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Abstract 
 
We analyze international environmental agreements in a two-stage game when governments have 
homo moralis preferences à la Alger and Weibull (2013, 2016). The countries base their decisions 
on the material payoff obtained on the hypothesis that all other countries act as they with 
predetermined probability. They are assumed to act morally w.r.t. both membership and 
emissions. We investigate the interaction and impact of that moral behavior on coalition formation 
and material payoff. The membership morality tends to increase while the emissions morality 
tends to decrease the coalition size, but the outcome is not smoothly determined by these opposite 
forces. 
JEL-Codes: C720, Q500, Q580. 
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1 Introduction

It is a well-known result in theoretical environmental economics that all countries incur

large material welfare losses, if they cope with man-made problems of global environmental

deterioration such as climate change in a non-cooperative and purely self-interested fashion.

Some studies in the early 1990s (to be reviewed below) analyze in a parsimonious game how

that pessimistic result may be improved upon through cooperation. In that benchmark game

of the literature countries first decide on their membership in an International Environmental

Agreement (IEA) and then on the emissions of a global pollutant. Due to the assumption

that countries are of the homo-oeconomicus type, the free-rider incentives turn out to be so

strong that the IEA consists of no more than three signatories.

In the present paper we depart from that basic IEA game (but reproduce it as a

special case) by assuming that the countries are guided by moral considerations, to some

extent at least. We conceive of the countries’ moral behavior as being induced by their

constituencies’ moral stance on domestic emissions and international cooperation. In recent

years, increasing numbers of individuals deliberately reduced their carbon footprint below

the level of self-interested consumers (Ellen et al. 2013 and Liobikiene et al. 2016). It

appears to be realistic, therefore, that in their role as voters they induce governments to

play a more pro-active part in emissions reduction and global cooperation.

Here we focus on morality in the spirit of Kantian ethics (Kant 1785) the core of

which is the categorical imperative. It says that one should take those actions and only

those actions that one would advocate all others take as well. Kantian behavior focuses on

"doing the right thing" and thus differs from both self-interested and altruistic behavior.

We will apply the specific formalization of moderate moral behavior suggested by Alger

and Weibull (2013, 2016, 2017, 2020) which they refer to as homo moralis behavior. Their

homo moralis is an individual who maximizes her material payoff on the hypothesis that

all other individuals choose the same action(s) as her with predetermined probability. That

probability is referred to as degree of morality κ ∈ [0, 1], where the polar cases κ = 0 and

κ = 1 specify homo oeconomicus behavior and homo kantiensis behavior, respectively. The

concept of homo moralis behavior with degree of morality κ ∈]0, 1[ has strong theoretical

appeal (to us), because of Alger and Weibull’s (2013, 2016) deep result that populations

with that behavior are evolutionary stable. From a theoretical point of view our paper is

the first that applies the morality concept of Alger and Weibull (2013, 2016) to two-stage

games with moral behavior on both stages.

The present paper aims to investigate the solution of the two-stage IEA game with
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countries of the homo moralis type with respect to both the size of the IEA (called coalition,

henceforth) and the countries’ material welfares. Accordingly, we need to introduce two

different kinds of degrees of morality: κε for the morality with respect to emissions (ε-

morality) and κµ for the morality with respect to membership (µ-morality). Technically

speaking, we will characterize (i) the mapping from the set of feasible morality parameters

(κε, κµ) to the equilibrium coalition size and (ii) the mapping from the same domain to the

countries’ equilibrium material payoffs. Our IEA game yields the following new results:

• In the absence of µ-morality, the three-country coalition of the scenario κε = κµ = 0 is

destabilized such that from some small positive κε onward there is no coalition anymore.

• In the absence of ε-morality, increasing κµ increases the coalition size progressively such

that the grand coalition and with it the first-best material payoff, are attained at all

κµ greater than some intermediate level of κµ.

• Unless the parameters (κε, κµ) yield either no coalition or the grand coalition, it is not

possible to keep the coalition size constant by reducing κε and increasing κµ (or vice

versa) in small amounts; in that sense, µ-morality and ε-morality are no substitutes,

neither with respect to the coalition size nor with respect to the material payoff.

• For most (κε, κµ) satisfying κµ/κε ≤ 1 the ε-morality dominates the µ-morality such

that there exists no coalition; the material payoff is increasing in κε and reaches the

first-best level at κε = 1.

• For a large set of (κε, κµ) satisfying κµ/κε > 1 the µ-morality dominates the ε-morality

such that the grand coalition forms with the material payoff being at its first-best level.

• If κµ = κε = κ is at a low to intermediate level, there exists no stable coalition, but the

material payoff increases in κ; at some intermediate level of κ the coalition size steeply

jumps up to its maximum and stays there for all higher levels of κ; so, for low [high]

levels of κ the emissions [membership] morality fully determines the outcome.

The present paper is related to Ulph and Ulph (2023) and Eichner and Pethig (2024) who also

study two-stage IEA games with moral governments. They construct the countries’ moral

preferences as a convex combination of homo oeconomicus preferences and homo kantiensis

preferences. Moral decisions are taken only in the emissions game in stage 2, whereas in

the two-stage game of the present paper the countries exhibit µ-moral behavior at state 1

and ε-moral behavior at stage 2. The approaches of Ulph and Ulph (2023) and Eichner and

Pethig (2024) differ from each other with respect to the specification of moral preferences,

and both of them differ from the homo moralis approach of the present paper. A major
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difference between our present approach and their approaches is that they find µ-morality

and ε-morality to be substitutes while we do not.

The present paper contributes to the literature on IEAs and to the literature on moral-

ity and Kantian behavior. The seminal literature on IEAs when countries play Nash1 goes

back to Hoel (1992), Carraro and Siniscalco (1991, 1993) and Finus and Maus (2008). These

studies apply parametric functional forms with quadratic benefits and linear or quadratic

environmental damages. If damages are quadratic, the coalition consists of two countries. If

damages are linear, the coalition consists of three countries.2 Governments are assumed to

be purely self-interested, they display the human image of homo oeconomicus which predom-

inates in economics. Deviations from homo oeconomicus behavior in the context of coalition

formation can be found in Lange and Vogt (2003), Van der Pol et al. (2012), Vogt (2016),

Nyborg (2018), Buchholz et al. (2018) and Schopf (2023). Van der Pol et al. (2012) and

Schopf (2023) study the impact of altruism on coalition formation. Van der Pol et al. (2012)

find that altruism with respect to membership results in large coalitions, whereas Schopf

(2023) points out that coalitions are small when countries are altruistic with respect to both

emissions and membership. Nyborg (2018) and Buchholz et al. (2018) elaborate that reci-

procity preferences may increase the participation in a coalition. Lange and Vogt (2003)

and Vogt (2016) consider the formation of coalitions when countries are inequality averse.

Lange and Vogt (2003) find that inequality aversion as proposed by Bolton and Ockenfels

(2000) can increase the coalition size, whereas Vogt (2016) shows that inequality aversion

as proposed by Fehr and Schmidt (1999) disappoints the expectations of large coalitions.

As to the literature on moral preferences, Laffont (1975) was the first who introduced

Kantian behavior in a formal way. He considers a Kantian agent who maximizes her util-

ity on the counterfactual assumption that other agents act as her. The above mentioned

convex combination of homo oeconomicus preferences and homo kantiensis preferences has

been applied by Daube and Ulph (2016) and Eichner and Pethig (2021) in the context of

environmental regulation and international (non-cooperative) climate policy, respectively.

Alger and Weibull (2017, 2020) applied their own homo moralis approach to public

good provision, to environmental economics and to coordination issues. Alger and Laslier

(2022) applied that approach to voting. However, to the best of our knowledge, their ap-

1There is another strand of the IEA literature that considers Stackelberg games in which the coalition

acts as Stackelberg leader and the fringe countries act as Stackelberg followers (Barrett 1994, Rubio and

Ulph 2006 and Diamantoudi and Sartzetakis 2006). In case of linear damages, the outcome of Nash and

Stackelberg games is the same.
2We reproduce that result in the present paper for the special case κε = κµ = 0.
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proach has not yet been employed in two-stage IEA games with the special feature that

governments act morally with respect to both membership and emissions. A different no-

tion of Kantian behavior was developed by Roemer (2010, 2015) with an equilibrium concept

called Kantian equilibrium. Roemer’s Kantian behavior has been taken up by Grafton et

al. (2017) and Van Long (2020). Compared to homo oeconomicus behavior that kind of

Kantian behavior is shown to reduce inefficiencies in case of public goods and externalities.

Finally, there is a small literature analyzing moral or pro-environmental behavior that

is not explicitly linked to Kant. Herweg and Schmidt (2022) investigate how emissions taxes

and cap-and-trade schemes affect moral behavior. In Ambec and De Donder’s (2022) public

choice approach, consumers who differ with respect to their warm glow from purchasing

environmentally friendly goods vote on taxes and standards. Aghion et al. (2023) study

how environmental concerns of consumers affect innovation in clean technologies.

The paper is organized as follows. Section 2 describes the building blocks of the basic

IEA game without moral countries and explicitly formalizes the membership decisions for

use in the subsequent analysis. Section 3 analyzes the emissions game at stage 2 with ε-moral

countries when the membership decisions are given. In section 4 we study the membership

game at stage 1 of µ-moral countries who anticipate their ε-moral decisions on emissions at

stage 2. Section 5 determines the properties of the solution of the two-stage IEA game. It

analyzes the scenario with ε-morality only in section 5.1, the scenario with µ-morality only

in section 5.2, and the full scenario with both ε - and µ-morality in section 5.3. Section 6

concludes.

2 Players, strategies and payoffs

The players in the two-stage IEA game are n ≥ 3 ex ante identical countries. Each of them

emits a pollutant that generates benefits for the emitting country (only) and contributes to

the environmental damage caused by the aggregate emissions of all countries. The countries’

options are to determine their emissions cooperatively in an environmental coalition or non-

cooperatively. In stage 1 of the game, each country decides whether it wants to become a

member of such a coalition. In stage 2 the countries within and outside the coalition choose

the level of emissions.

In formal terms, country i’s membership decision is the action si ∈ {0, 1}, where si = 1

is the decision to be a member of the coalition and si = 0 is the decision to stay outside the

coalition. Every membership profile s = (s1, s2, . . . , sn) ∈ Ψ =
{
s
∣
∣si ∈ {0, 1}, i = 1, . . . , n

}
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is characterized by the sets C(s) and F (s) of coalition countries and fringe countries, respec-

tively, and by the coalition size3 m :=
∑n

j=1 sj . Due to our assumption that all countries

are ex ante identical, we can disregard the order in the profile (s1, s2, . . . , sn). The only

information each country needs to know about a profile s is its own decision si ∈ {0, 1}
and the implied coalition size m =

∑n

j=1 sj . By ei ∈ R+ we denote country i’s emissions,

i = 1, . . . , n, and by e = (e1, e2, . . . , en) ∈ R
n
+ we denote the vector of emissions. Since the

membership decision country i made in stage 1 matters for its decision on emissions in stage

2 (in a way to be specified later), it is convenient to denote the action ei by efi , if si = 0,

and by eci , if si = 1. We assume that if a membership profile s ∈ Ψ with coalition size
∑n

j=1 sj = m is given, country i’s material payoff is equal to4

Π(e, m) = B(ei)−D




∑

j∈C(s)

ej +
∑

j∈F (s)

ej



 =







Πc
(
eci , e

c
a, e

f
a, m

)
∀ i ∈ C(s),

Πf
(

efi , e
c
a, e

f
a , m

)

∀ i ∈ F (s),
(1)

where

Πc
(
eci , e

c
a, e

f
a, m

)
= B(eci)−D

[
eci + (m− 1)eca + (n−m)efa

]
, (2a)

Πf
(

efi , e
c
a, e

f
a, m

)

= B(efi )−D
[

efi + (n−m− 1)efa +meca

]

. (2b)

B (·) are country i’s benefits from own emissions ehi , h = c, f, and D (·) is the environmental

damage caused by the sum of all countries’ emissions. Function B satisfies B′ > 0, B′′ < 0

and function D satisfies D′ > 0, D′′ ≥ 0. The payoffs (1), (2a) and (2b) are written such

that the focus is on the emissions decision of a country i that is either a member of the

coalition or fringe. We take advantage of symmetry by assuming that apart from country i

under consideration all countries in the same group choose the same level of emissions, but

these emissions may and will differ across groups. Technically, that assumption is formalized

by the subscripts a in (1), (2a) and (2b). If i ∈ C(s), we set eca = ecj for all j ∈ F (s), j 6= i,

and eca = ecj for all j ∈ C(s), j 6= i.

Throughout the paper we will specify the functions B and D from (1) by the parametric

functional forms

B(ei) = αei −
β

2
e2i and D

(
n∑

j=1

ej

)

= δ
n∑

j=1

ej, (3)

3Throughout the paper we write m for
∑n

j=1 sj to avoid clumsy notation.
4All functions defined in (1) and (2a) and (2b) also depend on the number of countries, n. We suppress

n as an argument here and in other functions below, however, unless n is analytically relevant, as in the

Appendix.
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where α, β and δ are positive parameters. For the benefit of obtaining informative results,

that kind of parametrization is widely applied in the literature on IEA games without moral

countries. The linearity of the damage function provides particularly strong analytical relief,

because it results in dominant strategies.

So far, the description of the IEA game is that of the standard game in the environmen-

tal economics literature on IEA games without moral countries. Now we turn to the crucial

difference between the IEA games with and without morality which is how the decisions on

emissions and membership are made. We follow the usual procedure to first describe and

solve the emissions game in stage 2 of the IEA game (Section 3) and after that we analyze

the stage 1 membership game (Section 4).

3 The stage 2 emissions game with ε-moral countries

In the standard IEA game of the literature, the usual assumption is that fringe countries

maximize the material payoff (2b) taking the emissions of all other countries as given (Nash

behavior). The coalition countries produce an environmental agreement by committing to

a collective decision on their emissions. The emissions they choose maximize the sum of all

coalition countries’ material payoffs (2a) taking the emissions of all fringe countries as given.

All countries are purely self-interested in the sense that they only care about their own

material payoff. This is obviously true for fringe countries, but also for coalition countries

insofar as they join the coalition only if their material payoff is (weakly) higher in the

coalition than in the fringe.

If countries are moral their material payoff (1) remains a relevant concept, but their

decisions are based on a decision function that differs from their material payoff. Specifically,

we apply Alger and Weibull’s (2013, 2016, 2017, 2020) concept of homo moralis preferences to

the countries in our model having in mind that the governments’ moral actions are induced by

(sufficiently many) individuals with homo moralis preferences in their constituency. Alger

and Weibull’s homo moralis is an individual who acts on the hypothesis that all other

individuals choose the same action as her with some predetermined probability κ ∈ [0, 1].

So, the decision function of homo moralis is not her material payoff, but rather that material

payoff which results, if all other individuals would choose the same level of emissions as it

with probability κ. A well-known version of Immanuel Kant’s (1785, p. 30) categorical

imperative is that you should "act only according to that maxim whereby you can at the

same time will that it should become a universal law." Alger und Laslier (2022, p. 283)

aptly observe that ". . . Homo moralis can be said to "act according to that maxim whereby
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you can at the same time will that others should do likewise with some probability"" (here:

probability κ ∈ [0, 1]). This interpretation describes Kant’s categorical imperative as the

extreme case κ = 1 of homo moralis, and the opposite polar case κ = 0 describes the purely

self-interested homo oeconomicus who is prominent in conventional economics.

In analogy to homo moralis, we consider countries to be of the homo moralis type, if

they determine their emissions on the hypothesis that all other coalition and fringe countries

choose the same level of emissions as them with some predetermined probability. We denote

that probability as κε ∈ [0, 1] and call it the degree of ε-morality. The subscript ε in κε

indicates that the morality under review relates to moral behavior with respect to emissions.

A subscript such as ε is necessary, because in stage 1 the countries will be assumed to exhibit

moral behavior with respect to membership in addition to their ε-morality.

A country i with degree of morality κε cares about the material payoff it would obtain

if all other countries would choose the same emissions as it with probability κε. In the

following, we will construct that hypothetical payoff in several steps, and we begin with

illustrating country i’s calculus with an example.

Example 1. Suppose there are 4 countries, and the membership decisions5 (si = 1, s1 =

1, s2 = 0, s3 = 0) taken at stage 1 are known at stage 2 so that the corresponding ‘true’

emissions profile is
(

eci , e
c
1, e

f
2 , e

f
3

)

. If country i hypothesizes that the other countries choose

the same emissions as it with probability κε, it faces a set of emissions profiles with certain

probabilities in which the emissions of q = 0, 1, 2, 3 of the n − 1 = 3 other countries are

replaced by its own emissions eci . Specifically, it faces

•
(

eci , e
c
1, e

f
2 , e

f
3

)

with probability (1− κε)
3, if q = 0,

•
(

eci , e
c
i , e

f
2 , e

f
3

)

,
(

eci , e
c
1, e

c
i , e

f
3

)

,
(

eci , e
c
1, e

f
2 , e

c
i

)

each with probability κε(1−κε)
2, if q = 1,

•
(

eci , e
c
i , e

c
i , e

f
3

)

,
(

eci , e
c
i , e

f
2 , e

c
i

)

, (eci , e
c
1, e

c
i , e

c
i) each with probability κ2

ε(1− κε), if q = 2,

• (eci , e
c
i , e

c
i , e

c
i) with probability κ3

ε, if q = 3.

We readily generalize the example by observing that if there are n ≥ 3 countries, an in-

dividual emissions profile in which country i replaced the emissions of q out of the other

n−1 countries appears with probability κq
ε (1− κε)

n−1−q. Since any number of replacements

q ∈ {0, 1, . . . , n− 1} can be attained by
(
n−1
q

)
different emissions profiles, the probability of

5We could take any other membership profile in our example, but we need to specify such a profile to

assign a coalition or fringe membership to each country.
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an emissions profile with q replacements is

κq
ε (1− κε)

n−1−q

(
n− 1

q

)

. (4)

Summing the probabilities (4) over q yields
∑n−1

q=0 κ
q
ε (1− κε)

n−1−q
(
n−1
q

)
= 1.

Country i is not indifferent with respect to alternative emissions profiles which exhibit

one and the same replacement number q, because it rightly anticipates that the aggregate

emissions implied by these profiles differ. To make those differences precise, suppose q ∈
{0, 1 . . . , n − 1} is fixed and fringe [coalition] country i replaces the emissions of r other

fringe countries [coalition countries] and the emissions of (q − r) coalition countries [fringe

countries] by its own emissions. That pattern of replacements yields the material payoff

Π̃h2
(
ehi , e

c
a, e

f
a , r, q,m

)
:= B

(
ehi
)
−D

[
Eh(ehi , e

c
a, e

f
a , r, q,m)

]
(5)

for h = c, f , where

Ec
(
eci , e

c
a, e

f
a, r, q,m

)
:= (1 + q)eci + (m− 1− r)eca + (n−m− q + r)efa ∀ i ∈ C(s),(6a)

Ef
(

efi , e
c
a, e

f
a , r, q,m

)

:= (1 + q)efi + (n−m− 1− r)efa + (m− q + r)eca ∀ i ∈ F (s).(6b)

Next suppose country i replaces the emissions of some given q ∈ {0, 1, . . . , n− 1} other

countries by its own emissions in all feasible ways. Its associated expected material payoff

is then equal to

Π̂h2
(
ehi , e

c
a, e

f
a, q,m

)
:=

∑

r∈Rh

Ah(r, q,m) · Π̃h2
(
ehi , e

c
a, e

f
a, r, q,m

)

= B
(
ehi
)
−
∑

r∈Rh

Ah(r, q,m) ·D
[
Eh
(
ehi , e

c
a, e

f
a , r, q,m

)]
(7)

for h = c, f , where

Ac(r, q,m) :=

(
m−1
r

)
·
(
n−m

q−r

)

(
n−1
q

) , Af(r, q,m) :=

(
n−m−1

r

)
·
(

m

q−r

)

(
n−1
q

) , (8)

Rc :=
{
r ∈ N

∣
∣m− 1 ≥ r ≥ q − n +m

}
, Rf :=

{
r ∈ N

∣
∣n−m− 1 ≥ r ≥ q −m

}
. (9)

Ah(r, q,m), h = c, f , is the probability that a coalition country i ∈ C(s) or fringe country

i ∈ F (s) replaces by its own emissions the emissions of q countries from among the n − 1

other countries on condition that r ∈ Rh of these q countries are from its own group and q−r

from the other group.
(
m−1
r

)
gives the number of ways that coalition country i can replace

by its own emissions the emissions of r coalition countries from among the m − 1 other
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coalition countries and
(
n−m

q−r

)
gives the number of ways that coalition country i can replace

by its own emissions the emissions of q − r fringe countries from among the n − m fringe

countries. The interpretation of the terms
(
n−m−1

r

)
and

(
m

q−r

)
is analogous. By definition of

Ah(r, q,m) it holds that
∑

r∈Rh Ah(r, q,m) = 1.

The probability κq
ε (1− κε)

n−1−q
(
n−1
q

)
from (4) which we established to be the prob-

ability that an emissions profile occurs with q ∈ {0, 1, . . . , n− 1} replacements obviously is

also the probability that the payoff is equal to Π̂h2
(
ehi , e

c
a, e

f
a, q,m

)
from (7). Accounting

for all feasible values of q it follows that the expected material payoff a coalition or fringe

country expects on the hypothesis that all other countries would choose the same emissions

as it with probability κε is equal to

W h
(
ehi , e

c
a, e

f
a , m, κε

)
:=

n−1∑

q=0

κq
ε(1− κε)

n−1−q

(
n− 1

q

)

· Π̂h2(ehi , e
c
a, e

f
a , q,m)

= B(ehi )−
n−1∑

q=0

κq
ε(1− κε)

n−1−q

(
n− 1

q

)

·
∑

r∈Rh

Ah(r, q,m) ·D[Eh(ehi , e
c
a, e

f
a , r, q,m)] (10)

for h = c, f . The equation (10) defines the payoff functions constructed according to Alger

and Weibull’s homo moralis concept and applied to the stage 2 emissions game. We refer

to W h, h = c, f , in (10) as country i’s ε-moral welfare and assume that the countries apply

these welfare functions as decision functions in the stage 2 emissions game. In that game,

the coalition countries’ choice of emissions is a collective decision. The coalition acts as (if it

is) a single player who may be referred to as the manager of the coalition. That manager’s

payoff is the sum of the coalition countries’ ε-moral welfares,
∑

j∈C(s)W
c
(
ecj , e

c
a, e

f
a, κε, m

)
,

and she chooses all coalition countries’ emissions ecj ∈ R+ for all j ∈ C(s). The fringe country

i ∈ F (s) takes all other countries’ emissions as given and maximizes W f
(

efi , e
c
a, e

f
a , κε, m

)

with respect to efi ∈ R+.

For any given membership profile s ∈ Ψ, the Nash equilibrium of the stage 2 emissions

game is a tuple
(
ec∗, ef∗

)
∈ R

2
+ satisfying ec

∗

i = ec∗ for all i ∈ C(s), ef
∗

i = ef∗ for all i ∈ F (s)

and

∑

i∈C(s)

W c
(
ec∗, ec∗, ef∗, m, κε

)
≥

∑

i∈C(s)

W c
(

ec, ec, ef∗i , m, κε

)

∀ ec ∈ R+, (11a)

W f
(
ef∗, ec∗, ef∗, m, κε

)
≥ W f

(
ef , ec∗, ef∗, m, κε

)
∀ ef ∈ R+. (11b)

On the assumption that the damage is linear (D′′ = 0) the calculations in Appendix

9



A yield the equilibrium emissions

ec∗i = E c(m, κε) =
α− [m+ (n−m)κε]δ

β
∀ i ∈ C(s), (12)

ef∗i = Ef(m, κε) =
α− [1 + (n− 1)κε]δ

β
∀ i ∈ F (s), (13)

ef∗i − ec∗i = Ef(m, κε)− E c(m, κε) =
(1− κε)(m− 1)δ

β
> 0. (14)

Inspection of (12) - (14) shows that increasing κε reduces the emissions of coalition and

fringe countries. In both groups the emissions decline because the probability weights (4)

relating to the hypothetical material payoffs (5) of country i increase the more, the greater

the number of replacements. It is unexpected, however, that the reduction of Ef is greater

than that of E c. The reason is an additional effect specific to coalition countries. Increasing

the replacements in the hypothetical material payoff of coalition country j 6= i reduces

country i’s weight in country j’s hypothetical material payoff. That effect is opposite to the

weight shifting effect in country i′s hypothetical material payoff without overcompensating

it. Note also that it does not necessarily follow from6
∣
∣Ef

κε

∣
∣ >

∣
∣E c

κε

∣
∣ that the reduction in

moral welfare is greater in fringe countries than in coalition countries. Since Ef is always

greater than E c and the moral welfare function of each country is increasing (on the relevant

domain) and strictly concave in own emissions, the reverse inequality is possible with respect

to moral welfare.

According to (12) and (13), an increase in the coalition size m reduces the emissions

of the coalition countries, it leaves the fringe countries’ emissions unchanged
(
Ef
m = 0

)
,

and so increases the positive difference Ef(m, κε) − E c(m, κε). We infer from (14) that

Ef(m, κε)− E c(m, κε) tends to zero, if m tends to m = 1.

4 The stage 1 membership game with ε-moral and µ-

moral countries

The stage 2 emissions game analyzed above determines the countries’ emissions for some

given membership profile s = (s1, . . . , sn) ∈ Ψ. If the membership profile s with m =
∑n

j=1 sj coalition countries is given and if a country in the coalition or fringe anticipates

all equilibrium emissions (12) and (13) of the stage 2 emissions game, its expected material

payoff in stage 1 is equal to

Πh1(m, κε) := B
[
Eh (m, κε)

]
−D

[
mE c (m, κε) + (n−m)Ef (m, κε)

]
forh = c, f. (15)

6Upper-case letters denote functions and subscripts attached to them indicate partial derivatives.

10



One possible way to proceed with the analysis is to consider the material payoff func-

tions (15) to be countries’ decision functions in stage 1. In that case, the countries are

portrayed as being purely self-interested with respect to their membership decision. How-

ever, joining or not an environmental coalition is an important moral issue in its own right.

So, we proceed with specifying the countries’ morality with respect to membership. After

that, we account for membership morality in the payoffs (15) and develop in several steps the

payoff functions the countries use in the stage 1 membership game, where they act morally

with respect to both emissions and membership.

We model countries of the homo moralis type with respect to membership in analogy

to the countries of the homo moralis type with respect to emissions studied above. While

we assumed the countries in stage 2 to act on the hypothesis that all other countries choose

the same level of emissions as them with probability κε ∈ [0, 1], we now assume that the

countries act in stage 1 on the hypothesis that all other countries make the same membership

decision as them with probability κµ ∈ [0, 1]. The material payoffs (15) will play the same

role in the stage 1 membership game as the material payoffs (1) in the stage 2 emissions

game.

The following Example 2 illustrates the calculus of a country i acting on the hypothesis

that all other countries make the same membership decision as it with probability κµ ∈ [0, 1].

Example 2. Suppose there are n = 4 countries (as in Example 1 above) and let the

membership profile7.
(

sci , s
c
1, s

f
2 , s

f
3

)

be given. If country i hypothesizes that the other

countries make the same membership decision as it with probability κµ ∈ [0, 1], it faces the

hypothetical membership profiles

•
(

sci , s
c
1, s

f
2 , s

f
3

)

with probability 1− κµ)
3, if q = 0,

•
(

sci , s
c
i , s

f
2 , s

f
3

)

,
(

sci , s
c
1, s

c
i , s

f
3

)

,
(

sci , s
c
1, s

f
2 , s

c
i

)

each with probability κµ(1−κµ)
2, if q = 1,

•
(

sci , s
c
i , s

c
i , s

f
3

)

,
(

sci , s
c
i , s

f
2 , s

c
i

)

, (sci , s
c
1, s

c
i , s

c
i) each with probability κ2

µ(1− κµ), if q = 2,

• (sci , s
c
i , s

c
i , s

c
i) with probability κ3

µ, if q = 3.

Consider a membership profile s ∈ Ψ in a world with n ≥ 3 µ-moral countries, in which

country i replaced the membership decisions of q from among the other n − 1 countries

by its own decision and distributed the replacements among both groups in some specific

way. The payoff (15) pertaining to such a membership profile is realized with probability

κq
µ(1− κµ)

n−1−q. Since the number of replacements q ∈ {0, 1, . . . , n− 1} can be attained by

7We denote the action si by s
f
i , if si = 0, and by sci , if si = 1
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(
n−1
q

)
different emissions profiles, the probability of a membership profile with q replacements

is

κq
µ(1− κµ)

n−1−q

(
n− 1

q

)

. (16)

Summing the probabilities (16) over q yields
∑n−1

q=0 κ
q
µ(1− κµ)

n−1−q
(
n−1
q

)
= 1.

To specify the differences in the membership profiles of Example 2 with respect to

the number of coalition countries, our procedure is analogous to that in stage 2. We keep

some q fixed and suppose that a country in the coalition or fringe replaces the emissions of

r countries from its own group and the emissions of q− r countries from the other group by

its own emissions. The resulting material payoffs in stage 1 turn out to be equal to

Π̃h1 (r, q,m, κε) := B
[
Eh (mh, κε)

]
−D

[
mhE c (mh, κε) + (n−mh)Ef (mh, κε)

]
(17)

for h = c, f , where8

mc := (1 + q)sci + (m− 1− r)sca + (n−m− q + r)sfa = m+ q − r, (18a)

mf := (1 + q)sfi + (n−m− 1− r)sfa + (m− q + r)sca = m− q + r. (18b)

Some comments on the payoffs (17) are in order. mh, h = c, f , is the coalition size that

results if m is given and a member of the coalition or fringe replaces by its own membership

q membership decisions of other countries, r of which are replacements in its own group.

For all feasible values of r and q, we get mc {≧}m {≧}mf ⇐⇒ q {≧} r. So, apart from

the case q = r, the membership morality induces coalition [fringe] countries to act as they

would do in the absence of membership morality, if the true coalition were larger [smaller]

than m.

The payoffs Π̃h1 (r, q,m, κε), h = c, f , turn out to be equal to the material payoffs (15),

in which the coalition country i replaced the true coalition size m by mc > m and the fringe

country i replaced m by mf < m. We differentiate (15) with respect to m and conclude

that the sign of the difference Πc1 (mc, κε) − Πc1 (m, κε) is ambiguous,9 because country i

understates both its true emissions benefits B (·) and the environmental damage D (·). If

country i is in the fringe, it understates its material payoff, Πf1 (mf , κε) < Πf1 (m, κε),

because its emissions benefits B (·) remain unchanged, while the damage D (·) increases.

8Analogous to eci , e
f
i we write s

f
i for si = 0, and sci for si = 1.

9Applying the parametric functions (3), we obtain Πc1
m R 0 if and only if κε ⋚ m−1

n−m
. The proof is given

in Appendix C.

12



Next suppose a coalition or fringe country replaced the emissions of some q other

countries by its own emissions in all feasible ways. Then, its pertaining expected material

payoff is equal to

Π̂h1 (q,m, κε) :=
∑

r∈Rh

Ah(r, q,m) · Π̃h1 (r, q,m, κε) (19)

for h = c, f , where the probabilities Ah(r, q,m), are the same as those defined in (8).

Finally, we recall from (16) that a country with degree of membership morality κµ

replaces the membership of q countries with probability κq
µ(1 − κµ)

n−1−q
(
n−1
q

)
. Accounting

for all feasible values of q it follows that the material payoff a coalition or fringe country

expects on the hypothesis that all other countries would choose the same membership as it

with probability κµ is equal to

Wh (m, κε, κµ) :=

n−1∑

q=0

κq
µ(1− κµ)

n−1−q

(
n− 1

q

)

· Π̂h1(q,m, κε),

=

n−1∑

q=0

κq
µ(1− κµ)

n−1−q

(
n− 1

q

)

·
∑

r∈Rh

Ah(r, q,m) · Π̃h1(r, q,m, κε).(20)

The welfare functions (20) depend on the degrees of morality κε and κµ, which makes explicit

that the full two-stage game accounts for morality on two dimensions, i.e. it accounts for

morality with respect to emissions and with respect to membership. We refer to Wh, h = c, f ,

in (20) as country i’s εµ-moral welfare and assume that the countries apply these welfare

functions as their decision functions in the membership game.

It is straightforward to see that a membership profile s∗ ∈ Ψ with the implied coalition

size m∗ =
∑n

j=1 s
∗
j constitutes a Nash equilibrium of the two-stage IEA game, if

S (m∗, κε, κµ) ≥ 0 (internal stability),

S (m∗ + 1, κε, κµ) < 0 (external stability), (21)

where

S(m, κε, κµ) := Wc(m, κε, κµ)−Wf (m− 1, κε, κµ) (22)

is known in the literature as stability function.

To determine stable coalitions, it is analytically convenient to treat the variable m as a

non-negative real number although the coalition size is an integer. It can be shown that if a

real number m′ satisies S(m′, κε, κµ) = 0 and S(m′+1, κε, κµ) < 0, the conditions of (weak)

13



internal stability S(m, κε, κµ) ≥ 0 and (weak) external stability −S(m + 1, κε, κµ) = 0 are

satisfied for all m in the unit interval [m′ − 1, m′]. That interval contains either one integer,

which is then the true size of a stable coalition, or both boundary points m′ − 1 and m′

are integers. In the latter case we take the larger number m′ to be the (unique) size of the

stable coalition based on an equilibrium selection argument.

There is a function M : [0, 1]2 → R+ such that m = M(κε, κµ) if S(m, κε, κµ) = 0

and the condition S(m + 1, κε, κµ) < 0 holds.10,11 To avoid clumsy wording, we refer in

the following to the real number M(κε, κµ) as the size of the stable coalition keeping in

mind that the true size of the stable coalition is the largest integer smaller than or equal to

M(κε, κµ).

Apart from the size of the stable coalition, M (κε, κµ), the solution of the game yields

the material payoff evaluated at the size of the stable coalition

Wh [M(κε, κµ), 0, 0] =: Ph (κε, κµ) forh = c, f. (23)

That equilibrium material payoff function Ph : [0, 1]2 → R+ is an important piece of infor-

mation, because the prevailing (consequentialist) view on mitigation policy is that the size

of the stable coalition is not an end but rather a means to reduce aggregate emissions in

order to enhance the countries’ material payoff. Larger stable coalitions yield larger mate-

rial payoffs, indeed. But as we will investigate in detail below, moral behavior impacts on

material payoff not only through changing the size of the stable coalition. That is why the

adequate assessment of the impact of moral behavior on mitigation requires considering the

material payoff along with the coalition size.

5 The solution of the IEA game

In this section we explore the conditions for stable environmental coalitions and the asso-

ciated payoffs and welfares. In order to disentangle the impact of emissions morality and

membership morality we proceed in three steps. Section 5.1 analyzes the outcome of the

game if countries exhibit emissions morality only (κε ∈ [0, 1], κµ = 0). In section 5.2 we as-

sume that the countries are moral with respect to membership only (κε = 0, κµ ∈ [0, 1]).

Section 5.3 deals with countries that exhibit both emissions and membership morality

10Observe that M(κε, κµ) = 1 if S(m,κε, κµ) < 0 for all m ∈ [2, n]. In addition, it holds M(κε, κµ) = n

if S(m,κε, κµ) > 0 for all m ∈ [2, n].
11Note that M(κε, κµ) is equal to and specifies the determinants of the number m′ discussed in the

previous paragraph.
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(κε ∈ [0, 1], κµ ∈ [0, 1]). Section 5.4 shifts the focus from characterizing stable coalitions

to the comparison of equilibrium material payoffs. All results presented in section 5 are

analytically derived in Appendix with the parametric functional forms (3).12 Some of the

illustrations are based on the parameters α = 1000, β = 100 and δ = 1.

5.1 Morality with respect to emissions only (κε ∈ [0, 1], κµ = 0)

We begin with the special case κε ∈ [0, 1] and κµ = 0 and find that13

M(κε, 0) =

{
3−(2n−1)κε

1−κε
ifκε <

1
2n−3

,

1 if κε ≥ 1
2n−3

(24)

is the size of a stable coalition. It is easy to see that (24) yields m = M(0, 0) = 3, if the

countries do not act morally at all. That boundary case is the standard result for purely

self-interested countries in the literature (Carraro and Siniscalco 1991, Hoel 1992, Finus and

Maus 2008). Here, it serves as a convenient benchmark for characterizing the outcome of

morally acting countries. For all κε ∈
[

0, 1
2n−3

[

the function (24) can be shown to be strictly

decreasing and strictly concave in κε, and for all κε ∈
[

1
2n−3

, 1
]

it satisfies M(κε, 0) = 1.

From these properties combined with the equivalence m ≥ 1 ⇐⇒ κε ≤ 1
2n−3

it follows

(i) that stable coalitions with m = 2 members form, if κε ∈
]

0, 1
2n−3

]

, and (ii) that there

does not exist a stable coalition if κε ∈
[

1
2n−3

, 1
]

. Note also that these results hold for any

number of countries.

We summarize these results in

Proposition 1 . (Coalition formation with κε ∈ [0, 1] and κµ = 0)

(i) If κε = 0, there is a stable coalition with three members.

(ii) There is a stable coalition with two members for all κε ∈
]

0, 1
2n−3

[

and there is no stable

coalition for all κε ∈
[

1
2n−3

, 1
]

.

The unexpected if not counterintuitive message of Proposition 1 is that increasing the degree

of emissions morality generates pressure towards reducing the size of the stable coalition.

That pressure decreases the membership of the stable coalition from m = 3 to m = 2 to

12These (or similar) parametric functions are widely used in studies of IEA games, because analytical

relief is urgently needed to cope with the complexity of derivations.
13The derivation of (24) and the proof of Proposition 1 can be found in Appendix C.
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m = 1. There is no stable coalition for all κε greater than 1/(2n − 3), which is a small

number if n is large.14

1.5 2.0 2.5 3.0 3.5 4.0

4900.10

4900.12

4900.14

4900.16

4900.18

4900.20

4900.22

Wc(m, 0.08, 0)

Wf(m− 1, 0.08, 0)

Wc(m, 0.04, 0)

Wf(m− 1, 0.04, 0)

Wc(m, 0, 0)

Wf(m− 1, 0, 0)

m

Figure 1: The dependence of the stable coalition size on κε for α = 1000, β = 100, δ = 1

and n = 10

To explain the performance of ε-moral countries with regard to coalition formation,

Figure 1 illustrates15 the function M(κε, 0) for the values κε = 0, κε = 0.04 and κε = 0.08.

Consider first the lowest pair of curves in Figure 1 that depict the welfares Wc and Wf as

functions of m in the benchmark case κε = κµ = 0. The Wc-curve is increasing whereas

the Wf -curve is u-shaped. For m ≥ 2.5, both curves’ positive slopes reflect the stronger

emissions reduction of larger coalitions. The fringe countries’ steeper slope is due to their

freeride on the coalition countries’ efforts. In Figure 1, the origin of the Wf -curve is shifted

to the right by one unit such that for any m on the m-axis the points corresponding to m on

the welfare curves are Wc(m, 0, 0) and Wf (m− 1, 0, 0), respectively. Taking the difference

of these levels of welfare, it immediately follows from (21) that

S(m, 0, 0) ≥
S(m+ 1, 0, 0) <

}

0 ⇒ the coalition of size m is

{

internally

externally

}

stable.

14In the corresponding game in Ulph and Ulph (2023) and Eichner and Pethig (2024) emissions morality

leaves unchanged the stable three-country coalition that forms in the absence of morality.
15With the exception of Figure 1, where we have chosen n = 10, in all other examples we have set n = 100.

We selected n = 10 in Figure 1, because it allows a clear presentation of three welfare curves in the same

diagram.
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The Wf -curve for κε = κµ = 0 intersects the Wc-curve from below at m = 3 which is

consistent with Proposition 1(i). Inspection of the intervals on the m-axis in which the

Wf -curve lies either above or below the Wc-curve in Figure 1 yields that the coalition is

internally stable for all m ∈ [1, 3] and internally unstable for all m > 3. Of special interest

is that for m = 3 S(m + 1, 0, 0) is negative in Figure 1, because that sign of the difference

is required by condition (21) for the coalition of size m = 3 to be externally stable. This

proves that m = 3 is the size of the stable coalition.

Next, we assume that κε is increased from κε = 0 to κε = 0.04. In Figure 1 the

consequence is the move from the lowest pair of curves to the intermediate pair. An obvious

reason for that upward shift of both curves are the properties of the equilibrium emissions

in (12) and (13). Since

E c(m, κε) > Ef(m, κε) and Ef
κε

= −(n− 1)δ

β
< E c

κε
= −(n−m)δ

β
< 0

the upward shifts do not leave the curvatures unchanged, i.e. the differences Wh(m −
1, 0.04, 0) − Wh(m, 0.04, 0), h = c, f , are not the same for coalition and fringe countries

and are not constant for all m. In fact, inspection of Figure 1 suggests that for m ≤ 3 the

vertical difference Wf (m − 1, κε, 0) −Wf (m − 1, 0, 0) is larger than the vertical difference

Wc(m, κε, 0)−Wc(m, 0, 0) which can be confirmed analytically.16 Due to that feature, the

intersection point of the Wc- and Wf -curves shifts from m = 3 to about m = 2.3, if κε

increases from κε = 0 to κε = 0.04. As established above, the size of the stable coalition

is the largest integer smaller than or equal to the m-coordinate of the intersection points

in Figure 1. So, the move from κε = 0 to κε = 0.04 reduces the size of the stable coalition

form m = 3 to m = 2. Economically speaking, the different way the welfare of fringe and

coalition countries responds to increases in κε aggravates the fringe countries’ reluctance to

join the coalition.

The increase of κε from κε = 0.04 to κε = 0.08 is illustrated in Figure 1 by the

move from the intermediate pair of curves to the highest pair of curves, and the assessment

is analogous to the previous discussion of the increase of from κε = 0 to κε = 0.04. If

κε = 0.08, the curves Wc and Wf intersect at about m = 1.6 implying that there is no

stable coalition.

In the absence of a stable coalition all countries act non-cooperatively which is used

16Follows from Φc(m) := Wc(m,κ, 0) − Wc(m, 0, 0) = (n−m)δ2κ[2(n−1)+(n−m)κ]
2β , Φf (m) :=

Wf (m − 1, κ, 0) − Wf (m − 1, 0, 0) = δ2κ[(n2−2n)(2−κ)−2(m2−3n+1)−κ]
2β , Φf (m) − Φc(m) =

(m−1)δ2κ[2(n−m)(1−κ)+2−κ(m−1)]
2β and verifying that Φf (m)− Φc(m) > 0 if m ≤ 3.
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to be referred to as business-as-usual behavior. But in contrast to that behavior of purely

self-interested countries, non-cooperative ε-moral countries reduce their emissions the more,

the larger is κε. The consequence is, as illustrated in Figure 1, that the moral welfare of

coalition and fringe countries is larger with positive κε than with κε = 0, and it is increasing

in κε, ceteris paribus. In the extreme case of κε = 1, each country acts on the hypothesis that

all other countries choose the same level of emissions as it. That is, each country chooses the

emissions that maximize its own material payoff and symmetry implies that the maximum

aggregate material payoff is attained in the absence of cooperation. The same result would

be achieved if countries who do not act morally would form the grand coalition.

5.2 Morality with respect to membership only (κε = 0, κµ ∈ [0, 1])

In section 5.2 we assume that all countries are purely self-interested with respect to their

choice of emissions (κε = 0) such that the material payoffs in (1) are their payoffs in the

stage 2 emissions game. But we consider them to be of the homo moralis type with respect

to membership. So, their payoffs in the stage 1 membership game are the equations (20) for

the special case κε ≡ 0. In Appendix E we prove

Proposition 2 . (Coalition formation with κε = 0 and κµ ∈ [0, 1])

For all n ∈ [3, 200], there exists a threshold value κ̃µ, which depends on17 n, satisfies κ̃µ ∈
[0, 1], and impacts the stability of coalitions as follows:

(i) If κµ ∈ [0, κ̃µ], the size of the stable coalition M(0, κµ) increases in κµ from M(0, 0) = 3

to M(0, κ̃µ) = n.

(ii) If κµ ∈]κ̃µ, 1], the grand coalition is stable.

Conforming to intuition, the membership morality generates pressure towards enlarg-

ing the coalition which results in progressively increasing stable coalitions. Figure18 2a

exhibits a free-hand graph of the function M(0, κµ) with the properties established in Propo-

sition 2. It is representative for all n ∈ [3, 200], because the shape of the curve varies with

the number of countries only slightly in two aspects: the threshold value κ̃µ is increasing in

n without exceeding κ̃µ = 0.293 and the horizontal segment of the curve moves upward as n

increases. The remarkable feature is that starting at κµ = 0 the size of the stable coalition

is increasing steeply and progressively in κµ such that the grand coalition is attained at the

17κ̃µ is strictly monotone increasing in n but bounded from above by κ̄µ = 1− 1√
2
≈ 0.293.

18If a figure, say Figure x, consists of two panels, we denote the figure in the left panel as Figure xa and

the figure in the right panel as Figure xb.
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intermediate degree of morality κ̃µ, and m = n is sustained for all κµ ≥ κ̃µ. So, increasing

degrees of µ-morality turn out to be very effective with respect to coalition formation.19

κ̃µ

n

10.50

M(0, κµ)

κµ
20 40 60 80 100

4000

4010

4020

4030

4040

4050

4060

Wf (m− 1, 0, 0.5)

Wc(m, 0, 0.5)

Wf (m− 1, 0, 0.2)Wc(m, 0, 0.2)

m

Figure 2: The size of the stable coalition depending on κµ and stability analysis for κµ = 0.2

and κµ = 0.5

Figure 2b provides insight in the transition from the upward sloping part of the M-

curve to the grand coalition by illustrating for n = 100 the move from κµ = 0.2 to κµ = 0.5.

The threshold value κ̃µ is approximately equal to 0.289 such that 0.2 < κ̃µ < 0.5. Consider

first the Wf - and Wc-curves in Figure 2b for κµ = 0.2. Since the Wf -curve intersects

the Wc-curve from below at m = M(0.2, 0), which we calculated as being approximately

equal to m = 62.677, we conclude that the size of the stable coalition is m = 62. If we

raise the degree of µ-morality from 0.2 to 0.5, the difference Wc(m, 0.5, 0) −Wc(m, 0.2, 0)

is positive (and decreasing in m) and the difference Wf (m− 1, 0.5, 0)−Wf (m− 1, 0.2, 0) is

negative (and increasing in m in absolute terms). The Wf -curve shifts downward, because,

as explained in section 4, µ-moral fringe countries understate the true size of the coalition,

and the Wc-curve shifts upward, because µ-moral coalition countries overstate the true size

of the coalition. The shifts of the Wf - and Wc-curves in opposite directions are so strong

that the curves corresponding to κµ = 0.5 do not intersect anymore. Inspection of Figure

2b shows that in case of κµ = 0.5 the coalitions of all sizes m ∈ [1, 99] are internally stable,

but externally unstable. The coalition of size m = 100 is also internally stable, but since

there is no fringe country anymore, the grand coalition is stable.

The answer to the question, how the outcomes of the games compare when countries

are either ε-moral only (section 5.1) or µ-moral only (section 5.2) is straightforward: their

performance with respect to the coalition size is diametrically opposed: The ε-morality pre-

19Figure 2b is based on the parameters α = 1000, β = 100, δ = 1 and n = 100.
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vents the formation of stable coalitions, whereas the µ-morality enlarges the size of stable

coalitions very effectively. The performance of ε- and µ-morality with respect to the equi-

librium material payoffs Ph (κε, κµ) defined in (23) can be conveniently compared in Figure

3.

0.2 0.4 0.6 0.8 1.0

4000

4010

4020

4030
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4050

Pc (κε, 0)

Pc (0, κµ)

Pc (0, 0)

κε, κµ

Figure 3: Equilibrium material payoffs of ε-moral or µ-moral countries for α = 1000, β = 100,

δ = 1 and n = 100

That figure contains the graphs of the equilibrium material payoffs of coalition coun-

tries20 Pc (0, 0), Pc (κε, 0) and Pc (0, κµ). It demonstrates that compared to the benchmark

payoff in the absence of moral behavior, which is represented by the horizontal line in Figure

3, higher payoffs are attained if countries are either ε-moral or µ-moral. The shape of the

Pc (0, κµ)-curve is roughly similar to the shape of the M(0, κµ)-curve in Figure 2a, that is,

payoffs are progressively increasing in κµ in about the same way as stable coalitions are, and

the maximum possible payoff is achieved along with the grand coalition at a rather low level

of κµ and is maintained at all higher κµ. In contrast, the payoffs Pc (κε, 0) are increasing

in κε and reach the maximum payoff not before κε = 1. The increase in Pc (κε, 0) occurs

although no (large) stable coalitions are formed.

We conclude that ε- and µ-morality are substitutes with respect to material payoff if

we compare the outcome of games with countries that are either ε-moral only or µ-moral

only. However, equal levels of κε and κµ yield different payoffs, in general. Denoting by

κ̂ε(≈ 0.2) in Figure 3 the intersection point of the Pc (κε, 0)- and Pc (0, κµ)-curves, we find

that for all κ′
ε = κ′

µ ∈]0, κ̂ε[ the material payoff is greater in games where all countries’

morality is (κ′
ε, κµ = 0) than in games where all countries’ morality is

(
κε = 0, κ′

µ

)
. For all

20It can be shown that the equilibrium material payoffs of fringe countries are larger than those of coalition

countries. But as that difference in payoffs is very small, it suffices to plot the coalition countries’ payoffs.
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κ′
ε = κ′

µ ∈]κ̂ε, 1[ the opposite ranking holds.

The sections 5.1 and 5.2 provided useful insights in the formation of coalitions and

the associated material payoffs, if countries are either ε-moral only or µ-moral only. In the

subsequent section 5.3 we assume that moral countries are ε-moral as well as µ-moral.

5.3 Morality with respect to emissions and membership ((κε, κµ) ∈
[0, 1]× [0, 1])

The characterization of coalition formation in the sections 5.1 and 5.2, where countries

are either ε-moral only ((κε, κµ) ∈ [0, 1]× {0}) or µ-moral only ((κε, κµ) ∈ {0} × [0, 1]), is

theoretically interesting in its own right. That countries exhibit moderate Kantian behavior

either with respect to emissions only or with respect to membership only is possible, but

serious moralists are likely to behave morally ‘on both dimensions’. Their moral stance may

be a weakly asymmetric morality (κε > 0, κµ > 0, κε 6= κµ) or even the fully symmetric

morality (κε = κµ = κ). Since the focus of the present paper is analytical rather than

empirical, we will investigate coalition formation and payoffs for all feasible tuples (κε, κµ).
21

Proposition 3 . (Coalition formation with κε ∈ [0, 1] and κµ ∈ [0, 1])

For all n ∈ [9, 200] the following holds:

(i) There is a function Kε : [0, 1[→]0, 1] such that M(κε, κµ) is weakly declining in κε

on the interval [0, Kε(κµ)] and M(κε, κµ) = 1 for all κε ≥ Kε(κµ). Kε is strictly

increasing in κµ and has the property limκµ→1K
ε(κµ) = 1.

(ii) There is a function Kµ : [0, 1[→]0, 1] such that M(κε, κµ) is weakly increasing in κµ

on the interval [0, Kµ(κε)] and M(κε, κµ) = n for all κµ ≥ Kµ(κε). Kµ is strictly

increasing in κε and has the property limκε→1K
µ(κε) = 1.

(iii) There exist threshold values κ
˜

and κ̃ with 0 < κ
˜

< κ̃ < 0.5 such that M(κε, κµ) is

weakly increasing in κε = κµ = κ on the interval
[

κ
˜

, κ̃
]

and M(κε, κµ) = n for all

κ ≥ κ̃.

In the following, we illustrate and add some interesting details to the results of Propo-

21The proof of Proposition 3(iii) can be found in Appendix F.
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Figure 4: Isoquants for n = 100

sition 3 for n = 100.22 The rectangular in Figure 4a represents the set [0, 1]× [0, 1] of feasible

tuples (κε, κµ) that is partitioned into three subsets denoted Q(1), Q(m) and Q(n).

- Q(1) is the set of (κε, κµ)-tuples that yield no coalition; it corresponds to the light grey

shaded area in Figure 4a.

- Q(m) is the set of (κε, κµ)-tuples that produce coalitions with at least 2 and at most

99 members; it corresponds to the small wedge-shaped unshaded area in Figure 4a.

- Q(n) is the set of (κε, κµ)-tuples that yield the grand coalition; it corresponds to the

dark grey area in Figure 4a.

Figure 4b exhibits an enlarged section of Figure 4a containing the set Q(m). The upward

sloping curves in Q(m) are isoquants, i.e. curves where the coalition size is constant at the

level m = 25, m = 50 and m = 75, respectively. If we choose a point (κε, κµ) on such an

isoquants and increase κε [κµ] only, the size of the stable coalition decreases [increases]. In

order to stay on the initial isoquant after increasing (κε, κµ) by positive increments ∆κε and

∆κµ, these increments must be chosen such that the increase in the downsizing pressure

generated by ∆κε is exactly neutralized by the increase in the upsizing pressure of ∆κµ.

The principal message is that in the set Q(m) ε-morality and µ-morality are no substitutes

with respect to coalition formation.

A move from some tuple (κε, κµ) to another tuple (κ′
ε, κ

′
µ) in Q(n) leaves the size of

the coalition unchanged, because in all (κε, κµ) ∈ Q(n) the upsizing pressure of κµ overcom-

pensates the downsizing pressure of κε even if κε is very high. This is why the shifts from

κε to κ′
ε and/or from κµ to κ′

µ change the downsizing and upsizing pressures, but fail to

actually downsize the initial grand coalition. We apply the same arguments to the set Q(1)

22Figure 4 graphically proves Proposition 3(i) and (ii) for n = 100. Analogous figures are obtained for

n ∈ [10, 200].
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and conclude that moves from some tuple (κε, κµ) to another tuple (κ′
ε, κ

′
µ) in Q(1) fail to

generate a coalition, because in all (κε, κµ) ∈ Q(1) the downsizing pressure of κε overcom-

pensates the upsizing pressure of κµ. In sum, we identified cases where small changes in the

pressure exerted by changes in the degree of ε- or µ-morality result in either small changes

or no changes at all of the coalition size.

The Propositions 3(i) and 3(ii) characterize how stable coalitions respond to partial

variations of κε and κµ, respectively. To obtain further insight into that relation, it is

convenient to consider the rectangular in Figure 4a, where these variations correspond to

moving along a horizontal or vertical line. In order to understand, how the impact of the

partial variation of one morality parameter depends on the level at which the other is kept

constant, we investigate by means of Figure 5 how the coalition size m = M(κ̄ε, κµ) varies

with κµ while keeping κε = κ̄ε fixed at a low, an intermediate and a high level. After that

we will conduct the analogous analysis to partial variations of κµ by means of Figure 6a.

Table 1 serves to disentangle the graphs in the Figures 5a and 6a.

Graph of M(κε, κ̄µ) in Figure 5a Graph of M(κ̄ε, κµ) in Figure 6a

κ̄µ low κ̄µ medium κ̄µ high κ̄ε low κ̄ε medium κ̄ε high

0AA′BE 0FF ′CE 0GDE DEE ′H ABFF ′H ACGH

Table 1: Impact of κε (Figure 5a) and of κµ (Figure 6a)] on the size of stable coalitions,

when alternative levels κ̄µ and κ̄ε, respectively, are given for n = 100
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Figure 5: Stable coalitions depending on κµ for alternatively given κ̄ε for n = 100

Consider first the case of partial variations of κµ. Figure 5a depicts the graph of the
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function M that results, if κµ increases successively from zero to one with κε being fixed

alternatively at some low, intermediate or high level. The assignment of the exact graph

to the level of κε is given in Table 1. In each case there is an interval I(1, κ̄ε) of κµ which

satisfies the equation m = M(κ̄ε, κµ) = 1. The interval I(1, κ̄ε) is a proper subset of the

interval [0, 1] with lower bound κµ = 0.

Figure 5a shows that for any given κ̄ε, increasing κµ weakly increases the coalition size,

because the downsizing pressure of κ̄ε is given, whereas the upsizing pressure increases along

with κµ until eventually the latter dominates the former. Since the downsizing pressure is

increasing in κε, it follows that the higher κ̄ε, the larger the increase in κµ necessary to

enlarge the coalition size. It is interesting to describe - and identify in Figure 5a - that

feature from a different perspective. For every κ̄ε there is an interval with lower bound

κµ = 0 such that m = M(κ̄ε, κµ) = 1 for all κµ ∈ I(1, κ̄ε), where ∂I(1, κ̄ε)/∂κ̄ε > 0 and

limκ̄ε→1 I(1, κ̄ε) = [0, 1]. So, the downsizing pressure of κ̄ε dominates the upsizing pressure

of all κµ ∈ I(1, κ̄ε).

Another noteworthy property of all graphs in Figure 5a is a discontinuity that increases

in size when moving from the low to the high level of κ̄ε. To understand that jump in coalition

size, recall first that m = M(κ̄ε, κµ) = 1 for all κµ ∈ I(1, κ̄ε) applies to all three graphs

in Figure 4a. For low and intermediate levels of κ̄ε, increasing κµ corresponds to a move

from the set Q(1) to the set Q(m) and from there to the set Q(n). The jump occurs from

m = 1 to m ∈ [2, n[ at the transition from Q(1) to Q(m), and it is increasing in κ̄ε. If κ̄ε

is sufficiently high, the coalition size jumps up from m = 1 to m = n, when crossing the

line that separates Q(1) from Q(n). To explain these discontinuities, we consider a high

κ̄ε as an example. In that case it holds for all κµ ∈ I(1, κ̄ε) that the stability function

satisfies S(m, κ̄ε, κµ) < 0 for all m ∈ [2, n]. That is shown in Figure 5b for the tuple

(κ̄ε, κµ) = (0.8, 0.6) that satisfies κµ ∈ I(1, κ̄ε). The graph of the corresponding stability

function S(m, 0.8, 0.6) is in the negative quadrant of Figure 5b. If we increase κµ from 0.6

to 0.7, we move from (0.8, 0.6) ∈ Q(1) to (0.8, 0.7) ∈ Q(n), and, as Figure 5b shows, this

move shifts the graph of the stability function upward so strongly that S(m, 0.8, 0.7) has

become positive for m = n = 100. That implies M(0.8, 0.7) = n.

In analogy to Figure 5a, Figure 6a shows how the coalition size responds to changes in

κε, while κµ is kept constant at three alternative levels. The assignment of the exact graph

to the level of κµ is given in Table 1. The outcome is mirror symmetric to that in Figure
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Figure 6: Stable coalitions depending on κε for alternatively given κ̄µ for n = 100 (Figure

6a) and the shape of the M(κ, κ)-curve for n ∈]9, 200] (Figure 6b)

5a. For each given κ̄µ, increasing κε weakly reduces the size of the stable coalition, because

the upsizing pressure of κ̄µ is given, whereas the downsizing pressure increases along with

κε until eventually the latter dominates the former. Since the upsizing pressure of κµ is also

increasing in κµ, it follows that the higher κ̄µ, the stronger the increase in κε necessary to

reduce the coalition size. The explanation of the discontinuities in the graphs of Figure 6a

is analogous to that in Figure 5a.

Finally, some comments are in order on Proposition 3(iii) that deals with the case of

symmetric morality formalized by the constraint κε = κµ = κ. The graph23 in Figure 6b is

the locus of the coalition size M(κ, κ) for all κ ∈ [0, 1]. Increasing κ successively from zero

to one corresponds to moving along the diagonal from the lower left corner of the rectangular

to the upper right corner in Figure 4a. For all low levels of κ ∈ [0, κ
˜

] we get (κ, κ) ∈ Q(1), for

all intermediate levels of κ ∈ [κ
˜

, κ̃] we get (κ, κ) ∈ Q(m) and for all high levels of κ ∈ [κ̃, 1]

we get (κ, κ) ∈ Q(n). The discontinuity occurs at the transition from Q(1) to Q(m).24 Thus,

increasing κ weakly increases the size of the stable coalition, as does increasing κµ, if κ̄ε is

given. To put it more pointedly, if κ is small, i.e. if κ ∈ [0, κ
˜

], no coalition forms exactly as

in the case where κε ∈ [0, κ
˜

] and κµ = 0. Conversely, if κ is large, i.e. if κ ∈ [κ̃, 1], the grand

coalition forms exactly as in the case where κµ ∈ [κ̃, 1] and κε = 0. We conclude that if κ

is low, the downsizing pressure of κε overcompensates the upsizing pressure of κµ, and the

opposite holds, if κ is high.

23That figure is a free-hand drawing that slightly deviates from the numerical versions for two reasons.

First, the exact interval [κ
˜

, κ̃] is so small that one could hardly identify the upward sloping graph in that

interval. Second, there is an interval of κ with lower bound zero with stable coalitions of three or two

countries (similar as in Proposition 1(ii)), which we neglect in Figure 5b, because the interval is very small.
24In case of n = 100 the stable coalition jumps from m = 1 to m = 96 at κ

˜

≈ 0.4947. Thus, for

κε = κµ = κ the set Q(m) is very small and not visible in Figure 4a.
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The preceding analysis showed that the impact of ε- and µ-morality on the stability

of coalitions is a result of complex interactions of the degrees of ε- and µ-morality. They

turn out to be no substitutes with respect to the size of stable coalitions, because keeping

the coalition size constant after changing one of the morality parameters does not change

the other morality parameter in the opposite direction.25 Nor are the ε- and µ-moralities

complements in the sense that an increase of the coalition size is infeasible unless both

morality parameters are increased simultaneously.

Next we consider the material payoff function p = Pc on its domain, the set of feasible

tuples (κε, κµ). Obviously, on the entire set Q(n) in Figure 4a the socially optimal material

payoff is attained. The set Q(1) exhibits material-payoff isoquants in the form of vertical

straight lines with levels of material payoff that are strictly increasing in κε from the level

as in BAU at κε = 0 to the first best level attained at κε = 1. As displayed in Figure 7a,

there are upward sloping material-payoff isoquants in the set Q(m) which extend into the

set Q(1) in the form of vertical lines with a discontinuity at the boundary line between the

sets Q(m) and Q(1). We conclude that the ε- and µ-moralities are neither substitutes nor

complements with respect to material payoff.
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Figure 7: Material-payoff isoquants (Figure 7a) and material payoffs of symmetrically moral

countries (Figure 7b) for α = 1000, β = 100, δ = 1 and n = 100

Analogous to the procedure we applied to the coalition size M (·) one can investigate

in detail how the material payoff Pc changes in response to the variation of one degree of

morality while keeping the other fixed at some positive level. We refrain from performing

these exercises, however, because it is easy to derive the principal curvature of Pc in these

25In geometric terms, κε and κµ are no substitutes, because there are no negatively sloped coalition-size

isoquants.
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exercises from the properties of the function Pc established in the last paragraph. The

rough overall message is that an increase in either morality parameter weakly increases the

equilibrium material payoff.26

The equilibrium material payoffs in the case of symmetric moralities (κε = κµ = κ)

are plotted in Figure 7b. For κ in the interval from zero up to the discontinuity, the shape

of the curve Pc(κ, κ) is the same as that of the curve Pc(κε, 0) in the corresponding interval

of κε in Figure 3. Furthermore, the horizontal line Pc(κ, κ) for high levels of κ in Figure 7b

corresponds to the horizontal line Pc(0, κµ) for high levels of κµ in Figure 3. That remarkable

feature of symmetric moralities is consistent with our observation above that the countries’

ε-morality dominates their µ-morality if the degree of both moralities is low and vice versa

if it is high.

6 Concluding remarks

If countries act purely self-interested with regard to their decisions on both membership and

emissions, as assumed in the basic IEA game of the literature, coalitions are small, emissions

are excessive and material payoffs are suboptimally small. But there is empirical evidence

that individuals restrain their self-interest (to some extent) in an effort ‘to do the right

thing’, and as far as voters influence their governments’ policy, moral behavior can also be

expected at the country level. We found that the impact of morality on coalition size and

material payoff is as expected, if countries are moral with respect to membership only. If

κε = 0 and κµ increases from zero to one, the coalition size and the material payoff strictly

increase first and then stay at their maximum levels for all κµ larger than some rather small

threshold value. If κµ = 0 and κε increases from zero to one, the small stable coalition of size

m = 3 that forms if κε = 0, becomes unstable and there is no stable coalition anymore for

all κε exceeding a very small threshold value of κε. However, despite the absence of stable

coalitions, the material payoff is strictly increasing in κε. These findings turn out to be no

good guide to predict the outcome in the presumably more relevant scenario of countries

who are moral on both dimensions.

To see that, we briefly summarize the pertinent results of our analysis. Since high

degrees of morality appear to be empirically irrelevant, we restrict the focus to low levels of

κµ and κε.

26That statement is rough because there are small segments of decreasing payoffs.
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(i) If27 (κε, κµ) ∈ int Q(m), small increases in κε reduce (!), and small increases in κµ raise

both the coalition size and the material payoff. Almost all (κε, κµ) ∈ Q(m) satisfy

κµ/κε > 1.

(ii) If (κε, κµ) ∈ int Q(1), small changes in κµ fail to induce a stable coalition and therefore

have no impact on material payoff; small increases in κε do not form a coalition either,

but raise the material payoff. Most (κε, κµ) ∈ Q(1) satisfy κµ/κε ≤ 1. If the ratio

κµ/κε is constant and κε increases (along with κµ), the impact on coalition formation

and material payoff is the same as in the scenario (κε > 0, κµ ≡ 0).

Obviously, the degrees of morality cannot easily be fixed and changed like conventional

policy instruments. But if policy makers have some lever or nudge at their disposal for small

changes of the morality parameters, the preceding considerations suggest some unexpected

recommendations. If (κε, κµ) ∈ int Q(m), κε should be reduced (!) and/or κµ should be

increased. In contrast, if (κε, κµ) ∈ int Q(1), κε should be increased, while changes in κµ

have no effects at all. We conclude that the importance of the formation of IEAs for effective

mitigation in a world of countries of the homo moralis type depends on whether the tuple

(κε, κµ) is in Q(m) or in Q(1).

We are aware that it is unclear how robust the results of our IEA game are because the

assumptions we needed to apply for reasons of tractability are restrictive. With this caveat

in mind, we interpret the global real-world climate policy in the light of our theoretical

approach in which countries are of the homo moralis type with low degrees of membership

and emissions morality. Since the Paris Agreement relies on nationally determined contri-

butions, it cannot be considered as a climate coalition as modelled in our game, because

that kind of coalition requires its members to commit to that level of national emissions (or

contributions) which secures the maximum aggregate payoff for all members. So, the cur-

rent state of climate change may be characterized (in the light of our game) by rather small

positive values of κε and κµ. But in that scenario our theory suggests that small increases

in κµ neither promote the formation of a coalition in the theoretical sense nor have they any

impact on emissions and material welfare. The only way to improve upon mitigation and

material payoff is to increase κε.

27The sets Q(m) and Q(1) are defined in the context of Figure 4.
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Appendix

A: Derivation of the equilibrium emissions:

The fringe: Fringe country i ∈ F (s) maximizes W f(efi , e
c
a, e

f
a, m) with respect to efi which

yields the first-order condition

W
f

e
f
i

(efi , e
c
a, e

f
a ,m, κε) =

n−1∑

q=0

κqε(1− κε)
n−1−q

(
n− 1

q

)
∑

r∈Rf

Af ·
{

B′
(

e
f
i

)

− (q + 1)D′ (·)
}

. (A1)

For linear damage function D′ = δ and accounting for28

∑

r∈Rf

Af = 1,
∑

r∈Rf

qAf = q (A2)

the first-order condition (A1) simplifies to

W f

e
f
i

(efi , e
c
a, e

f
a, m, κε) = B′(efi )− δ

n−1∑

q=0

(1 + q) κq
ε(1− κε)

n−1−q

(
n− 1

q

)

︸ ︷︷ ︸

≡f(q,n−1,κε)

= B′(efi )− δE [X + 1] = 0, (A3)

where f(q, n−1, κε) is the density function of a random variable X that follows the binomial

distribution with parameter n − 1 and probability p = κε. Inserting E [X ] = (n − 1)κε we

get

W f

e
f
i

(efi , e
c
a, e

f
a , m, κε) = B′(efi )− [1 + (n− 1)κε] δ = 0. (A4)

Making use of B(ei) = αei − β

2
(ei)

2 we obtain from (A4)

efi =
α− [1 + (n− 1)κε] δ

β
= Ef(m, κε). (A5)

The coalition: The manager of the coalition maximizes

∑

j∈C(s)

W c(ecj , e
c
a, e

f
a , m, κε) (A6)

with respect to eci which yields the first-order condition

∑

j∈C(s)

dW c
eci
(eci , e

c
a, e

f
a, m, κε)

deci
= W c

eci
(eci , e

c
a, e

f
a, m, κε) + (m− 1)W c

eci
(ecj, e

c
a, e

f
a, m, κε), (A7)

28The first identity in (A2) is known as Vandermonde’s identity.
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where

W c
eci
(eci , e

c
a, e

f
a, m, κε) =

n−1∑

q=0

κq
ε(1− κε)

n−1−q

(
n− 1

q

)
∑

r∈Rc

Ac · {B′ (eci)−D′ (·)} . (A8)

For linear damage function D′ = δ and accounting for

∑

r∈Rc

Ac = 1,
∑

r∈Rc

qAc = q (A9)

(A8) simplifies to

W c
eci
(eci , e

c
a, e

f
a , m, κε) = B′ (eci)− δ

n−1∑

q=0

(1 + q)κq
ε(1− κε)

n−1−q

(
n− 1

q

)

. (A10)

We can differentiate W c(eci , e
c
a, e

f
a , m) with respect to any other country’s emissions eca

or efa only if these emissions are not (yet) replaced by eci . Since the average non-replacement

rate is equal to
(
1− q

n−1

)
for all countries other than i we obtain

W c
ecj
(eci , e

c
a, e

f
a, m, κε) = −δ

n−1∑

q=0

κq
ε(1− κε)

n−1−q

(
n− 1

q

)(

1− q

n− 1

)

. (A11)

Inserting (A10) and (A11) in (A7) we get

∑

j∈C(s)

dW c
eci
(ecj , e

c
a, e

f
a , m, κε)

deci
= B′ (eci)− δ

n−1∑

q=0

κq
ε(1− κε)

n−1−q

(
n− 1

q

)(

m+
n−m

n− 1
q

)

= B′(eci)− δ · E
[

m+
n−m

n− 1
X

]

= 0. (A12)

Accounting for E [X ] = (n− 1)κε in (A12) we obtain

∑

j∈C(s)

dW c
eci
(ecj , e

c
a, e

f
a, m, κε)

deci
= B′(eci)− δ [m+ (n−m)κε] = 0. (A13)

Finally, making use of B(ei) = αei − β

2
(ei)

2 we get

eci =
α− [m+ (n−m)κε] δ

β
= E c(m, κε). (A14)

Inserting = Ef(m, κε) from (A5) and E c(m, κε) from (A14) into the material
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payoff function (1) yields

Π1f (m, κε) =
α2 − 2αnδ + δ2 [(2n− 1)(1− κε)

2 + 2(m2 −m)(1− κε) + n2(2− κε)κε]

2β
, (A15)

Π1c (m, κε) =
α2 − 2αnδ − δ2 [2m(1− κε)(1 + nκε)−m2(1− κ2

ε) + n(nκ2
ε − 2(n− 1)κε − 2)]

2β
. (A16)

B: Derivation of the expected material payoffs in stage 1:

Rewriting the material payoff (A15) and (A16) as

Π1f

(
∑

j∈N

sj, κε

)

=

α2 − 2αnδ + δ2
[

(2n− 1)(1− κε)
2 + 2

[(
∑

j∈N sj

)2

−
∑

j∈N sj

]

(1− κε) + n2(2− κε)κε

]

2β
, (A17)

Π1c

(
∑

j∈N

sj, κε

)

=

α2 − 2αnδ − δ2
[

2
∑

j∈N sj(1− κε)(1 + nκε)−
(
∑

j∈N sj

)2

(1− κ2
ε) + n(nκ2

ε − 2(n− 1)κε − 2)

]

2β
,(A18)

defining

mc := (1 + q) sfi
︸︷︷︸

=0

+(n−m− 1− r) sfa
︸︷︷︸

=0

+(m− q + r) sca
︸︷︷︸

=1

= m+ q + r =: M c(r, q,m), (A19)

mf := (1 + q) sci
︸︷︷︸

=1

+(m− 1− r) sca
︸︷︷︸

=1

+(n−m− q + r) sfa
︸︷︷︸

=0

= m− q + r =: Mf (r, q,m) (A20)

and accounting for

Π̃f1(r, q,m, κε) = Πf1(mf , κε), Π̃c1(r, q,m, κε) = Πc1(mc, κε), (A21)
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the expected material payoff in stage 1 is

Wf (m, κε, κµ) =

n−1∑

q=0

κq
µ(1− κµ)

n−1−q

(
n− 1

q

)
∑

r∈Rf

Af · Πf1
[
Mf (r, q,m), κε

]
, (A22)

Wc (m, κε, κµ) =
n−1∑

q=0

κq
µ(1− κµ)

n−1−q

(
n− 1

q

)
∑

r∈Rc

Ac · Πc1 [M c(r, q,m), κε] . (A23)

Lemma 1 It holds

(i)
∑

r∈Rf Af ·Mf (r, q,m) =

(

m− m

n− 1
q

)

︸ ︷︷ ︸

=:Bf (q)

and
∑

r∈Rc Ac ·M c(r, q,m) =

(

m+
n−m

n− 1
q

)

︸ ︷︷ ︸

:=Bc(q)

.

(ii)
∑

r∈Rf Af ·
[
Mf (r, q,m)

]2
=

[

m2 +
m(n + 3m− 2mn− 1)q +m(m− 1)q2

(n− 1)(n− 2)

]

︸ ︷︷ ︸

=:Gf (q,q2)

and

∑

r∈Rc Ac · [M c(r, q,m)]2 =

[

m2 +
(n−m)(2mn− 3m− 1)q + (n−m)(n−m− 1)q2

(n− 1)(n− 2)

]

︸ ︷︷ ︸

=:Gc(q,q2)

.

Proof of (i): Observe that

∑

r∈Rf

Af ·Mf (r, q,m) =
∑

r∈Rf

Af ·



(1 + q) sfi
︸︷︷︸

=0

+(n−m− 1− r) sfa
︸︷︷︸

=0

+(m− q + r) sca
︸︷︷︸

=1



 =
∑

r∈Rf

Af · (m− q + r), (A24)

∑

r∈Rc

Ac ·M c(r, q,m) =
∑

r∈Rc

Ac ·



(1 + q) sci
︸︷︷︸

=1

+(m− 1− r) sca
︸︷︷︸

=1

+(n−m− q + r) sfa
︸︷︷︸

=0



 =
∑

r∈Rc

Ac · (m+ q − r). (A25)

Applying Identity 2.1 of Mestrovic (2018) it holds

∑

r∈Rf

Af · (q − r) =
m

n− 1
q,

∑

r∈Rc

Ac · (q − r) =
n−m

n− 1
q (A26)
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which implies

∑

r∈Rf

Af · (m− q + r) =

(

m− m

n− 1
q

)

,
∑

r∈Rc

Ac · (m+ q − r) =

(

m+
n−m

n− 1
q

)

. (A27)

Proof of (ii): Observe that

∑

r∈Rf

Af ·
[
Mf (r, q,m)

]2
=
∑

r∈Rf

Af · [(m− q + r)]2 ,
∑

r∈Rc

Ac · [M c(r, q,m)]2 =
∑

r∈Rc

Ac · [(m+ q − r)]2 . (A28)

Applying Identity 2.17 of Mestrovic (2018) it holds

∑

r∈Rf

Af · (q − r)2 =
mq

(n− 1)(n− 2)
[(n−m− 1) + (m− 1)q] , (A29)

∑

r∈Rc

Ac · (q − r)2 =
(n−m)q

(n− 1)(n− 2)
[m− 1 + (n−m− 1)q] . (A30)

Next, we calculate

∑

r∈Rf

Af · [(m− q + r)]2 =
∑

r≤n−m−1

q−r≤m

Af · [m− (q − r)]2

=
∑

r∈Rf

Af ·
[
m2 − 2m(q − r) + (q − r)2

]
=

{

m2 +
m(n + 3m− 2mn− 1)q +m(m− 1)q2

(n− 1)(n− 2)

}

(A31)

and

∑

r∈Rc

Ac · [(m+ q − r)]2 =
∑

r≤m−1

q−r≤n−m

Ac · [m+ (q − r)]2

=
∑

r∈Rc

Ac ·
[
m2 + 2m(q − r) + (q − r)2

]
=

{

m2 +
(n−m)(2mn− 3m− 1)q + (n−m)(n−m− 1)q2

(n− 1)(n− 2)

}

. (A32)
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�
Taking advantage of Lemma 1 in (A22) and (A23) we get

Wf (m,κε, κµ) =

n−1∑

q=0

κqµ(1− κµ)
n−1−q

(
n− 1

q

){

α2 − 2αnδ + δ2
[
(2n− 1)(1 − κε)

2 + 2
(
Gf (q, q2)−Bf (q)

)
(1− κε)

]

2β
,

= +
α2 − 2αnδ + δ2

[
+n2(2− κε)κε

]

2β

}

, (A33)

Wc (m,κε, κµ) =
n−1∑

q=0

κqµ(1− κµ)
n−1−q

(
n− 1

q

){

α2 − 2αnδ − δ2
[
2Bc(q)(1 − κε)(1 + nκε)−Gc(q, q2)(1− κ2ε)

2β

+
α2 − 2αnδ − δ2

[
n(nκ2ε − 2(n − 1)κε − 2)

]

2β

}

. (A34)

Finally, we obtain

Wf (m,κε, κµ) =
α2 − 2αnδ + δ2

[
(2n− 1)(1 − κε)

2 + 2
(
Df (E[X],E[X]2)−Bf (E[X])

)
(1− κε) + n2(2− κε)κε

]

2β
, (A35)

Wc (m,κε, κµ) =
α2 − 2αnδ − δ2

[
2Bc(E[X])(1 − κε)(1 + nκε)−Dc(E[X],E[X]2)(1 − κ2ε) + n(nκ2ε − 2(n − 1)κε − 2)

]

2β
, (A36)
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where X is a random variable that follows the binomial distribution with parameter n − 1

and probability p = κµ. Observe that E [X ] = (n− 1)κµ and E [X2] = (n− 1)κµ(1− κµ) +

(n− 1)2κ2
µ.

C: The derivatives of the functions Πh1(m, κε):

Differentiation of Πh1(m, κε) from (15) with respect to m yields

Πf1
m = −D′ ·

[
E c(m, κε)− Ef(m, κε) +mE c

m

]
> 0, (A37)

Πc1
m = (B′ −mD′) E c

m −D′ ·
[
E c(m, κε)− Ef(m, κε)

]
. (A38)

Inserting B′(eci) − δm = δ(n − m)κε from (A13), E c
m = − (1−κε)δ

β
and (14) into (A38) we

obtain

Πc1
m = −δ(n−m)κε(1− κε)δ

2

β
+ δ

[
(1− κε)(m− 1)δ

β

]

= − [(n−m)κε − (m− 1)]
(1− κε)δ

2

β
. (A39)

From (A39) we infer

Πc1
m ⋚ 0 ⇐⇒ κε R

m− 1

n−m
. (A40)

D: Derivation of (24) and Proof of Proposition 1:

For κµ = 0, the stability function turns into

S (m, κε, 0) =
(m− 1)(1− κε)δ

2 [3−m(1 − κε)− (2n− 1)κε]

2β
. (A41)

Observe that Sm (m, κε, 0) = − (1−κε)2δ2

2β
< 0. Suppose κε < 1

2n−3
. Solving S (m, κε, 0) = 0

with respect to m yields

m = M(κε, 0) =
3− (2n− 1)κε

1− κε

ifκε <
1

2n− 3
. (A42)

Suppose κε ≥ 1
2n−3

. Due to Sm (m, κε, 0) < 0 for m ∈]1, n] it holds

m = M(κε, 0) = 1 if κε ≥
1

2n− 3
. (A43)

Proposition 1(i) follows from setting κε = 0 in (A42) and Proposition 1(ii) follows from

Mκε
= − 2(n−2)

(1−κε)2
< 0 and m = 2 ⇐⇒ κε =

1
2n−3

.
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E: Proof of Proposition 2:

For κε = 0, the stability function turns into

S (m, 0, κµ) =
δ2Fµ(m,κµ)

2β
, (A44)

where

Fµ(m,κµ) = (n2 − n− 4)κ2µ − (n− 8)κµ −m2(1− κµ)
2 − 3 +m(1− κµ)[(2n − 7)κµ − 4]. (A45)

The function Fµ satisfies Fµ(1, κµ) = (n− 1)2 > 0 and F
µ
mm(m,κµ) = −2(1 − κµ)

2 < 0. Solving Fµ(m,κµ) = 0 with respect to m yields

m =
−4 + κ2µ(2n− 7)− κµ(2n − 11) + (1− κµ)

√

4 + κµ(12n − 24) + κ2µ(8n
2 − 32n + 33)

2(1− κµ)2
. (A46)

(ii) Solving Fµ(n, κµ) = 0 with respect to κµ we get

κµ = 1−
√
2
√

(n− 2)(n − 1)

2(n− 2)
=: κ̃µ. (A47)

Due to Fµ(n, 0) = −(n− 3)(n− 1) < 0 and F
µ
κµκµ(n, κµ) = −4(n− 2)(n− 1) < 0 and Fµ(n, 1) = (n− 1)2 > 0, the grand coalition is stable if

κµ > κ̃µ. Figure 8 illustrates κ̃µ in dependence of n. Observe that limn→∞ κ̃µ = 1− 1√
2

(i) Summarizing our results, the stable coalition is determined by

M(0, κµ, n) =







−4+κ2
µ(2n−7)−κµ(2n−11)+(1−κµ)

√
4+κµ(12n−24)+κ2

µ(8n
2−32n+33)

2(1−κµ)2
if 0 ≤ κµ < κ̃µ,

n if κ̃µ ≤ κµ < 1.
(A48)

The poof that M(0, κµ, n) increases from M(0, 0, n) = 3 to M(0, κ̃µ, n) = n is provided for n = 200 in Figure 9.
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Figure 8: κ̃µ in dependence of n

Figure 9: The function M(0, κµ, n)

F: Proof of Proposition 3 (iii):

For κε = κµ =: κ, the stability function is given by

S (m,κ, κ) =
δ2F κ(m,κ)

2β
, (A49)
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where

F κ(m,κ) = −(1− κ)2
[
3 +m2(1− κ)2 − (n + 4)κ + n(n− 1)κ2 +m(−4 + 7κ− (2n − 1)κ2)

]
. (A50)

(Due to F κ(0, n) = −(n− 3)(n − 1) < 0, F κ
κ (κ, n) = 2(n− 2)(n − 1) > 0 and

F κ(κ̃, n) = 0 ⇐⇒ κ̃ =
n− 3

2(n − 2)
. (A51)

the grand coalition is stable if and only if κ ≥ κ̃.

F κ(m,κ) = 0 is a quadratic equation in m, its discriminant is given by

D(κ, n) := 4 + 4(n− 4)κ− (3− 12n + 4n2)κ2 + (30− 32n + 8n2)κ3 + κ4 (A52)

and is illustrated in Figure 10. The blue plane in Figure 10 is the plane (0, κ, n). The thresholds κ and κ̄ are implicitly determined by

D(κ, n) = 0, D(κ̄, n) = 0 and are shown in Figure 11.

Suppose that n ∈]10, 200]. For κ < κ < κ
˜

the discriminant is negative such that the quadratic equation F κ(m,κ) = 0 has no solution and no

stable coalition exists. For κ < κ or κ
˜

< κ < κ̃, the discriminant is positive and has two solutions. The relevant solution is given by

m =
2− 4κ− n2κ2 − n(2− 3κ− 2κ2) +

√

(n− 1)2[1 + (n− 3)κ− (n2 − 3n+ 2)κ2 + 2(n− 2)2κ3]

(1− κ)[1 − 2κ− n(1− κ)]
. (A53)

Summarizing our results, the stable coalition is determined by the function

M(κ, κ, n) =







2−4κ−n2κ2−n(2−3κ−2κ2)+
√

(n−1)2[1+(n−3)κ−(n2−3n+2)κ2+2(n−2)2κ3]

(1−κ)[1−2κ−n(1−κ)] if 0 ≤ κ < κ,

1 if κ < κ < κ
˜

,

2−4κ−n2κ2−n(2−3κ−2κ2)+
√

(n−1)2[1+(n−3)κ−(n2−3n+2)κ2+2(n−2)2κ3]

(1−κ)[1−2κ−n(1−κ)] if κ
˜

≤ κ < κ̃ ≡ n−3
2(n−2) ,

n if κ̃ ≤ κ < 1.

(A54)
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Figure 10: The discriminant for n ∈]9, 20] (left panel) and n ∈ [20, 200] (right panel)
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Figure 11: The bounds κ and κ
˜

in dependence of n

The function M(κ, κ, n) is plotted for 0 ≤ κ < κ and κ
˜

≤ κ < κ̃ in Figure 12 and 13, respectively.
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Figure 12: M(κ, κ, n) for 0 ≤ κ < κ and n ∈]9, 200]

Figure 13: M(κ, κ, n) for κ
˜

≤ κ < κ̃ and n ∈]9, 200]

Finally, suppose that n ∈ [3, 9]. Then the discriminant is positive for all κ ∈
[

0, n−3
2(n−2)

]

and the stable coalition is characterized by

M(κ, κ, n) =







2−4κ−n2κ2−n(2−3κ−2κ2)+
√

(n−1)2[1+(n−3)κ−(n2−3n+2)κ2+2(n−2)2κ3]

(1−κ)[1−2κ−n(1−κ)] if 0 ≤ κ < κ̃ ≡ n−3
2(n−2) ,

n if κ̃ ≤ κ < 1.
(A55)
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M(κ, κ, n) is illustrated in Figure 14.

Figure 14: M(κ, κ, n) for κ ∈
[

0, n−3
2(n−2)

]

and n ∈ [3, 9]
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