following results:

Theorem 2 (θ̂, ρ̂) is consistent, and is distributed asymptotically as a normal vari-
ate.5

5The variance is obtained by the delta method. The theoretical gradient matrix depends on
the distribution of U0 (see appendix), which we approximate, as in Bijwaard (2009), by Hermite
polynomials using the exponential distribution as a weighting function. Chung et al. (2013) survey
alternative approaches.
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The estimating function is, in general, not monotone in the parameters, but mono-
tonicity ensues using Gehan weights νi =

∑n
j=i I

(
U(j) ≥ U(i)

)
(Fygenson and Ri-

tov (1994)).

2.4 An approximation for large spatial interaction matrices

The size of the spatial interaction matrix W (t) renders the minimisation of the
criterion function in (7) computationally infeasible. We overcome this challenge
by following the approach of Klier and McMillen (2008), and consider an approx-
imation of the moment condition about ρ = 0 and θ0 = θ̂1 where θ̂1 is the so-
lution to the minimisation problem in (7) in the absence of spatial interactions,
θ̂1 = argminθ∈Θ Sn(θ, 0)′Sn(θ, 0).

The resulting linear approximation of the spatial rank-functions is

S(θ0, ρ0) ≈ S(θ̂1, 0) +G(θ̂1, 0)×
(
θ̂1 − θ
0− ρ

)
(8)

where G(θ, ρ) = (∂S/∂θ, ∂S/∂ρ), which is stated explicitly in the appendix (equa-
tion (32)). Setting this linear approximation to zero and solving yields the one-step
procedure for the joint estimation of the parameters of the hazard θ, and the spatial
dependence ρ, (

θ̂
ρ̂

)
=

(
θ̂1

0

)
+
(
G′G

)−1
G′S(θ̂1, 0) (9)

To summarise, we propose a two-stage estimation strategy: In the first stage,
obtain θ̂1 from the minimisation of (7) ignoring spatial interactions, using X∗ as
instruments. S(θ0, ρ0) is based on the instruments (X∗,WX∗). We update the first-
stage estimates using the one-step estimator in (9).

2.5 Simulation evidence

We conduct a simulation study in order to (i) illustrate the effect of social interactions
on return hazards, (ii) reveal the resulting estimation biases when the social inter-
action effect is ignored (which also permits us to investigate the performance of the
linear rank estimator), and (iii) investigate the performance of the one-step procedure
(9) based on the approximation (8).

The simulation design is as follows. We consider one time-invariant covariate
x that is standard uniformly distributed, with population coefficient β0 = 2. The
baseline hazard has three-pieces, defined over the intervals [0, .2), [.2, .5) and [.5,∞),
with associated coefficients α0 = −.6, and α−0 = (.3, .5)′. Unobserved heterogeneity
vi follows a two-point mass distribution, with mass points e−1 and e1, and selection
probability Pr{vi = e−1} = 1/2.

As regards the spatial structure, we consider two scenarios in which H = (I −
ρW )−1 can be analytically computed. In the first structure, W is block-diagonal, and
each block consists of two individuals. This corresponds to a situation in which indi-
viduals from different blocks do not interact. In the second setting, W is tridiagonal,
so that individuals interact across blocks (and intransitive triads are thus present).
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Figure 1: Spatial impacts on the hazard κT and the survivor function 1− FT (t).
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(a) W is block-diagonal.
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(b) W is tridiagonal.

Notes. ρ varies from .1 to .5. W is 4× 4 in this illustration, and we consider individual 3.
For these figures xi = .5 for each i, and v1 = v2 = e and v3 = v4 = e−1.

2.5.1 Illustrations: Spatial impacts on hazards and survival probabilities

We begin by illustrating the spatial impacts in an analytically tractable setting of
4 individuals, so W is 4 × 4. We focus on individual 3, and consider the hazard
κT (t) ≡ [λi=3(t|.)] as given by (3), as well as the survivor function 1 − FT (t) for the
two spatial structures as ρ increases from 0 to .5. Figure 1 depicts the results.

It is evident that local social interactions raise the hazards and thus decrease
survival probabilities. The spatial impacts are increasing in ρ, and the resulting
effects can be substantial. For instance, for the block diagonal structure, at t = .2
the return hazard has increased relative to its value for ρ = 0 by a factor of 5.5
when ρ = .5. In terms of the survival probability, we observe an associated fall from
0.42 to .003. The spatial effects depend, of course, on the structure of the spatial
interactions. Relative to the block diagonal structure, if W is tridiagonal, the spatial
impacts in this example are smaller. At t = .2, κT (.2; 0)/κT (.2; .5) = 2.25, and the
associated survival probability falls from .42 to .238.6

2.5.2 Simulation results: Parameter estimates

We turn to the simulation results, having drawn samples of size N = 1, 000, repeated
the experiment 200 times, and consider different values of ρ.

We start with the results for the first-stage estimation, reported in Table 1 in
order to (i) quantify the extent of the spatial biases, and (ii) assess the performance

6In Appendix C, we also illustrate for completeness the spatial effects in terms of the hazard
of U0, κU0 , in the transformation model (4). There we also illustrate the quality of the first order
approximation of the hazard of the transformed variate U0.
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of the linear rank estimator in the first step of the estimation. The two particular
spatial structures (block and tri-diagonality) permit the explicit computation of the
spatially biases that arise when the spatial interactions are wrongly ignored. These
theoretical values, denoted by θ∗, are calculated as follows. The reduced form of the
hazard (2) can be re-written as

log(λ
(
t|θ, ρ,X(t),W (t), v

)
) = α∗0e+ α∗−0,1I2(t)e+ α∗−0,2I3(t)e+ βHx+H log v

where e is theN×1 vector of ones, with α∗0 = α0/(1−ρ) and α∗−0,k = α−0,k/(1−ρ). The
bias factor (1− ρ)−1 follows since W is row-normalised, We = e, so He = (1− ρ)−1e
because e = HH−1e = H(1−ρ)e. As regards the bias factor of the covariate coefficient
β, when W is block diagonal with blocks of size 2, [Hi,i] = (1−ρ2)−1. In the triangular
case, [Hi,i] varies slightly over i, but a good approximation is (4−3ρ2)/(4−5ρ2 +ρ4).
We denote by θ∗ = (α∗−0, βH[i, i]) these theoretical values.

First, we consider in Table 1 the effect on the theoretical biased values θ∗ as ρ
ranges from 0 to .5. The induced biases are positive, substantial and increase in ρ. For
instance, when ρ = .5, the value for α doubles irrespective of the spatial structure,
and β increases from 2 to 2.67 in the block-diagonal structure, and to 2.31 in the
tridiagonal structure.

Next, we assess the performance of the linear rank estimator in the first step by
comparing the estimates θ̂1 = argminθ∈Θ Sn(θ, 0)′Sn(θ, 0) to their theoretical biased
counterparts θ∗ = (α∗−0, βH[i, i]). For both spatial structures, the first stage (biased)
mean estimates are close their theoretical biased counterparts θ∗ for all ρ considered,
and the estimates are fairly precise, as indicated by the reported standard deviations.
Hence we conclude that the linear rank estimator performs well throughout.

Finally, we turn to the second stage estimation using the linear approximation of
the spatial rank function in (9). In Table 2, we report the updated estimates θ̂ of θ,
as well as the estimate of the spatial interaction parameter ρ. In the block-diagonal
structure, the mean second stage estimate of β and α is close to the population
value. For the highest value of ρ the estimates are slightly higher, but the population
values are contained in a 95% confidence interval. For the tridiagonal structure,
the covariate coefficient β is well estimated throughout. The bias in the duration
dependence parameters α persists. Turning to the estimate of ρ, for low values the
estimates are good, albeit exhibiting some variability, and the 95% confidence intervals
include the population value. For the highest value of ρ, the estimate is fairly precise
but underestimates the population value. This should not be a surprise, since the
one-step estimator is based on a linear approximation around 0.

To summarise, the linear rank estimator works reliability in the first stage esti-
mation. The one-step estimator successfully removes the spatial bias in the estimate
of the important covariate coefficient vector; whether it also succeeds for the dura-
tion dependence function depends on the spatial structure. Irrespective of the spatial
structure, ρ is estimated well for values of ρ up to .3. For higher values of ρ, the one-
step estimator underestimates the population value. For practical work this implies
that an estimated high value of ρ should be interpreted as a lower bound.
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Table 1: First-stage results and spatial biases

W 2-block diagonal
ρ0 = 0 ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 ρ0 = 0.5

θ θ̂ θ∗ θ̂ θ∗ θ̂ θ∗ θ̂ θ∗ θ̂
β = 2 2.00 2.02 2.01 2.08 2.09 2.20 2.19 2.67 2.65

( .21) ( .20) ( .21) ( .21) ( .26)
α−0,1 = .3 .30 .33 .32 .37 .39 .43 .43 .60 .59

( .15) ( .14) ( .15) ( .16) ( .16)
α−0,2 = .5 .50 .56 .55 .63 .64 .71 .71 1.00 .97

( .23) ( .24) ( .24) ( .25) ( .25)
W tridiagonal

ρ0 = 0 ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 ρ0 = 0.5

θ θ∗ θ̂ θ∗ θ̂ θ∗ θ̂ θ∗ θ̂
β = 2 1.98 2.01 2.01 2.05 2.05 2.10 2.10 2.31 2.30

( .21) ( .20) ( .21) ( .21) ( .23)
α−0,1 = .3 .31 .33 .33 .38 .38 .43 .43 .60 .59

( .15) ( .15) ( .16) ( .15) ( .16)
α−0,2 = .5 .51 .57 .57 .63 .63 .71 .74 1.00 .98

( .23) ( .24) ( .26) ( .25) ( .24)

Notes: Based on samples of size N = 1, 000 and 200 repetitions. θ = (β, α)
is the population value, θ∗ = (βH[i, i], α∗−0) the theoretical spatially biased

value, and θ̂ = (β̂, α̂−0) is the mean of the (first-stage) estimates obtained
by imposing ρ = 0. SDs in parenthesis.
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Table 2: Second stage spatial estimates

W 2-block diagonal
ρ0 = 0 ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 ρ0 = 0.5

θ θ̂ θ̂ θ̂ θ̂ θ̂
β = 2 1.94 1.94 1.97 1.98 2.34

( .20) ( .21) (.21) ( .22) (.24)
α−0,1 = .3 .28 .34 .36 .34 .43

( .14) ( .15) (.16) ( .17) (.16)
α−0,2 = .5 .45 .53 .56 .47 .55

( .23) ( .23) (.24) ( .25) (.34)
ρ .00 .06 .12 .15 .26

( .10) ( .10) (.11) ( .11) (.07)
W tridiagonal

β = 2 1.96 1.98 1.99 2.01 2.12
( .21) ( .20) (.21) ( .20) ( .22)

α−0,1 = .3 .29 .33 .38 .42 .52
( .16) ( .15) (.15) ( .14) ( .14)

α−0,2 = .5 .48 .56 .63 .70 .85
( .25) ( .25) (.26) ( .23) ( .24)

ρ .00 .06 .10 .18 .33
( .10) ( .10) (.11) ( .11) ( .11)

Notes: Based on samples of size N = 1, 000 and 200 repe-
titions. θ̂ = (β̂, α̂−0, ρ̂) is the mean of the spatial estimates
using (9). SDs in parenthesis.
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3 Empirical application

3.1 The data: Recent Turkish labour migrants

We consider the population of recent labour immigrants to The Netherlands, who
have entered the host country during our observation window 1999-2007. The ad-
ministrative data, covering this entire population, is extensively described in Data
Appendix B.1. Specifically, we focus on the largest group, namely Turkish immi-
grants (as in Adda et al. (2015) in the context of Germany). In (data) appendix B.2
we have extensively documented that immigrants not only cluster but also spatially
segregate along ethnic lines. This applies particularly to Turkish immigrants, and
suggests that there is scope for local interactions as captured by the econometric
model.

Table 3: Summary statistics by neighbourhood concentration: Recent Turkish labour
migrants

all top 50 top 100 top 200 not top 200
N 7617 1109 1687 2582 5034
% Female 21 18 20 20 21
% Married 66 62 68 72 63
% with children 21 22 22 23 20
Average age at entry 28 28 28 27 28
Income at entry [%]
0 < income p.m. < e 1000 77 65 73 78 77
Neighbourhood average :
% Turks 10 42 33 35 2
perc unemployed 3.5 3.2 3.3 3.4 3.5
average income (neigh)a 11.4 8.4 8.9 9.4 12.3
global :
quaterly unempl. rate at entry 2.9 3.1 3.0 3.0 2.9
Length of stay at return migration [%]
< 6 months 4.1 4.6 4.3 4.3 4.0
6-12 months 19.3 42.5 37.8 31.3 10.5
12-18 months 14.2 15.9 15.1 14.2 14.0
18-24 months 12.9 18.9 16.7 16.1 10.6
24-60 months 35.8 11.7 18.0 23.7 44.6
> 5 years 13.8 6.4 8.0 10.3 16.3
censoringb 80.2 60.6 70.2 75.9 82.5

Notes. Summary statistics for all recent Turkish labour immigrants for the subpopulations residing in
the 50, 100 or 200 most concentrated neighbourhoods in terms of the Turkish population.

a Average neighbourhood income in e 1000.
b Migrants who remain in the country until the end of the observation period.

Table 3 provides selective summary statistics for our data. In order to explore spa-
tial difference, we also contrast these summary statistics for all recent Turkish labour
immigrants for the subpopulations residing in the 50, 100 or 200 most concentrated
neighbourhoods (in terms of the Turkish population). 15% ouf our individuals reside
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in the top 50 neighbourhoods, and 22% in the top 100 neighbourhoods. We complete
the description of the spatial concentration by Figure 2, where we plot the histogram
and the kernel density estimate of the number of peers (given, for each individual, by
the number of non-negative row elements in the spatial interaction matrix W ). It is
evident that the density is bimodal, with a substantial number of individuals having
many connections. The first and third quartile are 27 and 657 connections, while the
median and mean number of connections are 75 and 263.

The majority of these recent Turkish labour immigrants are men, albeit married,
and fairly young at arrival, the mean age being 28 years. These labour immigrants
are fairly poor, as the vast majority earn less that e 1000 p.m. in their first job after
entry. Turks living in more concentrated neighbourhoods are more often male and
less often on very low incomes in the first job. The most concentrated neighbourhoods
exhibit slightly lower unemployment rates (e.g. 3.2 compared to an average 3.5%),
but also average lower incomes (e.g. 8.4K compared to 11.4K EUR).

Figure 2: Histogram of the number of peers in neighbourhood
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Notes. Also included is the kernel density estimate (dashed line).

Next, we turn to the outcome of interest, namely the time spent in the host coun-
try. Table 3 indicates that while censoring is high, the incidence of return is also
substantial. Among Turkish returnees, 24% have left again within one year of ar-
rival. Turks living in more concentrated neighbourhoods leave more often and faster.
In order to take into account the censoring of the data, we consider next the non-
parametric Kaplan Meier estimates of the return probabilities. Moreover, in order
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to explore whether spatial difference are in evidence in the data, we juxtapose these
Kaplan Meier estimates for recent Turkish labour immigrants residing in and outside
the 100 most concentrated neighbourhoods. Figure 3 suggests that for all survival
times, Turks in the 100 most concentrated neighbourhoods (22% of our data) have
higher probabilities of return. In particular, for all survival times after 20 months,
the spatial difference is around 7 percentage points. Hence these comparisons be-
tween concentrated and not concentrated neighbourhoods indicate important spatial
difference, but cannot distinguish between systematic differences in neighbourhood
characteristics (contextual effects) and endogenous local interaction. We turn there-
fore to the role of endogenous local social interactions (captured by the parameter ρ)
in explaining these difference, while controlling for differences in the the contextual
effects.

Figure 3: Kaplan Meier estimates of the return probabilities by neighbourhoods
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Notes. KM estimates by neighbourhoods: All (solid line), Turks in the top 100 most concentrated

neighbourhoods in terms of the Turkish population (dotted line), representing 22% of our data, and

its complement (dashed line).

3.2 Empirical results

We turn to the estimation of our model of locally interdependent return hazards.
We consider a parsimonious specification in terms of individual effects. Included in
the estimation as contextual effects are not only the neighbourhood averages of these
characteristics (WX), but also additional neighbourhood descriptors (the local rate of
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unemployment and the average income level). Further included are global covariates
such as the unemployment rate at the national level in the quarter of arrival, and
time effects in terms of year of entry (which control for global push and pull factors).

We estimate the reduced form of model (1) using our two-stage estimation strategy.
Table 4 reports the results. For greater transparency, we report both the constrained
and spatially biased first stage result, as well as the one-step spatial update based on
(9). However, since the local interaction parameter ρ is statistically highly significant,
we conclude that the latter is preferred.7 The second-stage coefficient point estimates
are typically different from the spatially biased first-stage estimates; in particular, the
magnitudes of the individual specific effects and the baseline hazard are larger for the
former, giving a first illustration the importance of the spatial approach. The effect
of such differences between the first and second stage estimates in terms of biases to
return probabilities is briefly discussed in Section 3.3 below.

Here our discussion of the estimates concentrates on the second-stage results.
The individual characteristics have the expected signs: More tied immigrants (fe-
males, married, having children) have lower return hazards, as have immigrants who
are more successful on the local labour market (measured by the initial earnings’
indicator). This earnings’ effect is partly compensated by the average neighbourhood
income effect. As regards the contextual effects, unemployment at the local level of
the neighbourhood plays a much larger role than at the national level. Immigrants in
neighbourhoods with high unemployment rates have significantly higher return haz-
ards. The baseline hazard function, although imprecisely estimated, suggests positive
duration dependence, so return probabilities increase in survival times which appears
in line with the Kaplein Meier estimates discussed above.

Turning to the estimate of the key local interaction parameter ρ, this is estimated
to be positive, fairly large, and statistically significant. This leads to the qualitative
inference that, for recent Turkish labour immigrants, the propensity of one’s peers
to return increases one’s own return hazard, which, in turn, accelerates the return of
one’s peers. In order to interpret better the quantitative effect of ρ, we consider the
outcome of interest -the return probabilities- for the average Turkish labour immigrant
(setting all covariates to their means), and juxtapose the predicted outcome for ρ = 0
(no social interactions) and ρ = ρ̂. Figure 4 reports the results. For low durations,
there are no appreciable differences in the return probabilities. However, as the
durations of stay increase, the gap between the two functions becomes ever greater.
For instance, at month 50 after arrival, social interactions imply an increase in the
return probability of about 10 percentage points.

7In the light of this, unsurprisingly, the second stage also provides a better goodness-of-fit than
the first stage, using a chi-squared criterion discussed in Heckman and Walker (1987), that considers
the within-sample counting process implications (i.e. predicted and observed exits) of the duration
data.
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Table 4: First-stage results and spatial return hazard of Turks

First stage Spatial
income at entry >1000 −1.127∗∗ (0.084) −1.183∗∗ (0.080)
Female −0.279∗∗ (0.085) −0.313∗∗ (0.087)
married −0.827∗∗ (0.098) −0.913∗∗ (0.093)
divorced −0.062 (0.123) −0.106 (0.133)
number of children −0.248∗∗ (0.035) −0.265∗∗ (0.030)
neighbourhood average:
W ·(income >1000) −0.910+ (0.397) −0.137 (0.419)
W ·Female 1.283∗ (0.457) 1.098+ (0.460)
W ·Married 0.624 (0.255) 0.600+ (0.282)
W ·divorced 2.507∗∗ (0.841) 0.709 (0.856)
W ·(num of children) −0.241 (0.175) −0.266 (0.184)
perc unemployed 1.571 (1.569) 3.833+ (1.874)
average income (neigh) 0.095∗∗ (0.033) 0.067∗ (0.023)
Unemployment (nat) 0.110+ (0.055) 0.024 (0.054)
U at entry (quart.) −0.419∗ (0.149) −0.430∗ (0.156)
year of entry:
2000 0.004 (0.152) −0.000 (0.149)
2001 −0.088 (0.210) −0.113 (0.200)
2002 0.039 (0.221) 0.126 (0.197)
2003 1.138∗∗ (0.365) 1.147∗∗ (0.313)
2004 1.214∗∗ (0.401) 1.302∗∗ (0.377)
2005 1.255∗∗ (0.398) 1.321∗∗ (0.378)
2006 1.330∗∗ (0.382) 1.243∗∗ (0.346)
2007 1.051∗ (0.445) 0.926+ (0.422)
baseline hazard:
α2 (1-3 yr) 0.003 (0.158) 0.211 (0.159)
α3 (3-5 yr) −0.231 (0.274) 0.255 (0.250)
α4 (> 5 yr) 0.030 (0.346) 0.595 (0.311)
social interaction:
ρ 0.431∗ (0.168)

Notes: “First stage”: θ̂1 is obtained from the minimisation of (7) ignoring
spatial interactions, Sn(θ, ρ = 0). “Spatial” is the one-step update based
on (9). The estimation includes time effects (year of entry). ‘+’ significant
at the 5%, ‘*’ at the 1%, and ‘**’ at the .1% level. SE in parenthesis.
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Figure 4: The effect of local interactions on the return probability for the average
Turkish labour immigrant
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Notes. Covariates set at their mean in the population. Coefficients as per Table 4. Solid
line (ρ = 0), dashed line (ρ = ρ̂).
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3.3 Counterfactual scenarios: The scope for the social mul-
tiplier

In order to explore and quantify how return probabilities, our outcome of interest,
are amplified by local social interactions and the resulting social multipliers, we con-
sider several counterfactual scenarios that capture different pull and push factors and
immigrant profiles. Some of these scenarios could be though of as being under some
policy control (e.g. immigrant targeting based on characteristics) while others relate
to events largely outside the control of policy makers. The type of counterfactual
experiment considered here is, of course, constrained by the covariates included in
the empirical model. Throughout we take the social interaction matrix W as given,
and vary the immigrant profiles.

In the experiment (a), we consider a situation in only those higher skilled immi-
grants enter that have incomes above e 1000 p.m. in their first job after entry (labelled
“higher incomes”), while in scenario (b) only female Turkish labour immigrants enter
the country (labelled “all female”). Recall that both females and higher earners have
lower return hazards. In experiment three we increase the Dutch national rate of
unemployment in the quarter of arrival to 8% (labelled , “Unemployment”). In ex-
periment four, we assume that immigrants arrive in a wave in 2006 (labelled “Entry
in 2006”). The last two experiments capture push factors of events in the host and
source country, while the first two experiments consider the effect on outcomes when
the immigrant profile has counterfactually changed.

Before considering the quantification of the social multipliers, we briefly revisit
the issue of the spatial bias that arises when local social interactions are wrongly
ignored. In particular, we compute scenario-specific return probabilities based on the
estimated model in the first and the second stage, the difference between the two
defining the spatial bias. The results are depicted in Figure 5. In all but scenario
(a), the magnitude of the bias is substantial reflecting the respective differences in
the point estimates, while in all but scenario (d) the differences are increasing in
the duration. Throughout, the spatially biased first stage under-predicts the actual
return probability.

We turn to the quantification of the social multiplier by considering now the
prediction based on the second stage estimates. In particular, we contrast a situation
in which social interactions are present, to one in which they are absent by imposing
ρ = 0. Figure 6 depicts the results. In the first two experiments that change a
particular characteristic of the labour immigrant, the social multiplier effect appears
to be fairly small. In experiment (a) the negative individual and neighbourhood
average effects reinforce each other, and get further amplified by the social interaction
effect ρ, leading to a relative fall in the hazard. By contrast, in experiment (b) the net
effect from the two coefficients is small, and the amplification only leads to a positive
but negligible effect. By contrast, in the event-based counterfactual scenarios (c) and
(d), the social multiplier leads to substantial positive differences. For instance, at
month 60, the absolute differences in the return probabilities are across experiments
(a)-(d) .0035, .053, .079, and .223.
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Figure 5: Spatial biases of the implied return probabilities in counterfactual scenarios
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(a) Higher incomes
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(b) All females
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(c) Unemployment
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Notes. For given counterfactual scenario (described in main text), (spatially biased) first-
step prediction (solid lines) and second-step prediction (dashed lines).
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Figure 6: Social multiplier effects on return probabilities in counterfactual scenarios
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(a) Higher Incomes
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(b) All females
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(c) Unemployment
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(d) Entry in 2006

Notes. For given counterfactual scenario (described in main text), imposing no social
interaction (ρ = 0) (solid line) v. estimates under social interactions (ρ estimate as per
Table 4, dashed lines).
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4 Conclusion

Individuals are distributed across neighbourhoods, cluster, interact locally, and indi-
vidual specific outcomes might influence and be influenced by the outcomes of one’s
peers. Focussing on outcomes that are durations, we have studied an econometric
model of locally interdependent hazards in terms of identification, estimation, and
inference. Our particular empirical application of this general framework is set in the
context of recent Turkish labour immigration to The Netherlands, and we have stud-
ied, specifically, the impact of local social interactions on the duration of stay and the
resulting social multipliers. Using administrative data for this entire (sub)population,
we find strong evidence that the propensity of ones “peers” (i.e. co-ethnics in the
same immigration cohort residing in the same or close-by neighbourhood) to return
increases ones own return hazard, which, in turn, accelerates the return of ones peers.
The illustrations quantifying this social interaction effect reveal that, albeit negligible
for short durations, this effect increases substantially for longer durations.
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A Technical Appendix: Proofs and Derivations

A.1 Proof of Theorem 1

Assume that individual characteristics xi are time invariant, and scalar. To simplify
notation, these will be suppressed in the conditioning statements. Let HiΣ =

∑
j Hij.

The reduced form model is

λi(t|v) = exp (Hi.X
∗θ +Hi. log v)

=

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
[λ0 (t, α)]HiΣ

The survival function of individual i is, conditional on the vector v,

F Ti (t|v) = exp

(
−
∫ t

0

λi(s|v)ds

)
= exp

(
−

[∏
j

v
Hij

j

]
exp

(
β
∑
j

Hijxj

)
z0 (t)

)

with z0 (t) =
∫ t

0
[λ0 (s, α)]HiΣ ds. Integrating out the unobservable heterogeneity yields

F Ti (t) =

∫
vn

· · ·
∫
v1

exp

(
−z0 (t) exp

(
β
∑
j

Hijxj

)∏
j

v
Hij

j

)
dG (v1) · · · dG (vn)

Consider the first individual, and the first integration with respect to v1. Let L
denote the Laplace transform of G (and the subscript on v has been suppressed since
vs are identically distributed). We have H (ρ) = I + ρW +O(ρ2), which implies that
HiΣ =

∑
j Hij = 1 + ρ + O(ρ2), and H11 = 1 + O(ρ2). The survival function for the

first individual is thus

F T1 (t) =

∫
v2

· · ·
∫
vN

L

(
z0 (t) exp

(
β
∑
j

H1jxj

)∏
j 6=1

v
H1j

j

)
dG (v2) · · · dG (vN) (10)

We can then follow ideas first explored in Elbers and Ridder (1982). Differentiating
the survival function with respect to time yields

−fT1 (t) =

∫
v2

· · ·
∫
vN

L′
(
z0 (t) exp

(
β
∑
j

H1jxj

)∏
j 6=1

v
H1j

j

)
exp

(
β
∑
j

H1jxj

)
× [λ0 (t, α0)]H1Σ

∏
j 6=1

v
H1j

j dG (v2) · · · dG (vN)

and letting t ↓ 0 yields, since z0(t)→ 0,

lim
t↓0
−fT1 (t) = E (v) exp

(
β
∑
j

H1jxj

)∏
j 6=1

µ1j lim
t↓0

[λ0 (t, α0)]HiΣ (11)
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with nuisance parameters µ1j =
∫
vH1jdG(v). Symmetric expressions obtain for the

other individuals. The idea here is to avoid the problem of dynamic sorting (and
the systematic change of v in the stock of survivors) by considering the situation at
the beginning, i.e. t ↓ 0. We also seek to eliminate the distributional effect of G by
comparisons between individuals.

Let’s consider different structures of social interactions. Note that W is not nec-
essarily symmetric, since not all individuals might be neighbours. In particular, in a
tridiagonal structure, the first and last rows of W will have a different structure, i.e.
W12 = 1 = Wn(n−1). Throughout we will assume that the covariates exhibit sufficient
variation (xi 6= xj 6=i).

A.1.1 A neighbourhood of two individuals

We have

W =

(
0 1
1 0

)
so µ12 = µ21. We then have

lim
t↓0

fT1 (t)

fT2 (t)
=

exp (β[H11x1 +H12x2])

exp (β[H22x2 +H12x1])
= exp (β(1−H12)(x1 − x2))

where H12 = ρ+O(ρ2). This implies that β and ρ are jointly identified, but we cannot
separate them out yet. This will be done below. Before, we consider how a larger
neighbourhood adds identifying information.

A.1.2 A neighbourhood of three individuals

Assume that not all individuals are neighbours, so wlog assume W13 = 0 but W23 6= 0.
We have

W =

 0 1 0
0.5 0 0.5
0 1 0


so µ13 = µ31, µ12 = µ32, and µ21 = µ23. We then have, considering individuals 1 and
3,

lim
t↓0

fT1 (t)

fT3 (t)
= exp (β[x1 + (H12 −H32)x2 − x3]) = exp (β(x1 − x3))

which identifies β. Considering individuals 1 and 2

lim
t↓0

fT1 (t)

fT2 (t)
=

µ12

[µ21]2
exp

(
β[(1− ρ/2)x1 + (ρ− 1)x2 − (ρ/2)x3] +O(ρ2)

)
If G is identified, then given the identification of β, the identification of ρ follows.

Note that if all individuals were neighbours, than we could only jointly identify β
and ρ. In particular, W12 = W13 = 1/2, and we would have limt↓0 fT1 (t) /fT3 (t) =
exp (β(1− ρ/2)(x1 − x3) +O(ρ2)), and similarly limt↓0 fT1 (t) /fT2 (t) =
exp (β(1− ρ/2)(x1 − x2) +O(ρ2)). Also note that although there are 3 individuals,
we have only 2 independent ratios since fT2 (t) /fT3 (t) = (fT1 (t) /fT3 (t))/(fT1 (t) /fT2 (t)).
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A.1.3 A neighbourhood of four individuals

Assume that not all individuals are neighbours, and consider the following situation

W =


0 0.5 0.5 0

1/3 0 1/3 1/3
1/3 1/3 0 1/3
0 0.5 0.5 0


As the first and last rows are the same, we have

lim
t↓0

fT1 (t)

fT4 (t)
= exp (β(x1 − x4))

which identifies β.
By contrast, consider the situation where individual 4 is only connected to indi-

vidual 2:

W =


0 0.5 0.5 0

1/3 0 1/3 1/3
0.5 0.5 0 0
0 1 0 0


Note that, compared to the previous structure, the greater isolation of individual 4
does not help identification. Considering individuals 1 and 3 yields

lim
t↓0

fT1 (t)

fT3 (t)
= exp

(
β(1− ρ

2
)(x1 − x3)

)
but considering individuals 3 and 4 say

lim
t↓0

fT3 (t)

fT4 (t)
=
µ31µ32

µ4

exp
(
β
[ρ

2
(x1 − x2) + (x3 − x4)

])
Comparing then across different neighbourhood structures, we find that iden-

tification is strengthened by symmetry properties of W : β is already identified if
interdependencies cancel out which happens when W1n = Wn1 = 0 and the first and
last row are identical. This also happens if the spatial structure W consists of dis-
connected neighbourhoods of different sizes (e.g. combining the 2-person case with
the first three person case).

A.2 Identification of G

Next, we deal with the unknown distribution G. Wlog consider the two-person neigh-
bourhood case. Inverting (10), we have, say,

z0(t) =

[
exp

(
β
∑
j

H1jxj

)]−1

Ψ(F T1) (12)

where the RHS does not depend on x since the LHS does not. This enables us to
follow similar steps as in Elbers and Ridder (1982) to yield, for any observationally
equivalent structure (denoted by tildes), an equation of the form

Ψ̃(s) =
C̃

C
Ψ(s) (13)
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with s = F T1 and t = K(s). Note that for s = 1, t = 0, z0(0) = 0, so Ψ(1) = 0. We
can differentiate (13) several times under standard regularity conditions

Ψ̃′(s) =
C̃

C
Ψ′(s), Ψ̃′′(s) =

C̃

C
Ψ′′(s), · · · , (14)

to establish that C̃ = C.
We have Ψ(s) = z0(K(s)) exp

(
β
∑

j H1jxj

)
and the inverse of Ψ is given, of

course, by (10). Differentiating the latter,

d

dy
Ψ−1(y) =

∫
v

L′(yvH12)vH12dG(v)

This implies, at s = 1 (which implies y = 0),

Ψ′(s)|s=1 =

[∫
L′(0)vH12dG(v)

]−1

=
1

E(v)

[∫
vH12dG(v)

]−1

For the alternative admissible structure (where G̃ has the same mean as G, say
µ = E(v)) we have

Ψ̃′(1) =
1

E(v)

[∫
vH̃12dG̃(v)

]−1

so
C̃

C
=

Ψ̃′(1)

Ψ′(1)
=

∫
vH12dG(v)∫
vH̃12dG̃(v)

(15)

Considering now Ψ′′(s) should give us another equation for C̃
C

involving the second
moments of v, and equalising with the preceding equality should give us an equation
that can only be satisfied if G̃ = G. We have

Ψ′′(s) = (−1)

[
d

dy
Ψ−1(y)

]−2
d

dy2
Ψ−1(y)|y=Ψ(s)

hence

Ψ′′(1) =
1

E(v)2

[∫
vH12dG(v)

]−2
d

dy

∫
L′(yvH12)vH12dG(v)|y=Ψ(s)

=
1

E(v)2

[∫
vH12dG(v)

]−2

L′′(0)

∫
v2H12dG(v)

=
V ar(v) + E(v)2

E(v)2

[∫
vH12dG(v)

]−2 ∫
v2H12dG(v)

Writing again µ = E(v), we have

C̃

C
=

Ψ̃′′(1)

Ψ′′(1)
=
V ar(ṽ) + µ2

V ar(v) + µ2

[∫
vH̃12dG̃(v)∫
vH12dG(v)

]−2 ∫
v2H̃12dG̃(v)∫
v2H12dG(v)

(16)
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and equalising with (15) yields

1 =
V ar(ṽ) + µ2

V ar(v) + µ2

[∫
vH̃12dG̃(v)∫
vH12dG(v)

]−1 ∫
v2H̃12dG̃(v)∫
v2H12dG(v)

which can only hold with equality if G̃ = G and ρ̃ = ρ.
This implies that z0(t) is identified; since we have identified ρ and thus H1,Σ, it

follows that α, the coefficients of the baseline hazard function, are identified.

A.3 Proof of Theorem 2

Theorem 2 is proved via a series of lemmas. The asymptotic distributional theory
for our estimator based on the inverted linear rank test statistic is considerably facil-
itated by considering the counting process associated with the transformation model:
the Doob-Meyer decomposition relates the innovation to the process to a martingale
difference, and the asymptotic behaviour of partial sums of martingales are well under-
stood (Rebolledo’s martingale central limit theorem, see Andersen and Gill (1982)).
To this end, we consider first the intensity of the counting process, given by the haz-
ard, before turning to the Doob-Meyer decomposition itself. For ease of exposition,
and wlog, we set the weighting function to unity. In the empirical application, we use
Gehan weights.

For notational convenience define θ̄ ≡ (θ′, ρ)′ and θ̄0 ≡ (θ′0, ρ0). Recall the transfor-
mation model for duration T given by equation (4), Ui = hi(T, θ̄), and the transforma-
tion model evaluated at the population parameter vector θ̄0, denoted by Ui,0 ≡ hi,0(T )
with hi,0(T ) ≡ hi(T, θ̄0). We associate with the transformed durations Ui and Ui,0 the
hazards κi(u, θ̄) and κi,0 (u) ≡ κi(u, θ̄0) and the CDFs FU,i and FUi,0

. Ui and Ui,0 are
related by the mapping

Ui = hi
(
h−1
i,0 (Ui,0), θ̄

)
(17)

where h−1
i denotes the inverse of hi(T, θ̄) with respect to its first argument. Let also

h′i(.) denote the first derivative with respect to the first argument. The following
lemma relates the hazard of U to that of U0.

Lemma 3

FUi
(u) = FUi,0

(
hi,0
(
h−1
i

(
u, θ̄
)))

,

κUi
(u, θ̄) = κi,0

(
hi,0
(
h−1
i (u, θ̄)

)) h′i,0(h−1
i (u, θ̄))

h′i(h
−1
i (u, θ̄), θ̄)

(18)

Proof. We have

FUi,0

(
hi,0
(
h−1
i (u)

))
= Pr{hi,0(T ) ≤ hi,0

(
h−1
i

(
u, θ̄
))

= Pr{T ≤ h−1
i

(
u, θ̄
)
} = FUi

(u) .

The second claim follows by direct computation.
Simplifying (18) using (4) yields

κUi
(u, θ̄) = exp

(
e′iH0(h−1

i (u, θ̄))X∗(h−1
i (u, θ̄))θ0 − e′iH(h−1

i (u, θ̄); ρ)X∗(h−1
i (u, θ̄))θ

)
· κi,0(hi,0(h−1

i (u, θ̄)). (19)
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For the population parameters, this simplifies to κUi
(u, θ̄0) = κi,0(u).

We note that κi,0(u) is neither a function of the parameters θ0 nor of the distri-
bution of the covariates, nor of the distribution G of unobserved heterogeneity. In
particular, we have (letting Hi. denote the ith row of H)

κi,0(u) = Ev{exp(Hi.(ρ0) log v)|Ti ≥ h−1
0 (u)}

=

∫
v

exp(Hi.(ρ0) log v) exp(−u× exp(Hi.(ρ0) log v))dGv(v)

×
[∫

v

exp(−u× exp(Hi.(ρ0) log v))dGv(v)

]−1

=

∫
v1

· · ·
∫
vn

∏
j

v
Hij(ρ0)
j exp(−u×

∏
j

v
Hij(ρ0)
j )dG(vn) · · · dG(v1)

×

[∫
v1

· · ·
∫
vn

exp(−u×
∏
j

v
Hij(ρ0)
j )dG(vn) · · · dG(v1)

]−1

(20)

This follows from noting that

Pr{v ≤ v|Ti ≥ h−1
0 (u)} =

Pr{Ti ≥ h−1
0 (u)|v ≤ v}Pr{v ≤ v}

Pr{Ti ≥ h−1
0 (u)}

and
1− FTi(h−1

0 (u)|x, v) = exp(−u× exp(Hi.(ρ0) log v)).

If spatial interactions are absent, ρ0 = 0, H0 = I and κi,0(u) greatly simplifies to
κi,0(u) =

∫
vdG(v|T ≥ h−1

0 (u)) = −L′v(u)/Lv(u) where Lv(u) denotes the Laplace
transformation of v.

Our study of the estimating function is based on an asymptotically equivalent
representation, which involves a first order expansion of κU . In the neighbourhood of
θ̄0, κU(u, θ̄) is asymptotically linear in θ̄:

Lemma 4 Under the stated assumptions∣∣∣κU(u, θ̄)− κ0(u)− ∂κU
∂θ′

(u, θ̄0)(θ̄ − θ̄0)
∣∣∣ ≤ ||θ̄ − θ̄0||2η(u) (21)

where η(u) is a vector of integrable functions.

Proof. The assumptions that 0 < |∂2λ(t, α)/∂α∂α′
∣∣ < ∞ for all t ≥ 0 and α in the

parameter space, that x(t) is bounded, imply that the second derivatives of κU(u, θ̄)
with respect to θ̄ are bounded for all u ≤ τ and θ̄ ∈ (Θ × ΘW ). It is then sufficient
that the parameter space be convex.

The derivatives of κU(u; θ, ρ) with respect to θ and ρ evaluated at θ = θ0 are given
in the following lemma where gu

(
θ̄
)

= h−1
i (u, θ̄) for ease of notation:
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Lemma 5

∂κUi
(u, θ̄)

∂θ
= [κi,0(hi,0(h−1

i (u, θ̄))]

× exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×(−1)Hi.(gu
(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)

+ exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×κ′i,0(hi,0(gu
(
θ̄
)
))

× exp
(
H0,i.X

∗(gu
(
θ̄
)
)θ0

)
× exp

(
−Hi. (ρ)X∗(gu

(
θ̄
)
)θ
)

(−1)

∫ T

0

exp
(
Hi. (ρ)X∗(s)θ

)
Hi. (ρ)X∗(s)ds (22)

∂κUi
(u, θ̄)

∂ρ
= − exp

(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −Hi.(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×Hi.WHX∗(gu
(
θ̄
)
θ

×κi,0(hi,0(gu
(
θ̄
)
))

− exp
(
H0,i.(gu

(
θ̄
)
)X∗(gu

(
θ̄
)
)θ0 −H(gu

(
θ̄
)

; ρ)X∗(gu
(
θ̄
)
)θ
)

×κ′i,0(hi,0(gu
(
θ̄
)
))

× exp
(
H0,i.X

∗(gu
(
θ̄
)
)θ0

)
× exp

(
−Hi. (ρ)X∗(gu

(
θ̄
)
)θ
)

×
∫ gu(θ̄)

0

exp
(
Hi. (ρ)X∗(s)θ

)
HWHX∗(s)θds (23)

Proof. The results follow from tedious yet standard computations after noting that
hi(h

−1
i (u; θ, ρ); θ, ρ) = u implies (∂/∂θ)h−1

i (u; θ, ρ) = −(∂hi/∂θ)/(∂hi/∂s) with s =
h−1
i (u; θ, ρ).

Evaluated at ρ = ρ0, and using the change of variables h−1
i,0 (u) = s, (22) and (23)

simplify to

∂κUi
(u, θ0, ρ0)

∂θ
= −κi,0(u)

(
e′iH0(h−1

i,0 (u))X∗(h−1
i,0 (u)

)
− κ′i,0(u))

∫ u

0

e′iH0(h−1
i,0 (s))X∗(h−1

i,0 (s))ds (24)

∂κUi
(u, θ0, ρ0)

∂ρ
= −e′iH0WH0X

∗(h−1
i,0 (s))θ0 × κi,0(u) (25)

− κ′i,0(u)

∫ u

0

e′iH0(h−1
i,0 (s))W (h−1

i,0 (s))H0(h−1
i,0 (s))X∗(h−1

i,0 (s))θ0ds.

Next, we turn to the associated counting processes. For the duration variate T
denote by {N(t)|t ≥ 0} the stochastic process describing the number of exits from
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the state of interest in the interval [0, t] as time proceeds. Of course, there is at most
one exit. For the transformed duration U , we have

NUi(u, θ̄) = N
(
h−1
i (u, θ̄)

)
,

and for the population parameters we have NUi,0(u) ≡ NUi(u, θ̄0)). It remains to
account for censoring of the duration variate. Let y(t) = I(t ≤ T )I(t ≤ C) denote
the observation indicator, where C denotes a non-informative right censoring time.
Let Ȳ (t) = [ȳi(t)]i=1,..,n denote the history of the observation indicators. We then
have

Lemma 6

Pr
(
dNU,i(u, θ̄) = 1

∣∣XUi
(u, θ̄), Y

Ui
(u, θ̄),W

Ui
(u, θ̄)

)
= yU(u, θ̄)κUi

(
u; θ̄)

)
du (26)

with κUi
given by (18). The associated Doob-Meyer decomposition is

dNUi(u, θ̄) = yUi (u, θ̄)κUi

(
u; θ̄
)
du+ dMUi(u, θ̄) (27)

where MUi denotes a martingale.

For the population parameters we define MUi,0(u) ≡ MUi(u, θ̄0) and NUi,0(u) ≡
NUi(u, θ̄0). Using this representation (27), the estimation function can be written
as

Sn(θ̄) =
n∑
i=1

∆i

[
xi
(
U(i)

)
− x̃
(
U(i)

)]
=

n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dNUi(u, θ̄). (28)

The transformed durations are observed up to time τ <∞. Evaluating the estimation
function (28) at the population parameters, we have

Sn(θ̄0) =
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dMUi,0(u) (29)

+
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
yU0
i (u)κUi

(
u; θ̄0

)
du

Lemma 7 The counting measure NUi,0(u) does not depend on the covariate and the
spatial processes, hence E(SN(θ̄0)) = 0.

Proof. By definition, we have Pr{dN(t) = 1} = yi(t)λ̃i(t|θ̄0)dt. λ̃i is the expectation
of λi with respect to v, which equals, using (4), exp

(
e′iH(t; ρ0)X∗(t)θ0

)
Ev(ψi|T ≥ t).

This probability equals Pr{dNUi(u, θ̄) = 1} with du = h′(t, θ̄)dt, so the intensity of
the transformed counting process can be written as

exp
(
e′i[H(u; ρ0)X∗(u)θ0 −H(u; ρ)X∗(u)θ]

)
Ev(ψi|U ≥ u)
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Hence, evaluated at the population parameters, we have

Pr{dNUi(u, θ̄0) = 1} = y
Ui,0

i Ev(ψi|U ≥ u)

which does not depend on the X∗ and H.
Since E(SN(θ̄0)) = 0, it follows that the second term in (29) is zero, so

Sn(θ̄0) =
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

)
dMUi,0(u). (30)

Using again the representation (27) for Sn(θ̄), we obtain the following linearisation

S̃n(θ̄) = Sn(θ̄0) +G(θ̄0)× (θ̄ − θ̄0) (31)

with

G(θ0, ρ0) ≡ (∂S/∂θ, ∂S/∂ρ)|θ̄=θ̄0

=
n∑
i=1

∫ τ

0

(
x(u)− x̃(u)

) ∂
∂θ̄
κUi

(u, θ̄)|θ̄=θ̄0
κUi

(u, θ0)
dNUi(u, θ̄) (32)

where (∂/∂θ̄)κUi
(u, θ̄) is given in Lemma 5 above. The argument in Tsiatis (1990)

demonstrates that S̃n(θ̄) is asymptotically equivalent to Sn(θ̄) in the neighbourhood
of θ̄0, and this asymptotic equivalence then implies that the estimator is consistent:

Lemma 8 Under the stated assumptions for all c > 0

sup

|θ̄−θ̄0|≤cn
−

1
2

n−
1
2

∣∣∣Sn(θ̄)− S̃n(θ̄)
∣∣∣ p→ 0 (33)

Finally, we observe that our estimator is the root of S̃n(θ̄). Hence solving (31) for
(θ̄− θ̄0), and invoking the asymptotic normality of Sn(θ̄0) implied by (30), yields the
result stated in Theorem 1: the estimator is asymptotically normally distributed.
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B Data Appendix

B.1 Administrative panel data on the population of recent
immigrants to The Netherlands

All legal immigration by non-Dutch citizens to the Netherlands is registered in the
Central Register Foreigners (Centraal Register Vreemdelingen, CRV), using informa-
tion from the Immigration Police (Vreemdelingen Politie) and the Immigration and
Naturalisation Service (Immigratie en Naturalisatie Dienst, IND). It is mandatory for
every immigrant to notify the local population register immediately after the arrival
in the Netherlands if he intends to stay for at least two thirds of the forthcoming six
months. Natives as well as immigrants are required to register with their municipal-
ity. Our data comprise the entire population of immigrants who entered during our
observation window of 1999-2007.

The immigration register is linked by Statistics Netherlands to the Municipal
Register of Population (Gemeentelijke Basisadministratie, GBA) and to their Social
Statistical Database (SSD). The GBA contains basic demographic characteristics of
the migrants, such as age, gender, marital status and country of origin. From the
SSD we have information (on a monthly basis) on the labour market position, in-
come, industry sector, housing and household situation. Since we consider only new
entrants to the Netherlands, most immigrants are not eligible for social benefits such
as unemployment insurance payments, since these are conditional on sufficiently long
employment or residence durations. Migration and employment durations of specific
lengths (e.g. 3 or 5 years) trigger statutory changes in employment and residence
rights. However, our earlier work in Bijwaard, Schluter and Wahba (2014) has veri-
fied that these do not affect average migration hazards.

In addition to the date of entry and exit, the administration also records the
migration motive of the individual. The motive is coded according to the visa status
of the immigrant; if not, the immigrant reports the motive upon registration in the
population register. Statistics Netherlands distinguishes between the several motives:
labour migrants, family migrants (this category include both family unification as well
as immigration of foreign born spouses, i.e. family formation), student immigrants,
asylum seekers (and refugees), and immigrants for other reasons. Bijwaard (2010)
shows that these different immigrant groups differ systematically in terms of return
behaviour, labour market attachment, and demographic characteristics. We therefore
consider only labour migrants, being the group which economists usually are interested
in the most. Labour migrants represent about 26% of all non-Dutch immigrants
in the age group 18-64. It is possible that the labour migration motive is either
miscoded or misreported. Since all Turkish labour migrants require an employment-
dependent work visa to immigrate, they should be formally employed not too long
after entry. Thus, in order to limit the possibilities of misclassification error of the
labour migration motive, we require that immigrants be employed in the Netherlands
within three months of their entry.

This selection by immigration motive yields an administrative population of recent
labour immigrants of 94,270 individuals. This size of our population data permits us
to consider specific groups. Such stratification also controls for important differences
in language ability, as these could influence assimilation and are thus important for
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the studies focussing on return. For instance, the (mean) language deficits of Turks
and Moroccans in the Netherlands are well known. As in Adda et al. (2015) in
the context of Germany, we consider in the main text the largest ethnic group of
labour immigrants, namely Turks (about 8000 individuals). In the next subsection,
we document their spatial clustering as well as their spatial segregation from other
principal immigrant groups.

B.2 The spatial dimension: Neighbourhoods

The neighbourhood is often argued to be the spatial unit at which local social in-
teractions take place. A further special feature of our data is that we know the
neighbourhood the immigrant lives in, defined by Statistics Netherlands as an area
of approximately 2,000 households. The Netherlands is thus partitioned into about
14,000 neighbourhoods.

In order to document the spatial clustering and segregation along ethnic lines
among the principal immigration groups, and Turks in particular, we use publicly
available population data produced by Statistics Netherlands for all immigrants (re-
cent and established, labour and non-labour immigrants) for the year 2007. The size
of this data permits a reliable description of the spatial settlement patterns. In order
to establish some benchmarks, we contrast Turkish immigrants with immigrants from
the next three largest groups, i.e. immigrants from Moroccans, and immigrants from
the former Caribbean colonies of Surinam and the Dutch Antilles. The four groups
represent about 11% of the total population of the Netherlands.

We start by documenting the spatial clustering in the four largest cities, then
consider the distinct neighbourhoods in these four largest cities (the number of neigh-
bourhoods by city are 92 in Amsterdam, 78 in Rotterdam, 107 in the Hague and 96
in Utrecht). As about only 12.8% of the total population of the Netherlands resides
in these four cities, we then turn to all 14,000 neighbourhoods.

B.2.1 Concentration, isolation, and dissimilarity in the four largest cities

Table B.1: Ethnic concentration in the four largest cities

Tur Mor Sur Ant Tur Mor Sur Ant
By City By Ethnic Group

Amsterdam 5.2 9.0 9.2 1.6 9.3 18.5 22.3 10.0
Rotterdam 7.8 6.4 8.9 3.3 11.1 10.3 16.4 16.6
The Hague 7.0 5.3 9.5 2.3 7.6 6.8 14.0 8.9

Utrecht 4.4 8.8 2.6 0.9 3.0 6.8 2.2 2.0

Notes. Immigrant groups: Tur(ks), Mor(occans), Sur(inamese),
Ant(illians). Panel A: Indices are by cities, so Turkish concentration
in Amsterdam is the share of the Amsterdam population that is Turk-
ish. Panel B: The Turkish concentration in Amsterdam is the share of
the Turkish population that lives in Amsterdam. Data for 2007.

The extent of clustering of immigrants along ethnic lines is illustrated in Table
B.1 in the year 2007 by city. The four largest cities are home to a large share of the
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immigrant population. For instance, 9% of the Amsterdam population are Moroccans,
5% are Turks, and nearly 25% of the population of Amsterdam is from the four
principal immigrant groups. Panel B of Table B.1 considers the four largest cities in
terms of the total immigrant populations. The proportion of Turks living in the these
four cities equals 31%, the Antillians’ share is 38%, the Moroccan share is 42%, and
the Suriname share is 55%. Hence the spatial analysis needs to extend beyond these
four principal cities.

Table B.2: The four largest cities

Tur Mor Sur Ant Tur Mor Sur Ant
Dissimilarity Isolation

Amsterdam .446 .429 .344 .308 .106 .172 .181 .031
Rotterdam .417 .386 .217 .276 .160 .110 .109 .048
The Hague .523 .504 .348 .291 .183 .133 .147 .036

Utrecht .441 .482 .248 .202 .096 .219 .034 .012

Notes. Immigrant groups: Tur(ks), Mor(occans), Sur(inamese),
Ant(illians). Indices are by cities, so Turkish concentration in Amster-
dam is the share of the Amsterdam population that is Turkish. Data for
2007.

Next, we consider these four cities at the level of the neighbourhood and investi-
gate the extent to which immigrants of a particular ethnic group, such as Turks, (we
label them “minority”, minn in neighbourhood n) differ from natives and other immi-
grants in this neighbourhood (label this complement to the minority the “majority”,
majn). Summing over all neighbourhoods in a city yields the subpopulation totals
mintotal and majtotal. Two standard descriptors are the following indices of dissimilar-
ity and isolation (see e.g. Cutler et al. (1999)). The dissimilarity for neighbourhood
n is often measured by comparing same-group population shares, and summing over
neighbourhoods yields the dissimilarity index 0.5

∑
n |minn/mintotal−majn/majtotal|.

This dissimilarity index is a measure of imbalance and quantifies the extent to which
group g immigrants are unevenly distributed across neighbourhoods. The magnitudes
of the estimates reported in Table B.2 confirm that the four principal immigrant
groups are unequally distributed across the cities’ neighbourhoods. For each immi-
grant group, the dissimilarity index is similar across the four cities. Comparing the
immigrant groups, dissimilarity for Turks and Moroccans is substantial larger than
for Surinamese and Antilleans.

We also consider the measure of isolation or exposure given by
∑

n(minn/mintotal×
minn/(minn+majn)) which weights the own-group population share of the neighbour-
hood (or concentration) by the its population share in that neighbourhood. Except
for Antilleans, Table B.2 suggests that isolation is fairly high by European standards.
Moreover, Turks are the most isolated in The Hague, Moroccans in Utrecht, Suri-
namese in Amsterdam, and Antilleans in Rotterdam. Overall, we conclude that the
extent of clustering and segregation among the four principal immigrant groups in
the four largest cities is substantial.
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B.3 All neighbourhoods: Clustering and segregation

Turning to all neighbourhoods, Figure B.1 depicts the Lorenz curve for spatial con-
centration. It is evident that most migrants live in a relatively small number of
neighbourhood, and this extent of clustering is much larger than for all other im-
migrants. The Lorenz curve reveals the extent of spatial concentration, but cannot
reveal the geographic distribution. This is done in Figure B.2 where we map, for
different ethnic groups, the 100 most concentrated neighbourhoods. The map shows
the extent of segregation as there is little overlap across ethnic lines between the
neighbourhoods.

Figure B.1: Lorenz curves of spatial concentration
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The links between these neighbourhoods, and thus the scope for social interac-
tions, can be examined using standard tools from social network analysis. To this
end, consider the adjacency matrix of the 100 most concentrated neighbourhoods
for ethnic group g, Wg = [wg,ij]i,j=1,..,100, where the binary wg,ij equals zero unless
neighbourhoods i and j are within, say, 5km distance of each other and one oth-
erwise. To examine the connectedness or centrality of a neighbourhood, Bonacich
(1987) has proposed the measure B(β) = (I100 − βWg)

−1Wg1100 =
∑∞

k=0 β
kW k+1

g 1100

where I100 is the identity matrix and 1100 is a vector of ones. B(β) = [b(β)i]i=1,..,100

equals the weighted sum of direct and indirect links between neighbourhoods. Set-
ting the subjective weight β = 1/33 (to satisfy the parameter’s eigenvalue constraint
across all ethnic groups, see discussion of equation (2) above), the Bonacich mea-
sure reveals for Moroccans some neighbourhoods in Amsterdam to be most central
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Figure B.2: The 100 most concentrated neighbourhoods by ethnic group.
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Notes: Panel A: “o” depicts Turkish, and “+” depicts Moroccan neighbourhoods; Panel B: “o”

depicts Surinamese, and “+” depicts Antillian neighbourhoods

(max(B) = 2.05), whereas for Turks the most central neighbourhoods are in Schilder-
swijk (inside The Hague, max(B) = 1.66). For Surinamese the maximum is attained
in different neighbourhoods of the Hague (max(B) = 1.71), and for Antillians the
most central neighbourhoods are in Rotterdam (max(B) = 1.94).

C Further numerical illustrations - Not for publi-

cation

In this supplementary appendix we revisit the setting of the simulation study of
Section 2.5, and illustrate for completeness the spatial effects in terms of the hazard
of U0, κU0 , in the transformation model (4). We also illustrate the quality of the first
order approximation of the hazard of the transformed variate U0.

Consider then the hazard of U0, κU0 (which is stated explicitly in Appendix equa-
tion (20)), and the spatial effects for the blockdiagonal and the tridiagonal spatial
structures. This is done in Figure C.3 panels A and B, which correspond to Pan-
els A and B of Figure 1. Note that the associated hazards are now decreasing
in ρ. Of course, κT (t) = κU0(h0(t))h′0(t), but for general covariate and parameter
values the sign of the derivative with respect to ρ involves the ambiguous sign of
∂h′0(t)/∂ρ = h′0(t)H0WH0X

∗(t)θ0. As in the case of κT , the changes in κU0 are
larger in the block diagonal than in the tridiagonal structure, but the magnitude of
the changes are ‘compressed’. At u = 5, κU0 with ρ = .5 has fallen to 50% of its
value when ρ = 0 in the block diagonal structure. In the tridiagonal structure the
corresponding fall is to 64% of its former value.

Lastly, we consider the quality of the first order approximation of the hazard of
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Figure C.3
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Notes. Panels A and B: Spatial impacts on the hazard κU0
of the transform. Panels C and D: The

first order approximation to the hazard κU0 of the transform in the block-diagonal case. The dashed

line depicts the first order approximation

the transformed variate U0; this is feasible since the two particular spatial structures
permit the analytical calculation of H. For the sake of brevity only the block diagonal
case is considered, as the spatial impacts and thus the scope for approximation errors
are substantially larger here than in the tridiagonal case. Panels C and D of Figure
C.3 shows that the quality of the approximation in the considered setting is good.
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