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ABSTRACT

A new test for constant correlation is proposed. The TC-test is derived as Lagrange mul-

tiplier (LM) test. Whereas most of the traditional tests (e.g. Jennrich, 1970, Tang, 1995

and Goetzmann, Li & Rouwenhorst, 2005) specify the unknown correlations as piecewise

constant, our model-setup for the correlation coefficient is based on trigonometric functions.

The simulation results demonstrate that the TC-test guarantees correct empirical size, is

powerful against many alternatives and able to detect structural breaks in correlations. Fi-

nally, application of the TC-test to foreign exchange rate data over the period of 15 years is

given.

1. INTRODUCTION

The classical concept of linear correlations dates back to 1885. Even though there are

more powerful measures of dependence (e.g. Mari & Kotz, 2001) correlation coefficients still

dominate both theoretical models and practical applications. Ignoring the discussion about

the adequate dependence measure and agreeing on correlations henceforth, it still arises

the question whether correlations vary in time or not. Particularly the increasing linkages

of countries, firms and markets foreshadow a rising correlation of economic and financial

time series. Nevertheless, the literature on statistical tests for constant (unconditional)

correlations – even for lower dimensions – seems to be comparatively sparse.

It was R. A. Fisher (1915) who first considered the distribution of the correlation co-

efficient of a set of independent and bivariate Gaussian variables. Generalizing Bartlett’s

test on equal variances of k samples, Box (1949) introduced a test for equality of covariance

matrices which was discussed by Kullback (1967) and Tang (1995) against the background

of correlation matrices. Unfortunately, approximating the distribution of the underlying test

statistic is still a critical subject. For that reason, the χ2-test of Jennrich (1970) was the stan-

dard procedure to test for equality of correlation matrices for a long time, though assuming

that the underlying observation vectors are independent and normally distributed. Recently,
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Goetzmann, Li & Rouwenhorst (2005) relax the assumption of normality and derive a χ2-test

which applies to distribution families with finite fourth moments.

All of these tests specify the correlation coefficients as piecewise constant over time and

verify whether the constants coincide. In contrast, we propose a Lagrange multiplier-type

test which allows the correlation coefficient to vary in time according to certain trigonometric

functions. Due to its construction, our test also applies to alternative dependence measures,

different distributions families and to alternative functional specifications for the unknown

correlation.

The proceeding is as follows. Section 2 briefly summarizes different tests on constant (un-

conditional) correlation from the relevant literature. In section 3 the TC-test is introduced.

Results on size and power are provided in section 4. Section 5 is dedicated to empirical

application. Section 6 concludes.

2. TESTING FOR CONSTANT CORRELATIONS: A REVIEW

Though all of the following tests for constant correlation are designed for the multivariate

case, we restrict discussion to the bivariate case, henceforth. In general, these tests are

rooted on Bartlett’s test on equal variances, say σ2
1 and σ2

2, of two iid-normally distributed

random samples with possibly different lengths N1 and N2. Denoting the sample variance of

group j by S2
j and defining a pooled sample variance S2 =

∑2
j=1

Nj−1

N1+N2−2
S2

j , Bartlett’s test

statistic is given by

TBartlett = (N1 + N2 − 2) ln(S2)−
2∑

j=1

(Nj − 1) ln(S2
j ) ≈ χ2(1). (1)

Box (1949) extended Bartlett’s proposal to a test for homogeneity of covariance matrices,

say Σ1 and Σ2, of two subperiods. Equation (1) generalizes to

TBox = (N1 + N2− 2) ln(det(S))−
2∑

j=1

(Nj − 1) ln(det(Sj)) with S ≡
2∑

j=1

Nj − 1

N1 + N2 − 2
Sj,

where Sj denotes the sample covariance matrix of subperiod j. Assuming independent and

bivariate normally distributed random samples, Box (1949) proposes both a χ2− and an

F−approximation to his test statistic TBox. Finally, Kullback (1967) and Tang (1995) deal

with the application of Box’s test to correlation matrices rather than covariance matrices

(by substituting the covariance matrices by the corresponding correlation matrices in the

last formula). In particular, Kullback (1967) asserts that if all populations have the same

non-singular correlation matrix, then the distribution of the test statistics is asymptotically
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chi-squared with certain degrees of freedom. However, Jennrich (1970, p. 905) presented a

counterexample where Kullback’s assertion fails. Jennrich (1970) itself suggested a test for

equality of correlation matrices. Under the assumption of independent samples from two

k-variate normal populations, the vector d – which contains all k∗ = k(k − 1)/2 dissimilar

element-by-element differences of the two sample correlation matrices in lexographic order –

is asymptotically normal with mean zero and non-singular covariance matrix Γ. Therefore,

TJennrich =
N1N2

N1 + N2

· d′Γ̂−1d
a∼ χ2(k∗),

where Γ̂ is a consistent estimator of Γ. Jennrich’s main contribution was to derive a simple

representation for the inverse of Γ̂ which also applies to high dimensions in a simple way. In

order to get rid off the normality assumption, Goetzmann, Li & Rouwenhorst (2005) utilize

the asymptotic distribution of the correlation matrix from Browne & Shapiro (1986) and

Neudecker & Wesselman (1990). Their proposal only requires that the observation vectors

are independent and identically distributed according to a multivariate distribution with

finite fourth moments.

Note that all of these tests presume that correlation is piecewise constant in time. In

contrast, the TC-test which is introduced next section allows correlation to vary in time

according to certain trigonometric functions.

3. A TRIGONOMETRIC TEST FOR CONSTANT CORRELATIONS

For reasons of clearness we focus on the bivariate case, henceforth. Given T pairs of in-

dependent random variables (X1, Y1), . . . , (XT , YT ) we assume that (Xt, Yt) ∼ F(µ,Σt) for

t = 1, . . . , T , where F denotes an arbitrary distribution family with (existing) mean vector

µ ≡ (µX , µY )′ and (existing) covariance matrix

Σt ≡

 σ2
X ρt

ρt σ2
Y

 with ρt =
Cov(Xt, Yt)

σXσY

.

Without loss of generality, F is supposed to be multivariate Gaussian in the sequel. Most

of the traditional tests rest upon the assumption that correlation coefficients are piecewise

constant over time, i.e.

ρt = ρi1[ti,ti−1)(t) with 1 = t0 ≤ · · · ≤ tk = T, ρi ∈ [−1, 1] for i = 1, . . . , k.

In contrast, we advocate a parametric specification based on trigonometric functions, e.g.

ρt ≡ β0 + β1 sin(2fπt/T ) + β2 cos(2fπt/T ), t = 1, . . . , T (2)
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with unknown frequency f ∈ R and unknown coefficients β0, β1, β2 which guarantee that

−1 ≤ ρt ≤ 1. For a given frequency f , testing the null hypothesis of constant correlation

equals testing the null hypothesis H0 : β1 = β2 = 0. For this purpose, a likelihood ratio

(LR) test may be applied where the difference between the log likelihood under H0, say `0,

and the overall log likelihood, say `, is considered:

LR(f) ≡ (−2)(`0 − `)
a∼ χ2(2).

Unfortunately, f remains unknown. Following Becker, Ender & Hurn (2004), one might

choose a finite set Υ = {f1, . . . , fF} of frequencies and consider the test statistics

LRsup ≡ sup
f∈Υ

LR(f), LRave ≡
1

F

∑
f∈Υ

LR(f) and LRexp ≡ log

(
1

F

∑
f∈Υ

exp(LR(f)/2)

)

instead. As all test statistics are non-standard, bootstrap methods are necessary to deter-

mine the corresponding critical values: First, J replications of the data (which the same

means, variances and covariances) have to be generated. Second, for each bootstrap sample,

the corresponding test statistic is calculated. Finally, the proportion of the J bootstrapped

test statistics which exceed the test statistic computed from the data is then an estimate of

the p-value of the test. However, this procedure requires plenty of (unrestricted) maximum

likelihood estimations and one may imagine how computing time explodes. We therefore

suggest to use a Lagrange multiplier (LM)-type test rather then a LR-type test: The con-

tribution of observation t to the log likelihood is given by

`t(θ) = − log(2π)− log(σ1)− log(σ2)− 0.5 log(1− ρ2
t )−

1

2(1− ρ2
t )

(
x1t − µ1

σ1

)2

− 1

2(1− ρ2
t )

(
x2t − µ2

σ2

)2

+
ρt

1− ρ2
t

(
x1t − µ1

σ1

)(
x2t − µ2

σ2

)
with first partial derivative – with respect to θ = (µ1, µ2, σ1, σ2, β0, β1, β2)

′ – given by

∂`t(θ)

∂µ1

=
x1t − µ1

σ2
1(1− ρ2

t )
− ρt

1− ρ2
t

x2t − µ2

σ1σ2

,
∂`t(θ)

∂µ2

=
x2t − µ2

σ2
2(1− ρ2

t )
− ρt

1− ρ2
t

x1t − µ1

σ1σ2

,

∂`t(θ)

∂σ1

= − 1

σ1

+
(x1t − µ1)

2

σ3
1(1− ρ2

t )
− ρt

1− ρ2
t

(x1t − µ1)(x2t − µ2)

σ2
1σ2

,

∂`t(θ)

∂σ2

= − 1

σ2

+
(x2t − µ2)

2

σ3
2(1− ρ2

t )
− ρt

1− ρ2
t

(x1t − µ1)(x2t − µ2)

σ1σ2
2

,

∂`t(θ)

∂βi

=
ρt

1− ρ2
t

∂ρt

∂βi

− ρt

(1− ρ2
t )

2

(
x1t − µ1

σ1

)2
∂ρt

∂βi

− ρt

(1− ρ2
t )

2

(
x2t − µ2

σ2

)2
∂ρt

∂βi

+
1 + ρ2

t

(1− ρ2
t )

2

(
x1t − µ1

σ1

)(
x2t − µ2

σ2

)
∂ρt

∂βi

,
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where
∂ρt

∂β0

= 1,
∂ρt

∂β1

= sin(2fπt/T ) and
∂ρt

∂β2

= cos(2fπt/T ).

Defining further the score function

s(θ) ≡
T∑

t=1

(
∂`t

∂µ1

,
∂`t

∂µ2

,
∂`t

∂σ2
1

,
∂`t

∂σ2
2

,
∂`t

∂β0

,
∂`t

∂β1

,
∂`t

∂β2

)′

and S ≡
{

sti ≡
∂`t(θ)

∂θi

}
t=1,...,T,i=1,...,7

,

the corresponding LM-type test statistics are given by

LMsup ≡ sup
f∈Υ

LM(f), LMave ≡
1

K

∑
f∈Υ

LM(f) and LMexp ≡ log

(
1

K

∑
f∈Υ

exp

(
LM(f)

2

))

with LM(f) ≡ ŝ′
(
Ŝ
′
Ŝ
)−1

ŝ for ŝ ≡ s(θ̂ML), Ŝ ≡ S(θ̂ML).

Note that, under normality, the maximum likelihood estimator of θ (under H0) equals

µ̂X =
1

T

T∑
i=1

xi, µ̂Y =
1

T

T∑
i=1

yi, σ2
X =

1

T

T∑
i=1

(xi − x)2, σ2
Y =

1

T

T∑
i=1

(yi − y)2

and

ρ̂ =

(
1

T

T∑
i=1

xiyi − x y

)
/(σXσY ).

Again, the critical values are obtained from bootstrapping as outlined above.

4. SIZE AND POWER PROPERTIES: A SIMULATION STUDY

Though being easily implemented, the use of the LM-type test from the last section mainly

depends on its size and power properties (compared to its natural competitors). For this

purpose, a simulation study was conducted based on 5000 repetitions of bivariate data sets

with length N = 200, 500, 1000. The corresponding critical values were obtained on 200

bootstrap replications. Beside the testing procedures of Box (1949), Jennrich (1970) and

Goetzmann et al. (2005, briefly GLR henceforth) the following tables also contain the sim-

ulation results for the three LM-type tests. Simulating from a bivariate normal distribution

with constant correlation ρt ≡ 0.5, all tests, except for the Box test, have correct empirical

size close to α = 0.05 (see table 1).

Box Jennrich GLR LMave LMsup LMexp

N = 200 0.0730 0.0474 0.0532 0.0554 0.0572 0.0572

N = 500 0.0844 0.0500 0.0556 0.0570 0.0654 0.0626

N = 1000 0.0816 0.0514 0.0474 0.0564 0.0560 0.0556

Table 1: Nominal size: Constant correlation and normal distribution.
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Secondly, in order to verify the robustness against the assumption of normality, random pairs

are repeatedly drawn from a bivariate Student-t distribution with 5 degrees of freedom. The

frequencies of rejection are summarized by table 2, below.

Box Jennrich GLR LMave LMsup LMexp

N = 200 0.2210 0.1664 0.0516 0.2314 0.2302 0.2292

N = 500 0.2348 0.1794 0.0498 0.1972 0.2070 0.2014

N = 1000 0.2380 0.1844 0.0514 0.1720 0.1694 0.1718

Table 2: Nominal size: Constant correlation and Student-t distribution.

As being expected, only the GLR test preserves the error rate of type I. However, the

LM-type tests seem to be somewhat more robust than the Jennrich test, at least for large

samples. Moreover, replacing the bivariate normal distribution by the Student-t distribution

may lead to a more robust version of the LM-type test.

In order to compare the power of the tests towards different alternatives, different scenarios

were considered:

• Scenario A: ρt = 0.5 for t = 1, . . . , N/2 and ρt = 0.7 for t = N/2 + 1, . . . , N ,

• Scenario B: ρt = 0.5 for t = 1, . . . , N/4 and ρt = 0.7 for t = N/4 + 1, . . . , N ,

• Scenario C: ρt = 0.5 + 0.1 sin(2πt/T ) + 0.1 cos(2πt/T ) for t = 1, . . . , N ,

• Scenario D: ρt = 0.5 + 0.1 sin(2πt/T ) + 0.1 cos(πt/T ) for t = 1, . . . , N .

The results in table 3 confirm the power the LM-type tests if the correlation of the data

behaves wavelike (i.e. scenario C and D). But also if the correlation is piecewise constant

(Scenario A) we observe that the power is marginally worse than that of the Jennrich test for

large sample sizes N . If the correlation is constant but has two periods of different lengths

(Scenario B) the LM-type tests even outperform their competitors for different sample sizes.
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Box Jennrich GLR LMave LMsup LMexp

Scenario A

N = 200 0.7118 0.6052 0.5950 0.2502 0.3942 0.3874

N = 500 0.9672 0.9394 0.9420 0.6616 0.8514 0.8430

N = 1000 1.0000 0.9996 0.9996 0.9604 0.9964 0.9964

Scenario B

N = 200 0.3354 0.2270 0.2208 0.3002 0.2832 0.2844

N = 500 0.6202 0.4908 0.4772 0.6644 0.6560 0.6498

N = 1000 0.8636 0.7740 0.7696 0.9454 0.9478 0.9444

Scenario C

N = 200 0.2894 0.2208 0.2088 0.2582 0.3032 0.3028

N = 500 0.5540 0.4692 0.4674 0.6300 0.7354 0.7338

N = 1000 0.8126 0.7568 0.7578 0.9368 0.9694 0.9692

Scenario D

N = 200 0.1470 0.1012 0.1038 0.1356 0.1364 0.1368

N = 500 0.2312 0.1698 0.1686 0.2972 0.3426 0.3316

N = 1000 0.3692 0.2960 0.2936 0.5756 0.6412 0.6354

Table 3: Frequencies of rejection.

5. EMPIRICAL APPLICATION: FOREIGN EXCHANGE RATES

To demonstrate the usefulness of the LM-type tests, we focus on the daily noon spot US

dollar exchange rates (USD/local currency) for the British Pound (GBP) and the Swiss

Franc (CHF) over the period 1 January 1990 to 31 December 2005 (N = 4044 observations)

which are available from the PACIFIC Exchange Rate Service1. In a first step, the exchange

rates St are transformed to percentual log-returns defined as Ri,t ≡ ln(St/St−1) · 100. Both

prices and log-returns can be seen in figure 1, below.

1Download under the URL-link http://pacific.commerce.ubc.ca. All exchange rates are given in

volume notation, where values are expressed in units of the target currency per unit of the base currency.
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Figure 1: Exchange Rates.

Moreover, the scatterplot above reveals the positive correlation between the returns of the

exchange rates series. In addition, a rolling correlation plot (which depicts the correlation

of the last 20 days over the whole period) delivers first insight into the time-structure of

the correlation. With this in mind and noting that ρ1 = 0.6762 and ρ2 = 0.6652 for the

first and the second half of the sample, respectively, the results of the above-mentioned tests

from table 4 are not surprising. Obviously, the ”traditional” tests fail in detecting the time-

varying structure of the underlying data, whereas the LM-type tests doesn’t fail. In order to

get rid off the heavy tails and the usual clustering (i.e., roughly speaking, periods with low

volatility followed by periods with high volatility) we fitted a standard GARCH(1,1) model

to the univariate time series and considered the residuals of the GARCH model, instead.
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The corresponding series are labeled by an asterisk in table 4. The results, however, remain

essentially unchanged.

Series Box Jennrich GLR LMave LMsup LMexp

GBP - CHF 1.01
[3.84]

0.69
[3.84]

0.38
[3.84]

32.63
[5.04]

71.63
[9.57]

69.01
[7.20]

GBP∗ - CHF∗ 0.08
[3.84]

0.05
[3.84]

0.04
[3.84]

82.32
[4.27]

131.86
[8.27]

129.03
[6.51]

Table 4: Empirical results for the exchange rate data.

6. SUMMARY

A new LM-type test for constant correlation based on certain trigonometric functions

is introduced. In particular, we discuss three different test statistics. The corresponding

critical values are obtained applying non-parametric bootstrap methods. A small simulation

study shows that the new test guarantees correct empirical size and is powerful against many

alternatives. Finally, we successfully applied our test to foreign exchange rate data over the

period of 15 years.
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