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Abstract 
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setting to propose a novel estimator. The estimator can be thought of as extrapolating the 
traditional fuzzy regression discontinuity estimate or as an observational study that adjusts for 
endogenous selection into treatment using information at the discontinuity. We show in a 
frequentest framework that it is consistent under weaker assumptions than existing approaches 
and then discuss conditions in a Bayesian framework under which it can be considered the 
posterior mean given the observed conditional moments. We then use this approach to examine 
the effects of early grade retention. We show that the benefits of early grade retention policies are 
larger for students with lower baseline achievement and smaller for low-performing students who 
are exempt from retention. These findings imply that (1) the benefits of early grade retention 
policies are larger than have been estimated using traditional fuzzy regression discontinuity 
designs but that (2) retaining additional students would have a limited effect on student outcomes. 
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I Introduction

Regression discontinuity (RD) designs have become increasingly popular in empiri-

cal research over the past three decades (Cook (2008), Abadie and Cattaneo (2018),

Cattaneo and Titiunik (2022)). This framework leverages plausibly exogenous dis-

continuities in treatment likelihood at predetermined cutoffs to identify the causal

effect of the treatment (Imbens and Lemieux (2008), Hahn et al. (2001)). When the

discontinuity in treatment likelihood is fuzzy – i.e., some individuals on the treat-

ment side of the cutoff do not receive treatment while some individuals on the other

side receive treatment – a common approach is to use an instrumental variables (IV)

design where being on the treatment side of the cutoff is used as an instrument for

receiving treatment. While such fuzzy designs generally provide compelling evidence

of the treatment effect, the IV estimator yields an average treatment effect that is

local (i.e., the LATE) in two ways.

First, the estimated effects only apply to individuals for whom being on the treat-

ment side of the cutoff determines treatment status (Bertanha and Imbens (2020)).

Second, similar to sharp RD designs with perfect compliance, it is hard to generalize

these estimates to individuals identified for treatment who are away from the cutoff

(Angrist and Rokkanen (2015), Cattaneo et al. (2021), Dong and Lewbel (2015)). Yet,

understanding treatment effects beyond compliers at the cutoff is important from a

public policy perspective. For example, moving beyond the LATE is necessary if one

wants to (1) assess how increasing compliance among those identified for treatment

may influence the effectiveness of the policy; (2) understand whether exemptions of-

ten incorporated into public policies indeed identify individuals less likely to benefit

from treatment; or (3) examine the effect of the treatment on individuals away from

the cutoff who typically have higher needs (e.g., educational), which is essential to

assess the overall benefits of the policy.

Given these limitations, several recent studies have proposed methods to improve

the external validity of the RD estimator. These approaches generally rely on strong

assumptions such as the fact that individuals do not endogenously select into treat-

ment (e.g., Angrist and Rokkanen (2015) and Bertanha and Imbens (2020)) or on

the presence of multiple discontinuities (e.g., Cattaneo et al. (2021)). In practice,

therefore, researchers often face an unenviable choice of whether to be satisfied with

an (often noisy) estimate of the local treatment effect or the make strong (and of-
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ten unbelievable) assumption that individuals do not endogenously select into the

treatment.

This paper addresses the locality issue by introducing a new estimator for use in

a fuzzy regression discontinuity setting that generates global treatment effect esti-

mates. The estimator jointly models the two potential outcomes and selection into

treatment. We then greatly restrict the set of potential functions to ensure that our

estimator converges to a unique marginal treatment effect (MTE) function. Although

identification is obtained by restricting the set of potential functions, we show that

the estimator can be easily interpreted and motivated even in cases where the true

MTE function does not lie in this restricted set. For example, our method corresponds

to a linear combination of the estimate generated using a traditional fuzzy regression

discontinuity design and the estimate using a traditional observational study, with

the weights depending on how biased the traditional observational study appears to

be based on behavior at the discontinuity.1 In a similar fashion, the estimator can

be thought of as an extrapolation of the traditional fuzzy regression discontinuity es-

timate, where the initial extrapolation to the non-compliers at the threshold is done

using existing approaches usually employed in the RCT setting (e.g., Brinch et al.

(2017); Kowalski (2023)) and extrapolation away from the threshold is done using the

assumption that the amount of endogenous selection stays constant.

We next turn to the formal motivation of the estimator. We first show the con-

ditions under which it converges to the true marginal treatment effect function are

weaker than existing approaches that aim to extrapolate fuzzy RDD estimates. In

particular, rather than assuming that there is no endogenous selection of individuals

into treatment, we allow for individuals to sort into treatment based on information

we do not observe and instead require that the way they do so does not vary away

from the discontinuity and can be modeled using existing approaches to model im-

perfect compliance in the context of an RCT (e.g., Brinch et al. (2017); Kowalski

(2023)).

Depending on the circumstances, however, it is plausible that researchers still may

not feel comfortable making these assumptions. We therefore develop a Bayesian

model, in which the true conditional moments are themselves distributed according

1Similarly the estimator can also be interpreted as starting with an observational study and then
adjusting for bias using information at the discontinuity in a similar fashion as Bertanha and Imbens
(2020).

3



Opper and Özek

to some prior distribution. We then discuss the conditions under which the proposed

estimator can be thought of as the researchers “best guess” of the MTE function given

the observed data, i.e., the mean posterior. For example, we show that unless the

researcher has strong priors in how the MTE deviate from being linear functions of

the variables, the proposed estimator gives the approximate mean posterior if one is

only interested in extrapolating to non-compliers and to values of the running variable

near the discontinuity.

We then use this estimator to examine the broader effects of early grade retention

policies in the United States. This application is important for two reasons. First,

this exercise has important implications for education policy in the United States: as

of 2020, about half of all states and the District of Columbia require or encourage

school districts to retain third-grade students who lag behind based on their third-

grade reading scores. There is growing literature examining the effects of these policies

using RD designs2, yet we know very little about their effects on students away from

the retention cutoff who have lower initial achievement.

Second, many early grade retention policies include “exemptions” to test score

thresholds, such as for students who have disabilities, who are recent English learners,

or whose proficiency can be demonstrated with a teacher’s portfolio. As such, nearly

all existing RD studies on early grade retention rely on a fuzzy RD design to identify

the effect of retention on student outcomes. Yet we do not know if these exemptions

indeed identify students who are less likely to benefit from retention. We examine

these research questions using student-level administrative data from Florida, which

requires third graders to score at or above Level 2 (out of 5 achievement levels) on

the statewide reading test to be promoted to fourth grade.

Our findings suggest that the benefits of retention (1) are larger for students with

lower baseline reading achievement and (2) are indeed smaller for students exempt

from retention. Together, these results imply that the average treatment effect on the

treated (ATT) is much larger than the predicted effects that would come from remov-

ing the exemptions or increasing the passing threshold, i.e., the average treatment

effect on the control (ATC). For example, we find that, as currently implemented,

retaining students increases their sixth grade reading scores by 0.69σ, but further in-

2For example, see Greene and Winters (2007), Winters and Greene (2012), Özek (2015), Schwerdt
et al. (2017), Figlio and Özek (2020) in Florida; Hwang and Koedel (2022) in Indiana; and Mumma
and Winters (2023) in Mississippi.
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creasing the threshold by 50 points (0.8σ, roughly equivalent to moving the threshold

from Level 2 to slightly above Level 3 on the third-grade reading test) and removing

exemptions would have no impact on the sixth grade reading scores of the newly

retained students. These findings also imply that existing studies on early grade re-

tention policies that rely on traditional fuzzy RD designs significantly underestimate

the benefits of retention. In particular, we show that the ATT estimates are roughly

20 percent larger than the LATE estimates of the retention effects on reading scores

in grades 4 through 8.

II Model Assumptions and Estimation Approach

II.A Underlying Model and Assumptions

We use as our base model one of the canonical models used to consider the effect of

a binary treatment on a single outcome, the model that forms the basis for marginal

treatment effect (MTE) estimation (e.g., Heckman (2010); Heckman and Vytlacil

(2007a,b); Brinch et al. (2017); Mogstad et al. (2018); Kline and Walters (2019)).

Specifically, we assume that each individual is defined by four variables: their outcome

if they are not treated, the effect that the treatment has on their outcome, their

implied cost of enrolling in the treatment, and their value of the running variable; we

denote these as µi, τi, ηi, and Zi, respectively. In other words, we use µi to denote

individual i’s outcome in the absence of treatment and τi to denote the causal effect

of the treatment on individual i’s outcome; clearly µi + τi is then their outcome if

they are treated. In Section IV we discuss how to add additional covariates Xi to the

analysis, but for expositional simplicity omit these for now.

Letting Ti be a dummy variable denoting whether someone is in the treatment or

control group, the observed outcome can be written as: Yi = µi+ τiTi. As is common

in the MTE literature, we further assume that treatment is determined according

the following choice equation: Ti = 1(ν(Zi) ≥ ηi) for some function of the running

variable ν(Zi). As a researcher, we observe Yi, Ti, and Zi, but do not observe the

latent variables µi, τi, and ηi.

We then define following two conditional moments:

µ∗(η, Z) = E[µi|ηi = η, Zi = Z] and τ ∗(η, Z) = E[τi|ηi = η, Zi = Z] (1)
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The function τ ∗(η, Z), in particular, corresponds to the marginal treatment effect

(MTE) function as defined in Heckman and Vytlacil (1999, 2005) and is generally

the object of interest itself or, more commonly, the objects of interest can be derived

from it. For example, full knowledge of the function τ ∗(η, Z) would allow one to

calculate the overall average treatment effect (ATE), the average treatment effect on

the treated (ATT), and the average treatment effect on the compliers (LATE), and

other estimands of interest. We use the star notation, i.e., denoting the functions as

µ∗ and τ ∗, to distinguish the true conditional moment functions from generic potential

conditional moment functions µ and τ .

While the conditional moment functions in Equation (1) correspond most closely

with the objects of interest, they are a bit removed from what is observed in the data.

We therefore also define two additional conditional moments, which are more closely

related to what we observe. These moments are defined as follows:

y∗0(η, Z) = E[µi|ηi > η,Zi = Z] and y∗1(η, Z) = E[µi + τi|ηi ≤ η, Zi = Z] (2)

These moments are redundant with the ones defined in Equation (1) as one can

transform y0 and y1 to τ via the linear transformation:3

T (y0, y1) = y1 − y0 + η
∂y1
∂η

+ (1− η)
∂y0
∂η

(3)

In the definitions above, we implicitly assume that the conditional first moments

exist. We make this assumption explicit below, along with the other assumptions we

use to capture the fuzzy regression discontinuity design.

Assumption 1. E[µi|ηi = η, Zi = Z] < ∞ and E[τi|ηi = η, Zi = Z] < ∞ for all

ηi ∈ (0, 1) and Zi ∈ Z ≡ (Z,Z).

Assumption 2. ηi is continuously distributed conditional on Zi.

Assumption 3. Both µ∗(η, Z) and τ ∗(η, Z) are continuous functions of (η, Z).

3Another way to write this transformation is that T (y0, y1) =
∂
∂η

(
ηy1

)
+ ∂

∂η

(
(1−η)y0

)
. Similarly,

there is way to transform y0 and y1 to µ, but this linear transformation is less important since
researchers are generally interested in estimating the treatment effects.
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Assumption 4. ν(Z) ∈ (0, 1) for all Z and is a continuous function at every point

except for a single Z∗, where:

lim
Z↑Z∗

ν(Z) ≡ pl < ph ≡ lim
Z↓Z∗

ν(Z)

Assumption 5. The researcher observes the conditional moments: E[Ti|Zi = Z],

E[Yi|Ti = 1, Zi = Z], E[Yi|Ti = 0, Zi = Z] at every point Z ̸= Z∗.

Assumptions 1 and 2 are relatively benign assumptions. The first makes explicit

that our definitions of the conditional moments are valid and the second is a common

assumption in the MTE literature and allows us to normalize ηi to be distributed

uniformly from (0, 1). With this standard normalization, the cutoff value ν(Zi) is

equal to Pr(Ti|Zi), i.e. to the propensity score.

The next two assumptions are reformulations of the standard assumptions required

for RD designs. Assumption 3 corresponds to the traditional assumption that the

potential outcome functions are continuous around the discontinuity, although we

extend the assumption to be that the functions are continuous everywhere and that

they are continuous functions of both ηi and Zi. Assumption 4 captures the fact that

it is a fuzzy RD context, in that there is a single point Z∗ at which the probability

of treatment jumps discontinuously and that for every value of the running variable

there are both treated and untreated individuals. We assume that there is a single

discontinuity and that the probability increases as one moves across the threshold

from left to right. The latter assumption is without loss of generality. The assumption

that there is a single discontinuity is more consequential; however, one advantage of

the method is that it can be naturally extended to cases in which there are multiple

discontinuities. For ease of exposition, we focus on the case with a single discontinuity

and discuss in Section B how the method can be adjusted when there are multiple

discontinuities.

Finally, the last assumption states that the researcher observes the true conditional

moments. While apparently quite a strong assumption, Assumption 5 is meant to

clarify the main ideas by allowing us to focus on questions of identification in the

main discussion. We then return to questions of estimation in Section IV, where we

show that under a common set of assumptions we can (roughly speaking) invoke the

law of large numbers to show that replacing the true expectations with estimates of

these moments does not affect the main results, as long as we take an asymptotic

7
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perspective.

II.B Proposed Estimator

The key challenge is that – even when we ignore estimation error – we only observe

the functions y∗k(η, Z) at a select number of points. To highlight this, consider any

point Z ̸= Z∗. As mentioned, we assume the researcher observes E[Yi|Ti = 1, Zi = Z]

and E[Yi|Ti = 0, Zi = Z]. From the definition of which potential outcome is realized

and the specification that individuals select into treatment if (and only if) ηi ≤ ν(Zi),

we can re-write the observed moment E[Yi|Ti = 0, Zi = Z] as:

E[Yi|Ti = 0, Zi = Z] = E[µi|Ti = 0, Zi = Z] (4)

= E[µi|ηi > ν(Z), Zi = Z] (5)

= y∗0(ν(Z), Z) (6)

We can similarly re-write the observed moment E[Yi|Ti = 1, Zi = Z] as y∗1(ν(Z), Z).

Again focusing on a single Z, this formulation makes it clear how big the challenge

is: we need to estimate the functions y∗0(η, Z) and y∗1(η, Z) when observing only a

single point for each y∗0(ν(Z), Z) and y∗1(ν(Z), Z).
4 There is one exception to the

above analysis: the point Z∗ where ν(Z) jumps discontinuously. Instead of observing

a single value of y∗0 and y∗1 at this point, we observe two. Specifically, we observe

both:5

lim
Z↑Z∗

y∗0(ν(Z), Z) ≡ y∗0(pl, Z
∗) and lim

Z↓Z∗
y∗0(ν(Z), Z) ≡ y∗0(ph, Z

∗)

values of y∗0 at Z∗; similarly, we observe both y∗1(pl, Z
∗) and y∗1(ph, Z

∗).

Still, only observing two points at Z∗ – and a single point everywhere else –

means that we have no hope of non-parametrically identifying the functions y∗0 and

y∗1. An important implication of this is that the only way to identify the functions

is via some functional form restriction on y∗0 and y∗1. Our approach is to propose a

particular restriction here – discussed below – and then spend the rest of the paper

4Of course, we observe these moments at multiple values of Z; however, that both provides an
additional datapoint and also provides a different value of Z for which we need to project y∗0(η, Z)
and y∗1(η, Z) and so it does not provide much help.

5Note that these limits are well-defined based Assumptions 1-4.
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discussing ways to interpret and motivate the resulting estimand.

Our restriction will be that both ŷ0 and ŷ1 are additively separable and linear in η.

To formally define the estimator, let YGRDD be the set of possible estimated functions

ŷ = (ŷ0, ŷ1). Then our restriction can be written as: YGRDD = YGRDD
0 × YGRDD

1

where:

YGRDD
k = {yk|yk(η, Z) = βkη+γk(Z) where βk ∈ R and γk(Z) is a continuous function.}

for k ∈ {0, 1}.
In other words, the restriction is that the conditional moments are additively

separable and linear in η. One note about the terminology we use: we write that

this is a restriction in the possible form that ŷ0 and ŷ1 take, rather than as an

assumption. The reason is that some of the ways in which we motivate the estimator

in Section III do not rely on the fact that the true functions take that form nor does

the interpretation of the resulting estimates that we discuss in the next section.

With this definition of YGRDD we can now formally define our estimator, which we

refer to as the “Global Regression Discontinuity Design” (Global RDD) and denote

as τ ∗GRDD. The definition is as follows:

Definition 1. Define τ ∗GRDD as τ ∗GRDD ≡ T (ŷ0, ŷ1) where T (y0, y1) is defined as in

Equation (3) and ŷ0 and ŷ1 are defined such that (ŷ0, ŷ1) ∈ YGRDD and ŷk(ν(Z), Z) =

E[Yi|Ti = k, Zi = Z] for all Z ̸= Z∗ and k ∈ {0, 1}.

There are two important points about the above definition. First, the estimator

defined above is feasible, in that it does not rely on any data other than that which

is assumed to be observed by the researcher under Assumption 5. Second, τ ∗GRDD is

well-defined, in that under Assumptions 1-4 there is guaranteed to be a single value

of τ ∗GRDD that meets that above definition. We state this as a proposition below:

Proposition 1. Under assumptions 1-5, the Global RDD as defined in Definition

can be implemented using the observed conditional moments and is well-defined.

While we leave the formal proof to Appendix A, it is worth highlighting that the

discontinuity at Z∗ is precisely what ensures τ ∗GRDD to be well-defined; without the

discontinuity, we would only observe a single point at every value of Z so even under

the assumption that yk(η, Z) = βkη+ γk(Z) it would be impossible to pin down both

βk and the function γk(Z) based on the observed data. We discuss this intuition

9
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in more detail and provide some alternative ways to view the estimator in the next

subsection.

One final note about notation: although one advantage of the Global RDD is

that it allows one to generalize both to the population of non-compilers and away

from the discontinuity, it is often the case that researchers are particularly interested

in understanding how the treatment varies with the running variable. We will use

τ ∗GRDD(Z) as shorthand for the conditional average treatment effect (CATE), i.e.,

τ ∗GRDD(Z) ≡
∫ 1

0
τ ∗GRDD(Z, η)dη.

II.C Discussion of the Estimator

Identification Intuition: To convey the intuition of how the Global RDD mechan-

ically transforms the observed moments into the resulting estimates, we will consider

a simplified example in which we are only concerned with the function y1(η, Z). The

analysis for the function y0(η, Z) is identical and, as mentioned above, together the

functions y1(η, Z) and y0(η, Z) pin down the MTE function τ(η, Z).

We illustrate the intuition using a stylized example in Figure 1. In Figure 1a,

we start by illustrating the relationship between the running variable – shown on the

x-axis – and the probability of treatment – shown on the y-axis. Note that we observe

this function, i.e., E[Ti|Zi = Z], in the data; in our notation, the line shown in Figure

1a corresponds to the function ν(Z). We also indicate ten points on the function with

dots, which we use in the other figures, and label six of them.

In the next two panels, we turn our attention to the observed conditional means,

i.e., to E[Yi|Zi = Z, Ti = 1]. We plot these observed moments for the ten points we

highlighted in the previous panel in Figure 1b, labelling the same six points as in

Figure 1a, with the running variable (i.e, Z) on the x-axis. We do not draw a line

through each of these points to emphasize that – unlike in Figure 1a – we are not

directly concerned with how function E[Yi|Zi = Z, Ti = 1] varies as a function of Z.

Instead, we are concerned with the question of how y1(η, Z) varies as a function of

both η and Z. We could therefore similarly plot the observed points with the value

of η, rather than Z on the x-axis. We do so in Figure 1c, again highlighting and

labelling the same points as before.

It is this formulation that best highlights how the Global RDD transforms the

observed moments into the resulting estimate of ŷ1(η, Z). To start, we will only

10
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concern ourselves with estimating the function ŷ1(η, 0). As discussed above, at this

value of Z we observe two separate points: ŷ1(pl, 0), which is identified as point C

in Figure 1b, and ŷ1(ph, 0), which is identified as point D in the Figure 1b. Without

any restrictions, there are clearly many functions ŷ1(η, 0) that would go through both

point C and D; if we restrict ourselves to linear functions, however, the two points

completely determine the function ŷ1(η, 0).
6 This is shown in Figure 1d.

Of course, we also need to determine the functions ŷ1(η,−1), ŷ1(η,−0.9), ...,

ŷ1(η, 0.8), ŷ1(η, 0.0), ŷ1(η, 1). If we restrict this set of functions to both all be linear

functions of η as well as all have the same slope, i.e., for ŷ1(η, Z) = βη+γ(Z), then –

after pinning down the slope using behavior at the discontinuity – we can adjust γ(Z)

such that ŷ1(η, Z) goes through every point. Again, we can see this by the functions

y1(η, 1), y1(η, 0), and y1(η,−1) all consisting of parallel lines in Figure 1d.

As is clear, the only way that the Global RDD is able to transform the observed

moments into estimates of τ ∗(η, Z) is by greatly restricting the set of potential func-

tions y1(η, Z). We want to emphasize, however, that as we discuss in Section III

there are ways to motivate the estimator even if the true functions do not satisfy this

restriction. First, however, we provide some more intuition about how the Global

RDD mechanically transforms the observed moments into the resulting estimates by

comparing it to alternative approaches.

Relationship to Alternative Approaches: For another perspective, we will

consider two natural alternatives: (1) an observational study in which one simply

compares the the treatment average to control average at every point Z ∈ Z and (2)

a traditional fuzzy regression discontinuity design. Formally, we get that:

τ ∗obs(Z) = E[Yi|Ti = 1, Zi = Z]− E[Yi|Ti = 0, Zi = Z] (7)

τ ∗RDD =
1

ph − pl

(
lim
Z↓Z∗

E[Yi|Zi = Z]− lim
Z↑Z∗

E[Yi|Zi = Z]

)
(8)

To show how the Global RDD transforms the observed moments into treatment

effect estimates, we can then use the same stylized example as shown in Figure 1.

In Figure 2a, for example, we plot directly the conditional moments as a function of

the running variable; i.e., we plot E[Yi|Zi = Z, Ti = 1] and E[Yi|Zi = Z, Ti = 0] as a

function of Z. In a traditional observational study, we then estimate the treatment

6This follows the discussion in Brinch et al. (2017).
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Figure 1: Identification Intuition

(a) First Stage
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(b) Observed Moments
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(c) Observed Moments
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(d) Linear Selection
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Note: This figure illustrates the intuition of how the Global RDD transforms the ob-
served moments into treatment effect estimates. Panel (a) illustrates the relationship
between the running variable and the probability of treatment, indicating 10 points
with circles and labelling six of them. Panel (b) and (c) then both show the mean
outcome of the treated individuals for each of these points; Panel (b) uses the running
variable as the x-axis and panel (c) uses η as the x-asis. Panel (d) then shows how
the Global RDD uses the information in these ten points to generate estimates of
ŷ1(η, Z).

12



II.C Discussion of the Estimator Opper and Özek

effect at a point Z by just taking the difference between the two lines at any given

point; the results for this example are shown in Figure 2c.

A concern with such an observational study is that we might be concerned that

individuals endogenously choose (or are chosen) whether to enroll in the treatment or

not. This would cause bias in the observational study and so one could imagine trying

to “debias” the observational study; of course, this begs the question of how one could

do so. To see how one might do so, we can first note that in the framework presented in

Section II.A, endogenous selection stems from the fact that the conditional moments

potentially depend on the cost of enrollment, i.e., η. Specifically, note that we can

write τ ∗obs(Z) as being equal to y
∗
1(ν(Z), Z)−y∗0(ν(Z), Z), whereas the true conditional

average treatment effect (CATE) is equal to y∗1(1, Z) − y∗0(0, Z). Thus, if we can

understand how y∗1(η, Z) and y∗0(η, Z) vary based on η, therefore, we could debias the

observational study. Of course, this is not trivial; however, we can use the fact that

we observe y∗1(η, Z
∗) and y∗0(η, Z

∗) at two different values of η to generate (roughly

speaking) the “best guess” of how they vary based on η.

The mechanics of this can be see in Figure 2b, which shows the four observed

moments (in squares). Based only these points, we will take as given for now that the

“best guess” of how y∗1(η, Z
∗) and y∗0(η, Z

∗) vary in terms of η is a simple line through

those two observed points. (We develop a Bayesian model in which this is indeed

the best guess in Section III.) For notation, we will use β∗
0 to denote the slope of the

implied function ŷ0(η, Z
∗) and β∗

1 be the slope of the implied function ŷ1(η, Z
∗), i.e.,

β∗
0 ≡ y∗0(ph, Z

∗)− y∗0(pl, Z
∗)

ph − pl
(9)

β∗
1 ≡ y∗1(ph, Z

∗)− y∗1(pl, Z
∗)

ph − pl
(10)

We could use this relationship to adjust ŷ1(ν(Z), Z) and ŷ0(ν(Z), Z), in hopes that

it would improve the estimates that result from the observational study. The result

is shown in Figure 2d. Note that the CATE jumps discontinuously at Z∗ in the

“Traditional Observational Study” but is smooth around the cutoff on the “Debiased

Observational Study.”

While this seems like a quite different approach than the Global RDD, it is in

fact equivalent. We state this result formally in the remark below. Then, in Section

III, we discuss the conditions under which this approach does indeed improve the

13
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resulting estimates.

Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

the traditional observational study, as defined in Equation (7). We then have:

τ ∗GRDD(Z) = τ ∗obs(Z)− b (11)

where b is a measure of the bias in the observational estimates. Specifically, defining

β∗
0 and β∗

1 as in Equation (9) and (10), we have:

b = β∗
0 · ν(Z) + β∗

1 ·
(
1− ν(Z)

)
(12)

= ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(13)

where ξk ∈ R is a function of ph, pl and ν(Z), τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z), and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

There are two implications of the above remark. First, while we center most of

the discussion around how our approach extends the traditional fuzzy RD design, you

could also think of it as an approach to debias the traditional observational study

design. Second, in addition to the discussion above, from which we could derive the

fact that the bias estimate can be written as β∗
0 · ν(Z) + β∗

1 ·
(
1 − ν(Z)

)
, we could

instead write the bias term as a linear combination of the the traditional fuzzy RDD

and observational study estimates at Z∗; see Equation 13. Thus, the Global RDD

can also be thought of as a linear combination of the two traditional approaches, i.e.,

an observational study and a fuzzy RDD.

The intuition for this different formulation is relatively straightforward and follows

from the idea that we can estimate the bias in τ ∗obs(Z) by comparing the fuzzy RD

estimate of the LATE to the τ ∗obs(Z) estimates at the discontinuity. If the fuzzy RD

estimates are identical to the observational estimates at the cutoff, this suggests that

the observational estimates have minimal bias and so need almost no correction.7 In

contrast, if the fuzzy RD design diverges from them at the cutoff, this suggests that

7This is reiterates the point initially made in Battistin and Rettore (2008), which use a fuzzy
RDD to validate the observational estimates; one way to view our paper is to develop an approach
researches can take if their test that the observational study is unbiased, or the test proposed in
Bertanha and Imbens (2020) that the local effect is generalizable to the non-compliers, is rejected.
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Figure 2: Relation to Observational Studies

(a) Conditional Moments
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(b) Observed Moments at Discontinuity
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(c) Traditional Observational Study
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(d) Debiased Observational Study

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
8

9

10

11

12

13

τ ∗GRDD(Z)

Running Variable

C
on

d
it
io
n
al

M
ea
n

Note: This figure illustrates the relationship between the Global RDD and a tra-
ditional observational study. Panel (a) shows the values E[Yi|Zi = Z, Ti = 1] and
E[Yi|Zi = Z, Ti = 0] as a function of Z. Panel (c) then transforms these moments
into treatment effect estimates using the traditional observational study approach,
i.e., but subtracting the two. Panel (b) shows the four observed moments at the
discontinuity – shown as boxes in Panel (a) – and how these moments are used to
estimate the “best guess” of how y1(η, Z

∗) y1(η, Z
∗) depend on η. Panel (d) then

shows the results if one uses these relationship to “debias” the traditional observa-
tional study, which results in the Global RDD estimates.
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the observational estimates estimates are quite biased and therefore need significant

bias adjustment.

Finally, we can use the same example to highlight that it is also possible to think

of the Global RDD as reflecting a natural way to extrapolate the fuzzy RDD to

both the non-compiler population and away from the discontinuity. To show this,

we can focus initially on extrapolating the LATE to other estimands of interest at

the discontinuity. If we just use information at the discontinuity (i.e., y∗0(pl, Z
∗),

y∗0(ph, Z
∗), y∗1(pl, Z

∗), and y∗1(ph, Z
∗)), this is mechanically the same as extrapolating

from the LATE to other estimands in an RCT context. If we use the linear approach

in Brinch et al. (2017) and Kowalski (2023), therefore, we get the same result as

shown in Figure 2b. After extrapolating the initial RD estimate to the non-complier

population at the discontinuity, we can then use the information in the conditional

moments presented in Figure 2a and a restriction that the selection does not vary away

from the discontinuity to extrapolate to the population away from the discontinuity.

This gives the same result shown in Figure 2d, i.e., the Global RDD estimate of the

marginal treatment effects. Thus, just as the Global RDD can be thought of as a bias-

adjusted observational study, it can also be thought of as an extrapolated traditional

regression discontinuity design.

III Motivating the Global Regression Discontinu-

ity Design

In the previous section, we introduced the Global RDD and showed that it can be

thought of in a variety of ways: a restriction on the plausible moment functions, a

linear combination of a observational study and the fuzzy RDD, or a debiased version

of a traditional observational study. In this section, we start by highlighting that –

at least locally – the estimator converges to the true treatment effect. Formally, we

get that following theorem:

Proposition 2. Let τ ∗ denote the true MTE function. Then the estimated effect on

the set of compliers at the Z∗ converges to the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (14)
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This result is essentially the RD version of Theorem 1 of Kline and Walters (2019)

and shows the Global RDD estimate of the local average treatment effect (LATE)

corresponds to the true LATE even if the true y∗k(η, Z) functions are not in fact

additively separable and linear in η. Of course, if all one was concerned about was the

local average treatment effect, one could instead use a traditional fuzzy RD estimator.

In contrast to a traditional fuzzy RD design, however, the global RD design also

provides effect estimates away from the complier population at the cutoff. We spend

the rest of this section describing different conditions under which this particular

extrapolation approach can be justified.

Identified Under Weaker Assumptions: The first way we motivate the esti-

mator is by showing that it identifies the true MTE under weaker assumptions than

two of the main existing alternatives: (a) ignoring the discontinuity and relying in-

stead on a selection-on-observables assumption and (b) the Angrist and Rokkanen

method (Angrist and Rokkanen, 2015), which we discuss more below.8

To do so, we start by noting that if the conditional moments are indeed additively

separable and linear in η then the global RDD does indeed converge to the true MTE

function. This result can be stated succinctly in the following proposition:

Proposition 3. Let y∗ be the true conditional moments and suppose that y∗ ∈
YGRDD. Then the estimated MTE function converges to the true MTE function,

i.e., τ ∗GRDD = τ ∗.

Absent any covariates, the assumption required for Proposition 3 is, in our opin-

ion, relatively strong. With the addition of covariates, however, we feel like this

assumption may become much more tenable. To highlight this, we show below that

it relies on weaker assumptions that both a traditional observational study and the

Angrist and Rokkanen method. We note explicitly, however, that the real advantage

of the Angrist and Rokkanen method is that it can be used in the context of a sharp

RDD, i.e., when ν(Z) ∈ {0, 1}. Thus, a more precise statement would be that the

Global RDD relies on weaker assumptions in the context of a fuzzy RDD. Finally, we

acknowledge that we have not yet described how covariates can be included in the

8While these are not the only two methods used, the others we are aware of either focus on a
marginal change in the threshold (Dong and Lewbel (2015), Cerulli et al. (2017)) or rely on additional
information, such as additional covariates/measures (Mealli and Rampichini (2012), Wing and Cook
(2013), Rokkanen (2015)) or multiple discontinuities (Cattaneo et al. (2021), Bertanha (2020)). We
discuss our method in a context with multiple discontinuities in Section B.
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Global RDD; we leave the formalization of this to Appendix A, but note here that in

the result below we are implicitly including the same set of (exogenous) covariates in

all three estimators.

Proposition 4. The assumptions under which the Global RDD converges to the true

treatment effect function are weaker than those under which the observational study

does. Similarly, the conditions under which the Global RDD converges to the true

average treatment effect on a complier population are weaker than the conditions

under which the Angrist and Rokkanen (2015) estimator does.

While we leave the formal proof to Appendix A, we highlight here some nice simi-

larity in the intuition behind why the global RDD relaxes the assumptions required in

the traditional observational study and those required in the Angrist and Rokkanen

method. In particular, the traditional observational study assumes that there is no

endgoenous selection into the treatment which, in the MTE formulation, amounts

to the assumption that yk(η, Z) does not depend on η. The Angrist and Rokkanen

method, in contrast, allows for endogenous selection into the treatment but assumes

that the moments do not depend on the running variable; in the MTE formulation,

this amounts to the assumption that yk(η, Z) does not depend on Z. The Global

RDD therefore relies on weaker assumptions since it allows for the conditional mo-

ments to depend on both η and Z. As described in Section II.C, however, the Global

RDD does put restrictions on how the conditional moments can vary based on η and

Z and so we next turn our attention to ways in which the estimator can be motivated

under weaker assumptions than what is required in Proposition 3.

Optimal Estimator in a Bayesian Model: Even though the Global RDD

converges to the true MTE under weaker assumptions than the main alternative

approaches, we still may not be comfortable with the assumptions required to identify

the true MTE functions. Motivated by the researchers’ own experience, we therefore

consider in the section what happens when the researcher is not willing to assume

that the functions are necessarily additively separable and linear in η, but also does

not have a strong intuition on how they deviate from it. We then show that under

certain conditions, the Global RDD may still correspond to the researchers’ “best

guess” at the MTE function given the observed data, even if it’s not necessarily the

true MTE function.

To do so, we introduce a model in which the conditional moment functions them-

selves are generated randomly according to some probability measure. A natural
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way to think of this model – and one that is consistent with the motivation above –

is as a Bayesian hierarchical model, in which case the probability measure over the

conditional moment functions serves as a Bayesian prior. An alternative is to view

the results as measuring the expected performance of the estimator over a range of

empirical scenarios; in this interpretation, the probability measure is defined by the

range of empirical scenarios that is considered.

To more formally introduce the model, we will let Y = Y0 × Y1 be the set of

potential conditional moment functions. We will then assume that the functions in

yk ∈ Yk for k ∈ {0, 1} are distributed according to a Gaussian process (GP) as follows:

yk(η, Z) = αk + βkη + γkZ + ỹk(η, Z) (15)

ỹk(η, Z) ∼ GP(0, Ck) (16)

[αk, βk, γk]
′ ∼ N(0, σ2I) with σ2 → ∞ (17)

where GP(0, Ck) corresponds to a mean-zero Gaussian process with covariance func-

tion Ck and I corresponds to the identity matrix.9

For the interested reader, Rasmussen and Williams (2006) provides an excellent

introduction to Gaussian processes. Here, we will simply note two important points

about Gaussian processes in general and the one specified in Equations (15) - (17) in

particular. First, it is precisely the covariance function Ck that determines the implied

prior distribution over functions yk ∈ Yk. We will not focus on the particulars of how

it does so here, but a wide range of priors can be achieved by varying Ck. Second,

by considering the case in which σ2 → ∞ we use an uninformative prior limit for the

linear terms, in which all linear functions of η and Z are considered equally likely.

Finally, we note that the model does not require fundamental changes to the one

presented in Section II.A. Instead of referring to y∗1 and y∗0 as the true conditional

moment functions, we simply view them as a single realization of the Gaussian pro-

cess.10 Furthermore, note that the Gaussian process defined in Equations (15) - (17)

9There have been papers, e.g., Branson et al. (2019), that propose using a Gaussian process in
the context of a RDD. Others, e.g., Chib and Jacobi (2016) and Chib et al. (2023), develop Bayesian
approaches to estimate RDDs. They do so in the context of estimation rather than, in our case, as
a way to interpret and motivate a particular extrapolation away from the discontinuity.

10We will ensure that every y∗1 and y∗0 generated by the model specified in Equations (15) - (17)
satisfies the assumptions specified in Section II.A by assuming that the covariance functions Ck

are such that the Gaussian process is sample continuous, i.e., that every y∗1 and y∗0 generated by
the model is a continuous function. This can be done by assuming that the covariance functions
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along with the linear transformation defined in Equation (3) together imply a prior

distribution over the MTE functions τ(η, Z) and we can similarly use τ ∗ to be a

particular realization of the GP.

As an aside, one can combine a choice of prior (i.e., a choice of Ck) with the

observed data to generate Bayesian posteriors of the yk functions, and hence Bayesian

posteriors of the MTE function. That is the approach taken in the context of an RCT

in Opper (2023), which discusses how a similar model presented above can be used

to generate posterior distributions of the average treatment effect (ATE), the average

treatment effect on the treated (ATT) and other potentially non-identifed parameters

of interest. However, even if we restrict ourselves to (for example) the commonly used

squared-exponential covariance functions, the identification of the hyperparameters

is even more challenging in the RD setting than in the RCT setting studied in Opper

(2023).11 We therefore opt instead to study in this paper how the Global RDD

compares to other approaches under all possible GPs, within the flexible framework

presented in Equations (15) - (17). That is, are there ways to motivate the Global

RDD that do not depend on the specification of Ck?

Much of the intuition for our analysis here stems from the following proposition,

which states that – regardless of the choice of Ck – the Global RDD corresponds

to our best guess of the MTE function based on the moments we observe at the

discontinuity and one additional point. Formally, letting D(A) denote the observed

conditional moments at points Z ∈ A, the proposition is as follows:

Proposition 5. For any choice of C0 and C1 and any point Z̃ ̸= Z∗, we get that:

τ ∗GRDD(η, Z) = E
[
τ ∗(η, Z)|D({Z̃, Z∗})] (18)

for every η and ∈ {Z̃, Z∗}.

This also implies that – again regardless of the choice of Ck – the bias correction

used in the Global RDD (as described in Section II.C) is the best guess of the bias

in the observational study based on the four moments observed at this discontinuity,

or that:

Lipschitz continuous, although that is not a necessary condition. Finally, we could allow, as in Opper
(2023), the realizations of y∗0 and y∗1 to be correlated, but do not to do here for simplicity.

11This additional challenge stems from the fact that we need to specify hyperparameters that both
govern both the direct effects of η and Z on yk(η, Z) as well as the interaction between the two.
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Proposition 6. Define to b∗obs(η, Z) be the bias in the observational study, i.e.,

b∗obs(η, Z) = τ ∗obs(Z)− τ ∗(η, Z) (19)

where τ ∗obs(Z) is defined in Equation (7). Then:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− E
[
b∗obs(η, Z)

∣∣D({Z,Z∗})
]

(20)

for any (η, Z) and any choice of C0 and C1.

These result seems quite promising; however, we have assumed (via Assumption

5) that we observe data at all points Z ∈ Z and not just at two points and (similarly)

want to adjust the observational study using the best guess of the bias using all the

data. Unfortunately, Proposition 5 does not extend to show that τ ∗GRDD(η, Z) =

E
[
τ ∗(η, Z)|D(Z)] or that E[b∗obs(η, Z)|D(Z)] regardless of the covariance functions.

The reason is that it is the covariance functions that determine whether we ascribe

deviations from linearity in the observed yk(ν(Z), Z) to: (a) non-linearities in the

relationship between Z and yk; (b) non-linearities in the relationship between η and

yk; or (c) interactions between η and Z. The Global RDD method instead ascribes

all such deviations to non-linearities in the relationship between Z and yk.

There are, however, some conditions under which we can indeed interpret the

Global RDD as the mean posterior conditional on all the observed data. In particular,

the Global RDD can be thought of as the best guess of the MTE function if we are

willing to assume that selection into treatment does not vary based on Z (but that

it is not necessarily linear in η) and the treatment thresholds do not vary away from

the discontinuity. Formally, this is stated in the following proposition:

Proposition 7. Suppose that Ck((η, Z), (η
′, Z ′)) = Ck,η(η, η

′) + Ck,Z(Z,Z
′) for both

k ∈ {0, 1} and that:

ν(Z) =

pl if Z < Z∗

ph if Z > Z∗
(21)

Then for any choice of Ck,η and Ck,Z, we get that:

τ ∗GRDD(η, Z) = E
[
τ ∗(η, Z)|D(Z)] (22)

for every (η, Z).
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The two additional conditions specified in Proposition 7 – i.e., that ν(Z) is a step-

function and that the functions yk(η, Z) are separable – are particularly interesting

because in a small neighborhood around the discontinuity they are guaranteed to

be (nearly) satisfied. This implies that the Global RDD is (nearly) the mean pos-

terior as long as we restrict ourselves to a small enough neighborhood around the

discontinuity.12

The fact that the Global RDD is, under some conditions, the mean posterior of

the MTE function is also important because it implies that the Global RDD is the

optimal estimator in a Bayesian decision theory model. To state this formally, given a

realization of the modified GP and its implied MTE function τ ∗ as well as an estimate

of the MTE function τ̂ , we then define the loss as the mean-squared error, i.e.,:13

l(τ̂ , τ ∗) =
(
τ ∗(η, Z)− τ̂(η, Z)

)2
(23)

This loss clearly depends on the observed data (which determines τ̂) and the real-

ization of the modified GP (which determines τ ∗). It is natural, therefore, to evaluate

the performance of an estimator using the expected loss, where the expectation is

taken over realization of the modified GP and the observed data. Specifically, we can

evaluate any specific estimator by the value of its expected loss, i.e.,:

L = E[l(τ̂ ∗, τ ∗)] (24)

with the value of L clearly depending on both the formulation of the modified GP

(i.e., the specification of the covariance functions) and the way the observed data is

transformed into estimates of the MTEs (i.e., the estimator used).

From the fact that mean posterior under the conditions in Proposition 7, we also

get that it corresponds to the estimator that minimizes the expected loss, i.e., that

minimizes L . We can also use this framework to compare the expected loss of the

Global RDD to alternative approaches. In particular, we can show that regardless

12The fact that we can conclude from the fact that assumptions are “nearly” satisfied that the
Global RDD is “nearly” the mean posterior stems from the the fact that the mean posterior can be
thought of as the maximizer of the posterior probability distribution, which depends continuously
on the functions ν and C.

13While we focus on the mean-squared error, the results generally apply to any symmet-
ric loss function. Furthermore, while we focus on the loss at a specific value of (η, Z), we
could also follow Mogstad et al. (2018) and instead specify that the researcher is interested in

Γ(τ) =
∫
Z

∫ 1

0
τ(η, Z)ω(η, Z) for some weighting scheme ω(η, Z).
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of the choice of C0 and C1, the Global RDD results in lower expected loss than a

traditional observational study. Furthermore, as long as the modified GP allows for

sufficient possibility that the treatment effect varies with the running variable, the

Global RDD also results is lower expected loss than a traditional fuzzy RD design.

See Propositions 9 and 10 in Appendix A for the formalization of these statements

and their proofs.

IV Estimation Approach

So far, we have assumed that the researchers observe the true conditional moment

functions E[Yi|Ti = k, Zi = Z] and E[Ti|Zi = Z] for all Z ̸= Z∗ and k ∈ {0, 1}.
In practice, of course, these moments need to be estimated. In this section, we

first discuss what assumptions regarding the data generating process can replace the

assumption that the true conditional moment functions are observed. We then outline

our estimation approach and show that, under the new assumptions, the resulting

estimate converges to τ ∗GRDD.

The four additional assumptions that collectively replace Assumption 5 are listed

below:

Assumption 6. E[µ2
i |ηi = η, Zi = Z] < ∞ and E[τ 2i |ηi = η, Zi = Z] < ∞ for all

η ∈ (0, 1) and Z ∈ Z ≡ (Z,Z).

Assumption 7. Zi is continuously distributed over Z with a strictly positive distri-

bution function.

Assumption 8. The parameter space for ν(Z) is V = V1 × V2 where:

ν(Zi) =

ν1(Z) if Z < Z∗

ν2(Z) if Z > Z∗

and where νk ∈ Vk. Let W2,2 be the Sobolov space of functions f : Z → R and ||f ||W22

be its norm, as defined in Freyberger and Masten (2019). Then Vk = {νk ∈ W22 :

||νk||W22 < Vk} for some constant Vk. Furthermore, we will assume that the true

function ν∗ ∈ V.

Assumption 9. Let W2,2 be the Sobolov space of functions f : Z → R and ||f ||W22

be its norm, as defined in Freyberger and Masten (2019). Then YGRDD
k = {yk =
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βkη + γk(Z) : βk ∈ [K,K] and γk ∈ W22 : ||γk||W22 < Yk} for some constants K,

K, and Yk. Furthermore, we will assume that there exists y∗k ∈ YGRDD
k such that

y∗k(ν(Z), Z) = E[Yi|Ti = k, Zi = Z] for all Z ∈ Z.

All four assumptions are, in our opinion, relatively benign assumptions and reflect

common assumptions made in econometrics literature. Assumption 6 simply states

that the individuals’ outcomes have finite variance at every point, which allow us

to use the standard asymptotic methods. Assumption 7 ensures that asymptotically

there will be a large number of observations arbitrarily close to each point Z ∈ Z.

Assumptions 8 and 9 state that the parameter space is compact for both ν and

y, which helps ensure that our non-parametric estimation approaches converge. As

written, this assumptions permits us to consider uniform convergence and both could

be relaxed if one was only interested in pointwise convergence. Note also that by

assuming that the true functions fall within the parameter space, these also capture

the assumption that the true functions are smooth.

We next formally define our estimator as follows:

Global Regression Discontinuity Design. Our proposed estimator consists of

three steps:

1. Estimate ν(Z) as follows:

ν̂ = argmin
ν∈V

{∑
∀i

(
Ti−1(Zi > Z∗)·ν(Zi)−1(Zi < Z∗)·ν(Zi)

)2
+λν

∫ (
ν ′′(Z)

)2
dZ

}

2. Estimate y as follows:

β̂0, β̂1, γ̂, δ̂ = arg min
β0,β1,γ,δ

{∑
∀i

(
Yi −

(
β0 · ν̂(Zi) + γ(Zi) + Ti ·

(
(β1 − β0) · ν̂(Zi) + δ(Zi)

)))2

+λγ

∫ (
γ′′(Z)

)2
dz + λδ

∫ (
δ′′(Z)

)2
dZ

}

and then:

ŷ0(η, Z) = β̂0η + γ̂(Zi)

ŷ1(η, Z) = β̂1η + γ̂(Zi) + δ̂(Zi)
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3. Estimate τ using ŷ as follows:

τ̂(η, Z) = T
(
ŷ0, ŷ1

)
where:

T (y0, y1) = y1 − y0 + η
∂y1
∂η

+ (1− η)
∂y0
∂η

= δ̂(Z) + (β̂1 − β̂0)η + β̂1η + β̂0(1− η)

= δ̂(Z) + β̂0 + 2(β̂1 − β̂0) · η

We next show that with enough data the estimator defined above will result in an

estimate of the marginal treatment effect (MTE) function that becomes arbitrarily

close to the Global RDD estimator defined and analyzed in the previous sections, i.e.,

to τ ∗GRDD. The formal theorem is below, with the proof in Appendix A:

Proposition 8. Let τ̂GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined above, and τ̂ ∗GRDD be the MTE function defined in Definition

1. Then given Assumptions 1-4 and 6-9 we get that:

τ̂GRDD
p→ τ ∗GRDD (25)

Note that choice of norms in Assumption 8 and 9 implies that the covergence

occurs in a uniform sense, rather than a pointwise sense. Specifically, τ̂
p→ τ̂ ∗ means

that for all ϵ, δ > 0 there exists anN such that ∀n ≥ N we have that P
(
sup{|τ̂n(η, Z)−

τ̂ ∗(η, Z)| : (η, Z) ∈ (0, 1)× Z} > ϵ
)
< δ.

Finally, as mentioned in Section III, the assumption required for τ ∗GRDD to be equal

to the true MTE function will, depending on the context, potentially be more believ-

able when one conditions on a set of exogenous covariates. In one sense, extending the

model to condition on a set of covariates is straightforward. If one extends Assump-

tion 5 to be that we observe E[Ti|Zi = Z,Xi = X], E[Yi|Ti = 0, Zi = Z,Xi = X], and

E[Yi|Ti = 1, Zi = Z,Xi = X] at every point Z ̸= Z∗ and X and similarly extends the

other assumptions to also be conditional on Xi = X, then nothing about the method

or results would need to change. In practice, however, estimating the conditional

moments non-parametrically, as we do above, quickly gets challenging as the number

of covariates increases. Implementing the method therefore will likely require some
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additional restrictions.

This raises the intriguing possibility that including covariates could lead to better

identification of the MTE functions. For example, if the size of the discontinuity in

ν(Z,X) at Z∗ differed depending on X and we keep the restriction that yk(η, Z,X)

is additively separable, we could relax the restriction that it is linear in η. This is

because we now see multiple conditional moments which we can use to identify the

dependence of yk(η, Z,X) on η.14

We view this possibility, and in particular the best way to extend the Bayesian

model outlined in Section III to account for additional covariates, to be an area ripe

for further exploration. At this point, however, we leave it for further exploration

and instead have implemented an approach in the accompanying R package that

accounts for additional covariates in similar way as other approaches that include

covariates into a regression discontinuity design. Specifically, we account for a vector

of additional exogenous covariates Xi by adjusting Step 2 of the Global Regression

Discontinuity Design to be that we estimate y as follows:

β̂0, β̂1, γ̂, δ̂, ξ̂ = arg min
β0,β1,γ,δ

{∑
∀i

(
Yi −

(
β0 · ν̂(Zi) + γ(Zi) + Ti ·

(
(β1 − β0) · ν̂(Zi) + δ(Zi)

)
+ ξXi

))2

+λγ

∫ (
γ′′(Z)

)2
dz + λδ

∫ (
δ′′(Z)

)2
dZ

}

and where then:

ŷ0(η, Z) = β̂0η + γ̂(Zi) + ξ̂Xi

ŷ1(η, Z) = β̂1η + γ̂(Zi) + δ̂(Zi) + ξ̂Xi

To implement the Global RDD, we use the MGCV package (Wood (2017)) in R

which automatically chooses the smoothing parameters λν , λγ, and λδ. We use a

Bayesian bootstrap procedure in which we randomly specify weights, drawn from a

Dirilecht distribution, and then repeat the Global Regression Discontinuity Design

procedure specified above to account for the estimation of ν when computing stan-

dard errors. See https://github.com/isaacopper/GlobalRDD for the R package that

14The resulting analysis is similar to the previously cited Brinch et al. (2017), which discusses
identification in a non-RD context.
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implements these packages.

V Empirical Application: Grade Retention Poli-

cies

In this section, we present an application of our estimator in education policy: a

field where fuzzy RD design has become more popular with the increasing use of

student test score cutoffs (or performance index cutoffs based on student test scores)

to identify eligibility for educational interventions. In particular, we explore the

broader effects of test-based retention policies. As we detail below, there is extensive

literature examining the effects of grade retention on student outcomes using fuzzy RD

designs; however, these estimated effects often apply only to compliers (i.e., students

not exempt from retention) right below retention cutoffs. In this exercise, we ask

whether these effects differ for exempt students and for lower-performing students

identified for retention.

V.A Policy Background and Data

Calls to end social promotion in schools in the 1990s and an increased popularity

of educational accountability and standardized testing led to test-based retention

policies in many states and school districts in the United States over the past three

decades. Perhaps the most influential of these policies has been Florida’s third grade

retention policy, which was enacted in 2002 and provided the blueprint for others

nationwide. This policy requires students who score in the lowest achievement level

on statewide reading test to repeat third grade and receive instructional support (e.g.,

additional instruction time in reading, being assigned to highly effective teachers).

There are several “good cause exemptions” that allow students to be promoted

to the fourth grade despite failing to score at the Level 2 benchmark or above. In

particular, students in the lowest achievement level in reading can be promoted to

fourth grade (1) if they have been in the English learner program for less than two

years; (2) if they have certain disabilities and have been already retained once until

third grade; (3) if they have received intensive reading remediation for two years

and have already been retained twice between kindergarten and third grade; (4) if

they demonstrate that they are reading at a level equal to or above a Level 2 on
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the statewide reading test by performing at an acceptable level on an alternative

standardized reading assessment approved by the State Board of Education; or (5)

if they demonstrate proficiency through a teacher-developed portfolio. Despite these

exemptions, the policy has affected a significant share of third graders in the state: in

the first year of the policy, 21 percent of third graders were flagged for retention (i.e.,

scored below the retention cutoff) and 15 percent had to repeat third grade (Licalsi

et al. (2019)). Among those flagged for retention, one-third received an exemption

and were promoted to fourth grade. While retention rates gradually declined partly

due to improvements in reading achievement and the increase in exemption rates,

they remained sizable with roughly 10 percent of the third graders being retained in

2021-22 school year.

Several studies have examined the effects of being retained (and receiving in-

structional support) under Florida’s retention policy on student outcomes using the

discontinuity in retention likelihood and RD designs (Greene and Winters (2007),

Winters and Greene (2012), Özek (2015), Schwerdt et al. (2017), Figlio and Özek

(2020)). The overarching conclusion is that retained students outperform their same-

age peers in the short term (one to three years), these achievement gains fade out

over time. That said, retained students under Florida’s retention policy significantly

outperform their promoted peers when they reach the same grade level, and are also

less likely to be retained in a later grade. While providing compelling evidence, by

using traditional RD designs these papers all focus on the complier population at the

discontinuity. In this paper, we use the proposed estimator to determine how these

benefits differ for students away from the cutoff and for students who were promoted

to fourth grade using exemptions.

To address these questions, we use student-level administrative data from a large

urban school district (LUSD) in Florida. In our analysis, we use students who entered

third grade for the first time between 2005-06 and 2010-11 school years and follow

them until 8th grade. Roughly 17 percent of these students were flagged for retention

and of those identified for retention, 38 percent were retained, corresponding to 7

percent of the third graders in these cohorts. Of those who were not flagged for

retention, a small number of students (1̃ percent) were retained regardless and so

there is two-sided non-compliance in this setting. Our main outcomes of interest are

standardized reading scores in grades 4 through 8.15

15In the analysis that follows, we use a same-grade comparison: That is, we compare the test
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V.B Results

Figures 3 and 4 (along with Table 1) present the estimated effects for exempt and

non-exempt students around and away from the retention cutoff in different ways.

The overarching conclusion from this analysis is that the impact of retaining students

is largest for those with the lower third grade reading scores and for those who –

conditional on their third-grade reading score – are most likely to be retained.

For example, Figure 3 shows how the conditional average treatment effect on

the treated individuals depends on third grade reading scores. Specifically, the solid

line shows how the estimated effect – formally E[τi|Zi = Z, Ti = 1] – depends on

the value of the running variable (third grade reading scale scores centered at the

retention cutoff). The dashed lines indicate the 95 percent point-wise confidence

interval and were using a Bayesian bootstrap procedure, in which we repeatedly (n =

100) drew weights for each student from a Dirichlet distribution and estimate τ̂ using

the procedure defined in Section II.B. The dashed lines then illustrate the range of

these estimates.16

The results in Figure 3 suggest that the positive effects of retention on fourth grade

reading scores monotonically decline with students’ baseline reading achievement. At

the cutoff, we find that retention increases fourth grade reading scores by roughly 0.9σ,

which is consistent with the effect sizes found in the previous literature (Schwerdt et

al. (2017), Figlio and Özek (2020)). This benefit grows to 1.2σ for students whose

third grade reading scores fell 25 points below the cutoff, and to 1.4σ for students 50

points below the cutoff. In contrast, the positive effects decline to 0.8σ for students

25 points above the cutoff and to 0.6σ for those 50 points above. Since most students

who are retained are below the cutoff, these findings suggest that the LATE estimates

presented in prior RD studies in this context significantly underestimate the overall

benefits of retention in the short term.

It is also clear from Figure 3 that at the discontinuity, the effect on the treated

individuals jumps. This stems from the fact that, by construction, the characteristics

scores of retained and promoted students when they reach the same grade level. Another approach
commonly used in the grade retention literature is to compare the test scores of treated and com-
parison students in years following the treatment (i.e., same-age comparison). We prefer the former
approach as we see additional time provided to retained students as part of the treatment. That said,
we also conducted a same-age comparison (results available upon request) and the main conclusions
remain unchanged.

16We used a Bayesian bootstrap instead of a traditional bootstrap to ensure that in every iteration
there was two-sided imperfect compliance at the discontinuity.
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of the treated population discontinuously change at the threshold. We illustrate the

effect of this more directly in Figure 4, which illustrates how τ̂(η, Z) varies by both

Z and η. In this exercise, ηi can be interpreted as ”promotion likelihood”: a student

is retained if and only if their ηi falls below a given cutoff. In other words, effect

estimates for higher values of ηi indicate the retention effect for students who are

least likely to be retained and vice versa. In this graph, each line corresponds to a set

of (ηi, Zi) values with the same estimated effect. There are two important takeaways

from this figure.

First, consistent with Figure 3, the estimated effect declines as students’ baseline

reading achievement increases (moving from left to right). Second, we also observe

that students who are less likely to receive an exemption and be promoted to fourth

grade benefit significantly more from retention. For example, at the retention cutoff,

the average effect for students who are least likely to be retained (ηi=1) is roughly

0.3σ where the average effect for those most likely to be retained (ηi=0) is 1σ. This

finding suggest that the exemptions to the retention rule incorporated into Florida’s

policy indeed identify students who are least likely to benefit from retention. That

said, exempt students with lower baseline achievement would still benefit from re-

tention: the effect of retention on students 25 points below the cutoff who are most

likely to receive an exemption is nearly 0.7σ while the effect for exempt students 50

points below the cutoff is roughly equivalent to the effect of retention for non-exempt

students at the cutoff.

Table 1 extends this analysis to reading scores in grades 4 through 8 under different

scenarios for treatment assignment. In the first column, we present the treatment

effects under optimal treatment assignment (i.e., keeping the retention rate constant,

yet assigning the individuals who would benefit most from retention). The second

column presents the average treatment effect under the realized treatment assignment

(average treatment effect on the treated or ATT); the third column gives the estimated

effect on the complier population at the threshold (or LATE); the fourth gives the

average treatment effect if students were randomly retained (overall average treatment

effect on the treated or ATE); and the last column provides the average treatment

effect if those who are not retained under the realized treatment assignment were

retained (average treatment effect on the controls or ATC).

The results suggest that the realized assignment is nearly equivalent to the optimal

assignment. In particular, average treatment effects under realized assignment are
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larger than 77 percent of the average treatment effects under optimal assignment in

all cases. It also suggests that the ATT is larger than the LATE, implying that the

policy increases test scores of those retained by more than has been shown in previous

studies which use an RD approach to identify the LATE. However, the results in the

last column shows that expanding the program would have minimal effects in the years

after the student was retained and that these effects fade-out completely by sixth-

grade. This suggests that Florida’s policy is quite successful in identifying students

most likely to benefit from retention.

VI Conclusion

The trade-off between internal and external validity is a common issue in causal in-

ference. In the context of RD design, this trade-off manifests itself in two ways. First,

the RD estimates obtained using traditional methods only apply to individuals iden-

tified for treatment within a small bandwidth around the treatment cutoff. Second, in

many RD applications, treatment assignment is fuzzy: that is, being on the treatment

side of the cutoff does not fully determine treatment status due to non-compliance

or policy-dictated exemptions. In those settings, it is hard to generalize traditional

RD estimates to non-compliers. That said, understanding treatment effects beyond

compliers around the treatment cutoff is critical from a public policy perspective in

many settings for several reasons.

In this study, we propose a new method for use in fuzzy RD settings, which we

call the Global Regression Discontinuity Design, to address this issue. The estimator

can be thought of either as a bias-adjusted observational study or an extrapolation

of the traditional fuzzy regression discontinuity estimate (first to non-compliers at

the cutoff and then to individuals away from the cutoff). We then show that it can

be motivated in both a frequentest framework (in that it is consistent under weaker

assumptions than existing approaches) or in a Bayesian framework (in that can be

considered the posterior mean given the observed conditional moments under more

flexible conditions).

We then present an application of this method in education policy. In particular,

we examine the broader effects of early grade retention policies, which often require

students to score above a predetermined threshold on third-grade reading tests to

be promoted to fourth grade, on student outcomes using student-level data from
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Florida. Several prior students have addressed this question using traditional RD

designs and found significant benefits. Here, we ask how these benefits differ for

lower-performing students away from the cutoff and for low-performing students who

were promoted using exemptions. We find that the positive effects of retention are

larger for students with lower baseline reading achievement and smaller for student

exempt from retention. Our findings also suggest that retaining more students, by

either increasing the threshold or removing exemptions, would have limited effect on

the newly retained students.

Finally, we conclude by highlighting that the marginal treatment effect represen-

tation of the fuzzy RDD settings provides a natural framework for researchers to

consider ways of extending the method presented above to slightly different contexts.

While we focus on the most simple design here, we sketch in Appendix B how the

model can be extended to handle multiple discontinuities, provide an alternative tests

for the external validity of the traditional RDD estimates, handle cases of one-sided

non-compliance, and be used to improve the precision of the fuzzy RDD estimates.
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VII Graphs and Tables

VII.A Graphs

Figure 3: Average Treatment Effect on the Treated
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Note: The figure plots how the estimated the conditional average treatment effect
on the treated varies with the running variable. Specifically, the solid line shows the
estimated Ê[τi|Zi = Z, Ti = 1] and the dashed lines indicated the 95% confidence
interval, estimated via a Bayesian bootstrap with school-level clustering.
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Figure 4: Estimates of τ(η, Z)
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Note: The figure illustrates how τ̂(η, Z) = E[τi|ηi = η, Zi = Z] varies with both Z
and η. Each line corresponds to a set of (η, Z) values with the same value of τ̂(η, Z).
Roughly speaking, ηi is a latent variable that serves as a measure of how likely an
individual is to enroll in the treatment; individuals’ with low values of ηi are more
likely to enroll than individuals with high values and so it is sometimes referred to as
the “latent cost” of enrolling. See Section II.A for the formal definition.

34



VII.B Tables Opper and Özek

VII.B Tables

Table 1: Average Effect with Different Treatment Assignments

Optimal Realized Local Random Program
Assignment Assignment Effect Assignment Expansion

(ATT) (LATE) (ATE) (ATC)

Grade 4 1.36 1.11 0.90 0.50 0.42
(0.42) (0.11) (0.12) (0.47) (0.53)

Grade 5 0.84 0.74 0.62 0.37 0.31
(0.15) (0.11) (0.11) (0.27) (0.33)

Grade 6 0.69 0.61 0.53 0.07 −0.00
(0.11) (0.09) (0.11) (0.35) (0.39)

Grade 7 0.53 0.45 0.36 0.01 −0.04
(0.11) (0.10) (0.09) (0.37) (0.41)

Grade 8 0.61 0.47 0.39 0.12 0.08
(0.22) (0.11) (0.08) (0.44) (0.48)

Note: Standard errors, generated via a Bayesian bootstrap procedure, are shown in
parentheses. Optimal Assignment keeps the fraction of individuals treated fixed, but
assigns the individuals with the highest treatment effects to the treatment. Realized
Assignment is the average treatment effect of the realized assignment, which cor-
responds to the average treatment on the treated (ATT). Local Effect corresponds
to the effect of the program on compliers at the treatment threshold (LATE). Ran-
dom Assignment is the average treatment effect if treatment was assigned randomly,
which corresponds to the overall average treatment on the treated (ATE). Program
Expansion is the average treatment effect if treatment expanded to the individuals
not currently receiving the treatment and corresponds to the average treatment on
the controls (ATC).
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Figlio, David and Umut Özek, “An extra year to learn English? Early grade

retention and the human capital development of English learners,” Journal of Public

Economics, 2020, 186, 104184.

Freyberger, Joachim and Matthew A. Masten, “A practical guide to compact

infinite dimensional parameter spaces,” Econometric Reviews, 2019, 38 (9), 979–

1006.

Greene, Jay and Marcus Winters, “Revisiting grade retention: An evaluation of

Florida’s test-based promotion policy,” Education Finance and Policy, 2007, 2 (4),

319–340.

37



REFERENCES Opper and Özek
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Licalsi, Christina, Umut Özek, and David Figlio, “The uneven implementation

of universal school policies: Maternal education and Florida’s mandatory grade

retention,” Education Finance and Policy, 2019, 14 (3), 383–413.

Mealli, Fabrizia and Carla Rampichini, “Evaluating the effects of university

grants by using regression discontinuity designs,” Journal of the Royal Statistical

Society, Series A, 2012, 175, 775–798.

Mogstad, Magne, Andres Santos, and Alexander Torgovitsky, “Using In-

strumental Variables for Inference about Policy Relevant Treatment Parameters,”

Econometrica, 2018, 86 (5), 1589–1619.

Mulhern, Christine, Isaac M. Opper, Fatih Unlu, Brian Phillips, and Julie

Edmunds, “Dual Method of Dual Enrollment: Combining empirical approaches

to estimate the impacts of taking college courses in high school on educational

attainment,” 2023.

Mumma, Kirsten and Marcus Winters, “The effect of retention under Missis-

sippi’s test-based promotion policy,” 2023.

Newey, Whitney K. and Daniel McFadden, “Large Sample Estimation and

Hypothesis Testing,” in R.F. Engle and D.L. McFadden, eds., Handbook of Econo-

metrics, Volume IV, Elsevier Science, 1994.

Opper, Isaac M., “From LATE to ATE: A Bayesian Approach,” 2023.
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A Proofs

Proposition 1. Under assumptions 1-5, the Global RDD as defined in Definition

can be implemented using the observed conditional moments and is well-defined.

Proof. The fact that the Global RDD can be estimated using the observed data is

clear, so we focus the proof on showing that it is well-defined, i.e., that there is a

single choice of (ŷ0, ŷ1) ∈ YGRDD such that ŷk(ν(Z), Z) = E[Ti = k, Zi = Z] for all

Z ̸= Z∗ and k ∈ {0, 1}. We will focus on the case where k = 0, but the proof for the

case of k = 1 is identical.

To do so, we use the fact that even though we do not observe the conditional

moments at Z∗, any possible ŷ0 ∈ YGRDD
0 that satisfies ŷ0(ν(Z), Z) = E[Ti =

0, Zi = Z] for all Z ̸= Z∗ needs satisfy the restriction that ŷ0(pl, Z
∗) = y∗0(pl, Z

∗)

and ŷ0(ph, Z
∗) = y∗0(ph, Z

∗). If not, it would be impossible to choose a continuous

function γ(Z) such that both: ŷ0(ν(Z
∗ + ϵ), Z∗ + ϵ) = E[Ti = 0, Zi = Z∗ + ϵ] and

ŷ0(ν(Z
∗ − ϵ), Z∗ − ϵ) = E[Ti = 0, Zi = Z∗ − ϵ] for a small ϵ.

We can then use that there is a single choice of β∗
0 that goes through both y∗0(ph, Z

∗)

and y∗0(pl, Z
∗). Since Z∗ is the only point where we observe multiple values of y∗0(η, Z),

we can then set γ∗(Z) = E[Yi|ν(Z), Z, Ti = 0]− β∗
0ν(Z) to ensure that ŷk(ν(Z), Z) =

E[Ti = 0, Zi = Z] for all Z ̸= Z∗. Finally, from the assumption that ν(Z) and

µ∗(η, Z) are both continuous functions, it follows that γ∗(Z) is a continuous function

and hence β∗
0η + γ∗(Z) ∈ YGRDD

0 .

Remark 1. Let τ ∗GRDD be the estimate generated by the Global Regression Disconti-

nuity Design, as defined in Section II.B, and τ ∗obs(Z) be the estimate generated from

the traditional observational study, as defined in Equation (7). We then have:

τ ∗GRDD(Z) = τ ∗obs(Z)− b (11)

where b is a measure of the bias in the observational estimates. Specifically, defining

β∗
0 and β∗

1 as in Equation (9) and (10), we have:

b = β∗
0 · ν(Z) + β∗

1 ·
(
1− ν(Z)

)
(12)

= ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(13)
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where ξk ∈ R is a function of ph, pl and ν(Z), τ ∗obs(Z
∗
h) = limZ↓Z∗ τ ∗obs(Z), and

τ ∗obs(Z
∗
l ) = limZ↑Z∗ τ ∗obs(Z).

Proof. We start by noting that in the Global RDD we restrict the functional form

of the estimated moments to be of the form: ŷ0(ν(Z), Z) = β∗
0ν(Z) + γ(Z) and

ŷ1(ν(Z), Z) = β∗
1ν(Z) + δ(Z). Thus, we get that:

τ ∗GRDD(Z) = ŷ1(1, Z)− ŷ0(0, Z)

=
(
ŷ1(1, Z)− ŷ1(ν(Z), Z)

)
+
(
ŷ1(ν(Z), Z)− ŷ0(ν(Z), Z)

)
+
(
ŷ0(ν(Z), Z)− ŷ0(0, Z)

)
=
(
1− ν(Z)

)
· β∗

1 + τ ∗obs(Z) + ν(Z) · β∗
0

which gives the first expression for the bias.

To connect the bias measure to the traditional RDD, we start by rearranging the

traditional RD estimate to write that it can be expressed as either:

τ ∗RDD = τ ∗obs(Z
∗
l )+

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl
· (1−ph)+

y∗1(ph, Z
∗)− y∗1(pl, Z

∗)

ph − pl
·ph (26)

or

τ ∗RDD = τ ∗obs(Z
∗
h)+

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl
· (1− pl)+

y∗1(ph, Z
∗)− y∗1(pl, Z

∗)

ph − pl
· pl (27)

where y∗ are the true conditional moments at the specified points.

As before, we have that β∗
0 and β∗

1 are defined such that:

β∗
0 =

y∗0(ph, Z
∗)− y∗0(pl, Z

∗)

ph − pl
and β∗

1 =
y∗1(ph, Z

∗)− y∗1(pl, Z
∗)

ph − pl
(28)

Thus, we get that we can re-write Equations (26) and (27) as the set of linear

equations: [
1− ph ph

1− pl pl

][
β∗
0

β∗
1

]
=

[
τ ∗RDD − τ ∗obs(Z

∗
l )

τ ∗RDD − τ ∗obs(Z
∗
h)

]
(29)

From this it is clear that we can write β∗
0
as a linear combination of τ ∗RDD−τ ∗obs(Z

∗
l )

and τ ∗RDD − τ ∗obs(Z
∗
h), with the weights depending on ph and pl, and that the same is

true (with different weights) for β∗
1
. Plugging that into the expression that:

τ ∗GRDD(Z) =
(
1− ν(Z)

)
· β∗

1 + τ ∗obs(Z) + ν(Z) · β∗
0 (30)
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we get that we can also write:

τ ∗GRDD(Z) = ξh ·
(
τ ∗RDD − τ ∗obs(Z

∗
h)
)
+ ξl ·

(
τ ∗RDD − τ ∗obs(Z

∗
l )
)

(31)

where ξk ∈ R is a function of ph, pl and ν(Z).

Proposition 2. Let τ ∗ denote the true MTE function. Then the estimated effect on

the set of compliers at the Z∗ converges to the true effect on that set, i.e.:

1

ph − pl

∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

1

ph − pl

∫ ph

pl

τ ∗(η, Z∗)dη (14)

Proof. We start by noting that:∫ ph

pl

τ ∗(η, Z∗)dη =
(
phy

∗
1(ph, Z

∗)−ply
∗
1(pl, Z

∗)
)
−
(
(1−pl)y

∗
0(pl, Z

∗)−(1−ph)y
∗
0(pl, Z

∗)
)

and we can similarly write∫ ph

pl

τ ∗GRDD(η, Z
∗)dη =

(
phŷ1(ph, Z

∗)−plŷ1(pl, Z
∗)
)
−
(
(1−pl)ŷ0(pl, Z

∗)−(1−ph)ŷ0(pl, Z
∗)
)

where ŷ corresponds to the estimated moments in the Global Regression Discontinuity

Design.

From the proof of Proposition 1, however, it follows that ŷ(η, Z) equals y∗(η, Z) at

every observed point, i.e., at every point (ν(Z), Z), and at both (ph, Z
∗) and (pl, Z

∗).

The theorem thus follows.

Proposition 3. Let y∗ be the true conditional moments and suppose that y∗ ∈
YGRDD. Then the estimated MTE function converges to the true MTE function,

i.e., τ ∗GRDD = τ ∗.

Proof. As shown in Proposition 1, we have that the ŷ resulting from the Global

Regression Discontinuity Design are the only y ∈ YGRDD that matches y∗ at the

observed moments. If y∗ ∈ YGRDD, then ŷ must match y∗ at every moment and so

τ ∗GRDD = τ ∗.

Proposition 4. The assumptions under which the Global RDD converges to the true

treatment effect function are weaker than those under which the observational study

43



Opper and Özek

does. Similarly, the conditions under which the Global RDD converges to the true

average treatment effect on a complier population are weaker than the conditions

under which the Angrist and Rokkanen (2015) estimator does.

Proof. We start by formally defining a version of the Global RDD that includes a set

of covariates, which we denote as Xi for individual i.
17 To extend the model, we will

let ν(Z,X) = Pr(Ti = 1|Zi = Z,Xi = X), as well as pl(X) = limZ↑Z∗ ν(Z,X) and

ph(X) = limZ↓Z∗ ν(Z,X).18 Finally, we will again set yk(η, Z,X) ≡ E[Yi|ηi = η, Zi =

Z,Xi = X].

It can then be defined as:

τ ∗GRDD(η, Z,X) = τ ∗obs(Z,X)− β∗
0,X · ν(Z,X)− β∗

1,X ·
(
1− ν(Z,X)

)
(32)

where τ ∗obs(Z,X) = E[Yi|Ti = 1, Zi = Z,Xi = X] − E[Yi|Ti = 1, Zi = Z,Xi = X],

β∗
0,X = y0(ph(X),Z∗,X)−y0(pl(X),Z∗,X)

ph(X)−pl(X)
and β∗

1,X = y1(ph(X),Z∗,X)−y1(pl(X),Z∗,X)
ph(X)−pl(X)

.

From here, the proof is straightforward. First, it follows that τ ∗obs(Z,X) = τ ∗(Z,X)

if and only if yk(η, Z,X) does not depend on η for k ∈ {0, 1}. If that is the case,

then β∗
0(X) = β∗

1(X) = 0 and so τ ∗GRDD(η, Z,X) = τ ∗obs(Z,X) = τ ∗(η, Z,X). It also

clear that there exist formulations of yk(η, Z,X), namely those that are additively

separable in η and (Z,X) and linear in η, under which τ ∗GRDD(η, Z,X) = τ ∗(η, Z,X)

but where τ ∗obs(Z,X) ̸= τ ∗(Z,X). Thus, the assumption required for the Global RDD

to converge to the true conditional average treatment effect function is strictly weaker

than the assumption required for the observational study to do so.

Next, we turn to the assumptions of Angrist and Rokkanen (2015). In our nota-

tion, their Generalized conditional independence assumption (GCIA) can be written

as the assumption that:

yk(η, Z,X) = yk(η,X) (33)

ν(Z,X) = ph(X) · 1(Zi > Z∗) + pl(X) · 1(Zi < Z∗) (34)

and the Conditional first stage being that ph(X) ̸= pl(X) for all X.19 Under this

17Roughly speaking, this formulation simply involves separately estimating the Global RDD as
specified in Section II separately for each set of potential covariates. In practice, estimation of such
a model is likely be infeasible and so we implement a different approach to “control” for covariates
in Section IV.

18We extend Assumption 4 to be that ph(X) ̸= pl(X) for all X.
19As shown in Vytlacil (2002), the monotonicity assumption is implicit in the generalized Roy
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assumption, it follows that:

1

ph(X)− pl(X)

∫ ph(X)

pl(X)

τ ∗GRDD(ν,X)dν =
1

ph(X)− pl(X)

∫ ph(X)

pl(X)

τ ∗(ν,X)dν (35)

for any X, with the proof being identical to the one for Proposition 2. Again, it

is also clear that there exist formulations of yk(η, Z,X) such that τ ∗GRDD converges

to the true treatment effect function, but the Angrist and Rokkanen estimator does

not. Thus, the assumption required for the Global RDD to converge to the true local

average treatment effect are strictly weaker than the assumptions required for the

Angrist and Rokkanen estimator to do so.

Proposition 5. For any choice of C0 and C1 and any point Z̃ ̸= Z∗, we get that:

τ ∗GRDD(η, Z) = E
[
τ ∗(η, Z)|D({Z̃, Z∗})] (18)

for every η and ∈ {Z̃, Z∗}.

Proof. The proof is straightforward, but requires some additional notation. First, we

will let h(η, Z) be a 3× 1 vector equal to [1, η, Z] and θ to be 3× 1 coefficient vector

equal to [αk, βk, γk]
′. Thus, the linear portion of the modified GP can be written

as h(η, Z)′θ. We also let H denote a matrix constructed by stacking the values of

h(η, Z)′ of all the observed data and Y denote a vector of the observed outcomes.

Next, we introduce a succinct way to denote the covariance terms of the rest of

the GP. If we use (as in the main paper) D to denote the observed data and letN

be the number of observed data points, we then let Ck

(
(η, Z),D

)
be a N × a vector

where the ith row is equal to Ck

(
(η, Z), (ηi, Zi)

)
. We similarly let Ck

(
D
)
be a N ×N

matrix where the (i, j) value of the matrix is equal to Ck

(
(ηi, Zi), (ηj, Zj)

)
.

Given this notation, we can write the mean posterior as:

E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= h(η, Z)′θ̂ + Ck

(
(η, Z),D

)′
Ck

(
D
)−1

r (36)

where θ̂ =
(
H ′Ck(D)−1H

)−1
H ′Ck(D)−1Y and r = Y −H ′θ̂.

Note that since we condition only on D
(
{Z̃, Z∗}

)
, we only consider the case in

which we observe three data points: (ν(Z̃), Z̃), (pl, Z
∗), and (ph, Z

∗). The linear

model introduced in Section II.A.
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model can therefore perfectly explain the observed outcomes, i.e., r = 0, which implies

that: E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= h(η, Z)′θ̂.

As outlined in Proposition 1, we also know that the only way to perfectly fix the

observed outcomes is to have the slope on the η term equal β∗
k = yk(ph,Z

∗)−yk(pl,Z
∗)

ph−pl

and so we get that:

E
[
yk(η, Z)

∣∣D({Z̃, Z∗}
)]

= (η − ν(Z))β∗
k + yk

(
ν(Z), Z

)
(37)

for Z ∈ {Z̃, Z∗}, which gives the equivalent formulation as ŷk(η, Z) as generated by

the Global RDD. From the fact that T is linear, we therefore get that E[τ ∗(η, Z)|D
(
{Z̃, Z∗}

)
] =

τ ∗GRDD(η, Z) for all η and Z ∈ {Z̃, Z∗}.

Proposition 6. Define to b∗obs(η, Z) be the bias in the observational study, i.e.,

b∗obs(η, Z) = τ ∗obs(Z)− τ ∗(η, Z) (19)

where τ ∗obs(Z) is defined in Equation (7). Then:

τ ∗GRDD(η, Z) = τ ∗obs(Z)− E
[
b∗obs(η, Z)

∣∣D({Z,Z∗})
]

(20)

for any (η, Z) and any choice of C0 and C1.

Proof. This follows immediately from the fact that E[τ ∗(η, Z)|D
(
{Z̃, Z∗}

)
] = τ ∗GRDD(η, Z)

– as shown in the Proposition 5 – and the definition of b∗obs(η, Z).

Proposition 7. Suppose that Ck((η, Z), (η
′, Z ′)) = Ck,η(η, η

′) + Ck,Z(Z,Z
′) for both

k ∈ {0, 1} and that:

ν(Z) =

pl if Z < Z∗

ph if Z > Z∗
(21)

Then for any choice of Ck,η and Ck,Z, we get that:

τ ∗GRDD(η, Z) = E
[
τ ∗(η, Z)|D(Z)] (22)

for every (η, Z).

Proof. Using the notation introduced in the above proof, we start by re-casting mean
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posterior of the Gaussian process as:

E
[
yk(η, Z)

∣∣D(Z)] = h(η, Z)′θ̂ + ˆ̃y(η, Z) (38)

where the parameters θ̂ and ˆ̃y are the solutions to:

argmin
θ,y

||y|| s.t. h(ν(Z), Z)′θ + y(ν(z), Z) = yk(ν(Z), Z) ∀Z (39)

and the norm ||y|| depends on the chosen kernel Ck. Next, from the assumption that

Ck = Ck,η + Ck,Z we know that ỹ(η, Z) = f(η) + g(Z) and ||y|| = ||f ||+ ||g||.
We then use the assumption that ν(Z) is a step function to get that g(Z) is is

completely determined by α̂k, δ̂k, and the constraint that h(ν(Z), Z)′θ+ y(ν(z), Z) =

yk(ν(Z), Z) for all Z. Importantly, this means that we choose βk and f without

consideration of αk, δk and g, i.e., we can re-write Equation 39 as:

argmin
βk,f

||f || s.t. βkν(Z) + f(ν(Z)) = yk(ν(Z), Z)−
(
αk + γkZ + g(Z)

)
∀Z (40)

Finally, as outlined in Proposition 1, there is a unique β∗
k , equal to

yk(ph,Z
∗)−yk(pl,Z

∗)
ph−pl

,

that allows ||f || = 0 and hence satisfies the minimization. Thus, we get that:

E
[
yk(η, Z)

∣∣D(Z)] = (η − ν(Z))β∗
k + yk

(
ν(Z), Z

)
(41)

which gives the equivalent formulation as ŷk(η, Z) as generated by the Global RDD.

From the fact that T is linear, we therefore get that E[τ ∗(η, Z)|D] = τ ∗GRDD(η, Z) for

all η and Z.

Proposition 8. Let τ̂GRDD be the estimate generated by the Global Regression Discon-

tinuity Design, as defined above, and τ̂ ∗GRDD be the MTE function defined in Definition

1. Then given Assumptions 1-4 and 6-9 we get that:

τ̂GRDD
p→ τ ∗GRDD (25)

Proof. For notation, we start using y to denote the parameters, i.e., y = (β0, β1, γ, δ),
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and then define:

Qn(y) =
1

N

∑
∀i

(
Yi −

(
β0 · ν̂(Zi) + γ(Zi) + Ti ·

(
(β1 − β0) · ν̂(Zi) + δ(Zi)

)
+ ξXi

))2

+
1

N
λγ

∫ (
γ′′(Z)

)2
dz +

1

N
λδ

∫ (
δ′′(Z)

)2
dZ

and

Q0(y) = E

[(
Yi − β0ν(Z) + γ(Z) + Ti ·

(
(β1 − β0) · ν(Z) + δ(Z)

))2]
(42)

We then show that four assumptions in Theorem 2.1 of Newey and McFadden

(1994) hold, i.e., that: (i) Q0 has a unique minimum; (ii) the parameter space is

compact; (iii) Q0 is continuous; and (iv) supy∈YGRDD |Q̂n(y)−Q0(y)|
p→ 0. Since the

four assumptions hold, we can then conclude that ŷ
p→ ŷ∗ for the unique ŷ∗ ∈ YGRDD

that minimizes Q0(y).

The proofs that condition (iii) holds is straightforward to show and condition (ii)

follows from Assumption 9. Furthermore, from the fact that ν̂ → ν – which in turn

can be proved using the same approach as in this proof – and the law of large numbers,

we get that condition (iv) holds.

The only condition whose proof is unique to the this context is (i), i.e., that Q0 has

a unique minimum when we restrict the possible functions to the set YGRDD. This

follows from Proposition 1, as does the fact that the ŷ∗ ∈ YGRDD that minimizes

Q0(y) corresponds to the values (ŷ0, ŷ1) ∈ YGRDD such that ŷk(ν(Z), Z) = E[Yi|Ti =

k, Zi = Z] for all Z.

Finally, since T is continuous, we can conclude that τ̂GRDD = T (ŷ)
p→ T (ŷ∗) ≡

τ ∗GRDD.

Proposition 9. For any choice of C0 and C1, the expected loss is lower for the Global

Regression Discontinuity Design than for a traditional observational study.

Proof. From the law of iterated expectations, we can then re-write the expected loss

for the observational study as:

L = E

{
E
[(

τ ∗(η, Z)− τ ∗obs(η, Z)

)2∣∣∣∣D({Z∗, Z}
)]}

(43)
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for any Z ̸= Z∗. We can then focus on the inside expectation and show that:

E
[(

τ ∗(η, Z)−τ ∗obs(η, Z)
)2∣∣∣∣D({Z∗, Z}

)]
≥ E

[(
τ ∗(η, Z)−τ ∗GRDD(η, Z)

)2∣∣∣∣D({Z∗, Z}
)]

(44)

for all D
(
{Z∗, Z}

)
. This follows directly from Proposition 5. Since the expected

loss conditional on D
(
{Z∗, Z}

)
is lower for the Global RDD than the traditional

observational study regardless of D
(
{Z∗, Z}

)
, the expected loss is also lower uncon-

ditionally.

Proposition 10. Decompose the modified Gaussian process as defined in Section III

so that we can separate the functions into: (a) one capturing the direct effect of η, (b)

one capturing the direct effect of Z, and (c) one capturing the interaction, i.e., let

yk(η, Z) = ỹk,η(η) + ỹk,Z(Z) + ỹk,η,Z(η, Z) (45)

Then holding fixed the rest of the the Gaussian process, if:

V
((

ỹ1,Z(Z)− ỹ0,Z(Z)
)
−
(
ỹ1,Z(Z

∗)− ỹ0,Z(Z
∗)
))

(46)

is large enough for Z ̸= Z ′, then the expected loss is lower for the Global RDD than

for a traditional fuzzy RDD.

Proof. Since the Global RDD involves comparing y1(ν(η), Z) to y0(ν(η), Z), the ex-

pected loss of the Global RDD does not depend on the value of Equation 46. In

contrast, since the traditional fuzzy RDD only uses information at the discontinuity,

an increase of V
((

ỹ1,Z(Z)− ỹ0,Z(Z)
)
−
(
ỹ1,Z(Z

∗)− ỹ0,Z(Z
∗)
))

increases the expected

loss of the fuzzy RDD by the same amount, holding the rest of the modified GP fixed.

Thus, for a large enough value of Equation 46 the expected loss of the fuzzy RDD is

larger than for the Global RDD.

B Extensions

An advantage of using a marginal treatment effect representation of the fuzzy RDD

setting is that the flexibility provides a number of possible extensions to the method

presented above. While we will mostly leave these for future study, we briefly touch
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on some of these extensions here as guidance for those researchers who want to apply

the method to one of these contexts.

B.A Multiple Discontinuities

There are many contexts in which there are multiple discontinuities and a growing

body of literature investigates how best to handle these cases (e.g., Cattaneo et al.

(2021),Bertanha (2020)). While our focus has been contexts where there is a single

discontinuity, as specified in Assumption 4, the Global RDD can also be applied to the

case where there are multiple discontinuities. We briefly discuss here how the presence

of multiple discontinuities changes the results in Section II and III and then use this

to illustrate how we can extend the Global RDD to handle multiple discontinuities.

The assumption that there is a single discontinuity was important for the previous

results because it ensured that the definition of τ ∗GRDD is well-defined, i.e., that there

exists a unique function ŷk ∈ YGRDD
k such that ŷk(ν(Z), Z) = E[Yi|Ti = k, Zi = Z]

for all Z ̸= Z∗ and k ∈ {0, 1}. In other words, the issue with there being multiple

discontinuities is that it is no longer guaranteed that there exists an additively sepa-

rable and linear in η conditional moment function that can match all of the observed

moments. In response to this issue we have essentially two choices. We can either: (a)

relax the assumption that they are additively separable and linear in η in a way that

ensures there still exists a single function ŷk ∈ YGRDD
k that matches every observed

moment or (b) use the multiple discontinuities to improve the precision with which

we estimate β̂0 and β̂1.

As an example of the first approach, with multiple discontinuities we can still

restrict the functions ŷk(η, Z) to be additively separable but allow the η term to be a

higher-order polynomial, with the order depending on how many discontinuities there

are (and how the probability of treatment changes at these points). In this case, how

much allowable flexibility in the η term we could allow due to the multiple discontinu-

ities is more or less identical to the analysis in Brinch et al. (2017). Alternatively, we

could still restrict that functions ŷk(η, Z) to be linear in η (for any Z), but allow the

slope to depend on Z. For example, we could specify that y∗k(η, Z) = δ(Z) + β(Z)η,

where β(Z) is some polynomial of Z; again, the flexibility in our specification of

β(Z), e.g., whether we allow it to be a constant, linear function of Z, or higher-order

polynomial, would depend on how many discontinuities there are.
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An alternative is to keep the estimation approach specified in Section IV even in

the presence of multiple discontinuities. To be clear, doing so invalidates many of

the results that rely on the Bayesian model presented in Section III. However, the

multiple discontinuities would lead to a more precise estimation of an “average slope”

and we believe this will likely preferable in most contexts. We also note that, if one

continuous to restrict the estimated moments to be additively separable and linear

in η, the multiple discontinuities lead to the model being over-identified. This, in

turn, provides the ability to empirically test the null hypothesis that the true model

is additively separable and linear in η. We next briefly discuss more generally how

the MTE representation of the fuzzy RD provides the ability to test a range of more

restricted models.

B.B Testing Restricted Models

The main issue we have discussed in this paper is that the functions yk(η, Z) are not

identified in the fuzzy RD context without significant additional restrictions. We have

therefore proposed a particular restriction and then spent Section II discussing how

this transforms the observed moments into the resulting estimates and III discussing

how to motivate this restriction. One downside of our choice of restrictions is that

because it perfectly explains the observed moments, there is no way to test empirically

whether this restriction is plausible or not.

We now turn briefly to an alternative use of the MTE representation, which is that

it suggests natural ways to test for potentially interesting null hypotheses.20 Roughly

speaking, by further restricting the set of plausible conditional moments we can get

an over-identified model, and therefore can conduct empirical tests of the restricted

model. We now discuss four null hypotheses, which we find are often of interest to

researchers and which we return as part of the accompanying R package.

For the first restricted model, we consider testing the null hypothesis that there

is no endogenous selection into treatment. In the MTE model, this is equivalent to

testing the null hypothesis that β̂0 = β̂1 = 0. While we feel like it is worthwhile to

mention this test and to include it in the output generated by the R package, we want

to highlight that this is the identical test as proposed in Bertanha and Imbens (2020)

and so encourage those particularly interested in testing this null to see Bertanha and

20Many thanks to the participants at the 2023 AEFP for their thoughtful comments on a (very!)
early version of this paper, which in turn motivated this section.
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Imbens (2020) for more details on the test.21 Note also that, at least asymptotically,

the coefficients β̂0 and β̂1 are determined only using information at the discontinuity,

e.g., see Equations (9) and (10).

For the second restricted model, we relax the restriction that there is no endoge-

nous selection and instead test the null hypothesis that there is linear endogenous

selection and constant treatment effects. That is, we test the joint null hypothesis

that τ ∗(η, Z) = τ and µ∗(η, Z) = αη+ γ̃(Z) for some α ∈ R and γ̃ : Z → R. It is easy
to show that this restriction corresponds the restriction that β̂1 = β̂0 and δ̂(Z) = 0

for all Z and so therefore can be easily tested using the results from Step 2 if the

Global Regression Discontinuity Design outlined in Section IV. Unlike the previous

test we discussed, this null uses information both at the discontinuity – to test that

β̂1 = β̂0 – and away from the discontinuity – to test that δ̂(Z) = 0). However, it is

also worth emphasizing that rejecting the null hypothesis does not allow researchers

to know whether that is due to heterogeneous treatment effects (which we believe

is the null hypothesis they are generally interested in) or to non-linear endogenous

selection (which is an additional restriction needed to over-identify the model). Still,

we believe that rejecting the null (or failing the reject the null) is informative and

so also include the results of this null hypothesis in the R output. We also include

a test of the related null hypothesis that there is linear endogenous selection and no

treatment effect for anyone.

Finally, the last two tests allow for some treatment effect heterogeneity, but restrict

the form it takes. For one of the hypothesis tests, we allow for treatment effect

heterogeneity in the unobserved propensity to enroll but not in Z, i.e., to relax the

previous restriction to be that τ ∗(η, Z) = α1η for some α1 ∈ R. For the second, we

allow for treatment effect heterogeneity in the running variable but not in η, i.e., we

relax the previous restriction to be that τ ∗(η, Z) = δ(Z) for some continuous function

δ. Note that, as in the previous test, both of these test the join null that the treatment

effect heterogeneity is restricted and that there is linear endogenous selection.

21This is true asymptotically; in practice, the different ways in which we estimate the observed
conditional moments mean that the results may differ slightly in a finite-samples. If all you are
interested in is testing this null, we suggest you use the package put together by Bertanha and
Imbens (2020).
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B.C One-Sided Non-Compliance

A common source of fuzzy regression discontinuity designs are cases where there is an

eligibility threshold, but where not everyone who meets the threshold actually enrolls

in the treatment. In many of these cases a fraction of those individuals who do not

meet the eligibility threshold end up enrolling anyway, in which case we can apply

the Global Regression Discontinuity Design outlined above. In others, however, only

those who meet the threshold end up enrolling and so there is only one-sided non-

compliance. This invalidates the part of Assumption 4 where we make the assumption

that ν(Z) ∈ (0, 1) for all Z, which seemingly suggests that we can not apply the

method to these contexts.

To discuss how we might be able to extend the method to these cases, we high-

light the two reasons why the overlap assumption is important. The first, and most

straightforward, is that without knowledge of how E[Yi|Ti = 1, Zi = Z] varies ac-

cording to Z it would be impossible to identify δ(Z). The second is more specific

to the regression discontinuity context; without two-sided imperfect compliance, we

only observe three conditional moments at the discontinuity rather than four, and

hence are unable to identify both β1 and β0.

That said, we can use the logic outlined above to propose an approach that can be

applied to fuzzy RDs, even in the case of one-sided noncompliance. In particular, a

natural approach in these cases is to further restrict ourselves to the case in which β̂1 =

β̂0, i.e., restrict to consider the case where there is no treatment effect heterogeneity

in η, and only focus on the values of the running variable where this is overlap. This

would allow us to identify, for example, the average treatment effect on the treated

(ATT) and can still be motivated as the “best guess” of the treatment effects under

the Bayesian model outlined in Section III. The key difference is that we should

implicitly be less confident in these results since there is less data to condition on.

Similarly, it can be viewed as requiring weaker assumptions to identify the ATT than

the an observational study (or Angrist and Rokkanen (2015)), although it requires

stronger assumptions than if there is two-sided non-compliance.

B.D Improving Precision at the Cost of Bias

As discussed in Section II, the proposed estimator can be thought of as a linear com-

bination of: (a) a potentially biased observational study using data away from the
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discontinuity and (b) a consistent (but local) traditional regression discontinuity de-

sign using data at the discontinuity. Note that in this framing, it appears similar to

other designs that combining observational data with quasi-experimental data; how-

ever, the motivation for these usually stem from the fact that the quasi-experimental

estimates are less precise than the observational estimates and so the researcher aims

to improve mean-square error of the estimates by reducing the variance at the expense

of moderate increases in the bias (e.g., Angrist et al. (2017) and Chetty and Hendren

(2018)). Here, in contrast, the weights reflect the fact that even without statistical

uncertainty, neither the observational estimate nor the RD estimate is perfect; the

observational estimates is biased due to selection bias and RD estimate is local to the

complier population at the cutoff.

In practice, of course, it is often the case that the RD estimate is not only local,

but imprecise. If one is concerned about the imprecision of the fuzzy RD estimates,

it makes sense to further reduce the weight the on the RD estimates, thereby moving

the resulting estimates toward the observational estimates. While the intuition is

straightforward, it is not immediately obvious how should should do so given the

complex nature of ξh and ξl in Remark 1. Luckily, the approach outlined in Section

IV suggests a natural way to do so. In particular, it can be done by simply including

a penalty term for the linear components of yk(η, Z) in addition to the penalty term

needed to non-parametrically identify γ and δ. Note that this also corresponds to

a case in the Bayesian framework outlined in Section III where we assume that:

[αk, βk, γk]
′ ∼ N(0, σ2I) for some finite σ, rather than only considering the limiting

case where σ2 → ∞. See Mulhern et al. (2023) for more discussion of this point and

an example of how it can work in practice.
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