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Abstract 
 
In the past 20 years, large digital platforms have made many acquisitions, mainly young and 
innovative startups. Few of them have been reviewed by competition authorities and little is 
known on their evolution after acquisition. This paper intends to fill in this gap by looking at the 
development of the technologies owned by the acquired firms. We focus on technologies protected 
by a patent and we investigate whether an acquisition by a big tech contributes to their 
development. For this analysis, we use patent citations as a proxy for the innovation effort by the 
acquirer. Our main result is to show that acquisition increases the innovation effort of the acquirer 
but only temporarily. After 1.5 year, there is no longer a significant impact of the acquisition on 
the acquirer’s innovation effort. This decline is relatively larger when the acquired patent belongs 
to a core technology field of the acquiring firm or to a large patent portfolio. On the contrary, 
citations by the rest of the industry are not negatively affected by acquisition, which does not 
corroborate the idea that the acquired technology has reached its maturity. 
JEL-Codes: D430, G340, K210, L400, L860. 
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1 Introduction

One of the most notable transformations of our economy over the last 30 years is its move towards

digitalization. Google (Alphabet), Apple, Facebook (Meta), Amazon and Microsoft (which are often

grouped under the labels GAFAM or Big Tech) supported that transformation by bringing more and

more social and economic activities to the online world. From almost non-existent in the early 2000s,

these companies are now the most valuable companies worldwide.

Being the primary gateways through which people use the Internet places Big Tech in a position

of dominance in digital markets. In order to maintain quality services at reasonable prices, regulators

and competition authorities must ensure that other market players can still enter digital markets and

compete with these dominant firms. Among the many challenges that the digital economy poses in

that regard (e.g. strong network effects, multi-sidedness, data-driven economies of scope, etc.), the

role of mergers and acquisitions (M&A) by Big Tech is increasingly considered1, especially given the

very high rate at which these platforms acquire start-ups. In an interview on CNBC2, Tim Cook, Ap-

ple’s CEO, illustrated that: “We acquire everything that we need that can fit and has a strategic purpose

to it. And so we acquire a company on average, every two to three weeks.” Despite this intense rate of

acquisition, very few have been reviewed by a competition authority3 and, up to date, only one of

them has ever been blocked.4 This can first be explained by the fact that most of these transactions

do not meet the turnover-based notification thresholds to be subject to a review by a competition au-

thority. Second, competition authorities are in charge of controlling a market that is becoming more

complex and opaque every day, and over which platforms have an advantage in terms of access to

information thanks to the data they collect on their users (Parker et al., 2021).

It is important that competition authorities better scrutinize the acquisitions by the GAFAM in

order to properly assess their impacts on competition. Proposals are being made to reinforce the

control of mergers by competition authorities, especially in the digital sector.5

1See for instance Argentesi et al. (2019, 2021), Crémer et al. (2019) and Scott Morton et al. (2019).
2Berkshire Hathaway’s annual shareholder meeting, interview by Becky Quick on CNBC in 2019.
3More than 97% of acquisitions in the technology sector have reportedly never been subject to scrutiny by a competition

authority (Kwoka and Valletti, 2021).
4https://www.gov.uk/government/news/cma-directs-facebook-to-sell-giphy
5Reforms to the merger control framework in the digital economy are being discussed throughout the world. In response

to the low number of transactions actually examined by a competition authority, some countries have already introduced
a reform of the legal notification thresholds. For example, Austria and Germany now apply a notification threshold based
on the transaction price. Since March 2021, the European Commission has also allowed Member States to refer to it the
examination of transactions that do not meet the turnover thresholds when the latter does not reflect the actual or future
competitive potential of at least one of the merging parties (European Merger Regulation, Art. 22). Some experts also
envisage a “reversal of the burden of proof”, whereby the merging parties would bear the burden of demonstrating the
absence of anti-competitive effects (Scott Morton et al., 2019).
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In a static environment absent efficiencies and synergies, economic theory predicts that, by re-

laxing a competitive pressure, horizontal mergers necessarily lead to higher prices, restricted output

and a lower consumer surplus. But mergers also have an effect on innovation, and thus on future

prices and products quality. And innovation is key in the digital world; the GAFAM are spending

billions in R&D and many of the firms they acquired are young and innovative startups that often

develop new technologies.

A merger can have a positive effect on innovation, and this could be used as an argument in

the “balance of harm” approach of competition authorities. In practice, the EU and US reviewing

agencies consider the potential innovative benefits of a merger in the context of “efficiencies” (Esteva

Mosso, 2018). For instance, in TomTom/Tele Atlas, the European Commission recognized that the

merger between a navigation systems provider and a digital maps developer would allow to deliver

“better maps - faster”.6 These efficiencies would thus translate into the acquired technology being

further developed after acquisition.

However, these positive benefits of the merger on innovation are far from being granted7 and a

merger may have a negative impact on innovation. In some case, mergers are used to kill innovative

products that threat those of the incumbents, as documented by Cunningham et al. (2021) for the

pharmaceutical industry. In the digital industry, there is a fear that acquisitions of a startup by a

dominant platform results in a strengthening of its dominance, a reduction of effective competition,

and a loss of innovation (Motta and Peitz, 2021). These concerns are even growing given the high

number of acquisitions and the lack of information on the evolution of the startups after they have

been acquired.

The existing evidence show that the startup’s products are often no longer developed after ac-

quisition. Gautier and Lamesch (2021) found that 60% of the products of firms acquired by the big

techs are no longer supplied, maintained or upgraded after acquisition. Affeldt and Kesler (2021) fo-

cus on merging involving ‘apps’ and they document that half of those apps were discontinued after

an acquisition by a tech giant. Eisfeld (2023) studies startup acquisition in the software industry and

finds that 57% of the acquired products have been discontinued under their original brand name af-

ter acquisition. Product discontinuation is particularly a concern when the target is small (Gautier

and Lamesch, 2021).8 However, a project discontinuation does not mean that the acquired technol-

ogy is no longer used, as it could continue to exist under a new brand name, be integrated in a new

6Case M.4854, Commission decision of 14 May 2008, paragraphs 244-250.
7In the Dow/DuPont merger case, the European Commission expressed concerns that the merger would have reduced

innovation. The parties agreed to divest assets in overlapping markets to preserve the industry’s incentives to innovate.
8Ivaldi et al. (2023) do not identify a product discontinuation in their review of the (larger-scale) digital mergers investi-

gated by the European Commission.
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product or more generally in the acquirer’s ecosystem. As a matter of fact, little is known about the

development of technologies after acquisition and this paper intends to fill in this gap.

After acquisition, the target becomes part of the tech giant. Engineers, research labs, projects

and products are transferred to the acquirer and integrated in its ecosystem. To assess the impact of

big tech acquisitions on innovation, and instead of tracking product-level development, this paper

focuses on the projects’ underlying technology, materialized by patents. By tracking patents as they

move across firms, we are able to identify whether a technology continues to be developed after ac-

quisition. More specifically, the patent system is such that, when some inventors build on an existing

technology, they must cite the patent protecting that technology. This implies that the development

of a technology is materialized by citations that are made to the patents protecting it. The number

of citations made by the acquirer itself thus reflects the intentions of the acquirer towards this tech-

nology; a technology that it wants to develop will receive more citations than a technology that is

destined to stagnate. We can therefore use the citations made by the acquirer as a proxy for its in-

novation effort to develop the acquired technology. A higher (lower) research effort after acquisition

translates into more (less) citations to the acquired patents. This is precisely, the relation with intend

to test.

For our analysis, we construct a sample of firms acquired by one of the GAFAM since 1996 and

we identified those that have been granted patents prior to their acquisition. Some acquired firms do

not own patents either because they did not develop technologies or because they did not patent the

technologies they developed. Not patenting an invention could be a strategic decision (e.g. firms that

do not wish to disclose information could prefer secrecy over patenting, Arundel, 2001), but it could

also simply derive from a low probability of imitation, high costs of patenting (e.g. administrative

costs and renewal fees), length of the grant procedure9, or from the conditions for patentability not

being met (Belleflamme and Peitz, 2015). In our sample, 29% of the acquired firms have a patented

technology at the time of acquisition. This represents 68% of the 96 biggest acquired firms (i.e. with a

total funding above $10 million)10.

Next, we retrieve all the citations made by the acquirer to the acquired patents. We use the evolu-

tion of these citations as a proxy for the improvements by the acquirer to the acquired technology. By

exploiting the time series nature of our data, we develop a methodology to identify the effect of acqui-

sition on Big Tech citations to acquired patents. Life-cycle and business-cycle trends in the evolution

of Big Tech citations are captured by controlling for the patent age and the date at which the cita-

tion was made. In a first model specification, the short-term impact of acquisition is identified from

9US patents take approximatively 32 months from their filing date to be granted (as computed based on the “grant lag”
from the OECD Patent Quality Indicators database, July 2021).

10Based on funding data retrieved from Crunchbase.
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the sharp breaks in citations trajectories immediately following acquisition. Second, by means of a

propensity score weighting design, we construct a set of patents with comparable characteristics but

that have not been acquired. We can then compare the remaining time trends in Big Tech citations to

acquired patents with respect to comparable non-acquired patents using a difference-in-differences

design. This allows us to identify the dynamic effects of acquisition on the development of acquired

technologies.

In our analysis, we consider the number of citations to acquired patents during a period of 4

years around acquisition. Our empirical analysis shows that acquisition, first, gives a boost to the

development of the acquired technology as citations increase directly after the merger. But, after 1.5

year, the developments made by Big Tech to acquired technologies start slowing down. We observe

that citations by the acquirer follow an-inverse U-shaped curve and this result is robust to many spec-

ifications that we tested. This suggests that the boost in the development of the technology by its

acquirer fades away in the long run.

Next, we test whether this observed pattern is identical for all technologies and all patents. First,

we find that the boost in citations is higher for technologies that are more novel, which is a rather in-

tuitive result but, even for these novel technologies, the effect seems to fade away in the longer term.

Second, the effect of acquisition on innovation is stronger and more persistent for patents belong-

ing to relatively small patent portfolios. For patents belonging to a large portfolio, we do not observe

a significant boost in citations but the slowing down after 1.5 year does remain. This result could

be explained by different drivers for the acquisition; while the acquisition of firms with small patent

portfolios are likely technology-driven, larger portfolios would rather be acquired for their other as-

sets, like products, clients, network or talent. Third, we distinguish between acquired technologies

belonging to a field in which the acquirer holds a strong position (what we call “core” technologies),

and technologies outside of the acquirer’s core fields (“peripheral” technologies). Our results show

that the boost in citations is mainly driven by peripheral technologies, while the slowing down in the

acquired technology developments appears to be driven by core technologies. This suggests a po-

tential competitive explanation for our results. The acquisition of peripheral technologies could be

motivated by their R&D potential. Outside of their main technology fields, big techs seem to acquire

technologies, engineers and labs, while acquisitions in their main technology fields may have a more

strategic motive. In those core fields, Big Tech seems to acquire firms that could represent a compet-

itive threat to its own research and shelve these technologies after they have been acquired. Such a

different strategy may explain the difference in citations trends for core and peripheral technologies.

A possible explanation for the inverse U-shaped curve in citations after acquisition is that the

acquired technologies are close to maturity and need few developing steps before being commercial-
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ized. In such a case, we should observe a similar citation pattern in the rest of the industry. To test for

this hypothesis, we look at the evolution of citations by the other firms in the industry, i.e. citations

by the non-acquiring firms. Our analysis does not corroborate this technology maturity hypothesis

as we observe that the rest of the industry keeps further developing these technologies up to 2.5 years

after their acquisition. On this basis, we conclude that the improvement potential of the technol-

ogy has not been exhausted after acquisition, so technology maturity is unlikely to explain Big Tech’s

declining interest for the development of acquired technologies.

Related literature

Our paper is related to the literature on merger and innovation. This literature studies the impact of

a merger on the innovation by the merging entity, the competitors and the acquired company. The

earlier literature focused on the intensity of the innovation effort but, more recently, the literature

also focuses on the direction of innovation.

The start-up innovative effort can first be impacted through the possibility of buyout. In case

it does not manage to bring its project to the market, a start-up might want to secure the outside

option of being acquired by a bigger firm. To do so, the start-up would distort its portfolio of projects

towards the interests of the platform such as to maximize the probability of being acquired and the

expected acquisition rents (Bryan and Hovenkamp, 2020b; Dijk et al., 2024). This leads to less radical

innovation and lower quality (Cabral, 2018; Katz, 2021) but it may also stimulate the innovation effort

(Motta and Peitz, 2021). Furthermore, digital platforms may engage in exclusionary practices, for

instance by reducing interoperability with the startup’s product or by imitating its main features and

this threat will drive startups away from the platforms’ core market (Motta and Peitz, 2021; Shelegia

and Motta, 2021).

Mergers might also impact innovation by the acquirer’s competitors, actual or potential. When

firms are competing in innovation, a merger has an impact on the innovation effort of the outsiders

to the merger. Federico et al. (2018) show that a merger reduces the innovation effort by the merged

entity but increases the research effort of the competitors (i.e. research efforts are strategic substi-

tutes). Innovation by actual competitors might be hindered when startups that could have enabled

them to catch up technologically are bought by the leading platform (Bryan and Hovenkamp, 2020a).

Empirically, the effect of digital M&A on innovation by competitors of the merging entity has

been tackled in a recent study by Affeldt and Kesler (2021). These authors study Big Tech acquisitions

in the Google Play Store. They find that, after the acquisition of an app by a tech giant, competing apps

are less likely to be invented or updated and developers shift their innovation effort to non-competing
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apps. Koski et al. (2023) and Eisfeld (2023) study the impact of mergers on potential competitors.

Koski et al. (2023) provide evidence that mergers decrease entry. Eisfeld (2023) has more nuanced

results; she shows that a more stringent merger policy would reduce entry, as buyout is one of the

main motivation for entry. However, it may increase entry if only “strategic” mergers (i.e. acquisitions

by large incumbents that would reinforce their market dominance) were blocked.

In this paper, we focus on the effect of digital M&A on innovation by the merging entity itself.

The total innovation effect resulting from the acquisition of a start-up by a large digital platform is

the combination of both positive and negative effects. Positive effects include the capacity of the

acquisition to solve the “appropriability” problem of innovators who are not able to internalize all the

knowledge spillovers to non-innovating firms (e.g. through imitation), which reduces their incentives

to innovate in the first place (Shapiro, 2011). By merging, they can internalize these externalities

(Federico et al., 2018; Moraga-González et al., 2022) show that the merger leads to a reallocation of

the innovation effort by the merged entity among the research projects in its portfolio, which may

have positive welfare effects. Next, when a merger leads to an increase in margins, the acquiring firm

faces higher incentives to innovate in order to expand demand (Bourreau et al., 2021). In addition,

by merging, companies are pooling complementary skills and assets together. For instance, while the

start-up might have the flexibility and reactivity to contribute innovative ideas, a large platform might

be better equipped to exploit the full potential of the innovation (Crémer et al., 2019; Cabral, 2021).11

The main driver of the negative effects of M&A on innovation is their impact on the market struc-

ture. According to the the so-called Arrow replacement effect, dominant firms have intrinsically lower

incentives to innovate and market power reduces innovative efforts (Aghion et al., 2005). Innovation

is a competitive tool through which a firm can steal business from its competitors. By merging, previ-

ously competing firms internalize these business stealing effects, which thus reduces their incentives

to innovate (Federico et al., 2018; Federico et al., 2020; Motta and Tarantino, 2021). A second mech-

anism through which M&A can deter innovation by the merging entity is the effect on the output.

Innovation allows a firm to increase its margins by setting higher prices. But, in the absence of effi-

ciency gains, M&A lead to a decrease in the merging firms’ output. As a result, there is less to gain

from margin-enhancing innovation (Bourreau et al., 2021).

A start-up might also not have the resources to bring the project to the market and the acquisition

by a large platform may bring the necessary resources to complete the project. However, the acquirer

may not have the incentive to develop it further (Motta and Peitz, 2021; Fumagalli et al., 2020). Even-

tually, it may terminate the acquired project to reinforce its position on the market and be sheltered

11If big techs use mergers to acquire technologies, it is likely to boost the research effort of the startup (Cabral, 2021) but it
may reduce the organic innovation by the big tech itself. This reverse-kill phenomenon is discussed in Caffarra et al. (2020).
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from competition. Incumbents might use acquisitions as a way to get rid of start-ups that represent

potential competition because they are developing substitute products. This is documented in Cun-

ningham et al. (2021) who show that, in the pharmaceutical industry, big pharma acquires startups

developing drug projects competing with their own and terminate the startup’s project after acquisi-

tion, i.e. acquisition “kills” the innovation.

Several papers have tried to assess empirically the impact of mergers on innovations, by looking

either at the number of patents or at the patents’ citations. For instance, Haucap et al. (2019), using

data from the pharmaceutical industry, show a significant decline in the number of patents post-

merger. Interestingly, the merger also negatively affects the R&D of the rivals. Fons-Rosen et al. (2021)

compare patents belonging to acquired and non-acquired startups with similar characteristics. They

find that an acquired patent’s citations increase, on average, by 22% after acquisition. In their study,

they compare periods of 7 years before and after acquisition but they do not look, as we do, at the

evolution of citations over time. In addition, these authors did not differentiate between citations by

the acquirer and citations by other firms, which we find to have different post-acquisition trends.

There are three papers closely related to ours that study the impact of merger in digital indus-

tries. Doan and Mariuzzo (2023) analyze the cloud computing industry. They compare the innovation

effort, measured by the number of patents, before and after the merger. They document an increase

in the number of patents from 40% one year after the merger to 60% three years after. Accordingly,

mergers seem to have a positive impact on the innovation of the merged entity, and this effect is

stronger for leading firms on the market. Gugler et al. (2023) analyze the impact of GAFAM acqui-

sitions on venture-capital funding and innovation, measured by patents. The main difference with

our work is that they do not analyze the impact of the merger at technology/patent level, as we do,

but at a more aggregated ‘market’ level. For that they construct comparable groups of firms and tech-

nology classes, treated or not by the acquisition events and they estimate the impact of acquisition

by comparing the two groups in a difference-in-differences set-up. They found a significant negative

impact of acquisitions on venture-capital funding. The effect on innovation is less clear cut and it

depends on the period and on the acquirer. The initial negative effect observed for mergers before

2010 becomes positive for mergers after this date, with a different magnitude for each GAFAM, the

effects, both positive and negative, being the strongest for Microsoft. Finally, Prado and Bauer (2022)

study the impact of GAFAM acquisitions on the activities of venture capital funds. They found that an

acquisition by a big tech in a given industry increases the venture capital activity in that industry with

a significant increase in the number of deals and funding. However, they show that this effect is only

transitory and fades away after several quarters, an effect that is similar to the impact we measure on

citations.
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In Section 2, we describe the main features of Big Tech acquired technologies (2.1) and the con-

struction of our working datasets (2.2). Sections 3 discusses our empirical strategy to take out the

effect of endogenous factors from the technology developments around the time of acquisition. We

present descriptive evidence in Section 4 and our main results in Sections 5.1 and 5.2, with tests of

robustness in Section 5.3. We develop additional analyses and extensions in Sections 6 and 7, and

Section 8 concludes.

2 Empirical Methodology

For our analysis, we construct two samples of patents. The first is a sample of patents filed by a com-

pany later acquired by Big Tech. Our objective is to track the patented technology after its acquisition

by a tech giant. We also construct a sample of comparable patents but that have not been acquired.

In this section, we describe the data collection and the construction of the working datasets.

2.1 Data and Variables

2.1.1 Big Tech acquisitions

Our working sample is constructed in three steps, as presented in Table 1.

We first create a dataset of firm’s acquisitions by Alphabet, Amazon, Apple, Meta and Microsoft.

To obtain as complete of a list of Big Tech acquisitions as possible, we merge four different databases:

Standard & Poor’s CapIQ (2022), Parker et al. (2021), Gautier and Lamesch (2021), and the US Patent

and Trademarks Office (USPTO) Patent Assignment Dataset (2022).12 We retrieve information on the

identities of the acquired firms and on the dates at which their acquisitions were announced. On this

basis, we identify 859 public big tech acquisitions closed between January 1996 and January 2021 (see

first column of Table 1).

Next, we match acquired firms with a portfolio of patents based on the name of the applicant or-

ganisation. We focus on US-granted patents,13 which we collect from both the OECD Patent Statistics

12We do not consider equity investments, licensing deals or joint ventures as acquisitions. We also do not include com-
panies selling some of their assets as there is no transfer of the company’s ownership. However, we do include companies
that are only partially acquired but whose remaining assets are shut down, because the target company is no longer an
independent entity after acquisition.

13USPTO-published patents represent around 82% of Big Tech-acquired patents, and 93% of Big Tech patents (as com-
puted based on the OECD Patent Statistics, July 2021). The focus on granted patents is explained by the fact that information
on the application filing date - a necessary information to derive who of the target or the acquirer filed the patent - is only
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(built based on the PATSTAT database) and the USPTO Patent Views databases. By matching acquired

firms with intellectual property, we can identify all (granted) patents filed by a Big Tech-acquired firm

to the USPTO. We focus on patent filed before acquisition14 that have later been granted. Because

there is a lag between the filing date and the granting date, an acquired patent could be granted after

acquisition.15 We find that 273 of these firms have filed at least one patent application, of which 252

before being acquired (see second and third columns of Table 1).

Since we identify technology developments by tracking patents as they move across firms, we will

restrict our analysis to those 252 acquisitions associated with patent-protected technologies. While

this only represents 29% of all Big Tech-acquired firms, this share rises to 76% when we consider the

biggest firms (i.e. with a total funding above $10 million16).

Firms acquired by Big Tech
btw. Jan 1996 and Jan 2021

Acquired firms with at least one
US-granted patent

Acquired firms with at least one
US-granted patent pre-acquisition

Amazon 106 34 27
Apple 128 53 52
Facebook 104 18 18
Google 264 75 67
Microsoft 257 93 88

TOTAL 859 273 252

Note: This table illustrates the steps that are taken to select, among all Big Tech-acquired firms, those that have patented a
technology. Patents are identified based on their application number.

Table 1: Number of Big Tech acquired firms

2.1.2 Patent data

We collect information from Patent Views on the patents acquired by Big Tech through the acquisition

of the company that filed these patents.

Patent age To control for potential trends in the technology development over a patent’s life, we re-

trieve information on the patent age based on its filing date.

available for USPTO granted patents.
14Patents filed under the target’s name after acquisition are considered as filed by the acquirer.
15Before a patent is granted, it must be filed and published. The legal requirement for the patent office to publish a patent

application is 18 months from the filing. This 18-month limit is respected for 95% of all US patent applications (Tegernsee
Expert Group, 2012). Earlier publication is often observed: half of US patent applications are published within 9 months
after they were filed (Martin, 2015). Publication means that the content of a patent application is known to the public; that
is becomes “prior art”. However, it does not necessarily mean that the application will result in a (granted) patent, which
grants to the applicant the exclusive rights over the use and sale of the invention. On average, US patents are granted within
32 months of their filing date (as computed based on the ’grant lag’ from the OECD Patent Quality Indicators database, July
2021).

16Based on funding data retrieved from Crunchbase and Orbis.

10



Core technology Another interesting information included in the Patent Views database is the tech-

nology fields to which a patent belongs. This information is recorded in the CPC classification, which

contains 131 subsections at the two-digits level.17 On this basis, we will be able to explore the poten-

tial relation between the technological content of an acquirer’s portfolio and its target’s portfolio.

We first compute the frequency of each of the 131 CPC subsections for all US patents at the

yearly level. Next, we compute the share represented by each tech giant’s portfolio in these respective

subsections. We consider that a given CPC subsection represents a Big Tech core technology field,

in a given year, if the Big Tech’s portfolio contains at least 1% of all occurrences of that technology

in that year. Finally, we identify acquired patents associated with at least one of their acquirer’s core

technology in the year of their acquisition. These patents are marked as “core”.

Forward citations The use and the further development of a patented technology can be proxied by

forward citations received by the patent. Because ‘prior art’ is included in a patent by citations to pre-

vious patents, forward citations by the acquiring firm to the acquired technology reflect whether the

technology is being further improved by its acquirer. Appendix A discusses the potential limitations

attached to this use of patent citations data.

We obtain information on forward citations by the acquiring firm by taking the following steps.

First, and in addition to the sample of Big Tech-acquired patents described in the previous section,

we identify all granted patents filed by Big Tech itself. Next, we retrieve the application identifiers of

all patents containing a citation to a patent filed by a Big Tech-acquired firm from the Patent Views

database.18 Patents cited by their acquirer can then be identified by matching these application iden-

tifiers of the citing patents to the filing firms. In addition, we observe the date at which each citing

patent was filed. On this basis, we can derive the number of citations received by a patent in a given

month as the number of citing patents filed during that month.19

The most recent patents are less likely to receive citations from granted patents simply because

the citing patents are not yet granted, i.e. there is a ’grant lag’. Citations data is available until July

2022; To avoid biases due to some citing US patents not yet being granted by that time and hence

not observed, we end our study period in June 2017, 5 years before the data collection. Figure 8

in Appendix B shows that, from 2018 onwards, citing patents start being less likely to appear in the

Patent Views database because they have not been granted yet. Our choice of ending the study period

in June 2017 is therefore conservative.

17Detailed list: https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
18The Patent Views database covers all citations made by US granted patents.
19We assume citations are observed from the date of filing.
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2.1.3 Acquired firms

In the end, for each patent in our database, we can identify the acquirer, the timing of acquisition, the

patent’s age, the number of forward citations made every month to this patent, and whether it belongs

to a technology field in the acquirer’s core business at acquisition. We construct a dataset containing

all patents belonging to one of the 252 Big Tech-acquired firms, and we select those firms that have

published, pre-acquisition, at least one patent further cited by their acquirer in a patent filed before

July 2017. We end up with a working sample of 143 firms, i.e. 143 patent portfolios. Table 2 presents

summary statistics of these data samples.

Portfolio size
(patents #)

Patent age at
acquisition (y)

Aquirer core
technology

Firms Count Mean SD Mean SD % Patents

Big Tech acquired portfolios

AMZN 27 22.07 64.62 3.31 2.59 65%
APPL 52 14.21 19.72 4.00 2.59 39%
FCBK 18 7.56 17.68 4.31 4.37 81%
GOOG 67 30.98 143.16 3.90 2.14 24%
MSFT 88 16.52 51.88 3.86 2.79 80%

TOTAL 252 19.84 83.12 3.87 2.71 49%

Big Tech acquired portfolios cited
by their acquirer before July 2017

AMZN 12 15.25 24.81 3.00 2.45 10%
APPL 29 19.79 23.49 4.83 3.22 38%
FCBK 6 5.17 4.88 3.16 3.28 47%
GOOG 35 56.66 195.84 5.04 2.38 27%
MSFT 61 22.57 61.46 4.52 3.58 88%

TOTAL 143 29.01 105.83 4.52 3.17 56%

Notes: This table provides summary statistics on Big Tech-acquired patents portfolios.

Table 2: Big Tech acquired patents portfolios

2.2 Working sample

2.2.1 Acquired patents

The next step is to construct a balanced panel of observations and we select patents that we observe

every month during 4 years around acquisition. In our model, the event time is the date at which the

acquisition is announced.
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The pre-treatment period is defined with a view to include most targets, independently from the

age at which they were acquired. As such, we do not want to go back in time as far as a year be-

fore acquisition, as a significant number of (future) targets were not yet incorporated at that time,20

and hence would not be observed over the whole study period. However, we want to be able to ob-

serve pre-acquisition potential trends in citations. To meet these two goals, we choose a period of 9

months before the acquisition announcement (see Figure 1), which allows to observe the evolution

of citations before acquisition while including targets of all ages.

Note: The graph plots the average number of citations by the acquirer before and after acquisition.

Figure 1: Big Tech citations to acquired patents over acquisition time

For the post-treatment, we choose a period of 3 years after the acquisition announcement. The

choice of the 3 years post-treatment period is the result of a trade-off between keeping a reasonable

number of observations while observing a sufficiently long period of time to analyse the dynamics of

the technology developments after acquisition. Let us note that, because we end our study period in

June 2017 to avoid biases in the citations count, restricting our baseline sample to patents observed

up to 3 years after acquisition means that we can only use acquisitions undertaken until May 2014,

which represent 58% of all 859 Big Tech acquisitions.

Of all acquired patents observed in this 4 years-window, 541 are associated with at least one

citation over the study period and can thus be used in our analysis of the evolution of the number of

citations around acquisition.

20Firms acquired within a year of their incorporation represent around 20% of Big Tech acquisitions (author’s computa-
tions based on incorporation data retrieved from Crunchbase and Orbis).
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2.2.2 Non-acquired patents

To control for unobserved factors that may impact the time trend in citations, we introduce a group

of patents that are not treated by the acquisition event but that are comparable to Big Tech-acquired

patents; namely patents that are cited by the tech giants but never acquired by them (further simply

referred to as ‘non-acquired patents’). These patents are assigned placebo acquisition dates by draw-

ing from the distribution of observed big tech acquisitions.21 We assume a lognormal distribution of

the acquisition date acqui si t i onp assigned to the non-acquired patent p:

acqui si t i onp ∼ LN (µ̂, σ̂2),

where the mean µ̂ and variance σ̂2 are obtained from the distribution of observed acquisition dates.

We then select a balanced panel of non-acquired patents observed every month between 1 year

since simulated acquisition and 3 years after. On this basis, we obtain two groups: i. a balanced panel

of patents acquired between January 1996 and June 2017 and observed in a 4 year-window around

acquisition, ii. a balanced panel of patents that were never acquired, but that have been assigned a

placebo acquisition date between January 1996 and June 2017 and are observed in a 4 year-window

around this placebo.

The first column of Table 3 presents the number of patents in these two groups: 541 patents

(accounting for 80 firms) undergo an acquisition event, and 70,136 are assigned a placebo acquisition

date. The next columns of Table 3 present summary statistics of the citations count variable for each

tech giant, separately for acquired patents and non-acquired patents. Based on a t-test at the 1%

level, we find that acquired patents are on average more cited by Big Tech than non-acquired patents

(with 8.63 citations/acquired patent against 3.53/non-acquired patent). This citations count variable

exhibits a high variability; a majority of patents in the data set are only cited once, but a few patents

are cited many times (see distribution at the monthly level in Appendix C).

To ensure the comparability of acquired and non-acquired patents with respect to all deter-

minants of citations (except for the acquisition status), we use inverse probability weighting. This

weighting consists in reinforcing the contribution of observations that are, pre-treatement, more sim-

ilar to observations in the other patents group. Because most determinants of a patent’s citations are

unobserved, patents will be weighted directly based on the citations they received pre-acquisition.

Non-acquired patents associated with the biggest weights are thus those that are, pre-acquisition,

most like acquired patents with respect to their forward citations. We describe the procedure in de-

21A similar study design is developed by Kleven et al. (2019), who assign placebo births to individuals who never had
children by drawing from the observed distribution of age at first child among parents.
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tails in Appendix D.

Cited patents Patent citations

Count Count Mean SD Min Max

Big Tech acquired

AMZN 41 354 8.63 9.48 1 39
APPL 160 1,318 8.24 16.44 1 110
FCBK 7 28 4 5.51 1 16
GOOG 129 1,248 9.67 12.02 1 75
MSFT 204 1,194 5.85 16.70 1 205

TOTAL 541 4,142 7.66 15.11 1 205

Big Tech non-acquired

AMZN 7,036 24,854 3.53 9.40 1 118
APPL 21,283 116,405 5.47 13.44 1 575
FCBK 2,455 12,946 5.27 10.69 1 105
GOOG 17,135 83,191 4.86 9.74 1 214
MSFT 29,613 99,751 3.37 9.16 1 237

TOTAL 70,136 337,147 4.81 11.60 1 598

Note: This table presents the number of observations contained in the balanced sample of patents observed in a 4 year-
window around (simulated) acquisition. There are two reasons why Facebook is underepresented. First, the company is
not very active from a patenting point of view. Second, Facebook started acquiring smaller firms later than the other tech
giants, so most of its patented acquired technologies are not observed 3 years after acquisition.

Table 3: Observations over the whole study period

3 Model

In the previous section, we described how we collected patent citations data to capture the develop-

ments of Big Tech-acquired technologies. In this section, we make use of the time series nature of this

data to identify the effect of the acquisition event.

We consider two identification strategies. First, a sharp event study, that relies on the exogeneity

of the acquisition event, as well as on the smoothness of the average citations path absent acquisi-

tion. Second, we relax the smoothness assumption in an alternative model with a control group for

acquired patents.
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3.1 Baseline sharp event study: Model

For our baseline model, we adopt a sharp event study approach as developed by Kleven et al. (2019).

The development of the acquired technology by the acquiring firm is measured by citations to the

associated patents. We study the evolution of the number of forward citations by the acquirer as a

function of event time dummies, which represent the quarters (three months) in which citing patents

are filed with respect to the time of acquisition t = 0.22 To identify the impact of a big tech acquisition,

we must correct for the potential endogeneity coming from determinants of the technology develop-

ment other than acquisition. Most of these determinants are unobserved or even unknown, but we

could indirectly control for them by introducing life-cycle trends (i.e. the number of forward citations

might depend on the stage of a patent’s life) and business-cycle trends (i.e. the industry’s R&D might

be more or less dynamic in given years).

We denote by Ci t p, j ,t ,d the number of forward citations to patent p of the target firm j at event

time t and date d . Target-specific fixed effects are captured by f i r m j . We control non-parametrically

for life-cycle trends and business-cycle trends by including the patent’s age ag ep,d and a full set of cal-

endar date d dummies in the vector M ′ (d = 1996q1,1996q2, ...,2017q2).23 The effects of all included

regressors are identified because patents are acquired at different times; conditional on date and age,

there are variations in event time. We define the following model:

Ci t p, j ,t ,d = f (J ′θ1, f i r m jξ
1, ag ep,dβ

1, M ′γ1), (1)

where J ′ is a vector containing the time dummies at the quarterly level (t = −3, ..., −1,0,1, ...,12) ex-

cluding the base category t = 0.

To define the function f (.), we must account for the nature and distribution of the response

variable: the citations count. The most widely used model for a count regression is the Poisson dis-

tribution. However, the Poisson model assumes that the mean and variance of the errors are equal.

In our case, the variance of the citations count is much larger than its mean: a majority of patents

in the data set are only cited once, but a few patents are cited many times (see Appendix C). Fitting

a negative binomial model is a way to correct for the over-dispersion observed in the distribution of

the citations count variable (Ajiferuke and Famoye, 2015). We test whether the Negative Binomial

model is appropriate by comparing it to a Poisson model using the likelihood ratio test. We find that

22The event time dummies are constructed by situating the month in which the patent is filed with respect to the month in
which it is acquired and, to limit variability, aggregating by quarter: t ∈ {−3 = (−10m,−9m,−8m), ...,0 = (−1m,0m,1m), ...}
with 0m when the filing month coincides with acquisition.

23The calendar date dummy is defined as the quarter associated with the month in which the citing patent is filed, e.g.
(2013m7,2013m8,2013m9) = 2013q3.
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the δ dispersion parameter for model 1 is significantly different from zero (χ2 = 2985), which contra-

dicts the assumption of the Poisson model. On this basis, we can confirm that a Negative Binomial

regression should be used.

The negative binomial distribution function of the citations count can be written as:

P
(
Ci t =Ci t p, j ,t ,d | t , ag ep,d ,d , f i r m j

)
) = 1/δ+Ci t p, j ,t ,d −1

Ci t p, j ,t ,d

 δµ
(
t , ag ep,d ,d , f i r m j

)
1+δµ

(
t , ag ep,d ,d , f i r m j

)
Ci t p, j ,t ,d  1

1+δµ
(
t , ag ep,d ,d , f i r m j

)
1/δ

,

where µ(.) is the mean of the model and δ is the dispersion parameter, which accounts for a variance

of the data that is higher than the mean, and Ci t p, j ,t ,d = 0,1,2, ....

On this basis, we identify the changes in the acquired technology development that can be at-

tributed to a big tech acquisition as the changes in citations with respect to the time of acquisition.

Because the negative binomial model is used, θ̂1
t identifies the expected difference in log citations be-

tween quarter t and the reference group (t = 0): θ̂1
t = ln(Ci tp, j ,t ,d | ag ep,d ,d , f i r m j )− ln(Ci tp, j ,0,d |

ag ep,d ,d , f i r m j ). To obtain a more intuitive interpretation of our results, we will use the incident rate

ratios: e θ̂
1
t = Ci tp, j ,t ,d |ag ep,d ,d , f i r m j

Ci tp, j ,0,d |ag ep,d ,d , f i r m j
. By taking the exponential function, the difference in log citations

becomes the ratio of the citations count at a given event time to the citations count at acquisition.

The validity of the approach is further discussed in Appendix E.

3.2 Difference-in-semielasticities: Model

While life-cycle and business-cycle trends can be directly controlled for, some other determinants of

the technology development are unobserved (e.g. upward trends in forward citations due to tech-

nology spillovers). To disentangle the cross-sectional correlation in the data from the effect of acqui-

sition, we introduce a control group not treated by the acquisition event: Big Tech-cited (but never

acquired) patents. These patents are assigned placebo acquisition dates randomly drawn from the

distribution of observed acquisitions by assuming a standard normal distribution (as described in

Section 2.2.2). We rewrite model 1 as follows:

Ci t p,t ,d = f (J ′θ2, Ap ι
1, J ′Apα

1, ag ep,dβ
2, M ′γ2), (2)

where Ap = 1 if patent p is acquired, Ap = 0 otherwise.24

24In this second model specification, firms fixed effects are no longer accounted for as we cannot retrieve the identities
of all firms cited by Big Tech patents.
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On this basis, we can estimate the impact of Big Tech (simulated) acquisition for both acquired

and non-acquired patents separately. If life-cycle and business-cycle trends captured all determi-

nants of the evolution of citations other than acquisition, the impact of acquisition for non-acquired

patents after controlling for age and date should be null. In other words, the trend in citations to

non-acquired patents over event time captures the remaining unobserved heterogeneity. The effect

of acquisition can therefore be estimated as the event time impact for acquired patents with respect

to non-acquired patents. When the outcome variable is negative binomial-distributed, this can be

estimated by the “Difference-in-semielasticities” (DIS),25 i.e. the acquisition status’ impact on the

semielasticity of citations with respect to the event time: e(θ̂2
t +α̂1

t ) − e(θ̂2
t ). The validity of the identifi-

cation parallel trends assumption can be verified from the pre-acquisition DIS.

4 Preliminary analysis

To start with, we present some preliminary evidence on the evolution of citations after acquisition.

If we look at the describe statistics, we observe that an acquired patent receives, on average,

0.09 citation/month before being acquired and 0.18 citation/month after. This increase in citations

after acquisition suggests that the acquiring firm invests in the technology of the acquired firm and

continues to develop it after acquisition.

Citations thus appear on average twice as high after acquisition than before. To control for life-

cycle and business-cycle trends, we define simplified version of models 1 and 2, with the dummy

variable Post taking the value 1 after acquisition:

Ci t p, j ,d = f (Post θ1, f i r m jξ
1, ag ep,dβ

1, M ′γ1), (3)

Ci t p,d = f (Post θ2, Ap ι
1,Post Apα

1, ag ep,dβ
2, M ′γ2). (4)

The estimation results are presented in Table 4. Column 1 presents the estimation based on the sam-

ple of acquired patents only (Model 4). The results show a significant increase in citations after ac-

quisition. The model estimates that an acquired patent receives 35% (IRR = e θ̂
1

= 1.35*** (0.10)) more

citations by its acquirer after the acquisition. The results for Model 4 on (unweighted) acquired and

non-acquired patents are similar, with an estimated citations increase of 48% (DIS = e(θ̂2+α̂1) − e(θ̂2)

= 0.48*** (0.12)) after acquisition. This preliminary evidence tends to show that the target technol-

ogy development by the acquirer increases significantly after acquisition. In other words, that the

25When the conditional mean function is non-linear, the parameter associated with the interaction term does not provide
a consistent estimate of the interaction effect (Shang et al., 2018).
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acquirer is doing significantly more research effort to develop the acquired technology.

Model (3) Model (4)

Post .30∗∗∗ .15∗∗∗

(.07) (.01)

Acquired .50∗∗∗

(.06)

Post#Acquired .34∗∗∗

(.07)

Firms FE Yes No

Date dummies and Age Yes Yes

Patents #
acquired 541 541
non-acquired 77,522

Std. err. in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Big Tech citations to acquired patents

5 Impact of acquisition on the acquired technology

We present below estimates of the impact of a big tech acquisition on the development of the ac-

quired technology as measured by citations to the associated patents. Model 1 is estimated on the

balanced panel of Big Tech-acquired patents. Model 2 is estimated on the balanced panel of trimmed

Big Tech-acquired and non-acquired patents weighted based on their inverse probabilities. These

models allow us to track the evolution of citations over time and give a more accurate view of the

technology development by the acquirer after acquisition.

5.1 Baseline sharp event study: Results

We estimate our models by including the full set of time dummies (at the quarter level). This allows

us to see the evolution of citations up to three years after acquisition. The results of Model 1 are

presented on Figure 2. On the figure, we represent the estimated incident rate ratios (e θ̂
1
t ) for each
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quarter and we include 95% confidence bands around the event coefficients. We control for life-cycle

and business-cycle trends and for the acquired firm fixed effect. The estimated coefficients represent

the ratios of the citations count for each event time to the citations count at acquisition. A value above

1 means that citations increase after acquisition.

Our results confirm the preliminary evidences that acquisition increases citations but now we

can identify that this increase is only temporary. Citations experience a non-lasting boom after ac-

quisition. Looking at the results in more details, on Figure 2, we observe that citations increase signif-

icantly up to 1.5 year after acquisition (citations then appear to be more than 50% higher compared

to their acquisition level). After that, citations start slowing down. The evolution of citations by the

acquirer thus follows a bell curve and, as we will show, this result is robust to many alternative specifi-

cations. These results suggest a continuous development of acquired technologies but the R&D effort

of the acquirer is fading away after some time.

Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
1
t from model 1. These coefficients are estimated

on a balanced sample of patents in a 4 year-window around acquisition.

Figure 2: Big Tech citations to acquired patents relative to acquisition

Since the impact of acquisition is identified from the sharp breaks in citations trajectories im-

mediately following acquisition, our identification strategy can handle the smooth trend in citations

which, even if not significant, appears slightly positive in the quarters before acquisition. In the next

section, we propose an alternative identification strategy, with which we aim to take out the citations

trend (even smooth) coming from factors exogenous to the acquisition event.
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5.2 Difference-in-semielasticities: Results

We present on Figure 3 the DIS estimated based on Model 2. For this estimation, we use the balanced

panel of trimmed Big Tech-acquired and non-acquired patents. The contribution of each observa-

tion has been multiplied by its inverse probability weight. These estimates can be interpreted as the

changes in the number of acquirer’s citations at event time t relative to the acquisition time, having

controlled non-parametrically for life-cycle and business-cycle trends, for acquired patents with re-

spect to non-acquired patents. A value above 0 means that citations of acquired patents are higher

relative to non-acquired ones.

In support of the assumption that citations for acquired and non-acquired patents (conditional

on the propensity scores) would move in parallel absent acquisition, we see that the DIS are insignifi-

cant in the pre-acquisition period. Just after acquisition, we see that Big Tech citations grow faster for

acquired patents than for non-acquired patents (independently from life-cycle and business-cycle

trends), identifying a boost in the development of acquired technologies by the acquiring platform.

After 1.5 year, these technology developments start slowing down, suggesting that the boost in the

acquired technology development fades away in the long run.

Notes: The graph shows the DIS between acquired and non-acquired patents: e(θ̂2
t +α̂1

t ) − e(θ̂2
t ) from model 2. These

coefficients are estimated on a balanced sample of patents in a 4 year-window around (simulated) acquisition.

Figure 3: Big Tech citations to acquired patents w.r.t. non-acquired patents, relative to the
(simulated) acquisition announcement

The results of our different models are convergent and they show that citations experience a

boom after acquisition. We interpret this as an increased research effort by the acquirer to further

develop the technologies it acquires. However, this boom in the acquirer’s R&D activity is not lasting
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and, after 1.5 year, the identified effect fades away. In the next section, we will show that this inverse

U-shaped trend is robust to many alternative specifications.

5.3 Robustness checks

To test for the robustness of our results, we replicate our baseline analysis with more citations deter-

minants included as regressors in the model and with alternative study periods. These robustness

checks are presented in Appendix F.

First, we propose to replicate our analysis based on alternative specifications including more

citations determinants. In particular, we control for the acquirer’s identity (Microsoft versus others),

for the technology field to which the acquired patent belongs and for the origin of the publishing

company.

Second, we replicate our analysis based on alternative study periods. First, we change the study

period by extending the pre-treatment period from 3 to 5 quarters (15 months before acquisition).

Second, we reduce our study period to 2 (instead of 4) years around acquisition and last, we include

Motorola Mobility, which was acquired by Google but later sold to Lenovo and hence not included in

our baseline sample.

In all our specifications, we found results that are consistent with those presented above, with

an initial boost in citations, followed by a slowdown.

6 Extensions

In this section, we extend our baseline results and we test our models with different subsamples. We

include some target’s characteristics that we believe can influence patent citations. First, we control

for the technical novelty of the acquired patents, second, we control for the portfolio size of the ac-

quired firm and, last, we control for the proximity of the acquired patents with the acquirer’s patent

portfolio.

6.1 Technical novelty

Big tech may have different strategies for different patent types. In particular, they may selectively

develop acquired patents and put more innovation effort in patents that have more potential and
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which are path-breaking innovation. For that, we use a measure of patent novelty developed by Arts

et al. (2021). They identify pairwise combinations of keywords in the title, abstract, or claims of

a patent introduced for the first time in history by granted U.S. utility patents. They find that that

these new combinations of keywords outperform the traditional novelty measures based on patent

classification and citations to measure technical novelty at the time of filing.26

(a) 0 vs > 0 new keyword pairs (b) < 20 vs >= 20 new keyword pairs

Notes: The graphs show the incident rate ratios from model 5 for existing (eθ
4

) and novel (eθ
4+η1

) acquired technologies.

Figure 4: Big Tech citations to acquired patents relative to acquisition, by target’s technical novelty

In our sample, 80% of the acquired patents have at least one new keywords pair and 46% have 20

or more new keywords pairs. We define a dummy variable based on these two measures of novelty:

Novelp takes the value 1 if the patent p contains at least one (/at least 20) new keyword pair(s), 0

otherwise. On this basis, we can rewrite model 1 to allow the event time impact to vary with the

novelty of the acquired technology:

Ci t p, j ,t ,d = f (J ′θ4, Novelpζ
1, J ′Novelpη

1, ag ep,dβ
4, M ′γ4, f i r m jξ

2). (5)

The results are presented on Figure 4. The figure shows a similar inverse U-shaped trend in citations

post-acquisitions. We find that both patent groups, more or less novel, exhibit a boost in citations by

26To determine “novelty ”, Arts et al. (2021) gathered patents associated with prestigious awards like the Nobel Prize and
the National Inventor Hall of Fame. These patents are believed to protect highly innovative technologies that have had
a significant influence on subsequent technical advancements. Additionally, the authors exploit the heterogeneity in the
patent examination procedures across various patent offices, and the idea that the United States Patent and Trademark
Office (USPTO) may be issuing a substantial number of weak or invalid patents. Patents granted by the USPTO but simulta-
neously rejected by both the European Patent Office (EPO) and the Japanese Patent Office (JPO) are assumed to lack novelty
or represent only minor incremental advances over existing prior art.
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their acquirer just after acquisition, followed by a decline after 1.5 year.

6.2 Portfolio size

As a development to our main results, we want to test whether the effect of acquisition varies with the

size of the acquired patents portfolio. To do that, we refine model 1 by allowing the event time impact

to vary with the size of the target’s patents portfolio:

Ci t p, j ,t ,d = f (J ′θ4,Lar g epζ
1, J ′Lar g epη

1, ag ep,dβ
4, M ′γ4, f i r m jξ

2), (6)

where Lar g ep takes the value 1 if patent p belongs to a large portfolio.

In our sample, almost half of the observations belong to a portfolio with 32 or more published

patents. We therefore identify a large acquired portfolio as containing at least 32 patents. We use a

second measure based on a cutoff value of 5 patents for the portfolio size. In this second specification,

patent p belongs to a large portfolio if it contains more than 5 patents, with a majority of patents

falling in this category.

The estimated incident rate ratios are presented on Figure 5. We see that technologies belonging

to small portfolios are more developed by their acquirer than technologies belonging to large port-

folios. For patents in a portfolio with 32 or more patents, the boost in the acquirer’s citations just

after acquisition is insignificant, while a negative effect is observed after 1.5 year. On the contrary, for

patents in smaller portfolios, the decline in citations is less pronounced and the effect remains pos-

itive even at the end of the study period. The alternative definition of a large portfolio gives similar

results.

An intuitive interpretation of this result is that, for small targets, the acquisition of a specific

technology explains a significant share of the acquisition decision while, for large targets, a bigger

share of the acquisition decision is left unexplained, i.e. many patents in a large portfolio may be of

little interest for the acquirer.27 This suggests that the acquisition of small portfolios are more likely

to have been driven by a specific patent for which the acquirer exerts a significant effort to further

develop it.

27Let us however remind the reader that patents should be cited at least once by the acquirer to be included in our sample.
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(a) <= 32 vs > 32 patents (b) <= 5 vs > 5 patents

Notes: The graphs show the incident rate ratios from model 6 for small (eθ
4

) and large (eθ
4+η1

) acquired portfolios.

Figure 5: Big Tech citations to acquired patents relative to acquisition, by target’s size

6.3 Core and peripheral technology fields

The results presented above could be interpreted under the prism of the ‘buy vs build’ dilemma. Be-

cause there is a likely time lag between the moment a company starts working on a research project

and when it files the related patent, the boom in citations after acquisition might relate to some re-

search that had been undertaken before acquisition. At the time, the start-up’s innovative project

might have been seen by the platform as a competitive threat. To defend its market, the platform

would have invested in developing a substitute project (and thus used the patents protecting the

start-up’s technology, which they will need to cite once they file their own patent). If the tech giant

fails to replicate the start-up’s technology, it might choose to buy it instead. And if it successfully de-

veloped the technology, it might also choose to buy it to eliminate a competitive threat. In both cases,

this technology no longer represents a competitive threat since the platform now has a monopoly over

it, which would explain the slowing down of the acquired technology development by its acquirer.

To explore this potential interpretations of our results, we want to test whether the effect of ac-

quisition differs depending on the technology to which the acquired patent belongs. The tech giants

are acquiring many patents in technology fields where they already hold a strong market position.

We identified these patents by defining core technology fields for the acquirer. If Big Tech abandons

target’s innovative projects because they no longer represent a competitive threat to its own tech-

nologies, we should observe that technologies overlapping with their acquirer’s core business (i.e. in
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which the acquirer has focused its own innovative effort) are less likely to be further developed after

acquisition.

We allow the event time impact to vary with the technology field to which the acquired technol-

ogy belongs:

Ci t p, j ,t ,d = f (J ′θ5,Cor epζ
2, J ′Cor epη

2, ag ep,dβ
5, M ′γ5, f i r m jξ

3), (7)

where Cor ep takes the value 1 if patent p belongs to a technology field in the acquirer’s core business

at the time of acquisition, 0 otherwise.

Notes: The graph shows the incident rate ratios from model 7 for peripheral (eθ
5

) and core (eθ
5+η2

) acquired technologies.

Figure 6: Big Tech citations to acquired patents relative to acquisition, by technology type (acquirer’s
core vs peripheral)

Figure 6 presents the coefficient estimates from model 7. When considering each quarter sep-

arately, acquirer’s citations to the two technology types (i.e. overlapping with their acquirer’s core

business or not) do not seem significantly different. However, when looking at their evolution over

event time, this exercise also reveals that the boost in citations just after acquisition is mainly driven

by peripheral technologies, i.e. by technologies that do not belong to one of their acquirer’s core busi-

nesses. This result suggests that the tech giants use acquisitions to expand to new technological areas,

rather than to develop technologies in which they are already strong. In addition, the slowing down

in citations after 1.5 year after acquisition is, instead, mainly observed for core technologies. Since

we defined a core technology as a patents field of which an acquirer owns at least 1%, we expect this

acquirer to face less competition in core technologies than in peripheral technologies. Therefore, this
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last finding is in line with the ‘buy vs build’ interpretation of our results, which originates in the threat

that the target technology represents to its acquirer. Peripheral technologies are unlikely to represent

such a threat, since they relate to fields in which the acquirer is less active. Instead, the slowing down

in the development of core technologies after their acquisition could be the sign that their acquirer

recovered a comfortable market position.

7 Technology development by the non-acquiring firms

The slow down in citations can be explained by diminishing returns to the innovative effort because

the technology reaches its maturity, which would explain that it is subsequently less developed. In

this hypothesis, the tech giants are acquiring technologies that are close to maturity. By pooling skills

and assets following acquisition, they manage to complete the development of the technology, which

is not further developed but, instead, directly included in a product. In other words, the development

slows down because the technology reaches its maturity.

To test for this hypothesis, we look at the evolution of the citations to Big Tech-acquired patents

by the other firms in the industry. We can use citations of the acquired patents as a proxy for the

research effort to develop the technology by the rest of the industry. According to the technology

maturity hypothesis, we should observe a similar slowing down of its development by the industry

as a whole. Citations by the acquirer and citations by the rest of the industry should follow a similar

pattern.

We estimate model 1 on two separate samples: Big Tech-acquired patents cited by their acquirer,

and Big Tech-acquired patents cited by other firms than their acquirer. Out of the 541 Big Tech-

acquired patents in our sample, 484 are also cited at least once over our study period by other firms

than their acquirer. The estimated incident rate ratios (e θ̂
1
t ) are presented on Figure 7, separately for

these two citing groups.

Figure 7 (a) is the classical inverse U-shaped curve for the citations of the acquirer and Figure 7

(b) represents the citations by the rest of the industry. On Figure 7 (b), we observe that the acquisition

induces a positive effect on the citations by the non-acquiring firms; they increase by up to 50% after

the acquisition by a tech giant. The acquisition acts as a signal, putting the acquired firm in the

spotlight and boosting the research effort in its technology field. However, while citations by the

acquirer show a slowdown after 1.5 year, citations by other firms than the acquirer keep increasing up

to 2.5 years after acquisition.
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(a) by the acquirer (b) by other firms

Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
1
t from model 1. These coefficients are estimated

on a balanced sample of patents in a 4 year-window around acquisition.

Figure 7: Citations to Big Tech-acquired patents relative to acquisition

These results do not corroborate the technology maturity hypothesis. The rest of the indus-

try continues to invest to develop the technology, eventually more than before its acquisition. This

suggests that the improvement potential of the technology has not been exhausted, so technology

maturity alone does not seem to provide a credible explanation for the slowing down of the acquired

technology development by its acquirer.

Acquisition has a positive impact on the non-merging parties, a result that is consistent with the

model of Federico et al. (2018). As a response to the acquisition, the rest of the industry does more

research effort, possibly to catch-up and to compensate for the disappearance of the independent

startup.28 Let us also note that these results contrast with Affeldt and Kesler (2021), who show that

outsiders invest less in the product - in their context, an app - development after its acquisition by a

tech giant.

8 Conclusion

With this paper, we aim to bring empirical evidence of the effect of big tech acquisitions on acquired

innovative technologies. Information provided by the patent system allows us to track technologies

28For the non-merging party, we do not observe a difference between the citations to the big tech’s core patents and the
others.
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before and after they are bought by these dominant firms. To study the development of an acquired

technology, we use information on citations made to the patents protecting that technology in subse-

quent patents. Accordingly, the development of Big Tech acquired technologies by their acquirer are

proxied by Big Tech’s citations to acquired patents.

Just after acquisition, we find a positive effect of acquisition on the improvements made by Big

Tech to acquired technologies. After 1.5 year, these developments of the acquired technology by the

acquiring platform start slowing down. A potential explanation for this result is that the acquired

technology reaches full maturity thanks to the pooling of skills and assets of the digital platform and

the acquired start-up. However, we find no slowing down of the development of these Big-Tech ac-

quired technologies by the rest of the industry, which means that their improvement potential has not

been exhausted after acquisition. On this basis, we conclude that technology maturity cannot explain

the slowing down in the development of Big Tech-acquired technologies. Instead, our analysis at the

technology level indicates that a competitive motive could be driving this result; we find that the

slowing down of the improvements made by Big Tech to acquired technologies is mainly observed for

technologies in which they have focused their own innovative efforts. This last result could be driven

by acquisitions strategies aiming to protect from the competitive threat that the target technology

represents to its acquirer.

More generally, our analysis contributes to the understanding of the impacts of mergers and

acquisitions on the evolution of the acquired products and technologies, a research field where em-

pirical evidence remains scarce. We have chosen to focus our analysis on acquisitions by Big Tech,

mainly because of the very high rate at which these platforms have acquired start-ups in the past

twenty years. Our conclusions are thus based on acquisitions by dominant firms, mainly in the digital

sector. Future work could have a larger focus, including less powerful acquirers and more industries.
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A Use of citations data to capture technology developments

In our study, we use patent citations as a proxy for the innovation effort in a given technology field.

Because all previous knowledge used in an innovation has to be cited in the patents protecting this

innovation, if a technology stops being developed, one should observe fewer citations to the patents

protecting this technology. On the contrary, a technology that is further developed will be cited in

many subsequent patents. Information about patents citations is therefore very useful to study Big

Tech’s acquisition strategies, because it allows to infer the use that is made of an acquired technology

in subsequent innovation. More specifically, we can capture the improvements that are made by

an acquirer to an acquired technology based on the number of acquirer’s citations to the patents

protecting that technology.

Of course, using patent data to identify changes in the acquired technology development suffers

from an important limitation; it only accounts for patent-protected technologies. Some innovations

might not have been patented, because they are simply not patentable or high costs of patenting

(e.g. hiring patent specialists to prepare the application, paying the filing administrative costs and

the renewal fees).

Information on the number of forward citations made to a given patent also suffers from some

biases. Companies might have strategic reasons not to cite a patent. For instance, fewer citations

would be made by firms aiming to gather patents for defensive or cross-licensing purposes (Abrams

et al., 2013; Jaffe et al., 1993; Lampe, 2012). This should not be a problem in our analysis as we do not

only consider citations made by the applicant, but also those added by the examiner. Citations data

might also be noisy (Gambardella et al., 2008) due to differences between applicants (Rysman and

Simcoe, 2008; Sampat, 2010) and across industries (Lerner et al., 2011; Rysman and Simcoe, 2008).

For our analysis, we focus on the digital sector, so cross-industry heterogeneity should not affect our

results. Our study of the evolution of citations made by Big Tech is also little affected, since we con-

sider the same five applicants over time. Another potential source of bias is that the citations count

might include irrelevant references as patent applicants have an incentive to cite as many references

as possible; if a reference the applicant knew about is forgotten, a court may rule the patent to be

unenforceable in infringement proceedings (Allison and Lemley, 1998; Kuhn et al., 2020). But the re-

sulting measurement error has been shown to be mainly problematic for the study of citation patterns

over time (Marco, 2007; Kuhn et al., 2020), so this can be accounted for in our analysis by controlling

for the date at which a given citation is observed.
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B Distribution of patents’ filling date

Notes: For clarity, the filing dates before 1970m1 (2% of the sample) are not represented.

Figure 8: Distribution of filing dates for all citing patents from the Patent Views database (Density)

We observe a drop in citations after January 2018 because citing patents have not been granted

yet. For this reason, we end up our sample in June 2017.
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C Negative Binomial distribution of the citations count

Notes: This figure shows an histogram of the number of citations received by a given patent in a given month, overlaid
with a negative binomial density with the same parameters.

Figure 9: Distribution of the count of Big Tech citations (Percent)
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D Inverse probability weighting

In order to make acquired and non-acquired patents comparable in all aspects except for their acqui-

sition status, as if acquisition had been fully randomized, we use propensity scores. Propensity scores

can be seen as the channel through which a patent’s characteristics affect its acquisition status and

hence create endogeneity in the relation between the treatment (the acquisition status) and the out-

come (forward citations). Because most determinants of both a patent’s acquisition status and the

citations it receives are unobserved, they will be controlled for by using the pre-treatement outcomes

(i.e. pre-acquisition patent citations).

We first estimate a discrete choice Probit model of the probability for a patent p to have been

acquired P (Ap = 1) with, as regressors, the citations this patent receives pre-acquisition, both in levels

(Ci tp,Pr e ) and in growth rates (Ci tGRp,Pr e ):

P
(

Ap = 1|Ci tGRp,Pr e ,Ci tp,Pr e
)=Φ(α+βCi tGRp,Pr e ,Ci tp,Pr e ), (8)

where Ci tGRp,Pr e captures the growth rate in the number of citations between the first and the last

periods pre-acquisition (t =−1 and t =−3), Ci tp,Pr e captures the number of citations in t =−2, and

Φ is the cumulative density function of the standard normal distribution.

We then use the predicted values from the function to generate, for each observation, the propen-

sity scores (Pp ), which ensure that patents with the same pre-acquisition citations have a positive

probability of being both acquired and non-acquired.

Next, to disentangle the effect of acquisition from the effect of potential confounding factors,

we need to close the propensity scores channel through which these confounding factors affect a

patent’s acquisition status. This can be done by using the propensity scores to conduct inverse prob-

ability weighting (King and Nielsen, 2019). The first step of this procedure consists in “trimming”

non-acquired patents outside of the acquired patents’ propensity score range. This limits the data to

the range of “common support”, i.e. to non-acquired patents that are sufficiently comparable to ac-

quired patents. Second, we need to weight each acquired patent by the inverse of the probability that

it was acquired (1/Pp ), and each non-acquired patent by the inverse of the probability that it was not

acquired (1/(1−Pp )). By weighting patents by the inverse of the probability of what they actually are,

we make the treated and control groups more similar. Acquired patents that get the biggest weights

are the ones that are most like non-acquired patents; acquired patents who were least likely to have

been acquired. Inversely, non-acquired patents with the biggest weights are the ones most like ac-

quired patents; non-acquired patents who were most likely to have been acquired (Huntington-Klein,
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2021). In turn, we obtain a sample of patents in which individual heterogeneity has been averaged

across the treatment and control groups.

To ensure that this re-weighting will properly take out the effect of endogenous covariates on the

acquisition status, we must test for “balance”. In our case, balance means that, after weighting, there

are no more meaningful differences between acquired and non-acquired patents in pre-acquisition

citations. This ensures that the inverse probability weighting is appropriate to close the propensity

scores channel through which confounding factors affect a patent’s acquisition status, i.e. that ac-

quired and non-acquired patents become similar in all aspects except for their acquisition status. A

common way of checking for balance is to test for the difference of means between the control and

the treated groups. Table 5 presents the results of this test before and after applying the inverse

probability weighting. We observe that the differences in citations means before (simulated) acqui-

sition between acquired and non-acquired patents are reduced (.062 in the raw sample, .059 in the

new trimmed and weighted sample). This exercise illustrates how dropping observations outside the

range of common support and weighing observations based on their inverse probabilities allows a

better comparison of the two patent groups post-acquisition. However, since we are interested in

the evolution of citations around acquisition time, the most important condition for a meaningful

comparison of the two groups is the pre-acquisition parallel trends in the estimated DIS (see Figure

3).

Raw sample (before trimming and weighting)

(1) (2) (3)
Variable Not acquired Acquired Acquired vs Not

Ci tPr e 0.232 0.294 0.062
(0.869) (0.806) (0.037)

Observations 77,522 541 78,063

Working sample (after trimming and weighting)

(1) (2) (3)
Variable Not acquired Acquired Acquired vs Not

Ci tPr e 0.217 0.276 0.059
(0.758) (0.735) (0.004)

Observations 77,359 541 77,900

These tables present the results of the balancing test for the inverse probability weighting.
In the first and second columns, we show the means and the standard deviations of the pre-
acquisition citations, for control observations (non-acquired patents) and treated observa-
tions (acquired patents) respectively. In the third column, we regress those pre-acquisition
citations on the observation’s treatment value (acquired or not) to compute the differences
of means and the associated standard errors.

Table 5: Balance tables
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E Sharp event study: Identification

In a paper studying the impact of having children on the gender wage gap, Kleven et al. (2019) exploit

the sharp breaks in career trajectories occurring just after the birth of a child. We present below the

conceptual framework set out by these authors, adapted to our research question.

The number of citations made at time t by an acquirer to some acquired patent p is defined as a

function of variables in xp,t responding to an acquisition event (such as the type of portfolio in which

the newly acquired patent is integrated), and variables in zp,t that do not depend on acquisition (such

as the age of the patent, its quality, characteristics of the publishing company, etc.):

Ci tp,t = f (J ′τ j , x(J ′, zp,t )τx , zp,tτz ), (9)

where J ′ =∑
j 6=0 I j = t is a vector indicating the time at which the citation is observed with respect to

the time of acquisition. In this framework, citations may respond directly to acquisition conditional

on xp,t , and indirectly through xp,t (e.g. the impact of complementarities/substitutions with other

patents from the new portfolio).

For changes in the number of citations to correctly identify the post-acquisition impacts, the first

condition is that “the event” should not determined by the outcome variable. In our case, this implies

that, conditional on the set of underlying determinants zp,t , acquisition is exogenous to the outcome

variable Ci tp,t . To set up the additional necessary conditions under which we can identify the effect

of acquisition, we must distinguish between the short-run and the long-run.

Our identification strategy of the short-run effect of acquisition relies on one additional assump-

tion: the event should generate sharp changes in the outcomes that are orthogonal to unobserved

outcome determinants. This ‘smoothness assumption’ is needed because, when we shock J , we get a

response in the number of citations that is captured by both τ j and τx . But τx does not only respond

to the event time; it also captures the effect of changes in the variables in zp,t , which could happen

at the same time as acquisition. However, if we assume that citations would evolve smoothly absent

acquisition, the short-run effect of acquisition conditional on zp,t+ can be identified from the change

in the number of citations when going from the acquisition time (t0) to an event time just after (t+):

E
[
Ci tp,t+−Ci tp,t0

]= E [ f (1, x(1, zp,t+), zp,t+]−E [ f (0, x(0, zp,t0), zp,t0], (10)
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where the smoothness of the average citations path absent acquisition would imply that:

E [F (0, x(0, zp,t+), zp,t+] ≈ E [F (0, x(0, zp,t0), zp,t0].

The short-run impact of acquisition is therefore identified from the sharp changes in citations imme-

diately following acquisition rather than from the smooth trends in citations. The graphical evidence

presented on Figure ?? lends support to the suitability of this conceptual framework for our analysis,

as the sharp breaks in citations trajectories occurs just after acquisition.

The long-run impact is obtained by considering an event time t++ long after the acquisition time:

E
[
Ci tp,t++−Ci tp,t0

]= E [ f (T, x(T, zp,t++), zp,t++]−E [ f (0, x(0, zp, t0), zp, t0]. (11)

The differences between this impact measure and equation 10 is that the smoothness assumption

is no longer sufficient for identification as we can still have large changes in citations determinants

(other than acquisition) over a long event time window. Indirectly controlling for zp,t with age and

date dummies, as we do in model 1, may partially solve this problem. But we cannot claim that we

have controlled for all elements of zp,t , so the event study estimates representing the change in the

number of citations compared to the time of acquisition (θ1 in model 1) might not properly capture

the long-run impact of acquisition. We therefore propose with model 2 a second solution to capture

long-term effects of acquisition, by using a control group to account for the citations trend absent

acquisition.
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F Robustness checks

F.1 Additional regressors

We rewrite model 1 to control for additional determinants of the number of citations received by a

patent:

Ci t p, j ,t ,d = f (J ′θ6, ag ep,dβ
6, M ′γ6, f i r m jξ

4, Zpν
1), (12)

where Zp contains the additional regressor(s).

Microsoft First, we would like to control for the potential effect specific to those patents acquired by

Microsoft. While GAFAM platforms assume similar roles in online activities, Microsoft is sometimes

considered separately (Simon and Joel, 2011; Galloway, 2018). Furthermore, Microsoft is the biggest

acquirer in our sample and it acquires more core technologies than the others (see Table 2.1). In this

case, Zp takes the value 1 if patent p was acquired by Microsoft, 0 if it was acquired by Google, Apple,

Facebook or Amazon. The estimated incident rate ratios are presented on Figure 10 (a).

(a) Controlling for Microsoft FE (b) Controlling for technology fields and publisher’s origin

Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
6
t from model 12. These coefficients are estimated

on a balanced sample of patents in a 4 year-window around acquisition.

Figure 10: Big Tech citations to acquired patents relative to acquisition

More citations determinants Second, Zp is defined such as to contain two additional citations de-

terminants: the technology field to which patent p belongs, and the origin of its publishing company.

Of all patents published by Big Tech, 57% and 32% contain at least one reference to a technology field
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classified in the CPC sections “Physics” and “Electricity”, respectively. The other CPC fields are barely

represented in Big Tech patent portfolios, with frequencies going from 0% to 2%. We include in Zp

two dummy variables, one for “Physics” and one for “Electricity”, indicating whether patent p is as-

sociated with that technology field. In addition, we include an indicator variable capturing whether

the company that published the patent was located in the US (77% of our working sample), in the EU

(13%) or in the Middle East (10%). The estimated incident rate ratios are presented on Figure 10 (b).

The inclusion of these additional regressors seem to have little impact on our results, as the es-

timates presented on Figure 10 appear to be very similar to our baseline results presented on Figure

2.

F.2 Alternative study periods

Extending the pre-treatment period On Figures 11 and 12, we replicate the results from Models 1

and 2 for a pre-treatment period of 15 months (instead of 9 months). The coefficients estimates follow

very similar trajectories to those in our baseline results.

We note significant incident rate ratios in the earliest quarters before acquisition (t = −5 and

t = −4). We argue that anything happening one year or more before acquisition is unlikely to be

relevant to the acquisition event, and that the extrapolation of the counterfactual can thus be based

on the last portion of the pre-intervention period (t =−3 to t =−1).

Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
1
t from model 1. These coefficients are estimated

on a balanced sample of patents in a 4.5 year-window around acquisition.

Figure 11: Big Tech citations to acquired patents relative to acquisition
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Notes: The graph shows the DIS between acquired and non-acquired patents: e(θ̂2
t +α̂1

t ) − e(θ̂2
t ) from model 2. These

coefficients are estimated on a balanced sample of patents in a 4.5 year-window around (simulated) acquisition.

Figure 12: Big Tech citations to acquired patents w.r.t. non-acquired patents, relative to the
(simulated) acquisition announcement

Reducing the study period Next, we reduce our study period to 2 (instead of 4) years around acqui-

sition; 1 quarter before acquisition, 6 quarters after. This allows to consider some Big Tech-acquired

firms that were not included in our baseline sample: i. those that only started patenting shortly before

being acquired, ii. those acquired between May 2014 and January 2016.29 On the below figure, we ob-

serve that the evolution of citations just after acquisition follows a very similar trend to the baseline

sample: citations increase significantly after acquisition. But, as the observation period is reduced,

we do not capture the slowing down in citations, i.e. during 1.5 years, the effect of acquisition is

positive.

Including Motorola As an alternative check, we include Motorola Mobility, acquired by Google in

August 2011 and later (January 2014) sold to Lenovo. Motorola was not included in our baseline sam-

ple because its acquisition status changes during the study period. Its patents belong to Google for

only 29 months after acquisition, while our study period covers three years after acquisition. However,

since Motorola has a very large patent portfolio, owning 1080 patents at acquisition among which 125

are cited by Google by June 2017, we propose an alternative study period that allows to include it.

29Because we end our study period in June 2017 to avoid biases in the citations count, restricting our baseline sample
to patents observed up to 3 years after acquisition meant that we could only use acquisitions undertaken until May 2014
(58% of all 859 Big Tech acquisitions from Table 1). By including patents observed up to 1.5 year (instead of 3 years) after
acquisition, we capture acquisitions until December 2015 (72% of all 859 Big Tech acquisitions).
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Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
1
t from model 1. These coefficients are estimated

on a balanced sample of patents in a 2 year-window around acquisition.

Figure 13: Big Tech citations to acquired patents relative to acquisition

Notes: The graph shows the incident rate ratios for acquired patents: e θ̂
1
t from model 1. These coefficients are estimated

on a balanced sample of patents in a 3 year-window around acquisition.

Figure 14: Big Tech citations to acquired patents relative to acquisition
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