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Abstract 
 
We study the role of asset revaluation in the monetary transmission mechanism. We build an 
analytical heterogeneous-agents model with two main ingredients: i) rare disasters; ii) 
heterogeneous beliefs. The model captures time-varying risk premia and precautionary savings in 
a setting that nests the textbook New Keynesian model. The model generates large movements in 
asset prices after a monetary shock but these movements can be neutral on real variables. Real 
effects depend on the redistribution among agents with heterogeneous precautionary motives. In 
a calibrated exercise, we find that this channel accounts for the majority of the transmission to 
output. 
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1 Introduction

A long tradition in monetary economics emphasizes the role of the revaluation of real

and financial assets in shaping the economy’s response to changes in monetary policy.

Its importance can be traced back to both classical and Keynesian economists.1 Keynes

himself described the effects of interest rate changes as follows:

Perhaps the most important influence, operating through changes in the rate of interest, on the

readiness to spend out of a given income, depends on the effect of these changes on the appreciation

or depreciation in the price of securities and other assets.

- John M. Keynes, The General Theory of Employment, Interest, and Money (emphasis added).

These revaluation effects caused by monetary policy have been documented by an ex-

tensive empirical literature. Bernanke and Kuttner (2005) study the effects of monetary

shocks on stock prices. Gertler and Karadi (2015) and Hanson and Stein (2015) consider

the effects on bonds. A robust finding of this literature is that changes in asset prices are

explained mainly by fluctuations in future excess returns, related to changes in the risk

premia, rather than changes in the risk-free rate.2

The extent to which changes in asset prices play a relevant role in the transmission of

monetary policy to the real economy, however, has been controversial. One view high-

lights the importance of wealth effects. Cieslak and Vissing-Jorgensen (2020) show that

policymakers track the behavior of stock markets because of their impact on households’

consumption, while Chodorow-Reich, Nenov and Simsek (2021) study the importance of

this channel empirically. An alternative view defends that changes in asset valuations

have no real implications. Cochrane (2020) and Krugman (2021) argue that movements

in discount rates lead to changes in "paper wealth," without an impact on consumption.

In this paper, we study how monetary policy affects the real economy through changes

1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler
(1951) considered stocks and money. Tobin (1969) focused on the revaluation of real assets.

2For a recent review of this work, see Bauer and Swanson (2023).
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in asset prices in a New Keynesian setting. We provide a new framework that generates

rich asset-pricing dynamics and heterogeneous portfolios while preserving the simplicity

of the textbook model. In particular, we propose a new solution technique that delivers

time-varying risk premium and precautionary savings motive without having to resort to

higher-order approximations.3 We derive necessary conditions for changes in risk premia

to affect the real economy. Under special conditions, we obtain a risk-premium neutrality

result, where changes in risk premia caused by monetary shocks affect asset prices, but

they have no effect on output and inflation. We identify the redistribution generated

by heterogeneous portfolios revaluations among agents with different precautionary mo-

tives as the main channel through which risk premia affect the real economy. We assess

quantitatively the importance of this channel and find that changes in risk premia account

for a large fraction of the response of output and inflation to changes in monetary policy.

We consider an economy populated by workers and savers with two main ingredi-

ents: i) rare disasters, and ii) heterogeneous beliefs. Rare disasters enable us to capture

both a precautionary savings motive and realistic risk premia.4 Savers invest in stocks,

long-term government bonds, and short-term debt, and have heterogeneous beliefs, as

in Caballero and Simsek (2020).5 This has two consequences. First, they hold heteroge-

neous portfolios in equilibrium. Second, they have heterogeneous marginal propensities

to consume (MPCs) out of changes in wealth due to different precautionary motives. This

generates time-variation in risk premia in response to monetary shocks. Despite being

stylized, the model captures quantitatively central aspects of the monetary transmission

mechanism, including the term premium, the equity premium, and corporate spreads.

3As shown in e.g. Schmitt-Grohé and Uribe (2004), a standard perturbation around the non-stochastic
steady state can only generate time-varying risk premia with at least a third-order approximation.

4Rare disasters have been widely used to explain a range of asset-pricing “puzzles”; see Tsai and
Wachter (2015) for a review.

5For recent evidence from bond returns consistent with belief heterogeneity, see Bauer and Chernov
(2023). A large literature on asset pricing studies models with heterogeneous beliefs, see e.g. Detemple and
Murthy (1994), Basak (2005), and Atmaz and Basak (2018).
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Our first contribution is methodological and consists of an aggregation result. Given

investor heterogeneity, we must characterize not only the dynamics of aggregate output

and inflation, but also the behavior of portfolios, asset prices, and individual consump-

tion. This increases the dimensionality of the problem and typically makes deriving ana-

lytical results infeasible. We show that our economy satisfies an as if result: the economy

with heterogeneous savers behaves as an economy with a representative saver, but the

probability of disaster, as implied by market prices, is time-varying and responds to mon-

etary policy. This market-implied disaster probability is a key determinant of asset prices, and

it is the main channel through which investor heterogeneity affects the real economy.

Our second contribution identifies conditions under which time-varying risk premia

plays a role in the monetary transmission mechanism. Consistent with the evidence, a

contractionary monetary shock leads to an increase in risk premia and a reduction in the

price of risky assets. One could then conclude that this reduction in households’ wealth

leads to a reduction in consumption. However, as the discount rate increases, the amount

of wealth required to finance the same amount of consumption also decreases. The net

effect of changes in risk premium is ambiguous and depends on whether households are

net buyers or net sellers of risky assets. As recently articulated by Cochrane (2020) and

Krugman (2021), a household who consumes the dividends from their financial assets can

still afford the same level of consumption after a change in discount rates.

Formally, we show that the aggregate wealth effect corresponds to the sum of all

households’ wealth net of the change in the cost of the original consumption bundle.

Interestingly, the aggregate wealth effect does not depend on the equity premium. Move-

ments in equity prices redistribute wealth among investors but do not generate gains or

losses for the household sector as a whole. In a closed economy, the government is the

only counterpart to the household sector, so the aggregate wealth effect depends on the

revaluation of government bonds and the amount of trading in these bonds.

Risk also affects the households’ precautionary motive, given the redistribution among
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savers after a monetary shock. Because optimists hold a larger fraction of their wealth in

risky assets, an increase in the interest rate disproportionately reduces their wealth. Hold-

ing the aggregate wealth effect constant, this redistribution of wealth is then reflected in

the market-implied probability of disaster, which increases after the monetary shock.This

is the “as-if” result in action: redistribution between optimists and pessimists is akin to

an increase in the “objective” probability of disaster risk in a representative-agent model.

We consider next the quantitative importance of risk and heterogeneity for the trans-

mission of monetary shocks to the real economy. We find that the time-varying precau-

tionary motive accounts for roughly 60% of the response of output on impact, while the

response coming from the aggregate wealth effect accounts for roughly 30% of the over-

all output response. The intertemporal-substitution effect accounts for less than 10% of

the response of output on impact. Heterogeneous beliefs are crucial for this result. The

response of output in the economy with heterogeneous beliefs is more than three times

larger than in the economy with homogeneous beliefs. We introduce long-term default-

able household debt and find that it amplifies the response of output. Hence, risk and

heterogeneity play a large role in how monetary policy affects the real economy.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou

(1943) relied on a wealth effect to argue that full employment could be reached even in

a liquidity trap. Kalecki (1944) argued that these effects apply only to government li-

abilities, as inside assets cancel out in the aggregate, while Tobin highlighted the role of

private assets and high-MPC borrowers. Recently, wealth effects have regained relevance.

Kaplan, Moll and Violante (2018) build a quantitative HANK model and find only a mi-

nor role for the standard intertemporal-substitution channel, leading the way to a more

important role for wealth effects. Much of the literature has focused on the role of hetero-

geneous marginal propensities to consume (MPCs) in settings with idiosyncratic income

risk. Instead, we focus on aggregate risk and heterogeneous portfolios.
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Our work is closely related to two strands of literature. First, it is related to work on the

interaction between monetary policy and changes in asset prices, including models with

sticky prices, such as Caballero and Simsek (2020), and models with financial frictions,

such as Brunnermeier and Sannikov (2016) and Drechsler, Savov and Schnabl (2018).6 In

a recent contribution, Kekre and Lenel (2022) consider the role of the marginal propensity

to take risk in determining the risk premium and shaping the response of the economy

to monetary policy. Kekre, Lenel and Mainardi (2023) consider the role of market seg-

mentation in the determination of the term premium. We contribute to this literature by

presenting an analytical framework that features aggregate risk and generates a sizable

time-varying risk premium while preserving the tractability of standard New Keynesian

models. Also related is Campbell, Pflueger and Viceira (2020) and Pflueger and Rinaldi

(2022), which use a habit model to study the role of monetary policy in determining bond

and equity premia. Their models generate an exact log-linear Euler equation that is in-

dependent of risk, which implies that output and inflation are independent of risk, con-

sistent with our risk-premium neutrality result. In contrast, aggregate risk, through the

precautionary motives they generate, are a crucial channel of transmission in our model.

The paper is also closely related to the analytical HANK literature, such as Werning

(2015) and Debortoli and Galí (2017). While this literature focuses primarily on how the

cyclicality of income interacts with differences in MPCs, we focus instead on how het-

erogeneous asset positions interact with differences in MPCs. As e.g. Eggertsson and

Krugman (2012), we consider the role of household debt, but they abstract from risk and

focus instead on the implications of deleveraging. Iacoviello (2005) considers a mone-

tary economy with private debt but focuses instead on housing as collateral. Our work is

also related to Auclert (2019), which studies the redistribution channel of monetary policy

arising from portfolio heterogeneity. Our paper emphasizes the redistribution channel in

6Our work is also related to the literature on unconventional monetary policy and asset prices, see e.g.
Silva (2020), Caballero and Simsek (2021), and Corhay, Kind, Kung and Morales (2023).
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the context of a general equilibrium setting with aggregate risk.

Finally, a literature studies rare disasters and business cycles. Gabaix (2011) and Gou-

rio (2012) consider a real business cycle model with rare disasters, while Andreasen (2012)

and Isoré and Szczerbowicz (2017) allow for sticky prices. They focus on changes in dis-

aster probability while we study monetary shocks in a heterogeneous-agent model.

2 D-HANK: A Rare Disasters Analytical HANK Model

In this section, we consider an analytical HANK model with two main ingredients: i) the

possibility of rare disasters, and ii) heterogeneous beliefs.

2.1 The Model

Environment. Time is continuous and denoted by t 2 R+. The economy is populated

by households, firms, and a government. There is a continuum of households that can

be of three types: workers, optimistic savers, and pessimistic savers (denoted by w, o and p,

respectively), who differ in their discount rates and beliefs about the probability of the

economy being hit by an aggregate shock. We let µj � 0 denote the mass of households

of type j 2 {w, o, p}, where µb + µo + µp = 1. Households can borrow or lend at a

riskless rate subject to a borrowing constraint, and they can save on long-term nominal

government bonds and corporate equity. In this section, we assume that the borrowing

limit is zero. We study the case of a positive borrowing limit and defaultable long-term

household debt in Section 5. Workers are the only ones who supply labor, and they are

relatively impatient, so their borrowing constraint is binding in equilibrium.

Firms can produce final or intermediate goods. Final-goods producers operate com-

petitively and combine intermediate goods using a CES aggregator with elasticity e > 1.

Intermediate-goods producers use labor as their only input and face quadratic (Rotem-
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berg, 1982) pricing adjustment costs. Intermediate-goods producers are subject to an

aggregate productivity shock: with Poisson intensity l � 0, their productivity is per-

manently reduced. This shock captures the possibility of rare disasters: low-probability,

large drops in productivity and output, as in the work of Barro (2006, 2009). Periods that

predate the realization of the shock are in the no-disaster state, and periods that follow the

shock are in the disaster state. The disaster state is absorbing, and there are no further

shocks after the disaster is realized.7

The government sets fiscal policy, comprising of transfers to workers and savers, and

monetary policy, specified by an interest rate rule subject to monetary shocks.

Savers’ problem. Savers face a portfolio problem where they choose how much to in-

vest in short-term bonds, long-term bonds, and corporate equity.

A long-term bond issued in period t trades at a nominal market price QL,t in the no-

disaster state and promises to pay coupons e
�yL(s�t) at all dates s � t. Because of the

structure of the coupon payments, the prices of the bonds issued at previous dates are

proportional to new issues, i.e. a bond issued in t � z trades at QL,te
�yLz in period t. The

rate of decay yL is inversely related to the bond’s duration, where a consol corresponds

to yL = 0 and the limit yL ! • corresponds to the case of short-term bonds. We de-

note by Q
⇤
L,t the price of the bond in the disaster state, where the star superscript is used

throughout the paper to denote variables in the disaster state. Then, the nominal return

on the long-term bond is given by

dRL,t =


1

QL,t
+

Q̇L,t
QL,t

� yL

�
dt +

Q
⇤
L,t � QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate l (under the objective measure).

7Assuming an absorbing disaster state simplifies the presentation, but it is not essential for our results.
Allowing for partial recovery, as in e.g. Barro, Nakamura, Steinsson and Ursúa (2013), introduces dynamics
in the disaster state, but it does not change the implications for the no-disaster state, which is our focus.
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The price of a claim on real aggregate corporate profits is denoted by QE,t and the real

return on equities evolves according to

dRE,t =


Pt

QE,t
+

Q̇E,t
QE,t

�
dt +

Q
⇤
E,t � QE,t

QE,t
dNt,

where Pt denotes real profits and Q
⇤
E,t is the equity price in the disaster state.

Savers have heterogeneous beliefs regarding the probability of a disaster. Subjective

beliefs about the arrival rate of the aggregate productivity shock are given by lj, for j 2

{o, p}, where lo  lp. We follow Chen, Joslin and Tran (2012) and assume that savers are

dogmatic in their beliefs about disaster risk, so we abstract from any learning process.

Savers’ subjective discount rate is a function of their consumption share, rj,t = rj

⇣
Cj,t
Cs,t

⌘
,

where Cs,t = µo

µo+µp
Co,t +

µp

µo+µp
Cp,t denotes savers’ aggregate consumption. Following

Schmitt-Grohé and Uribe (2003), we assume that rj (·) depends on the average consump-

tion of type-j savers, so it is taken as given by any individual saver. This formulation, a

form of Uzawa (1968) preferences, implies that there is a unique stationary wealth distri-

bution, but it is otherwise not central to our results.

Let Bj,t = B
S

j,t + B
L

j,t + B
E

j,t denote the net worth of a type-j saver, the sum of short-

term bonds B
S

j,t, long-term bonds B
L

j,t, and equity holdings B
E

j,t. A type-j saver chooses

consumption Cj,t, long-term bonds B
L

j,t, and equity holdings B
E

j,t, given an initial net worth

Bj,t > 0, to solve the following problem:

Vj,t(Bj,t) = max
[Cj,z,BL

j,z,BE

j,z]z�t

Ej,t

"ˆ
t
⇤

t

e
�
´

z

t
rj,udu

C
1�s
j,z

1 � s
dz + e

�
´

t
⇤

t
rj,udu

V
⇤

j,t⇤(B
⇤

j,t⇤)

#
,

subject to the flow budget constraint

dBj,t =
h
(it � pt)Bj,t + rL,tB

L

j,t + rE,tB
E

j,t + Tj,t � Cj,t

i
dt +

h
B
⇤

j,t � Bj,t

i
dNt,
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and borrowing constraint Bj,t � 0, given Bj,0 > 0, where B
⇤

j,t = Bj,t + B
L

j,t
Q
⇤
L,t�QL,t

QL,t
+

B
E

j,t
Q
⇤
E,t�QE,t

QE,t
denotes savers’ net worth after the disaster is realized, it is the nominal inter-

est rate, pt is the inflation rate, rL,t ⌘
1

QL,t
+ Q̇L,t

QL,t
� yL � it is the excess return on long-term

bonds conditional on no disasters, rE,t ⌘
Pt

QE,t
+ Q̇E,t

QE,t
� (it � pt) is the excess return on

equities conditional on no disasters, and Tj,t denotes government transfers. The random

arrival time t
⇤ represents the period in which the aggregate shock hits the economy. V

⇤

j,t⇤

denotes the value function in the disaster state. The savers’ problem in the disaster state

corresponds to a deterministic version of the problem above. The non-negativity con-

straint on Bj,t captures the assumption that households cannot borrow on net.

The savers’ Euler equation for short-term bonds is given by

Ċj,t

Cj,t
= s�1(it � pt � rj,t) +

lj

s

" 
Cj,t

C⇤

j,t

!s

� 1

#
, (1)

where C
⇤

j,t is the consumption of a type-j saver in the disaster state. The first term captures

the usual intertemporal-substitution force present in RANK models. The second term

captures the precautionary savings motive generated by the disaster risk, and it is analogous

to the precautionary motive that emerges in HANK models with idiosyncratic risk.

The Euler equation for long-term bonds is given by

rL,t = lj

 
Cj,t

C⇤

j,t

!s

| {z }
price of

disaster risk

QL,t � Q
⇤
L,t

QL,t
| {z }

quantity of
risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down long-term

interest rates in equilibrium. The premium on long-term bonds is given by the product

of the price of disaster risk, the compensation for a unit exposure to the risk factor, and

the quantity of risk, the loss the asset suffers conditional on switching to the disaster state.
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Similarly, the Euler equation for equities is given by

rE,t = lj

 
Cj,t

C⇤

j,t

!s
QE,t � Q

⇤
E,t

QE,t
. (3)

The expression above pins down the (conditional) equity premium. Note that differences

in the quantity of risk drive the differences in expected returns between stocks and bonds.

Workers’ problem. Workers supply labor and have GHH preferences (Greenwood, Her-

cowitz and Huffman, 1988) over consumption and labor. Their problem is given by

Vw,t(Bw,t) = max
[Cw,z,Nw,z]z�t

Ew,t

2

4
ˆ

t
⇤

t

e
�rw(z�t)

1 � s

 
Cw,z �

N
1+f
w,z

1 + f

!1�s

dz + e
�rw(t⇤�t)

V
⇤
w,t⇤(Bw,t⇤)

3

5 ,

subject to the flow budget constraint dBw,t =
h
(it � pt)Bw,t +

Wt

Pt
Nw,t + Tw,t � Cw,t

i
dt,

and the borrowing constraint Bw,t � 0, where Wt is the nominal wage, Pt is the price

level, and Tw,t denotes fiscal transfers to workers.

We focus on the case where the initial condition is Bw,0 = 0 and rb is sufficiently large,

so workers are constrained at all periods. As workers are constrained, their beliefs about

the disaster probability play no role in the determination of equilibrium. The labor supply

is determined by the condition Wt

Pt
= N

f
w,t. GHH preferences imply that there is no income

effect on labor supply, roughly in line with the evidence (see e.g. Auclert, Bardóczy and

Rognlie, 2021), and simplifies the model aggregation.8

Market-implied probabilities and the SDF. From equations (2) and (3), we can see that,

even though savers disagree on the probability of a disaster, they agree on the value of a

8GHH preferences avoid the counterfactual implications caused by income effects on labor supply in
sticky-price heterogeneous-agent models emphasized by Broer, Harbo Hansen, Krusell and Öberg (2020).
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unit of consumption in that state.9 We can then price any cash flow using the beliefs and

marginal utility of either optimistic or pessimistic savers. Instead of using the beliefs of

a specific saver, it is convenient to define the economy’s stochastic discount factor (SDF)

using the aggregate consumption of savers, and the corresponding disaster probability

implied by asset prices, as shown in Proposition 1.

Proposition 1 (Market-implied disaster probability). Define the market-implied disaster prob-

ability lt as follows:

lt ⌘


µoCo,t

µoCo,t + µpCp,t
l

1
s
o +

µpCp,t

µoCo,t + µpCp,t
l

1
s
p

�s

, (4)

and let Et[·] denote the expectation operator associated with the arrival rate lt for the disaster

shock. Then, ht = e
�
´

t

0 rs,zdz
C
�s
s,t is a valid stochastic discount factor, i.e., ht correctly prices all

tradeable assets given the disaster probability lt and an appropriately chosen process for rs,t.

Proof. To ensure that ht correctly prices long-term bonds and equities, consistent with

equations (2) and (3), the market-implied disaster probability must satisfy the condition

lt

⇣
Cs,t
C⇤

s,t

⌘s
= lj

✓
Cj,t
C⇤

j,t

◆s

) C
⇤

j,t =
⇣

lj

lt

⌘ 1
s C

⇤
s,t

Cs,t
Cj,t. Plugging C

⇤

j,t into the definition of savers’

average consumption in the disaster state, C
⇤
s,t ⌘

µo

µo+µp
C
⇤
o,t +

µp

µo+µp
C
⇤
p,t, and rearranging

gives equation (4). By setting rs,t ⌘ Âj2{o,p}
µjCj,t

µoCo,t+µpCp,t
(rj,t + lj)� lt, we ensure that ht

correctly prices risk-free bonds, i.e., Et[dht]/ht = �(it � pt)dt.

The market-implied probability lt is a CES aggregator of individual probabilities,

weighted by the corresponding consumption share. Expression (4) is reminiscent of the

complete-markets formula with heterogeneous beliefs in Varian (1985). In our setting,

consumption shares can potentially move over time, which leads to endogenous time-

variation in the perceived probability of a disaster. We can then price assets as-if the

9The value of a consumption unit in the disaster state for saver j is lj(C
⇤

j,t/Cj,t)
�s, the continuous-time

version of the standard expression for state prices, which is equalized for all savers from equations (2)-(3).
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economy has a representative saver with (endogenous) time-varying beliefs.

Firms’ problem. Intermediate-goods producers are indexed by i 2 [0, 1] and operate in

monopolistically competitive markets. Final good producers are price takers and combine

intermediate goods to produce the final good. Their demand for variety i is given by

Yi,t =
⇣

Pi,t
Pt

⌘�e
Yt, and the equilibrium price level is given by Pt =

⇣´ 1
0 P

1�e
i,t di

⌘ 1
1�e .

Intermediate-goods producers operate the linear technology Yi,t = AtNi,t. Produc-

tivity in the no-disaster state is given by At = A, and productivity in the disaster state

is given by At = A
⇤, where 0 < A

⇤ < A. Intermediate-goods producers choose the

rate-of-change of prices pi,t = Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the ex-

pected discounted value of real profits subject to Rotemberg quadratic adjustment costs.

These costs are rebated back to shareholders, so they do not represent real resource costs.

The optimality condition for the firms’ problem delivers the non-linear New Keynesian

Phillips curve (NKPC):

ṗt =

✓
it � pt + lt

h⇤
t

ht

◆
pt �

e

jA

✓
Wt

Pt

� (1 � e�1)A

◆
Yt, (5)

assuming a symmetric initial condition Pi,0 = P0, for all i 2 [0, 1], and p⇤

i,t = 0.

Government. The government is subject to a flow budget constraint

ḊG,t = (it � pt + rL,t)DG,t + Â
j2{w,o,p}

µjTj,t,

and a No-Ponzi condition limt!• E0[htDG,t]  0, where DG,t denotes the real value of

government debt, DG,0 = DG is given, and analogous conditions hold in the disaster state.

Transfers to workers are given by the policy rule Tw,t = Tw(Yt). We assume To,t = Tp,t, and

the government adjusts transfers to savers such that the No-Ponzi condition is satisfied.

12



In the no-disaster state, monetary policy is determined by the policy rule

it = rn + fppt + ut, (6)

where fp > 1, ut is a monetary shock, and rn denotes the real rate when pt = ut = 0

at all periods. We assume that in the disaster state there are no monetary shocks, that is,

i
⇤
t
= r

⇤
n + fpp⇤

t
. By abstracting from the policy response after a disaster, we isolate the

impact of changes in monetary policy during “normal times.”

Market clearing. The market-clearing conditions are given by

Â
j2{w,o,p}

µjCj,t = Yt, Â
j2{w,o,p}

µjB
S

j,t = 0, Â
j2{w,o,p}

µjB
L

j,t = DG,t, Â
j2{w,o,p}

µjB
E

j,t = QE,t,

and µwNw,t = Nt, where Yt =
⇣´ 1

0 Y

e
e�1

i,t di

⌘ e�1
e

and Nt =
´ 1

0 Ni,tdi.

2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which

all variables are constant in each aggregate state. The economy will be in a stationary

equilibrium in the absence of monetary shocks, that is, ut = 0 for all t � 0. Since variables

are constant in each state, we drop time subscripts and write, for instance, Cj,t = Cj and

C
⇤

j,t = C
⇤

j
. For ease of exposition, we follow Bilbiie (2018) and assume that Tw implements

Cw = Y and C
⇤
w = Y

⇤, and a symmetric allocation in the disaster state: C
⇤
w = C

⇤
o = C

⇤
p.

We discuss a more general case in Appendix A.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = rs � l

✓
Cs

C⇤
s

◆s

� 1
�

,
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where rs and l are the values of rs,t and lt in the stationary equilibrium, and 0 < C
⇤
s < Cs.

We assume that the natural rate is positive, rn > 0. The precautionary motive depresses

the natural interest rate relative to the one that would prevail in a non-stochastic economy.

In a stationary equilibrium where both types of savers are unconstrained, the follow-

ing condition must hold ro + lo = rp + lp. As rj depends on the consumption share, this

condition pins down the stationary-equilibrium consumption and wealth distributions.

For simplicity, we assume that this equality holds when both types have the same net

worth, i.e, Bo = Bp, which implies Co > Cp.

From equation (2), we can pin down the term spread, the difference between the yield

on the long-term bond and the short-term rate, which is given by rL = l
⇣

Cs

C⇤
s

⌘s
QL�Q

⇤
L

QL
,

and Q
⇤
L
< QL. It can be shown that rL = iL � rn, where iL = Q

�1
L

� yL is the yield on

the long-term bond. Thus, our model generates an upward-sloping yield curve, where

long-term yields exceed the short rate, consistent with the data.10 Similarly, the equity

premium (conditional on no-disaster) is given by rE = l
⇣

Cs

C⇤
s

⌘s
QE�Q

⇤
E

QE
, and Q

⇤
E
< QE.11

Therefore, the equity premium is positive in the stationary equilibrium.

Households have heterogeneous portfolios in equilibrium. Workers are against the

borrowing constraint and hold no equities or long-term bonds. Optimistic savers are

more exposed to disaster risk than pessimist investors. The exact composition of their

portfolio is indeterminate, as we have one redundant asset. For concreteness, we focus

on the case B
E
o = B

E
p , so optimists hold more long-term bonds, i.e. B

L
o > B

L
p . This leads to

a simpler presentation in the analysis that follows.

Log-linear dynamics. We focus on a log-linear approximation of the equilibrium condi-

tions. However, instead of linearizing around the non-stochastic steady state, we linearize

10The upward-sloping yield curve is caused by the lack of precautionary savings in the disaster state.
We would obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).

11The unconditional equity premium equals rE minus the expected loss on a disaster. Using l to compute
the expected loss, the (unconditional) equity premium would be given by l

⇥
(Cs/C

⇤
s )

s
� 1
⇤
(QE � Q

⇤
E
)/QE.
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the equilibrium conditions around the (stochastic) stationary equilibrium described above.

Formally, we perturb the allocation around the economy where ut = 0 and l > 0, while

the standard approach would perturb around the economy where ut = lt = 0. This en-

ables us to capture the effects of (time-varying) precautionary savings and risk premia in

a linear setting, as shown below.12

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g.,

yt ⌘ log Yt/Y and cw,t ⌘ log Cw,t/Cw. Workers’ consumption is given by

cw,t =
WNw

PY
(wt � pt + nw,t) + T

0
w(Y)yt ) cw,t = cyyt, (7)

using wt � pt = fyt and nw,t = yt, where cy ⌘
WNw

PY
(1 + f) + T

0
w(Y). The coefficient cy

controls the cyclicality of income inequality among workers and savers. We focus on the

case 0 < cy < µ�1
w , such that the consumption of savers, which is given by cs,t =

1�µwcy

1�µw
yt

from the market clearing condition for goods, is also increasing in yt.

Linearizing equation (1) and aggregating across savers, we obtain

ċs,t = s�1(it � pt � rn) +
l

s

✓
Cs

C⇤
s

◆s

pd,t, (8)

where

pd,t ⌘ s(cs,t � c
⇤
s,t) + l̂t (9)

denotes the price of (disaster) risk, l̂t ⌘ log lt

l , and we used the linearized discount-rate

function: rj,t = rj + sx(cj,t � cs,t).13 The expression for the price of risk has two terms.

The first term captures the change in the savers’ marginal utility of consumption if the

disaster shock is realized. The second term represents the change in the market-implied
12This method differs from the procedure considered by Coeurdacier, Rey and Winant (2011) or

Fernández-Villaverde and Levintal (2018), as we linearize around a stochastic steady state of an economy
with no monetary shocks, instead of the stochastic steady state of the economy with both shocks.

13Uzawa preferences correspond to the case x > 0 and constant discount rates correspond to x = 0. To
simplify the model’s aggregation, we assume that the slope coefficient sx is the same for both types.
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disaster probability after a monetary shock.

Combining condition (7) for borrowers’ consumption, equation (8) for savers’ Euler

equation, and the market-clearing condition for goods, we obtain the evolution of aggre-

gate output. Proposition 2 characterizes the dynamics of aggregate output and inflation,

given the paths of it and pd,t. Proofs omitted in the text are provided in the appendix.

Proposition 2 (Aggregate dynamics). Given [it, pd,t]t�0, the dynamics of output and inflation

is described by the conditions:

i. Aggregate Euler equation:

ẏt = s̃�1(it � pt � rn) + cpd
pd,t, (10)

where s̃�1 ⌘
1�µw

1�µwcy
s�1

and cpd
⌘

l
s̃

⇣
Cs

C⇤
s

⌘s
.

ii. New Keynesian Phillips curve:

ṗt = rpt � kyt, (11)

where r ⌘ rs + l and k ⌘ j�1(e � 1)fY.

Condition (10) represents the aggregate Euler equation. This equation has two terms,

capturing the effects of heterogeneous MPCs, aggregate risk, and heterogeneous beliefs.

The first term is the product of the aggregate elasticity of intertemporal substitution (EIS),

s̃�1, and the real interest rate. The aggregate EIS depends on the cyclicality of inequality

among workers and savers, as captured by cy. As in the work of Werning (2015) and Bil-

biie (2019), heterogeneous MPCs amplify the effect of changes in interest rates if workers’

consumption share is procyclical (i.e., cy > 1), as it implies that s̃�1 > s�1.

The second term, cpd
pd,t, captures the effect of aggregate risk. To understand the

economic forces behind this expression, it is useful to rewrite equation (9) as pd,t = s̃yt +
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l̂t where we used that y
⇤
t
= 0. Then, the aggregate Euler equation can written as

ẏt = s̃�1(it � pt � rn) + dyt + cpd
l̂t,

where d ⌘ l
⇣

Cs

C⇤
s

⌘s
. In the absence of belief heterogeneity, so l̂t = 0, we can write output

as yt = �s̃�1 ´ •
t

e
�d(s�t)(is � ps � rn)ds. Hence, a positive d dampens the effect of future

real interest rates, as in the discounted Euler equation of McKay, Nakamura and Steinsson

(2017). In our setting, this is the result of a precautionary motive in response to aggregate

disaster risk instead of idiosyncratic income risk. The last term, cpd
l̂t, captures the effect

of heterogeneous beliefs. An increase in the market-implied disaster probability implies

that pessimistic investors have a higher consumption share, as shown in Proposition 1.

This increase in pessimism triggers a stronger precautionary motive in the aggregate.

Finally, Proposition 2 derives the NKPC. As in a textbook New Keynesian model, infla-

tion is given by the present discounted value of future output gaps, pt = k
´ •

t
e
�r(s�t)

ysds.

Fiscal backing. The log-linearized government’s flow budget constraint is given by

dGḋG,t = iLdGdG,t + dG(it � pt + rL,t � iL)� (ctyt + tt) , (12)

where dG ⌘
DG

Y
, and ctyt + tt denotes the primary surplus. The coefficient ct ⌘ �µwT

0
w(Y)

captures the elasticity of tax revenues to output and tt ⌘ �Âj2{o,p} µj

Tj,t�Tj

Y
represents

taxes on savers. As the government adjusts tt to ensure the No-Ponzi condition is satis-

fied, we refer to tt as the fiscal backing to the monetary shock.

2.3 Monetary policy and risk premia

Asset prices. The response of asset prices to monetary policy depends crucially on the

behavior of the price of disaster risk, as shown in equations (2) and (3). Given the (lin-
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earized) price of risk in equation (9), we can price any financial asset in this economy. For

example, the price of the long-term bond in period zero is given by

qL,0 = �

ˆ •

0
e
�(r+yL)t(it � rn)dt

| {z }
path of nominal interest rates

�

ˆ •

0
e
�(r+yL)trL pd,tdt

| {z }
term premium

. (13)

The yield on the long-term bond, expressed as deviations from the stationary equilibrium,

is given by �Q
�1
L

qL,0, which can be decomposed into two terms: the path of nominal

interest rates, as in the expectations hypothesis, and a term premium, capturing variations

in the compensation for holding long-term bonds. The term premium depends on the

price of risk, pd,t, and the asset-specific loading rL. Because the term premium responds

to monetary shocks, the expectation hypothesis does not hold in this economy.

The pricing condition for equities is analogous to the one for long-term bonds:

qE,0 =
Y

QE

ˆ •

0
e
�rtP̂tdt

| {z }
dividends

�

ˆ •

0
e
�rt [it � pt � rn + rE pd,t] dt

| {z }
discount rate

, (14)

where P̂t = yt �
WN

PY
(wt � pt + nt). Equity prices respond to changes in monetary policy

through two channels: a dividend channel, capturing changes in firms’ profits, and a dis-

count rate channel, capturing changes in real interest rates and risk premia. Risk premia

depends on the price of risk, pd,t, and the asset-specific loading rE.

Market-implied disaster probability. Recall that the price of risk depends on yt and l̂t.

We now characterize l̂t. Log-linearizing equation (4), we obtain

1
s

l
1
s l̂t = µc,oµc,p

✓
l

1
s
p � l

1
s
o

◆ ⇥
cp,t � co,t

⇤
, (15)
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where µc,j ⌘
µjCj

µoCo+µpCp
, for j 2 {o, p}. The market-implied disaster probability increases

when the monetary shock redistributes wealth towards pessimistic savers. As shown in

Appendix A.3, the relative consumption of the two types of savers evolves according to

ċp,t � ċo,t = �x(cp,t � co,t), (16)

and the law of motion of relative net worth bp,t � bo,t is given by

ḃp,t � ḃo,t = r(bp,t � bo,t)� cb,c(cp,t � co,t) + cb,cs
cs,t,

where the coefficients cb,c and cb,cs
are functions of portfolios and returns in the station-

ary equilibrium. Given that the evolution of relative net worth depends on cs,t, and cs,t

depends on yt, we must simultaneously solve for [cp,t � co,t, bp,t � bo,t]•0 and [it, yt, pt]•0 .

In this case, obtaining analytical results would likely be infeasible. We show next that this

system satisfies an approximate block recursivity property, where we can solve for cp,t � co,t

and bp,t � bo,t independently of (yt, pt), provided the effect of cs,t on risk premia is small.

Proposition 3 (Approximate block recursivity). Suppose rkscs,t is small for k 2 {L, E}, i.e.

rkscs,t = O(||it � rn||
2). Then, the market-implied probability of disaster l̂t and relative net

worth bp,t � bo,t can be solved independently of (yt, pt), and they are given by

l̂t = e
�yltl̂0, (17)

bp,t � bo,t = e
�ylt(bp,0 � bo,0), and yl = x. If it � rn = e

�ymt(i0 � rn), then l̂0 is given by

l̂0 = el(i0 � rn), (18)

where el � 0 and the inequality is strict if and only if lp > lo.
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Proposition 3 shows that we can solve for l̂t and bp,t � bo,t independently of output

and inflation if rkscs,t is small. If rkscs,t is second-order on the size of the monetary shock,

its first-order impact on risk premia is negligible. In this case, we can solve for l̂t and

bp,t � bo,t independently of (yt, pt). As the dynamics of (yt, pt) depends on l̂t, but l̂t

does not depend on (yt, pt), we say the system is (approximately) block recursive. In Ap-

pendix A.4, we assess the quantitative importance of the term rkscs,t. For our calibrated

parameters, we find that risk premium effects on stocks and bonds when we include the

term rkscs,t are nearly identical to the solution when these terms are omitted.

Uzawa preferences ensure that the effects of the monetary shock on the price of risk

are transitory. If x = 0, so subjective discount rates are constant, then yl = 0 and a

temporary monetary shock has a permanent effect on l̂t. The reason is that a monetary

policy surprise leads to permanent changes in relative net worth and relative consump-

tion in this case. With Uzawa preferences, savers’ net worth eventually converge to their

stationary-equilibrium level, so the effect on l̂t is transitory.

An important implication of equation (18) is that the price of risk increases after a

contractionary monetary shock. A monetary tightening redistributes wealth away from

optimistic investors, as they are more exposed to risky assets. The economy becomes

on average more pessimistic, which raises the required compensation for holding risky

assets. The increase in risk premia in response to contractionary monetary shocks is con-

sistent with the evidence in, e.g., Gertler and Karadi (2015) and Hanson and Stein (2015).

Notice that investor heterogeneity is necessary for this result, as l̂t = 0 when lo = lp.

The four-equation system. Proposition 3 allows us to write the price of risk as follows:

pd,t = s̃yt + e
�yltl̂0, (19)
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where l̂0 is a function of the path of nominal interest rates. Combining the expression

above for the price of risk with the interest rate rule (6), the aggregate Euler equation (10),

and the NKPC (11), we obtain a four-equation system describing the economy’s aggregate

dynamics. The system is similar to the textbook three-equation model (see, e.g., Galí,

2015). The interest rate rule and the NKPC are isomorphic to the ones in the simple model.

Equation (10) is analogous to the standard Euler equation but features an additional term

that depends on the price of risk, pd,t. It is this term that connects aggregate risk, asset

prices, and macroeconomic variables. Finally, equation (19) characterizes how the price

of risk depends on aggregate output and changes in monetary policy.

The approximate block-recursivity is crucial to allow us to write the system in terms of

aggregate variables, without having to simultaneously solve for the dynamics of individ-

ual balance sheets. The portfolio dynamics is summarized by two coefficients: el, which

captures the pass-through of nominal rates to the initial price of risk, and yl, which con-

trols the persistence of the price of risk. Both coefficients depend on investors’ beliefs and

their portfolio holdings in the stationary equilibrium.

3 Monetary Policy and Wealth Effects

We considered so far how monetary policy affects risk premia and asset prices through

their impact on the price of risk, pd,t, and the market-implied disaster probability, l̂t. We

study next how the revaluation of real and financial assets affects the real economy.

3.1 Wealth effects and asset revaluations

Asset revaluations caused by monetary policy have received significant attention recently.

For instance, Cieslak and Vissing-Jorgensen (2020) show that policymakers pay attention

to the stock market due to its potential (consumption) wealth effect. In contrast, Cochrane
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(2020) and Krugman (2021) argue that wealth gains on “paper” are not relevant for house-

holds who simply consume their dividends. To understand how changes in wealth ulti-

mately affect the real economy, we proceed by first providing a formal definition of wealth

effects and then showing how wealth effects shape households’ consumption behavior.

Wealth effects. Define the wealth effect of household j 2 {w, o, p} as (minus) the to-

tal compensation required for the household’s initial consumption bundle to be just af-

fordable. Thus, a monetary policy shock generates a negative wealth effect if a positive

compensation is required for a household to afford her pre-shock consumption level. For-

mally, we define the wealth effect, normalized by the initial consumption level, as follows:

Wj,0 ⌘ �
1
Cj

✓
E0

ˆ •

0

ht

h0
Cj,tdt

�
� E0

ˆ •

0

ht

h0
Cj,tdt

�◆
. (20)

where Cj,t denotes consumption in the stationary equilibrium, i.e. Cj,t = Cj in the no-

disaster state and Cj,t = C
⇤

j
in the disaster state. The first term inside parenthesis cor-

responds to the present value of the consumption bundle in the stationary equilibrium

discounted by the after-shock SDF, and the second term corresponds to the present dis-

counted value of the consumption bundle in the economy with a monetary shock. The dif-

ference between the two equals the additional amount of wealth required for the house-

hold to afford the stationary-equilibrium consumption bundle under the new prices. This

definition corresponds to (minus) the Slutsky wealth compensation, as defined in Mas-

Colell, Whinston and Green (1995), which justifies referring to Wj,0 as a wealth effect.14

Linearizing equation (20), we obtain

Wj,0 =
ˆ •

0
e
�rt

⇣
cj,t + cc⇤

j
c
⇤

j,t

⌘
dt,

14Mas-Colell et al. (1995) also proposed an alternative wealth compensation, the so-called Hicksian
wealth compensation. We show in Appendix B.2 that the two definitions are equivalent up to first order.
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where cc⇤
j
⌘

d
r⇤n

C
⇤

j

Cj
. The wealth effect determines the present discounted value of con-

sumption across the two states. Therefore, a monetary shock must generate a positive

wealth effect to stimulate consumption in all dates and states. In the absence of a wealth

effect, monetary policy can only shift demand over time or across states.

Asset revaluation. In equilibrium, the wealth effect depends on the revaluation of real

and financial assets. To show this connection, consider the intertemporal budget con-

straint (IBC) for saver j 2 {o, p}. From the flow budget constraint and transversality

condition, we obtain:

E0

ˆ •

0

ht

h0
Cj,tdt

�
= Bj,0 + E0

ˆ •

0

ht

h0
Tj,tdt

�
.

The left-hand side corresponds to the value of a claim on consumption, which we de-

note by QCj,t ⌘ Et

h´ •
t

hz

ht
Cj,zdz

i
. The right-hand side corresponds to saver’s net worth

Bj,0, the value of stocks and bonds, and a claim on fiscal transfers, denoted by QTj,t ⌘

Et

h´ •
t

hz

ht
Tj,tdz

i
. The linearized intertemporal budget constraint is given by:

QCj
qCj,0 = B

L

j
qL,0 + B

E

j
qE,0 + QTj

qTj,0,

where qCj,0 ⌘ log QCj,0/QCj
and qTj

= log QTj,0/QTj
.

We can price the consumption and transfer claims in the same way as we priced stocks

and bonds (see equations 13 and 14). For instance, the price of the consumption claim is

qCj,0 =
Cj

QCj

ˆ •

0
e
�rt(cj,t + cc⇤

j
c
⇤

j,t)dt �

ˆ •

0
e
�rt

⇣
it � pt � rn + rCj

pd,t

⌘
dt, (21)

where rCj
⌘ l

⇣
Cs

C⇤
s

⌘s QC
j
�Q

⇤
C

j

QC
j

.
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Combining the pricing condition for consumption and the linearized IBC, we obtain

Wj,0|{z}
wealth effect

=
1
Cj

h
B

L

j
qL,0 + B

E

j
qE,0 + QTj

qTj,0

i

| {z }
asset-revaluation effect

+
QCj

Cj

ˆ •

0
e
�rt

⇣
it � pt � rn + rCj

pd,t

⌘
dt

| {z }
consumption’s discount-rate effect

.

The wealth effect induced by monetary policy has two components. The first com-

ponent corresponds to the asset-revaluation effect, i.e., the change in the value of stocks,

bonds, and fiscal transfers. Intuitively, an increase in interest rates reduces the value of

stocks and bonds making the household poorer. The second component corresponds to

the consumption’s discount-rate effect, i.e., the change in the value of the consumption claim

due to changes in discount rates. An increase in interest rates reduces the value of the con-

sumption claim, everything else constant, so less wealth is required to finance the same

consumption bundle. The net effect depends on the sensitivity of households’ assets to

changes in discount rates relative to the sensitivity of the consumption claim.

Cash flows vs. discount rates. Using the pricing condition for bonds, equities, and the

transfers claim, we can write the wealth effect as follows:

Wj,0 = �

B
L

j

Cj

ˆ •

0
e
�rtptdt +

Y

Cj

ˆ •

0
e
�rt

⇣
B

E

j
P̂t + QTj

T̂j,t

⌘
dt

+
ˆ •

0
e
�rt

B
S

j

Cj

(it � pt � rn)dt �

ˆ •

0
e
�rt

yLB
L

j

Cj

qL,tdt, (22)

using QCj
= B

S

j
+ B

E

j
+ B

L

j
+ QTj

and QCj
rCj

= B
E

j
rE + B

L

j
rL + QTj

rTj
, and where T̂j,t ⌘

Tj,t�Tj

Y
.

The first line in the expression above captures the (real) cash-flow effect for long-term

bonds, stocks, and fiscal transfers. Naturally, a household is better off if inflation is lower

or if profits and transfers are higher, everything else constant. The second line captures
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the effect of changes in discount rates. An important implication of equation (22) is that

the discount-rate effect depends on the present discounted value of profits from buying

and selling assets. In the stationary equilibrium, savers buy-and-hold stocks, so there is

no trade in stocks. Expression (22) shows that, absent changes in dividends, movements

in stock prices do not generate a wealth effect. In contrast, because coupons decay at

rate yL, investors must purchase yLB
L

j
units of the long-term bond to maintain a constant

amount invested in those bonds in the stationary equilibrium. The wealth effect then

depends on the net purchase of bonds, yLB
L

j
, and the bond revaluation qL,t. Finally, as

short-term bonds mature instantaneously, investors must purchase the whole amount B
S

j

at every moment, so the wealth effect depends on B
S

j
and the change in the interest rate

in these bonds.

To understand the economics behind the wealth effect, a particularly illustrative case

corresponds to the situation where an investor holds no bonds, so B
L

j
= B

S

j
= 0, and there

are no changes in cash flows, P̂t = T̂j,t = 0. In this case, the wealth effect is equal to zero,

despite a potentially large revaluation effect caused by the drop in equity prices. How

is it possible that a household’s financial wealth suffers a large drop, while the wealth

effect is zero? The reason is that an investor who buy-and-hold stocks can still afford the

initial consumption bundle after the shock, as long as the investor does not sell the stocks.

Therefore, the wealth effect is zero in this case.

A similar point emerges in the discussion of capital-gains taxation. Discussing the im-

pact of a drop in interest rates for an investor (Bob) whose consumption equals dividends

every period, Cochrane (2020) says

"When the interest rate goes down, it takes more wealth to finance the same

consumption stream. The present value of liabilities – consumption – rises just

as much as the present value of assets, so on a net basis Bob is not at all better."

In our terms, the increase in financial wealth does not translate into a positive wealth
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effect, as the increase in the price of stocks exactly cancels out the increase in the value of

the consumption claim after a drop in interest rates when consumption equals dividends.

Wealth effects are also a relevant measure of how monetary shocks affect welfare. We

show in Appendix B.3 that the change in welfare relative to the stationary equilibrium is

given by

DVj = C
1�s
j

Wj,0.

Moreover, CjWj,0 coincides, up to first order, with the compensating variation (CV) and

equivalent variation (EV) associated with the policy change. Expression (22), for the spe-

cial case without cash-flow effects, coincides with the welfare metric in Fagereng, Gomez,

Gouin-Bonenfant, Holm, Moll and Natvik (2022). They show that the present discounted

value of trading profits captures the welfare effects of discount-rate changes. An impor-

tant implication of this result is that the wealth effect, and ultimately welfare, depends on

how much investors trade financial assets instead of how much they hold of these assets.

3.2 Risk-premium neutrality

Define the aggregate wealth effect as W0 ⌘ Âj2{w,o,p}
µjCj

Y
Wj,0. The aggregate wealth effect

determines the average level of aggregate consumption in the no-disaster state, W0 =´ •
0 e

�rt
ctdt, as c

⇤
t
= 0. Hence, W0 plays an important role in how monetary shocks affect

the real economy. The next lemma provides a characterization of W0.

Lemma 1. The aggregate wealth effect W0 is given by

W0 =
ˆ •

0
e
�rt

h
(1 � ct)yt � tt � e

�yLt
dGpt

i
dt

| {z }
cash-flow effect

+
ˆ •

0
e
�rt(1 � e

�yLt)dG (it � pt � rn + rL pd,t) dt

| {z }
net discount-rate effect

,

(23)

where ct ⌘ �µwT
0
w(Y).

Analogous to the individual wealth effect, the aggregate wealth effect has two compo-
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nents. The cash-flow effect, which captures changes in income, taxes, and real coupons on

government bonds, and the net discount-rate effect, which depends on the net purchases

of government bonds by the household sector and the real return on those bonds. The net

discount-rate effect is independent of the conditional equity premium. The household

sector as a whole is neither a net buyer or net seller of stocks. Hence, changes in stock

prices redistribute across households without affecting the aggregate wealth effect.15

Risk-premium neutrality. We are ready to state the main result of this section. Proposi-

tion 4 shows that, under certain conditions, two economies can have different asset prices,

driven by differences in risk premia, but exactly the same path of output and inflation.

Proposition 4 (Risk-premium neutrality). Suppose the government uses a consumption tax to

neutralize the precautionary motive induced by l̂t, that is, consider tc

t
satisfying ˙̂tc

t
= l

⇣
Cs

C⇤
s

⌘
l̂t,

where t̂c

t
⌘ log(1 + tc

t
), tc

t
= tc,⇤

t
, and the revenue is rebated back to households such that it

is budget neutral for them. Then, [yt, pt]•0 is independent of l̂t. Moreover, the fiscal backing tt

is independent of l̂t if one of the following conditions are satisfied: i) dG = 0; ii) dG > 0 and

yL = •; iii) dG > 0 and yL = 0.

Proof. Savers’ Euler equation for the riskless bond is now given by ċs,t = s�1(it � pt �

rn �
˙̂tc

t
) + l

s

⇣
Cs

C⇤
s

⌘s ⇥
l̂t + scs,t

⇤
, which is independent of l̂t if ˙̂tc

t
= l

⇣
Cs

C⇤
s

⌘s
l̂t. As tc

t
=

tc,⇤
t

, Euler equations for risky assets are not affected. As the revenue is rebated back to

households, workers are not affected. The aggregate Euler equation then takes the same

form as in equation (10), but with cpd
= 0. Combining it with equations (6) and (11), we

obtain [yt, pt, it] independently of l̂t. The fiscal backing tt will also be independent of l̂t

if (1 � e
�yLt)dGrL = 0 in equation (23). We have that (1 � e

�yLt)dG is zero if dG = 0 or

yL = 0. The excess return on government bonds rL is zero if yL = •.

15In our baseline model, savers buy-and-hold stocks in the stationary equilibrium. In Appendix B.1,
we consider an extension where savers actively trade stocks. We show that even when individual investor
trade stocks, there is no associated wealth effect in the aggregate, only redistribution across savers.
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Figure 1: Output and asset prices response

Proposition 4 shows how asset revaluations caused by monetary policy can have no

real effects. The proposition provides conditions under which the price of risk does not

impact the monetary transmission mechanism. Under such conditions, heterogeneity in

portfolios among savers may help improve the model’s asset-pricing implications, but

they have no bearing on how monetary shocks ultimately affect the real economy. In

particular, output and inflation are independent of lp � lo. Due to the increase in the

risk premium, an economy with heterogeneous beliefs would have a larger drop in asset

prices after a monetary contraction than an economy where lp = lo. Despite the larger

decline in the value of stocks and bonds, the response of output and inflation would be

the same as in the economy without belief heterogeneity. Figure ?? illustrates this result

in a numerical example, which shows output and asset prices in two economies, with

and without belief heterogeneity. Despite the large differences in the price of stocks and

bonds, the response of output to the monetary shock is the same in both economies.

But why do households in the economy that suffered a larger drop in asset prices con-

sume the same as households in the economy where asset prices did not drop as much?

Take for instance the case dG = 0, so savers only hold stocks in equilibrium. One could

expect that, as stock prices fall more sharply in the economy with l̂t > 0, households

would feel poorer and cut consumption relative to the economy with l̂t = 0. However,

this intuition does not take into account the fact that households can afford the same level

of consumption with less wealth now. As households do not need more resources to af-
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ford their initial consumption bundle, since the return on their savings has increased, this

decline in asset prices does not create a negative wealth effect. This provides a precise

sense in which changes in wealth may reflect only “paper wealth.”16

Finally, Proposition 4 also establishes the conditions under which the taxpayer is not

exposed to movements in risk premia. If there is no government debt, i.e., dG = 0, then

the fiscal backing will be trivially independent of asset prices and, therefore, of risk pre-

mia. If government debt is positive, then there are two cases in which the fiscal backing is

independent of movements in the risk premia. When government debt is a consol, debt

repayments are constant every period, independently of the fluctuations in asset prices.

In this case, bond holders bear all the repricing risk from the disaster. In the opposite

extreme case of short-term debt, government debt is completely safe so it does not carry

a risk premium. This is an implicit insurance contract from taxpayers to bondholders:

bondholders accept a relatively low return in normal times for the promise of a safe pay-

off in the case of a disaster. This result is related to the analysis in Jiang, Lustig, Stanford,

Van Nieuwerburgh and Xiaolan (2022), who show that there is a trade-off between ex-

posing the taxpayers or bondholders to aggregate risk. They state their results in terms of

the risk properties of the fiscal surplus, while we take the complementary approach and

focus on the properties of government debt instead.

Redistribution and iMPCs. In our economy, risk-premium neutrality holds only if the

government offsets the precautionary motive using taxes. Campbell et al. (2020) and

Bianchi, Lettau and Ludvigson (2022) consider economies that feature a risk-premium

neutrality result in the absence of government intervention, as the price of risk does not

enter the Euler equation of those models.17 As a result, risk affects asset prices but not

16For instance, Fagereng et al. (2022) says “For such an individual [who only consumes dividends], rising
asset prices are merely “paper gains,” with no corresponding welfare implications.”

17Campbell et al. (2020) assume a habit process that neutralizes the precautinary motive present in our
model. In Bianchi et al. (2022), portfolio decisions are limited to a small set of sophisticated investors and
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the real economy. In our model, in the absence of such tax changes, risk and belief hetero-

geneity affect how aggregate output responds to monetary policy.The next result shows

that intertemporal MPCs (iMPCs) in the no-disaster and disaster states, that is, how much

consumption at date t in a given state responds to changes in wealth in period 0, are dif-

ferent for optimistic and pessimistic savers.18

Lemma 2 (Intertemporal MPCs). The iMPC at time t for saver j 2 {o, p} is given by

Mj,t ⌘
1
Cj

∂Cj,t

∂Wj,0
=

(r + x)

1 + cl
1
s
j

e
�xt, M

⇤

j,t ⌘
1
Cj

∂C
⇤

j,t

∂Wj,0
=

(r + x)c⇤l
1
s
j

1 + cl
1
s
j

e
�xt.

Moreover, iMPCs satisfy the following condition:

ˆ •

0
e
�rt


Mj,t +

d

r⇤n

M
⇤

j,t

�
dt = 1. (24)

Lemma 2 shows that optimistic savers have a higher iMPC than pessimistic investors

in the no-disaster state, while pessimistic investors have a higher iMPC than optimistic

investors in the disaster state. Equation (24) shows that the average iMPC is the same

for both investors. Intuitively, optimistic investors buy more consumption goods in the

no-disaster state after an increase in wealth than pessimistic investors. These results com-

plement the findings in the HANK literature, where the focus is on the heterogeneity of

MPCs generated by the presence of borrowing constraints. Instead, our analysis shows

that heterogeneous precautionary motives can generate similar results.

macro variables are independent of movements in risk premia.
18For a discussion of iMPCs in the context of HANK models, see Auclert, Rognlie and Straub (2018).

Auclert (2019) analyzes the redistribution channel of monetary policy in a model without aggregate risk.
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3.3 Intertemporal substitution, risk, and wealth effect

We consider next the general equilibrium response of output and inflation to changes in

monetary policy. Consider the system of differential equations in Proposition 2:

2

4 ẏt

ṗt

3

5 =

2

4 d �s̃�1

�k r

3

5

2

4 yt

pt

3

5+

2

4 nt

0

3

5 ,

where we have substituted pd,t with the expression in equation (9), and nt ⌘ s̃�1(it �

rn) + cpd
l̂t depends only on the path of nominal interest rates. The eigenvalues of the

system are given by

w =
r + d +

p
(r + d)2 + 4(s̃�1k � rd)

2
, w =

r + d �
p
(r + d)2 + 4(s̃�1k � rd)

2
.

The following assumption, which we assume holds for all subsequent analysis, guaran-

tees that the eigenvalues are real-valued and have opposite signs, i.e., w > 0 and w < 0.

Assumption 1. The following condition holds: s̃�1k > rd.

This assumption implies that local uniqueness of the equilibrium requires a positive

coefficient on inflation in the Taylor rule. We show in Section 3.5 that the equilibrium is

locally unique if fp � 1 � rd
s̃�1k

⌘ fp. Assumption 1 ensures that fp > 0.

Output. We characterize next the output response to a monetary shock. We extend the

analysis in Caramp and Silva (2023), which decomposes the equilibrium path of output

into an intertemporal substitution effect (ISE) and a wealth effect, to our setting with aggregate

risk. For ease of exposition, we focus on the case in which the monetary shock induces an

exponentially decaying path for the nominal interest rates; that is, we assume it � rn =

e
�ymt(i0 � rn), where ym determines the persistence of interest rates.19

19The proof of the proposition contains the general case.
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Proposition 5 (Aggregate output in D-HANK). Suppose that it � rn = e
�ymt(i0 � rn) and

yk 6= �w, for k 2 {m, l}. The path of aggregate output is then given by

yt = s̃�1
ŷm,t

| {z }
ISE

+ clŷl,t
| {z }

time-varying

precautionary motive

+ (r � w)ewtW0
| {z }

GE factor⇥

aggregate wealth effect

, (25)

where cl ⌘ cpd
el, ŷk,t is given by

ŷk,t =
(r � w) e

wt � (r + yk) e
�ykt

(w + yk) (w + yk)
(i0 � rn), (26)

and satisfies
´ •

0 e
�rt

ŷk,tdt = 0,
∂ŷk,0
∂i0

< 0, for k 2 {m, l}.

Proposition 5 shows that output can be decomposed into three terms: an intertemporal-

substitution effect (ISE), a time-varying precautionary motive, and the aggregate wealth

effect. The first two terms correspond to the effects of monetary policy that are not me-

diated by a change in the aggregate wealth effect. The third term reflects the general

equilibrium effects of the wealth effect.

The first term captures the standard intertemporal substitution channel present in

RANK models. It depends on the aggregate EIS, s̃�1 = 1�µw

1�µwcy
s�1, and ŷm,t given in

(26). Notice that, even though only a fraction 1 � µw of agents substitute consumption

intertemporally, the ISE does not necessarily get weaker as we reduce the mass of savers

in the economy. As we reduce 1 � µw, less agents are capable of intertemporal substi-

tution, but the amplification from hand-to-mouth agents gets stronger. The two effects

exactly cancel out when cy = 1. Importantly, the ISE is equal to zero on average, i.e.´ •
0 e

�rt
ŷm,tdt = 0. An increase in interest rates shifts demand from the present to the

future, but by itself it does not change the overall level of aggregate demand.

The second term captures the effect of the time-varying precautionary motive. This
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term is equal to zero in the absence of belief heterogeneity. In this case, the model be-

haves as a TANK model with zero liquidity (see e.g. Bilbiie 2019 and Broer et al. 2020).

With belief heterogeneity, savers have heterogeneous MPCs. The redistribution towards

pessimistic investors after a contractionary monetary policy depresses aggregate output

on impact. It also triggers movements in the price of risk, which affects the magnitude of

the precautionary motive. As with the EIS, the precautionary motive shifts demand from

the present to the future without changing its overall level, that is,
´ •

0 e
�rt

ŷl,tdt = 0. The

persistence of the precautionary effects is controlled by yl, as it depends on the rate at

which the balance sheet of optimistic investors recover after a contractionary shock.

The third term in expression (25) plays an important role, as the aggregate wealth

effect determines the average response of output to the monetary shock. The GE factor

shifts the impact of the wealth effect over time, as we have that (r�w)
´ •

0 e
�(r�w)t

dt = 1.

Everything else constant, an increase in W0 would tend to raise output in all periods

by rW0, creating a parallel shift in output over time. In general equilibrium, a positive

aggregate wealth effect leads to inflation on impact, which reduces the real rate and shifts

consumption to the present. The GE factor shows that the effect of W0 on y0 exceeds the

effect on average consumption, rW0, by the factor r�w
r > 1.

Inflation. The next proposition characterizes the behavior of inflation.

Proposition 6 (Inflation in D-HANK). Suppose it � rn = e
�ymt(i0 � rn) and yk 6= �w for

k 2 {m, l}. The path of inflation is given by

pt = s̃�1p̂m,t + clp̂l,t + ke
wtW0, (27)

where p̂k,t =
k(ewt�e

�y
k

t)
(w+yk)(w+yk)

(i0 � rn), p̂k,0 = 0 and
∂p̂k,t
∂i0

� 0, for k 2 {m, l}.

Inflation can be analogously decomposed into three terms. The first two terms capture

the impact of the ISE and time-varying precautionary motive, while the last term captures
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the impact of the aggregate wealth effect. Because p̂k,0 = 0, the first two terms are initially

zero. Initial inflation is then entirely determined by the aggregate wealth effect.

3.4 The aggregate wealth effect

Propositions 5 and 6 provide a characterization of output and inflation in terms of nom-

inal interest rates and the aggregate wealth effect W0. We show next that the aggregate

wealth effect can be expressed in terms of policy variables, namely the nominal interest

rate it and the fiscal backing tt.

Proposition 7. Suppose ct +
dGk
r�w > 0. Then, W0 is a function of [it, tt]•0 given by

W0 =
r � w

(r � w)ct + dGk


�

ˆ •

0
e
�rtttdt +

✓
�dG

ˆ •

0
e
�rtp̂tdt +

ˆ •

0
e
�rtDB

L

t (it � rn + rLl̂t)dt

◆�
,

(28)

where p̂t ⌘ s̃�1p̂m,t + clp̂l,t is a function of [it]•0 .

Proof. Using
´ •

0 e
�rt

ytdt = W0 and
´ •

0 e
�rtptdt =

´ •
0 e

�rtp̂tdt + k
r�w W0, we obtain

 
ct +

dGk

r � w

!
W0 = �

ˆ •

0
e
�rtttdt � dG

ˆ •

0
e
�rtp̂tdt +

ˆ •

0
e
�rtDB

L

t (it � rn + rL pd,t) dt,

after rearranging equation (23). Given our assumption, we can divide both sides by ct +
dGk
r�w . This gives equation (28), using the fact that rL pd,t = rLl̂t up to first order.

Proposition 7 shows that W0 is uniquely pin down by [it, tt]•0 , given ct +
dGk
r�w > 0.

This assumption states that monetary policy affects the fiscal authority either through

tax revenues or through the cost of servicing the debt (or both). This proposition has an

important implication: there are only two ways through which monetary policy impacts

the aggregate wealth effect. First, monetary policy affects W0 through its fiscal backing.

Second, monetary policy affects W0 through the revaluation and net discount rate effect
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on long-term bonds. As discussed in the context of Proposition 4, the discount-rate effect

for equities cancels out at the aggregate, given it only redistributes among investors.

3.5 Determinacy and implementability

We derive next the conditions for local determinacy in our D-HANK model. We also show

that any path of the nominal interest rate and the fiscal backing can be obtained with the

monetary rule (6) and an appropriately chosen path of the monetary shock, [ut]•0 .

Proposition 8 (Determinacy and implementability). Consider a given monetary shock [ut]•0 .

i. (Determinacy) If fp � fp ⌘ 1 �
rd

s̃�1k
, then there exists a unique bounded solution to

the system comprised of the Taylor rule (6), the aggregate Euler equation (10), the NKPC

(11), the market-implied disaster probability (15), and the law of motion of relative con-

sumption (16) and relative net worth (17). We denote this solution by [i?
t
, y

?
t
, p?

t
, l̂?

t
, c

?
p,t �

c
?
o,t, b

?
p,t � b

?
o,t] and the associated path of taxes by t?

t
.

ii. (Implementability) For a given path of nominal interest rates it � rn = e
�ymt(i0 � rn),

ym 6= �w, and fiscal backing
´ •

0 e
�rtttdt, let l̂t be given by (17), yt be given by (25), and

pt be given by (27), where W0 is given by (28). If the monetary shock ut is given by

ut = it � rn � fppt, (29)

then i
?
t
= it and

´ •
0 e

�rtt?
t

dt =
´ •

0 e
�rtttdt. Moreover, y

?
t
= yt, p?

t
= pt, and l̂?

t
= l̂t.

The first part of Proposition 8 shows that there is a unique bounded equilibrium if

fp � fp. As in Acharya and Dogra (2020), the threshold for determinacy satisfies fp < 1,

so uniqueness is obtained under a weaker condition than in the textbook model.

The second part of Proposition 8 shows how to implement any given path of policy

variables by appropriately chosing the monetary shock ut. Combined with Propositions
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5-7, this provides a complete characterization of how output and inflation respond to

monetary policy. In our quantitative analysis, we consider two approaches to discipline

the monetary shocks. First, we estimate the fiscal backing directly from the data and find

the monetary shock that implements the empirically estimated fiscal backing. Second, we

consider the monetary shock that implements the minimum state-variable (MSV) solution

(see McCallum 1999). This corresponds to the standard method used to compute the

solution of the textbook NK model. The MSV corresponds to the unique solution where

output and inflation are linear functions of contemporaneous values of it and l̂t.

4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of risk and wealth effects in the

transmission of monetary shocks.

4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to

match a natural interest rate of rn = 1%. We assume a Frisch elasticity of one, f = 1, and

set the elasticity of substitution between intermediate goods to e = 6, common values

adopted in the literature. The fraction of workers is set to µw = 30%, consistent with the

fraction of (poor and wealthy) hand-to-mouth agents in the U.S. estimated by Kaplan,

Violante and Weidner (2014). The parameter dG is chosen to match a ratio of the market

value of public debt in the hands of the private sector to GDP of 28% and yL is chosen to

match a duration of five years, roughly in line with the historical average between 1962

and 2007 for the United States (Hall and Sargent 2011). The parameter T
0
w(Y) is chosen

such that cy = 1, which requires countercyclical transfers to balance the procyclical wage

income. A value of cy = 1 is consistent with the evidence in Cloyne, Ferreira and Surico
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(2020) on the monetary policy impact on the income of borrowers (proxing for hand-

to-mouth agents) and savers, where they show that the net income of mortgagors and

non-mortgagors reacts similarly to monetary shocks.

To calibrate the disaster risk parameters, we follow closely Barro (2006). We set l (the

steady-state disaster intensity) to match an annual disaster probability of 1.7%. To better

map the model to the data, we consider an extension where the magnitude of the drop in

productivity, zA ⌘ 1 � A
⇤

A
, is stochastic and draw from a given distribution known by all

agents. We adopt the empirical distribution estimated by Barro (2006), where zA ranges

from 15% to 64%, with an average of 29%. Introducing a random disaster size has only a

minor effect on the analytical expressions, with the term (C⇤
s )

�s being typically replaced

by E[(C⇤
s )

�s], where the expectation is taken over the disaster size zA.20

The risk-aversion coefficient is set to s = 4, a value within the range of reasonable

values according to Mehra and Prescott (1985), but substantially larger than s = 1, a value

often adopted in macroeconomic models. Our calibration implies an equity premium in

the stationary equilibrium of 7.0%, in line with the observed equity premium (Campbell

2003). Moreover, by setting s = 4 we obtain a micro EIS of s�1 = 0.25, in the ballpark of

an EIS of 0.1 as recently estimated by Best, Cloyne, Ilzetzki and Kleven (2020), and in line

with the estimates for asset holders by Havránek (2015) of 0.3. The pricing cost parameter

j is chosen to match a slope of the Phillips curve of k = 0.30, which is the value for k in

the textbook model with an average price duration of three quarters and s = 4.

For the policy variables, we follow Jiang, Lustig, Van Nieuwerburgh and Xiaolan

(2019) and estimate a standard VAR augmented with fiscal variables and compute empir-

ical IRFs applying the recursiveness assumption. We provide the details of the estimation

in Appendix D. Figure 2 shows the dynamics of fiscal variables in the estimated VAR in

response to a contractionary monetary shock that increases the policy rate by 100 bps on

20With a risk aversion of s = 4 and the estimated distribution of disaster sizes, the expected change in
marginal utility conditional on a disaster is given by E

h
(1 � zA)

�s
i
= 7.69.
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Figure 2: Estimated fiscal response to a monetary policy shock

Note: IRFs computed from a VAR identified by a recursiveness assumption.Variables included: real GDP per capita, CPI inflation,
real consumption per capita, real investment per capita, capacity utilization, hours worked per capita, real wages, tax revenues over
GDP, government expenditures over GDP, federal funds rate, 5-year constant maturity rate and the real value of government debt
over GDP. We estimate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The real value of government debt and the
5-year rate are ordered last, and the fed funds rate is ordered third to last. Gray areas are bootstrapped 68% confidence bands.

impact. Government revenues fall in response to the contractionary shock, while govern-

ment expenditures fall on impact and then turn positive, likely driven by the automatic

stabilizer mechanisms embedded in the government accounts. The present value of in-

terest payments increases by 36 bps and the initial value of government debt drops by 18

bps.21 The present value of primary surpluses increases by just 9 bps.

4.2 Asset-pricing implications of D-HANK

We focus on a monetary shock that generates a path for the nominal interest rate that can

be represented by it � rn = e
�ymt(i0 � rn). We set ym = 0.33, which gives a half-life of

roughly two quarters, so the path of nominal interest rates closely matches the impulse-

response of the Federal Funds rate from the VAR, as shown in the left panel of Figure 3.

To obtain l̂t, we need to calibrate el, which determines the elasticity of asset prices to

monetary shocks, and yl, which captures the persistence of changes in risk premia. We

21The present discounted value of interest payments is calculated as ÂT
t=0

⇣
1+g

1+iL

⌘ t

4
h
d

g

t (îL,t � p̂t)
i
, and

similarly for other variables, where T is the truncation period, îL,t is the IRF of the 5-year rate estimated in
the data, and p̂t is the IRF of inflation. We set g = 0.02 and iL = 0.043. We choose T = 60 quarters, when
the main macroeconomic variables, including government debt, are back to their pre-shock values.
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Figure 3: Nominal interest rate and forward curve.

Note: The left panel shows the IRF for the Federal Funds rate in the VAR and the path of nominal interest rates in the model. The
right panel shows the response of forward rates to a 100 bps change in the two-year yield, as estimated by Hanson and Stein (2015),
and the corresponding forward curve in the model when the monetary shock is scaled such that the two-year yield increases by 100
bps. Grey areas are confidence bands.

calibrate these parameters to match two sets of moments. First, the initial response of the

5-year yield on government bonds to a monetary shock. We find that a 100 bps increase

in the nominal interest rate leads to a 32 bps increase in the 5-year yield. Second, the

response of the entire forward curve around FOMC meetings, as estimated by Hanson and

Stein (2015). The solid line in the right panel of Figure 3 shows their estimates of the

response of forwards rates to a 100 bps change in the two-year yield, while the dashed

line shows the corresponding response of forward rates in the model.22 A striking feature

of Hanson and Stein’s (2015) results was that monetary shocks affected forward rates in

the far distant future, a fact at odds with standard models. In contrast, Figure 3 shows

that our model is able to closely match their evidence.

The procedure above gives a value of 0.57 to yl, implying a half-life of roughly 4

months. The value of el is 315, which implies a change of 33 bps in the probability of dis-

aster in response to a 25 bps monetary shock. Given that monetary shocks are typically

small in the data, this implies a variability in the market-implied disaster probability in-

22Appendix C contains the derivation of the partial differential equation (PDE) describing the evolution
of forward rates and the procedure we used to numerically solve it.
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Figure 4: Asset-pricing response to monetary shocks.

duced by monetary shocks that is only a small fraction of the overall volatility in the

disaster probability of 114 bps, as estimated by Wachter (2013).

Figure 4 shows the response of the yield on the long-term bond and the contributions

of the path of future interest rates and of the term premium. The bulk of the reaction

of the yield reflects movements in the term premium, consistent with the findings of e.g.

Gertler and Karadi (2015). The model also captures the responses of asset prices that were

not directly targeted in the calibration. Consider first the corporate spread, the difference

between the yield on a corporate bond and the yield on a government bond (without risk

of default) with the same promised cash flow. This is consistent with the way the GZ

spread is computed in the data by Gilchrist and Zakrajšek (2012). Let e
�yFt denote the

coupon paid by the bond issued by the representative firm. We assume that the monetary

shock is too small to trigger a default, but corporate bonds default if a disaster occurs,

where lenders recover the fraction 1 � zF of promised coupons. We calibrate yF and zF to

match a duration of 6.5 years and a credit spread of 200 bps in the stationary equilibrium,

consistent with the estimates reported by Gilchrist and Zakrajšek (2012). Note that the

calibration targets the unconditional level of the credit spread. We evaluate the model on

its ability to generate an empirically plausible conditional response to monetary shocks.

Figure 4 shows that the corporate spread responds to monetary shocks by 11 bps. We

introduce the excess bond premium (EBP) in our VAR and find an increase in the EBP of
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6.5 bps with a standard-error of 3.1 bps, roughly consistent with the model’s prediction.

Thus, the model produces quantitatively plausible movements in the corporate spread.

Another untargeted moment is the response of equity prices. The model generates a

decline in stocks of 4.0% in response to a 100 bps increase in interest rates, which coincides

with the point estimate of Bernanke and Kuttner (2005).23 Consistent with their findings,

the response of stocks is explained mostly by movements in the risk premium. Notice

the price-dividend ratio falls after a contractionary shock, despite a low EIS. In contrast,

Barro (2009) finds that the price-dividend ratio in the endowment disaster model with

separable utility increases with the probability of disaster when the EIS is less than one.

This motivates the adoption of a high EIS in an Epstein-Zin setting.24 Sticky prices is cru-

cial to avoid counterfactual movements in equity prices in our CRRA setting, as changes

in disaster probability would have the opposite effect on stock prices in the flexible-price

version of the model. Dividends are roughly acyclical. Due to the assumption of GHH

preferences, we avoid the strongly countercyclical profits typical of sticky-prices models.

4.3 Wealth effects in the monetary transmission mechanism

Figure 5 presents the response to a monetary shock of output and its components. The

left panel shows the solution when the fiscal backing matches the empirical estimates of

Section 4.1, while the right panel shows the conventional MSV solution. In the case with

the estimated fiscal backing, output drops on impact by 1.15% in response to an increase

of 100 bp in the nominal interest rate, roughly in line with the estimates by Miranda-

Agrippino and Ricco (2021). The time-varying precautionary motive (TVP) accounts for

60% of the initial output response, while the aggregate wealth effect (adjusted by the GE

factor) accounts for 30%. The ISE accounts for less than 10% of the initial output response,

23We follow standard practice in the asset-pricing literature and report the response of a levered claim
on firms’ profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).

24For a similar reason, a high EIS is adopted in long-run risk models, see e.g. Bansal and Yaron (2004).
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Figure 5: Output in D-HANK.

Note: In both plots, the path of the nominal interest rate is given by it � rn = e
�ymt(i0 � rn), where i0 � rn equals 100 bps. The left

panel shows the solution with the estimated fiscal backing, while the right panel shows the MSV solution.

indicating that intertemporal substitution plays only a minor role in our model.

We find stronger real effects with the MSV solution, where output drops by 1.66%

on impact. The difference is entirely driven by the aggregate wealth effect, which now

explains more than the 50% of the overall effect, with the ISE and TVP being numerically

the same as in the case with the estimated fiscal backing. The stronger impact on output,

however, requires an increase in the present value of primary surpluses of more than 220

bps, which is more than twenty times bigger than what we estimate in the data.

4.4 The limitations of the homogeneous-beliefs model

The model delivers a substantial response of output, despite a relatively weak intertem-

poral substitution channel. But is this the result of introducing disaster risk or is it due to

heterogeneous beliefs? To answer this question, we consider the behavior of asset prices

and output in an economy with homogeneous beliefs (i.e. l > 0 but el = 0).

Figure 6 (left) shows that the yield on the long bond increases by only 12 bps, less than

half of the response estimated by the VAR in Section 4.1. Moreover, the term premium is

essentially zero. In this case, stocks would also be mostly driven by interest rates instead
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Figure 6: Long-term bond yields and output for economies with and without risk.

of risk premia, inconsistent with the evidence in Bernanke and Kuttner (2005).

Figure 6 (right) shows the response of output for an economy with disaster risk and

homogeneous beliefs (solid line) and an economy without disaster risk (dashed line). In

both cases, we consider the solution that matches the estimated fiscal backing. In the

absence of belief heterogeneity, the impact on output of a monetary shock is substantially

weaker, with a drop in output of roughly 0.35%. This is more than three times smaller than

the impact on output in the case with belief heterogeneity. Moreover, the solution with

disaster risk and homogeneous beliefs is almost identical to the one without disasters.

Introducing disaster risk allows the model to capture important unconditional asset-

pricing moments, such as the equity premium or an upward-sloping yield curve, but the

model is unable to match key conditional moments, such as the response of asset prices to

monetary policy, with affects how monetary policy impacts the real economy.

5 The Effect of Risk and Maturity of Household Debt

We have focused so far on how monetary policy affects the value of households’ assets,

such as stocks and bonds. However, movements in risk premia can also affect the real

economy through its impact on household debt. In this section, we extend the baseline

model to allow workers to borrow a positive amount using long-term risky debt.
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5.1 The model with long-term risky household debt

Workers issue long-term debt that promises to pay exponentially decaying coupons given

by e
�yPt at period t � 0, where yP � 0. In response to a large shock, i.e., the occurrence of

a disaster, workers default and lenders receive a fraction 1 � zP of the promised coupons,

where 0  zP  1. Fluctuations in the no-disaster state are small enough such that they

do not trigger a default. Thus, workers default only in the disaster state.

Workers can borrow up to DP,t = QP,tF, which effectively puts a limit on the face

value of private debt F.25 The (log-linearized) consumption of workers is given by

cw,t = cyyt �

✓
yP

iP + yP

(iP,t � iP)� pt

◆
dP, (30)

where dP ⌘
DP

Y
denotes the debt-to-income ratio in the stationary equilibrium, and iP,t =

1
QP,t

� yP is the yield on household debt. Equation (30) generalizes the expression for

workers’ consumption given in Section 2. When debt is short-term, yP ! •, and riskless,

zP = 0, we obtain iP,t = it. With a consol, yP = 0, households simply pay the coupon

every period and there is no need to issue new debt. Therefore, they are insulated from

movements in nominal rates. For intermediate values of maturity and risk, monetary

policy affects workers through changes in the nominal interest rate it and the spread rP,t.

Proposition 9 (Aggregate output with long-term risky household debt). Suppose that it �

rn = e
�ymt(i0 � rn) and rPscs,t = O(||it � rn||

2). Aggregate output is then given by

yt = s̃�1
ŷm,t

| {z }
ISE

+ clŷl,t
| {z }

time-varying

precautionary motive

+
µwdPyP

1 � µwcy


ỹmŷm,t

r + yP + ym

+
rPelỹlŷl,t

r + yP + yl

�

| {z }
household-debt effect

+ (r � w)ewtW0,
| {z }

GE factor⇥

aggregate wealth effect

25This formulation guarantees that, after an increase in nominal rates, the value of household debt and
the borrowing limit decline by the same amount. This specification of the borrowing constraint, combined
with the assumption of impatient borrowers, guarantees that borrowers are constrained at all periods.
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where ỹk = yk + r � rn for k 2 {m, l}.

Proposition 9 extends the decomposition in Proposition 5 to the case of long-term

risky household debt. Household debt effectively amplifies the ISE and the time-varying

precautionary motive effect. If household debt is safe and short term (i.e, zP = 0 and

yP ! •), then the household-debt effect loads only on ŷm,t, amplifying the ISE. When

debt is long-term or when households can default, then rP > 0 and the household-debt

effect also loads on ŷl,t, amplifying the precautionary motive effect.

5.2 Quantitative implications

We consider next the quantitative effects of introducing household debt. We calibrate

dP to match a debt service payment to disposable personal income of 10%. We choose

yP to match a duration of 5 years, consistent with the mortgage duration estimated by

Greenwald, Leombroni, Lustig and Van Nieuwerburgh (2021) of 5.2 years. We choose zP

to match a spread of 2% in a stationary equilibrium relative to the riskless bond with the

same promised coupons. Figure 7 shows the role of household debt in the transmission

of monetary policy to the economy. The top left panel shows the output decomposition

with the estimated fiscal backing. Output on impact drops by 1.6% in response to a 100 bp

increase in nominal rates, where the TVP channel accounts for roughly half of the overall

response and the aggregate wealth effect (adjusted by the GE factor) accounts for roughly

40%. The top right panel shows the decomposition for the MSV solution. In this case,

the drop in output is nearly 50 bp larger than the one with the estimated fiscal backing.

However, this requires a present value of primary surplus that is ten times larger than the

one we estimated.

The bottom left panel of Figure 7 shows the impact on output for a range of special

cases nested by our model. In all cases, we focus on the solution that matches the esti-

mated fiscal backing. The line denoted by RANK corresponds to the solution without
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Figure 7: The role of household debt: output decomposition and model comparison

disaster risk and zero household debt, which aggregates to the textbook model. The line

denoted by HANK corresponds to the solution with positive debt, which given the het-

erogeneous MPCs between workers and savers captures an important channel of typical

HANK models. We also consider two versions of the model with heterogeneous beliefs

(D-HANK), with and without household debt. The output response in HANK is 12 bp

larger than in RANK. However, the impact on output in HANK is substantially smaller

than in either version of D-HANK. Introducing household debt in D-HANK raises the

impact on output by 48 bp. Hence, household debt interacts in important ways with

disaster risk. The bottom right panel shows the impact on inflation. A similar pattern

emerges: we obtain a larger response of inflation under HANK than under RANK, but it

is substantially weaker than the inflation response under D-HANK.

46



MSV (s = 1)

0 2 4 6 8

�1.00

�0.75

�0.50

�0.25

0.00

t

%

MSV (� = 1)

Output
ISE
GE Factor x WE

MSV (s = 4)

0 2 4 6 8

�1.5

�1.0

�0.5

0.0

t

%

MSV (� = 4)

Output
ISE
GE Factor x WE

Estimated fiscal (s = 4)

0 2 4 6 8

�1.5

�1.0

�0.5

0.0

t

%

Estimated fiscal (� = 4)

Output
ISE
GE Factor x WE

Figure 8: The role of the EIS in RANK’s quantitative performance.

5.3 The role of the EIS

We have seen that the real effects of monetary shocks are significantly weaker when we

shut down risk and heterogeneity. This appears to be in contrast with standard results

from the textbook model, which typically generates large real effects. Figure 8 shows that

the calibration of the EIS plays an important role for this result. The left panel shows the

MSV solution of the RANK model when we set s = 1 and use the persistence of monetary

shocks from Galí (2015). Output drops by 1.1% in response to a 100 bp increase in nominal

rates, a substantial effect. The aggregate wealth effect, adjusted by the GE factor, accounts

for the majority of the output response. The middle panels shows the MSV solution of the

RANK model for s = 4, as in our baseline calibration. We keep all the other parameters

fixed, including the slope of the Phillips curve k. The response of output is now ten times

smaller. The right panel shows the solution that matches the estimated fiscal backing with

s = 4, which is nearly the same as the MSV solution with s = 4.

These results indicate that the quantitative performance of the standard RANK model

relies on a counterfactually strong intertemporal-substitution effect, which ends up being

amplified in general equilibrium by a large wealth effect. When the model is calibrated

to match the observed levels of public debt, this strong wealth effect requires an implied

fiscal backing that is too large relative to empirical estimates. This shows that the stan-

dard model lacks realistic mechanisms to generate large real effects of monetary policy.
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Introducing heterogeneous MPCs and household debt improves the model performance,

but effects are still not large enough, in particular when debt is long term. We have seen

that risk and belief heterogeneity provide a powerful mechanism to generate the strong

real effects of monetary shocks observed in the data.

6 Conclusion

In this paper, we provide a novel unified framework to analyze the role of risk and het-

erogeneity in a tractable New Keynesian model. The methods introduced in this paper

can be applied in other settings. For instance, they can be used to introduce time-varying

risk premia in a full quantitative HANK model with idiosyncratic risk.One could also in-

troduce a richer capital structure for firms and study the pass-through of monetary policy

to households and firms. These methods may enable us to bridge the gap between the

existing work on heterogeneous agents and monetary policy and the emerging literature

on the role of asset prices in the transmission of monetary shocks.
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Appendix: Proofs

Proof of Proposition 2. Consider the New Keynesian Phillips curve ṗt =
⇣
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Consider next the generalized Euler equation. From the market-clearing condition for
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with the Phillips Curve and savers’ Euler equation, and using the fact that rn = r �
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From the revaluation of net worth in the disaster state, shown above, we can solve

for the difference in portfolios
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Proof of Lemma 1. Linearizing the aggregate intertemporal budget constraint, we obtain

QCqc,0 = DGqL,0 + QEqE,0 + QHqH,0, where QH,t is the present discounted value of wages
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Proof of Propositions 5 and 6. We can write dynamic system in matrix form as Żt = AZt +
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w�r
w�w

´ •
t

e
�w(z�t)nzdz + w�d

w�w

´
t

0 e
w(t�z)nzdz �

r�w
w�w e

wt
´ •

0 e
�wznzdz. Inflation is given by pt = p̃t + ke

wtW0, where p̃t = k
w�w

´ •
t

e
�w(z�t)nzdz+

k
w�w

´
t

0 e
w(t�z)nzdz �

k
w�w e

wt
´ •

0 e
�wznzdz.

If it � rn = e
�ymt(i0 � rn), then nt = s̃�1

e
�ymt(i0 � rn)+cpd

ele
�ylt(i0 � rn). Then, ỹt =
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el, ŷk,t =
(r�w)ewt�(r+yk)e

�y
k

t

(yk+w)(yk+w) (i0 �

rn), and p̂k,t =
k(ewt�e

�y
k

t)
(w+yk)(w+yk)

(i0 � rn). Note that
´ •

0 e
�rt
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limt!• ŷk,t = 0. Moreover, p̂0 = 0, ∂p̂k,t
∂i0

� 0 with strict inequality if t > 0.

Proof of Proposition 8. Combining the aggregate Euler equation (10), the NKPC (11), and

the system (A.54), we obtain a dynamic system in the variables [yt, p, l̂t, bp,t � bo,t]:
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eigenvector, which are given by v1 = [(r � w1)/k, 1, 0, 0]0, v2 = [(r � w2)/k, 1, 0, 0]0, v3 =
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Implementability condition. Take it � rn = e
�ymt(i0 � rn) and
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o,t = bp,t � bo,t. From

the aggregate Euler equation, we obtain

y
?
t = �

ˆ •

0
e
�d(s�t)(i?s � rn � p?

s + cll̂?
s )ds = �

ˆ •

0
e
�d(s�t)(is � rn � ps + cll̂s)ds = yt,

so y
?
t
= yt. Finally, if output, inflation, nominal interest rates, and the market-implied dis-

aster probability coincide in the two equilibria, from the intertemporal budget constraint

we must have
´ •

0 e
�rtt?

t
dt =

´ •
0 e

�rtttdt.
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Proof of Proposition 9. The workers’ financial wealth in the no-disaster state evolves ac-

cording to Ḃw,t = (it � pt + rP,t)Bw,t + WtNw,t + Tw,t � Cw,t. Using the fact that Bw,t =

�QP,tF and qP,t = �
iP,t�iP

iP+yP
, we obtain equation (30). From the market clearing condition

for goods, we obtain savers’ consumption: cs,t =
1�µwcy

1�µw
yt +

µwdP

1�µw

⇣
yP

iP+yP
(iP,t � iP)� pt

⌘
.

Assuming exponentially decaying interest rates, and using the yield on the private bond

iP,t � iP = iP+yP

r+yP+ym
(it � rn) +

iP+yP

r+yP+yl
rPl̂t, we can write savers’ consumption as follows

cs,t =
1 � µwcy

1 � µw

yt +
µwdP

1 � µw


yP

r + yP + ym

(it � rn) +
yPrP

r + yP + yl
l̂t � pt

�
. (32)

The Euler equation for savers can be written as

ċs,t = s�1(it � pt � rn) + l

✓
Cs

C⇤
s

◆s h
cs,t + s�1l̂t

i
. (33)

Combining equations (32) and (33), we obtain

ẏt =

"
s̃�1

�
µwdP

1 � µwcy

rn

#
(it � pt � rn) +

"
l

✓
Cs

C⇤
s

◆s

�
µwdP

1 � µwcy

k

#
yt

+

"
cpd

+
µwdP

1 � µwcy

yPrP(r � rn + yl)
r + yP + yl

#
l̂t +

µwdP

1 � µwcy


rn +

yP(r � rn + ym)
r + yP + ym

�
(it � rn).

The aggregate Euler equation is given by ẏt = �ŝ�1pt + d̂yt + v̂t, where ŝ�1 ⌘ s̃�1 �

µwdPrn

1�µwcy
, d̂ ⌘ l

⇣
Cs

C⇤
s

⌘s
�

µwdPk
1�µwcy

, and v̂t ⌘

h
cpd

+ µwdP

1�µwcy

yPrPỹl
r+yP+yl

i
l̂t +

h
s̃�1 + µwdP

1�µwcy

yPŷm

r+yP+ym

i
(it �

rn), where ỹk ⌘ yk + r� rn for k 2 {m, l}. Therefore, following a derivation analogous to

the one in Proposition 5, output is given by yt = s̃�1
ŷm,t +clŷl,t +

µwdP

1�µwcy

h
yPỹmŷm,t

r+yP+ym
+

rPelỹl ŷl,t
r+yP+yl

i
+

(r � w)ewtW0, where the eigenvalues are given by w = r+d̂+
p

(r+d̂)2+4(ŝ�1k�rd̂)
2 and w =

r+d̂�
p

(r+d̂)2+4(ŝ�1k�rd̂)
2 .
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Internet Appendix

A Derivations for Section 2

A.1 The non-linear model

Savers’ problem. The HJB for the savers’ problem is given by

rj,tVj,t = max
Cj,t,BL

j,t,B
E

j,t

C
1�s
j,t

1 � s
+

∂Vj,t

∂t
+ lj

h
V

⇤

j,t � Vj,t

i
+

∂Vj,t

∂Bj,t

h
(it � pt)Bj,t + rL,tB

L

j,t + rE,tB
E

j,t + Tj,t � Cj,t

i
.

(A.1)

where V
⇤

j,t is evaluated at B
⇤

j,t = Bj,t + B
L

j,t
Q
⇤
L,t�QL,t

QL,t
+ B

E

j,t
Q
⇤
E,t�QE,t

QE,t
and Bj,t > 0.

The corresponding HJB in the disaster state is given by

r⇤
j,tV

⇤

j,t = max
C⇤

j,t,B
L,⇤
j,t ,BE,⇤

j,t

(C⇤

j,t)
1�s

1 � s
+

∂V
⇤

j,t

∂t
+

∂V
⇤

j,t

∂B⇤

j,t

h
(i⇤t � p⇤

t )Bj,t + T
⇤

j,t � C
⇤

j,t

i
,

where we imposed that r
⇤
L,t = r

⇤
E,t = 0, as there is no risk in the disaster state.

The first-order conditions are given by1

C
�s
j,t =

∂Vj,t

∂Bj,t
,

∂Vj,t

∂Bj,t
rk,t =

∂V
⇤

j,t

∂B⇤

j,t

Qk,t � Q
⇤

k,t
Qk,t

, (C⇤

j,t)
�s =

∂V
⇤

j,t

∂B⇤

j,t
, (A.2)

for k 2 {L, E}. Savers are indifferent about their portfolio composition in the disaster

state. From the expressions above, we obtain eqn. (2) and (3). Differentiating the HJB

1Formally, the solution is also subject to a state-constraint boundary condition . See Achdou, Han, Lasry,
Lions, and Moll (2017) for a discussion of such constraints in continuous-time savings problems.

1



equation in the no-disaster state with respect to Bj,t, we obtain the envelope condition:2

rj,t
∂Vj,t

∂Bj,t
=

∂Vj,t

∂Bj,t
(it � pt) +

Ej,t[d
⇣

∂Vj,t
∂Bj,t

⌘
]

dt
. (A.3)

Using the optimality condition for consumption and the condition above, we obtain:

it � pt � rj,t = �

Et[dC
�s
j,t ]

C
�s
j,t dt

=
sC

�s�1
j,t Ċj,t � lj

h
(C⇤

j,t)
�s � C

�s
j,t

i

C
�s
j,t

, (A.4)

using the fact that dCj,t = Ċj,tdt + [C⇤

j,t � Cj,t]dNt and Ito’s lemma. Rearranging the ex-

pression above, we obtain eqn. (1). A similar envelope condition holds in the disaster

state, which gives the Euler equation for the disaster state

Ċ
⇤

j,t

C⇤

j,t
= s�1(it � pt � r⇤

j,t). (A.5)

The relative net worth of optimistic and pessimistic savers evolves according to

Ḃo,t

Bo,t
�

Ḃp,t

Bp,t
= Â

k2{L,E}
rk,t

 
B

L
o,t

Bo,t
�

B
k

p,t

Bp,t

!
�

✓
Co,t � Ts,t

Bo,t
�

Cp,t � Ts,t

Bp,t

◆
. (A.6)

Workers’ problem. The HJB for the workers’ problem is given by

rwVw,t = max
C̃w,t,Nw,t,BL

w,t

C̃
1�s
w,t

1 � s
+

∂Vw,t

∂Bw,t

"
(it � pt)Bw,t + rL,tB

L

w,t +
Wt

Pt

Nw,t + Tw,t � C̃w,t �
N

1+f
w,t

1 + f

#
.

+
∂Vw,t

∂t
+ lw

⇥
V

⇤
w,t � Vw,t

⇤
(A.7)

2Here we used the fact that Ej,t[dF(Bj,t, t)] =
h

Ft + lj[F
⇤ � F] + FB

⇣
(i � p)Bj + rLB

L

j
+ rEB

E

j
� Cj

⌘i
dt

for any function F(Bj,t, t), according to Ito’s lemma.
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subject to the state-constraint boundary condition

∂Vw,t(0)
∂Bw,t

�

 
Wt

Pt

Nw,t �
N

1+f
w,t

1 + f
+ Tw,t

!�s

, (A.8)

where we adopted the change of variables C̃w,t ⌘ Cw,t �
N

1+f
w,t

1+f .

For simplicity, we have already imposed that B
E
w,t = 0. We show below that B

L
w,t = 0

and a similar argument shows that workers would be against the short-selling constraint

for equities when B
E
w,t is a choice variable.

The optimality condition for labor supply is given by

N
f
w,t =

Wt

Pt

. (A.9)

We focus on an equilibrium where workers are always constrained. To derive the con-

ditions that ensure this is indeed the case, we start by considering a stationary equilibrium

where all variables are constant conditional on the state. If workers are constrained in the

stationary equilibrium, then they will also be constrained if fluctuations are small enough.

In a stationary equilibrium, net consumption C̃w in the no-disaster state is given by

C̃w =
W

P
Nw �

N
1+f
w

1 + f
+ Tw, (A.10)

and an analogous expression holds in the disaster state. Notice that the expression above

does not depend on rw or lw.

For workers to be unconstrained, the following condition would have to hold:

˙̃
Cw,t

C̃w,t
= s�1(rn � rw) +

lw

s

" 
C̃w,t

C̃⇤
w,t

!s

� 1

#
. (A.11)

For rw sufficiently large, workers would want a declining path of consumption, so cur-
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rent consumption would be above W

P
Nw �

N
1+f
w

1+f + Tw, which would violate the state-

constraint. Hence, the constraint must be binding for rw sufficiently large.

If the workers hold a positive amount of the long-term bonds, then the following con-

dition must hold

rL = lw

✓
C̃w

C̃⇤
w

◆s
QL � Q

⇤
L

QL

. (A.12)

As Cw and C
⇤
w are independent of lw, the equation above would hold only if lw equals

the value lw ⌘
rL⇣

Cw

C⇤w

⌘s Q
L
�Q⇤

L
Q

L

. For lw > lw, borrowers would want a smaller dispersion

between Cw and C
⇤
w, which requires holding less risky bonds, violating the non-negativity

constraint on long-term bonds. Therefore, borrowers will hold zero long-term bonds for

lw sufficiently large.

Firms’ problem. The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[pi,s]s�t

Et

"ˆ
t
⇤

t

hs

ht

✓
Pi,s
Ps

Yi,s �
Ws

Ps

Yi,s
As

�
j

2
p2

s (j)

◆
ds +

ht⇤

ht

Q
⇤

i,t⇤(Pi,t⇤)

#
,

subject to Yi,t =
⇣

Pi,t
Pt

⌘�e
Yt and Ṗi,t = pi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
pi,t

ht

✓
Pi,t
Pt

Yi,t �
Wt

Pt

Yi,t
A

�
j

2
p2

i,t

◆
dt + Et[d(htQi,t)], (A.13)

where Et[d(htQi,t)]
htdt

= �(it � pt)Qi,t +
∂Qi,t
∂Pi,t

pi,tPi,t +
∂Qi,t

∂t
+ lt

h⇤
t

ht

h
Q

⇤

i,t � Qi,t

i
.

The first-order condition is given by

∂Qi,t
∂Pi

Pi,t = jpi,t.
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The change in pt conditional on no disaster is then given by

 
∂2

Qi,t
∂t∂Pi

+
∂2

Qi,t

∂P
2
i

pi,tPi,t

!
Pi,t +

∂Qi,t
∂Pi

pi,tPi,t = jṗi,t. (A.14)

The envelope condition with respect to Pi,t is given by

0 =

✓
(1 � e)

Pi,t
Pt

+ e
Wt

Pt A

◆✓
Pi,t
Pt

◆�e
Yt

Pi,t
+

∂2
Qi,t

∂t∂Pi

+
∂2

Qi,t

∂P
2
i

pi,tPi,t+

∂Qi,t
∂Pi

pi,t � (it � pt)
∂Qi,t
∂Pi

+ lt

h⇤
t

ht

✓
∂Q

⇤

i,t
∂Pi

�
∂Qi,t
∂Pi

◆
. (A.15)

Multiplying the expression above by Pi,t and using eqn. (A.14), we obtain

0 =

✓
(1 � e)

Pi,t
Pt

+ e
Wt

Pt A

◆✓
Pi,t
Pt

◆�e

Yt + jṗt � (it � pt)jpi,t + lt j
h⇤

t

ht

�
p⇤

i,t � pi,t
�

.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips

curve

ṗt =

✓
it � pt + lt

h⇤
t

ht

◆
pt �

ej�1

A

✓
Wt

Pt

� (1 � e�1)A

◆
Yt,

where we have assumed that Pi,t = Pt for all i 2 [0, 1] and that p⇤
t
= 0.

A.2 The stationary equilibrium

Aggregate output. Consider a stationary equilibrium with zero inflation. From the New

Keynesian Phillips curve, we obtain

W

P
= (1 � e�1)A,

W
⇤

P
= (1 � e�1)A

⇤. (A.16)
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Combining the expressions above with the labor supply condition, we obtain

Y = µw(1 � e�1)
1
f A

1+f
f , Y

⇤ = µw(1 � e�1)
1
f (A

⇤)
1+f

f . (A.17)

Disaster state. From the Euler equation for short-term bonds, an allocation with con-

stant consumption must satisfy r
⇤
n = r⇤

j
. Uzawa preferences implies that this condition is

eventually satisfied. For simplicity, we assume that r⇤
j
(·) is constant and r⇤o = r⇤p. This

is assumption is not necessary for our results, but it simplifies presentation, as it ensures

that allocations are constant as the economy switches to the disaster state. We set r⇤
j
= rs,

so there is no jump in the discount rate of the representative saver. In this case, the real

interest rate in the disaster state is given by i
⇤
t
� p⇤

t
= r

⇤
n = rs.

The excess return on long-terms bonds and equity are equal to zero, r
⇤
L
= r

⇤
E
= 0, so

the price of the long-term bond is given by

Q
⇤
L
=

1
r⇤n + yL

, (A.18)

and the equity price is given by Q
⇤
E
= P⇤

r⇤n
.

The consumption of borrowers is given by

C
⇤
w = (1 � e�1)

Y
⇤

µw

+ T
⇤
w. (A.19)

We assume that the government chooses fiscal transfers so workers have a given

share 0 < µY,w < 1 of output, so C
⇤
w = µY,w

Y
⇤

µw
. The parameter µY,w captures the gov-

ernment’s preference for redistribution. This requires that the government sets T
⇤
w =

h
µY,w
µw

�
1�e�1

µw

i
Y
⇤. In the main text, we focus on the case µY,w = µw.

Savers’ consumption is given by

C
⇤

j
= r

⇤
nB

⇤

j
+ T

⇤

j
, (A.20)
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where B
⇤

j
= Bj + B

L

j

Q
⇤
L
�QL

QL
+ B

E

j

Q
⇤
E
�QE

QE
.

Aggregate consumption of savers is given by

C
⇤
s = r

⇤
n

D
⇤

G

µs

+
P⇤

µs

+ Ts. (A.21)

Transfers to savers must satisfy Ts = (1 � µY,w � e�1)Y
⇤

µs
� r

⇤
n

D
⇤

G

µs
such that the govern-

ment’s budget constraint is satisfied. This implies that the aggregate consumption of

savers is given by C
⇤
s = (1 � µY,w)

Y
⇤

µs
.

We focus on a symmetric allocation in the disaster state, so we assume that T
⇤
o,t � T

⇤
p,t =

�r
⇤
n(B

⇤
o � B

⇤
p), for t � t

⇤. This implies that C
⇤

j
= C

⇤
s .

No-disaster state. The consumption of workers is given by

Cw =
h
(1 � e�1)A

i 1+f
f

+ Tw. (A.22)

As in the disaster state, the government chooses fiscal transfers so workers have a

given share 0 < µY,w < 1 of output, so Cw = µY,w
Y

µw
and Cs = (1 � µY,w)

Y

µs
. This requires

that the government sets Tw =
h

µY,w
µw

�
1�e�1

µw

i
Y.

From the market clearing condition for assets, we obtain

Bs =
DG + QE

1 � µw

, B
L

s =
DG

1 � µw

, B
E

s =
QE

1 � µw

. (A.23)

The consumption of individual savers is given by

Cj = rnBj + rLB
L

j
+ rEB

E

j
� Tj (A.24)

From the Euler equation for short-term bonds to be satisfied for both types of savers,

the following condition must be satisfied: ro � rp = lp � lo, where rj is an increasing
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function of Cj

Cs
. As the consumption of type-j savers is increasing in Bj, ro � rp is increasing

in Bo. Hence, there is a unique value of Bo such that ro � rp = lp � lo. We assume the

function rj(·) is such that this equality is achieved when Bo = Bp.

Using the fact that Bo = Bp and To = Tp in a stationary equilibrium, we can write the

consumption of optimistic and pessimistic savers as follows:

Co = Cs + rL

µp

µo + µp

(B
L

o � B
L

p) + rE

µp

µo + µp

(B
E

o � B
E

p ) (A.25)

Cp = Cs � rL

µo

µo + µp

(B
L

o � B
L

p)� rE

µo

µo + µp

(B
E

o � B
E

p ). (A.26)

We can use the Euler equations for risky assets to eliminate rL and rE from the expres-

sions above, which gives us

Co = Cs


1 + l

✓
Cs

C⇤
s

◆s µp

µo + µp

Ro

�
, C

⇤
o = C

⇤
s , (A.27)

Cp = Cs


1 � l

✓
Cs

C⇤
s

◆s µo

µo + µp

Ro

�
, C

⇤
p = C

⇤
s , (A.28)

where Ro ⌘
QL�Q

⇤
L

QL

B
L
o �B

L
p

Cs
+

QL�Q
⇤
L

QE

B
E
o �B

E
p

Cs
represents optimistic relative risk exposure.

From the optimality condition for risky assets, we obtain

✓
1 + l

✓
Cs

C⇤
s

◆s µp

µo + µp

Ro

◆s

=
lp

lo

✓
1 � l

✓
Cs

C⇤
s

◆s µo

µo + µp

Ro

◆s

. (A.29)

Rearranging the expression above, we obtain

l

✓
Cs

C⇤
s

◆s

R0 =
l

1
s
p � l

1
s
o

µo

µo+µp
l

1
s
p +

µp

µo+µp
l

1
s
o

, (A.30)

which is positive if lp > lo. The value of Ro pins down only a linear combination of

B
L
o � B

L
p and B

E
o � B

E
o . For concreteness, we assume that B

E
o = B

E
p , so savers have different
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exposure to bonds in equilibrium.

Given Ro, we can solve for the share of consumption of optimistic savers:

µoCo

µoCo + µpCp

=
µo

µo + µp

2

41 +
µp(l

�
1
s

o � l
�

1
s

p )

µol
�

1
s

o + µpl
�

1
s

p

3

5 . (A.31)

Given the expression above, we obtain the market-implied disaster probability:

l =


µoCo

µpCp + µpCp

l
1
s
o +

µpCp

µpCp + µpCp

l
1
s
p

�s

. (A.32)

From the Euler equations for short-term and long-term bonds, we obtain

rn = rj � lj

" 
Cj

C⇤

j

!s

� 1

#
, rk = lj

 
Cj

C⇤

j

!s
Qk � Q

⇤

k

Qk

, (A.33)

for k 2 {L, E}, where rL = 1
QL

� yL � rn, rE = P
QE

� rn, and P = e�1
Y.

Using the fact that l
⇣

Cs

C⇤
s

⌘s
= lj

✓
Cj

C⇤

j

◆s

, we can write the Euler equations in terms of

aggregate savers’ consumption:

rn = rs � l

✓
Cs

C⇤
s

◆s

� 1
�

, rk = l

✓
Cs

C⇤
s

◆s
Qk � Q

⇤

k

Qk

, (A.34)

for k 2 {L, E}, where rs satisfy the condition rs + l = rj + lj for j 2 {o, p}.

We solve next for the price of risky assets. Given rL, we can solve for QL:

1
QL

� yL � rn = l

✓
Cs

C⇤
s

◆s ✓
1 �

Q
⇤
L

QL

◆
) QL = Q

⇤
L

r
⇤
n + yL + l

⇣
Cs

C⇤
s

⌘s

rn + yL + l
⇣

Cs

C⇤
s

⌘s , (A.35)

where QL > Q
⇤
L
, as rn < r

⇤
n due to the precautionary motive in the no-disaster state.
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The loss in long-term bonds in the disaster state is given by

QL � Q
⇤
L

QL

=
r
⇤
n � rn

r⇤n + yL + l
⇣

Cs

C⇤
s

⌘s , (A.36)

which is positive as r
⇤
n > rn. Long-term interest rates are higher than short-term interest

rates in the stationary equilibrium, i.e., the yield curve is upward sloping in this economy.

The equity price is given by

P
QE

� rn = l

✓
Cs

C⇤
s

◆s ✓
1 �

Q
⇤
E

QE

◆
) QE =

P + l
⇣

Cs

C⇤
s

⌘s
Q

⇤
E

rn + l
⇣

Cs

C⇤
s

⌘s , (A.37)

so the loss on equity in the disaster state is given by

QE � Q
⇤
E

QE

=
P � rnQ

⇤
E

P + l
⇣

Cs

C⇤
s

⌘s
Q⇤

E

=
rszP + l

h⇣
Cs

C⇤
s

⌘s
� 1
i
(1 � zP)

rs + l
⇣

Cs

C⇤
s

⌘s
(1 � zP)

, (A.38)

where zP ⌘ 1 �
P⇤

P is the size of the drop in profits. As the expression above is positive,

the equity premium is positive in the stationary equilibrium.

A.3 Log-linear approximation

We consider next the effects of an unexpected monetary shock for an economy starting at

the stationary equilibrium described above.

Disaster state. As there is no monetary shock in the disaster state, inflation is equal

to zero, p⇤
t
= 0, and output is kept at the stationary-equilibrium level, y

⇤
t
= 0. Wages

and hours are unchanged, so c
⇤
w,t = 0. Savers’ aggregate consumption is also the same

as in the stationary equilibrium, c
⇤
s,t = 0. Savers’ flow budget constraint is given by

10



µsC
⇤
s,t = r

⇤
n,t(DG,t

Q
⇤
L,t

QL,t
+ Q

⇤
E,t) + T

⇤
s,t. Notice that r

⇤
n,t = r

⇤
n, Q

⇤
L,t = Q

⇤
L
, and Q

⇤
E,t = Q

⇤
E

. For

simplicity, we further assume that the government chooses transfers in the no-disaster

state such that DG,t = DGqL,t, so transfers must satisfy T
⇤
s,t = T

⇤
s . Consumption of type-j

saver is then given by
C
⇤

j

B⇤

j

c
⇤

j,t = r
⇤
nb

⇤

j,t.

Market-based disaster probability. Linearizing eqn. (4) around the stationary equilib-

rium, we obtain
l

1
s

s
l̂t = µc,oµc,p

✓
l

1
s
p � l

1
s
o

◆ ⇥
cp,t � co,t

⇤
, (A.39)

where µc,j ⌘
µjCj

µoCo+µpCp
and cj,t ⌘ log Cj,t/Cj, for j 2 {o, p}.

Euler equation for short-term bonds. Using the fact that lj

✓
Cj,t
C⇤

j,t

◆s

= lt

⇣
Cs,t
C⇤

s,t

⌘s
, we

can write the Euler equation for short-term bonds as follows

ċj,t = s�1 �
it � pt � (rj,t + lj)

�
+

lt

s

 
Cs,t

C⇤
s,t

!s

. (A.40)

Linearizing the discount-rate function, we obtain rj,t = rj + sx(cj,t � cs,t), where we

assumed a common slope for both types sx, so we obtain the linearized Euler equation

ċj,t = s�1(it � pt � rn) +
l

s

✓
Cs

C⇤
s

◆s �
l̂t + scs,t

�
� x(cj,t � cs,t). (A.41)

Aggregating the expression above, and using cs,t = Âj2{o,p} µc,jcj,t, we obtain

ċs,t = s�1(it � pt � rn) +
l

s

✓
Cs

C⇤
s

◆s �
l̂t + scs,t

�
. (A.42)
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Relative consumption. From the optimality condition for risky assets, we obtain

l
1
s
o

Co,t

C⇤
o,t

= l
1
s
p

Cp,t

C⇤
p,t

) cp,t � co,t = c
⇤
p,t � c

⇤
o,t (A.43)

Relative consumption in the no-disaster evolves according to

ċp,t � ċo,t = �x(cp,t � co,t). (A.44)

Relative net worth. Linearizing eqn. (A.6), we obtain

ḃp,t � ḃo,t = Â
k2{L,E}

rk

"
r̂k,t

 
b

k
p

bp

�
b

k
o

bo

!
+

b
k
p

bp

(bk

p,t � bp,t)�
B

k
o

Bo

(bk

o,t � bo,t)

#

�

✓
Cp

Bp

cp,t �
Co

Bo

co,t

◆
+

Cp � Tp

Bp

bp,t �
Co � To

Bo

bo,t, (A.45)

where r̂k,t = l̂t + scs,t +
Q
⇤

k

Qk�Q⇤

k

qk,t. Using the fact that Cj�Tj

Bj
= rn + Âk2{L,E} rk

B
k

j

Bj
, we can

write the expression above as follows

ḃp,t � ḃo,t = Â
k2{L,E}

rk

"
r̂k,t

 
B

k
p

Bp

�
B

k
o

Bo

!
+

B
k
p

Bp

b
k

p,t �
B

k
o

Bo

b
k

o,t

#
�

✓
Cp

Bp

cp,t �
Co

Bo

co,t

◆

+ rn(bp,t � bo,t). (A.46)

The relative net worth in the disaster state at t = t
⇤ is given by

B
⇤
p

Bp

b
⇤
p,t⇤ �

B
⇤
o

Bo

b
⇤
o,t⇤ = bp,t⇤ � bo,t⇤ � Â

k2{L,E}

" 
B

k
p

Bp

�
B

k
o

Bo

!
Q

⇤

k

Qk

qk,t⇤ +
Qk � Q

⇤

k

Qk

 
B

k
p

Bp

b
k

p,t⇤ �
B

k
o

Bo

b
k

o,t⇤

!#
.

(A.47)

Relative risk exposure. Consumption of savers in the disaster state is given by c
⇤

j,t =
r
⇤
nB

⇤

j

C⇤
s

b
⇤

j,t, so we obtain that c
⇤
p,t � c

⇤
o,t =

r
⇤
n

C⇤
s
(B

⇤
pb

⇤
p,t � B

⇤
o b

⇤
o,t). Using this expression and the

12



fact that c
⇤
p,t � c

⇤
o,t = cp,t � co,t, we can solve for the relative risk exposure:

Â
k2{L,E}

Qk � Q
⇤

k

Qk

 
B

k
p

Bp

b
k

p,t �
B

k
o

Bo

b
k

o,t

!
= bp,t � bo,t �

C
⇤
s

r⇤nBs

(cp,t � co,t)� Â
k2{L,E}

 
B

k
p

Bp

�
B

k
o

Bo

!
Q

⇤

k

Qk

qk,t.

(A.48)

The dynamic system. Using the expression above to eliminate the relative risk expo-

sure, the relative net worth at the no-disaster state is given by

ḃp,t � ḃo,t = (l̂t + (s � 1)cs,t) Â
k2{L,E}

rk

 
B

k
p

Bp

�
B

k
o

Bo

!
+ r(bp,t � bo,t)

�

✓
rn +

Ts

Bs

+
C
⇤
s (r � rn)

r⇤nBs

◆
(cp,t � co,t)� Â

k2{L,E}
rk

 
B

k
p

Bp

(cp,t � cs,t)�
B

k
o

Bo

(co,t � cs,t)

!
, (A.49)

using r̂k,t = l̂t + scs,t +
Q
⇤

k

Qk�Q⇤

k

qk,t,
Cj

Bj
= rn +

Tj

Bj
+ Âk2{L,E} rk

B
k

j

Bj
, and l

⇣
Cs

C⇤
s

⌘s
= r � rn.

The deviation of consumption from average can be written as

cp,t � cs,t = µc,o(cp,t � co,t), co,t � cs,t = �µc,p(cp,t � co,t). (A.50)

Combining the expressions above, we can write ḃp,t � ḃo,t as follows

ḃp,t � ḃo,t = r(bp,t � bo,t)� cb,c(cp,t � co,t) + cb,cs
cs,t, (A.51)

where cb,cs
⌘ (s � 1)Âk2{L,E} rk

✓
B

k
p

Bp
�

B
k
o

Bo

◆
, and

cb,c ⌘ sµc,oµc,p

0

@l
1
s
p � l

1
s
o

l
1
s

1

A Â
k2{L,E}

rk

 
B

k
o

Bo

�
B

k
p

Bp

!
+

✓
rn +

Ts

Bs

+
C
⇤
s (r � rn)

r⇤nBs

◆
(A.52)

+ Â
k2{L,E}

rk

 
µc,o

B
k
p

Bp

+ µc,p
B

k
o

Bo

!
.
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Note that rn +
Ts

Bs
=

Cj

Bj
�Âk2{L,E} rk

B
k

j

Bj
, so rn +

Ts

Bs
= µc,p

Co

Bo
+µc,o

Cp

Bp
�Âk2{L,E} rk

✓
µc,p

B
k
o

Bo
+ µc,o

B
k
p

Bp

◆
.

We can then write cb,c as follows:

cb,c = sµc,oµc,p

0

@l
1
s
p � l

1
s
o

l
1
s

1

A Â
k2{L,E}

rk

 
B

k
o

Bo

�
B

k
p

Bp

!
+ µc,p

Co

Bo

+ µc,o
Cp

Bp

+
C
⇤
s (r � rn)

r⇤nBs

,

(A.53)

so cb,c > 0, as rn < r.

In general, we would have to simultaneously solve for the aggregate variables and the

relative net worth and relative consumption of pessimistic savers, which would increase

the dimensionality of the problem relative to the standard New Keynesian. We assume

that rkcs,t = O(||it � rn||
2), so this term is small and can be ignored in our approximate

solution. This implies that the system is now block recursive, where we can solve for the

dynamics of relative consumption and relative net worth before fully characterizing the

behavior of other aggregate variables. Under this assumption, we can write the joint

dynamics of bp,t � bo,t and cp,t � co,t as follows:

2

4 ċp,t � ċo,t

ḃp,t � ḃo,t

3

5 =

2

4 �x 0

�cb,c r

3

5

2

4cp,t � co,t

bp,t � bo,t

3

5 . (A.54)

Persistence of l̂t. The system above has a positive and a negative eigenvalue, so there

is a unique bounded solution given by

2

4cp,t � co,t

bp,t � bo,t

3

5 =

2

4
r+x
cb,c

1

3

5 e
�ylt(bp,0 � bo,0) (A.55)

where yl = x.
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We can then write the market-implied disaster probability as follows:

l̂t = e
�yltl̂0, (A.56)

where

l̂0 ⌘ sµc,oµc,p

0

@l
1
s
p � l

1
s
o

l
1
s

1

A r + x

cb,c
(bp,0 � bo,0). (A.57)

Hence, yl captures the persistence of l̂t. If x = 0, then yl = 0 and changes in lt

are permanent. For high values of yl, the effects on lt are transitory and yl controls the

speed of the convergence.

Wealth revaluation and l̂0. The revaluation of the relative net worth is given by

bp,0 � bo,0 = Â
k2{L,E}

 
B

k
p

Bp

�
B

k
o

Bo

!
qk,0. (A.58)

The price of the long-term bond satisfies the condition

�
1

QL

qL,t + q̇L,t � (it � rn) = rL


l̂t + scs,t +

Q
⇤
L

QL � Q⇤
L

qL,t

�
(A.59)

Rearranging the expression above, we obtain

q̇L,t � (r + yL)qL,t = (it � rn) + rL(l̂t + scs,t). (A.60)

Solving the differential equation above, we obtain

qL,0 = �

ˆ •

0
e
�(r+yL)t(it � rn)dt �

ˆ •

0
e
�(r+yL)trL(l̂t + scs,t)dt. (A.61)
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Suppose it � rn = e
�ymt(i0 � rn) and rLscs,t = O(||it � rn||

2), then

qL,0 = �
i0 � rn

r + yL + ym

�
rLl̂0

r + yL + yl
. (A.62)

We focus on the case
B

E
p

Bp
= B

E
o

Bo
, so the initial relative wealth revaluation is given by

bp,0 � bo,0 = �

 
B

L
p

Bp

�
B

L
o

Bo

!"
i0 � rn

r + yL + ym

+
rLl̂0

r + yL + yl

#
. (A.63)

Plugging the expression above into the expression for l̂0

l̂0 ⌘

sµc,oµc,p

 
l

1
s
p �l

1
s
o

l
1
s

!
r+x
cb,c

✓
B

L
o

Bo
�

B
L
p

Bp

◆

1 � sµc,oµc,p

 
l

1
s
p �l

1
s
o

l
1
s

!
r+x
cb,c

✓
B

L
o

Bo
�

B
L
p

Bp

◆
rL

r+yL+yl

i0 � rn

r + yL + ym

. (A.64)

Notice that there is an amplification mechanism between the price of the long-term

bond and the change in disaster probability. A wealth redistribution towards pessimistic

investors tends to increase l̂0. An increase in l̂0 depresses the value of long-term bonds,

redistributing towards pessimistic investors, further increasing l̂t.

Workers’ consumption. Log-linearizing workers’ budget constraint, we obtain

cw,t =
WNw

PCw

(wt � pt + nw,t) +
Y

Cw

T
0
w(Y)yt. (A.65)

Using the fact that wt � pt + nw,t = (1 + f)yt, we can write the expression above as

follows

cw,t = cyyt. (A.66)

where cy ⌘
WNw

PCw
(1 + f) + Y

Cw
T
0
w(Y).
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Phillips curve. Linearizing the Phillips curve, we obtain

ṗt = rpt � kyt, (A.67)

where k ⌘
fe
j

WN

P
.

Stock prices. Linearizing the expression for rE,t, we obtain

P
QE

(P̂t � qE,t) + q̇E,t � (it � pt � rn) = rE


l̂t + scs,t +

Q
⇤
E

QE � Q⇤
E

qE,t

�
. (A.68)

Rearranging the expression above, we obtain

q̇E,t � rqE,t = �
1

QE

P̂t + (it � pt � rn) + rE

⇥
l̂t + scs,t

⇤
, (A.69)

Solving the differential equation above, we obtain

qE,t =
1

QE

ˆ •

t

e
�r(s�t)P̂sds �

ˆ •

t

e
�r(s�t) ⇥(is + ps � rn) + rE(l̂t + scs,t)

⇤
ds. (A.70)

A.4 The approximation in the price of risk

Propostion 3 shows that an approximate block recursivity property holds when rkscs,t =

O(kit � rnk
2), for k 2 {L, E}. The term premium at t = 0 is given by

´ •
0 e

�(r+yL)trL(scs,t +

l̂t)dt, so this assumption implies that we can approximate the term premium, up to first

order, by the expression
´ •

0 e
�(r+yL)trLl̂tdt. Similarly, the drop in the stock price caused

by changes in risk premia is given by
´ •

0 e
�rt

rE(scs,t + l̂t)dt ⇡
´ •

0 e
�rt

rEl̂tdt under our

assumption about rkscs,t. To assess the quantitative importance of this assumption, we

compare the discount rate effect on long-term bonds and equities when we include the

term rkscs,t to the corresponding solution when this term is ignored.
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Figure A.1: Risk premium effect on long-term bonds and stocks.

Note: The left panel shows the term premium when the term rLscs,t is included in the calculation (exact) and when this term is omitted
(approximation). The right panel shows the drop on the stock price due to changes in the price of risk when the term rLscs,t is included
in the calculation (exact) and when this term is omitted (approximation).

Figure A.1 shows the effect of this approximation on the pricing of stocks and bonds.3

The left panel shows that the response of the yield on the long-term bond when we ommit

the term rLscs,t is nearly identical to the one when this term is included. A similar pattern

emerges for stocks. The right panel shows the magnitude of the drop in the stock price

caused by movements in the price of risk. The solid line represent the calculation when

the term rEscs,t is included, and the dashed line shows the calculation when this term is

omitted. Once again the approximate solution is nearly identical to the exact one.

B Derivations for Section 3

B.1 Trading in stocks

We consider next an extension where investors trade in stocks in the stationary equilib-

rium. In this case, the wealth effect of individual investors depends on the amount they

trade on short-term bonds, long-term bonds, and stocks. However, as in the baseline

model, the aggregate wealth effect depends only on the amount of government bonds

3Notice that we are only assessing the role of the assumption O(kit � rnk
2). The lines we refer as

“Exact” in Figure A.1 still corresponds to a linearized solution.
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traded, as the household sector as a whole act as buy-and-hold investors on stocks.

The replicating portfolio. Let i 2 Ij denote saver i of type j and assume that saver i

receives real income Ij,t(i) = aj(i)e�yEtPt. We assume that
´

i2Ij
aj(i)di = 0 and that the

following condition is satisfied in a stationary equilibrium:

Bj,0(i) + E

ˆ •

0

ht

h0
Ij,t(i)dt

�
= Bj,0, (B.1)

where Bj,0(i) is the initial wealth of saver i and Bj,0 is the average wealth of type-j savers.

This implies that the consumption of all savers is the same in the stationary equilibrium.

Let B
S

j,t(i) = B
S

j
+ B̃

S

j,t(i) and B
E

j,t(i) = B
E

j
+ B̃

E

j,t(i), then

B̃
S

j,t + B̃
E

j,t + QIj(i),t = 0, B̃
S

j,t + B̃
E

j,t
Q

⇤
E

QE

+ Q
⇤

Ij(i),t
= 0. (B.2)

We can then solve for the portfolio of individual i:

B̃
S

j,t(i) = QIj(i),t
Q

⇤
E

QE � Q⇤
E

� Q
⇤

Ij(i),t
QE

QE � Q⇤
E

, (B.3)

B̃
E

j,t(i) = Q
⇤

Ij(i),t
QE

QE � Q⇤
E

� QIj(i),t
QE

QE � Q⇤
E

. (B.4)

Pricing. Notice that we can write the expression for B̃
E

j,t(i) as follows:

QE � Q
⇤
E

QE

B̃
E

j,t(i) = �

QIj(i),t � Q
⇤

Ij(i),t

QIj(i),t
QIj(i),t, (B.5)

so rEB̃
E

j,t(i) = �rIj(i)QIj(i),t. Assuming the economy is in the stationary equilibrium, the

value of the income claim in the disaster state is given by

Q
⇤

Ij(i),t
= aj(i)

e
�yEtP⇤

r⇤n + yE

, (B.6)
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and the value of the income claim in the no-disaster state is given by

QIj(i),t =
aj(i)Pe

�yEt + l
⇣

Cs

C⇤
s

⌘s
Q

⇤

Ij(i),t

rn + l
⇣

Cs

C⇤
s

⌘s
+ yE

. (B.7)

We can then write the portfolio holdings of investor i as follows:

B̃
E

j,t(i) = �aj(i)e
�yEt

QE

QE � Q⇤
E

P �
rn+yE

r⇤n+yE
P⇤

rn + l
⇣

Cs

C⇤
s

⌘s
+ yE

(B.8)

B̃
S

j,t(i) = aj(i)e
�yEt

QE

QE � Q⇤
E

2

64
P + l

⇣
Cs

C⇤
s

⌘s P⇤

r⇤n+yE

rn + l
⇣

Cs

C⇤
s

⌘s
+ yE

Q
⇤
E

QE

�
P⇤

r⇤n + yE

3

75 . (B.9)

Notice that rIj(i) is given by

rIj(i) = l

✓
Cs

C⇤
s

◆s P �
rn+yE

r⇤n+yE
P⇤

P + l
⇣

Cs

C⇤
s

⌘s P⇤

r⇤n+yE

. (B.10)

Linearizing the pricing condition for the income claim, we obtain

qIj,0 =
aj(i)Y

QIj,0

ˆ •

0
e
�(r+yE)tP̂tdt �

ˆ •

0
e
�(r+yE)t

⇣
it � pt � rn + rIj(i)pd,t

⌘
dt. (B.11)

Wealth effects. The intertemporal budget constraint for household i is given by

E0

ˆ •

0

ht

h0
Cj,t(i)dt

�
= Bj,0(i) + E

ˆ •

0

ht

h0

�
Ij,t(i) + Tj,t

�
dt

�
. (B.12)

Linearizing the equation above, we obtain

Wj,0(i) =
1
Cj

h
B

L

j
qL,0 + B

E

j,0(i)qE,0 + QTj
qTj,0 + QIj(i),0qIj(i),0

i
+

QCj

Cj

ˆ •

0
e
�rt

⇣
it � pt � rn + rCj

pd,t

⌘
dt,

(B.13)
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where QIj(i),0 is the value at 0 of a claim on Ij,t(i) for all t � 0.

Using the fact that QCj
= B

S

j,0(i) + B
L

j
+ B

E

j,0(i) + QIj(i),0 + QTj
and QCrCj

= B
L

j
rL +

B
E

j,0(i)rE + QIj(i),0rIj(i) + QTj
rTj

, we can write the wealth effect as follows:

Wj,0(i) = Wj,0 +
Y

Cj

ˆ •

0
e
�rt

 
B

E

j,0(i)

QE

+ e
�yEt

aj(i)

!
P̂tdt

+
B̃

S

j,0(i)

Cj

ˆ •

0
e
�rt(it � pt � rn)dt

+
QIj(i),0

Cj

ˆ •

0
e
�rt
�
1 � e

�yEt
�
(it � pt � rn + rIj(i)pd,t)dt (B.14)

Notice that (1� e
�yEt)QIj(i),0 = QIj(i),0 �QIj(i),t, QIj(i),t = �B̃

S

j,t(i)� B̃
E

j,t(i), and rIj
QIj(i),t =

rEB̃
E

j,t(i). We can then write the expression above as follows:

Wj,0(i) = Wj,0 +
Y

Cj

ˆ •

0
e
�rt

 
B̃

E

j,0(i)

QE

+ e
�yEt

aj(i)

!
P̂tdt

+
1
Cj

ˆ •

0
e
�rtDB

S

j,t(it � pt � rn)dt

+
1
Cj

ˆ •

0
e
�rtDB

E

j,t(it � pt � rn + rE pd,t)dt, (B.15)

where DB
E

j,t = B̃
E

j,t(i) � B̃
E

j,0(i) and DB
S

j,t = B̃
S

j,t(i). Notice that as
´

i2Ij
aj(i)di = 0, then

1
µj

´
i2Ij

Wj,0(i)di = Wj,0.

The equation above express the wealth effect in terms of cumulative purchases of as-

sets. We can equivalently write the expression above in terms of instantaneous net pur-

chases of assets, as in Fagereng et al. (2022). For simplicity, assume there is no cash-flow
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effect. We can then write the integral above involving equities as follows:

ˆ •

0
e
�rtDB

E

j,t(it � pt � rn + rE pd,t)dt =
ˆ •

0
e
�rt(1 � e

�yEt)B
E

j,0(q̇E,t � rqE,t)dt

= B
E

j,0

ˆ •

0
d(e�rt

qE,t)�
ˆ •

0
d(e�(r+yE)tqE,t)

�
+
ˆ •

0
e
�rt

N
E

j,tqE,tdt (B.16)

= �

ˆ •

0
e
�rt

N
E

j,tqE,tdt. (B.17)

where N
E

j,t = �yEB
E

j,t denotes the net purchases at period t, using the fact that it � pt �

rn + rE pd,t = q̇E,t � rqE,t

B.2 Wealth effects and Hicksian compensation

Hicksian compensation. We show next that Wj,0 corresponds to (minus) the Hicksian

wealth compensation for each household. Let ej(h, U) define the expenditure function

ej(h, U) = min
{Cj}

Ej,0

"ˆ
t
⇤

0

hj,t

hj,0
Cj,tdt +

ˆ •

t⇤

h⇤

j,t

hj,0
C
⇤

j,tdt

#
, (B.18)

subject to Ej,0

´
t
⇤

0 e
�
´

t

0 rj,sds
C

1�s
j,t �C

1�s
j

1�s dt +
´ •

t⇤
e
�
´

t

0 rj,sds
(C⇤

j,t)
1�s�(C⇤

j
)1�s

1�s dt

�
= U. We sub-

tracted the utility of the stationary-equilibrium consumption bundle, so U = 0 corre-

sponds to the utility obtained in the stationary equilibrium. The solution to this problem

is the Hicksian demand C
h

j,t(hj, U) and C
h,⇤
j,t (hj, U) in the no-disaster and disaster states.

Let h0 denote an alternative price process and U
0 the corresponding utility under

the new equilibrium. Mas-Colell et al. (1995) (see page 62) defines the Hicksian wealth

compensation as ej(h0

j
, U) � ej(h0

j
, U

0). We focus on a first-order approximation, that is,

h0
t
/h0

0 = ht/h0 + h̃t, where h̃t is small. Let c̃j,t ⌘ log C
h

j,t(h
0, U)/C

h

j,t(h, U). Plugging the
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expression for C
h

j,t(h
0, U) into the constraint and linearizing, we obtain

Ej,0

"ˆ
t
⇤

0
e
�rjtC

h

j,t(h, U)1�s
c̃j,tdt + e

�rjt
⇤

ˆ •

t⇤

e
�r⇤

j
(t�t

⇤)
C

h,⇤
j,t (h, U)1�s

c̃
⇤

j,tdt

#
= 0. (B.19)

Notice this implies that Ej,0

´
t
⇤

0
hj,t
hj,0

C
h

j,t(h, U)c̃j,tdt +
´ •

t⇤

h⇤

j,t
hj,0

C
h,⇤
j,t (h, U)c̃⇤

j,tdt

�
= 0. As work-

ers do not engage in intertemporal substitution, we set c̃w,t = c̃
⇤
w,t = 0, so this equation

would hold for them as well. We can then write ej(h0, U) up to first order as follows

ej(h
0, U) = E0

"ˆ
t
⇤

0

h0
t

h0
0

C
h

j,t(h, U)dt +
ˆ •

t⇤

h0
t

h0
0

C
⇤,h
j,t (h, U)dt +

ˆ
t
⇤

0

ht

h0
C

h

j,t(h, U)c̃j,tdt +
ˆ •

t⇤

h⇤
t

h0
C

h,⇤
j,t (h, U)c̃⇤

j,tdt

#
,

= E0

"ˆ
t
⇤

0

h0
t

h0
0

C
h

j,t(h, U)dt +
ˆ •

t⇤

h0
t

h0
0

C
⇤,h
j,t (h, U)dt

#
. (B.20)

We assume that the initial equilibrium corresponds to the stationary equilibrium, so

C
h

j,t(h, U) = Cj and C
h,⇤
j,t (h, U) = C

⇤

j
. Let h0

j
denote the SDF after the monetary shock and

U
0 the corresponding utility level. Therefore, the Hicksian wealth compensation is given

by

ej(h
0

j
, U)� ej(h

0

j
, U

0) = Ej,0

"ˆ
t
⇤

0

h0

j,t

h0

j,0
Cjdt +

ˆ •

t⇤

h0

j,t

h0

j,0
C
⇤

j
dt

#
�Ej,0

"ˆ
t
⇤

0

h0

j,0

h0

j,0
Cj,tdt +

ˆ •

t⇤

h0

j,t

h0

j,0
C
⇤

j,tdt

#
,

(B.21)

which corresponds to �Wj,0Cj as defined in the text.

Compensating and equivalent variation. From the derivation above, we obtain that

Wj,0Cj = ej(h0

j
, U

0) � ej(h0

j
, U), which corresponds to the compensating variation. We

show next that Wj,0Cj also coincides with the equivalent variation up to first order. The EV

is given by ej(hj, U
0)� ej(hj, U). Up to first order, C

h

j,t(h
0

j
, U

0)� C
h

j,t(hj, U) = C
h

j,t(hj, U
0)�

C
h

j,t(hj, U)+C
h

j,t(h
0

j
, U)�C

h

j,t(hj, U). As the present discounted value of C
h

j,t(h
0

j
, U)�C

h

j,t(hj, U)

is equal to zero, evaluated at the initial SDF, then the present discounted value of the left-
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hand side, C
h

j,t(h
0

j
, U

0) � C
h

j,t(hj, U), equals the present discounted value of C
h

j,t(hj, U
0) �

C
h

j,t(hj, U). The present discounted value of C
h

j,t(h
0

j
, U

0)� C
h

j,t(hj, U) evaluated at h (or h0)

corresponds to CjWj,0. The present discounted value of C
h

j,t(hj, U
0)� C

h

j,t(hj, U) evaluated

at h equals the equivalent varation, so ej(hj, U
0)� ej(hj, U) = CjWj,0.

B.3 Welfare

The indirect utility function is given by

Vj(h, w) = Ej,0

"ˆ
t
⇤

0
e
�
´

t

0 rj,sds
C

1�s
j,t

1 � s
dt +

ˆ •

t⇤

e
�
´

t

0 rj,sds
(C⇤

j,t)
1�s

1 � s
dt

#
, (B.22)

subject to Ej,0

´
t
⇤

0
hj,t
hj,0

Cj,tdt +
´ •

t⇤

h⇤

j,t
hj,0

C
⇤

j,tdt

�
= w.

Let Vj denote welfare associated with the stationary-equilibrium consumption bun-

dle. The change in welfare of deviating from the stationary equilibriu can be written as

Vj � Vj = C
�s
j

ˆ •

0
lje

�ljt
⇤

2

4
ˆ

t
⇤

0
e
�rj cj,tdt + e

�rjt
⇤

 
C
⇤

j

Cj

!�s
C
⇤

j

Cj

ˆ •

t⇤

e
�r⇤

j
(t�t

⇤)
c
⇤

j,tdt

3

5Cj

= C
�s
j

ˆ •

0
e
�rt

h
cj,t + cc⇤

j
c
⇤

j,t

i
Cj

= C
1�s
j

Wj,0. (B.23)

Hence, the wealth effect captures the impact on welfare for household j. We showed in

the previous subsection that Wj,0Cj, so the wealth effect corresponds to the compensating

variation and equivalent variation. We show next that the wealth effect also corresponds

to the welfare measure proposed by Fagereng et al. (2022).

Following Fagereng et al. (2022), let’s assume there is no cash-flow effect, so we can
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write

Wj,0 =
ˆ •

0
e
�rt

DB
S

j

Cj

(it � pt � rn)dt +
ˆ •

0
e
�rt

DB
L

j,t

Cj

(it � pt � rn + rL pd,t) dt. (B.24)

Notice that it � pt � rn + rL pd,t = q̇L,t � (r + yL)qL,t. We can then write the second

integral above as follows:

ˆ •

0
e
�rt

DB
L

j,t

Cj

(it � pt � rn + rL pd,t) dt =
B

L

j

Cj

ˆ •

0

⇣
e
�rt

� e
�(r+yL)t

⌘
(q̇L,t � (r + yL)qL,t) dt

=
B

L

j

Cj

ˆ •

0
d
�
e
�rt

qL,t
�

dt �

ˆ •

0
d

⇣
e
�(r+yL)tqL,t

⌘
dt �

ˆ •

0
e
�rtyLqL,tdt

�

= �
1
Cj

ˆ •

0
N

L

j,tqL,tdt, (B.25)

where N
L

j,t = yLB
L

j
denotes the net purchases of long-term bonds in period t.

B.4 iMPCs

The problem of saver j can be written as

V(h, w) = Ej,0

"ˆ •

0
e
�
´

t

0 rj,sds
C̃

1�s
j,t

1 � s
dt

#
, (B.26)

subject to

Ej,0

"ˆ •

0

h̃j,t

hj,0
C̃j,tdt

#
= w, (B.27)

where hj,t denotes the SDF under saver j’s beliefs, which evolves according to dhj,t
hj,t

=

�


it � pt + lj

h⇤

j,t�hj,t
hj,t

�
dt+

h⇤

j,t�hj,t
hj,t

dNt, C̃j,t = Cj,t if the economy is in the no-disaster state,

and C̃j,t = C
⇤

j,t if the economy is in the disaster state. The SDF satisfies the change of

measure conditions: lj

h⇤

j,t
hj,t

= lt

h⇤
t

ht
and hj,t

h0,t
= e

�
´

t

0 (ls�lj)ds ht

h0
.
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The first-order conditions for this problem are given by

e
�
´

t

0 rj,sds
C̃
�s
j,t = L

h̃j,t

hj,0
, (B.28)

where L is the Lagrange multiplier on the intertemporal budget constraint.

Applying a change of measure, we can write the expression above as follows:

e
�
´

t

0 (rj,s+lj)ds
C̃
�s
j,t = Le

�
´

t

0 lsds
h̃j,t

hj,0
, (B.29)

The intertemporal budget constraint can be written as

ˆ •

0
e
�ljt

hj,t

hj,0

"
Cj,t + lj

h⇤

j,t

hj,t
Q

⇤

Cj,t

#
dt = w, (B.30)

where Q
⇤

Cj,t =
´ •

t

h⇤

j,s
h⇤

j,t
C
⇤

j,sds is the value of a consumption claim for an economy that

switches to the disaster state at time t. Applying a change of measure, we can write

the equation above as follows:

ˆ •

0
e
�
´

t

0 lsds
ht

h0


Cj,t + lt

h⇤
t

ht

Q
⇤

Cj,t

�
dt = w, (B.31)

The stationary equilibrium. In a stationary equilibrium, we have that h⇤

j,t = e
�r

⇤
n(t�t

⇤)h⇤

j,t⇤ .

Given our assumption that r⇤
j
= r

⇤
n, then C

⇤

j,t = C
⇤

j,t⇤ , so Q
⇤

Cj,t⇤ =
C
⇤

j,t⇤

r⇤n
. From the optimality

condition for risky assets, l
⇣

Cs

C⇤
s

⌘s
= l

✓
Cj

C⇤

j

◆s

, we obtain

C
⇤

j
=

l
1
s
j

l
1
s

C
⇤
s

Cs

Cj. (B.32)

Plugging the condition above, and using the fact that consumption in the no-disaster
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state is constant, we obtain

ˆ •

0
e
�rt

2

64Cj + l

✓
Cs

C⇤
s

◆s�1 l
1
s
j

l
1
s

Cj

r⇤n

3

75 dt = w. (B.33)

Rearranging the expression above, we obtain

Cj =
r

1 + cl
1
s
j| {z }

MPCj

w, C
⇤

j
=

rc⇤l
1
s
j

1 + cl
1
s
j| {z }

MPC⇤

j

w (B.34)

where c ⌘
l

s�1
s

r⇤n

⇣
Cs

C⇤
s

⌘s�1
and c⇤

⌘ l�
1
s

C
⇤
s

Cs
. The expressions above show that savers have

heterogeneous MPCs. Optimistic investors have higher MPCs in the no-disaster state,

while they have lower MPCs (out of initial wealth) in the disaster state.

Perturbation. Consider a perturbation of the environment above, where wealth and the

SDF are subject to small shocks. From the Euler equation for riskless and risky assets, we

obtain

ċj,t = s�1(it � pt � rn) +
l

s

✓
Cs

C⇤
s

◆s

(l̂t + scs,t)� x(cj,t � cs,t), (B.35)

and

l̂t + s(cs,t � c
⇤
s,t) = s(cj,t � c

⇤

j,t). (B.36)

We can write the equations above as follows:

cj,t = cs,t + e
�xt(cj,0 � cs,0), c

⇤

j,t = cj,t � cs,t �
1
s

l̂t. (B.37)

27



Linearizing the intertemporal budget constraint, we obtain

ˆ •

0
e
�rt

h
cj,t + c⇤

cj
c
⇤

j,t

i
dt = Wj,0, (B.38)

where cc⇤
j
= cl

1
s
j
= l

rs

⇣
Cs

C⇤
s

⌘s C
⇤

j

Cj
.

Combining the expressions for consumption with the intertemporal budget constraint,

we obtain
1 + c⇤

cj

r + x
(cj,0 � cs,0) = Wj,0 � Ws,0 +

c⇤
cj

s

l̂0
r + x

. (B.39)

Rearranging the expression above, we obtain

cj,0 = cs,0 +
r + x

1 + cl
1
s
j

(Wj,0 � Ws,0) +
cl

1
s
j

1 + cl
1
s
j

l̂0
s

. (B.40)

Consumption at date t in the no-disaster state is given by

cj,t = cs,t +
(r + x)e�xt

1 + cl
1
s
j

(Wj,0 � Ws,0) +
cl

1
s
j

1 + cl
1
s
j

l̂t

s
. (B.41)

Consumption at date t in the disaster state is given by

c
⇤

j,t =
(r + x)e�xt

1 + cl
1
s
j

(Wj,0 � Ws,0)�
1

1 + cl
1
s
j

l̂t

s
. (B.42)

An increase in Wj,0 raises consumption in both states, while an increase in l̂t raises

consumption in the no-disaster state and reduces consumption in the disaster state.
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MPCs and iMPCs. Define the intertemporal MPCs, or iMPCs, for saver j in the no-disaster

and disaster states as follows

Mj,t ⌘
∂cj,t

∂Wj,0
=

(r + x)

1 + cl
1
s
j

e
�xt, M

⇤

j,t ⌘
C
⇤

j

Cj

∂c
⇤

j,t

∂Wj,0
=

(r + x)c⇤l
1
s
j

1 + cl
1
s
j

e
�xt. (B.43)

Optimistic investors have higher iMPCs than pessimistic investors in the no-disaster

state, while pessimistic investors have higher iMPCs than optimistic investors in the dis-

aster state. However, the average iMPC is the same for both types of savers:

ˆ •

0
e
�rt


Mj,t +

l

rs

✓
Cs

C⇤
s

◆s

M
⇤

j,t

�
dt = 1. (B.44)

The difference in consumption at date t is given by

cp,t � co,t = Mp,t(Wp,0 � Ws,0)�Mo,t(Wo,0 � Ws,0) +
⇣
M

⇤
p,0 �M

⇤
o,0

⌘ c⇤

c

l̂t

s

1
r + x

. (B.45)

We can write the expression above as follows:

cp,t � co,t =
⇥
Mp,tµc,o +Mo,tµc,p

⇤
(Wp,0 � Wo,0) +

⇣
M

⇤
p,0 �M

⇤
o,0
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c

l̂t

s

1
r + x

. (B.46)

As l̂t = cl,c(cp,t � co,t), then

cp,t � co,t =
Mp,tµc,o +Mo,tµc,p

1 �
⇣
M⇤

p,0 �M⇤
o,0

⌘
c⇤

c
cl,c

s
1

r+x

⇥
Wp,o � Wo,0

⇤
. (B.47)

Therefore, l̂t is given by

l̂t =
cl,c

�
Mp,tµc,o +Mo,tµc,p

�

1 �
⇣
M⇤

p,0 �M⇤
o,0

⌘
c⇤

c
cl,c

s
1

r+x

⇥
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⇤
.
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B.5 Minimum State Variable Solution

General formulation. Consider a general dynamic system involving the vector of en-

dogeneous variables Zt = [K0
t
, Y

0
t
]0, where Yt is a vector of non-predetermined variables

and Kt a vector of predetermined variables. The dynamics of Zt is given by

Żt = AZt + BVt, (B.48)

given K0, where Vt is a vector of disturbances following the dynamics V̇t = YvVt.

The minimum state-variable (MSV) solution takes the form:

Yt = FYKKt + FYVVt, K̇t = FKKKt + FKVVt. (B.49)

We can obtain the MSV solution using the method of undetermined coefficients. Im-

portantly, the method produces a unique solution even when the number of negative

eigenvalues exceed the number of predetermined variables.

MSV solution of baseline model. Consider the dynamic system given by (10) and (11),

given a process for it and l̂t. In particular, we assume that it follows the continuous-time

analog of an AR(K) process: it � rn = G0

i
Vt, where V̇t = YVVt, for YV diagonal.4 We know

that l̂t = e
�yltl̂0, where l̂0 is a function of the path for it � rn. We assume that one of

the variables in Vt decay at rate yl, so we can write l̂t = G0

lVt. After replacing it � rn and

l̂t for the appropriate linear functions of Vt, we obtain a dynamic system in Zt = [yt, pt]0.

The MSV solution is given by

yt = F0
yVt, pt = F0

pVt. (B.50)

4In discrete time, we can write an AR(K) as (1 � a1L � . . . aK L
K)yt = vt, so yt = vt

(1�l1L)...(1�lK L) =

ÂK

k=1 GikVk,t, assuming li are distinct, where Vk,t ⌘
vt

1�li L
. Hence, yt is a sum of K AR(1) variables.
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Using the method of undetermined coefficients, we obtain

F0
yYV = s̃�1(G0

i
� F0

p) + dF0
y + cpd

G0

l, F0
pYv = rF0

p � kF0
y. (B.51)

Rearranging the expression above, we obtain the linear system

2

4�yk � d s̃�1

k �yk � r

3

5

2

4Fyk

Fpk

3

5 =

2

4s̃�1Gik + cpdGlk

0

3

5 , (B.52)

where �yk is the k-th element of the diagonal of YV . Solving the system above, we obtain

2

4Fyk

Fpk

3

5 = �
1

(w + yk)(w + yk)

2

4r + yk

k

3

5
⇣

s̃�1Gik + cpdGlk

⌘
, (B.53)

assuming yk 6= �w.

We show next how to implement the MSV solution using a Taylor rule. Suppose ut =

ÂK

k=1 jkuk,t, where uk,t = Vk,t. We adopt the normalization Vk,0 = i0 � rn. The nominal

rate under the Taylor rule is given by

it � rn =
K

Â
k=1

jk

(w + yk)(w + yk)
(w1 + yk)(w2 + yk)

uk,t �
fpkcl

(w1 + yl)(w2 + yl)
e
�ylt(i0 � rn).

In the case yk 6= yl, the coefficient jk = Gik

(w1+yk)(w2+yk)
(w+yk)(w+yk)

. In the case yk = yl, the

coefficient is given by jk =
Gik(w1+yl)(w2+yl)+fpkcl

(w+yl)(w+yl)
.

Output is then given by

yt = �

K

Â
k=1

Gik

r + yk

(w + yk)(w + yk)
s̃�1

uk,t �
(r + yl)c̃l

(w + yl)(w + yl)
e
�ylt(i0 � rn)

pt = �

K

Â
k=1

jk

k

(w + yk)(w + yk)
s̃�1

uk,t �
kc̃l

(w + yl)(w + yl)
e
�ylt(i0 � rn),
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where

c̃l = cl


fpks̃�1

(w1 + yl)(w2 + yl)
+

(w + yl)(w + yl)
(w1 + yl)(w2 + yl)

�
= cl. (B.54)

Finally, the coefficient el is given by

el =
cl,c

r+x
cb,c

✓
B

L
o

Bo
�

B
L
p

Bp

◆

1 � cl,c
r+x
cb,c

✓
B

L
o

Bo
�

B
L
p

Bp

◆
rL

r+yL+yl

K

Â
k=1

Gik

i0 � rn

r + yL + yk

=
K

Â
k=1

Gikel,k. (B.55)

Hence, given an interest rate it � rn = ÂK

k=1 Gike
�ykt(i0 � rn), we can write the solution

for output and inflation as yt = ÂK

k=1 Gikyk,t and pt = ÂK

k=1 Gikpk,t, where yk,t and pk,t

correspond to the solution when the interest rate follows the process e
�ykt(i0 � rn).

The case where ut = j1e
�ymt(i0 � rn), ym 6= yl, corresponds to the coefficients:

Gi1 = 1 +
fpkcl

(w + yl)(w + yl) + s̃�1fpk
, Gi2 = �

fpkcl

(w + yl)(w + yl) + s̃�1fpk
,

(B.56)

where y1 = ym and y2 = yl.

In the case ym = yl, we have Gi1 = 1, which requires

j1 = 1 +
(s̃�1 + cl)fpk

(w + ym)(w + ym)
. (B.57)

C Derivations for Section 4

C.1 Bond pricing and forward curve

In this section, we solve for prices, yields, and forward rates of zero-coupon bonds of

different maturity. While in the main text we focused on the price of a single bond with

exponentially decaying coupons, we solve here for the entire yield and forward curves.

Let QB,t(h) denote the period t price of a nominal zero-coupon bond maturing at pe-
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riod t + h, yB,t(h) denotes the corresponding yield on the bond, and fB,t(h) denotes the

instantaneous forward rate. The bond price satisfy the standard pricing condition

QB,t(h) = Et


ht+h

ht

Pt

Pt+h

�
, (C.1)

using the fact that ht/Pt is the nominal SDF in this economy.

Stationary equilibrium. The price of the bond in the no-disaster state of the stationary

equilibrium is given by

QB(h) =
ˆ •

h

le
�lt

⇤

e
�rsh

dt
⇤ +
ˆ

h

0
le

�lt
⇤

e
�rst

⇤

✓
Cs

C⇤
s

◆s

e
�r

⇤(h�t
⇤)

dt
⇤ (C.2)

= e
�rh + (1 � e

�lh)e�rsh

✓
Cs

C⇤
s

◆s

. (C.3)

while the price of the bond in the disaster state is simply Q
⇤
B
(h) = e

�rsh. Notice that
´ •

0 e
�yLh

P(h)dh =
1+Q

⇤
L

l
⇣

Cs

C⇤s

⌘s

r+yL
= QL, so this is consistent with our derivation for QL.

The yield on the bond is given by

yB(h) = rs + l �
1
h

log


1 +
⇣

e
lh

� 1
⌘✓

Cs

C⇤
s

◆s�
. (C.4)

Notice that limh!0 yB(h) = r
⇤
n and limh!• yB(h) = r > r

⇤
n, capturing the fact that the

yield curve is upward-sloping.

The forward rate is given by

fB(h) = �
∂ log QB(h)

∂h
= rs �

l
h⇣

Cs

C⇤
s

⌘s
� 1
i

�
elh � 1

� ⇣
Cs

C⇤
s

⌘s
+ 1

. (C.5)
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The linearized PDE. Let rB,t(h) denote the excess holding-period return on a bond ma-

turing h periods ahead conditional on no disaster:

rB,t(h) ⌘
1

QB,t(h)


�

∂QB,t(h)
∂h

+
∂QB,t(h)

∂t

�
� it. (C.6)

The Euler equation for the bond is given by

rB,t(h) = lt

 
Cs,t

C⇤
s,t

!s
QB,t(h)� Q

⇤
B,t(h)

QB,t(h)
. (C.7)

Let qb,t(h) ⌘ log QB,t(h)� log QB(h), then linearizing the equation above we obtain

�
∂qB,t(h)

∂h
+

∂qB,t(h)
∂t

= it � rn + rB(h)


l̂t +

Q
⇤
B
(h)

QB(h)� QB(h)⇤
qb,t(h)

�
, (C.8)

where we used the assumption that rB(h)scs,t is second-order.

From PDE to system of ODEs. Assuming that the nominal interest rate is exponentially

decaying, it � rn = e
�ymt(i0 � rn), we will guess-and-verify that the solution takes the

form:

qB,t(h) = cB,i(h)(it � rn) + cB,l(h)l̂t, (C.9)

where cB,i(0) = cB,l(0) = 0. Plugging the expression above into the PDE, we obtain

�c0

B,i(h)(it � rn)� c0

B,l(h)l̂t � ymcB,i(h)(it � rn)� ylcB,l(h)l̂t = (C.10)

it � rn + rB(h)l̂t + l

✓
Cs

C⇤
s

◆s
Q

⇤
B
(h)

QB(h)

⇥
cB,i(h)(it � rn) + cB,l(h)l̂t

⇤
. (C.11)

The equation above has to hold for any values of i0 � rn and l̂0, then we obtain a

34



system decoupled ODEs

�c0

B,i(h)� ymcB,i(h) = 1 + l

✓
Cs

C⇤
s

◆s
Q

⇤
B
(h)

QB(h)
cB,i(h) (C.12)

�c0

B,l(h)� ylcB,l(h) = rB(h) + l

✓
Cs

C⇤
s

◆s
Q

⇤
B
(h)

QB(h)
cB,i(h), (C.13)

given the initial conditions cB,i(0) = cB,l(0) = 0, where

rB(h) = l

✓
Cs

C⇤
s

◆s (1 � e
�lh)

h⇣
Cs

C⇤
s

⌘s
� 1
i

e�lh + (1 � e�lh)
⇣

Cs

C⇤
s

⌘s ,
Q

⇤
B
(h)

QB(h)
=

1

e�lh + (1 � e�lh)
⇣

Cs

C⇤
s

⌘s . (C.14)

We can write the ODEs above as follows:

c0

B,i(h) = �1 �


ym + l

✓
Cs

C⇤
s

◆s
Q

⇤
B
(h)

QB(h)

�
cB,i(h) (C.15)

c0

B,l(h) = �rB(h)�


yl + l

✓
Cs

C⇤
s

◆s
Q

⇤
B
(h)

QB(h)

�
cB,i(h). (C.16)

The system above can easily solve numerically using a finite-differences scheme. Given

the bond prices, we can find the yield yB,t(h) = �
1
h

log QB,t(h) = �
1
h

log QB(h)�
1
h
qB,t(h).

Let ŷB,t(h) denote the deviation of the yield on the bond from its value in the stationary

equilibrium. The forward rate is given by fB,t(h) = �
∂ log QB,t(h)

∂h
= �

log QB(h)
∂h

�
∂qB,t(h)

∂h
, so

f̂B,t(h) ⌘ �
∂qB,t(h)

∂h
denotes the deviation of the forward rate from its value in the station-

ary equilibrium.

D Estimation of Fiscal Response to a Monetary Shock

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption, as

in Christiano, Eichenbaum, and Evans (1999), extended to include fiscal variables. The

variables included are: real GDP per capita, CPI inflation, real consumption per capita,
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Figure D.1: Estimated IRFs.

real investment per capita, capacity utilization, hours worked per capita, real wages, tax

revenues over GDP, government expenditures per capita, the federal funds rate, the 5-

year constant maturity rate, and the real value of government debt per capita. We esti-

mate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The identification

assumption of the monetary shock is as follows: the only variables that react contempo-

raneously to the monetary shock are the federal funds rate, the 5-year rate and the value

of government debt. All other variables, including tax revenues and expenditures, react

with a lag of one quarter.

Data sources. The data sources are: Nominal GDP: BEA Table 1.1.5 Line 1; Real GDP:

BEA Table 1.1.3 Line 1, Consumption Durable: BEA Table 1.1.3 Line 4; Consumption

Non Durable: BEA Table 1.1.3 Line 5; Consumption Services: BEA Table 1.1.3 Line 6; Pri-

vate Investment: BEA Table 1.1.3 Line 7; GDP Deflator: BEA Table 1.1.9 Line 1; Capacity

Utilization: FRED CUMFNS; Hours Worked: FRED HOANBS; Nominal Hourly Com-
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Data 10.54 36.2 2.68 1.42 -17.62 9.3
[-14.11,35.18] [20.07,52.33] [-16.99,22.34] [-14.77,17.61] [-21.62,-13.63] [-16.69,35.29]

Table D.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 68% level.

pensation: FRED COMPNFB; Civilian Labor Force: FRED CNP16OV; Nominal Rev-

enues: BEA Table 3.1 Line 1; Nominal Expenditures: BEA Table 3.1 Line 21; Nominal

Transfers: BEA Table 3.1 Line 22; Nominal Gov’t Investment: BEA Table 3.1 Line 39;

Nominal Consumption of Net Capital: BEA Table 3.1 Line 42; Effective Federal Funds

Rate (FF): FRED FEDFUNDS; 5-Year Treasury Constant Maturity Rate: FRED DGS5;

Market Value of Government Debt: Hall, Payne and Sargent (2018).

All the variables are obtained from standard sources, except for the real value of debt,

which we construct from the series provided by Hall et al. (2018). We transform the series

into quarterly frequency by keeping the market value of debt in the first month of the

quarter. This choice is meant to avoid capturing changes in the market value of debt

arising from changes in the quantity of debt after a monetary shock instead of changes in

prices.

VAR estimation. Figure D.1 shows the results. As is standard in the literature, we find

that a contractionary monetary shock increases the federal funds rate and reduces output

and inflation on impact. Moreover, the contractionary monetary shock reduces consump-

tion, investment, and hours worked.

The Government’s Intertemporal Budget Constraint. The fiscal response in the model

corresponds to the present discounted value of transfers over an infinite horizon, that is,
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Â•
t=0 b̃t

Tt, where b̃ = 1�l
1+rs

. We next consider its empirical counterpart. First, we calculate

a truncated intertemporal budget constraint from period zero to T :

byb0
|{z}
debt

revaluation

=
T

Â
t=0

b̃t

2

664 tyt + tt

| {z }
tax revenue

� b̃�1
by(i

m

t�1 � pt � r
n)

| {z }
interest payments

3

775� T0,T + b̃T
bybT

| {z }
other transfers/expenditures

& final debt

(D.1)

The right-hand side of (D.1) is the present value of the impact of a monetary shock on

fiscal accounts. The first term represents the change in revenues that results from the real

effects of monetary shocks. The second term represents the change in interest payments

on government debt that results from change in nominal rates. The last two terms are

adjustments in transfers and other government expenditures, and the final debt position

at period T , respectively. In particular, T0,T represents the present discounted value of

transfers from period 0 through T . Provided that T is large enough, such that (yt, tt, it)

have essentially converged to the steady state, then the value of debt at the terminal date,

bT , equals (minus) the present discounted value of transfers and other expenditures from

period T onward. Hence, the last two terms combined can be interpreted as the present

discounted value of fiscal transfers from zero to infinity. Finally, the left-hand side repre-

sents the revaluation effect of the initial stock of government debt.

Table D.1 shows the impact on the fiscal accounts of a monetary policy shock, both in

the data and in the estimated model. We first apply equation (D.1) to the data and check

whether the difference between the left-hand side and the right-hand side is different

from zero. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (D.1).
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Figure D.2: IRFs for the federal funds rate and excess bond premium.

The results reported in Table D.1 imply that we cannot reject the possibility that the resid-

ual is zero and, therefore, we cannot reject the possibility that the intertemporal budget

constraint of the government is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we ob-

served in Figure 2. The response of initial debt is quantitatively important, and it accounts

for the bulk of the adjustment in the fiscal accounts.

EBP. To estimate the response of the corporate spread in the data, we add the EBP mea-

sure of Gilchrist and Zakrajšek (2012) into our VAR (ordered after the fed funds rate).

Since the EBP is only available starting in 1973, we reduce our sample period to 1973:1-

2007:7. The estimated IRFs are in line with those obtained for the longer sample. We find

a significant increase of the EBP on impact, of 6.5 bps, in line with the estimates in the

literature.
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