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abstract

The wavelet transform is used to identify a biannual and an annual seasonality

in the Phelix Day Peak and to separate the long-term trend from its short-term

motion. The short-term/long-term model for commodity prices of Schwartz &

Smith (2000) is applied but generalised to account for weekly periodicities and

time-varying volatility. Eventually we find a bivariate SARMA-CCC-GARCH

model to fit best. Moreover it surpasses the goodness of fit of an univariate

GARCH model, which shows that the additional effort of dealing with a

two-factor model is worthwile.

Keywords: Wavelets; Seasonal Filter; Relative Wavelet Energy; Multivariate

GARCH; Energy Price Modelling.

JEL-Classification: C32, C51.

1 Introduction

Since the liberalisation of European energy markets is proceeding, the statistical modelling of

electricity prices is becoming more and more in vogue. A reason for that is the improving data

situation and the awareness that a decent understanding of the electricity price process helps to

reduce the financial risk for power producers, traders and also large electricity consumers.

A simple approach to model power prices is to treat electricity as a regular commodity and use

e.g. the long-term/short model of Schwartz & Smith (2000). But this proves to be not sufficient

to capture the particularities of electricity: it is non-storable (at least in the short term), its price

is reverting to a cost-demand equilibrium, it shows explicite intra-day patterns that vary with the

season, and – due to transportation constraints – the power price can differ between regions or

coutries. We neither concern with the intra-day patterns nor with the regional price differences



as we focus on the Phelix Day Peak, which is the average day-ahead energy price of the hours

between 08:00 a.m. and 08:00 p.m. traded at the European Energy Exchange (EEX), Leipzig.

Beyond that we disagree with the property of absolute non-storability (see Section 2), but consider

the prices’ reversion to a long-term equilibrium as relevant. Because of that we propose to use an

adjusted version of the concept of Schwartz & Smith (2000) that contains dynamic volatility1. To

validate our model we compare it to the original approach, various generalisations and – to test

if the additional effort of a two-factor model is worthwhile – to a one-factor model with dynamic

volatility. Eventually we find in Section 4 that the correlation can be modeled time-constant but

the volatiliy cannot. But initially we motivate our concept and give an overview over the existing

literature in Section 2. An introduction into multivariate dynamic volatility modelling is added. In

Section 3 we explain how to filter seasonal patterns and extract the long-term drift. Therefore we

introduce and apply the wavelet transform. A conclusion summarizes the paper.

2 A Long-Term/Short-Term Power Price Model

Electricity price models can be clustered into non-parametric, fundamental and stochastic ones.

Non-parametric concepts are, for example, artificial neural networks (see Szkuta et al., 1999, or

Wang & Ramsay, 1998) or the agent-based approach of Weidlich (2008). Fundamental models

estimate the (log-)price based on factors like weather or power load, for example. Vehviläinen &

Pyykkönen (2004) construct a price model for the Nordic market and Schindlmayr (2005) applies

the same concept – however being more complex – to the spot price traded at the EEX. The major

part of authors concerns with stochastic price models. The Ornstein-Uhlenbeck diffusion process

suggested by Lucia & Schwartz (2002) is used in different extensions. Borovkova & Permana (2004)

or Cartea & Figueroa (2005), for example, add a Poisson jump process in order to explicitely

incorporate the characteristics of price spikes. Weron et al. (2003) extend the model to a regime-

switching approach and Benth et al. (2007) propose a non-Gaussian Ornstein-Uhlenbeck process.

However all mentioned authors assume the power price’s volatility to be constant over time. Using

the example of Figure 2 it can be shown that this is not the case: there are periods of weak and

periods of strong oszillation (so-called volatility clusters). Serletis & Shahmoradi (2006) recognise

this and design, just as Mugele et al. (2005), the volatility as an autoregressive process. We

conclued this brief literature review by referring to Weron & Misiorek (2008) and Barlow (2002)

for a broader overview over and discussion of existing stochastic concepts.

To motivate our approach we follow Barlow (2002) and respect that the power price is fixed where

a predictable (inelastic) demand meets a supply generated by a coutry-specific mix of power plant

types with varying production flexibility and marginal costs. The German 2007 energy mix, for

1We define volatility as standard deviation that can be interpreted as a measure for variation.
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example, breaks down to 22% nuclear power, 24% brown coal, 22% hard coal, 12% natural gas, 6%

oil, 7% wind and 7% of other renewable energies (see Kiesel & Herkner, 2008). In the short run

there are various scenarios where a unpredictable supply drop (e.g. an outage of a nuclear power

plant due to technical reasons) or supply increment (i.e. an unpredicted wind energy production)

does influence the price equilibrium which is - due to the short-term non-storability of electricity

- highly volatile over time (see also e.g. Benth et al., 2007). But in the long run over 80% of the

energy sources, i.e. coal, gas, oil and – to a certain extend – also nuclear power, is storable. The

power plant operators are able to decide whether to switch on or off the machines (or at what level

to produce energy) and store or sell the respective fuel at the market. The periods in which the

switching or leveling is possible vary with the type of power plant but the essence is that on the

long run and to a certain extend electricity is storable in form of its fuel which is a commodity and

can be therefore modeled as one.

Due to the argumentation above we propose to apply the model of Schwartz & Smith (2000)

in order to respect the difference between the long-term and the short-term power price. Their

approach breaks down the process of log-prices lnSt into a sum consisting of an Ornstein-Uhlenbeck

process χ with mean reversion κ ∈ R for the short-term dynamics, and a Brownian motion ξt with

long-term mean µξ for the long-term price development. We now additionally add a seasonal

adjustment component gt to the model, incorporate both an autoregressive and a moving average

factor in ξt and a weekly pattern in χt. For the volatilities σχ,t, σξ,t we use the dynamic model

defined below. Moreover let θ1, θ2 ∈ R be the autoregression parameters and ψ ∈ R the moving

average coefficient; the error vector (zχ,t, zξ,t) is bivariately Gaussian distributed with zero mean

and variance-covariance matrix Σt. Using these definitions our model reads as

ln (St − gt) = χt + ξt,

χt = (1− κ)χt−1 + θ1χt−7 + σχ,tzχ,t, (2.1)

ξt = θ2ξt−1 + ψ(σξ,t−1zξ,t−1) + σξ,tzξ,t.

For a dynamic volatility model we refer to the concept of generalised autoregressive conditional

heteroscedasticity (GARCH),which was designed by Engle (1982) and Bollerslev (1986) to model

volatility clustering. For a detailed introduction into univariate GARCH models we refer to McNeil

et al. (2005). Here we merely define the multivariate extension, whereby the simplest one is the

constant conditional correlation GARCH model (CCC-GARCH). It assumes the volatilities to be

time-dependent, but the correlation-matrix to be constant. Let Σt = ∆tPC∆t,with PC being the

positive-definite correlation matrix. Then ∆t is a diagonal 2 × 2 scaling matrix with univariate
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volatility processes σχ,t and σξ,t as elements. These are calculated as

σ2
χ,t|Fχt−1 = ωχ,t +

pχ∑
i=1

αχ,i(χt−i − (1− κ)χt−1−i)
2 +

qχ∑
i=1

βχ,iσ
2
χ,t−i,

σ2
ξ,t|Fξt−1 = ωξ,t +

pξ∑
i=1

αξ,i(ξt−i − ξt−1−i)
2 +

qξ∑
i=1

βξ,iσ
2
ξ,t−i,

with Ft being the filtration generated by χt resp. ξt (i.e. the information up till t). Let k ∈
{χ, ξ}, then holds: pk, pk ∈ N, ωk,t > 0, αk,i ≥ 0, i = 1, . . . , pk and βk,j ≥ 0, j = 1, . . . , qk. The

unconditional variance exists, if
∑
pk
αk,i +

∑
qk
βk,j < 1. As this definition depends on the choice

of lags p = (pχ, pξ) resp. q = (qχ, qξ) we speak of a GARCH(p,q) process (see McNeil et al., 2005).

In case of the correlation is time-varying the concept is called dynamic conditional correlation

GARCH model (DCC-GARCH). Tse & Tsui (2002) propose an autoregressive moving average

(ARMA) process for the correlation, Engle & Sheppart (2001) use a GARCH(1,1) process.

3 Wavelets as a Preprocessing Tool

In (2.1) the variables χt and ξt are designed as hidden variables; they have to be estimated using

the observations of St. Schwartz & Smith (2000) apply therefore the Kalman-Filter which is a

recursive algorithm to estimate unobserved state variables that do influence observable ones (see

Kalman, 1960). They consider it as an efficient tool, but it has the drawback that it requires a prior

distribution for the unobserved variables. We therefore prefer a wavelet-based approach which does

not need such an assumption.

The wavelet transform is a generalisation of the Fourier transform. It is a mapping from time

space into time-frequency space that is – in contrary to the latter – capable of identifying regular

oszillations with time-varying intensity and frequency. We can additionally use it to extract a long-

term trend from a time series. Stationarity of the process is not required but square-integrability.

For a detailed introduction into continuous wavelet transform we refer to Mallat (2003). Kaiser

(1994) and Jensen & Cour-Harbo (2001) focus on the discrete version. Within this Section we give

definitions that are relevant for our analysis in Section 4.

The continous wavelet transform is defined as the convolution of a function f(t) ∈ L2(R) with a

complex-valued function Ψ(t) ∈ L1(R) ∩ L2(R) which – to be called wavelet – has to fulfill the

admissible condition

CΨ =

∫ ∞
−∞

∣∣∣Ψ̂(ω)
∣∣∣2

|ω| dω <∞, (3.1)
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whereby the hat denotes the Fourier transform (see Fabert, 2004). From (3.1) follows that Ψ tends

to zero for |ω| → ∞ and is located in a finite mean. In order to cover the whole time-axis with Ψ

we introduce a translation parameter b ∈ R. A scaling parameter a > 0 can be used to dilute the

shape of Ψ. To indicate this modification we write

Ψa,b(t) =
1√
a

Ψ

(
t− b
a

)
,

and define the continuous wavelet transform of a function f(t) as

WT (a, b) = 〈f,Ψa,b〉 =

∫ ∞
−∞

f(t)
1√
a

Ψ∗
(
t− b
a

)
dt. (3.2)

The a−1/2 normalizes the energy and ∗ denotes the conjugate complex. The wavelet transform given

a pair (a, b) can be interpreted as an orthogonal mapping onto the time-scale plane that quantifies

the proportion of f(t) explained by Ψa,b. In (3.2) we also see that the values of f(t) influence the

wavelet coefficients within a certain interval (around b0 = t) that depends on the choice of Ψ. This

region is called cone of influence (COI) and varies with the respective scale. The COI is a half-plane

(b, a) shaped by |b0 − b| < γ · a (see Lau & Weng, 1995).

Figure 1: The Real Part of the Morlet Wavelet at Different Scales

Figure 1 shows the Morlet wavelet at three different scales. We can clearly see the character

of a local osziallation, i.e. it is diminishing outside a certain scale-dependent time-window. The

formula of Morlet’s wavelet reads as

ΨM (t) = cω0π
−1/4e−t

2/2σ2
(
eiω0t − e−

1
2ω

2
0

)
,

cω0 =
(

1− e−ω
2
0 − 2e−

3
4ω

2
0

)− 1
2
, (3.3)

whereby ω0 denotes a certain basis frequency and σ > 0 (see Daubechies, 1992). For ω0 > 5 holds

cω0 ≈ 1, e−ω
2
0/2 ≈ 0. The COI parameter γ of the Morlet wavelet is

√
2 (see Lau & Weng, 1995).
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The inverse operation to (3.2) does also exist (see e.g. Mallat, 2003),

f(t) =
1

CΨ

∫ ∞
0

∫ ∞
−∞

WT (a, b)
1

a2
√
a

Ψ

(
t− b
a

)
dbda. (3.4)

Shrinking the domain of a in (3.4) to a scale window [al, a
u] gives the portion of f explained by

these scales. However, although reducing this scale window to one point is mathematically possible,

the result cannot be interpreted as the influence of the chosen scale on f at time t. The reason for

that is the ”uncertainty principle” of time-frequency analysis (see Fabert, 2004) which states that

not both scale and location of a signal can be exactly specified simultaneously; i.e. a good time

resolution reduces the frequency resolution and vice versa (see Lau & Weng, 1995). We merely can

derive statements about a certain window of scales and time. The minimal width of this time-scale

window varies with the wavelet function. Applying the Morlet wavelet yields among all admissible

functions the smallest possible window size (see Ahuja et al., 2005), which we give – based on Fabert

(2004) – as a set-valued function ζ of a and b:

ζ(a, b) =

[
b− aσ√

2
, b+

aσ√
2

]
×
[
a · 2

√
2πσ

ω0

√
2σ + 1

, a · 2
√

2πσ

ω0

√
2σ − 1

]
. (3.5)

This window size is only one possible criterion for choosing a specific wavelet; depending on the

situation there may be other requirements. For a broad list of wavelet features we refer to Farge

(1992), Meyers et al. (1993) or Ahuja et al. (2005).

The uncertainty principle makes it harder to identify the intensity of a relevant scale a∗ via wavelet

transform, as also the wavelet coefficients within a certain proximity of a∗ are influenced and contain

therefore information about it. In the wavelet coefficients’ contour plot this fact appears as oval

contour lines centered around a∗ with alternating positive and negative height (see e.g. Figure 3

or Torrence & Compo, 1998).

We can additionally compress the information contained in the matrix of wavelet coefficients by

computing the (relative) wavelet energy Ea (Erela ) which is a function of a and defined as (see e.g.

Salwani & Jasmy, 2005)

Ea = ‖WT (a, b)‖22 =

∫ ∞
−∞

WT (a, b) ·WT ∗(a, b)db, Erela =
Ea

‖f‖2
. (3.6)

The function Erela does exist due to (3.1) and gives the fraction of variation in f explained by the

scale a (see e.g. Rosso et al., 2001). The bigger Erela the more important is a. Thereby – because

of the uncertainty principle – Erela is increasing for a→ a∗ within a certain interval around a∗.

When estimating (3.6) from a finite data set f(t), t = 1, . . . , T , we have to be aware of certain edge

effects. These occur because (3.2) is based on an infinite (continuous) function f which contradicts
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the finiteness of the data set that is to be used for estimating the coefficients. The COI of the

data’s end points shapes the region where these effects show. They can be reduced by padding the

ends of the data sample with zeros, but thereby we cause frictions which do also skew the wavelet

coefficients. Meyers et al. (1993) discuss other methods but in all cases it cannot be quantified how

much of the skewness is reduced. A satisfying solution has - to our knowledge - not yet been found.

We therefore focus on the coefficients outside the COI for estimating the wavelet energy. Let cl(a)

(cr(a)) be a function with values in {1, . . . , T} that maps the scale on the left (right) margin of the

endpoints’ COI. Then we can define an unskewed estimate of the (relative) wavelet energy by

Êa =
1

cr(a)− cl(a)− 1

cr(a)−1∑
cl(a)+1

|WT (a, b)|2, Êrela =
Ea∑
a Ea

. (3.7)

With (3.7) and the COI’s general formula we see that the number of addends decreases with the

scale. This reduces the estimate’s quality with increasing size of a. However (3.7) is consistent,

if the process of wavelet coefficients at scale a is erdgodic which again follows directly from the

ergodicity of the underlying process if the latter is of second-order (see Wu & Su, 1996).

For a pattern identification procedure it is required to combine the visual with the analytical

analysis. The contour plot gives information about the permanence of a regular pattern contained

in f and about possible shifts in its period. The relative wavelet energy, again, is used for specifying

the exact scales.

Now, having identified a relevant pattern with scale a∗ in f , we can quantify it in case of using

Morlet wavelet by reducing (3.4) to f∗a (t) with

fa∗(t) =
1

CΨ

∫
[
a∗2π

√
2σ

ω0
√

2σ+1
, a
∗2π
√

2σ
ω0
√

2σ−1

]
∫ ∞
−∞

WT (u, b)
1

u2
√
u

Ψ

(
t− b
u

)
dbdu. (3.8)

The Morlet wavelet has the smallest-possible time-scale window, but it lacks an important feature:

it has no corresponding scaling function φ(a0) that aggregates the influence of all scales larger than

a0 on f . This φ can be interpreted as the long-term trend of f and Mallat (2003) shows

f(t) =
1

CΨ

∫ a0

0

∫ ∞
−∞

WT (a, b)
1

a2
√
a

Ψ

(
t− b
a

)
dbda

+
1

CΨa0

∫ ∞
−∞

〈
f(s),

1√
a0
φ

(
s− b
a0

)〉
1√
a0
φ

(
t− b
a0

)
db. (3.9)

Formula (3.9) can be simplified according to Shannon’s Sampling Theorem which states that a

continuous signal can be exactly discretely reconstructed if it is band-limited, i.e. its Fourier

transform equals zero above a certain finite threshold (see Blatter, 2002). As this is by definition
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the case for

f∗(t) = f(t)− 1

CΨa0

∫ ∞
−∞

〈
f(s),

1√
a0
φ

(
s− b
a0

)〉
1√
a0
φ

(
t− b
a0

)
db, (3.10)

we can replace the integration over all scales between zero and a0 in (3.9) by a finite sum. For the

specification of φ we follow Ahuja et al. (2005) and Unser (1999) who suggest to use B-splines, i.e.

the function

φ(x) =
1

(L− 1)!

L∑
k=0

(−1)k

 L

k

(x− k)L−1
+ L > 1. (3.11)

So, applying the concepts defined in this section we can identify resp. quantify relevant patterns

contained in a function f . Moreover, by using a scaling function, it is possible to extract the

long-term trend of f , whereby the optimal choice of a0 is still to be discussed.

4 Benchmarking the Model

We use observations from the Phelix Day Peak to benchmark our model. This index has been

traded since 2002 but we leave out the first three years as the data show a structural break between

2004 and 2005. The time series plotted in Picture 2 includes weekends, it starts on January 1st,

2005 and ends on December 4th, 2008. We see the typical properties of a short-term energy price:

extreme price spikes do occure and the volatility is occasionally high, i.e. clustered.

Initially we apply the wavelet transform to identify regular patterns in the observations. As moti-

Figure 2: The Phelix Day Peak

vated in Section 3 we use the Morlet wavelet with ω0 = 6 (so the scale approximately equals the
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inverse frequency) and σ = 1. The long-term trend is extracted later but we keep (3.10) in mind

and assume that this yet to be trend-adjusted signal is band-limited. A discrete range of scales is

therefore sufficient and we apply the dyadic scheme given e.g. by Torrence & Compo (1998). It

is based on a time series which length can be written as 2γ , γ ∈ N, so we set T ′ = 2blog2 Tc and

construct our grid as follows:

a0 = 2,∆j = 0.125, J =
⌊
∆j−1 log2

(
T ′/a0

)⌋
+ 1

aj = a02jδj , j = 0, 1 . . . , J. (4.1)

Translation will be performed along a time grid of daily granulation and therefore b can be inter-

preted as time index. Figure 3 shows the real part of the wavelet coefficients. Regular patterns

are indicated by a series of relatively high contour lines with alternating sign. In black lines the

end points’ COI is additionally plotted. The long-term trend appears as a high-scale (i.e. low-

frequency) pattern and spikes like the one in Summer 2006 are indicated by relatively big wavelet

coefficients at a low scale.

Besides that we see some relevant patterns between the log-scales 5 and 6 and compute the relative

Figure 3: The Wavelet Transform of the Phelix Day Peak

wavelet energy, i.e. (3.7), in order to retrieve more information. In Figure 4 it is represented by the

red line. The additional blue dashed line is the relative wavelet energy estimated from an equally

sized sample of random numbers generated using the method of Marsaglia & Zaman (1991). It

serves as a significance line as it indicates the relative wavelet energy of a process without any

9



regular pattern. Both lines increase with the scale but abruptly return to zero around a log-scale of

6. This is due to the construction of (3.7) and the proximity of the log-scale 6 has to be interpreted

carefully as only a few wavelet coefficients can be used for estimating the energy.

In Figure 4 we can distinctly measure peaks in the energy plot at a log-scale of 5.1 (i.e. 160 days

resp. about half a year), 5.5 (about 235 days) and 5.8 (332 days resp. about a year). This goes

along with the findings from Figure 3 where we see that the two latter scales describe one relevant

pattern that changes – more precisely: increases – its period over the considered time. This fact

again shows the advantage of wavelet transform over other seasonal filters as it can identify changes

in the pattern’s period over time.

Figure 4: The Estimated Relative Wavelet Energy

The red line denotes the estimated relative wavelet energy, the blue dashed one the significance

line generated by a random sample.

In order to quantify the identified seasonal patterns we discretize (3.8) according to (4.1).

Additionally we sum up the two latter scales (as they represent one pattern) and eventually obtain

two log-scale windows w1,w2 to be inverted:

w1 =

[(
5.1 · 2π

√
2

6
√

2 + 1

)
,

(
5.1 · 2π

√
2

6
√

2− 1

)]
, w2 =

[(
5.5 · 2π

√
2

6
√

2 + 1

)
,

(
5.8 · 2π

√
2

6
√

2− 1

)]

For the discretization of (3.4) we use that while dealing with the continuous wavelet transform any

wavelet function can be applied for the retransformation and opt for the δ function (see Torrence

& Compo, 1998). This simplifies (3.8) and determining

jlow = max

{
j | aj ≤

(
5.1 · 2π

√
2

6
√

2 + 1

)}
, jup = min

{
j | aj ≥

(
5.1 · 2π

√
2

6
√

2− 1

)}
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we can calculate according to Torrence & Compo (1998)

f[log a=5.1](t) =
∆j

CδΨ(0)

jup∑
j=jlow

Re [WT (aj , t)]
√
aj

=
0.125

0.776 ∗ π1/4

jup∑
j=jlow

Re [WT (aj , t)]
√
aj

,

(4.2)

whereby Cδ denotes a wavelet-specific constant and Re [·] the real part of the respective number.

The influence of the second log-scale window is computed analogously and both results are plotted

in Figure 5. The shift of the annual pattern towards a longer period in 2007 is clearly visible as in

this transition period the oszillations of the two frequencies compensate each other.

We respect the edge effects while computing the relative wavelet energy but – as we cannot quan-

Figure 5: The Biannual and Annual Oszillation

The left graph shows the biannual pattern, the right one the annual pendant.

tify them – not in (4.2). Because the existing damping methods aren’t a solution either, we omit

the first and last 150 observations after finishing the data preprocession stage. Having performed

the seasonal-adjustment (and thus estimated the influence of the (bi)-annual pattern) we apply the

logarithm on the data to damp volatility and extract the trend by computing the second addend

of (3.9) using (3.11) for φ. But that procedure requires to specify a scale a0 which seperates ”long-

term” from ”short-term”. We filtered already the influence of the biannual and annual pattern so

it is reasonable to draw the border in this intervall in order to make sure that no relevant frequency

window is cut in two. Respecting the scale’s dyadic discretization scheme we choose a0 = 28.

Subtracting the computed trend from the original seasonal-adjusted log-data yields the short-term

oszillation. Both time series are of equal length and can be aggregated in a bivariate data vector

which is the basis for our further proceeding. We apply different models of increasing complexity

to this vector in order to benchmark the approach described in (2.1). For the estimated parameter

values, see Appendix a. As goodness of fit (GOF) measures we choose the log-likelihood value

(LLH), Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC)2. As

not all models are nested we additionally compute the mean squared approximation error (MSE)

2For formulae see McNeil et al. (2005).
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and the mean absolute error (MAE) of approximation. The higher LLH and the lower AIC, BIC,

MSE and MAE the better the fit.

First we apply the basic long-term/short-term model of Schwartz & Smith (2005), which we de-

note by SCSM. Evaluating the partial autocorrelation of the short-term oszillation yields a weekly

pattern, so we add a seasonal component and call the model S-SCSM. Comparing both models in

Table 1 we can see that including the seasonal pattern improves the GOF. Moreover we perform

the LM-Test for presence of (G)ARCH-effects (see Engle, 1982) and find time-varying volatility in

both SCSM and S-SCSM. However, the test on dynamic correlation from Engle & Sheppard (2001)

yields that the correlation doesn’t need to be modeled dynamic so we extend the S-SCSM to a

multivariate CCC-GARCH model, incorporate the weekly pattern and add moving average in the

trend (we call it SARMA-CCC-GARCH). This proceeding is justified by an increasing LLH and

decreasing AIC, BIC, MSE resp. MAE. Because we found the correlation in the CCC-GARCH

model to be significant but quite small we additionally fit various univariate error distributions to

both the trend and the short-term oszillation. We clearly see that the skewed Student-t distribution

proposed by Hansen (1994) reflects more the short-term price behaviour than the Gaussian, which

is adequate for the trend’s error term. This approach (which we call SARMA-GARCH2) and the

other models are not nested so we use MSE and MAE to compare them. We observe an inferior

GOF of SARMA-GARCH2 which means that incorporating dependence does make sense.

Table 1: Measuring the Goodness-of-fit of various models

Model LLH BIC AIC MSE MAE

SCSM 2306.586 -4585.042 -4605.172 0.118 0.253

SCSM-I 2585.637 -5138.111 -5163.274 0.075 0.181

SARMA-CCC-GARCH 4391.132 -8697.873 -8758.264 0.011 0.055

SARMA-GARCH2 4445.180 -8798.936 -8864.360 0.073 0.180

UGARCH 372.257 -695.279 -730.513 0.155 0.282

LLH = log-likelihood function, BIC = Bayesian Information Criterion, AIC = Akaike’s

Information Criterion, number of observations = 1134.

Eventually we check if the additional effort of a multivariate model is worthwhile by compar-

ing the derived concepts to an univariate autoregressive GARCH model with Student-t distributed

innovations (denoted by UGARCH) as Mugele et al. (2005) propose. But both the MSE and the

MAE are distinctly higher than the corresponding values of SARMA-CCC-GARCH.

12



5 Conclusion

Based on an analysis of the demand-supply equilibrium on the German power market we designed

a two-factor model for the Phelix Day Peak. In a preprocessing stage we identified a biannual as

well as an annual pattern. After extracting the trend from the seasonal-adjusted log-data (and

thus splitting up the time series) we found another (weekly) pattern in the short-term oszillation.

Eventually we fitted models of various complexity to the bivariate time series. Measured by LLH,

BIC, AIC and MSE resp. MAE we identified as the best approach a bivariate model with constant

correlation but dynamic volatility including a weekly pattern in the short-term oszillation and an

additional moving average in the trend.

Within this paper we have shown some advantages of wavelet transform and how to use it as a data

preprocessing tool. Moreover we see that the additional effort of using a two-factor model for the

German power price is justified. However we have to admit that the univariate Student-t distribu-

tion definitely fits better to the short-term oszillation than the Gaussian, which is adequate for the

trend. Yet the SARMA-CCC-GARCH model, which includes a positive correlation, shows a better

GOF – despite of this discrepancy. Therefore, to respect dependence and individual distribution

properties, we suggest as a next step to model the margins separately from the dependence struc-

ture. For the latter a copula (which is a multivariate distribution function with uniform margins)

is an adequate concept.
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A The models and their fitted parameters

Table 2 : The Parameter of the UGARCH Model

µ θ ω α β ν λ

1.0220 0.7527 0.0018 0.1006 0.8957 9.8736 1.334

(0.1217) (0.0297) (0.0008) (0.0157) (0.0140) (0.0780) (3.1252)

µ = long-term mean, θ = autoregression parameter, (ω, α, β) = GARCH parameter,

ν = degrees of freedom, λ = skewing parameter. The standard errors are presented in brackets.

Table 3: Parameter of The Two-Factor-Models

µξ κ θ1 θ2 ψ ρ ωχ ωξ

SCSM 0.0074 0.7288 0 0.9976 0 0.030 0.3417 0.0224

(0) (0.0286) (0.0019) (0) (0) (0.0198) (0) (0)

S-SCSM 0.0074 0.7659 0.6130 0.9976 0 0.1399 0.2696 0.0224

(0) (0.0289) (0.0233) (0) (0) (0.0166) (0) (0)

SARMA- 0.0098 0.7659 0.6130 0.9976 0.9960 0.0025 0.0015 0.0000

CCC-GARCH (0) (0.0289) (0.0233) (0.0023) (0.0023) (0) (0) (0)

SARMA- 0.0098 0.7659 0.6130 0.9976 0.9960 0 0 0.0019

GARCH2 (0) (0.0289) (0.0233) (0.0023) (0.0023) (0) (0) (0)

µξ = mean of the trend, κ = mean-reversion, θ1 = parameter of the weekly autoregression, θ2 = the

trend’s autoregression, ψ = the trend’s moving average parameter, ρ = correlation between long- and

short-term motion,

ω1, ω2 = constant volatility.
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Table 4: Parameter of The Two-Factor-Models (cont.)

αχ βχ αξ βξ νχ λχ

S-ARMA 0.1884 0.8116 0.8639 0.1361

CCC-GARCH (0.0010) (0.0002) (0.4237) (0.3660)

S-ARMA 0.1861 0.8011 0.8217 0.2344 5.2592 0.9872

GARCH2 (0.0333) (0.0277) (0.0643) (0.0474) (0.7975) (0.0392)

(αχ, αξ, βχ, βξ) = the GARCH-model’s parameter, ν, λχ = degrees of freedom and skewness of the

short-term oszillation’s Student t distribution.
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