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show that the ATT can be estimated by a simple TWFE method that extends the approach 
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1 Introduction

The Di↵erence-in-Di↵erences (DiD) literature, particularly the one concerned with stag-

gered treatment adoption, has experienced significant advances in the last few years, and

papers by Roth et al. [2023] and de Chaisemartin and D’Haultfœuille [2021] have sum-

marized these developments. Within this array of advances, one area still understudied is

the one linked to spillovers—implying that the Stable Unit Treatment Value Assumption

(SUTVA) assumption does not hold. However, as Roth et al. [2023] point out, spillover

e↵ects may be important in many economic applications, such as when a policy in one

area a↵ects neighboring areas, or when individuals are connected in a network.1 Our

work contributes to this area and links two active DiD literature strands.

The first one focuses on estimation issues under staggered adoption and heterogeneous

treatment e↵ects across units and time. Borusyak et al. [2021], de Chaisemartin and

D’Haultfoeuille [2020], Callaway and Sant’Anna [2020], Goodman-Bacon [2021], Sun and

Abraham [2020] and Wooldridge [2022] highlight that the two-way fixed e↵ect (TWFE)

regression estimator may be biased for the average treatment e↵ect on the treated (ATT),

to the extreme of showing the opposite sign. The authors suggest alternative estimators

that account for the variation in treatment timing, thereby providing a consistent estima-

tor for the ATT. We contribute to this literature by extending it to the case of spillovers

in both linear and non-linear models.

The second strand studies the identification of average treatment e↵ects in the pres-

ence of spillovers. Berg et al. [2021], Butts [2023], Clarke [2017], and Huber and Stein-

mayr [2021] highlight two main challenges for identification of the ATT if the treatment

also impacts units that are not formally treated. First, untreated units are no longer

valid controls. So far, proposed solutions mostly centre around ruling out spillovers for

a given group of units, often based on some spatial distance, allowing the researcher

to use this latter group as a control. Alternatively, if su�cient information exists, one

can parametrize how units are exposed to spillovers. Second, multiple definitions of the

ATT are possible in the presence of spillovers. This is because a unit’s treatment can

lead to changes to its own outcome, but also to other units’ outcomes. In this case, the

researcher might be interested in examining the former e↵ect, summarized by the ATT

without interference (i.e., the one identified under SUTVA), or in a broader definition of

the ATT that also accounts for the latter e↵ect. Here, we contribute to this literature

by providing conditions that allow for the identification of the ATT without interference,

despite the presence of spillovers. Our setting also departs from this literature since we

focus on the more complex staggered treatment adoption, which has the potential for

1As another example, Minton and Mulligan [2024] use price theory to demonstrate that when treated
and control units are in the same market, control units are indirectly a↵ected by the treatment.
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cumulative spillovers. Nevertheless, our results also apply to the simpler simultaneous

treatment case.

Specifically regarding contributions, we first establish the identifying assumptions for

the ATT without interference given a staggered DiD setting in the presence of spillovers.

We show that aside from the canonical i) treatment irreversibility, ii) no-anticipation, and

iii) parallel trends assumptions, identification requires that once a unit receives treatment,

it is no longer influenced by spillover e↵ects. This means the unit forfeits any spillovers

it may have previously received and remains una↵ected by spillovers from subsequently

treated groups. This assumption also unifies the multiple definitions of the ATT, because

they are the same with or without spillovers, simplifying policy evaluation and joining

with the definition of ATT under SUTVA. We also assume that a set of never-treated

units is not exposed to spillovers, in line with the existing literature. The combination

of these assumptions allows for the identification of the ATT. Below, we argue that such

a scenario applies to many contexts. Di↵erently from Butts [2023], who is closest to our

work, we directly focus on the staggered treatment scenario and, importantly, provide

assumptions for the identification of the ATT without interference.2

Our second contribution regards estimation. We show that the extended TWFEmodel

approach of Wooldridge [2022], which is numerically equivalent to the imputation-based

approach of Borusyak et al. [2021], can be used to account for spillovers. Furthermore, we

discuss identification and estimation in the non-linear case of count data, broadening the

range of applications where our approach can be applied to. For our empirical application,

we revisit Gonzalez-Navarro [2013], who studied the e↵ects of installing a stolen vehicle

recovery device on car theft. Since car theft is a count variable, we implement the non-

linear Poisson DiD adjusted for spillovers. Our correction leads to a larger e↵ect of the

policy relative to the original contribution’s specification.

Finally, we perform a Monte Carlo analysis, highlighting the bias-variance trade-o↵

implicit in the correction for staggered treatment and spillovers. Identification of time

and group fixed e↵ects can neither rely on the already treated units due to heterogeneous

treatment e↵ects, nor on the untreated units potentially exposed to spillovers. However,

the benefit of excluding such units from estimation can be small if treatment e↵ects are

relatively homogeneous and if spillovers are small, while costing the researcher precision.

We compare the traditional TWFE estimator, which ignores both staggered adoption and

spillovers, the Wooldridge [2022] estimator, which accounts for staggered adoption but

not for spillovers, and our estimator, which corrects for both. We do so under di↵erent

sample sizes, degrees of staggered treatment, and degrees of spillovers, showing that our

estimator performs competitively in many settings.

2Butts [2023] is concerned with establishing identification of the sum of direct and spillover e↵ects.
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The remainder of the paper is organized as follows. Section 2 provides intuition along-

side two motivating examples, after which Section 3 lays out the formal DiD setup with

staggered treatment adoption. Section 4 establishes conditions for identifying the ATT,

while Section 5 discusses estimation and inference considering the formerly established

assumptions. Section 6 extends our model to the non-linear case, and Section 7 discusses

a corresponding application. Section 8 provides Monte Carlo simulations, and Section 9

concludes.

2 Intuition and Motivating Examples

To illustrate our setting, consider panel data of units divided into three groups, A, B,

and Z, observed over three periods, 1, 2, and 3. The groups are distinguished by the

timing of their treatment. Group A is treated in periods 2 and 3, group B in period 3,

and group Z remains untreated throughout. Each group consists of two units, denoted

by a, a0, b, b0, z, z0. We use the indices i and j to refer to any unit within these groups.

Figure 1 illustrates the potential treatment and spillover mechanisms in this setting,

focusing on periods 2 and 3. Solid lines indicate treatment e↵ects under no interference

(�it), equivalent to the conventional definition of the treatment e↵ect under SUTVA. We

call them direct e↵ects. Dotted lines indicate spillovers from a treated unit j to a treated

unit i (�j
it), and dashed ones represent spillovers from a treated unit j to an untreated

unit i (⌘jit). The figure highlights a key challenge introduced by the presence of spillovers:

there are no valid control units. This is further complicated by the presence of multiple

direct e↵ects, which is a feature of staggered adoption design. Under SUTVA, only the

direct e↵ects represented by solid lines would exist.

We can visualize possible data patterns in this setting using a simple parametric

model. Suppose that the outcome of interest is deterministic and given by:

Yit = 1 + �t + �it ·Dit +Dit ·

X

j 6=i

�j
it ·Djt + (1�Dit) ·

X

j 6=i

⌘jit ·Djt, (1)

where Dit is a binary variable equal to 1 when unit i is treated. Equation (1) illustrates a

scenario where unit i’s outcome is not only influenced by its own treatment, represented

by �it, but also by the treatments of other units, as captured by �j
it and ⌘jit. Assuming

that the treatment e↵ect in the absence of interference is homogeneous across units and

time, we set �it = �0.5 for all i and t, in which case the ATT without interference equals

to �0.5. We also assume that the time e↵ect is given by �t = 0.1 · (t� 1).

The left panel in Figure 2 illustrates a data pattern in scenarios without a spillover

e↵ect. Estimators that account for staggered adoption and heterogeneous treatment

4
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Figure 1: Illustration of the potential treatment and spillover paths

e↵ects typically utilize the observations from the never-treated group Z and the not-yet-

treated observations in group B at time 2 as the control group. These observations are

used to estimate the time trend and are contrasted with treated observations to estimate

the ATT without interference. For example, Wooldridge [2022] proposes the following

variant of the TWFE regression model. Let Gi be the group membership of unit i, with

Ga = Ga0 = A, Gb = Gb0 = B, and Gz = Gz0 = Z. The model is given by:

Yit = ↵i + �t + �A2 · 1(Gi = A, t = 2)

+ �A3 · 1(Gi = A, t = 3)

+ �B3 · 1(Gi = B, t = 3) + "it,

(2)

where, abusing notation, (�A2, �A3, �B3) are coe�cients on group-period indicators, and

↵i, �t are the unit and time fixed e↵ects, respectively. Under suitable conditions, it can

be shown that the estimate of �gt, denoted by b�gt, is consistent for the ATT for each

group g at each time t, all equal to �0.5 in our example.3

We now introduce spillovers under two alternative scenarios. We will also use these so-

3In fact, since the treatment is homogeneous, the standard TWFE regression would also consistently
estimate the ATT.
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Figure 2: Possible data patterns under Equation (1)

called Examples 1 and 2 throughout the paper to motivate our assumptions and empirical

application. In the first scenario, the spillover is in the form of a di↵usion e↵ect, meaning

that the direct e↵ect �it and the spillover e↵ect (�j
it, ⌘

j
it) have the same sign. In the second

scenario, the spillover is in the form of displacement, where �it and (�j
it, ⌘

j
it) have opposite

signs.

Example 1 (installation of a water treatment plant). Consider a scenario where we are

interested in the e↵ect of introducing a water treatment plant on the health outcomes of

villages situated along a river. Suppose the nearby villages a and a0, categorized as group

A, are the first to adopt the plant. This adoption not only improves water quality in

these villages but may also enhance the water quality of the not-yet-treated downstream

villages, resulting in a spillover e↵ect.

The middle panel in Figure 2 visualizes a possible data pattern of Example 1. For

a numerical illustration, let’s build upon Equation (1) and set the spillovers to also be

homogeneous across units and time: �j
it = ⌘jit = � = ⌘ = �0.05 for all i, j and t. There

are two key challenges arising from this setting. First, there is no valid control group

because both never-treated and not-yet-treated observations are negatively a↵ected by

spillovers. To illustrate, note that the time-di↵erence of Equation (1) for an untreated

unit is given by:

Yit � Yi,t�1 = �t � �t�1 +
X

j 6=i

�
�j
it ·Djt � �j

i,t�1 ·Dj,t�1

�
.
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This equation reveals that the spillover e↵ect introduces a bias term, disrupting the

consistent estimation of the time trend (�t � �t�1). For instance, the bias term for the

time-di↵erence of an untreated unit z between periods 2 and 3 is calculated as �a
z3+�a0

z3+

�b
z3 + �b0

z3 � �a
z2 � �a0

z2 = �0.1. Unit z0 has the same bias term.

Second, even if we could correctly identify time and group fixed e↵ects, it would not

be possible to separately identify the direct and spillover e↵ects. Estimators that account

for staggered adoption and heterogeneous treatment e↵ects, such as (2), would at best

identify the average sum of the direct and spillover e↵ects. For example, such an approach

would estimate b�A2 = (� + �) = �0.55 and b�A3 = b�B3 = (� + 3⇥ �) = �0.65.

Example 2 (installation of stolen vehicle recovery devices). Gonzalez-Navarro [2013]

studied the e↵ect of installing a stolen vehicle recovery device on car theft incidents. The

introduction of this treatment was staggered across di↵erent states within a country and

was limited to specific car models. In this scenario, car theft could potentially be displaced

to other unprotected models within treated states or to the same models in states that

had not yet adopted the device. Gonzalez-Navarro [2013] found a 52% increase in thefts

for the same models in states without the installed device.

The right panel in Figure 2 visualizes a possible data pattern of Example 2, where

we set �j
it = ⌘jit = 0.05 for all i, j and t. Example 2 face the same key challenges

that we discussed earlier: the absence of a valid control group and the di�culty in

separately estimating direct e↵ects and spillover e↵ects. Note that, especially in the case

of displacement, spillover e↵ects could intensify over time as more and more treated units

spill on an increasingly narrower pool of untreated units.

While the sum of direct and spillover e↵ects might be of interest in some cases, iden-

tifying the direct e↵ect separately should be of prime importance in most contexts. For

example, when a unit decides whether to participate in a policy or treatment, its main

concern probably is the direct e↵ect, because other units’ decisions are out of its con-

trol. Policymakers whose jurisdiction spans all units might also want to understand the

distinct impact of each channel. In addition, it should be noted that the sum of direct

and spillover e↵ects might have limited external validity, as this sum is specific to the

observed treatment histories of all units, while there is a vast array of counterfactual

treatment histories that all of these units might experience.

Figure 3 visualizes our key assumptions that allow the identification of the direct

e↵ect. They assume that all treated units are not influenced by spillovers, and that a

subset of never-treated units remains una↵ected by spillovers as well. Consequently, in

this figure, there are no longer lines to treated observations, and there are no lines to unit

z0, allowing for the identification of the time trend. In what follows, we detail how these

7
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Figure 3: DAG under the key identification assumptions

assumptions are likely to hold in empirical applications, illustrated through Examples 1

and 2.

Example 1 [continued]. Consider villages situated at the most upstream part of a

river, none of which have water treatment plants. These upstream villages are not a↵ected

by the installation of water treatment plants in other villages along the river, since all

other villages are downstream relative to them. Therefore, in this context, these upstream

villages represent untreated units that are not subject to spillover e↵ects.

Next, consider the village located furthest downstream, which initially does not have a

water treatment plant. When an upstream village installs a plant, the downstream village

experiences spillover e↵ects, benefiting from improved water quality resulting from the

upstream water treatment. However, once the downstream village installs its own water

treatment plant, the treatment status of the upstream village becomes irrelevant. The

water quality in the downstream village is now only determined by its own treatment.

Consequently, in this situation, treated units do not experience spillover e↵ects.

Example 2 [continued]. Consider states that are distant from all states where stolen

vehicle recovery devices have been installed in specific car models. These states might

be una↵ected by spillover e↵ects, because car thieves deterred from targeting models
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equipped with the device are likely to limit their alternative targets to those in areas

within a manageable distance, for instance, because their networks are more robust.

Gonzalez-Navarro [2013] shows that the data supports the notion that geographical con-

straints limit displacement behavior.

Next, consider a car model without the device, located in a state adjacent to the one

where the device had been installed. This car model is subject to spillover e↵ects because

installing the device in the neighbouring state prompts thieves to redirect their targets to

models without the device in nearby areas. However, once the device is installed in these

previously unprotected models, they no longer experience spillover e↵ects, as thieves’

attention turns to vehicles still lacking the device.

It might be argued that as the coverage of states and car models with the protection

device expands to become almost universal, thieves might eventually revert to targeting

protected cars, violating the assumption. This scenario might not be totally implausible

unless thieves shift their focus to other, less protected assets or leave the criminal market

entirely. Nevertheless, such an almost universal adoption of the protection device would

be considered an extreme case and hard to evaluate due to a very small set of control

units.

3 Setup

We consider a DiD model with staggered treatment adoption, which involves panel data of

units observed over time periods t 2 {1, . . . , T}. For each unit at each time t, we consider

a binary treatment status indicating whether the unit is treated (1) or not treated (0). We

assume that the treatment is irreversible, meaning that once a unit undergoes treatment,

it remains treated in all subsequent periods.

Assumption 1 (irreversibility). For any two time periods (s, t) such that s < t, if a unit

has a treatment status of 1 at time s, then it also has a treatment status of 1 at time t.

Under Assumption 1, we can categorize units into groups according to the periods

at which they enter treatment. Let G be a subset of {1, . . . , T,1} that represents the

periods at which units enter treatment. A unit is assigned to group g 2 G if it enters

treatment at period g, except for the group labeled1, which consists of units that remain

untreated until time T .

We consider a population of units, indexed by i, for each group g 2 G. We denote

unit i in group g by a (i, g) pair, and we let ⇤g represent the set of all (i, g) indices

within group g in the population, with ⇤ ⌘
S

g2G ⇤g being the set of all indices across

all groups. For each unit (i, g), we define Digt 2 {0, 1} as the binary treatment indicator

9



at time t, and we let Dig ⌘ (Dig1, . . . , DigT ) represent the treatment history of this unit.

Furthermore, we define the vector dg as follows:

dg ⌘ (0, . . . , 0| {z }
t<g

, 1, . . . , 1| {z }
t�g

), (3)

which represents the realized treatment history of the units in group g. We let dtg denote

its treatment history up to time t. In cases with no ambiguity, we will use 0 to represent

d1, the realized treatment history of those who remain untreated until time T , since d1

corresponds to the vector of zeros.

Let Yigt({djh}(j,h)2⇤) be the potential outcome for unit (i, g) at time t when {Djh}(j,h)2⇤

is set to {djh}(j,h)2⇤. It is important to note that the potential outcome depends on the

treatment histories of all units in the population (⇤), whereas under SUTVA it would

be a function of the unit’s own treatment history only, i.e., Yigt({djh}(j,h)2⇤) = Yigt(dig).

To facilitate future discussions, we rewrite the potential outcome by partitioning the

population’s treatment into the unit’s own treatment and those of the other units:

Yigt(dig, {djh}(j,h)2⇤\{(i,g)}).

This notation emphasizes the possibility of unit (i, g) being a↵ected by spillover ef-

fects from units not included in the sample, as ⇤ represents the index set of the entire

population. Note that Assumption 1 and the definition of the group labels G imply that

we observe djh = dh for every (j, h) 2 ⇤ in the data.

We define d(i,g) to be a value of {djh}(j,h)2⇤\{(i,g)} where djh = dh for every (j, h) 2

⇤\{(i, g)}, representing the treatment histories for units other than (i, g) according to

their group labels. In addition, we define 0(i,g) to be another value of {djh}(j,h)2⇤\{(i,g)}

where djh = 0 for every (j, h) 2 ⇤\{(i, g)}, representing absence of treatment for all units

other than (i, g).

These definitions lead to the following four types of potential outcomes that are rele-

vant to our discussion:

• Yigt(dg,d(i,g)) represents the observed outcome where unit (i, g) is treated according

to dg, and other units (j, h) are treated according to d(i,g).

• Yigt(dg,0(i,g)) represents the counterfactual outcome where unit (i, g) is treated ac-

cording to the observed dg, but all the other units (j, h) are untreated.

• Yigt(0,d(i,g)) represents the counterfactual outcome where unit (i, g) is untreated,

but other units (j, h) are treated according to the observed d(i,g).

10



• Yigt(0,0(i,g)) represents the counterfactual outcome where both unit (i, g) and all

the other units (j, h) are untreated.

We assume that there is no anticipatory e↵ect for these four types of potential out-

comes, a standard assumption in DiD analyses.

Assumption 2 (no anticipation). Yigt(dig, d(i,g)) = Yigt(dtig, d
t
(i,g)) where dig 2 {0, dg} and

d(i,g) 2 {0(i,g),d(i,g)}.

Under this assumption, we can refer to the not-yet-treated group, labelled as 1, as

the never-treated group. Note that Assumption 2 still allows the treatment e↵ect to be

heterogeneous based on the duration of treatment exposure.

Next, we introduce the parallel trend assumption, specifically for a linear DiD model.

We will extend our discussion to a nonlinear DiD model in a later section.

Assumption 3 (parallel trend, linear model). For every group g at time t,

E(Yigt(0
t,0t

(i,g))|↵ig) = ↵ig + �t,

where ↵ig 2 R is the unit fixed e↵ect and �t 2 R is the common time e↵ect such that

�1 = 0.

Assumption 3 can also be expressed in a standard form commonly found in the liter-

ature on DiD models (see, e.g., Borusyak et al., 2021):

Yigt(0
t,0t

(i,g)) = ↵ig + �t + "igt, (4)

where E("igt|↵ig) = 0 for every group g at time t.

Without SUTVA, multiple definitions of the ATT arise. We first introduce the ATT

without interference:

ATT0(g, t) ⌘ E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))).

This definition of ATT0(g, t) captures the expected treatment e↵ect at time t when unit

(i, g) is the only treated unit in the population, thereby excluding any spillover e↵ects

from the other units. In other words, ATT0(g, t) captures the direct e↵ect from the

treatment, illustrated by the solid edges in Figure 1. This aligns with the conventional

definition of the ATT under SUTVA and is the estimand of interest in our paper. We

can then define an aggregate ATT by ATT0 =
P

g,t wgtATT0(g, t), where wgt is a weight

chosen by the econometrician (see, e.g., Callaway and Sant’Anna [2020]).4

4Note that ATT0(g, t) is typically defined only for pairs (g, t) satisfying t � g. In this paper, we
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We can also consider an alternative definition of the ATT that includes spillover

e↵ects:

ATTS(g, t) ⌘ E(Yigt(d
t
g,d

t
(i,g))� Yigt(0

t,0t
(i,g))).

This definition di↵ers from ATT0(g, t) in that it incorporates the spillover e↵ects from

other treated units. Note that ATTS(g, t) includes the spillover e↵ects from all units with

group labels g  t.

We refer to the di↵erence ATTS(g, t) � ATT0(g, t) as the average spillover e↵ect on

the treated:

AST (g, t) ⌘ E(Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))).

Lastly, it is useful to define another estimand, which we refer to as the average spillover

e↵ect on the untreated:

ASUT (g, t) ⌘ E(Yit(0
t,dt

(i,g))� Yit(0
t,0t

(i,g))).

4 Identification

The discussion on the identification of ATT0(g, t) is structured into two steps. We first

show that identifying ATT0(g, t) is equivalent to identifying the sum of the time e↵ect

and the spillover e↵ect on the treated. The second step then introduces conditions that

allow the identification of this sum. An implication of our assumptions is that it unifies

the definitions of the ATT by implying that ATT0(g, t) = ATTS(g, t).

We first present the necessary and su�cient condition for identifying ATT0(g, t) when

spillovers are present.

Theorem 1. Suppose that Assumptions 1 to 3 hold, and that all units are untreated at

t = 1. Then, for every group g 2 G such that 2  g < 1 and time t � g, the parameter

ATT0(g, t) is identified if and only if �t + AST (g, t) is identified.

Proof. Refer to the Appendix for the proof of this theorem and others that follow.

The proof of Theorem 1 shows that, for every (g, t) satisfying t � g:

E(Yigt) = E(↵ig) + �t + ATT0(g, t) + AST (g, t).

The intuition for Theorem 1 is that since E(↵ig) is identified from the data for group g at

t = 1, it follows that identification of ATT0(g, t) requires knowledge of �t (the time e↵ect)

extend its definition to also include pairs satisfying t < g, in which case dtg = 0t, resulting in a trivial
definition of ATT0(g, t) = 0. We adopt this extension as it simplifies the notation in the proofs of our
results.
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and AST (g, t) (the average spillover e↵ect on the treated). In general, Assumptions 1 to 3

are not su�cient for the identification of these two parameters. Note that AST (g, t) = 0

in the absence of spillover e↵ects, in which case the identification of the ATT0(g, t) only

requires knowledge of the time e↵ect.

In what follows, we propose two additional assumptions that enable identification of

ATT0(g, t). We state the first assumption below.

Assumption 4 (No spillover e↵ects on treated units). For every (g, t) such that t � g,

Yigt(d
t
g,d

t
(i,g)) = Yigt(d

t
g,0

t
(i,g)).

This assumption requires that once a unit receives treatment, it is no longer influenced

by spillover e↵ects. This means the unit forfeits any spillovers it may have previously

received and remains una↵ected by spillovers from subsequently treated groups. Recall

that we have previously discussed the plausibility of this assumption in Section 2, illus-

trated through Examples 1 and 2. Note that Assumption 4 implies AST (g, t) = 0, and

therefore ATT0(g, t) = ATTS(g, t), unifying the definition of ATT (g, t).

Next, we state the second assumption. For every group g 2 G, let ⇤0
g ✓ ⇤g be a

collection of units such that, for every untreated period t < g:

E(Yigt(0
t,dt

(i,g))|↵ig, (i, g) 2 ⇤0
g) = E(Yigt(0

t,0t
(i,g))|↵ig, (i, g) 2 ⇤0

g) = ↵ig + �t. (5)

Hence, the ⇤0
g set consists of units within group g that are not a↵ected by spillover e↵ects

while they are untreated.

Assumption 5 (Existence of never-treated units without spillover e↵ects). ⇤0
1 has a

positive measure.

This assumption states that there exists a nontrivial proportion of never-treated units

that are not a↵ected by spillovers, allowing for the identification of the time e↵ect �t. In

practice, the researcher may not have complete knowledge of ⇤0
g and take a conservative

approach by selecting the smaller subset of units strongly believed to be una↵ected by

spillovers, denoted by ⇤̃0
g ✓ ⇤0

g. For brevity of notation, we use ⇤0
g interchangeably with

⇤̃0
g. All the results we discuss below apply to both ⇤0

g and ⇤̃0
g.

Note that Assumption 5 does not impose any requirement about the size of ⇤0
g for

g 6= 1. For instance, in the study by Gonzalez-Navarro [2013] described in Example 2, the

author used the never-treated states that are farthest from the treated ones as controls,

implying ⇤0
g = ; for g 6= 1. Alternatively, assuming that spillover e↵ects occur only

among adjacent states, ⇤0
g could consist of all untreated observations in group g that are

not adjacent to any treated state. In this case, the “control group” for time t, defined
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by
S

g>t ⇤
0
g, decreases in t as more states adopt the treatment over time, resulting in a

smaller number of untreated states that are not adjacent to any treated ones.

We conclude this section by showing that ATT0(g, t) is identified under these two

additional assumptions, which is a direct consequence of Theorem 1.

Theorem 2. Suppose that Assumptions 1 to 5 hold, and that all units are untreated at

t = 1. Then, ATT0(g, t) is identified for every group g 2 G such that 2  g < 1 and

time t � g.

5 Estimation and Inference

In this section, we discuss estimation and inference of ATT0(g, t) under Assumptions 1

to 5. Consider a balanced panel of T periods, where all units are untreated at t = 1. The

units are indexed as i = 1, . . . , Ng for each group label g 2 G.

For estimation, it is useful to introduce a binary variable Sigt that indicates whether

an observation (i, g, t) could be subject to spillover e↵ects. To define this variable, note

that an observation is potentially influenced by spillovers under the following conditions:

• The observation is within the post-treatment period (t � min{t | t 2 G}).

• The observation is not treated (with Digt = 0), as otherwise treated observations

are not influenced by spillover e↵ects by Assumption 4.

• The observation does not belong to the set {⇤0
g}g2G, as otherwise units in these sets

are considered una↵ected by spillover e↵ects, as defined in Equation (5).

Considering these, and defining q ⌘ min{t | t 2 G} as the initial post-treatment period,

we define Sigt as

Sigt =

(
1 if t � q and Digt = 0 and (i, g) /2 ⇤0

g

0 otherwise
.

We first discuss estimation of ATT0(g, t) in the case where ⇤0
1 is the only nonempty

set. We propose the following extension of Wooldridge [2022] as the estimation procedure.

Consider a partition of group 1 into subgroups (1, 0) and (1, 1), where (1, 0) consists

of units belonging to ⇤0
1, and (1, 1) consists of units belonging to ⇤1 � ⇤0

1. With

this partitioning, units are now categorized into a more extended set of groups than G,

denoted by G̃. For example, if G = {q, . . . , T,1}, then the extended set G̃ is defined as

G̃ ⌘ {q, . . . , T, (1, 0), (1, 1)}.
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We use g 2 G̃ to denote a generic group label within G̃, and we extend the definitions of

Yigt, Digt, and Sigt to this group label g.

With these notations, we estimate the linear regression model where Yigt is the out-

come variable, and the regressors are:

• indicators of g (the “extended group fixed e↵ects”),

• indicators of t (the “time fixed e↵ects”),

• interactions between Digt and indicators of (g, t), and

• interactions between Sigt and indicators of (g, t).

In other words, we estimate the regression model:

Yigt = ↵g + �t +
X

g02G\{1}

TX

t0=g0

�g0t0 · 1((g, t) = (g0, t0)) ·Digt

+
X

g02G̃\{(1,0)}

g�1X

t0=q

�g0t0 · 1((g, t) = (g0, t0)) · Sigt + "igt,

(6)

where g � 1 is interpreted as T if g = (1, 1). Then, b�gt is the estimate of ATT0(g, t).5

Note that Equation (6) involves ↵g, the group fixed e↵ect, as opposed to ↵ig, the unit

fixed e↵ect. This applies similarly to the treatment e↵ects, where Equation (6) involves

group-level treatment e↵ects (�gt) instead of unit-level treatment e↵ects. This simplifies

the estimation and inference of ATT0(g, t), because the estimate b�gt and its standard

error can be easily obtained through standard linear regression in any statistical software

package. Moreover, estimation and inference of an aggregate ATT is also straightforward,

because the estimate is given by
P

g,t wgt
b�gt, and its standard error is straightforwardly

computed by

Var

 
X

g,t

wgt
b�gt

!
=
X

g,t

X

g0,t0

wgtwg0t0Cov(b�gt, b�g0t0),

where Cov(b�gt, b�g0t0) is available in any statistical software package, e.g., via e(V) in Stata.

Alternatively, the following extension of the imputation-based procedure of Borusyak

et al. [2021] o↵ers a numerically equivalent method of obtaining b�gt.

1. Estimate the linear model

Yigt = ↵ig + �t + "igt,

5In practice, when implementing Equation (6) using a statistical software package, the researcher may
simply ignore the limits of the summation terms. Instead, one may include the interaction terms for all
g 2 G̃ and for every 1  t  T . The software will automatically omit the extra interactions from the
model due to the multicollinearity.
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using observations (i, g, t) such that Digt = 0 and Sigt = 0.6

2. Let b↵ig and b�t be the estimates of ↵ig and �t from the linear model. Impute the

baseline outcome for unit (i, g) at time t as

bYigt(0
t,0t

(i,g)) = b↵ig + b�t.

3. For a treated group g at time t � g, estimate ATT0(g, t) by

1

Ng

NgX

i=1

h
Yigt �

bYigt(0
t,0t

(i,g))
i
,

which can be shown to be equal to b�gt.

In this procedure, ATT0(g, t) is estimated by the average di↵erence between the observed

(treated) outcome and the counterfactual (baseline) outcome. The baseline outcome is

estimated using observations in the control group that are una↵ected by spillovers.

Note that the estimate of ATT0(g, t) in the imputation-based procedure equals to

1

Ng

NgX

i=1

Yigt �
1

Ng

NgX

i=1

b↵ig �
b�t.

The regression in Equation (6) directly calculates (1/Ng)
PNg

i=1 b↵ig, rather than individ-

ual b↵ig values, through the group-level fixed e↵ect. The following result shows that,

despite this simplification, the population regression of Equation (6) correctly identifies

ATT0(g, t). The consistency and asymptotic normality of b�gt follows directly from the

validity of the population regression.

Theorem 3. Suppose that the assumptions of Theorem 2 hold. Consider the population

regression of Equation (6), and let �gt be the population regression coe�cient for the

interaction between Digt and the indicator of (g, t). Then, �gt = ATT0(g, t).

Next, we consider the case where ⇤0
g might be non-empty for some g 6= 1. We define

the extended set of groups G̃ by

G̃ ✓ G ⇥ {0, 1}.

This partitions each group g into subgroups (g, 0) and (g, 1) whenever ⇤0
g is nonempty,

where (g, 0) consists of units belonging to ⇤0
g and (g, 1) consists of units belonging to

6In balanced panels, it is su�cient to use the group fixed e↵ect ↵g in the linear model.
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⇤g � ⇤0
g. We then extend the definition of Yigt, Digt, and Sigt to the group label g 2 G̃

and define ATT0 accordingly:

ATT0(g, t) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))).

The aggregate ATT can then be defined as ATT0 =
P

g,t wgtATT0(g, t), where wgt is

a weight chosen by the econometrician. The regression in (6) can be straightforwardly

extended to this group label, with the modification that the coe�cient �gt now represents

�gt = ATT0(g, t).

Lastly, if the data is an unbalanced panel, the regression in Equation (6) is no longer

consistent for the ATT0. The imputation-based estimation procedure of Borusyak et al.

[2021] is still consistent, but the standard error will be asymptotically conservative in

general (see Borusyak et al., 2021, Section 4.3). In contrast, for a balanced panel, the

standard error computed from Equation (6) is asymptotically exact.

6 Extension to Nonlinear DiD Models

In this section, we extend our previous findings to the case where Yigt is a count variable,

for which the linear parallel trend condition (Assumption 3) does not hold. This extension

contributes to the literature on nonlinear DiD models [Wooldridge, 2023], expanding the

applicability of our results to a wider array of empirical applications.

We introduce the following assumption regarding parallel trends in the context of

count data.

Assumption 3’ (parallel trend, Poisson model). For every group g at time t,

lnE(Yigt(0
t,0t

(i,g))|↵ig) = ↵ig + �t.

By replicating the arguments in Theorems 1 and 2, the following corollaries show that

ATT0(g, t) is identified under assumptions similar to those in Theorem 2. In doing so,

we abuse notation and define ⇤0
g ✓ ⇤g for every group g 2 G as a collection of units such

that, for every untreated period t < g:

lnE(Yigt(0
t,dt

(i,g))|↵ig, (i, g) 2 ⇤0
g) = lnE(Yigt(0

t,0t)|↵ig, (i, g) 2 ⇤0
g) = ↵ig + �t. (7)

Corollary 1. Suppose that Assumptions 1 and 2 and assumption 3’ hold, and that all

units are untreated at t = 1. Then, for every group g 2 G such that 2  g < 1 and

time t � g, the ATT0(g, t) is identified if and only if E(exp{↵ig}) · exp{�t} + AST (g, t)

is identified.
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Corollary 2. Suppose that Assumptions 1, 2, 4 and 5 and assumption 3’ hold, and that

all units are untreated at t = 1. Then, ATT0(g, t) is identified for every group g 2 G such

that 2  g < 1 and time t � g.

Note that, despite a nonlinear setting, the identification holds in a short panel setting

where T remains fixed.

Let Sigt be defined as in previous sections, and consider a balanced panel of T periods

where units are indexed as i = 1, . . . , Ng for each group label g, and all units are untreated

at t = 1. Our parameter of interest is still ATT0(g, t). In the case of count data, the

average treatment e↵ect in terms of percentage changes is also often reported:

ATTP0(g, t) =
ATT0(g, t)

E(Yigt(0t,0t
(i,g)))

,

which can be aggregated to define an ATTP0 ⌘
P

g,t wgtATTP0(g, t).

The estimation and inference procedure discussed in Section 5 can be straightfor-

wardly extended to the count data. For example, in the case where ⇤0
1 is the only

nonempty set, we define the extended group label g to be as defined in Section 5, and we

use the following simple estimation procedure that involves a parsimonious generalized

linear model.

1. Estimate the Poisson regression model where Yigt is the outcome variable, and the

regressors are:

• indicators of g (the “extended group fixed e↵ects”),

• indicators of t (the “time fixed e↵ects”),

• interactions between Digt and indicators of (g, t), and

• interactions between Sigt and indicators of (g, t).

In other words, we estimate the Poisson regression model:

lnE(Yigt|Xigt) = ↵g + �t +
X

g02G\{1}

TX

t0=g0

�g0t0 · 1((g, t) = (g0, t0)) ·Digt

+
X

g02G̃\{(1,0)}

g�1X

t0=q

�g0t0 · 1((g, t) = (g0, t0)) · Sigt,

(8)

where g � 1 is interpreted as T if g = (1, 1) and Xigt represents the vector of

regressors. Let b↵g, b�t, and b�gt be the estimates of ↵g, �t, and �gt from this model,

respectively.
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2. Estimate ATT0(g, t) by

[ATT 0(g, t) = exp{b↵g + b�t + b�gt}� exp{b↵g + b�t},

or estimate ATTP0(g, t) by \ATTP 0(g, t) = exp{b�gt}� 1.

The validity of the population regression of Equation (8) can be shown by replicating

the arguments in Theorem 3, and we omit the proof here. The consistency and asymp-

totic normality of [ATT 0(g, t) and \ATTP 0(g, t) follow directly from the validity of the

population regression.

Note that most statistical software packages that run Poisson regressions calculate

the standard errors of (b↵g, b�t, b�gt) using the maximum likelihood. This assumes that

the distribution of Yigt(0t,0t
(i,g)) conditional on ↵ig follows a Poisson distribution (as

opposed to only specifying its mean as in Assumption 3’), ruling out heteroskedasticity.

To accommodate heteroskedasticity, standard errors can instead be derived using the

quasi-maximum likelihood estimation (QMLE) method. Specifically, let ✓ be the vector

of all coe�cients in the Poisson regression (i.e., all of ↵g, �t, �gt, and gt), ✓̂ be their

maximum likelihood estimates (i.e., all of b↵g, b�t, b�gt, and b�gt), and Xigt be the vector

of all regressors. Let {⇤c
}
C
c=1 be the partition of units according to which the units are

clustered. Define

S =
CX

c=1

2

4
X

(i,g)2⇤c

TX

t=1

Xigt(Yigt �
bYigt)

3

5

2

4
X

(i,g)2⇤c

TX

t=1

Xigt(Yigt �
bYigt)

3

5
0

as the clustered outer product of the score function, where bYigt = exp{X 0
igt✓̂} is the fitted

value of Yigt in the Poisson regression.7 In addition, define

H =
CX

c=1

X

(i,g)2⇤c

TX

t=1

XigtX
0
igt
bYigt

as the negative Hessian function. Then, the variance-covariance matrix of ✓̂ is given by

dVar(✓̂) = H
�1
SH

�1.

This variance-covariance matrix can then be used to compute the standard errors of the

ATT0 and ATTP0 estimates via the delta method.

7We abuse notation and let bYit represent a di↵erent object from the linear case.
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7 Application to Auto Theft Prevention Policy

In this section, we apply our method to revisit the findings of Gonzalez-Navarro [2013],

who studied the e↵ects of installing an auto theft prevention device known as Lojack.

This was a compact device installed in vehicles, allowing for tracking of the vehicle.

The policy was implemented in Mexico through an exclusive agreement between the

Ford Motor Company and the Lojack company. Initially, the technology was introduced

for a particular Ford car model (Ford Windstar) in a specific state (Jalisco) among the

2001 car models. Subsequently, the installation of Lojack expanded to include other

model ⇥ state combinations, eventually encompassing 32 model ⇥ state combinations

by 2004. The dataset of Gonzalez-Navarro [2013] provides comprehensive information on

car theft for each model ⇥ state ⇥ vintage (the car model’s year) combination, for each

calendar year. For our analysis, we use the indices m, s, v, and t to represent car model,

state, vintage, and the calendar year of the auto theft, respectively.

Gonzalez-Navarro [2013] points out two possible sources of spillover e↵ects following

the introduction of Lojack. The first potential source is within-state spillover to car mod-

els not equipped with Lojack. Given the public knowledge about specific car models and

states where Lojack was installed, criminals may alter their target preferences, focusing

on car models without Lojack within the same state. The second source is geographical

spillovers, where installing Lojack in certain models may prompt thieves, particularly

those specializing in those models, to shift their operations to other states where these

specific models remain unprotected by Lojack.

Because of the potential for such spillovers, Gonzalez-Navarro [2013] relies only on

time-series variation for identification, illustrating the challenge in extending the DiD

framework to spillovers:

“In the presence of spatial externalities, DiD estimation using observations

from di↵erent geographical locations produces biased estimates of policy im-

pact. The basic challenge is that whenever treatment in one geographical loca-

tion also has e↵ects in control locations, these are no longer valid counterfac-

tual observations. Furthermore, DiD estimation precludes actual estimation

of externalities unless there is a set of observations subject to externalities

and a set of observations that is not, so that the latter can play the role of

counterfactual. For these reasons I do not use DiD estimation. Instead, I

use an interrupted time series strategy in which the counterfactual is given by

observations occurring before the intervention.”

Nevertheless, as a robustness check, Gonzalez-Navarro [2013] also estimates a DiD

model while attempting to control for spillover e↵ects, but without accounting for the
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staggered adoption design. In this section, we apply our method to revisit this study and

estimate the treatment e↵ect across various combinations of groups and time periods,

thereby revealing the heterogeneous e↵ects of Lojack installation.

Once Lojack was installed in a particular combination of car model, state, and vintage,

it continued to be installed in all subsequent vintages of that model in the same state.

This setup allows us to treat the situation as a staggered adoption design, where the unit

of analysis is defined as the combination of model (m) ⇥ state (s) ⇥ age (a). age refers

to the number of years elapsed since the car’s model year, calculated as the di↵erence

between the calendar year (t) and the vintage year (v), such that a = t� v. Under this

framework, our analysis is based on a balanced panel subset derived from the original

dataset, consisting of 1152 units observed over 6 years from 1999 to 2004.

We define the binary treatment indicator for a unit (m, s, a) at time t as Dmsat.

To illustrate, consider the Ford Windstar model in Jalisco. For this unit, Lojack has

been installed in all newly released (age = 0) vehicles starting in 2001. Thus, for a

Ford Windstar model in Jalisco with age = 0, we have DWindstar,Jalisco,0,t = 1 for every

t � 2001.

Our method relies on Assumptions 4 and 5. Assumption 4 requires that once a model

⇥ state ⇥ age unit has Lojack installed, it is not influenced by spillover e↵ects. Generally,

when Lojack is installed in certain units, we can expect that thieves targeting those models

will shift their focus towards vehicles without Lojack protection, rather than those already

with Lojack. Thus, it is reasonable to assume that units already fitted with Lojack

will not be subject to displacement e↵ects from other units, satisfying Assumption 4.

Assumption 5 requires that there exist units which are not a↵ected by spillover e↵ects, and

Gonzalez-Navarro [2013] provides empirical support for this assumption, demonstrating

that car models in states geographically distant from those where the treatment was

applied do not experience spillover e↵ects.8

Let Ymsat be the number of auto thefts for a model ⇥ state ⇥ age unit that occurred

in a given calendar year t. We consider two kinds of empirical models for this outcome.

First, we consider a linear parallel trend:

E(Ymsat(0
t,0t

(msa,t))|↵msa) = ↵msa + �t.

This is equivalent to Assumption 3, where the combination (m, s, a) plays the role of

8The results of Gonzalez-Navarro [2013] using only time series variation vs. the DID approach are
similar, suggesting that the units in states distant from the treated areas are una↵ected by the installation
of Lojack.
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(i, g). Second, we consider a Poisson parallel trend:

lnE(Ymsat(0
t,0t

(msa,t))|↵msa) = ↵msa + �t,

which is equivalent to Assumption 3’. The second model is particularly suitable when

Ymsat is a count variable with a high frequency of zeros, in which case a Poisson regression

model is more appropriate.

We define the ⇤0
1 set as the collection of (m, s, a) units where s is a state that is not

adjacent to any state with treated units throughout the rollout of Lojack. We then define

Smsat as a binary indicator that is equal to 1 if t � 2001, Dmsat = 0 and (m, s, a) /2 ⇤0
1. In

addition, define G = {2001, 2002, 2003, 2004} as the set of group labels for treated units,

categorized by the period at which units enter treatment. Let Ng be the number of units

in group g 2 G within the dataset, and let N ⌘
P2004

g=2001

P2004
t=g Ng =

P2004
g=2001(2005�g)Ng

be the total number of treated observations in the dataset. We estimate the following

aggregate ATT0s:

ATT0 =
2004X

g=2001

2004X

t=g

Ng

N
ATT0(g, t),

ATT 0
0 =

2004X

g=2001

Ng

N2001 + · · ·+N2004
ATT0(g, g),

ATT 1
0 =

2003X

g=2001

Ng

N2001 + · · ·+N2003
ATT0(g, g + 1),

ATT 2
0 =

2002X

g=2001

Ng

N2001 +N2002
ATT0(g, g + 2).

Here, ATT0 measures the overall e↵ect of Lojack installation, computed as the weighted

average of all ATT0(g, t) values across g and t. The ATT k
0 values, on the other hand,

represent the weighted average of ATT0 for the k-th year after installation of Lojack, mea-

suring the temporal e↵ects. For example, ATT 0
0 represents the immediate e↵ect in the

same year as the Lojack installation, ATT 1
0 represents the e↵ect one year post-installation,

and so forth.

Table 1 presents the estimated ATT0 values obtained from both linear and Poisson

model specifications, with standard errors clustered at the unit level. The analysis reveals

a notable average reduction in thefts of 60% for the linear model and 64% for the Poisson

model, highlighting Lojack’s substantial deterrent e↵ect. Moreover, the results from both

models indicate that the rate of theft reduction becomes more pronounced over time,

where the e↵ect becomes statistically significant starting one year after installation. This

22



Linear Poisson
Estimate Std Error Reduction Estimate Std Error Reduction

ATT0 -6.1017 2.8893 -60% -5.6349 2.5086 -66%
ATT 0

0 -3.9455 2.9166 -38% -3.8738 2.4503 -50%
ATT 1

0 -6.7536 2.9801 -77% -6.2742 2.5453 -77%
ATT 2

0 -16.9622 2.9691 -79% -13.4790 4.2276 -85%

Table 1: Estimates of the aggregate ATT0s. The standard errors are clustered at the
model (m) ⇥ state (s) ⇥ age (a) level. The “Reduction” column stands for the reduction
rate, which is calculated using the formula for computing ATTP0.

highlights the increasing e↵ectiveness of Lojack in preventing auto thefts over time.

For comparison, we also report the estimated ATT0s from two misspecified models.

First, we consider the TWFE specification that incorporates spillover e↵ects but overlooks

the staggered adoption nature of the treatment. Second, we consider the specification of

Wooldridge [2022] and Borusyak et al. [2021] that accounts for staggered adoption but

does not include spillover e↵ects. The results from these models are presented in Table 2.

We find that the TWFE regression estimate closely aligns with the estimates presented

in Table 1. However, the estimates that neglect spillover e↵ects exhibit an upward bias

relative to the correctly specified estimates in Table 1. This is what we would expect in

the presence of displacement e↵ects, where installing Lojack in a treated unit increases

theft for units without Lojack.

TWFE-Linear WB-Linear
Estimate Reduction Estimate Reduction

ATT0 -7.8595 -69% -7.8335 -72%
ATT 0

0 N/A -5.6375 -58%
ATT 1

0 N/A -8.4526 -82%
ATT 2

0 N/A -19.1385 -88%

TWFE-Poisson WB-Poisson
Estimate Reduction Estimate Reduction

ATT0 -5.4990 -61% -5.8514 -62%
ATT 0

0 N/A -3.9569 -43%
ATT 1

0 N/A -6.4894 -73%
ATT 2

0 N/A -14.5736 -94%

Table 2: Estimates of the aggregate ATT0s using the TWFE specification (the “TWFE”
columns), and the specification of Wooldridge [2022] and Borusyak et al. [2021] (the
“WB” columns), for each of linear and Poisson specifications. The “Reduction” columns
stand for the reduction rate, which is calculated using the formula for computing ATTP0.
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8 Monte Carlo Simulation

In this section, we study the finite sample properties of our estimator in a simulated

dataset, highlighting the bias-variance trade-o↵ of our approach. We consider a balanced

panel dataset over T periods, with either a simultaneous or staggered adoption design,

starting with a pre-treatment period of t = 1. We consider M units in each group

g 2 G ⌘ {2, . . . , T, (1, 0), (1, 1)}, meaning that we have a total of N = (T + 1)M

units in the dataset. In the absence of spillover e↵ects, our estimator is less e�cient

than conventional estimators that rule out spillover e↵ects. However, in the presence of

spillovers, the conventional estimators become biased. Given this bias-variance trade-o↵,

when the sample size is small, the improvement in bias may not su�ciently o↵set the loss

in precision.

Specifically, we consider the following data generating process (DGP) that embeds

Assumptions 1 to 5. Depending on the specification of the outcome model—linear or

Poisson—we adapt the relevant assumption, replacing Assumption 3 with 3’ as necessary.

The DGP is given by:

E(Yigt|↵ig) = F

0

@↵ig + �t + �igtDigt + (1�Digt) ·
X

h2G\{g}

MX

j=1

�(j,h)
igt ·Djht

1

A ,

where the function F is F (x) = x for the linear model or F (x) = exp(x) for the Pois-

son model, and �(j,h)
igt represents the spillover e↵ect from unit (j, h) to unit (i, g). We

parametrize the DGP as follows.

• TheM units in each group g 2 {2, . . . , T, (1, 0), (1, 1)} are homogeneous, implying

that ↵ig = ↵g, �igt = �gt and �(j,h)
igt = �h

gt.

• Unit fixed e↵ects are set to ↵i = 26 � g + 1 for all groups except for (1, 0) and

(1, 1), where ↵(1,0) = ↵(1,1) = 26 � T + 1. This reflects selection into treatment

because the units with earlier treatment have larger unit fixed e↵ects. In the case

of the Poisson model, we instead set ↵g = log(26� g + 1).

• Common time e↵ects are set to �t = ↵̄ ⇥ 0.1 ⇥ ((t� 1) + sin(t)), where ↵̄ is the

average of the unit fixed e↵ects across all groups. This specification involves a linear

upward trend (t� 1) and a period-specific fluctuation modeled through sin(·).

• The treatment e↵ect is set to �gt = 0.5↵g/t. This e↵ect is heterogeneous across

groups and time periods, but homogeneous within a group. The e↵ect gradually

diminishes over time, with �gt decreasing in t for each group g. The immediate
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e↵ect �gg is largest for group g = 2 with the highest ↵g. This parametrizes sorting

on gain since ↵g also correlates with treatment timing.

• Spillover e↵ects are set to ⌘hgt = �⇢·�gt/Ut, representing displacement e↵ects, where

Ut is the number of untreated units at time t except for those in (1, 0). That is,

for each treated unit (i, g), we consider a total spillover e↵ect of �⇢ · �gt, where

⇢ 2 [0, 1] denotes the spillover intensity. This total e↵ect is then evenly spread

among all untreated units excluding those in (1, 0). As a result, each untreated

unit receives a spillover e↵ect of �⇢ · �gt/Ut from the treated unit (i, g).

With this parametrization, Yigt is generated with an independent additive error term

✏igt ⇠ N(0,max(↵g)/10) for the linear model, and according to Poisson distribution

for the Poisson model. We then estimate the aggregate ATT0 defined as in Section 7,

namely ATT0 = (1/G)
PT

g=2

PT
t=g ATT0(g, t), where G ⌘ T (T �1)/2 is the total number

of treated group-time pairs in the dataset. We compare the mean Absolute Bias and the

Mean Squared Error (MSE) across the following estimators:

(b�1) The TWFE estimator, which neither accounts for staggered treatment adoption nor

for spillovers.

(b�2) The extended TWFE estimator by Wooldridge [2022], which accounts for stag-

gered treatment adoption but does not account for spillovers. This estimator is

numerically equivalent to the imputation estimator by Borusyak et al. [2021].

(b�3) Our estimator, which accounts for both staggered treatment adoption and spillovers.

Figure 4a and Table 3 present results from the linear DGP. The Figure visually con-

trasts the MSE across the three estimators to illustrate their relative performance under

di↵erent scenarios, while the Table details their MSE and Absolute Bias values. Note

that, when T = 2, the TWFE and the Wooldridge [2022] estimators are equivalent since

treatment is not staggered. Overall, the relative performances of the estimators depend

on the degree of spillovers, staggered treatment, and the number of units in each group.

Intuitively, due to its e�ciency, the TWFE has the lowest MSE in scenarios with no or

little spillovers and with very few observations. As the number of observations increases

and spillovers remain small, the Wooldridge [2022] estimator becomes the best-performing

one, adjusting for staggered treatment without substantial bias. However, in scenarios

where spillovers are not negligible and the number of units is large, our estimator achieves

the lowest MSE, often by a large margin. Our estimator also performs better as treat-

ment becomes more staggered (T = 8), highlighting our estimator’s ability to accurately

account for cumulative spillovers a↵ecting the untreated units’ outcomes. Furthermore,
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(a) Linear

(b) Poisson

Figure 4: Comparison of the MSEs. Cell background color indicates the best-performing
estimator. The numbers in cells represent the MSE ratios MSE1

MSE3
and MSE2

MSE3
respectively.

The subscripts refer to: (1) TWFE estimator, (2) Wooldridge [2022] estimator, and (3)
our estimator.
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Table 3: MSE and Absolute Bias values - Linear

⇢ T M ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -6.500 3.589 3.589 4.235 19.642 19.642 27.519

3 -6.500 2.060 2.060 2.374 6.613 6.613 8.957

5 -6.500 1.615 1.615 1.873 3.991 3.991 5.335

2

10 -6.500 1.159 1.159 1.313 2.134 2.134 2.745

1 -2.297 0.898 1.038 2.336 1.244 1.693 8.651

3 -2.297 0.554 0.606 1.463 0.477 0.569 3.336

5 -2.297 0.463 0.473 1.051 0.334 0.350 1.789

0.00

8

10 -2.297 0.384 0.334 0.782 0.217 0.172 0.954

1 -6.500 3.807 3.807 4.321 22.129 22.129 28.292

3 -6.500 2.153 2.153 2.391 7.274 7.274 8.856

5 -6.500 1.715 1.715 1.824 4.584 4.584 5.280

2

10 -6.500 1.316 1.316 1.342 2.642 2.642 2.805

1 -2.297 1.403 1.335 2.456 2.776 2.717 9.587

3 -2.297 1.396 1.186 1.509 2.314 1.876 3.561

5 -2.297 1.355 1.116 1.114 2.054 1.559 1.917

0.25

8

10 -2.297 1.342 1.069 0.783 1.928 1.324 0.999

1 -6.500 3.870 3.870 4.012 23.616 23.616 25.838

3 -6.500 2.565 2.565 2.395 10.048 10.048 9.274

5 -6.500 2.139 2.139 1.877 6.991 6.991 5.448

2

10 -6.500 1.796 1.796 1.338 4.700 4.700 2.787

1 -2.297 2.403 2.284 2.465 6.923 6.688 9.499

3 -2.297 2.367 2.184 1.440 5.985 5.317 3.220

5 -2.297 2.374 2.178 1.087 5.858 5.073 1.847

0.50

8

10 -2.297 2.404 2.212 0.782 5.900 5.070 0.970

1 -6.500 4.138 4.138 4.162 26.753 26.753 28.210

3 -6.500 2.905 2.905 2.386 12.336 12.336 9.081

5 -6.500 2.652 2.652 1.869 9.928 9.928 5.476

2

10 -6.500 2.405 2.405 1.330 7.524 7.524 2.768

1 -2.297 3.448 3.346 2.581 13.089 12.935 10.172

3 -2.297 3.452 3.352 1.371 12.300 11.811 2.899

5 -2.297 3.417 3.290 1.099 11.884 11.162 1.912

0.75

8

10 -2.297 3.424 3.308 0.766 11.839 11.106 0.915

1 -6.500 4.373 4.373 4.148 29.442 29.442 26.621

3 -6.500 3.568 3.568 2.355 17.556 17.556 8.570

5 -6.500 3.370 3.370 1.906 15.018 15.018 5.723

2

10 -6.500 3.305 3.305 1.270 12.749 12.749 2.555

1 -2.297 4.473 4.419 2.453 21.073 21.098 9.491

3 -2.297 4.445 4.399 1.394 20.124 19.900 3.076

5 -2.297 4.446 4.389 1.134 19.983 19.587 2.051

1.00

8

10 -2.297 4.486 4.426 0.802 20.246 19.771 1.020

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE estimator, (2) Wooldridge

[2022] estimator, and (3) our estimator. The lowest value across estimators is in bold.
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Table 4: MSE and Absolute Bias values - Poisson

⇢ T M ATT |Bias1| |Bias2| |Bias3| MSE1 MSE2 MSE3

1 -26.780 9.701 9.701 11.905 153.431 153.431 239.845

3 -26.780 5.540 5.540 6.740 47.762 47.762 73.687

5 -26.780 4.245 4.245 5.032 29.219 29.219 40.018

2

10 -26.780 3.071 3.071 3.689 14.968 14.968 21.449

1 -30.865 9.057 8.085 27.674 121.582 105.769 1347.861

3 -30.865 8.280 4.863 15.381 85.855 36.796 404.870

5 -30.865 8.044 3.526 11.869 75.668 19.522 224.123

0.00

8

10 -30.865 8.125 2.536 7.890 71.494 9.967 98.496

1 -26.780 12.067 12.067 12.275 248.172 248.172 272.296

3 -26.780 7.698 7.698 6.889 93.040 93.040 75.998

5 -26.780 6.601 6.601 5.072 66.846 66.846 39.553

2

10 -26.780 5.781 5.781 3.857 47.955 47.955 22.876

1 -30.865 34.556 30.313 28.662 1266.576 1058.689 1518.343

3 -30.865 33.742 28.917 14.216 1161.546 882.219 341.538

5 -30.865 33.993 28.983 11.307 1169.549 866.469 204.729

0.25

8

10 -30.865 33.858 28.888 8.140 1153.220 847.927 106.282

1 -26.780 15.622 15.622 11.861 390.349 390.349 231.468

3 -26.780 12.878 12.878 6.984 231.040 231.040 78.199

5 -26.780 11.946 11.946 5.106 184.497 184.497 42.616

2

10 -26.780 12.066 12.066 3.646 167.718 167.718 20.788

1 -30.865 67.194 67.826 27.440 4603.887 4782.310 1398.162

3 -30.865 66.939 67.699 15.029 4508.284 4638.895 387.225

5 -30.865 66.675 67.477 11.203 4462.200 4587.222 199.809

0.50

8

10 -30.865 66.688 67.328 8.195 4456.398 4551.466 106.420

1 -26.780 22.597 22.597 12.162 762.129 762.129 244.327

3 -26.780 20.320 20.320 6.716 503.553 503.553 72.748

5 -26.780 19.418 19.418 5.204 430.610 430.610 43.640

2

10 -26.780 20.115 20.115 3.599 430.218 430.218 20.391

1 -30.865 108.579 118.317 26.869 11902.528 14259.553 1344.294

3 -30.865 108.185 117.445 15.289 11742.232 13877.573 375.027

5 -30.865 108.328 117.403 11.473 11757.889 13835.222 214.460

0.75

8

10 -30.865 108.571 118.043 7.979 11799.580 13960.016 102.759

1 -26.780 31.420 31.420 11.927 1297.693 1297.693 249.215

3 -26.780 30.005 30.005 6.688 1008.487 1008.487 71.590

5 -26.780 30.104 30.104 5.017 972.364 972.364 39.530

2

10 -26.780 29.547 29.547 3.566 906.943 906.943 19.970

1 -30.865 164.055 187.416 27.132 27086.351 35529.966 1257.582

3 -30.865 163.392 186.002 15.000 26748.599 34712.731 364.521

5 -30.865 163.930 186.676 11.684 26902.365 34921.680 215.341

1.00

8

10 -30.865 163.562 186.035 8.031 26768.157 34646.567 106.997

Note. Results over 1000 repetitions. Subscript refers to: (1) TWFE estimator, (2) Wooldridge [2022]

estimator, and (3) our estimator. The lowest value across estimators is in bold.
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Figure 4b and Table 4 present results from the Poisson DGP, where our estimator per-

forms even better relative to the TWFE and the Wooldridge [2022] ones.

9 Conclusion

We establish identifying assumptions and estimation procedures for the ATT without

interference in a DiD setting with staggered treatment adoption and spillovers. Aside

from the canonical DiD assumptions, identification requires that once a unit receives

treatment, it is no longer influenced by the spillover e↵ect. This means the unit forfeits

any spillovers it may have previously received and remains una↵ected by spillovers from

subsequently treated groups. This assumption, which is likely to hold in many contexts,

unifies the multiple definitions of the ATT, simplifying policy evaluation and aligning

with the definition of ATT under SUTVA.

To estimate the ATT, we extend the TWFE model approach of Wooldridge [2022] to

account for spillovers in linear and non-linear settings. In the case of a balanced panel,

our approach can be used to easily calculate the ATT’s standard error. We then revisit

Gonzalez-Navarro [2013], who studied the e↵ects of installing an auto theft prevention

device known as Lojack. Our correction leads to a slightly larger e↵ect of the policy

relative to the original contribution’s specification.

Finally, our Monte Carlo analysis brings attention to the inherent bias-variance trade-

o↵ involved in addressing staggered treatment and especially spillovers. We compare three

di↵erent estimators: the traditional TWFE estimator, which overlooks both staggered

adoption and spillovers; the estimator of Wooldridge [2022], which considers staggered

adoption but not spillovers; and our proposed estimator, which addresses both factors.

Our estimator proves to be competitive in various scenarios.
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A Proofs

A.1 Proof of Theorem 1

Under Assumptions 2 and 3, for each group g at time t, we can express Yigt as

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤

= ↵ig + �t +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
+ "igt,

where the last equality follows from the alternative representation of Assumption 3 given

in Equation (4), in which E("igt) = 0 for every group g at time t. Define

�igt = Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g)),

�igt = Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g)).

We can then simplify the expression for Yigt as

Yigt = ↵ig + �t + �igt + �igt + "igt.

In this expression, the parameter of interest ATT0(g, t) for t � g is given by

ATT0(g, t) = E(�igt|Gi = g),

and AST (g, t) for t � g is given by

AST (g, t) = E(�igt|Gi = g).

Using these expressions, for every group g 2 G such that 2  g < 1 and time and t � g,

we can write the expectation of Yigt as

E(Yigt) = E(↵ig) + �t + ATT0(g, t) + AST (g, t), (9)

where we used E("it) = 0.

Now we show that ATT0(g, t) is identified if and only if �t+AST (g, t) is identified, for

every group g 2 G such that 2  g < 1 and time t � g. First, suppose that �t+AST (g, t)

is identified. Let d0 be the identified value. Then we can rewrite Equation (9) as

E(Yigt) = E(↵ig) + d0 + ATT0(g, t). (10)
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Now we show that E(↵ig) is identified from the data at t = 1. Note first that, under

the assumptions of Theorem 1, all units are untreated at t = 1. This implies that

Yig1 = Yig1(d
1
g,d

1
(i,g)) = Yig1(0

1,01
(i,g)) = ↵ig + �1 + "it,

where the last equality follows from Equation (4). Then it follows that

E(Yig1) = E(↵ig + �1 + "it) = E(↵ig), (11)

where �1 = 0 by Assumption 3 and E("it) = 0 as defined in Equation (4). We can then

rewrite Equation (10) as

ATT0(g, t) = E(Yigt)� d0 � E(Yig1),

which shows that ATT0(g, t) is identified because E(Yigt) and E(Yig1) are identifiable

whenever g 2 G, i.e., whenever the group is present in the data.

Conversely, suppose that ATT0(g, t) is identified. Let b0 be the identified value. Then

we can rewrite Equation (9) as

E(Yigt) = E(↵ig) + �t + b0 + AST (g, t).

Using Equation (11), we can write

�t + AST (g, t) = E(Yigt)� b0 � E(Yig1),

which shows that �t + AST (g, t) is identified. ⌅

A.2 Proof of Theorem 2

By Theorem 1, it su�ces to show that �t + AST (g, t) is identified for every t � 2 under

the assumptions of Theorem 2. Note first that Assumption 4 implies AST (g, t) = 0.

In addition, Assumption 5 states that ⇤0
1 has a positive measure, implying that the

following quantity is identifiable for every t � 2:

E(Yi1t|(i,1) 2 ⇤0
1)� E(Yi11|(i,1) 2 ⇤0

1)

= E(Yi1t(0
t,dt

(i,g))|(i,1) 2 ⇤0
1)� E(Yi11(0

1,01
(i,g))|(i,1) 2 ⇤0

1)

= E(↵i1|(i,1) 2 ⇤0
1) + �t � E(↵i1|(i,1) 2 ⇤0

1) = �t,

where the equalities follow by Equation (5). This implies that �t is identified, which

implies that �t + AST (g, t) is identified because �t + AST (g, t) = �t + 0 = �t. ⌅
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A.3 Proof of Theorem 3

As in the proof of Theorem 1, under Assumptions 2 and 3, for each group g at time t,

we can express Yigt as

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
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t
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t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
+ "igt.

where E("igt) = 0 for every group g at time t. Define

�igt = Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g)),

�igt = Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g)).

We can then simplify the expression for Yigt as

Yigt = ↵ig + �t + �igt + �igt + "igt.

For the group 1, this expression simplifies to

Yi1t = ↵i1 + �t + �i1t + "i1t, (12)

because �i1t = 0. In addition, Equation (5) states that

E(Yi1t(0
t,dt

(i,1))|(i,1) 2 ⇤0
1) = E(Yi1t(0

t,0t
(i,1))|(i,1) 2 ⇤0

g)

= E(↵i1|(i,1) 2 ⇤0
g) + �t.

(13)

The first equality of Equation (13) and the definition of �igt implies that

E(�i1t|(i,1) 2 ⇤0
1) = E(Yi1t(0

t,dt
(i,1))� Yi1t(0

t,0t
(i,1))|(i,1) 2 ⇤0

1) = 0.

Building on this finding, the second equality of Equation (13), combined with Equation

(12), implies that

E("i1t|(i,1) 2 ⇤0
1) = E(Yi1t � ↵i1 � �t|(i,1) 2 ⇤0

1)

= E(Yi1t|(i,1) 2 ⇤0
1)� E(↵i1|(i,1) 2 ⇤0

1)� �t

= E(Yi1t(0
t,dt

(i,1))|(i,1) 2 ⇤0
1)� E(↵i1|(i,1) 2 ⇤0

1)� �t = 0.
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Therefore, it follows that E(�i1t|(i,1) 2 ⇤0
1) = E("i1t|(i,1) 2 ⇤0

1) = 0. In addition,

since E("i1t) = 0, it follows that

E("i1t|(i,1) 2 ⇤1 � ⇤0
1) = 0,

which then implies that E("igt) = 0 for every g in the extended set of groups G̃ ✓

{q, . . . , T, (1, 0), (1, 1)} at time t. Consequently, we can express Yigt for any extended

group g at time t as

Yigt = ↵ig + �t + �igt + �igt + "igt,

where E("igt) = 0 for every g 2 G̃ and E(�igt) = 0 if g = (1, 0).

Now, for every g 2 {q, . . . , T}, we can write

Yigt = ↵ig + �t + "ig1 for 1  t < q,

Yigt = ↵ig + �t + �igt + "igt for q  t < g,

Yigt = ↵ig + �t + �igt + "igt for g  t  T,

These expressions are obtained by the following arguments:

• The first expression is obtained by recognizing that, in the pre-treatment periods,

neither the treatment e↵ect nor the spillover e↵ects are present, represented by

�igt = 0 and �igt = 0.

• The second expression is obtained by recognizing that, in the post-treatment periods

where units in group g are not yet treated, there is no treatment e↵ect (�igt = 0),

while spillover e↵ects may occur, represented by �igt.

• The third expression is obtained by recognizing that, in the post-treatment peri-

ods where units in group g have been treated, the treatment e↵ect may present,

represented by �igt, but units are not subject to spillover e↵ects by Assumption 4,

represented by �igt = 0.

We can combine these three expressions into one unified expression, encompassing every

group g 2 {q, . . . , T} at every period 1  t  T , as follows:

Yigt = ↵ig + �t +
TX

t0=g

�igt01(t = t0) +
g�1X

t0=q

�igt01(t = t0) + "igt,

which we can further write as

Yigt = ↵ig + �t +
TX

t0=g

�igt01(t = t0)Digt +
g�1X

t0=q

�igt01(t = t0)Sigt + "igt, (14)
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since Digt = 1 for t � g and Sigt = 1 for q  t < g for each g 2 {q, . . . , T} according to

their definitions.

Next, for groups g 2 {(1, 0), (1, 1)}, we can write

Yi,(1,0),t = ↵i,(1,0) + �t + "i,(1,0),t for 1  t  T,

Yi,(1,1),t = ↵i,(1,1) + �t + "i,(1,1),t for 1  t < q,

Yi,(1,1),t = ↵i,(1,1) + �t + �i,(1,1),t + "i,(1,1),t for q  t  T,

These can also be unified similarly to Equation (14), where we write Yigt for every g 2

{(1, 0), (1, 1)} at every period 1  t  T as

Yigt = ↵ig + �t +
TX

t0=g

�igt01(t = t0)Digt +
g�1X

t0=q

�igt01(t = t0)Sigt + "igt, (15)

where
PT

t0=g is considered a null summation, interpreted as
PT

t0=1, and
Pg�1

t0=q is inter-

preted as
PT

t0=q. Note that Digt = 0 if g 2 {(1, 0), (1, 1)}, reflecting the absence of

treatment e↵ects in these groups, and that Sigt = 0 if g 2 ⇤0
1, indicating no spillover

e↵ects for this group. One might be concerned that the �igt and �igt values corre-

sponding to these cases are not determined, but their definitions imply that �igt = 0

if g 2 {(1, 0), (1, 1)} and that �igt = 0 if g 2 ⇤0
1.

Now, we can combine Equation (14) and Equation (15) and write Yigt for any extended

group g 2 G̃ at any time period 1  t  T as

Yigt =
X

g02G̃

1(g = g0)

0

@↵ig + �t +
TX

t0=g0

�ig0t01(t = t0)Digt +
g0�1X

t0=q

�ig0t01(t = t0)Sigt + "igt

1

A

= ↵ig + �t +
X

g02G̃

TX

t0=g

�ig0t01(g = g0)1(t = t0)Digt +
X

g02G̃

g0�1X

t0=q

�ig0t01(g = g0)1(t = t0)Sigt + "igt.

(16)

Next, note that Equation (6) is a pooled regression of the variables that encompass

all groups g 2 G̃. Specifically, let j = 1, . . . , N be the index for units in this pooled

regression, where N ⌘
P

g2G̃ Ng is the total number of observations across all groups.

Let Yjt be the outcome variable for index j, with Djt and Sjt defined similarly. Let

Xjt be the vector of regressors in Equation (6), namely indicators of g 2 G̃, indicators

of t, interactions between Djt and indicators of (g, t), and interactions between Sjt and

indicators of (g, t).

The estimation of this pooled regression involves computing averages of these variables

across j = 1, . . . , N . This is equivalent to the weighted averages of (i,g), pooled across

all groups, where the weights are determined by the relative sizes of the groups in the
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dataset. For example, the average of Yjt across j = 1, . . . , N is calculated as

1

N

NX

j=1

Yjt =
1

N

X

g2G̃

NgX

i=1

Yigt ⌘

X

g2G̃

wg ·
1

Ng

NgX

i=1

Yigt,

where the weights wg are defined as wg = Ng/N .

We derive the population regression of Equation (6) as follows. We define the expec-

tation across j as a weighted average of expectations across all groups. Specifically, the

expectation of Yjt is defined as

E(Yjt) ⌘
X

g2G̃

wgE(Yigt),

where wg is the weight for group g such that
P

g2G̃ wg = 1. We assume that the relative

sizes of the groups are fixed both across the sampling processes and in the population,

meaning that wg = wg = Ng/N . This corresponds to the asymptotics where N ! 1

along the sequence (N, 2N, 3N, 4N, . . .) that maintains the relative sizes of the groups.

This setting aligns with that of Borusyak et al. [2021].

Now we proceed to prove the theorem. Note first that the interaction terms in

(Xj1, . . . ,XjT ) identify the extended group label g and vice versa, because the inter-

actions of Digt identifies the group label g 2 {q, . . . , T} and the interactions of Sigt

distinguishes (1, 0) and (1, 1). This implies that

E(Yjt|Xj1, . . . ,XjT ) = E(Yigt|Xj1, . . . ,XjT ).

Then, by Equation (16):

E(Yjt|Xj1, . . . ,XjT ) = E(↵ig) + �t +
X

g2G̃

TX

t0=g

E(�ig0t0)1(g = g0)1(t = t0)Digt

+
X

g02G̃

g�1X

t0=q

E(�ig0t0)1(g = g0)1(t = t0)Sigt.

This shows that the coe�cient associated with 1(g = g0)1(t = t0)Digt for g 2 {2, . . . , T}

at time t is E(�igt). Then, by the definition of �igt:

E(�igt) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))),

where the right-hand side is the definition of ATT0(g, t). ⌅
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A.4 Proof of Corollary 1

Similarly to the proof of Theorem 1, for each group g at time t, we can express Yigt as

Yigt = Yigt(d
t
g,d

t
(i,g))

= Yigt(0
t,0t

(i,g)) +
⇥
Yigt(d

t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))

⇤
+
⇥
Yigt(d

t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))

⇤
.

Then, under Assumption 3’, we can write the expectation of Yigt as

E(Yigt|Gi = g) = E(exp{↵ig}|Gi = g) · exp{�t}+ ATT0(g, t) + AST (g, t),

where

ATT0(g, t) = E(Yigt(d
t
g,0

t
(i,g))� Yigt(0

t,0t
(i,g))|Gi = g),

and

AST (g, t) = E(Yigt(d
t
g,d

t
(i,g))� Yigt(d

t
g,0

t
(i,g))|Gi = g).

Then, by replicating the arguments in Theorem 1 that starts from Equation (9), it is

straightforward to show that ATT0(g, t) is identified if and only if E(exp{↵ig}) ·exp{�t}+

AST (g, t) is identified. ⌅

A.5 Proof of Corollary 2

By Corollary 1, it su�ces to show that E(exp{↵ig}) ·exp{�t}+AST (g, t) is identified. We

proceed by separately identifying the three objects E(exp{↵ig}), exp{�t}, and AST (g, t).

First, Assumption 4 implies that AST (g, t) = 0, identifying AST (g, t). Second, consider

the units (i, g) that belong to ⇤0
1, which are never-treated units that are not a↵ected by

spillover e↵ects. For these units, the following moment equality holds for any t under

Assumption 3’ and assumption 5 [Mátyás and Sevestre, 2008, Chapter 18.3.1]:

E
 
Yi1t � exp{�t}

(1/T )
PT

t0=1 Yi1t0

(1/T )
PT

t0=1 exp{�t0}

����� (i, g) 2 ⇤0
1

!
= 0 for all t = 1, . . . , T, (17)

which can be verified straightforwardly. Evaluating this moment equality at t = 1 yields

E
 
Yi11 �

(1/T )
PT

t0=1 Yi1t0

(1/T )
PT

t0=1 exp{�t0}

����� (i, g) 2 ⇤0
1

!
= 0,

since �1 = 0. This equation identifies the term (1/T )
PT

t0=1 exp{�t0}. Then, evaluating

Equation (17) for t � 2 identifies exp{�t} for each t � 2.
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Lastly, because all units are untreated at t = 1 by the assumption, it follows that

E(Yig1) = E(Yig1(0,0
1
(i,g))) = E(exp{↵ig}).

This implies that E(exp{↵ig}) is identified for every g 2 G, because Yig1 is identifiable

whenever g 2 G, i.e., whenever the group is present in the data. ⌅
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