
Duarte, Victor; Duarte, Diogo; Silva, Dejanir H.

Working Paper

Machine Learning for Continuous-Time Finance

CESifo Working Paper, No. 10909

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Duarte, Victor; Duarte, Diogo; Silva, Dejanir H. (2024) : Machine Learning for
Continuous-Time Finance, CESifo Working Paper, No. 10909, Center for Economic Studies and ifo
Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/295998

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/295998
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

10909
2024

January 2024

Machine Learning for
Continuous-Time Finance
Victor Duarte, Diogo Duarte, Dejanir H. Silva

Impressum:

CESifo Working Papers
ISSN 2364-1428 (electronic version)
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo
GmbH
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies
and the ifo Institute
Poschingerstr. 5, 81679 Munich, Germany
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de
Editor: Clemens Fuest
https://www.cesifo.org/en/wp
An electronic version of the paper may be downloaded
· from the SSRN website: www.SSRN.com
· from the RePEc website: www.RePEc.org
· from the CESifo website: https://www.cesifo.org/en/wp

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp

CESifo Working Paper No. 10909

Machine Learning for Continuous-Time Finance

Abstract

We develop an algorithm for solving a large class of nonlinear high-dimensional continuous-time
models in finance. We approximate value and policy functions using deep learning and show that
a combination of automatic differentiation and Ito’s lemma allows for the computation of exact
expectations, resulting in a negligible computational cost that is independent of the number of
state variables. We illustrate the applicability of our method to problems in asset pricing, corporate
finance, and portfolio choice and show that the ability to solve high-dimensional problems allows
us to derive new economic insights.

Victor Duarte
University of Illinois at Urbana-Champaign

Gies College of Business
1206 South Sixth Street, 461 Wohlers Hall

USA – Champaign, IL, 61820
vduarte@illinois.edu

Diogo Duarte
Florida International University

College of Business
11200 S.W. 8th St., 236

USA – Miami, FL 33199
diogo.durate@fiu.edu

Dejanir H. Silva

Purdue University
Krannert School of Management

403 W State St
USA – West Lafayette, IN 47907

dejanir@purdue.edu

December 30, 2023
This paper benefited from comments by Markus Brunnermeier, Julia Fonseca, Daniel Greenwald,
Leonid Kogan, Deborah Lucas, Karel Mertens, Alexis Montecinos, Jonathan Parker, Alex
Richter, Adrien Verdelhan, Gianluca Violante, and seminar participants at the WEAI Annual
Meeting, the Macro Financial Modeling Summer Session, the MIT Finance Seminar, Princeton,
New York Fed, Dallas Fed, UT Dallas, John Hopkins Carey, Rice Jones, UIUC Gies College of
Business. Generous financial support for this project was provided by The Becker Friedman
Institute’s Macro Financial Modeling Initiative.

mailto:vduarte@illinois.edu
mailto:diogo.duarte@fiu.edu
mailto:dejanir@purdue.edu

Dynamic programming is one of the cornerstones of modern financial economics.

The behavior of investors, managers, households, and governments are typically

represented as the result of maximizing their respective value functions. Dynamic

programming is, however, plagued by the “curse of dimensionality” (Bellman, 1957)—it

becomes exponentially more challenging in terms of computing time and memory as

the number of state variables increases. The curse of dimensionality encompasses three

separate challenges, sometimes referred to as the three curses of dimensionality (Powell,

2007). The first curse refers to the challenge of approximating a high-dimensional

nonlinear function on a computer. The second curse of dimensionality refers to the

computation of expectations involved in Bellman equations. Last, the third curse

corresponds to maximizing an objective function at each iteration step. Each of

these challenges imposes severe limitations on the advancement of financial economics.

Therefore, most financial research today is restricted to models featuring either small

state spaces or linearized solutions.1

This paper proposes a novel algorithm that handles nonlinear stochastic dynamic

programming problems with large state spaces, addressing the three curses of dimen-

sionality and opening up the possibility of studying models set in a richer economic

environment. To address the first curse of dimensionality, we use deep neural networks

to represent value functions and optimal policies. To overcome the second curse of

dimensionality, we show how to combine the auto-differentiation feature of modern

machine-learning libraries and Ito’s lemma to efficiently compute exact expectations

in continuous-time dynamic systems driven by Brownian shocks.2 To overcome the

third curse of dimensionality, we employ a version of the generalized policy iteration

of Sutton and Barto (1998) based on policy gradients (Lillicrap et al., 2015). For this

reason, we refer to our method as deep policy iteration (DPI hereafter), as it combines

value and policy function approximations using deep neural networks and generalized
1We call a state space small if it has less than five dimensions and large otherwise.
2Throughout the paper, the term exact should be interpreted as exact up to machine precision.

2

policy iteration to handle high-dimensional problems.

We then apply our method to a range of problems in finance. These applications

serve two main purposes. First, they illustrate our method’s versatility by showing

how to handle different problems involving features such as large state spaces, kinks,

and jumps or by showing how to efficiently perform global sensitivity analysis in

structural models. Second, they enable us to document the performance and accuracy

of our method in the context of standard finance problems, as well as to compare

our solution to leading alternative numerical methods, such as the Smolyak-based

projection method and finite differences.

Different from previous work that used shallow neural networks to solve or estimate

economic models (Haugh and Kogan, 2004; Norets, 2012), we propose using deep

learning to approximate value and policy functions.3 Deep learning is fundamentally

different from classical machine learning, as it requires an entirely new ecosystem of

software, hardware, and methods that were only recently developed. Starting with

Mnih et al. (2015), deep learning has emerged to become the de-facto technology for

functional approximation in reinforcement learning, the subfield of machine learning

that studies intertemporal optimization, being successfully deployed to solve problems

with hundreds of state variables.4

In contrast to reinforcement learning applications, we make explicit use of the

state dynamics to develop a much more efficient algorithm for the types of problems

financial economists study. In a continuous-time setting, we implement an efficient

algorithm to compute instantaneous drifts and volatilities for arbitrary functions. We

show that the computational cost of evaluating the drift and volatility does not scale

with the number of state variables. Furthermore, that cost scales less than linearly

with the number of shocks. This allows us to compute exact expectations required to
3Shallow networks are neural networks with a single hidden layer. Section 1 defines neural networks

and hidden layers.
4See Silver et al. (2016), Silver et al. (2017), and Heess et al. (2017), for instance.

3

perform Bellman iterations.

Finally, we use policy gradients (Lillicrap et al., 2015) to improve the policy

function at each policy iteration step. This approach consists in gradually improving

the policy function using only the gradient at each step. Since gradients can be

computed with negligible cost by using backpropagation (Rumelhart et al., 1988), this

addresses the third curse of dimensionality.

To illustrate the broad applicability of our method, we consider large-dimensional

problems in three core areas of finance: asset pricing, corporate finance, and portfolio

choice. For asset pricing, we consider the Lucas orchard economy of Martin (2013), a

multi-tree extension of the classical one-tree exchange economy of Lucas (1978). We

show that the DPI algorithm is able to solve a Lucas exchange economy with up to

100 trees while sustaining low root mean square error (RMSE hereafter). Moreover, we

show that the time-to-solution scales approximately linearly with the number of state

variables, illustrating our method’s ability to alleviate the curse(s) of dimensionality.

In contrast, the Smolyak projection method, a numerical method commonly used to

handle large-dimensional problems, fails to sustain low RMSEs as the state space

grows. More importantly, the Smolyak method quickly exhausts computer memory

and is unable to produce a solution for an economy with more than 25 trees.

We also show that the focus on low-dimensional problems, an assumption typically

made for tractability reasons, may have important economic implications. In particular,

we argue that many of the interesting asset-pricing effects found in the cases of two

trees (Cochrane et al., 2008), typically involving the behavior of small firms, disappear

as we increase the number of trees. The reason is that, with only two trees, either

both trees are of similar size, and the economy is well-diversified, or we have one tree

that is small, and the economy is severely under-diversified. In contrast, with a large

number of trees, it is possible to study small firms in reasonably diversified economies.

While changes in the dividend share of a small firm have a large impact on aggregate

4

consumption volatility for under-diversified economies, this is not the case when the

economy is more diversified. We show that the strong valuation effects for small firms

found with just a few trees disappear as we increase the number of trees, as their

impact on aggregate volatility becomes more muted. Therefore, the ability to solve

high-dimensional problems may allow us to relax assumptions made based only on

tractability and instead focus on the assumptions that are of economic interest.

Our second application is a dynamic corporate finance model, in the spirit of Hen-

nessy and Whited (2007), where firms face equity issuance and investment adjustment

costs. An important feature of this application is that the solution may feature kinks,

as the marginal incentives to invest vary depending on whether the firm is issuing

equity or paying dividends (or neither). To show the method’s ability to solve this

problem, we compare our solution to the one from a finite differences method with

a fine grid, which we use as our benchmark. Our findings closely match the results

from finite differences, indicating the accuracy of our solution. Therefore, our method

can handle problems with severe nonlinearities, even when a classical solution to the

continuous-time problem is not available, such as in the case of the problems with

kinks.5

For any given value of the parameters, our version of the Hennessy-Whited model

can be solved using standard methods, such as finite differences. However, we are

often interested in the solution for a very large number of parameter values. For

instance, to be able to show which features of the data are particularly informative

about a given parameter, one needs to show how equilibrium moments change with

the parameters, which can be computationally very costly. We show how to perform

global sensitivity analysis in an efficient manner by including as inputs of the network

not only the state variables but also the parameters of interest.6 In our application,
5For a recent discussion of viscosity solutions, the appropriate solution concept when the value

function is not differentiable everywhere, see e.g. Achdou et al. (2022).
6On the importance of sensitivity analysis for structural work, see e.g. Andrews et al. (2017) and

Catherine et al. (2022).

5

this requires effectively solving a problem with seven state variables, the two original

states plus five parameters. As a result, we obtain the model’s solution for any point

of the state space or the parameter space. By simultaneously solving for an entire

class of models, our method eliminates the need to repeatedly solve the model for each

new parameter value, which gives an efficient way of assessing how parameters affect

the model predictions. This feature is potentially useful when performing structural

estimation.7

In our third application, we show how the DPI algorithm can be used to solve a

portfolio choice problem in which the interest rate and risk premium are time-varying

and driven by a large number of return predictors. Since closed-form solutions are

typically not available for high-dimensional portfolio problems, we propose a new

way to assess the accuracy of our method. In particular, we reverse engineer the

process for the interest rate and the risk premium such that the policy functions

are any given closed-form expressions. We can then solve the portfolio problem

with the reverse-engineered process for the returns using the DPI method and then

compare our solution to the known closed-form expressions. This process of reverse

engineering a problem provides an effective laboratory for evaluating the performance

of our solution method for high-dimensional problems. We find that the DPI method

provides accurate solutions even with 10 return predictors and captures a wide range

of relationships between the portfolio share and a return predictor, depending on the

region of the state space.

Having demonstrated DPI’s ability to solve high-dimensional nonlinear portfolio

choice problems, we proceed to analyze optimal asset allocation in an empirically

motivated model with multiple risky assets and realistic return dynamics. The optimal

portfolio features a substantial degree of market timing. At times, the investor is

heavily invested in stocks, such as in the early 1950s and 1960s, and sometimes the
7For an application of these ideas to the context of structural estimation, see Duarte (2018).

6

investor is nearly out of the stock market, as in the early 1970s or early 2000s. Moreover,

macroeconomic variables, and in particular fiscal variables, explain a sizeable fraction

of the variation in portfolio shares.

To keep the exposition as simple as possible, we focus on the case of Brownian

shocks and economies with a representative agent for our three applications. However,

with minor modifications, our methods can also be applied to models with jumps.In

Appendix B, we solve the model of time-varying disasters in Wachter (2013). One

important distinction relative to models with Brownian shocks is that expectations

appear explicitly even in continuous time. We show that, by using simulation methods

analogous to the least-squares Monte Carlo method of Longstaff and Schwartz (2001),

we can apply the DPI algorithm even in problems with jumps. We compare our

solution to the closed-form expression provided by Wachter (2013) and show that our

method accurately captures the behavior of an economy subject to rare disasters.

The rest of the paper is organized as follows. The remainder of this section contains

the related literature. Section 1 sets forth the machine-learning tools and terminology.

Section 2 presents our method. Section 3 discusses our three applications, and Section

4 concludes.

Related Literature. Our work is related to the rapidly growing literature on

machine-learning applications in finance. In recent years, we have witnessed rapid

adoption of these techniques in several domains of finance, such as asset pricing (Gu

et al., 2020; Bianchi et al., 2021; Chen et al., 2023), corporate finance (Li et al., 2021;

Cao et al., 2023), derivatives and credit markets (Duarte et al., 2020; Chen et al.,

2021; Sadhwani et al., 2021; Fuster et al., 2022; Bali et al., 2023), among others.

These applications focus on the use of machine-learning techniques for reduced-form

empirical work, while our focus is on numerical methods for structural models.8

8For a recent discussion of these applications in asset pricing, with a focus on shrinkage methods,
see e.g. Nagel (2021).

7

Our paper is also related to the literature using finite-difference methods (Achdou

et al., 2022; Brunnermeier and Sannikov, 2014; Ahn et al., 2018) or projection methods

(Moreira and Savov, 2017; Drechsler et al., 2018; Kargar, 2021) in continuous time.

While these methods are only suitable for small-scale problems, we show how to use

deep learning, combined with an efficient way to compute Hamilton-Jacobi-Bellman

equations with Brownian shocks, to handle large-scale problems.9

Since this paper was first made publicly available, a number of articles have

employed related methods and adopted deep learning for solving or estimating nonlinear

dynamic problems in economics. Applications include structural estimation (Duarte,

2018; Chen et al., 2021; Kase et al., 2022), models with discrete choice (Maliar and

Maliar, 2022), business cycles (Bybee et al., 2021; Bretscher et al., 2022), heterogeneity

and wealth distribution (Maliar et al., 2021; Han et al., 2021; Azinovic et al., 2022;

Fernández-Villaverde et al., 2023), life-cycle models (Duarte et al., 2021), macro-

finance models (Gopalakrishna, 2021; Sauzet, 2021), climate economics and finance

(Folini et al., 2021), among others. Despite recent rapid advancements in the field, our

approach stands out distinctly. By innovatively combining a gradient-based generalized

policy iteration method, which eliminates the need for root-finding routines, with

a cost-effective computation of the value function drift, we effectively address the

three curses of dimensionality. This enables researchers to delve into high-dimensional

problems in financial economics.

1 Machine Learning

This section covers basic machine-learning concepts and methods needed to implement

the algorithm presented in Section 2. For excellent textbook treatments, see Sutton

and Barto (1998) and Goodfellow et al. (2016). The reader who is already familiar
9For an early use of machine-learning techniques in discrete time, see the work on Gaussian

processes by Scheidegger and Bilionis (2019).

8

with deep learning and generalized policy iteration may want to skip to the next

section.

1.1 Supervised Learning and Neural Networks

The goal of supervised learning is, broadly speaking, to learn how to represent functions.

For a concrete example, consider a set of observations {Xi, Yi}Ni=1 and suppose that

we are interested in constructing a function V such that V (Xi) = Yi. For instance, Xi

may be a digital picture and Yi an indicator of whether a particular person appears in

the image. Since a greyscale digital picture with one megapixel, for example, has one

million dimensions, listing all possible combinations of Xi and Yi in a lookup table

is an impossibly difficult task. The machine-learning solution for this problem is to

assume a flexible parametric function V (Xi;θ), where θ is a vector of parameters, and

use data to recover θ. To represent this highly nonlinear function, we need functional

forms that can capture complex and nonlinear interactions between the regressors. A

particularly powerful set of function approximators is the class of neural networks.

The starting point of constructing a neural network is building a linear model of

the type Yi = ⟨W0,Xi⟩+b0, where Yi ∈ R is the dependent variable, Xi ∈ Rd is a data

point, W0 ∈ Rd is a vector of coefficients, b0 ∈ R is a coefficient (i.e., bias), and the

operator ⟨·, ·⟩ represents the inner product in Rd. The next step is to apply a nonlinear

function σ(·), known in the literature as an activation function, to the output. Figure

1 shows three commonly used activation functions. Panel (a) shows the rectified linear

unit (Jarrett et al., 2009), which is the default choice in most applications, while

Panels (b) and (c) show the sigmoid and hyperbolic tangent activation functions.

Let G0 = σ(⟨W0,Xi⟩+ b0) be the output of this nonlinear function, known in the

literature as the hidden unit. When we perform this operation on a set of vectors and

coefficients {Wj, bj}j∈0,1,...,nG−1
and stack them into a vector G ∈ RnG , we obtain a

hidden layer. In the final step, a single-layer neural network takes a linear combination

9

Figure 1: Activation functions

−3 −2 −1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ax
{x
,0
}

(a) ReLu

−3 −2 −1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

σ
(x

)

(b) Sigmoid

−3 −2 −1 0 1 2 3
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ta
n

h
(x

)

(c) Tanh

Panel (a) shows the rectified linear unit (ReLu), the most common activation function used in
machine learning applications. Panels (b) and (c) show two possible alternatives, the sigmoid function
σ(x) = 1

1+e−x and the hyperbolic tangent tanh(x) = 1−e−2x

1+e−2x .

of G to produce the final output Y = ⟨G,WnG
⟩+ bnG

.

Panel (a) of Figure 2 shows a neural network with five hidden units. When this

neural network is extended by adding many hidden layers, stacked on top of each

other, it receives the name of a deep neural network. Panel (b) of Figure 2 shows a

deep neural network with two hidden layers. The number of hidden layers, also known

as the depth of the neural network, is an important feature to accurately capture

nonlinear relationships. Empirically, deep neural networks have been found to perform

much better than single-layer networks10.

An important theoretical result in the neural network literature is the so-called

Universal Approximation Theorem, which states that any continuous function on

compact subsets of Rn can be uniformly approximated by enough hidden units

(Cybenko, 1989; Hornik, 1991).11 This result may be familiar to financial economists

who know the Options Spanning Theorem of Ross (1976), which states that any

contract can be formed as a portfolio of options. Indeed, in the particular case where

(i) the activation function σ(·) is the rectified linear unit, (ii) the input X is scalar,

and (iii) the weights are unit weights (Wj = 1 ∀j), the output of the j-th hidden unit

is the payoff of a call option on X with strike −bj. Thus, the output layer combines
10See Chapter 6 of Goodfellow et al. (2016) and references therein.
11 More precisely, the theorem shows that the set of linear combinations of sigmoidal activation

functions is dense in the set of continuous functions on the unit cube.

10

Figure 2: Feedforward Neural Network

(a) Single Layer

X
(i)
1

X
(i)
2

X
(i)
3

X
(i)
4

V

Hidden
layer

Input
layer

Output
layer

(b) Deep Neural Network

X
(i)
1

X
(i)
2

X
(i)
3

X
(i)
4

V

Hidden
layer

Input
layer

Hidden
layer

Output
layer

The green circles represent each entry of the input vector X(i) =
[
X

(i)
1 , X

(i)
2 , X

(i)
3 , X

(i)
4

]⊤
. The

hidden units are represented by blue circles. Each hidden unit performs a composition of a nonlinear
function (activation function) and a linear transformation of the outputs of the previous layer. The
outputs of the final hidden layer are combined linearly to produce the final output. θ is the collection
of all parameters of the network.

many call options to produce a given payoff. In our options analogy, a two-layer neural

network would correspond to a portfolio of options on portfolios of call options.

If the output of a neural network has to satisfy some model-implied constraints,

we can apply a final nonlinear transformation to ensure that the constraints are not

violated. For instance, if a network represents consumption choice, we can apply the

exponential or softplus functions as the final transformation to impose nonnegativity.

Likewise, sigmoid or hyperbolic tangent functions can be used to bound functions.

1.2 Stochastic Gradient Descent and Backpropagation

The standard (nonstochastic) method of gradient descent (or simply, steepest descent)

of Cauchy (1847) consists of moving the parameter θ of the parametric representation

of V (X), represented by V (X;θ), in the direction that minimizes some measure of

error the fastest. A natural measure of fitness is the one-half mean-squared error

11

(MSE hereafter) over N observations, i.e.,

L (θ) = 1

2N

N∑
i=1

(V (Xi;θ)− Yi)2.

Starting with an initial guess θ, the gradient descent algorithm updates θ according

to

θ ← θ − η∇θL (θ)

= θ − η 1

2N

N∑
i=1

∇θ(V (Xi;θ)− Yi)2, (1)

where η is the learning rate and ∇θ denotes the gradient operator with respect to the

parameter vector θ.

The key insight of the Stochastic Gradient Descent (SGD hereafter) algorithm is

to approximate the expectation (i.e., average) in Eq.(1) with a small independent and

identically distributed (i.i.d.) sample of the data set {Xi, Yi}. Thus, for n≪ N , we

can approximate Eq.(1) by

θ ← θ − η 1

n

∑
i∈In

(V (Xi;θ)− Yi)∇θV (Xi;θ), (2)

where In is a random i.i.d. sample of {1, 2, ..., N} with n points.12 This subsample of

points used to approximate the gradient is called the mini-batch.

The use of stochastic methods to compute the MSE loss is one of the key aspects

that separate machine learning from pure optimization, and it is essential to make

machine learning feasible in high-dimensional problems. As Goodfellow et al. (2016)

explain, computing the MSE loss for a sample with 10,000 observations is 100 times

more costly in terms of computational resources than performing the same computation
12Typical values for n and N are 128 and 1,000,000 (see, for example, Krizhevsky et al. (2012)).

For guidelines on how to choose the batch size, see Goodfellow et al. (2016).

12

for a sample with 100 observations but only reduces the standard deviation of the

gradient of the larger sample by a factor of 10 since the standard error of the mean

scales with the square root of the number of observations.

A critical aspect of the iteration in Eq.(2) is that it involves all first-order partial

derivatives of the network V with respect to its parameters. Therefore, a naive

finite-difference approach to compute the derivatives would be too costly. For example,

if the network has 100,000 parameters, we would need to compute V (Xi;θ + εej) for

every j ∈ {1, . . . , 100, 000}, with ε ∈ R, and ej ∈ R100,000 is the canonical basis vector

in the j-th direction. Fortunately, machine-learning software relies on a more efficient

method of computing partial derivatives, called backpropagation (Rumelhart et al.,

1988). This algorithm is based on the sequential application of the chain rule, starting

from the final layer and moving backward to the initial layer. It can be shown that

computing all first-order partial derivatives using backpropagation always has the

same cost as computing the function itself.13 Compared to a finite-difference approach

applied to the example above, backpropagation provides an economy of five orders of

magnitude.

1.3 Discrete-time Markov Decision Process

Throughout the paper, we assume that infinitely lived agents face a Markov decision

process; that is, there exists a vector of states s ∈ S ⊂ Rn that subsumes all relevant

information for decision-making. At each instant t, subject to possible environment

constraints, the agent chooses a control ct ∈ A from which she derives instantaneous

utility u(ct). Her goal is to choose a sequence of controls to maximize the expected
13See Baydin et al. (2015) for a survey on backpropagation and other automatic differentiation

methods.

13

value of the sum of discounted future utilities:

V ∗(s) = max
{ct}∞t=0

E

[
∞∑
t=0

βtu(ct)|s
]
.

The function V ∗ is called the optimal state-value function. The function that maps

states to optimal controls π∗ : S → A is called the optimal policy function. More

generally, given an arbitrary policy function π : S → A (not necessarily optimal), we

define the state-value function associated with π as

Vπ(s) = E

[
∞∑
t=0

βtu(π(st))

]
.

This function represents the expected value of the sum of discounted future utilities

for an agent that chooses her controls following the policy π.

A canonical class of algorithms for solving this Markov decision process is called

policy iteration (Howard, 1960). It consists of iterating between two steps: policy

evaluation and policy improvement. As discussed below, a particular case of policy

iteration is the canonical value function iteration method.

Under technical conditions, the value function Vπ satisfies the Bellman equation

Vπ(s) = u(π(s)) + βE [Vπ (s′) |s] , (3)

where s′ denotes the state vector next period.14 The right-hand side of Eq.(3) is the

Bellman target, and we denote it by TVπ(s).

Direct policy evaluation. This functional equation can be solved exactly on a

computer only if the state space S = {s1, s2, ..., sN} is finite and the number of states

is sufficiently small. In this case, the Bellman equation is linear and can be solved
14For details on the Bellman equation, see Stokey et al. (1989) and Ljungqvist and Sargent (2000).

14

with standard linear algebra tools:

Vπ = (I− βPπ)
−1Uπ,

where I is the identity matrix, Pπ is the transition probability matrix describing the

state dynamics when the agent chooses her controls using the policy π, Vπ is the

vector of stacked values for every state, Vπ = [Vπ(s1), Vπ(s2), ..., Vπ(sN)], and Uπ is

the vector of stacked utilities for every state: Uπ = [u(π(s1)), u(π(s2)), ..., u(π(sN))].

Iterative policy evaluation. An alternative algorithm for computing Vπ consists

of turning the Bellman equation in Eq.(3) into assignments. Starting from an initial

arbitrary guess V 0
π , construct a sequence

{
V k
π

}
k∈N according to

V k
π (s) = TV k−1

π (s). (4)

This iteration produces the unique solution of Eq.(3).

Policy improvement. Knowing the value function Vπ associated with the policy π

makes it possible to find a better policy π′ : S → A. Let

π′(s)
.
= argmax

c
{u(c) + βE [Vπ(s

′)|s, c]} . (5)

The Policy Improvement Theorem (Bellman, 1957; Howard, 1960) guarantees that

Vπ′(s) ≥ Vπ(s), ∀s ∈ S. This step is therefore called policy improvement.

Alternating between policy evaluation and policy improvement is guaranteed to

produce the optimal state-value function V ∗ and the optimal policy π∗. If the policy

evaluation step consists of a single iteration of iterative policy evaluation in Eq.(4),

the algorithm is called value function iteration.

15

Large state and action spaces. When the number of states is large or takes on a

continuum of values, all numerical solution methods have to rely on an approximate

version of Eq.(3). Likewise, when the action space A is large, in general, the maxi-

mization on the right-hand side of Eq.(5) cannot be performed exactly. An algorithm

that alternates some approximate version of policy evaluation with an approximate

version of policy improvement is called generalized policy iteration (Sutton and Barto,

1998).

2 Solution Method

In this section, we show how to combine the tools presented in Section 1 with Ito’s

lemma to solve high-dimensional nonlinear dynamic stochastic problems in continuous

time. This combination allows us to efficiently compute exact expectations when the

underlying shocks follow Brownian motions, yielding the new and surprising result

that the associated computational cost does not increase with the number of states,

and increases at most linearly with the number of shocks, therefore avoiding the second

curse of dimensionality (Powell, 2007).

2.1 Ito’s Lemma and Automatic Differentiation

The computational advantage of continuous time over discrete time counterparts is

that, in continuous time, expectations can be computed with partial derivatives when

the underlying shocks follow Brownian motions. For example, Achdou et al. (2014)

and Brunnermeier and Sannikov (2016) present algorithms that perform orders of

magnitude faster than their discrete-time counterparts for small-scale problems with

one or two state variables. When the state space is low dimensional, one can discretize

the state space and approximate partial derivatives with finite differences, and thus

computing expectations using Ito’s lemma is computationally cheap.

16

This approach, however, does not scale to problems with a large number of

state variables.15 Consider the vector of state variables s that follows the stochastic

differential equation:

dst =f(st)dt+ g(st)dBt, (6)

where s ∈ Rn, f : Rn → Rn is the drift, and g : Rn → Rn×m represents the matrix of

loadings on the m-dimensional vector of standard Brownian motions dB.

Let V (s) denote an arbitrary function of s with continuous second-order partial

derivatives. Ito’s lemma states that:

EdV
dt

(s) = ∇sV (s)⊤f(s) +
1

2
Tr
[
g(s)⊤HsV (s)g(s)

]
, (7)

where ∇sV is the gradient and HsV the Hessian matrix.

A naive implementation of Ito’s lemma would involve computing all first- and

second-order partial derivatives, which naturally scales poorly with the number of state

variables. The next proposition shows how to bypass these costly computations and

avoid the second curse of dimensionality. This result is also part of what distinguishes

our algorithm from standard reinforcement-learning implementations, as the state

dynamics are typically not known in these applications.

Proposition 1. For a given s, define the auxiliary function F : R→ R as

F (ϵ) ≡
m∑
i=1

V

(
s+

ϵ√
2
gi(s) +

ϵ2

2m
f(s)

)
, (8)

where gi(s) represents column i of the matrix g(s). Then,
15For example, a ten-dimensional grid with 100 points in each direction requires 1017 terabytes of

RAM.

17

F
′′
(0) =

EdV
dt

(s). (9)

Proposition 1 contains two main insights. First, Eq.(9) shows that we can bypass

the computation of a multidimensional Ito’s lemma on the right-hand side by computing

the second derivative of a univariate function on the left-hand side instead. Note

that the second derivative of F is effectively a directional derivative of V .16 Second,

since the cost of evaluating a second-order derivative with either backward or forward

automatic differentiation is a small multiple of the cost of evaluating F (0) = V (s),

the total computational cost of evaluating EdV
dt

(s) is a small multiple of m · cost(V).17

To understand the computational gains generated by Proposition 1, consider the

following illustrative example where we compute the derivative in Eq.(9) using second-

order forward mode automatic differentiation. Suppose we have 100 state variables

st = (s1,t, s2,t, ..., s100,t), where each component si,t, i = 1, ..., 100 has a drift process

µi,t and a volatility process σi,t on the same Brownian shock dBt.

Now consider evaluating the function V (st) =
∑100

i=1 s
2
i,t numerically. Squaring each

term and adding them all up requires a total of 199 floating point operations (FLOPs),

corresponding to 100 multiplications and 99 additions. But if we are interested in

computing the drift of V , how many operations do we need to perform when using

Proposition 1?

To obtain the drift of V using Proposition 1, we must compute the second
16Formally, EdV

dt (s) is the sum of the first-order directional derivative ∇sV (s)⊤f(s) and the second-
order directional derivative 1

2 Tr
[
g(s)⊤HsV (s)g(s)

]
.

17With forward-mode automatic differentiation, this cost is independent of the number of outputs,
while with backward-mode it is independent of the number of inputs (see Griewank and Walther
(2008) for formal bounds). Since the auxiliary function F has one input and one output, the choice of
backward or forward mode is typically not important when using efficient automatic differentiation
systems. However, depending on the software, the backward mode can be much slower. Therefore,
systematic experimentation is advised to determine the optimal combination of forward and backward
modes for superior performance.

18

derivative of F (ϵ) ≡ V

(
st + ϵ · σt√

2
+
ϵ2

2
· µt

)
, where µt = (µ1,t, µ2,t, ..., µ100,t) and

σt = (σ1,t, σ2,t, ..., σ100,t). For a given Taylor series x = x0 + ϵ · x1 +
ϵ2

2
· x2, auto-

matic differentiation in forward mode produces the Taylor series of a function f(x)

by chaining the Taylor series of each elementary function that composes f(x). The

function V in this example contains two elementary operations: the square function

and the addition, so we only need propagation rules for these two functions. The

Taylor expansion of the addition is immediate: the series of the sum is the sum of the

series. For the square function, its second-order Taylor expansion yields

f(x) = x2 =

(
x0 + ϵ · x1 +

ϵ2

2
· x2
)2

= y0 + ϵ · y1 +
ϵ2

2
· y2,

where y0 = x20, y1 = 2 ·x0 ·x1, and y2 = 2 ·(x0 ·x2+x21). Note in particular that we need

4 FLOPs to compute the second-order Taylor coefficient y2: one for the multiplication

x0 · x1, one for the multiplication x1 · x1, one for the addition x0 · x1 + x21, and one for

the multiplication 2·(x0 · x1 + x21).

Now consider the original series x = si+ ϵ ·
σi√
2
+
ϵ2

2
·µi. In this case, x0 = si, x1 =

σi√
2
, and x2 = µi. First, we need 100 FLOPs for the terms

σi√
2
. To compute the

second-order term of the Taylor expansion of the quadratic function, we need another

400 FLOPs, as shown above. Finally, for the summation operation, we need another

99 additions to obtain the second-order derivative of the auxiliary function F . In

summary, we need a total of 599 FLOPs to compute the drift of V , a small multiple

of the cost of evaluating V itself.

The cost of computing the drift of a high-dimensional function is significantly

higher using leading alternative methods. Table 1 shows the computational cost and

memory requirements to compute the drift of V using different approaches. As shown,

using finite differences to compute all first- and second-order partial derivatives of V to

19

Table 1: Computational Cost of Numerical Derivatives

Method FLOPs Memory Error

1. Finite differences 9,190,800 112,442,048 1.58%
2. Naive autodiff 2,100,501 25,673,640 0.00%
3. Analytical 20,501 44,428 0
4. Proposition 1 599 6,044 0.00%

Notes: The table shows the computational cost for computing the drift of V (s) =
∑100

i=1 s
2
i ,

assuming si = µi = σi = 1 for i = 1, . . . , 100, using four different methods: 1) finite differences
(with h = 0.001), 2) a naive use of automatic differentiation (where the Hessian is computed
by nested calls to the Jacobian function), 3) using the analytical partial derivatives, and 4)
the method described in Proposition 1 combined with forward-mode automatic differentiation.
The column FLOPs shows the number of floating point operations required by each approach.
The column Memory is measured as bytes accessed. The column Error measures the absolute
value of the relative error of each method in percentage terms.

obtain its drift as in Eq.(7), requires over 9 million FLOPs, with a total memory cost

of over 112 million bytes. This substantial amount of memory is orders of magnitude

larger than the memory usage for the method proposed in Proposition 1, which is

about 6,000 bytes.

It should be emphasized that the large performance difference between the two

methods is not only due to the use of automatic differentiation. As shown in Table 1, a

naive use of automatic differentiation, where the Hessian is computed by nested calls of

the Jacobian function, is only slightly more efficient than finite differences. The reason

is that the number of first- and second-order partial derivatives grows rapidly with

the number of state variables. By effectively computing a directional derivative as in

Proposition 1, we bypass the computation of all these partial derivatives, resulting in

this large performance difference. Interestingly, the method proposed in Proposition 1

is more efficient even when the partial derivatives can be computed and evaluated in

closed form. As shown in Table 1, it takes 20,501 FLOPs and 44,428 bytes to compute

the drift of V using the analytical expressions for the partial derivatives in Eq.(7).

The efficiency gains provided by Proposition 1 generalize to more complex functional

forms for V . To see how this theoretical result translates into real-world applications,

20

Figure 3: Ito’s Lemma Computational Cost

0 20 40 60 80 100

Number of State Variables

0.6

0.8

1.0

1.2

1.4

C
om

p
u

ta
ti

on
al

C
os

t
of

E
d
V

d
t

One Brownian Shock

Actual Cost

Theoretical Lower Bound

(a)

0 20 40 60 80 100
Number of Shocks

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
om

p
u

ta
ti

on
al

C
os

t
of

E
d
V

d
t

100 State Variables

(b)

Notes. This figure shows how the cost of computing the drift of a function V scales with the number
of state variables and with the number of Brownian shocks. We define the cost as the execution time
of EdV

dt (s) divided by the execution time of V (s). The left panel fixes the number of Brownian shocks
at 1 and varies the number of state variables from 1 to 100, while the panel on the right fixes the
number of state variables at 100 and varies the number of shocks from 1 to 100. In this example, V
is represented by a 2-layer neural network, and the executing times are computed 10,000 times on a
mini-batch of 512 samples of the state space.

we perform two experiments. In the experiments, we use a more complex functional

form than the quadratic function used in the previous illustrative numerical example,

and we set V as a 2-layer neural network. Panel (a) shows the cost of computing

EdV
dt

(s) as we vary the number of state variables, holding the number of Brownian

shocks fixed and equal to one (m = 1). This cost is defined as the execution time of

EdV
dt

(s) divided by the execution time of V (s). As shown, this cost is slightly greater

than one, regardless of the number of state variables, showing that evaluating the

value-function drift in Eq.(9) is essentially as costly as doing a single evaluation of

V (s).

Panel (b) of Figure 3 shows the cost of computing the value-function drift as we

vary the number of Brownian shocks, holding fixed the number of state variables at

100. As the number of Brownian shocks increases, the computational cost as measured

by the wall-clock time scales less than one-for-one, as we compute the summation

terms in Eq.(8) in parallel.

21

2.2 The Deep Policy Iteration Algorithm

In this subsection, we show the update rules for the neural network parameters based

on a generalized policy iteration. For ease of exposition, we make a few simplifying

assumptions that can be easily relaxed. First, the update rules are based on the

simplest version of the SGD, shown in Eq.(2). Second, we alternate between exactly

one step of policy evaluation and one step of policy improvement. Third, we use a

quadratic loss function for the policy evaluation step.

Consider the class of standard optimal control problems in continuous time where

infinitely lived agents face a Markovian decision process, with the vector of state

variables s ∈ S ⊂ Rn subsuming all relevant information for decision-making. An

agent chooses the policy c : S → Γ to maximize her lifetime expected utility:

V (st) =max
{cv}

Et
[∫ ∞

t

e−ρ(v−t)u(cv)dv

]
s.t. dst =f(st, ct)dt+ g(st, ct)dBt,

ct ∈ Γ(st), ∀t ∈ [0,∞),

where, at every point in the state space st, the agent chooses controls ct to maximize

V (st) subject to the evolution of the state variables and a set of constraints on the

controls Γ(st).

Under technical conditions, an intermediate step in the heuristic derivation of the

associated HJB equation is

V (s) = V (s) + max
c∈Γ(s)

{HJB(s, c, V (s)} dt,

22

where

HJB(s, c, V) = u(c)− ρV + (∇sV)⊤f(s, c) +
1

2
Tr
[
g(s, c)⊤HsV g(s, c)

]
= u(c)− ρV + F

′′
(0),

where F is the auxiliary function defined in Proposition 1. The solution to this

problem is a pair of functions V (s) and c(s) that satisfy at every point s in the state

space, the following system of equations

0 =HJB(s, c(s), V (s)),

c(s) = argmax
c∈Γ(s)

HJB(s, c, V (s)).
(10)

Representing the infinite-dimensional objects V and c on a computer requires an

approximation using a finite set of parameters that we denote by the vectors θV and

θC , respectively. A standard way of solving the problem in Eq.(10) is to choose a finite

subset of the state space {si}Ii=1 and parameterize the value and policy functions using

as many parameters as there are states: c(si;θC) = θC,i and Vπ(si;θV) = θV,i, where

θV,i is the i-th entry of the vector θV and θC,i is the i-th entry of the vector θC . With

a slight abuse of notation, we denote the HJB error for state si by HJB(si;θC ,θV).

Under this approximation, functional equations become vector equations, and the

problem can be exactly solved with policy iteration, as described in Section 1.3. In this

case, the method consists of guessing initial θ0
V and θ0

C and constructing a sequence

{θjC ,θjV }j∈N as follows:

θjC,i =argmax
c∈Γ(si)

HJB(si, c;θj−1
V)

θjV,i =θj−1
V,i + HJB(si;θjC ,θ

j−1
V)∆t,

(11)

until some stopping criterion is met.

23

Different from existing numerical methods that rely on a discretization of the state

space and the iteration of Eq.(11), we propose approximating the value function V

and the policy c with a deep neural network and alternating between the following

three steps, until a pre-specified stopping criteria is met.

Step 1–Sampling Consider a random sample of points {si}Ii=1 in the state space.

This mini-batch of size I can be sampled either from a uniform distribution between

hypothesized bounds of the state space or from a guess (perhaps informed by previous

iterations) about what the ergodic distribution looks like.

Step 2–Policy Improvement The policy improvement step, illustrated in the

second row of Eq.(10), involves an optimization step for every state. This step of

optimizing for every single state can be computationally very costly and is the driver

of the third curse of dimensionality. Moreover, in general, this step cannot be solved

exactly.

Consider then the following alternative approximate policy improvement strategy.

For each state si in the mini-batch and starting from the initial guess c0,i ≡ c(si;θ
j−1
C),

do one step of gradient descent on −HJB(si, c,θj−1
V) using a learning rate of 1. The

new control for each point in the mini-batch is

c1,i = c0,i +∇cHJB(si; c0,i,θj−1
V). (12)

We can use these new values in Eq.(12) as targets to train the policy network. The

objective is to find θjC to minimize the quadratic loss function

θjC =argmin
θ
L(θ), where

L(θ) = 1

2I

I∑
i=1

∥c(si;θ)− c1,i∥2.

24

Since the gradient of the loss function L(θ) is given by

∇θL(θ) =
1

I

I∑
i=1

(c(si;θ)− c1,i)
⊤Jθc(si;θ),

where Jθc(si;θ) denotes the Jacobian of c(si;θ) with respect to θ, we can update

θC by taking one step along this gradient. Thus, an application of the one-step SGD

evaluated at the starting point θ = θj−1
C gives

∇θL(θj−1) =
1

I

I∑
i=1

(c0,i − c1,i)
⊤Jθc(si;θ

j−1
C)

=− 1

I

I∑
i=1

∇cHJB(si, c0,i,θj−1
V)⊤Jθc(si;θ

j−1
C)

=− 1

I

I∑
i=1

∇θC
HJB(si,θj−1

C ,θj−1
V),

(13)

where the second row follows from Eq.(12) and the last row from an application of the

chain rule. Plugging Eq.(13) into the update rule for gradient descent with learning

rate ηC yields:

Policy Improvement

θjC =θj−1
C + ηC

1

I

I∑
i=1

∇θC
HJB(si,θj−1

C ,θj−1
V). (14)

Step 3–Policy Evaluation For the policy evaluation step, we present two al-

ternative update rules. Each has advantages and disadvantages that are discussed

below.

The first update rule is the analog of iterative policy evaluation in Eq.(4). The

continuous-time Bellman target is

V (s;θj) = V (s;θj−1
V) + HJB(s,θjC ,θ

j−1
V)∆t. (15)

25

Given the sample {si}, θjV minimizes the quadratic loss function

θjV =argmin
θ
L(θ), where

L(θ) = 1

2I

I∑
i=1

(V (si;θ)− V (si;θ
j−1
V)− HJB(si,θjC ,θ

j−1
V)∆t)2.

Since the gradient of the loss function L(θ) is given by

∇θL(θ) =
1

I

I∑
i=1

(V (si;θ)− V (si;θ
j−1
V)− HJB(si,θjC ,θ

j−1
V)∆t)∇θV (si;θ),

we can update θV by taking one step along this gradient. Thus, an application of the

one-step SGD evaluated at the starting point θ = θj−1
V gives

∇θL(θj−1
V) = −∆t

I

I∑
i=1

HJB(si,θjC ,θ
j−1
V)∇θV (si;θ

j−1
V). (16)

Plugging Eq.(16) into the update rule for gradient descent with learning rate ηV yields

Policy Evaluation 1

θjV =θj−1
V + ηV

∆t

I

I∑
i=1

HJB(si,θjC ,θ
j−1
V)∇θV

V (si;θ
j−1
V). (17)

An alternative to the policy evaluation step is the analog of direct policy evaluation

in Eq.(1.3). Directly minimizing the MSE of the Bellman residuals using SGD gives

Policy Evaluation 2

θjV = θj−1
V − ηV

1

I

I∑
i=1

HJB(si,θjC ,θ
j−1
V)∇θV

HJB(si,θjC ,θ
j−1
V). (18)

In the machine-learning literature, methods that directly minimize the Bellman

residuals are known to be slower than methods based on iterative policy evaluation.

Furthermore, notice that the update rule in Eq.(18) involves relatively costly third-

order derivatives since it requires the gradient of the HJB residual. Nevertheless,

26

residual methods are typically more stable than iterative policy evaluation when using

nonlinear function approximation (Baird, 1995). Therefore, as a rule of thumb, we

recommend starting with the update rule in Eq.(17), and switching to Eq.(18) if the

value function starts to diverge.

2.3 Hyperparameters

Note that a researcher has flexibility in how to implement such an algorithm. Design

choices include the architecture of the networks (number of hidden layers and units),

the optimization algorithm, the activation function, the learning rate, the number of

steps for policy evaluation and policy improvement, and the sampling strategy. These

are called hyperparameters. As with any numerical solution method, there are two

ways of choosing the hyperparameters. The first one is to use a hyperparameter tuner

software that searches for optimal values based on a given performance criterion.18

The second way is to use previous work as a baseline and experiment with variations of

that baseline. Since one of the contributions of this study is to establish such baselines

for future work, we deliberately avoid automatic hyperparameter tuning because it is

not necessary for our applications.

We use the same neural network architecture and hyperparameters for all applica-

tions in this paper. In particular, we use a 3-layer neural network with 256 hidden

units and layer normalization in the first layer, 128 hidden units in the second layer

and 64 units in the third layer. In our experience, such large networks have enough

expressive power to accurately represent highly nonlinear functions with dozens of

dimensions. For the policy functions, we use the ReLu activation function, which is

one of the most commonly used activation functions in deep learning. For the value

functions, we use a sigmoid linear unit (SiLu) activation function, which is similar

to ReLu, but has the property of being twice continuously differentiable, as required
18See, for instance, Liaw et al. (2018), Song et al. (2023), and Rapin and Teytaud (2018).

27

by Ito’s Lemma. For the SGD optimization of the policy evaluation step, we use the

Adam optimizer with default hyperparameter values: learning rate = 10−3, β1 = 0.9,

and β2 = 0.999. We find that using a smaller learning rate for the policy improvement

step helps to prevent divergence, and initialize it at 10−4. Both learning rates decrease

by 1% every 15,000 iterations. We choose a batch size of 2,048, which is large enough

to keep the GPU at 100 % utilization.

3 Applications

To showcase the broad applicability of our method, we solve three problems with

a high degree of complexity in three core areas of finance, namely asset pricing,

corporate finance, and portfolio choice. We start with the many-tree extension of the

classical asset pricing model of Lucas (1978). We then consider a structural corporate

finance model in the spirit of Hennessy and Whited (2007). Finally, we study a

high-dimensional version of the portfolio choice problem of Campbell and Viceira

(1999). While we focus on models with CRRA preferences and Brownian shocks to

keep the exposition of the different applications as simple as possible, our method also

works in more complex economies where investors have Epstein-Zin preferences and

state variables are driven by jump-diffusion processes (see Appendix B).

3.1 Asset Pricing

Consider first the two-tree economy of Cochrane et al. (2008), who extend the Lucas

economy by adding another exogenously specified tree producing the same consumption

good. Under restrictive assumptions, the authors derive closed-form expressions for

the equilibrium objects, which we use to check the accuracy of the numerical solutions

produced by our method. Later, we consider a richer version of the model with a large

number of trees for which closed-form solutions are not available.

28

Two trees. We keep the exposition of the benchmark model to its minimum and

refer readers to Cochrane et al. (2008) for a detailed description of the model. In short,

there is a representative consumer that chooses a consumption stream to maximize

the lifetime expected utility

V = E
[∫ ∞

0

e−ρt log(Ct)dt

]
.

The aggregate consumption process C = (Ct)t≥0 is the sum of the dividend streams

D1t and D2t produced by the two trees. The exogenous dividend process Di = (Dit)t≥0,

with i ∈ {1, 2}, follows a standard geometric Brownian motion:

dDit

Dit

= µdt+ σdZit.

The Brownian shocks Z1 and Z2 have instantaneous correlation equal to ϱ.

In this two-tree economy, the equilibrium quantities such as the short-term interest

rate, dividend yield, expected return, and asset volatility are determined by a single

state variable, namely, the dividend share st = D1t/(D1t +D2t). Figure 4 compares

the numerical solution produced by the DPI method and the analytical solution

of Cochrane et al. (2008) for the four equilibrium quantities mentioned above as a

function of the state variable st.19 As indicated, the high nonlinearities exhibited by

these functions suggest that methods based on log linearization may fail to accurately

capture these curvatures, resulting in inaccurate numerical solutions. The DPI method,

in contrast, has no difficulty in capturing nonlinear dynamics due to its global nature

and the flexibility of neural networks.

We use two measures to assess the accuracy of the numerical solution: (i) the

absolute deviation of the numerical solution from the exact one; (ii) the HJB residuals.

Figure 5 shows the distribution of our two accuracy measures. To obtain these
19All numerical computations in the paper are done using a NVIDIA A100 GPU.

29

Figure 4: Two-tree Economy

0.0 0.2 0.4 0.6 0.8 1.0
s

−2

−1

0

1

2

3

4

5
R

is
k
-f

re
e

R
at

e
(%

)
DPI

Analytical

(a) Risk-free Rate

0.0 0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
iv

id
en

d
Y

ie
ld

(%
)

(b) Dividend Yield

0.0 0.2 0.4 0.6 0.8 1.0
s

1

2

3

4

5

6

7

E
x
p

ec
te

d
R

et
u

rn
(%

)

(c) Expected Return

0.0 0.2 0.4 0.6 0.8 1.0
s

1.5

2.0

2.5

3.0

3.5

4.0

V
ol

at
il

it
y

(%
)

(d) Volatility

Notes. The figure shows the plots of the risk-free rate, dividend yield, expected return, and
instantaneous volatility as a function of the first tree dividend share. The solid lines correspond to
the numerical solutions, and the dashed lines correspond to the analytical solutions evaluated on the
random test set. The values of the parameters are as follows: ρ = 0.04, γ = 1, ϱ = −0.5, µ1 = 0.02,
µ2 = 0.03, σ1 = 0.2 and σ2 = 0.3. We use a neural network to approximate normalized asset prices
V = P · (D1 +D2)

−γ . The iteration stops when the average error of the dividend yield is less than
10−5.

.

distributions, we randomly draw 10,000 values for s uniformly from [0, 1] and compute

the value of the two measures for each draw. The panel on the left of Figure 5 shows the

distribution of the absolute difference between the numerical and analytical solution

for the dividend-yield, εd(s) = log10 |dnumerical(s)− danalytical(s)|. For conciseness, we

only report the accuracy for the dividend yield as the results for the other variables

are similar. We find that the average deviation is −5.04, with a standard deviation

of 0.34, showing that the solution is accurate approximately up to the fifth decimal

30

Figure 5: Error Distribution in a Two-tree Economy

−6.25 −6.00 −5.75 −5.50 −5.25 −5.00 −4.75 −4.50
εd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
F

re
q
u

en
cy

(a) Deviation from the Analytical Solution

−8 −7 −6 −5 −4 −3
εHJB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
re

q
u

en
cy

(b) HJB Residual

Notes. The left panel shows the distribution of the (log10) absolute difference between the numerical
and the analytical solution of the dividend yield, while the right panel shows the (log10) HJB residuals
for a test set of 10,000 randomly drawn points with s ∈ [0, 1]. The iteration stops when the average
error is less than 10−5.

place.

Since εd(s) requires the knowledge of the exact solution, this measure is restricted to

economies for which closed-form solutions are available. For more complex economies

where analytical solutions are not available, we consider a second measure of accuracy,

namely the HJB residuals. The HJB residuals correspond to the normalized deviations

from the HJB equation, defined as εHJB(s) = log10
|HJB(s,c(s))|

V (s)
, where HJB(s, c(s)) is

given in Eq.(10).20 The panel on the right of Figure 5 shows the distribution of the

HJB residuals. The distribution has a mean of −4.56 and a standard deviation of 0.56,

once again showing that the solution has high accuracy. Combined, these results show

that the distribution of HJB residuals is similar to the distribution of the absolute

deviation errors, indicating that the two measures of accuracy are quantitatively

similar.
20HJB residuals can be interpreted as the continuous-time analog of the Euler equation errors

commonly used in discrete-time models. For a discussion of the use of this metric in continuous-time
settings, see Parra-Alvarez (2018).

31

Lucas Orchard. The curse of dimensionality becomes apparent when we move

from the two-tree Lucas economy of Cochrane et al. (2008) to the Lucas orchard

economy of Martin (2013). The author generalizes the two-tree economy of Cochrane

et al. (2008) by assuming the existence of N trees and by relaxing the log utility

assumption on the representative agent’s utility function. Martin (2013) provides

semi-analytical expressions for the equilibrium quantities as functions of the N − 1

dividend shares in the economy. However, the integral formulas are subject to a severe

curse of dimensionality, which limits the applicability of the analytical results to setups

with at most three or four trees.

To illustrate how the DPI method can alleviate the curse of dimensionality, we

conduct the following experiment. Starting from an economy with two trees, we

gradually increase the number of identical trees in the economy and solve for the

equilibrium using the DPI algorithm. We consider two stopping criteria. First, we

stop the iteration when a MSE lower than 10−8 is achieved. Second, we adopt a

more stringent accuracy metric and stop the iteration when the 90th percentile of the

squared errors is lower than 10−8. Panel (a) of Figure 6 shows the time in minutes to

compute the solution using the two criteria. The figure shows that the DPI method

produces accurate solutions for problems with a high-dimensional state space in a

timely manner. Moreover, raising the dimensionality of the problem or considering a

more stringent accuracy measure do not substantially increase the time-to-solution.

For instance, even in an economy with 100 trees, it takes less than a minute for the

DPI algorithm to reach an MSE of 10−8.

Panel (b) of Figure 6 shows the time-to-solution of the DPI method and the Smolyak

method. The Smolyak method is arguably among the most widely used techniques in

financial economics to tackle high-dimensional stochastic dynamic models.21 Hence,
21In recent years, some notable contributions have increased the efficiency and accuracy of the

Smolyak methods. See e.g. Judd et al. (2014), Brumm and Scheidegger (2017), Brumm et al. (2022).

32

Figure 6: Accuracy and Time-to-Solution in a Lucas Orchard Economy

2 20 40 60 80 100
Number of Trees

0.05

0.10

0.15

0.20

0.25

0.30

M
in

u
te

s

Minutes of Training for accuracy < 10−8

Mean squared errors

90th percentile (squared errors)

(a) Time to solution

2 5 10 15 20 258 12 26
Number of Trees

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
in

u
te

s

Minutes of Training for Accuracy < 10−3

DPI

Smolyak2

Smolyak3

Smolyak4

(b) Smolyak methods and DPI algorithm MSEs.

Notes. Panel (a) shows the time-to-solution of the DPI algorithm, measured by the number of
minutes required for a given metric to be less than 10−8. The blue line corresponds to the mean
squared errors and the orange line corresponds to the 90th percentile of the squared errors. Panel (b)
shows the time-to-solution of the DPI method and the Smolyak methods of orders 2, 3, and 4. The
tolerance is set to 10−3, which is the highest threshold reached by all the Smolyak methods. The
parameter values are as follows: ρ = 0.04, γ = 1, ϱ = 0.0, µ = 0.015, and σ = 0.1. The HJB errors
are computed on a random sample of 213 points from the state space.

33

it is important to compare how our method performs relative to it. We consider the

Smolyak method of orders 2, 3, and 4, and we solve for the coefficients using the

conjugate gradient method. We set the tolerance for the MSE to 10−3, the highest

threshold reached by all versions of the Smolyak method. The time-to-solution of the

different versions of the Smolyak method increases rapidly with the number of trees

in the economy, and the computer runs out of memory for orchards with 8, 12, and 26

trees for the methods of order 2, 3, and 4, respectively. In contrast, the DPI method

is able to maintain high accuracy with a relatively low time-to-solution for economies

with a much larger number of trees. This illustrates the ability of the DPI method to

alleviate the curse of dimensionality relative to previously known methods.

Economic consequences of large N . We consider next how the equilibrium

objects vary the number of trees. We show that when the analysis is restricted to a

small number of trees, either due to numerical limitations or for the sake of analytical

tractability, important economic channels are overlooked. This leads to significantly

different equilibrium outcomes, both quantitatively and qualitatively.

We illustrate this point by examining the equilibrium objects of a Lucas orchard

with N trees for N ∈ {2, 3, 5, 10, 50}. The dividend process is the same for all trees,

with volatility σ and pairwise correlation ϱ. When N > 2, we need to specify not only

the share of the first tree s1 but also the dividend share distribution of the remaining

trees (s2, s3, . . . , sN). To represent this high-dimensional object in a two-dimensional

graph, we draw 10,000 values of (s2, s3, . . . , sN), after being normalized to add up

to one, from a symmetric Dirichlet distribution with concentration parameter α and

report equilibrium quantities averaged over these draws in Figure 7.22

When N = 2, we recover the results of Cochrane et al. (2008). In this economy,

the dividend yield and the interest rate respond strongly to changes in the share of
22When α ≈ 1, the sampled dividend shares (s2t , s

3
t , ..., s

N
t) are relatively dispersed. For larger

values of α, the sampled dividend shares become more concentrated around the center of the simplex,
and the draws tend to be similar to each other, consistent with the economy being more diversified.

34

the first tree s1t , as shown in Panels (a) and (b) of Figure 7. The risk premium is

positive, and the correlation between asset 1 returns and consumption is large, even as

s1 approaches zero, as shown in Panels (c) and (d). Similarly, consumption and return

volatilities are also highly sensitive to changes in s1, as shown in Panels (e) and (f).

Figure 7 shows that the results change substantially when N is relatively large

and s1 is small, an important case largely ignored by the literature. This case is

particularly important because, when N = 2, either the economy is diversified and

the trees are similar in size (i.e., there is no small asset as s1 ≈ s2 ≈ 0.5), or the

economy has a small asset, but it is extremely underdiversified, with the larger tree

being responsible for nearly all consumption. The graphs show that the three-tree

economy (N = 3) analyzed by Martin (2013) experiences similar drawbacks, albeit to

a lesser extent. In contrast, when N is large, we can analyze the behavior of a small

asset (s1 ≈ 0) in an economy that is still reasonably diversified, where no single tree

represents the entirety of consumption.

For example, consider the case where N = 50, and the dividend share of the first

risky asset is in the range 0 < s1 < 20%. Note that the dividend yield and interest

rate barely move as the dividend share of the first asset s1 changes. The reason is that

aggregate consumption volatility is roughly insensitive to this state variable in this

region as the other 49 trees still provide enough diversification.23 In the absence of the

effects on aggregate volatility, movements in interest rates and in the dividend yield

are muted. In stark contrast, when N = 2, a reduction of s1 from 20% to almost 0%

substantially increases consumption volatility, resulting in significantly lower dividend

yield and risk-free rate.

An important economic insight derived from Figure 7 is that when the economy

has many trees and the dividend share s1 is relatively small, the behavior of the

economy resembles a fully diversified economy (horizontal red line) where consumption

23Naturally, as s1 approaches 1, all economies behave similarly as the economy becomes concentrated
on the first risky asset, regardless of the value of N .

35

Figure 7: Equilibrium Quantities

0.0 0.2 0.4 0.6 0.8 1.0
s1

2

4

6

8

10

D
iv

id
en

d
Y

ie
ld

(%
)

N = 2

N = 3

N = 5

N = 10

N = 50

Fully
Diversified

α = 1

α = 3

(a) Dividend Yield

0.0 0.2 0.4 0.6 0.8 1.0
s1

2

4

6

8

10

R
is

k
-f

re
e

R
at

e
(%

)

N = 2

N = 3

N = 5

N = 10

N = 50
Fully
Diversified

(b) Risk-free Rate

0.0 0.2 0.4 0.6 0.8 1.0
s1

0

1

2

3

4

E
q
u

it
y

R
is

k
P

re
m

iu
m

(%
)

N = 2

N = 3

N = 50

Fully
Diversified

(c) Equity Risk Premium

0.0 0.2 0.4 0.6 0.8 1.0
s1

20

40

60

80

100

C
or

r(
R

1
,d
C
/C

)
(%

)

N = 2

N = 3

N = 10

N = 50

Fully
Diversified

(d) Corr(R1, dC/C)

0.0 0.2 0.4 0.6 0.8 1.0
s1

2

3

4

5

6

7

8

9

10

C
on

su
m

p
ti

on
V

ol
at

il
it

y
(%

)

N = 2

N = 3

N = 5

N = 10

N = 50

Fully
Diversified

(e) Consumption Volatility

0.0 0.2 0.4 0.6 0.8 1.0
s1

8

9

10

11

12

A
ss

et
1

V
ol

at
il

it
y

(%
)

N = 2

N = 3

N = 5

N = 10

N = 50 Fully
Diversified

(f) Asset 1 Volatility

Notes. We discretize the interval (0, 1), representing the domain of the dividend share of the first
risky asset s1, into 100 equal parts. For each given point in the grid, we draw 10,000 samples of
the remaining N − 1 dividend shares (s2, s3, ..., sN) from a symmetric Dirichlet distribution with
parameter α. With 10,000 samples for each point s1 in the grid, we then compute the equilibrium
quantities by evaluating the trained neural network model at each point in space (s1, s2, ..., sN)
and averaging the result across the samples. We repeat this process for different levels of the
concentration parameter α in the interval [1, 3]. The remaining parameter values are as follows:
ρ = 0.04, γ = 4, ϱ = 0.04, µ = 0.02, σ = 0.1, and σagg = 0.02.

36

is exposed to only an aggregate shock.24 Moreover, our results provide a quantitative

assessment of how fast the equilibrium outcomes converge to this fully diversified

benchmark. Even for moderately diversified economies, with N = 5 or N = 10,

the market-clearing effects emphasized by Cochrane et al. (2008) get substantially

attenuated, as seen, for instance, in panels (c) and (f) of Figure 7.

Martin (2013) argues that the positive risk premium of a small asset (s1 ≈ 0) is

due to the high covariance of its valuation ratio with aggregate cash flows. As Figure

7 shows, these effects are greatly attenuated when there is sufficient diversification

in the economy (e.g., N = 50) and disappear when the economy is fully diversified.

Thus, by lifting the numerical restrictions that had impeded the literature’s ability

to analyze the behavior of small firms in well-diversified economies, the DPI method

reveals that the positive risk premium of a small asset is a byproduct of a severely

underdiversified economy.

3.2 Corporate Finance

As our next application, we consider a canonical corporate finance model. Even

though the model can be solved using standard numerical techniques, we illustrate

how the DPI algorithm’s ability to handle large state spaces can be used by researchers

to perform a global sensitivity analysis. This is an important step in showing how

different moments in the data are informative about specific parameters in the model

in a transparent way.25 Moreover, by considering a nonconvex optimization problem,

we illustrate how the DPI method seamlessly handles severe nonlinearities in the

solution, such as multiple kinks.
24In the fully diversified economy the process for consumption is dCt/Ct = µdt + σaggdZt, and

dividend j follows the process dDj,t/Dj,t = µdt + σdZj,t, where dZtdZj,t = ϱ. We set σ2
agg = ϱσ2

(i.e, the minimum consumption variance in the Lucas orchard as N → ∞), corresponding to the
nondiversifiable risk in this economy.

25For a discussion of the role of transparency in structural research, including its connection with
sensitivity analysis, see Andrews et al. (2020).

37

Model environment. We present a simplified version of the model by Hennessy and

Whited (2007) that includes costly equity issuance and investment adjustment costs.

To simplify the exposition, we abstract from taxes and a corporate debt decision. We

assume that there is a firm with operating profits following a standard Cobb-Douglas

production function π(kt, zt) = ztk
α
t , with elasticity α ∈ (0, 1). There are two state

variables that drive operating profits: total factor productivity (TFP hereafter) zt and

the capital stock kt. TFP follows an Ornstein-Uhlenbeck process in logs:

d ln zt = −θ ln ztdt+ σdWt, with θ, σ > 0.

Capital accumulates according to
dkt
kt

= (it − δ)dt, where it represents the firm’s

investment rate and δ is the depreciation rate. Investment is subject to quadratic

adjustment costs, Λ(kt, it) = 0.5χkti
2
t , with χ > 0.

As in Hennessy and Whited (2007), we assume that raising external equity is costly,

and equity issuance is subject to the linear cost λ > 0. Since the firm’s operating

profits net of investment costs is D∗
t = ztk

α
t − (it + 0.5χi2t) kt, the firm’s dividend

policy is given by

Dt = D∗
t (1 + λ1D∗

t<0). (19)

Eq.(19) shows that the firm pays a unit cost λ if it decides to issue equity (i.e., if

D∗
t < 0).

Given a discount rate r > 0, the firm’s problem can be written as follows:

V (k, z; Φ) = max
{it}∞0

E
[∫ ∞

0

e−rtDtdt

]
, (20)

subject to Eq.(19), the law of motion of TFP and capital, the initial conditions k0 = k

and z0 = z, and a vector of model parameters Φ. Notice that, contrary to common

practice in the literature, we explicitly state the dependence of the value function

38

V (k, z; Φ) on the model parameters Φ to emphasize that the parameter choices alter

the solution of the model.

This dynamic corporate finance model helps illustrate different aspects of the

DPI algorithm. First, unlike the endowment economy considered in Section 3.1, the

dynamics of one of the state variables is endogenous since the investment decision

determines capital accumulation. In this case, we need to approximate both the value

and policy functions with neural networks. Moreover, while only the policy evaluation

step of the DPI method was needed in the Lucas orchard economy, a problem with an

endogenous state variable requires both policy evaluation and policy improvement to

compute the solution. Second, the cost of issuing equity creates kinks in the policy

functions. Because kinks are a ubiquitous feature in a wide class of models with

occasionally binding constraints or transaction costs, it is important to assess how the

solution method performs in such a case.26

Figure 8 shows the policy functions D(k, z) and i(k, z) as a function of k for

different values of z. The colored lines represent the solution obtained using the

DPI method, while the black dashed lines represent the solution obtained using an

implicit finite-differences scheme with a very fine grid, which serves as our benchmark.

From the graphs, we observe that the solution using the DPI method closely tracks

the solution obtained using finite differences. The accuracy of the solution is also

demonstrated by the low log10 RMSE of the HJB residuals, which amounts to −5.

The high accuracy level of the solution produced by the DPI algorithm is particu-

larly noteworthy due to the presence of kinks in the firm’s optimal dividend policy.

As shown in Figure 8, the dividend policy can be divided into three regions. When

the firm has a large initial capital stock k, it pays positive dividends. When the initial

capital stock is small, the firm issues equity. However, for intermediate levels of capital,
26The fact that the solution has kinks implies that a classical solution to the HJB equation for the

firm’s problem in Eq.(20) does not exist and we instead look for a viscosity solution to the HJB. For
a discussion of viscosity solutions, see Crandall (1995) and Achdou et al. (2022).

39

Figure 8: Optimal Dividend Policy and Investment Rate

5 10 15 20 25 30 35 40
Capital

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
D

iv
id

en
d

s

(a) Dividends

5 10 15 20 25 30 35 40
Capital

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
ve

st
m

en
t

R
at

e

z =0.87

z =1.00

z =1.15

(b) Investment Rate

Notes. The figure shows the plots of the optimal dividend policy and optimal investment rate as a
function of the capital stock for different values of TFP. The colored lines (dotted, dash-dotted, and
solid lines) represent the solution using the DPI method, and the black dashed lines represent the
solution using an upwind finite differences method with 23,001 grid points (451 for capital and 51 for
TFP). The RMSE of the HJB residuals for the DPI solution is 2.0× 10−5, computed on a random
sample of 8, 192, 000 observations (214 parallel simulations of size 2, 000) sampled from the ergodic
distribution. The value of the parameters are as follows: δ = 0.1, α = 0.55, λ = 0.059, θ = 0.26, and
σz = 0.123. The network takes as inputs the states (k, z) and the vector of model parameters Φ. The
network was trained in approximately 1 hour.

the firm neither pays dividends nor issues equity, creating an inaction region. The

differences in the firm’s payout policy in each region give rise to kinks in the optimal

dividend policy function. Nonetheless, these nonlinearities do not pose a challenge for

the DPI algorithm, which accurately captures both the region of inaction for dividends

and the corresponding kinks.

Global sensitivity analysis and universal value functions. For a given

parametrization, the previous model can easily be solved using a standard numerical

method such as finite differences. However, since the model’s results might be

dependent on the chosen parametrization, we are often interested in the solution for

different parameter values to check the robustness of our findings to changes in the

parameter space in the context of structural work.27 Thus, global sensitivity analysis

is critical to identify which moments in the data are particularly informative about
27A recent literature emphasizes the importance of sensitivity analysis in the context of structural

analysis. See e.g. Andrews et al. (2017), Armstrong and Kolesár (2021), and Catherine et al. (2022).

40

each parameter. However, because calibration or structural estimation may require

solving the model for a large number of parameter values, sensitivity analysis can

become computationally very costly and impractical in many cases.

To overcome the high computational cost of performing sensitivity analysis or

structural estimation, we exploit the ability of the DPI algorithm to handle high-

dimensional problems and include the model parameters as inputs to the neural

network, as suggested by our formulation in Eq.(20). In our experiment, this increases

the computational cost only slightly, but once the network is trained, the solution is

available for any point in the state and parameter spaces.28

In the literature on deep-reinforcement learning (Schaul et al., 2015), approximators

similar to V (k, z; Φ) are known as universal value functions (UVFs hereafter).29 In

our experiment, the UVF depends on the state variables (k, z) and the vector of

parameters Φ = (λ, δ, α, θ, σ), for a total of seven variables.30 The proposed approach

allows us to obtain at once the solution for an entire class of models.

Figure 9 shows the results of the global sensitivity analysis for our version of the

Hennessy and Whited model. The figure shows selected moments of the equilibrium

variables as a function of the parameters Φ = (λ, δ, α, θ, σ). As illustrated, the average

profitability is sensitive to α, while the average investment rate is particularly sensitive

to δ. Note that the sensitivity of the moments to the parameters varies depending on

the region of the parameter space. For example, for low-volatility firms, average equity

issuance is relatively insensitive to σ, while for high-volatility firms, equity issuance is

highly sensitive to σ. This particular feature of the solution could not be uncovered

using a local sensitivity measure, such as the one proposed by Andrews et al. (2017).

The authors recommend that a local measure of the sensitivity of estimated parameter

values to moments should be reported along with the results of a structural estimation.

28We thank an anonymous referee for pointing out this fact to us.
29See Norets (2012) for an early application of this approach in a discrete-choice setting.
30To ease exposition and limit the number of results to report, we fix the values of r and χ. It is

straightforward to include these parameters and perform sensitivity analysis with respect to them.

41

Figure 9: Global Sensitivity Analysis

0.05 0.10
λ

0.000

0.005

0.010

E
q
u

it
y

Is
su

an
ce

0.05 0.10
λ

0.00

0.05

0.10

0.15

0.20

In
ve

st
m

en
t

R
at

e

0.05 0.10
λ

0.1

0.2

0.3

0.4

P
ro

fi
ta

b
il

it
y

0.05 0.10
λ

0.30

0.35

0.40

0.45

0.50

P
ro

f.
A

u
to

co
rr

.

0.05 0.10
λ

0.00

0.01

0.02

0.03

0.04

S
T

D
(R

es
id

u
al

)

0.02 0.08 0.15
δ

0.000

0.005

0.010
E

q
u

it
y

Is
su

an
ce

0.02 0.08 0.15
δ

0.00

0.05

0.10

0.15

0.20

In
ve

st
m

en
t

R
at

e

0.02 0.08 0.15
δ

0.1

0.2

0.3

0.4

P
ro

fi
ta

b
il

it
y

0.02 0.08 0.15
δ

0.30

0.35

0.40

0.45

0.50

P
ro

f.
A

u
to

co
rr

.

0.02 0.08 0.15
δ

0.00

0.01

0.02

0.03

0.04

S
T

D
(R

es
id

u
al

)

0.4 0.5 0.6
α

0.000

0.005

0.010

E
q
u

it
y

Is
su

an
ce

0.4 0.5 0.6
α

0.00

0.05

0.10

0.15

0.20

In
ve

st
m

en
t

R
at

e

0.4 0.5 0.6
α

0.1

0.2

0.3

0.4

P
ro

fi
ta

b
il

it
y

0.4 0.5 0.6
α

0.30

0.35

0.40

0.45

0.50

P
ro

f.
A

u
to

co
rr

.

0.4 0.5 0.6
α

0.00

0.01

0.02

0.03

0.04

S
T

D
(R

es
id

u
al

)

0.20 0.25 0.30
θ

0.000

0.005

0.010

E
q
u

it
y

Is
su

an
ce

0.20 0.25 0.30
θ

0.00

0.05

0.10

0.15

0.20

In
ve

st
m

en
t

R
at

e

0.20 0.25 0.30
θ

0.1

0.2

0.3

0.4

P
ro

fi
ta

b
il

it
y

0.20 0.25 0.30
θ

0.30

0.35

0.40

0.45

0.50

P
ro

f.
A

u
to

co
rr

.

0.20 0.25 0.30
θ

0.00

0.01

0.02

0.03

0.04

S
T

D
(R

es
id

u
al

)

0.05 0.18 0.30
σ

0.000

0.005

0.010

E
q
u

it
y

Is
su

an
ce

0.05 0.18 0.30
σ

0.00

0.05

0.10

0.15

0.20

In
ve

st
m

en
t

R
at

e

0.05 0.18 0.30
σ

0.1

0.2

0.3

0.4

P
ro

fi
ta

b
il

it
y

0.05 0.18 0.30
σ

0.30

0.35

0.40

0.45

0.50

P
ro

f.
A

u
to

co
rr

.
0.05 0.18 0.30

σ

0.00

0.01

0.02

0.03

0.04

S
T

D
(R

es
id

u
al

)

Notes. The figure shows the plots of the following moments as a function of the parameters: (i) average equity issuance: E[min{Dt, 0}], (ii) average
investment rate: E[it], (iii) average profitability: E[pt], pt ≡ π(kt, zt)/kt, (iv) annual autocorrelation of profitability: the slope coefficient of the
regression pt+1 = α+ βpt + σϵϵt+1, and (v) the volatility of future profitability conditional on current profitability: σϵ. The model solution is obtained
by approximating value and policy functions by neural networks including the vector of parameters as inputs. For each column, we fix the parameters
at the baseline values and then vary each parameter individually. The moments are computed by simulating 212 economies in parallel for 2, 000 periods,
after dropping 1, 000 burn-in periods. The SDE is simulated using the Euler method with a time step of 0.05.

42

Figure 10: Moments Scatter Plots

0.00 0.01 0.02 0.03 0.04

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Equity Issuance (R2 = 1.00)

0.00 0.05 0.10 0.15

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Investment Rate (R2 = 1.00)

0.1 0.2 0.3 0.4

0.15

0.20

0.25

0.30

0.35

0.40

Profitability (R2 = 1.00)

0.3 0.4 0.5 0.6
0.30

0.35

0.40

0.45

0.50

0.55

Prof. Autocorr. (R2 = 1.00)

0.00 0.02 0.04 0.06 0.08
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

STD(Residual) (R2 = 1.00)

Notes. The figure shows the scatterplots of moments computed using the DPI method, as described
in Figure 9, against the solution using an upwind finite-differences method with 23,001 grid points
(451 points for capital and 51 points for TFP). For the computation of the model-implied moments
using the finite differences solution, we interpolate the points outside the grid with nearest-neighbor
interpolation.

In a sense, the sensitivity analysis we propose is a global version of their measure, as

it allows one to assess how parameters affect moments not only in the neighborhood

of the estimated parameters but also for parameters far from their estimated values.31

To check the accuracy of the UVF approach, we compute the moments for 100

random draws from the parameter space and compare the solutions produced by a

finite-difference method with a fine grid (our proxy for the exact solution) and our

UVF approximator. Figure 10 shows the R2 values for a regression comparing the

moments computed with the DPI method with those computed with finite differences.

The resulting R2 is very close to one for all moments, and the moments computed

with the DPI method and finite differences are very similar.

In summary, this exercise shows that the DPI method can be useful even when

the model in question has a small number of state variables. In addition, while we

have focused exclusively on the important topic of global sensitivity analysis, it is
31A similar approach to performing a global sensitivity analysis was recently proposed by Scheidegger

and Bilionis (2019); Kase et al. (2022); Catherine et al. (2022). Similar to Duarte (2018), Catherine
et al. (2022) construct moment networks that produce predicted moments as functions of the model
parameters. The authors propose to construct a large dataset of model parameters and their
corresponding moments by solving a model tens of thousands of times. Alternatively, one can leverage
the DPI method to construct the same dataset by including the parameters as inputs to the network
and solving the model only once.

43

worth noting that similar methods can be used for structural estimation. For example,

Duarte (2018) builds on the methods of this paper to show that UVFs can be used to

efficiently estimate structural models.

3.3 Portfolio Choice

In this section, we consider a high-dimensional version of the portfolio problem of

Campbell and Viceira (1999) with time-varying expected returns. We first demonstrate

our method’s ability to provide accurate solutions. Since closed-form solutions are

typically not available for these highly nonlinear problems, we propose a new method

to test the accuracy of the DPI solution which consists of reverse engineering a portfolio

problem with a known solution in a high-dimensional space. We then consider an

empirically motivated portfolio problem with multiple risky assets and realistic return

dynamics.

3.3.1 Reverse engineering a portfolio problem

Model environment. Consider the problem of an investor with CRRA utility

function who must choose the consumption policy Ct and the fraction of wealth

invested in a (single) risky asset αt, for given exogenous processes for the interest rate

rt and the risk premium ξt, in order to maximize her expected utility function:

V (W,x) = max
{Ct,αt}∞0

E0

[∫ ∞

0

e−ρt
C1−γ
t

1− γ dt
]
, (21)

subject to the wealth dynamics

dWt = [(rt + αtξt)Wt − Ct] dt+ αtWtσrdZt.

Here, Zt is an (N + 1)-dimensional Brownian motion, and σr is a constant (N + 1)-

dimensional (row) vector. The risk-free rate rt = r(xt) and the risk premium ξt = ξ(xt)

44

are assumed to be time-varying and driven by an N -dimensional state variable xt,

with dynamics given by

dxt = µx(xt)dt+ σx(xt)dZt, (22)

where µx(xt) is an N -dimensional vector and σx(xt) is an N × (N + 1) matrix.

The vector xt represents state variables that capture return predictability. It can

include financial measures such as the dividend-yield, the term spread, the investment-

capital ratio of Cochrane (1991), the consumption-wealth ratio cay of Lettau and

Ludvigson (2001), the accounting growth measures of Daniel and Titman (2006),

among many others.32 We are interested in finding the optimal portfolio share α(xt)

and the consumption policy C(xt), given the dynamics of the predictors xt in Eq.(22),

the risk-free rate r(xt), and the risk premium ξ(xt).

Reverse engineering. Since a closed-form solution to the previous problem is

typically not available, we propose to reverse engineer the functions r(x) and ξ(x) to

achieve any desired solution policies α(x) and C(x). We can then use the DPI method

with the reverse-engineered functions r(x) and ξ(x) to solve this high-dimensional

portfolio problem and compare the solution of the algorithm with the known functions

α(x) and C(x) that were initially specified by the investigator.

To illustrate the proposed procedure, consider first a simple transformation of the

consumption policy Ct that simplifies our exposition. By writing the value function

in Eq.(21) as V (W,x) = ϕ(x)
W 1−γ

1− γ , where ϕ(x) is a value-function shifter to be

determined, the first-order condition implies that Ct = ϕ(xt)
− 1

γWt. Since there is a

one-to-one mapping between the consumption policy and the value-function shifter,

giving a functional form to the value-function shifter ϕ(xt) is equivalent to modeling

the consumption policy Ct = C(xt) and vice versa. Moreover, the dynamics of the
32For analyses and reviews of the empirical performance of market return predictors, see Welch

and Goyal (2008), Koijen and Van Nieuwerburgh (2011), and Lewellen (2015).

45

value-function shifter ϕt can be easily obtained by a simple application of Ito’s lemma:

dϕt
ϕt

= µϕ(xt)dt+ σϕ(xt)dZt.

Suppose now that the functional form of ϕ(x) and α(x) are known and set ex-

ogenously by the investigator. The functions ξ(x) and r(x) can be derived from the

investor’s optimality conditions and the investor’s HJB equation, respectively, which

yield the following expressions

ξ(x) = γ||σr||2α(x)− σϕ(x)σ⊤r , (23)

r(x) =
ρ

1− γ +
γ||σr||2

2
−
(
γϕ(x)

− 1
γ

1− γ + α(x)ξ(x) + σϕ(x)σ
⊤
r +

µϕ(x) + 0.5||σϕ(x)||2
1− γ

)
. (24)

Thus, the expressions in Eqs.(23) and (24) allow us to obtain the values of ξ(x) and

r(x) associated with any given value-function shifter ϕ(x) and portfolio share α(x).

We use this procedure to test the ability of the DPI algorithm to produce accurate

solutions in high-dimensional portfolio-choice problems. Rather than choosing the

functions ϕ and α based on economic considerations, we select functional forms that

are known to be challenging for standard methods to approximate. We consider an

empirically motivated case below. More specifically, for the value function shifter ϕ(x),

we choose a multivariate version of the Runge function

ϕ(x) =
1

1 +
25

N

N∑
j=1

x2i

, (25)

which is typically used in numerical analysis to illustrate the difficulties of interpolation

with polynomials.33 For the portfolio share, we consider a highly nonlinear function

that is capable of generating rich patterns for the relationship between the portfolio
33For a discussion of the Runge function and the corresponding challenges of approximating this

function numerically, see Epperson (1987), for example.

46

Figure 11: Value-Function Shifter and Portfolio Share

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

x1

0.5

0.6

0.7

0.8

0.9

1.0
V

al
u

e-
fu

n
ct

io
n

sh
if

te
r
φ

(x
)

x−1 =0.0

x−1 =0.1

x−1 =0.2

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

x1

0.0

0.2

0.4

0.6

0.8

1.0

S
h

ar
e

of
th

e
ri

sk
y

as
se

t
α

(x
)

Notes. The figure shows the plots of the value-function shifter and the portfolio share as a function
of the first predictor, x1, given the value of the remaining predictors, x−1, and W = 1. The colored
lines (dotted, dash-dotted, and solid lines) represent the solution using the DPI method, and the
black dashed lines correspond to the exact solution given by Eqs.(25) and (26). The RMSE of
the HJB residuals for the DPI solution is 2 × 10−3, computed on a random sample of 8, 192, 000
observations (214 parallel simulations of size 2, 000) sampled from the ergodic distribution. The value
of the parameters are as follows: γ = 2, ρ = 0.04, µx(x) = −0.45x, σx,i(x) = 0.1ei, σr = 0.2eN+1,
N = 10. The functions ξ(x) and r(x) are given by Eqs.(23) and (24). The network was trained in
approximately 1 minute.

share and a given predictor; an important feature given the variety of predictors

proposed in the literature. We model α(x) as

α(x) =

∣∣∣∣∣sin
(

N∑
j=1

x2j

)∣∣∣∣∣ . (26)

In our numerical exercise, we set the number of predictors to N = 10 so that it is

in the ballpark of the number of predictors in the "kitchen sink" regression of Welch

and Goyal (2008). We set µx(x) = −0.45x and σx,i(x) = 0.1ei, where σx,i(x) denotes

the i-th row of σx(x) and ei is the (N + 1)-th dimensional canonical basis vector in

the i-th direction. Therefore, the predictors follow uncorrelated Ornstein–Uhlenbeck

processes with a volatility of 10% and a half-life of roughly 1.5 years, which is the

average persistence of the different predictors reported in Gârleanu and Pedersen

(2013).34 We set σr = 0.2eN+1 so that return volatility is 20% and return innovations
34The assumption that the predictors are uncorrelated can be interpreted as an extreme form of

47

Figure 12: DPI vs Exact Solution Scatterplots

−1.0 −0.8 −0.6 −0.4 −0.2
Exact Solution

−1.0

−0.8

−0.6

−0.4

−0.2

D
P

I
S

ol
u

ti
on

Value Function (R2 = 1.00)

0.0 0.2 0.4 0.6 0.8 1.0
Exact Solution

0.0

0.2

0.4

0.6

0.8

1.0

D
P

I
S

ol
u

ti
on

Asset Allocation (R2 = 1.00)

Notes. The figure shows the scatterplots of the value function (left panel) and portfolio share (right
panel) computed using the DPI method against the exact solution given by Eqs.(25) and (26).

are uncorrelated with the predictors. We assume that the risk aversion coefficient is

γ = 2 and the time-preference parameter is ρ = 0.04.

Numerical results. Figure 11 shows the value-function shifter and the portfolio

share, respectively, as a function of the first predictor, x1, for different values of the

remaining predictors. The colored lines represent the solution obtained with the DPI

method, and the black dashed lines correspond to the exact solution, as given by

Eqs.(25) and (26). The approximate solution closely tracks the exact solution, and

the log10 RMSE of the HJB residuals is −3, indicating that the solution is sufficiently

accurate. Note that the solutions obtained with the DPI method for the value-function

shifter ϕ(x) and the portfolio share α(x) do not exhibit the type of oscillations typically

found in polynomial approximations of these functions. In addition, the portfolio

share α(x) shows a rich pattern of behavior depending on the value of predictors 2

through 10. The functions can be V-shaped, increasing, or decreasing as a function of

x1 depending on the value of the remaining predictors x−1. Despite this wide range of

a shrinkage estimator applied to the variance-covariance matrix. For the importance of covariance
shrinkage in portfolio optimization, see Ledoit and Wolf (2004) and Pedersen et al. (2021).

48

behavior, the DPI method is able to accurately represent all these curves.

To further assess the accuracy of the solution, we consider a random sample of

points drawn from the state space and compare the exact and approximate solutions.

Figure 12 shows a scatter plot of the solution obtained using the DPI method against

the exact solution. The points line up closely over the 45◦ degree line and the R2 of

the two regressions are essentially one.

3.3.2 Portfolio Choice with Realistic Dynamics

In this final application, we use the DPI algorithm to solve a high-dimensional portfolio

choice problem calibrated with realistic asset-pricing dynamics in which the expected

returns on different asset classes are driven by several macro-finance variables.

Problem description. We depart from the portfolio problem discussed in Section

3.3.1 in three important dimensions. First, we build on the state-of-the-art affine model

of Jiang et al. (2019) to discipline the evolution of expected returns. In particular,

we consider a flexible model for the state-price density (SPD) that accurately prices

stocks, nominal bonds, and inflation-protected bonds. Second, we assume that the

investor has recursive preferences with a risk aversion coefficient γ and an elasticity

of intertemporal substitution (EIS) ψ. Third, the investor has access to five risky

assets in addition to a risk-free money market account. The vector of risky assets

includes stocks, long- and medium-term nominal bonds, and long- and medium-term

real bonds.

Expected returns are driven by aN×1 vector of state variables xt ∈ RN . The vector

of state variables evolves according to a multivariate Ornstein-Uhlenbeck process:

dxt = −Φxt + σxdZt, (27)

where Φ ∈ RN×N is a matrix of coefficients and σx ∈ RN×N is a matrix of loadings

49

on the N × 1 Brownian motion Zt. The real risk-free rate r(xt) and the N × 1

vector of market prices of risk η(xt) are assumed to be affine functions of xt, with

r(xt) = r0 + r⊤
1 xt and the η(xt) = η0 + η⊤

1 xt.

Estimation of the state dynamics. We assume that there are N = 11 state

variables, comprised of the financial and macroeconomic variables described in Table 2.

These variables include standard bond and stock market predictors as well as relevant

macroeconomic variables.

Data on the state variables xt are sampled in discrete intervals and their process

can be estimated by fitting a VAR(1):

xt = Ψxt−1 + ut, (28)

where Ψ is a N ×N matrix of coefficients, ut = Bϵt is a N × 1 vector of shocks, B is

a N ×N lower-triangle matrix of loadings, and ϵt ∼ N (0, IN). The time-integrated

version of the continuous-time process in Eq.(27) implies specific values for Ψ and B.

We can then recover the continuous-time parameters Φ and σx from the discrete-time

VAR by solving an inverse problem in the spirit of Campbell et al. (2004), i.e., finding

the continuous-time parameters that when time-integrated deliver the estimated VAR

coefficients. Appendix C describes this problem in detail.

Estimation of the state-price density. Given the assumption on the affine

structure of r(x) and η(x), we derive closed-form expressions for bond yields and

expected stock returns and then search for the parameters r0, r1, η0 and η1 to

minimize the squared residuals between the model-implied time-integrated values and

the corresponding data for 12 time series: one-, two-, five-, ten-, 20-, and 30-year

nominal yields, five-, seven-, ten-, 20-, and 30-year real yields, and expected stock

returns. Figure 13 shows the model fit for six selected series. Similar results hold

50

Table 2: List of State Variables Driving the Expected Returns of Assets

Variable Description Mean S.D.(%)
πt Log Inflation 0.032 2.3
y$t (1) Log 1-Year Nominal Yield 0.043 3.1
yspr$t Log 5-Year Minus 1-Year Nominal Yield Spread 0.006 0.7
∆zt Log Real GDP Growth 0.030 2.4
∆dt Log Stock Dividend-to-GDP Growth -0.002 6.3
dt Log Stock Dividend-to-GDP Level -0.270 30.5
pdt Log Stock Price-to-Dividend Ratio 3.537 42.6
∆τt Log Tax Revenue-to-GDP Growth 0.000 5
τt Log Tax Revenue-to-GDP Level -1.739 6.5
∆gt Log Spending-to-GDP Growth 0.006 7.6
gt Log Spending-to-GDP Level -1.749 12.9

Notes: The table shows the list of 11 state variables driving expected returns in our
economy, along with their mean and standard deviation. The data are collected from
https://www.publicdebtvaluation.com/data.

for the remaining six variables. As illustrated, the model can accurately capture the

evolution of nominal and real bonds of different maturities. Moreover, the equity

premium implied by the model closely matches the conditional equity premium in the

data implied by the VAR.

Given (r(xt),η(xt)) and the state dynamics in Eq.(27), we can derive the 5 × 1

vector of expected excess return ξ(xt) for risky assets and the matrix of loadings on

the Brownian shocks σR ∈ R5×11 to describe the investor’s investment opportunity set

and the dynamics of the investor’s wealth.35

The investor’s optimization problem. With the investment opportunity set

fully described, we turn to the optimization problem faced by the investor. The

agent chooses consumption Ct and portfolio shares αt ∈ R5×1 to solve the following

optimization problem:

V (W,x) = max
{Ct,αt}∞0

E0

[∫ ∞

0

f(Ct, Vt)dt

]
, (29)

35See Appendix C for a detailed derivation of the model and a thorough discussion of the estimation
process for this exercise.

51

https://www.publicdebtvaluation.com/data

Figure 13: Time Series of Bond Yields and Equity Expected Returns

1950 1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

10

12

14

R
at

e
(%

)

1947-01-01 / 2019-01-011-yr Nominal Yield

Data

Model

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

1947-01-01 / 2019-01-015-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

1947-01-01 / 2019-01-0110-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

0

10

20

30

40

50

R
a
te

(%
)

1947-01-01 / 2019-01-01Equity Return

1950 1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

1947-01-01 / 2019-01-015-yr Real Yield

1950 1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

1947-01-01 / 2019-01-0110-yr Real Yield

Notes. The figure shows the time series for nominal yields, real yields, and equity expected return
for the model (solid black line) and the data (dashed blue line). The maturity for the nominal yields
are one, five, and ten years. The maturity for the real yields are five and ten years.

subject to the state dynamics in Eq.(27), the wealth dynamics

dWt =
(
Wt(r(xt) +α⊤

t ξ(xt))− Ct
)
dt+Wtα

⊤
t σRdZt,

the position limits 0 ≤ αj,t ≤ 1 for j = 1, . . . , 5, the natural borrowing limit Wt ≥ 0,

and initial conditions W0 = W and x0 = x. The preference aggregator is given

by f(C, V) = ρ (1−γ)V
1−ψ−1

[(
C

((1−γ)V)
1

1−γ

)1−ψ−1

− 1

]
, where ρ is the time-preference pa-

rameter. The position limits imply the investor is not allowed to short sell or use

leverage.

52

Figure 14: Time Series of Expected Returns and Optimal Allocations

1949 1959 1969 1979 1989 1999 2009 2019
Year

−10

0

10

20

30

40

E
xp

ec
te

d
R

et
u

rn
s

(%
)

Risk-free

Stock

Medium Real Bond

Medium Nominal Bond

Long Real Bond

Long Nominal Bond

(a) Expected Returns

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

20

40

60

80

100

P
or

tf
ol

io
W

ei
gh

ts
(%

)

Risk-free rate

Stock

Medium Real Bond

Medium Nominal Bond

Long Real Bond

Long Nominal Bond

(b) Asset Allocation

Notes. Panel (a) shows the time series of expected returns implied by the model for five asset
classes: equities, nominal and real long-term bonds (i.e., ten-year maturity), and nominal and real
medium-term bonds (i.e., five-year maturity), for the period 1949–2019. The NBER recession periods
are indicated as grey bars. Panel (b) shows the time series of the optimal asset allocation computed
using the DPI algorithm for an investor with recursive utility solving the optimization problem in
Eq.(29), given the dynamics of expected returns shown in Panel (a) and preferences parameters
ρ = 0.04, γ = 20, and ψ = 0.5.

Optimal allocation. We use the DPI algorithm to find the optimal consumption

and portfolio plans that solve the optimization problem in Eq.(29). Panel (a) of

Figure 14 shows the evolution of expected returns for the six asset classes. Expected

returns show substantial variability over our sample period and exhibit a strong cyclical

component, with large spikes in expected excess returns during recessions.

Panel (b) of Figure 14 shows the optimal allocation for an investor with a coefficient

of risk aversion γ = 20 and EIS ψ = 0.5.36 The solution shows that the investor

engages in market timing to a great extent. For instance, the investor held a substantial

amount of stocks during the 1950s and 1960s, but she was nearly out of the stock

market during the early 1970s. Similarly, the optimal solution is essentially to stay

away from stocks during the early 2000s, at the height of the Dot-Com Bubble.

An important feature of the optimal portfolio is the substantial demand for inflation-

protected bonds. The holdings of medium- and long-term real bonds are substantial
36Appendix C discusses how the preference parameters impact the optimal allocation.

53

during several periods in our sample. Even though inflation-protected bonds were only

introduced in the US in the late 1990s, our model enables us to assess what would

the optimal holdings of these bonds be if they were available throughout our sample

period.

Figure 14 also shows a rich pattern of substitution between stocks and bonds.

For instance, as investors reduce their exposure to stocks in the early 1970s, they

substantially increase their holdings of long-term real bonds. In contrast, as investors

reduce again their exposure to stocks during the early 2000s, they shift their portfolio

mostly to nominal bonds this time. To better understand these substitution patterns,

we consider next how the policy functions vary with each state variable in isolation.

Policy functions. Figure 15 shows how the consumption-wealth ratio and the

portfolio share of the different assets respond to changes in the state variables. Each

line shows the response of an outcome as we vary a given state variable by ±1 standard

deviations, while we keep the remaining variables at their average level.

Panel (a) of Figure 15 shows how the investor’s consumption behavior responds

to changes in the state variables. An increase in expected returns, as captured for

example by higher short-term interest rates or lower price-dividend ratio, leads to

an increase in the consumption-wealth ratio. Hence, the investor saves less when

returns are high, consistent with the income effect dominating the substitution effect

in savings decision, in line with our assumption of a low EIS (ψ = 0.5).

As expected, the portfolio share of stocks is decreasing in the price-dividend ratio,

as a high price-dividend ratio forecasts lower future returns. More interestingly, Panel

(b) of Figure 15 shows that the share of stocks on the portfolio also responds to

variables typically associated with the bond market, such as the yield spread or the

inflation rate. This captures the substitution pattern between stocks and bonds.

The demand for long-term real bonds is naturally increasing in the inflation rate,

54

Figure 15: Optimal Policy Functions

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

C
on

su
m

p
ti

on
-W

ea
lt

h
R

at
io

(%
)

π

y$
t (1)

yspr$
t

∆z

∆d

d

pd

∆τ

τ

∆g

g

(a) Consumption-Wealth Ratio

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

20

40

60

80

100

S
to

ck
A

llo
ca

ti
on

(%
)

(b) Stock

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

0

10

20

30

40

50

60

N
om

in
al

L
on

g-
T

er
m

B
on

d
A

llo
ca

ti
on

(%
)

(c) Nominal Long-Term Bond

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

0

20

40

60

80

R
ea

l
L

on
g-

T
er

m
B

on
d

A
llo

ca
ti

on
(%

)

(d) Real Long-Term Bond

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

−1.0

−0.5

0.0

0.5

1.0

N
om

in
al

M
ed

iu
m

-T
er

m
B

on
d

A
llo

ca
ti

on
(%

)

(e) Nominal Medium-Term Bond

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
State

0

5

10

15

20

25

R
ea

l
M

ed
iu

m
-T

er
m

B
on

d
A

llo
ca

ti
on

(%
)

(f) Real Medium-Term Bond

Notes. The panels show the optimal policies computed with the DPI algorithm as a function of
the 11 state variables. The effects on consumption-wealth ratio, stock, nominal long-term bond,
real long-term bond, nominal medium-term bond, and real medium-term bond are represented in
Panels (a), (b), (c), (d), (e), and (f), respectively. Long-term bonds have ten-year maturity and
medium-term bonds mature in five years. The x-axis is measured in standard deviations for each
state variable.

55

as these bonds are designed to provide inflation protection. For small deviations of

inflation from its mean, the investor obtains this protection only from long-term bonds,

while for large deviations the investor uses both medium- and long-term bonds. We

also find that the demand for inflation-protected bonds is very sensitive to movements

in the price-dividend ratio, a standard stock market predictor. Notice this is not a

mechanical effect, as the investor could have chosen instead to raise her holdings of

short-term bonds or long-term nominal bonds when stocks become less attractive due

to a high price-dividend ratio.

The way the investor reallocates her portfolio is more intricate for changes in the

yield spread. An increase in the yield spread leads to a reduction in stock holdings and

an initial increase in real long-term bonds. For larger deviations of the yield spread,

the investor shifts away from real bonds towards long-term nominal bonds. This

behavior leads to highly nonlinear policy functions that are unlikely to be captured

by the log-linear approximations commonly used in portfolio problems. Moreover, for

the range of parameters we consider, the agent does not invest in the medium-term

nominal bond.

Portfolio sensitivities. In our last analysis, we investigate what are the main

economic factors driving changes in portfolio allocation. To assess that, for a given

asset j, we decompose the change in its weights from time t to t+ 1 as:

αj(xt+1)− αj(xt) ≈
11∑
i=1

∂αj
∂xi

(xi,t+1 − xi,t) ,

and define the sensitivity of asset j to state variable i at time t+ 1 as:

sij,t+1 ≡

∣∣∣∣∂αj∂xi
(xi,t+1 − xi,t)

∣∣∣∣
11∑
ι=1

∣∣∣∣∂αj∂xι
(xι,t+1 − xι,t)

∣∣∣∣
. (30)

56

Table 3: Sensitivities

π y$t (1) yspr$t ∆z ∆d d pd fiscal
10y Nominal 5.9 6.4 19.6 17.3 11.6 3.1 12.1 24.1
10y Real 6.6 5.2 18.1 18.9 15.2 2.5 12.3 21.2
Risk-free 5.6 6.1 21.0 17.3 10.4 3.7 10.3 25.6
5y Nominal 5.1 6.7 21.5 18.0 9.4 3.1 9.9 26.3
5y Real 4.3 5.9 20.9 18.2 10.1 3.0 11.3 26.3
Stock 10.7 2.9 13.6 18.5 14.7 2.5 21.6 15.5

Notes. The table shows the average sensitivity of the asset allocations as a percentage of wealth
with respect to each of the 11 state variables listed in Table 2. The sensitivity of the allocations is
computed as in Eq.(30). The column “fiscal” shows the sum of the sensitivities for all fiscal variables.

By construction, the sum of the sensitivities of an asset allocation with respect to the

11 state variables adds up to one, which allows us to interpret this measure as the

relative importance of each state variable for a given asset allocation, at a given time.

Table 3 shows the sensitivities for all assets averaged over our sample period.

Movements in the price-dividend ratio account on average for 22% of the variability in

the share invested on stocks, while the yield spread accounts for 14%, inflation 11%,

and fiscal variables 15%. Interestingly, all fiscal variables together account for more

than 20% of the variability in real and nominal long-term bonds. This is more than

the fraction explained by the short-rate or the term spread, commonly used predictors

of bond returns.

Taken together, these results indicate that the optimal portfolio follows a rich

pattern that cannot be easily captured by rule-of-thumbs such as a 60− 40 allocation

or simple age-dependent rules. It is important to take into account market conditions

as captured by key macroeconomic and financial variables.

4 Conclusion

This paper proposes a novel numerical method that alleviates the three curses of

dimensionality. The method rests on three pillars. First, it uses deep learning to

represent value and policy functions. Second, it combines Ito’s lemma and automatic

57

differentiation to compute exact expectations with negligible additional computational

cost. Third, it uses a gradient-based version of policy iteration that dispenses root-

finding methods to find the optimal control for a given state. We show that the

DPI method has broad applicability in several areas of Finance, such as asset pricing,

corporate finance, and portfolio choice, and that it can solve complex large-dimensional

problems with highly nonlinear dynamical systems.

The ability to solve rich high-dimensional problems can be an invaluable tool in

economic analysis. We oftentimes are forced to make assumptions that have no clear

economic interest but are necessary for the model solution to be feasible. This often

makes it hard to determine whether results are due to these auxiliary assumptions or

to the economically motivated ones. By significantly expanding the set of models that

researchers can solve, or even potentially estimate, our methods enable researchers to

focus on models that better capture the rich phenomena that we observe in modern

economies, instead of focusing on models that current numerical methods can solve.

58

References
Achdou, Y., Buera, F. J., Lasry, J.-M., Lions, P.-L., Moll, B., 2014. Partial differential

equation models in macroeconomics. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 372.

Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., Moll, B., 2022. Income and wealth
distribution in macroeconomics: A continuous-time approach. Review of Economic
Studies 89, 45–86.

Ahn, S., Kaplan, G., Moll, B., Winberry, T., Wolf, C., 2018. When inequality matters
for macro and macro matters for inequality. NBER macroeconomics annual 32,
1–75.

Andrews, I., Gentzkow, M., Shapiro, J. M., 2017. Measuring the sensitivity of parameter
estimates to estimation moments. Quarterly Journal of Economics 132, 1553–1592.

Andrews, I., Gentzkow, M., Shapiro, J. M., 2020. Transparency in structural research.
Journal of Business & Economic Statistics 38, 711–722.

Angrist, J. D., Pischke, J.-S., 2008. Mostly Harmless Econometrics: An Empiricist’s
Companion. Princeton University Press.

Armstrong, T. B., Kolesár, M., 2021. Sensitivity analysis using approximate moment
condition models. Quantitative Economics 12, 77–108.

Azinovic, M., Gaegauf, L., Scheidegger, S., 2022. Deep equilibrium nets. International
Economic Review 63, 1471–1525.

Baird, L., 1995. Residual algorithms: Reinforcement learning with function approxi-
mation. In: Prieditis, A., Russell, S. (eds.), Machine Learning Proceedings 1995 ,
Morgan Kaufmann, San Francisco (CA), pp. 30–37.

Bali, T. G., Beckmeyer, H., Mörke, M., Weigert, F., 2023. Option return predictability
with machine learning and big data. Review of Financial Studies .

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., 2015. Automatic differentiation in
machine learning: A survey. CoRR abs/1502.05767.

Bellman, R., 1957. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, first ed.

Bianchi, D., Büchner, M., Tamoni, A., 2021. Bond risk premiums with machine
learning. Review of Financial Studies 34, 1046–1089.

Bretscher, L., Fernández-Villaverde, J., Scheidegger, S., 2022. Ricardian business
cycles. Available at SSRN .

Brumm, J., Krause, C., Schaab, A., Scheidegger, S., 2022. Sparse Grids for Dynamic
Economic Models. In: Oxford Research Encyclopedia of Economics and Finance.

59

Brumm, J., Scheidegger, S., 2017. Using adaptive sparse grids to solve high-dimensional
dynamic models. Econometrica 85, 1575–1612.

Brunnermeier, M., Sannikov, Y., 2016. Macro, money, and finance: A continuous-time
approach. Elsevier, vol. 2 of Handbook of Macroeconomics , pp. 1497 – 1545.

Brunnermeier, M. K., Sannikov, Y., 2014. A macroeconomic model with a financial
sector. American Economic Review 104, 379–421.

Bybee, L., Kelly, B. T., Manela, A., Xiu, D., 2021. Business news and business cycles.
Available at SSRN .

Campbell, J. Y., Chacko, G., Rodriguez, J., Viceira, L. M., 2004. Strategic asset
allocation in a continuous-time var model. Journal of Economic Dynamics and
Control 28, 2195–2214.

Campbell, J. Y., Viceira, L. M., 1999. Consumption and portfolio decisions when
expected returns are time varying. Quarterly Journal of Economics 114, 433–495.

Cao, S., Jiang, W., Yang, B., Zhang, A. L., 2023. How to Talk When a Machine Is
Listening: Corporate Disclosure in the Age of AI. Review of Financial Studies .

Catherine, S., Ebrahimian, M., Sraer, D., Thesmar, D., 2022. Robustness checks in
structural analysis. Tech. rep., National Bureau of Economic Research.

Cauchy, A., 1847. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris 25, 536–538.

Chen, H., Didisheim, A., Scheidegger, S., 2021. Deep structural estimation: With an
application to option pricing. arXiv preprint arXiv:2102.09209 .

Chen, L., Pelger, M., Zhu, J., 2023. Deep learning in asset pricing. Management
Science .

Cochrane, J. H., 1991. Production-based asset pricing and the link between stock
returns and economic fluctuations. Journal of Finance 46, 209–237.

Cochrane, J. H., Longstaff, F. A., Santa-Clara, P., 2008. Two trees. Review of Financial
Studies 21, 347–385.

Crandall, M. G., 1995. Viscosity solutions: A primer. In: Viscosity Solutions and
Applications .

Cybenko, G., 1989. Approximation by superposition of sigmoidal functions. Mathe-
matics of Control, Signals and Systems 2, 303–314.

Daniel, K., Titman, S., 2006. Market reactions to tangible and intangible information.
Journal of Finance 61, 1605–1643.

60

Drechsler, I., Savov, A., Schnabl, P., 2018. A model of monetary policy and risk
premia. Journal of Finance 73, 317–373.

Duarte, V., 2018. Gradient-based structural estimation. Available at SSRN 3166273 .

Duarte, V., Duarte, D., Fonseca, J., Montecinos, A., 2020. Benchmarking machine-
learning software and hardware for quantitative economics. Journal of Economic
Dynamics and Control 111, 103796.

Duarte, V., Fonseca, J., Goodman, A. S., Parker, J. A., 2021. Simple allocation
rules and optimal portfolio choice over the lifecycle. Tech. rep., National Bureau of
Economic Research.

Epperson, J. F., 1987. On the runge example. The American Mathematical Monthly
94, 329–341.

Fernández-Villaverde, J., Hurtado, S., Nuno, G., 2023. Financial frictions and the
wealth distribution. Econometrica 91, 869–901.

Fernández-Villaverde, J., Levintal, O., 2018. Solution methods for models with rare
disasters. Quantitative Economics 9, 903–944.

Folini, D., Kübler, F., Malova, A., Scheidegger, S., 2021. The climate in climate
economics. arXiv preprint arXiv:2107.06162 .

Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., Walther, A., 2022. Predictably
unequal? the effects of machine learning on credit markets. Journal of Finance 77,
5–47.

Gârleanu, N., Pedersen, L. H., 2013. Dynamic trading with predictable returns and
transaction costs. Journal of Finance 68, 2309–2340.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.

Gopalakrishna, G., 2021. Aliens and continuous time economies. Swiss Finance Institute
Research Paper .

Griewank, A., Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Society for Industrial and Applied Mathematics, USA,
second ed.

Gu, S., Kelly, B., Xiu, D., 2020. Empirical asset pricing via machine learning. Review
of Financial Studies 33, 2223–2273.

Han, J., Yang, Y., et al., 2021. Deepham: A global solution method for heterogeneous
agent models with aggregate shocks. arXiv preprint arXiv:2112.14377 .

Haugh, M. B., Kogan, L., 2004. Pricing american options: A duality approach.
Operations Research 52, 258–270.

61

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez,
T., Wang, Z., Eslami, S. M. A., Riedmiller, M. A., Silver, D., 2017. Emergence of
locomotion behaviours in rich environments. CoRR abs/1707.02286.

Hennessy, C. A., Whited, T. M., 2007. How costly is external financing? evidence
from a structural estimation. Journal of Finance 62, 1705–1745.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks.
Neural Networks 4, 251 – 257.

Howard, R. A., 1960. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA.

Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al., 2009. What is the best multi-
stage architecture for object recognition? In: Computer Vision, 2009 IEEE 12th
International Conference on, IEEE, pp. 2146–2153.

Jiang, Z., Lustig, H., Van Nieuwerburgh, S., Xiaolan, M. Z., 2019. The us public debt
valuation puzzle. Tech. rep., National Bureau of Economic Research.

Judd, K. L., Maliar, L., Maliar, S., Valero, R., 2014. Smolyak method for solving
dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive
domain. Journal of Economic Dynamics and Control 44, 92 – 123.

Kargar, M., 2021. Heterogeneous intermediary asset pricing. Journal of Financial
Economics 141, 505–532.

Kase, H., Melosi, L., Rottner, M., 2022. Estimating nonlinear heterogeneous agents
models with neural networks. CEPR Discussion Paper No. DP17391 .

Koijen, R. S., Van Nieuwerburgh, S., 2011. Predictability of returns and cash flows.
Annual Review of Financial Economics 3, 467–491.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with
deep convolutional neural networks. In: Pereira, F., Burges, C. J. C., Bottou, L.,
Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 25 ,
Curran Associates, Inc., pp. 1097–1105.

Ledoit, O., Wolf, M., 2004. Honey, I shrunk the sample covariance matrix. Journal of
Portfolio Management 30, 110.

Lettau, M., Ludvigson, S., 2001. Consumption, aggregate wealth, and expected stock
returns. Journal of Finance 56, 815–849.

Lewellen, J., 2015. The cross-section of expected stock returns. Critical Finance Review
4, 1–44.

Li, K., Mai, F., Shen, R., Yan, X., 2021. Measuring corporate culture using machine
learning. Review of Financial Studies 34, 3265–3315.

62

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., Stoica, I., 2018. Tune:
A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 .

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D., 2015. Continuous control with deep reinforcement learning. CoRR
abs/1509.02971.

Ljungqvist, L., Sargent, T., 2000. Recursive Macroeconomic Theory. MIT Press.

Longstaff, F. A., Schwartz, E. S., 2001. Valuing American options by simulation: A
simple least-squares approach. Review of Financial Studies 14, 113–147.

Lucas, R. E., 1978. Asset prices in an exchange economy. Econometrica 46, 1429–1445.

Maliar, L., Maliar, S., 2022. Deep learning classification: Modeling discrete labor
choice. Journal of Economic Dynamics and Control 135, 104295.

Maliar, L., Maliar, S., Winant, P., 2021. Deep learning for solving dynamic economic
models. Journal of Monetary Economics 122, 76–101.

Martin, I., 2013. The Lucas orchard. Econometrica 81, 55–111.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D., 2015. Human-level control through deep reinforcement learning. Nature 518,
529–533.

Moreira, A., Savov, A., 2017. The macroeconomics of shadow banking. Journal of
Finance 72, 2381–2432.

Nagel, S., 2021. Machine learning in asset pricing, vol. 1. Princeton University Press.

Norets, A., 2012. Estimation of dynamic discrete choice models using artificial neural
network approximations. Econometric Reviews 31, 84–106.

Parra-Alvarez, J. C., 2018. A comparison of numerical methods for the solution of
continuous-time dsge models. Macroeconomic Dynamics 22, 1555–1583.

Pedersen, L. H., Babu, A., Levine, A., 2021. Enhanced portfolio optimization. Financial
Analysts Journal 77, 124–151.

Piazzesi, M., 2010. Affine term structure models. In: Handbook of financial economet-
rics: Tools and Techniques , Elsevier, pp. 691–766.

Powell, W. B., 2007. Approximate Dynamic Programming: Solving the Curses of
Dimensionality (Wiley Series in Probability and Statistics). Wiley-Interscience, New
York, NY, USA.

63

Rapin, J., Teytaud, O., 2018. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.

Ross, S. A., 1976. Options and efficiency. Quarterly Journal of Economics 90, 75–89.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1988. Neurocomputing: Foundations
of research. MIT Press, Cambridge, MA, USA, chap. Learning Representations by
Back-propagating Errors, pp. 696–699.

Sadhwani, A., Giesecke, K., Sirignano, J., 2021. Deep learning for mortgage risk.
Journal of Financial Econometrics 19, 313–368.

Sauzet, M., 2021. Projection methods via neural networks for continuous-time models.
Available at SSRN 3981838 .

Schaul, T., Horgan, D., Gregor, K., Silver, D., 2015. Universal value function approxi-
mators. In: International conference on machine learning , PMLR, pp. 1312–1320.

Scheidegger, S., Bilionis, I., 2019. Machine learning for high-dimensional dynamic
stochastic economies. Journal of Computational Science 33, 68–82.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of Go with
deep neural networks and tree search. Nature 529, 484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., Hassabis, D., 2017. Mastering the game of Go
without human knowledge. Nature 550, 354 EP –.

Song, X., Perel, S., Lee, C., Kochanski, G., Golovin, D., 2023. Open source vizier:
Distributed infrastructure and API for reliable and flexible blackbox optimization.

Stokey, N., Lucas, R., Prescott, E., 1989. Recursive Methods in Economic Dynamics.
Harvard University Press.

Sutton, R. S., Barto, A. G., 1998. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, first ed.

Wachter, J. A., 2013. Can time-varying risk of rare disasters explain aggregate stock
market volatility? Journal of Finance 68, 987–1035.

Welch, I., Goyal, A., 2008. A comprehensive look at the empirical performance of
equity premium prediction. Review of Financial Studies 21, 1455–1508.

64

https://GitHub.com/FacebookResearch/Nevergrad

A Proofs

Proof of Proposition 1. Since the second derivative of F (t) is given by

F ′′(t) =
m∑
i=1

1

m
fT∇sV

(
s+

t2

2m
f +

t√
2
gi

)
+

m∑
i=1

(
t

m
f +

1√
2
gi

)⊤

HsV

(
s+

t2

2m
f +

t√
2
gi

)(
t

m
f +

1√
2
gi

)
,

evaluating it at t = 0 gives

F ′′(0) = ∇sV (s)⊤f +
1

2
Tr
[
g⊤HsV (s)g

]
=

EdV
dt

(s),

which concludes the proof.

B Time-varying Disasters and Epstein-Zin Prefer-

ences

In this section, we extend the method presented in Section 2 to solve an equilibrium

problem where agents have Epstein-Zin preferences and the state variable is driven by a

jump-diffusion process. To achieve this goal, we consider the model of Wachter (2013),

which has the two aforementioned features and allows the equilibrium quantities to be

characterized in closed form. Similar to the analysis of the Lucas orchard economy in

Section 3.1, we use the analytical expressions to assess the accuracy of our numerical

solution.

65

Model environment. The economy of Wachter (2013) can be briefly summarized

as follows. Aggregate dividends follow the jump-diffusion process of the form

dDt

Dt−

= µdt+ σdBt + (eJt − 1)dNt,

where Jt is a random variable with time-invariant distribution ν, and Nt is a Poisson

process with time-varying intensity process λt satisfying a standard Cox–Ingersoll–Ross

process

dλt = κ(λ− λt)dt+ σλ
√
λtdBλ,t.

All random variables are assumed to be independent. The representative investor

has the continuous-time analog of Epstein-Zin preferences with unit elasticity of

intertemporal substitution (EIS); that is, the value function Vt satisfies

Vt = Et
∫ ∞

t

f(Cs, Vs)ds,

where f(C, V) = β(1− γ)V (logC − 1
1−γ log((1− γ)V)).

In this economy, the state variables driving the equilibrium quantities are the

agent’s wealth Wt and the time-varying intensity process λt. As shown in Wachter

(2013), the investor’s HJB equation is given by

0 = HJB ≡ f(C, V) + VWWµ+ Vλκ(λ− λ) +
1

2
VWWW

2σ2 +
1

2
Vλλσ

2
λλ

+ λE
[
V (WeJ , λ)− V (W,λ)

]
.

(31)

Here, C = βW , and the value function assumes the form

V (Wt, λt) =
W 1−γ
t

1− γ I(λt), (32)

66

where I(λt) = ea+bλt , with a and b as coefficients given in Wachter (2013).

DPI method with jumps. In the absence of jumps, the HJB equation in Eq.(31)

contains no integral and depends only on the partial derivatives of the value function,

which can be easily evaluated using the methods described in Section 2.1. In the

presence of jumps, however, the HJB equation in Eq.(31) contains an integral, which

in principle would require a numerical integration method. Computing this integral

can be potentially very costly, making the numerical solution of models with jumps

particularly challenging.37 However, by using simulation methods analogous to the

Least-Squares Monte Carlo method (LSMC hereafter) of Longstaff and Schwartz

(2001), commonly used to price American options, we can bypass the evaluation of

the integral.

To understand how this variation of the DPI method works, consider the following

rewrite of the HJB in Eq.(31):

HJB ≡ f(C, V) +
EB [dV]

dt
+

EJ [dV]

dt
, (33)

where

EB [dV]

dt
= VWWµ+ Vλκ(λ− λ) +

1

2
VWWW

2σ2 +
1

2
Vλλσ

2
λλ, (34)

EJ [dV]

dt
= λE

[
V (WeJ , λ)− V (W,λ)

]
. (35)

The term in Eq.(34) comes from the Brownian shock and can be computed exactly

using Proposition 1, as the previous examples in the paper illustrate. The term in

Eq.(35) comes from the jump shock and involves an integral that in principle must be

approximated, which can be computationally costly.

To bypass numerical integration, we simply need to implement two modifications
37See Fernández-Villaverde and Levintal (2018) for a discussion of the challenges of solving models

with rare disasters.

67

that are surprisingly straightforward, but conceptually powerful: (i) for a given mini-

batch of I samples of the state variable {λi}Ii=1, approximate λE
[
V (WeJ , λ)− V (W,λ)

]
by a single random realization λi

(
V (Wie

Ji , λi)− V (Wi, λi)
)
, and (ii) use the MSE as

the loss function in the policy evaluation step.

The reason why these two seemingly straightforward modifications work is as

follows. When using the Policy Evaluation 1 rule in Eq.(17), the HJB residuals are

used to construct the continuous-time Bellman target for the regression, as in Eq.(15).

For a given realization Ji, the regression target in Eq.(15) becomes

V (Wi, λi) +

(
f(Ci, V (Wi, λi)) +

EB [dV]i
dt

+ λi
(
V (Wie

Ji , λi)− V (Wi, λi)
))

∆t,

(36)

where

EB [dV]i
dt

≡ VWWiµ+ Vλκ(λ− λi) +
1

2
VWWW

2
i σ

2 +
1

2
Vλλσ

2
λλi.

However, as it is well known in the statistics and econometrics literature (Angrist

and Pischke, 2008), when the MSE is used as the loss function in the regression,

minimizing this loss leads to the estimation of the conditional expectation function.

Longstaff and Schwartz (2001) leverage this fundamental statistical result to estimate

conditional expectations using regressions, and this is precisely what we do here too.

Indeed, the minimization of the mean square errors using samples as in Equation 36

produces the conditional expectation

E
[
V (Wi, λi) +

(
f(Ci, V (Wi, λi)) +

EB [dV]i
dt

+ λi
(
V (Wie

Ji , λi)− V (Wi, λi)
)
∆t

)∣∣∣∣Wi, λi

]
=

V (Wi, λi) +

(
f(Ci, V (Wi, λi)) +

EB [dV]i
dt

+
EJ [dV]i

dt

)
∆t, (37)

which is identical to the targets we would have used if we could compute the

expectation EJ [dV]i
dt

exactly.

68

The implementation of the policy evaluation in the presence of jumps is summarized

in the following pseudo-algorithm:

Algorithm 1 Policy evaluation in the presence of jumps

1: procedure PolicyEvaluation(θj−1
V) ▷ Update the value function.

2: Draw {λ1, . . . , λI} random points from the state space.

3: Compute EB [dV]i
dt

using Proposition 1 as before.

4: Sample one realization of Ji per sample point.

5: Construct the vector of targets Y j
i for the points λi, with i = 1, 2, ..., I:

Y j
i ≡ V j−1

i +

(
f(Cj

i , V
j−1
i) +

EB [dV]i
dt

+ λi
(
V j−1(Wie

Ji , λi)− V j−1
i

))
∆t.

6: Construct the vector of residuals as eji = V j−1
i − Y j

i .

7: Use the SGD algorithm to update θjV :

θjV ← θj−1
V − ηV

1

I

I∑
i=1

eji∇θV
V j−1
i .

8: return θjV ▷ New neural network representation of V .

Numerical solution. Figure 16 shows the analytical solution (dashed black line)

for the value-function shifter I(λt), and the numerical solution produced by the

DPI method (solid blue line). As illustrated, the numerical solution is virtually

indistinguishable from the analytical solution. The log RMSE of the HJB residuals is

−5, demonstrating that the DPI method is able to provide an accurate solution to

this asset pricing problem in a much more complex environment with time-varying

disaster risk and recursive preferences.

69

Figure 16: Value Function: Model with Jumps

0.00 0.05 0.10 0.15 0.20 0.25 0.30
λ

250

300

350

400

450

I
(λ

)
DPI

Analytical

Notes. The figure shows the value-function shifter I(λ) for the solution using the DPI method (red
solid line) and the exact solution (black dashed line). Parameter values are as in Wachter (2013). For
the network architecture, we use LayerNormMLP with SILU activation with [32, 32] hidden units.
Each iteration is performed on a random batch of size 4,096. The optimizer is Adam with default
parameters (learning rate = 10−3, β1 = 0.9, and β2 = 0.999).

C The Empirical No-Arbitrage Model

In this section, we discuss the estimation of the parameters governing the state

dynamics and the parameters from our proposed SPD, which together determine the

process for expected returns for the risky asset in the portfolio problem of Section 3.3.

Data description. We collect the data used in Jiang et al. (2019) from the authors

website https://www.publicdebtvaluation.com/data. The dataset contains annual

data on the 11 state variables listed in Table 2, from January 1947 to January 2020.

We use this data set to calibrate the dynamics of the state variables that drive asset

risk premia. The bond yield data are from the Federal Reserve Economic Data (FRED)

70

https://www.publicdebtvaluation.com/data

database.

Identifying the vector of state variables. While the vector of state variables is

in principle unobservable, we can recover xt from the data if we can observe enough

variables that are an affine transformation of the latent variables. Since we assume

that the state variables in xt are stationary in our model, their empirical counterparts

must be stationary as well. Under the assumption that the variables listed in Table 2

are affine functions of xt and using the fact that the units of xt are not identified, we

can simply take those listed variables, after being demeaned, to equal the vector xt.

An important observation is that log GDP, denoted by zt, is not a stationary

variable, and as a consequence, it cannot be one of the latent variables. However,

we assume that the state variables in xt carry information about the expected GDP

growth. Specifically, we assume that log GDP satisfies the SDE:

dzt = µz(xt)dt+ σ⊤
z dZt, (38)

where the expected GDP growth rate µz(xt) is such that a the time-integrated GDP

growth, ∆zt+1, is a stationary variable and a function of the state variable xt. Similarly,

the change in the price level (inflation index) is also modeled as an affine function

of xt. In addition, we assume that the log stock dividend-to-GDP dt, the log tax

revenue-to-GDP τt, and the log spending-to-GDP gt are stationary variables and a

function of the state variable xt. As GDP, dividends, spending, and tax revenues are

all non-stationary variables, this assumption captures a set of co-integrating relations

between these variables. The fact these variables are stationary implies that we must

also include their changes to the VAR, so we have effectively a vector error correction

model (VECM). By allowing the change in a variable to depend on its level, we capture

mean reversion in the scaled variables.

71

Step 1: Estimation of the state dynamics.

Once the vector of state variables xt is identified, the first step of the portfolio-choice

exercise with realistic dynamics is to obtain the parameters for the continuous-time

counterpart of the VAR system governing the evolution of the state variables. To

obtain these parameters, we proceed as follows.

Consider a N × 1 vector of state variables xt in continuous time that follows an

affine diffusion process:

dxt = −Φxtdt+ σxdZt,

where Φ is a N ×N matrix of coefficients, Zt is a N -dimensional Brownian motion,

and σx is a N ×N matrix of risk loadings.

Our goal is to find the matrices Φ and σx such that the time-integrated process

has a given VAR coefficients matrix Ψ and loading matrix B, as shown in Eq. (28).

Formally, this is a inverse problem and can be solved with standard optimization

techniques. We start by deriving closed-form expressions for the discrete-time VAR

parameters as a function of Φ and σx (the forward problem). The inverse problem

then boils down to solving a system of nonlinear equations.

From the properties of the Ornstein-Uhlenbeck process, we can write the continuous-

time process as:

xt+∆t = exp (−Φ∆t)xt + ut+∆t,

where ut+∆t ≡
∫ t+∆t

t

exp (−Φ(t+∆t− s))σxdZs.

Matching the integrated continuous-time process with its discrete-time counterpart,

we obtain the following relationship between Φ and Ψ:

Ψ = exp (−Φ) .

72

Table 4: State Variables Dynamics: dxt = −Φxtdt+ σxdZt

Φ

π y$t (1) yspr$t ∆z ∆d d pd ∆τ τ ∆g g

d(π) 0.60 -0.16 0.67 0.21 0.02 0.01 0.00 -0.23 0.02 0.06 -0.03
d(y$t (1)) -0.05 0.14 0.04 -0.30 -0.14 0.00 -0.01 0.05 -0.04 -0.03 -0.08
d(yspr$t) 0.15 -0.02 0.70 0.35 0.06 0.00 0.01 -0.03 0.00 0.02 0.01
d(∆z) 0.10 -1.16 -4.06 0.96 -0.43 -0.10 -0.07 0.02 0.15 -0.02 -0.10
d(∆d) 1.46 1.26 9.76 0.62 1.54 0.30 0.03 0.16 0.91 0.73 -0.28
d(d) 0.37 0.53 2.95 -0.10 -0.48 0.11 0.00 0.18 0.26 0.20 -0.14
d(pd) 4.74 -0.72 -1.28 3.08 0.17 0.10 0.32 -0.29 -0.25 -0.46 0.37
d(∆τ) 1.97 -2.20 0.99 0.59 -0.49 0.01 -0.10 0.34 1.01 -0.13 -0.28
d(τ) 0.77 -0.78 0.80 0.14 -0.15 0.02 -0.04 -0.73 0.46 -0.05 -0.11
d(∆g) -2.48 1.80 2.41 0.42 1.40 0.01 0.13 -0.61 0.48 0.81 1.13
d(g) -1.01 0.50 0.16 0.11 0.41 -0.02 0.04 -0.26 0.14 -0.65 0.47

σx × 100

dZ1 dZ2 dZ3 dZ4 dZ5 dZ6 dZ7 dZ8 dZ9 dZ10 dZ11

d(π) 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d(y$t (1)) 0.21 1.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d(yspr$t) 0.10 -0.30 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d(∆z) 0.43 1.27 0.07 3.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d(∆d) -2.23 -1.56 1.35 -2.11 8.32 0.00 0.00 0.00 0.00 0.00 0.00
d(d) -1.15 -1.01 0.04 -1.88 4.38 0.00 0.00 0.00 0.00 0.00 0.00
d(pd) 0.09 1.68 -1.30 -2.49 -3.93 0.00 15.61 0.00 0.00 0.00 0.00
d(∆τ) 0.63 0.26 1.03 4.02 1.95 0.00 0.12 4.32 0.00 0.00 0.00
d(τ) -0.36 0.16 1.05 1.99 2.16 0.00 0.67 2.84 0.00 0.00 0.00
d(∆g) -1.46 -2.69 -1.30 -5.71 0.12 0.00 0.89 -0.03 0.00 7.61 0.00
d(g) 0.10 -1.71 -1.60 -3.06 -1.14 0.00 -0.30 -1.02 0.00 4.63 0.00

The covariance matrix of ut+1 is given by

ν =

∫ 1

0

A(s)A(s)⊤ds,

where A(s) ≡ exp (−Φ(1− s))σx. This integral can be calculated in closed form:

vec(ν) = (Φ⊗ I + I ⊗ Φ)−1 vec
(
σxσ

⊤
x − exp (−Φ)σxσ⊤

x exp (−Φ)⊤
)
,

where vec is the vectorization operation and ⊗ denotes the Kronecker product.

Given the closed-form expressions for Ψ and B as a function of Φ and σx, we

numerically search for the continuous-time parameters to match their discrete-time

estimated counterparts. The estimates for Φ and σx are shown in Table 4.

73

Step 2: Estimation of the SPD.

The second step consists of estimating the parameters (r0, r1,η0,η1) governing the

evolution of the SPD Mt. To accomplish that, we consider a continuous-time no-

arbitrage model with an affine term structure of interest rates where yields (and

consequently spreads) are linear functions of xt. Similarly, market prices of risk are

also assumed to be linear on xt. We first derive the theoretical expressions for the

yields and expected stock returns and then estimate (r0, r1,η0,η1) by minimizing the

squared error between the model’s implied values and their empirical counterparts.

Our model assumes that the real risk-free rate is given by r(xt) = r0 + r⊤1 xt, where

r0 ∈ R and r1 ∈ RN×1, and market prices of risk are given by η(xt) = η0 + η⊤
1 xt,

where η0 ∈ RN×1 corresponds to the unconditional mean of η(xt) and η1 ∈ RN×N is

the matrix of loadings on the state variable.

Given the risk-free rate r(xt) and market prices of risk η(xt), the real SPD Mt

satisfies:
dMt

Mt

= −r(xt)dt− η(xt)
⊤dZt. (39)

The nominal SPD is given by M$
t =

Mt

Πt

, where the price level Πt satisfies the

diffusion process:
dΠt

Πt

= π(xt)dt+ σ⊤
ΠdZt,

where the expected inflation rate at time t is π(xt) = π0 + π⊤
1 xt. An application of

Ito’s lemma yields the following evolution for the nominal SPD:

dM$
t

M$
t

= −i(xt)dt− η$(xt)
⊤dZt,

where i(xt) ≡ i0 + i⊤1 xt denotes the instantaneous nominal interest rate, with i0 =

r0 + π0 − σ⊤
Π(σΠ + η0), i1 = r1 + π1 − σ⊤

Πη1. The nominal market prices of risk are

η$(xt) ≡ η(xt) + σΠ = η$
0 + η⊤

1 xt, where η$
0 = η0 + σΠ.

74

Affine bond pricing. Let P (h,xt) denote the price of a real zero-coupon bond

maturing h periods ahead, and P $(h,xt) the price of a nominal zero-coupon bond

with the same maturity. Let y(h,xt) = −
1

h
logP (h,xt) denote the yield on the real

bond and y$(h,xt) = −
1

h
logP $(h,xt) denote the yield on the nominal bond. Given

the interest rate and market price of risk are affine functions of a state variable, xt

follows an affine diffusion under the risk-neutral measure, which yields an affine term

structure model (see e.g. Piazzesi 2010). The next proposition characterizes the yields

and risk premia as affine functions of the state variable xt.

Proposition 2 (Bond pricing). Suppose the vector of state variables follows the

dynamics given in Eq.(27) and the SPD the dynamics in Eq.(39). Then,

1. The yield and the risk premium on a real zero-coupon bond with maturity h are

given by

y(h,xt) = −
ζ(h)

h
− Υ(h)⊤

h
xt, rp(h,xt) = Υ(h)⊤σx η(xt).

where

Υ(h) =
(
exp

(
−
[
Φ⊤ + η⊤

1 σ
⊤
x

]
h
)
− I
) [

Φ⊤ + η⊤
1 σ

⊤
x

]−1
r1,

ζ(h) = −
∫ h

0

(
r0 −

1

2

K∑
k=1

σ⊤
x,kΥ(s)Υ(s)⊤σx,k +Υ(s)⊤σxη0

)
ds.

2. The yield and the risk premium on a nominal zero-coupon bond with maturity h

are given by

y$(h,xt) = −
ζ$(h)

h
− Υ$(h)⊤

h
xt, rp(h,xt) = Υ$(h)⊤σx η

$(xt),

and ζ$(h) and Υ$(h) follow analogous expressions to ζ(h) and Υ(h), with i0 and

i1 in the place of r0 and r1, respectively, and η$
0 in the place of η0.

75

Proof. By no arbitrage, the price of a real bond is given by

P (h,xt) = Et
[
Mt+h

Mt

]
,

where the price function P (h,x) satisfies the PDE:

0 = −r(x)P − Ph − Px(Φx+ σxη(x)) +
1

2

K∑
k=1

σ⊤
x,kPxxσx,k, (40)

with the boundary condition P (0,x) = 1, and σx,k representing the k-th column of σx.

We guess and verify that the solution to Eq.(40) is exponentially affine:

logP (h,xt) = ζ(h) +Υ(h)⊤xt,

with the boundary conditions ζ(0) = 0 and Υ(0) = 0. In this case, the partial

derivatives are:

Ph
P

= ζh(h) +Υh(h)
⊤xt,

Px

P
= Υ(h)⊤,

Pxx

P
= Υ(h)Υ(h)⊤.

Plugging the partial derivatives into Eq.(40), we obtain

r0 + r⊤1 x = −ζh(h)−Υh(h)
⊤x−Υ(h)⊤(Φx+ σx(η0 + η⊤

1 x)) +
1

2

K∑
k=1

σ⊤x,kΥ(h)Υ(h)⊤σx,k.

Using the method of undetermined coefficients, it follows that Υ(h) and ζ(h) satisfy

the following system of differential equations:

 Υh(h) = −r1 −
(
Φ⊤ + η1σ

⊤
x

)
Υ(h), with Υ(0) = 0,

ζh(h) = −r0 −Υ(h)⊤σxη0 +
1
2

∑K
k=1 σ

⊤
x,kΥ(h)Υ(h)⊤σx,k, with ζ(0) = 0.

76

which has the solution given by

Υ(h) =
(
exp

(
−
[
Φ⊤ + η1σ

⊤
x

]
h
)
− I
) [

Φ⊤ + η1σ
⊤
x

]−1
r1,

ζ(h) = −
∫ h

0

(
r0 +Υ(s)⊤σxη0 −

1

2

K∑
k=1

σ⊤
x,kΥ(s)Υ(s)⊤σx,k

)
ds.

Denoting the cumulative return on the bond with maturity h by R(h,xt), it follows

that the instantaneous return is given by

dR(h,xt) =

(
−Px

P
Φxt +

1

2

K∑
k=1

σ⊤
x,k

Pxx

P
σx,k −

Ph
P

)
dt+

Px

P
σxdZt

=(r(xt) + rp(h,xt)) dt+Υ(h)⊤σxdZt,

where rp(h,xt) ≡ Υ(h)⊤σxη(xt) is the bond risk premium. This concludes the

characterization of the equilibrium real bond price and returns.

The computation of nominal bond price P $(h,xt) = Et
[
M$

t+h

M$
t

]
is carried out

analogously by substituting the instantaneous real interest rate r(xt) and the real

market price of risk η(xt) for their nominal counterparts i(xt) and η$(xt) in Eq.(40),

and by solving the associated fundamental PDE.

Stock prices. We follow Jiang et al. (2019) and assume that the state variables

include information on scaled stock prices and that the stock price-dividend ratio is

an affine function of xt.

Denote the log stock price divided by GDP by st = s(xt) = s0 + s⊤1 xt and let yt

denote log GDP satisfying the SDE:

dyt = µy(xt)dt+ σydZt,

with expected GPD growth rate given by µy(xt) = µy,0+µ⊤
y,1xt and constant Brownian

exposures σy ∈ R1×N . An application of Ito’s lemma gives the following SDE for the

77

log stock price:

d logSt =dst + dyt

d logSt =s1
⊤dxt + µy(xt)dt+ σydZt

d logSt =(µy(xt)− s1
⊤Φxt)dt+ (s1

⊤σx + σy)dZt.

Thus, the volatility of stock returns σmR is given by

σmR = s⊤1 σx + σy.

The instantaneous expected excess return on stocks follows immediately from the

no-arbitrage condition:

µmR (xt)− r(xt) = (σmR)
⊤η(xt).

Since this instantaneous return is affine in the state xt, it can be easily time-

integrated in closed form to produce the 1-year expected stock return.

With the theoretical expressions for the time series of bond yields and expected

stock returns, we minimize the error between the model-implied quantities and their

empirical counterpart. In line with Jiang et al. (2019), we assume that the market

price of risk for fiscal variables is equal to zero, but we allow fiscal variables to affect

the dynamics of the market price of risk for the other shocks. The estimated values

for the (r0, r1,η0,η1) are shown in Table 5.

Preference parameters. Figure 17 shows the optimal allocation for different

combinations of the risk aversion coefficient γ and EIS ψ. The EIS seems to have only

a minor impact on the optimal allocation. Reducing the risk aversion coefficient from

γ = 20 to γ = 5 increases the portfolio share of stocks and reduces the demand for

78

Table 5: Risk-free rate and market price of risk

r(xt) = 0.013 + r⊤1 xt,

η(xt) = η0 + η⊤
1 xt.

r1

π y$t (1) yspr$t ∆z ∆d d pd ∆τ τ ∆g g

-0.28 1.35 0.42 -0.29 0.20 0.08 0.02 0.15 0.12 0.05 -0.07

η0

dZ1 dZ2 dZ3 dZ4 dZ5 dZ6 dZ7 dZ8 dZ9 dZ10 dZ11

0.68 0.00 -1.13 3.83 0.31 0.00 0.86 0.00 0.00 0.00 0.00

η1

dZ1 dZ2 dZ3 dZ4 dZ5 dZ6 dZ7 dZ8 dZ9 dZ10 dZ11

π 44.71 0.00 -35.14 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y$t (1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
yspr$t -21.63 -1.87 -93.97 -33.51 22.78 4.58 0.59 18.85 14.57 3.82 3.67
∆z -26.84 -30.77 23.94 -6.02 -80.49 -20.09 -4.97 -36.60 -38.82 -10.62 7.62
∆d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pd -34.40 3.07 -14.90 -21.47 0.26 -2.17 -2.62 0.53 -2.13 1.59 -0.44
∆τ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
τ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
∆g 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

inflation-protected bonds. We still observe a substantial amount of market timing,

with very low stock holdings in the early 1970s and early 2000s.

79

Figure 17: Optimal Allocations

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

20

40

60

80

100

P
or

tf
ol

io
W

ei
gh

ts
(%

)

Risk-free rate

Stock

Medium Real Bond

Medium Nominal Bond

Long Real Bond

Long Nominal Bond

(a) γ = 20, ψ = 0.5

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

20

40

60

80

100

P
or

tf
ol

io
W

ei
gh

ts
(%

)

(b) γ = 20, ψ = 1.5

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

20

40

60

80

100

P
or

tf
ol

io
W

ei
gh

ts
(%

)

(c) γ = 5, ψ = 0.5

1950 1960 1970 1980 1990 2000 2010 2020
Year

0

20

40

60

80

100

P
or

tf
ol

io
W

ei
gh

ts
(%

)

(d) γ = 5, ψ = 1.5

Notes. This figure shows the time series of the optimal asset allocation computed using the DPI
algorithm for an investor with recursive utility solving the optimization problem in Eq.(29) for
different combinations of relative risk aversion γ and elasticity of intertemporal substitution ψ.

80

Figure 18: Time Series of Nominal Bond Yields

1950 1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

10

12

14

R
at

e
(%

)

1947-01-01 / 2019-01-011-yr Nominal Yield

Model

Data

1950 1960 1970 1980 1990 2000 2010 2020

0

2

4

6

8

10

12

14

1947-01-01 / 2019-01-012-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

1947-01-01 / 2019-01-015-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

R
at

e
(%

)

1947-01-01 / 2019-01-0110-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

1947-01-01 / 2019-01-011947-01-01 / 2019-01-0120-yr Nominal Yield

1950 1960 1970 1980 1990 2000 2010 2020

2

4

6

8

10

12

14

1947-01-01 / 2019-01-0130-yr Nominal Yield

Notes. The figure shows the time series for the nominal yield for the model (solid black line) and the
data (dashed blue line). The maturity for the nominal yields are one, two, five, ten, 20, and 30 years,
respectively.

81

Figure 19: Time Series of Real Bond Yields

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

R
at

e
(%

)

2000-01-01 / 2019-01-015-yr Real Yield

Model

Data

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2000-01-01 / 2019-01-017-yr Real Yield

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2000-01-01 / 2019-01-0110-yr Real Yield

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
a
te

(%
)

2000-01-01 / 2019-01-0120-yr Real Yield

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

0.5

1.0

1.5

2.0

2.5

3.0

2000-01-01 / 2019-01-0130-yr Real Yield

Notes. The figure shows the time series for the real yield for the model (solid black line) and the data
(dashed blue line). The maturity for the real yields are five, seven, ten, 20, and 30 years, respectively.

82

	Silva machine learning.pdf
	Machine Learning
	Supervised Learning and Neural Networks
	Stochastic Gradient Descent and Backpropagation
	Discrete-time Markov Decision Process

	Solution Method
	Ito's Lemma and Automatic Differentiation
	The Deep Policy Iteration Algorithm
	Hyperparameters

	Applications
	Asset Pricing
	Corporate Finance
	Portfolio Choice
	Reverse engineering a portfolio problem
	Portfolio Choice with Realistic Dynamics

	Conclusion
	Proofs
	Time-varying Disasters and Epstein-Zin Preferences
	The Empirical No-Arbitrage Model

